
Rob Fletcher

 Spock 
Up & Running
WRITING EXPRESSIVE TESTS IN JAVA AND GROOVY

www.allitebooks.com

http://www.allitebooks.org


Rob Fletcher

Spock: Up and Running
Writing Expressive Tests in Java and Groovy

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org


978-1-491-92329-0

[LSI]

Spock: Up and Running
by Rob Fletcher

Copyright © 2017 Rob Fletcher. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Nan Barber and Brian Foster
Production Editor: Kristen Brown
Copyeditor: Bob Russell, Octal Publishing, Inc.
Proofreader: Christina Edwards

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2017:  First Edition

Revision History for the First Edition
2017-05-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491923290 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Spock: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491923290
http://www.allitebooks.org


Table of Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

Part I. Spock 101

1. The “Up and Running” Part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
Installation                                                                                                                        3
Running with the JUnit Runner                                                                                     3
Running with Gradle                                                                                                       3

When Groovy Is Used in the Project                                                                         4
Synchronizing Groovy Versions Between Main and Test Classpaths                  4

Running with Maven                                                                                                       5

2. Specification Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Anatomy of a Specification                                                                                             7

Why Use Quoted Strings for Feature Method Names?                                           9
An Introduction to Spock’s Blocks                                                                              10

Block Taxonomy                                                                                                         12
Basic Block Usage                                                                                                       13

The Specification Lifecycle                                                                                           15
Fixture methods: setup and cleanup                                                                       15

Block Descriptions                                                                                                         17
and: blocks                                                                                                                   18
A Note on Comprehensibility                                                                                  18

Summary                                                                                                                         19
Comparison with JUnit                                                                                             19

iii

www.allitebooks.com

http://www.allitebooks.org


3. Spock Assertions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
The Importance of Good Diagnostics                                                                        22
The Power Assert                                                                                                           22

Type Information in Power Asserts                                                                         24
Using Groovy for Effective Assertions                                                                       25

Using List Comprehensions and List Literals                                                        25
Asserting Something About Every Item in a Collection                                      27
Expressive Assertions with Groovy Operators                                                      29

Expecting Exceptions                                                                                                    31
Interrogating the Exception                                                                                      31

Grouping Assertions on the Same Object                                                                  32
Summary                                                                                                                         33

4. Managing Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
How (Not) to Approach Persistence Testing                                                             39
Testing a Persistence Layer                                                                                           40

Managing Resources with the Spock Lifecycle                                                      42
Specifications and Inheritance                                                                                     47

Execution Order of Lifecycle Methods in an Inheritance Hierarchy                 51
Summary                                                                                                                         53

5. Interaction Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Asserting that a Method Is Called                                                                               56
Specifying Invocation Cardinality                                                                               58
Declaring the Return Value from a Mocked Method                                               59
Parameter Predicates                                                                                                     59
Disallowing Unexpected Calls or “Strict Mocking”                                                  60
Looser Matching with Wildcard Parameters                                                             61

Wildcard Shortcuts                                                                                                    61
Defining Behavior for Mocked Methods                                                                    62
Removing Invocation Constraints with Stubs                                                           63

When Should I Use a Mock and When Should I Use a Stub?                             64
Mixing Mocks and Stubs                                                                                           65

Summary                                                                                                                         66

6. Parameterized Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67
Paramaterization in JUnit                                                                                             71
Spock’s where: block                                                                                                      73
Separating Iteration Reporting by Using @Unroll                                                    75

Adding @Unroll Descriptions                                                                                  75
@Unroll Tokens in Feature Method Names                                                           76
Class Level @Unroll Annotations                                                                            76

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


Multiple Data Pipes                                                                                                       77
Data Tables                                                                                                                      77
Fields and Methods as Data Providers                                                                        79
Derived Values                                                                                                               80

Clarifying @Unroll Expressions                                                                               82
Summary                                                                                                                         83

Part II. Advanced Spock

7. Idiomatic Spock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Organizing Tests                                                                                                            87

The “Test-per-Method” Antipattern                                                                       88
Well-Factored Specifications                                                                                        89

Sharing Helper Methods                                                                                           90
Sharing Methods by Using import static                                                                93
Sharing Methods with Groovy Traits                                                                      94
Sharing Methods with Delegation                                                                           95
Helper Methods and Assertions                                                                               97
Helper Methods and Mock Interactions                                                                 97
Comparing “Before” and “After” Values                                                                 98

The Grammar of Blocks                                                                                             100
Separation of Logic and Data with where: Blocks                                               101
Using when/then or given/expect                                                                          103
Separating Preconditions                                                                                        105
Separating Preconditions from Actions                                                                105

Method Parameter Capture with Mocks                                                                  107
Using a Closure as a Parameter Predicate                                                            109
Using Hamcrest for Parameter Predicates                                                            110
Parameter Capture Using a Mock Responder                                                      111

@Stepwise Specifications                                                                                            114
How to Use @Stepwise                                                                                            115
Disadvantages of @Stepwise                                                                                   117

Conditional Specifications                                                                                         118
Marking Pending Features                                                                                      118
Selectively Executing Tests                                                                                      119

Automatically Cleaning Up Resources                                                                     120
Documenting Specifications                                                                                      121
Summary                                                                                                                       122

8. Advanced where: Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
A Primary Key Verifier                                                                                               123

Table of Contents | v



A Static Site Link Checker                                                                                          125
JBake Configuration                                                                                                126
A Data Pipe Driven by a File                                                                                  127
A Filtered Data Pipe                                                                                                129
Relative Filepaths                                                                                                     130

Summary                                                                                                                       132

9. Asynchronous Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135
Blocking Constructs                                                                                                    135

BlockingVariable                                                                                                      136
BlockingVariables                                                                                                     136

Testing Nonblocking APIs by Using Callbacks                                                       136
Using BlockingVariable in a Callback                                                                   139
Using a Reference to BlockingVariable.set as a Callback                                   140
Awaiting Multiple Values with BlockingVariables                                              140

Polling for Eventual State                                                                                            143
Using PollingConditions as a Delegate                                                                 144

Asynchronous Interaction Testing                                                                            144
Asynchronous Parameter Capture                                                                        146
Extending BlockingVariable                                                                                   148

Summary                                                                                                                       149

10. Extending Spock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151
The Message Timeline                                                                                                 151
Hamcrest Matchers                                                                                                      154

Hamcrest Support in Spock                                                                                    155
JUnit Rules                                                                                                                    156

Reusable Data Cleanup                                                                                            157
Simplifying the Rule by Using ExternalResource                                                161
Making the Cleanup Logic Generic                                                                       162

Spock Extensions                                                                                                         163
Data Cleanup as a Spock Extension                                                                      163
Further Steps                                                                                                             166

Global Extensions                                                                                                        166
Taking it Further                                                                                                      172

Summary                                                                                                                       172

11. Test-Driven Development: The Diamond Kata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175
The Diamond Kata                                                                                                      175
Implementation                                                                                                            176

First Step: The Pathological Case                                                                           176
The Simplest Valid Diamond                                                                                 177

vi | Table of Contents



Enforcing Invariants                                                                                                178
Matrix Content                                                                                                         180
Symmetry                                                                                                                  183
Eliminating the Assertion Loop                                                                             186
Adding Padding to the Rows                                                                                  187
Refinement                                                                                                                189

Summary                                                                                                                       190

Part III. Integrating Spock

12. Spock and Spring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193
What Do We Mean by “Integration Tests”?                                                             193

Container Tests                                                                                                         193
Spring Compatibility                                                                                                   194

@SpringBootTest                                                                                                      195
Testing Annotation-Driven Transactions                                                                195

Tracking Who Is Mentioned in a Message                                                           196
Non-Spring-Dependent Tests                                                                                198
Testing a Transaction Rollback                                                                              199
Setting Up the Spring Application                                                                         200
A First Integration Test                                                                                           201
Convenience and Cost                                                                                             203
Unexpected Side Effects                                                                                          204
Forcing Spring to Re-Create the Application Context                                       204
A Better Way to Force Errors                                                                                 206

Mock and Stub Beans                                                                                                  207
Mention Events                                                                                                         207
Mock Beans Before Spock 1.1                                                                                208
Mock Bean Delegates                                                                                               210
Detached Mocks in the Spring Context                                                                211
Spring Autoconfiguration and Test Configuration Classes                               212
Mock Beans in XML Configuration                                                                      212
Replacing Application Beans with Mocks                                                            213

Declarative Test Data                                                                                                   215
Using the @Sql Annotation for Data Fixtures                                                     216
Global Fixture Data                                                                                                 217
Cleaning Up Test Data Spring-Style                                                                      218

Tests in Transactions                                                                                                   219
Propagated Transactions                                                                                         220

Summary                                                                                                                       222

Table of Contents | vii



13. Testing REST APIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223
Defining the Application URL                                                                                   223
A First Specification                                                                                                    224
Web Application Lifecycle                                                                                          226
Creating Data for End-to-End Tests                                                                         226

Bleeding Data Between Tests                                                                                  227
Creating Test Data on Demand                                                                              227
Cleaning Up Test Data                                                                                             228

Requests with Data                                                                                                      229
Fixture Methods                                                                                                       230

Testing for HTTP Errors                                                                                            230
Verifying Response Data                                                                                             232

Typed Response Entities                                                                                         233
Multiple HTTP Requests in a Feature Method                                                       235
Backdoors or “Pure” API Testing?                                                                            236
Handling Redirect Responses                                                                                    238

Verifying Redirect Details                                                                                       239
REST API Security                                                                                                       240

Authentication versus Authorization                                                                    243
Summary                                                                                                                       246

14. End-to-End Web Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247
Geb                                                                                                                                 247
Getting Started with Geb                                                                                            248
A First Frontend Test                                                                                                  249
Introducing Page Models                                                                                            252

Setting the Base URL                                                                                               255
Geb’s Automatic Delegation                                                                                   256

Authentication                                                                                                              256
Encapsulating Interactions by Using Methods                                                    257

Modules                                                                                                                         259
Parameterized Pages                                                                                                    263
Interacting with Forms                                                                                               264

Accessing Form Elements by Name                                                                      267
Encapsulating Interactions with Methods                                                            268

Form Validation                                                                                                           269

15. Testing JavaScript Using Spock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271
Why Test JavaScript from the JVM?                                                                         272
Setting Up Nashorn for Tests                                                                                     272
Calling JavaScript Functions                                                                                      272

JavaScript Functions as Objects                                                                             273

viii | Table of Contents



Specifying this in a JavaScript Function                                                               274
Testing an Isomorphic View Component                                                                275

An Invocable Script Engine as a Delegate                                                            277
Passing Mocks to JavaScript                                                                                       277
Rendering a View with the Handlebars Library                                                      279

Compiling Handlebars Templates                                                                         280
Testing Template Rendering                                                                                   282
Handling Properties That Don’t Convert to JavaScript                                      283
Registering Handlebars Helper Functions                                                           285
Composing Templates with Handlebars Partials                                                 287
Passing Iterable Values to JavaScript                                                                     288

Summary                                                                                                                       290

16. Test Driving an RxJava Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
Tests, Behaviors, and Properties                                                                                292
The Skeleton Implementation                                                                                   292
Test Driving the Implementation                                                                              293

Defining the Behavior                                                                                             293
A First Test                                                                                                                294

Polling at Regular Intervals                                                                                        295
No Sleep `Til the Test Goes Green                                                                         295
Testing Subscription to the Stream                                                                        298
Unchunking the Message Stream                                                                          299
Requesting Messages Since the Last Received                                                     302
Recovering from Polling Errors                                                                             303
Recovering from Downstream Errors                                                                   305

Final Implementation                                                                                                  307

A. Groovy Primer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339

Table of Contents | ix





Introduction

Welcome to Spock: Up and Running. I’m excited and privileged to be your guide as
you learn about the most innovative thing to happen to testing on the Java Virtual
Machine (JVM) since the first release of JUnit.

From the time I first began writing unit tests (badly), I’ve always been interested in
making my tests as well-structured, readable, and straightforward as possible. I
embraced the move from JUnit 3 to JUnit 4 with Hamcrest and have experimented
with everything from FitNesse to Cucumber, TestNG to Jasmine, and ScalaTest to
Spek. I don’t think anything has made the impact on my testing style that Spock has.

For me, Spock is absolutely the “killer app” of the Groovy ecosystem. Sure, GPars
made concurrency easy, Gradle saved builds from XML hell, and Grails made throw‐
ing together the basics of a web app the work of minutes rather than hours. But noth‐
ing exploits Groovy’s dynamic style to build something that genuinely makes things
easier and better as successfully as Spock.

And Spock makes things better not just for the 80 percent of cases, but across the
board. I have every respect in the world for JUnit—it’s without doubt one of the most
important innovations in the history of the JVM—but I can’t think of any case I can
tackle better with JUnit than I can with Spock.

I hope you find Spock as logical, fascinating, and useful as I do.

Meet Spock
Spock is a test framework—some would even say language—built on top of Groovy. It
was developed by Peter Niederwieser, first released in 2009, and, after a long genesis,
version 1.0 was released in 2015. Version 1.1 followed in 2017, and that’s the version
we’ll be using in this book.

Although Spock builds on top of JUnit’s test runner it’s quite different syntactically.
Spock enforces a behavior-driven development (BDD)-style structure. Instead of

xi



using methods to apply assertions, Spock infers that simple Boolean expressions in
particular contexts behave as assertions. Instead of integrating external libraries like
JMock or Mockito, Spock has its own test doubles with dedicated syntax for defining
expectations and behavior (although you can use something else if you want). Spock
also has syntax for defining parameterized tests that goes far beyond the capabilities
of JUnit’s @RunWith(Parameterized.class).

Above all, Spock specifications are very readable and expressive. Groovy’s brevity and
lack of ceremony is harnessed to a syntax that makes tests read very well as executable
documentation.

A Short Background on Groovy
Groovy is a dynamic, optionally typed language for the JVM that was released in
2007; as of this writing, it is currently up to version 2.4.7. Unlike some alternate JVM
languages, Groovy uses very Java-like syntax. In fact, until the release of Java 8,
almost all Java code was also valid Groovy code (only one obscure loop formation
wasn’t supported). However, Groovy adds the ability to optionally type declarations,
and supports duck typing, higher-order functions, metaprogramming capabilities,
runtime method dispatch, and a number of other features.

Originally envisaged as a scripting language for the JVM, Groovy grew beyond that
into a full-fledged alternate language with its own ecosystem of libraries, web frame‐
works, and so on. In 2012, Groovy added optional static compilation capabilities and
can now target the Android platform.

Groovy’s profile was boosted by two major developments: Grails, a Rails-like web
framework that used Groovy code on top of an opinionated Spring and Hibernate
stack; and Gradle, a build tool that combined the opinionated declarative style of
Maven with the scripting capabilities of Make. When Google made Gradle the official
build tool for the Android platform, an entire new community of developers was sud‐
denly exposed to the Groovy ecosystem.

Spock is built on top of Groovy, and Spock specifications are implemented as .groovy
files. However, Spock specifications aren’t just JUnit tests written in Groovy. There’s a
whole lot more to Spock than that.

Syntax that would make no sense in Groovy might be valid in Spock. Spock is a
domain-specific language (DSL) in the truest sense that happens to be built on top of
Groovy.

I’ve deliberately avoided as much advanced Groovy as possible in the examples. We’re
not here to do incredible things with metaprogramming or to debate whether that’s a
good idea. The Groovy code used in the example specifications is, wherever possible,
simple, concise, idiomatic, and unsurprising.

xii | Introduction



Who Is This Book For?
In the past decade, automated testing has gone from a frequently derided fringe prac‐
tice to the mainstream. Resistance is futile. I think it’s fair to say that the majority of
developers at least acknowledge the benefits of writing tests, even if they only pay lip
service to the discipline of testing their own software.

But to many developers, testing is a tough discipline to master. It feels to many people
like it shouldn’t be something that they should dedicate a lot of time to, but writing
tests is unlike writing production software. It’s an orthogonal, albeit related, skill.
Beyond just the tests themselves, designing software that is amenable to testing often
requires a shift in approach that can be difficult to overcome.

Hopefully, coming to this book, you are at least convinced that automated testing
sounds like a good idea.

If you’d like to begin writing tests, and Spock looks like an interesting tool for doing
so, this book is for you.

If you have tried writing tests and found it difficult to grasp how to proceed, this
book is for you.

If you write tests but find it difficult to test some aspects of your code, this book is for
you.

If you just want to write tests that are less prone to breaking as the system changes,
this book is for you.

You don’t need to be a Groovy developer—in fact, this book assumes that you have no
knowledge of the Groovy language. There’s a Groovy primer in Appendix A should
you need it. All the nontest code used in the examples in this book is written in Java.

(Well okay, there’s a tiny bit of JavaScript, too.)

The point is, you don’t need to be a Groovy expert to get the best out of this book. In
fact, you don’t even need to have any intention of ever writing production code in
Groovy. One of the things I’m keenest to convey here is that Spock is great for testing
Java code.

If you do know some Groovy, great. You can skip the appendix!

About This Book
My first unit test was written for a coding exercise given to me as part of an interview
with ThoughtWorks (I didn’t get the job). I’m sure it was pretty terrible. I wrote a sin‐
gle test method for each public API method in the class under test. I tested multiple
aspects of the behavior in each test method and missed numerous edge cases. I wasn’t

Introduction | xiii



focused on behavior or using the tests to guide the design of the code so that it was
easier to understand or write more tests for.

I’d have loved a book on the practice of writing tests. But it was the early 2000s. JUnit
was pretty new. Test-driven development (TDD) was a radical practice considered
ridiculously utopian by most “serious” developers. The material that was available
was mostly focused on the details of JUnit or a high-level view of the TDD approach.
There wasn’t much out there that would just help me write better tests.

These days, that’s no longer the case. I hope this book is a good addition to the library
of excellent material available to today’s software developer.

Developers today are spoiled for choice. Every language I can think of has one or
more frameworks for composing and running automated tests.

But writing good, well-structured tests is still an elusive skill. Writing tests that clearly
separate dummy data from test logic is tricky. Learning to use mocks and stubs
appropriately is a mountain to climb—so much so that some will tell you mocks and
stubs are a bad thing altogether. Certainly, when used badly, they result in tests that
are difficult to read and more difficult still to maintain. Used well, they are powerful
tools for designing and testing for a “separation of concerns.”

In this book, I don’t want to just show you how to use Spock. I want to show you how
to use it well; how to write tests that don’t require constant maintenance as the project
progresses; how to write tests that communicate to the reader what the behavior of
the system and its components is; and how to write tests that help you identify prob‐
lems when they fail rather than feeling like just another meaningless bit of bureauc‐
racy you have to get past on the way to deploying your code.

It’s even possible to test drive a book now.

The examples in this book are all working code. The entire book is a Gradle project;
the code listings are included from actual specifications that execute as the book
“builds.”

Hopefully that means there are minimal errors!

Navigating This Book
Through the course of this book, we’ll build up a simple web application—Squawker
—that allows users to post short messages. Squawker users can follow one another,
mention one another in messages, view a timeline of messages from the users they
follow, or just squawk out into the void!

Hopefully, this concept sounds pretty familiar; that’s certainly the idea. I’d rather you
were able to attach the testing concepts in the book to a recognizable, practical idea

xiv | Introduction



than have to spend several chapters describing what the application does in exhaus‐
tive detail.

Some chapters will divert from the Squawker example where it makes more sense. I’d
rather switch to a standalone example than try to bash the square peg of Squawker
into the round hole of the topic at hand.

The book is organized into three parts. In Part I, we dive into Spock 101, learning the
basics of Spock, its syntax, and everything you need to get from zero to writing sim‐
ple unit tests.

Chapter 2 and Chapter 3 discuss how to structure specifications and how to write
assertions. Chapter 4 discusses the lifecycle of Spock specifications and feature meth‐
ods. Chapter 5 introduces interaction testing with mocks and stubs, and the intuitive
syntax Spock employs for dealing with them. Chapter 6 deals with parameterized
tests—writing feature methods that run for multiple sets of data.

Part II takes you beyond the basics into some advanced topics such as how to write
idiomatic Spock code (Chapter 7), driving parameterized tests with file or database
input (Chapter 8), and Spock’s support for asynchronous testing (Chapter 9). We’ll
also look in Chapter 10 at how to extend Spock using JUnit rules and other test libra‐
ries and how to write custom Spock extensions. Finally we’ll bring everything
together in Chapter 11 with a standalone fully worked TDD example.

Part III is all about integrating Spock and going beyond unit tests. We’ll look at inte‐
gration testing (Chapter 12) and testing REST APIs (Chapter 13) and web applica‐
tions via the browser (Chapter 14). We’ll finish up with a quick look at using Spock to
test code written in other languages on the JVM including JavaScript (Chapter 15). To
round out the section, there’s another standalone example dealing with testing reac‐
tive code (Chapter 16).

At the back of the book is a Groovy primer, Appendix A. One of things I’m keen to
get across in this book is that Spock is not just for testing applications written in
Groovy. I use Spock for testing Java applications every day. Although this book
assumes you are familiar with Java, no knowledge of Groovy is necessary. All the
application code in the examples is written in Java. Groovy is used only for Spock
specifications.

The Groovy primer is not—nor is it intended to be—a comprehensive language
resource, but it should be enough to help you through any Groovy code used in the
examples throughout the rest of the book.

If you’re completely unfamiliar with Groovy it might be wise to skip ahead to the
Groovy primer and start there. If you’re somewhat familiar with Groovy, it should
serve as a good memory aid or reference. If you’re all up to speed on Groovy, great,
feel free to skip the primer altogether.

Introduction | xv



Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies additional information beyond the example at
hand.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/robfletcher/spock-up-and-running.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples

xvi | Introduction

https://github.com/robfletcher/spock-up-and-running


from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Spock: Up and Running by Rob
Fletcher (O’Reilly). Copyright 2017 Rob Fletcher, 978-1-491-92329-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/spock_UR.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

Introduction | xvii

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari
http://bit.ly/spock_UR
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com


For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book has been a long-gestating project.

I first began with the intention of self-publishing, but although I had drafted a few
chapters, I realized that I needed the encouragement and editorial support of a pub‐
lisher or I was never realistically going to get the thing finished. So, thanks are defi‐
nitely due to Brian Foster and Nan Barber at O’Reilly who encouraged me and helped
me get the shape of the book right.

Thanks also to the technical reviewers, Leonard Brünings, Marcin Erdmann, and
Colin Vipurs, who picked up on problems and provided invaluable feedback.

The decision to write the book was made in a conversation with Luke Daley in my
back garden in London. Luke’s work on Geb, Gradle, and particularly Ratpack has
been inspirational. He is genuinely one of the most ridiculously smart and productive
people I’ve ever met.

Obviously I’m very grateful to Peter Niederwieser, the creator of Spock, for his work
and for contributing the project to the community.

Over the course of writing this book, I’ve changed jobs and changed continents. I’ve
met and worked with many people who have inspired and encouraged me. Thanks
are due to the many fantastic colleagues I’ve had over the years in London:

• Dave Townsend at Logica who first introduced me to JUnit many, many years
ago.

• Simon Baker, Gus Power, Tom Dunstan, Kris Lander, Jerome Pimmel, Kevin
Richards, Shin Tai, Dora and Zsolt Varszegi, and the rest of the crew at Energized
Work, where I really learned whatever craft I can lay claim to.

• Jim Newbery, Sarah O’Callaghan, Glenn Saqui, and Joffrey Tourret at Sky.

…and in California:

• Chris Berry, Diptanu Choudhury, Cameron Fieber, Andy Glover, Adam Jordens,
Ben Malley, Dianne Marsh, Clay McCoy, Mike McGarr, Chris Sanden, John
Schneider, Jeremy Tatelman, Danny Thomas, and Zan Thrash at Netflix.

xviii | Introduction

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


…and those who seemed to stalk me from one continent to the next:

• Nathan Fisher, Tomás Lin, and John Tregoning.

The many people in the automated testing and Groovy communities and beyond who
I’ve met at conferences, meetups, or over GitHub and Twitter: Andres Almiray, Jeff
Beck, Burt Beckwith, Kyle Boon, Craig Burke, Michael Casek, Cédric Champeau,
John Engelman, Danny Hyun, Shaun Jurgemeyer, Guillaume Laforge, Stephané Mal‐
dini, J.B. Rainsberger, Graeme Rocher, Marco Vermeulen, Aaron Zirbes, and many
more.

Even Dan Woods, who started and finished his own book for O’Reilly (Learning Rat‐
pack) in the time it took me to write this one and never hesitated to remind me of
that fact. If you appreciate this book, don’t forget to #unfollowdanveloper.

Above all, I want to thank my kids, Alex and Nicholas, for putting up with a sleep-
deprived dad who was already hunched over a laptop when they woke in the
morning.

Introduction | xix





PART I

Spock 101

In this section of the book, you’ll learn about the mechanics of writing specifications
with Spock. We’ll go from the basics of how to construct a specification through how
assertions work in Spock, how a specification’s lifecycle behaves, on to interaction
testing using mocks and stubs, and data-driven testing using parameters to apply the
same tests to different data. By the end of the section, you should have a good idea of
how to work with Spock and enough knowledge to go ahead and use it. Some of the
topics in this section will be revisited later and explored in greater depth or from
another angle.





CHAPTER 1

The “Up and Running” Part

Installation
Spock is available from the Maven Central and JCenter repositories. As of this writ‐
ing, the current version is 1.1.

There are different versions for compatibility with Groovy 2.0+, 2.3+, and 2.4+. If
you’re not using Groovy in the production code of your project there’s no reason to
use anything other than the newest version of Groovy. Groovy need only be a test
dependency of your project.

Running with the JUnit Runner
Spock is compatible with JUnit’s test runner. It should be possible to run Spock speci‐
fications anywhere you can run JUnit tests; that means with IDEs like IntelliJ Idea and
Eclipse and command-line build tools such as Gradle and Maven.

Running with Gradle
To include Spock in a project built with Gradle, you simply need to include the
spock-core library, as follows:

apply plugin: "groovy" 

repositories {
  jcenter() 
}

dependencies {
  testCompile "org.spockframework:spock-core:1.1-groovy-2.4" 
}

3



Include the Groovy Gradle plugin

Include the JCenter repository (or mavenCentral)

Include Spock on the testCompile classpath

With this setup, neither Spock nor Groovy will be included in the production artifacts
built by Gradle.

When Groovy Is Used in the Project
If your project does use Groovy in its production code, you can simply add Groovy to
the main classpath and Spock to the test classpath, as demonstrated here:

apply plugin: "groovy"

repositories {
  jcenter()
}

dependencies {
  compile "org.codehaus.groovy:groovy-all:2.4.8"
  testCompile "org.spockframework:spock-core:1.1-groovy-2.4"
}

Spock will transitively include Groovy, but the version will be synchronized with
whatever version you include in the main classpath.

Synchronizing Groovy Versions Between Main and Test Classpaths
If, and only if, your main project includes the groovy dependency rather than the
groovy-all dependency, you should explicitly synchronize the version of Spock’s
transitive dependency, like so:

dependencies {
  compile "org.codehaus.groovy:groovy:2.4.8" 
  testCompile "org.spockframework:spock-core:1.1-groovy-2.4"
}

configurations.all {
  resolutionStrategy {
    force "org.codehaus.groovy:groovy-all:2.4.8" 
  }
}

The compile classpath includes Groovy but not using the groovy-all artifact on
which Spock depends.

4 | Chapter 1: The “Up and Running” Part



We use a resolutionStrategy to ensure Spock pulls in a compatible version of
groovy-all.

Running with Maven
Maven setup is a little more complex than Gradle because Maven does not natively
know how to compile Groovy code. It’s still fairly straightforward, though:

  <build>
    <plugins>

      <plugin>
        <groupId>org.codehaus.gmavenplus</groupId>
        <artifactId>gmavenplus-plugin</artifactId>
        <version>1.5</version>
        <executions>
          <execution>
            <goals>
              <goal>testCompile</goal>
            </goals>
          </execution>
        </executions>
      </plugin>

      <plugin>
        <artifactId>maven-surefire-plugin</artifactId>
        <version>2.18.1</version>
        <configuration>
          <useFile>false</useFile>
          <includes>
            <include>**/*Spec.java</include>
          </includes>
        </configuration>
      </plugin>

    </plugins>
  </build>

  <dependencies>

    <dependency>
      <groupId>org.spockframework</groupId>
      <artifactId>spock-core</artifactId>
      <version>1.1-groovy-2.4</version>
      <scope>test</scope>
    </dependency>

  </dependencies>
  <!--tag::maven[]-->
</project>

Running with Maven | 5



The gmavenplus plugin enables Maven to compile Groovy code. In the example, I’ve
included it only for the testCompile goal.

The Surefire plugin is only required to ensure Maven’s test runner executes files end‐
ing in *Spec.

6 | Chapter 1: The “Up and Running” Part



CHAPTER 2

Specification Basics

Spock is a straightforward and expressive language for writing automated tests for
software. It is based on the Groovy programming language but can be used to test
code written in any language that runs on the Java Virtual Machine (JVM)—Java,
Scala, Kotlin, even JavaScript. In this first chapter, we look at how to create specifica‐
tions in Spock; how individual tests, or feature methods, are structured; how to make
assertions; and how the lifecycle of a specification works.

If you’ve used JUnit or another unit testing framework before, some of the ideas
might seem familiar. However, don’t worry if you haven’t. Although Spock is built on
top of JUnit’s test runner, that’s really just to make the Spock specifications easy to run
anywhere JUnit tests can run. The syntax used to express test code in Spock is pretty
different.

Anatomy of a Specification
Spock test classes—known as specifications—are written in Groovy.

Here is a simple Spock specification:

import spock.lang.*

class IntegerSpec extends Specification {

  def "an integer can be incremented"() {
    given:
    int i = 1

    when:
    i++

    then:

7



    i == 2
  }
}

This is an extremely straightforward test that just ensures the integer increment oper‐
ator 0 works as expected. If you know Java, there are probably some familiar things
(the import statement, class and variable declarations, increment operator, and
Boolean expression) and some less familiar things (the def keyword; weird-looking
method names, given:, when:, and then:; block labels; and of course the lack of any
semicolons or scope keywords).

Award yourself extra points for observation if you wondered where the assertion is,
given that there’s no assert keyword or JUnit-like method call.

If you know Java but haven’t used Groovy before, it might be worth
skipping ahead to Appendix A before continuing. It’s up to you;
Groovy concepts are used sparingly and introduced slowly in the
course of the book.

Each specification is a single class that extends from spock.lang.Specification. In
more complex scenarios, you can create inheritance hierarchies, abstract subclasses of
Specification, and so on. We’ll see some uses for that type of inheritance hierarchy
later in the book. Most simple unit test specifications extend directly from Specifica
tion, though.

By convention, the specification class name ends with "Spec" but can be anything at
all. The class contains one or more feature methods that implement individual tests. It
can contain any other methods you might need, as well.

Each feature method is equivalent to a JUnit method annotated with @Test in that it
can pass or fail depending on the result of assertions made by the method. Any failing
assertion (or any uncaught exception) causes the feature method as a whole to fail. If
all assertions pass and there are no uncaught exceptions, the feature method passes.

Feature methods are public (i.e., the default visibility for a method in Groovy, so
there is no need to specify it) and have no parameters. Feature method names in
Spock can be—and by convention are—quote delimited strings rather than the
camel-case standard in JUnit and Java generally.

Actually it’s not quite true to say that feature methods do not accept
parameters. Later in the book, we’ll look at a circumstance in which
that is possible. It’s a fairly infrequent usage, though.

8 | Chapter 2: Specification Basics



Feature methods are split into blocks preceded by a label. Block labels are the key‐
words of the Spock language, and blocks have different semantics and behavior
according to their label.

void versus def
def is Groovy’s dynamic type reference. When used with a variable or field declara‐
tion, it means that the type should be inferred from the righthand side of the expres‐
sion. In addition, it’s possible to assign a value of a different type to that variable.
When used as a method return type it means that the type being returned can be any‐
thing.

You can type feature methods can as either void or def. The Spock documentation
and most examples you might encounter in the wild use def, but the use of void has
caught on to some extent with people who reason that def implies that a feature
method returns something when in fact it doesn’t.

The examples in this book use def. Feel free to use whatever you prefer in your own
specifications.

Why Use Quoted Strings for Feature Method Names?
Spock places great emphasis on optimizing the reports generated when specifications
are run. Take a look at the reports in Tables 2-1 and 2-2 and consider which you find
easier to read.

Table 2-1. Typical JUnit-style test names

Test Duration Result
aMessageThatIsTooLongIsNotWrittenToTheDatabase 0.002s passed

anExceptionIsThrownIfTheDatabaseConnectionIsStale 0.007s passed

followingAnotherUserIsPersisted 0.086s passed

followingListIsReadFromDatabaseAndCached 0.003s passed

postingAMessageInsertsItToTheDatabase 0.013s passed

timelineIsFetchedFromDatabase 0.001s passed

usersCannotFollowThemselves 0.001s passed

Table 2-2. Spock feature method names

Test Duration Result
a message that is too long is not written to the database 0.002s passed

an exception is thrown if the database connection is stale 0.007s passed

following another user is persisted 0.086s passed

Anatomy of a Specification | 9



Test Duration Result
following list is read from database and cached 0.003s passed

posting a message inserts it to the database 0.013s passed

timeline is fetched from database 0.001s passed

users cannot follow themselves 0.001s passed

An Introduction to Spock’s Blocks
A JUnit test is essentially a straightforward Java method. Along the way, it should
make one or more assertions using one of the assert… methods. JUnit does not
enforce any structure in the test method. Nevertheless, a certain typical structure has
emerged. This is commonly known as arrange, act, assert or given, when, then. Essen‐
tially:

• Given… some preconditions are in effect
• When… an action is taken
• Then… the outcome is x

A JUnit test for the Squawker User class might look something like this:

@Test
public void aUserCanFollowAnotherUser() {
  User user = new User("kirk");
  User other = new User("spock");

  user.follow(other);

  assertThat(user.getFollowing().size(), equalTo(1));
  assertThat(user.getFollowing(), hasItems(other));
}

The construction of the two User objects is the given step, in which the test sets up
the context it needs. The call to the follow method is the when step, in which the
action being tested occurs. The assertions are the then steps, in which the outcome of
the action is validated.

Behavior-driven development (BDD) codified the given, when, then structure and tools
such as Cucumber are built around it.

10 | Chapter 2: Specification Basics



Cucumber and Gherkin
Cucumber’s Gherkin syntax treats Given, When, and Then as keywords. Text following
the keyword is used to look up a step definition, which is a code implementation of
the description. A Cucumber scenario for the preceding JUnit test might look some‐
thing like this:

Given a user called @kirk
And a user called @spock
When @kirk follows @spock
Then @kirk is following 1 user
And @kirk is following @spock

A step definition would look like this:

private Map<String, User> users;

@When("@(.+) follows @(.+)")
public void followUser(String userName, String otherName) {
  User user = users.get(userName);
  User other = users.get(otherName);
  user.follow(other);
}

Typical Spock specifications are also built around the given, when, then structure. 
Spock uses keywords to define blocks, which are sections of a feature method with
particular semantics and where certain special behavior might apply. Three of the
block keywords are given, when, and then.

Block labels must appear directly in the body of the feature method itself. Although
the block labels share the given, when, then structure with other test frameworks such
as Cucumber and can even have descriptive text associated with them (as we’ll see
later), there is no separation of description and implementation in a Spock feature
method. The block labels are not method calls that dispatch to an implementation
that exists elsewhere, as with the similar keywords in Cucumber. Instead, you can
think of Spock’s block labels as headers.

Labels are just followed by regular Groovy code. For example, a given label is directly
followed by code that establishes the preconditions of the test. A when label is fol‐
lowed by the code that performs the action being tested. A then label is followed by
assertions about the state that exists following the action. Identical labels in different
feature methods do not share an implementation, although you are certainly free to
create your own helper methods that can be shared.

To implement a Spock version of the previous JUnit test, we could do the following:

An Introduction to Spock’s Blocks | 11



def "a user can follow another user"() {
  given:
  def user = new User("kirk")
  def other = new User("spock")

  when:
  user.follow(other)

  then:
  user.following.size() == 1
  user.following.contains(other)
}

The content of the method is not terribly different than the JUnit test. There are syn‐
tactic differences now that we’re using Groovy rather than Java—the use of def and
the ability to simplify user.getFollowing() to user.following. Beyond that, the
first thing that you’ll probably notice is that the test is explicitly broken up into
labeled blocks. Also, instead of an assertThat call, the final line of the method is a
simple Boolean expression. Why is this? Special semantics apply in each block and
modify the behavior. In the context of a then: block, any Boolean expression is auto‐
matically treated as an assertion without the need for the assert keyword or any spe‐
cial assertion methods.

Groovy Assertions
One of the reasons JUnit offers various assert… methods rather than using Java’s
assert keyword is so that you can output detailed, high-quality diagnostics in the
event of an assertion failure.

When using Groovy, the error thrown when an assert statement fails contains a
breakdown of the individual values in the Boolean expression. Often, this provides
excellent diagnostics of the failure and results in more concise, readable test code
than the rather verbose nested method calls required by JUnit.

Of course, it’s worth pointing out that this is a feature originally implemented by
Spock and later adopted by the Groovy language!

Block Taxonomy
Now that you know that feature methods are divided into labeled blocks, let’s take a
look at each of the block types and briefly discuss their semantics. The blocks avail‐
able in Spock are as follows:

given:

Used for establishing the context of the test. Things like creating objects, setting
up specific data, navigating to a page on a website, or logging in before testing

12 | Chapter 2: Specification Basics



access controlled functionality would all be appropriate things to put in this
block.

setup:

Simply an alias for given:. The examples in this book use given:, and that is the
form that you’ll most commonly encounter.

when:

Contains the behavior being tested. Certain Spock features such as mocks depend
on the action part of the test occurring in the when: block. A when: block must be
followed by a then: block.

then:

Makes assertions about the outcome of the when: block. Any Boolean statement
in a then: block is automatically treated as an assertion, so there is no need to
use the assert keyword. A then: block must be preceded by a when: block.

expect:

Makes assertions in the same way as a then: block but without requiring a pre‐
ceding when: block. This is useful either alone for simpler tests such as verifying
the initial state of an object or for verifying preconditions before when: and
then: blocks.

cleanup:

Allows the safe tear-down of resources that will occur regardless of the outcome
of any assertions in preceding blocks. You can think of this as analogous to the
finally keyword.

where:

This is used for parameterized feature methods.

and:

This is used to extend any preceding block. This is useful purely to break up the
blocks to make them easier to read.

The where: block is covered extensively in Chapter 6. For now, let’s examine how you
use the basic blocks.

Basic Block Usage
The blocks in a feature method must appear in the appropriate order. All blocks are
optional, although, as previously pointed out, when: and then: must appear together
if they appear at all. Obviously, a feature method without a then: or expect: block is
useless because it’s not asserting anything. However, a feature method can be as

An Introduction to Spock’s Blocks | 13



simple as a single expect: block. For example, let’s test to make sure a brand new
User object is not following anyone:

def "a new user is not following anyone"() {
  expect:
  new User("kirk").following.isEmpty()
}

Let’s extend the feature method we saw earlier to verify the precondition that the User
is not following anyone initially:

def "a user can follow another user"() {
  given:
  def user = new User("kirk")
  def other = new User("spock")

  expect:
  user.following.isEmpty()

  when:
  user.follow(other)

  then:
  user.following.size() == 1
  user.following.contains(other)
}

We now use an expect: block to verify the initial state of the user before any action is
taken. The when: and then: blocks are unchanged.

Label Syntax
If you are familiar with some of the lesser-used features of Java, you might recognize
the syntax of Spock’s block labels; they are in fact labels used with the Java break key‐
word.

loop:
  while (true) {
    System.out.println(i);
    if (--i == 0) {
      break loop;
    }
  }

The use of break in this way is generally frowned upon (it’s not a million miles from a
goto statement after all), and so the label syntax has become fairly obscure.

Spock repurposes labels to define the start of blocks in a feature method. Because the
labels are stored in the bytecode generated when the Specification class is com‐
piled, Spock is able to use them when transforming the class to apply its behavior.

14 | Chapter 2: Specification Basics



The Specification Lifecycle
So far, we’ve looked at a very simple, completely self-contained feature method. How‐
ever, most specification classes will contain multiple feature methods, and they might
well all share some concerns. They likely deal with the same test subject and could
also use some of the same collaborators and fixtures.

Specification classes can—and all but the simplest usually do—contain fields that
might represent the test subject, fixtures, and so on. Like with JUnit tests, fields are
initialized before each feature method is run (actually each iteration of a feature
method, but don’t worry about that until we discuss the where: block).

Revisiting the previous example, we can do away with the simple given: block and
instead use a field for the test subject and other objects, which allows us to share them
with other feature methods:

def user = new User("kirk") 
def other = new User("spock")

def "a user can follow another user"() {
  when:
  user.follow(other)

  then:
  user.following.size() == 1
  user.following.contains(other)
}

def "a user reports if they are following someone"() {
  expect:
  !user.follows(other)

  when:
  user.follow(other)

  then:
  user.follows(other)
}

Note that each of the two feature methods uses a different actual instance of user
and other because the fields are reinitialized before each feature is run.

Fixture methods: setup and cleanup
In the section on block taxonomy, we saw the given: and cleanup: blocks that can
appear in an individual feature method. However, now we’re using fields shared
between features, and we don’t want to have to repeat common setup and cleanup
code.

The Specification Lifecycle | 15



In a JUnit test, we’d use methods annotated with @Before and @After. Spock provides
something similar via methods named setup and cleanup. The setup and cleanup
methods are rather like given: and cleanup: blocks that apply to every feature
method in the specification class. The setup method is executed once before each
feature method is run and after any fields are initialized. The cleanup method is run
after each feature method regardless of whether it passes or fails.

When dealing with parameterized feature methods that use the
where: block, the setup and cleanup fixture methods are applied
around each iteration. We cover the where: block in much more
detail in Chapter 6.

Both methods should be typed def or void and should not have any parameters.

Spock also supports setupSpec and cleanupSpec methods that execute before the
first and after the last feature method, respectively. They are analogous to methods
annotated with @BeforeClass and @AfterClass in JUnit. However, unlike JUnit’s
methods, setupSpec and cleanupSpec should not be declared as static.

To see an example of the order in which lifecycle methods are executed, here’s a sim‐
ple specification that prints something to standard output when each method is
executed:

def setupSpec() {
  println "> setupSpec"
}

def cleanupSpec() {
  println "> cleanupSpec"
}

def setup() {
  println "-> setup"
}

def cleanup() {
  println "-> cleanup"
}

def "feature method 1"() {
  println "--> feature method 1"
  expect:
  2 * 2 == 4
}

def "feature method 2"() {
  println "--> feature method 2"
  expect:

16 | Chapter 2: Specification Basics



  3 * 2 == 6
}

Here’s the output when you run the specification:

> setupSpec
-> setup
--> feature method 1
-> cleanup
-> setup
--> feature method 2
-> cleanup
> cleanupSpec

Later in the book, we’ll see more about how to use setupSpec and cleanupSpec to
manage shared fields that are not reinitialized before each feature method.

Block Descriptions
Spock blocks can include a description string. A useful technique when practicing
test-driven development is to “plan out” the specification method using described
blocks before filling in the code.

Revisiting the earlier example, we could start with an empty feature method:

def "a user can follow another user"() {
  given: "two users"
  when: "the first user follows the second"
  then: "the first user is now following the second and no-one else"
}

Subsequently, we can add in the implementations of each block.

A well-written block description can make the test easier to understand. Like com‐
ments, though, there’s a danger of the description getting stale if the test changes later.

Again, like comments, overly obvious block descriptions just add noise. You should
try to make a block description describe the general case being tested rather than the
specifics of any fixtures in use.

Why Not Just Use Comments Instead of Block Descriptions?

The block description is similar to a comment but with the impor‐
tant distinction that it is retained in the compiled bytecode. Later,
you will see how you can create a Spock extension that extracts
block descriptions from the compiled code to output a Gherkin-
like scenario file.

Block Descriptions | 17



and: blocks
Look at the block descriptions in the previous example again. Notice that the then:
block’s description essentially describes two assertions: the first user is following the
second and is not following anyone else. To make the test read better, we can split this
up into two blocks using another Spock block, and:, as demonstrated here:

def "a user can follow another user"() {
  given: "two users"
  when: "the first user follows the second"
  then: "the first user is now following one user"
  and: "the first user is following the second user"
}

The and: block can follow any of the standard Spock blocks. All it does is split the
block into multiple sections so as to enhance readability. The semantics associated
with the preceding block continue through the and: block. For example, all Boolean
expressions in an and: block that follows a then: or expect: block are treated as
assertions, just as they would be in the preceding block.

Each primary block can be followed by any number of and: blocks.

Common uses for and: are for establishing multiple unrelated preconditions in the
given: block, and the verification of secondary conditions or side effects in the then:
block. Using and: blocks with appropriate descriptions to split up the primary block
can make the method much more comprehensible.

A Note on Comprehensibility
We cannot emphasize enough that after correctness, comprehensibility is the most
important feature of test code. When you are dealing with regressions in tests that
someone else has written, you’ll be thanking that person if the feature methods are
nicely structured in logical blocks with good descriptions; conversely, you’ll be curs‐
ing the poor soul if everything is lumped together into plain when: and then: blocks,
tens of lines long.

As a rule of thumb, a block label with five or more lines of code following each block
label is crying out for a higher level of abstraction. It’s always worth remembering that
Spock specifications are classes like any other: they can contain private methods for
breaking up long or reused pieces of code. Going further, it’s possible to implement
advanced abstractions such as the page model pattern commonly used in browser-
based end-to-end tests for web applications.

It’s absolutely possible to do horrible things like writing all your setup code in among
the actions in a when: block or scattering the assert keyword around outside then:
and expect: blocks rather than taking care to structure a feature method properly.
Please don’t. Use given: blocks and the setup method appropriately. Split up primary

18 | Chapter 2: Specification Basics



blocks by using and: so that each block adheres to the single responsibility principle.
Use good feature method names. Use block descriptions judiciously and, where you
do use them, keep them up to date. Think about whether an expect: block would
make more sense than when: and then: blocks.

Time invested upfront in crafting a readable test will almost certainly be recovered
later when debugging regressions or adapting the specifications to new requirements.

Summary
In this chapter, you learned the following:

• How to define a Spock specification class
• How to define a feature method
• The various block types used in feature methods and how they relate to one

another
• Something about the special behavior that applies in each block, such as auto‐

matic assertions in then: and expect: blocks
• How to use fields in a specification class and the lifecycle that governs them
• How to use the setup and cleanup methods

Comparison with JUnit
If you’re a JUnit user, you might find the following comparison of some of the termi‐
nology and concepts in JUnit with their equivalents in Spock useful:

JUnit Spock
Test class Specification class

Test method Feature method

@Before def setup()

@After def cleanup()

@BeforeClass def setupSpec()

@AfterClass def cleanupSpec()

Summary | 19

http://en.wikipedia.org/wiki/Single_responsibility_principle




CHAPTER 3

Spock Assertions

In Chapter 2, you learned that any Boolean expression in a then: block or expect:
block is treated as an assertion. In this chapter, we examine assertions in depth. You
will learn about various techniques for writing concise and expressive assertions
using Groovy’s enhancements to the core Java APIs. We also discuss the importance
of good diagnostics in your Spock specifications and how to structure assertions to
provide the most information in case of a failure.

I have three goals when writing assertions in tests. Listed most important first, they
are:

Good diagnostics
If the assertion fails I should be able to see very easily in the test report what
exactly is wrong. I don’t want a generic exception or a poorly worded message
that doesn’t really tell me anything beyond “something is wrong.”

Expressiveness
When I look at the test, I want to be able to see right away what is being asserted
without having to scratch my head over convoluted code. When I introduce a
regression, I want to be able to determine whether the test I have broken is still
valid or is now obsolete due to the change I am implementing.

Conciseness
This is related to expressiveness in that the shorter a piece of code is, the easier it
is to read. However, there’s a point beyond which brevity comes at the cost of
comprehensibility. Short is good but not when it begins to resemble an obfusca‐
ted code contest entry!

21



The Importance of Good Diagnostics
If you’ve practiced or read about TDD, you’re almost certainly familiar with the man‐
tra “Red…Green…Refactor.”

The cycle for implementing a feature (at any scale) in TDD is red: write a failing test;
green: write the simplest code that makes the test pass; refactor: eliminate duplication
and introduce appropriate abstractions while keeping the test passing.

Steve Freeman and Nat Pryce point out in Growing Object-Oriented Software Guided
by Tests [goos] that a vital part of the “red” step is ensuring that the test fails for the
right reason and produces a good diagnostic description of the failure.

You should write tests defensively with the assumption that you will need to revisit
them to debug regressions at some point in the future. Six months down the line
when you can’t remember what you were thinking when you wrote the test, good
diagnostic output can save you a headache.

Never Trust a Test That You Haven’t Seen Fail

One of the advantages of the test first approach is that you can
ensure the test is correctly detecting a failure. If you write a test
after implementing the code, it’s easy to mistakenly write a test that
doesn’t correctly exercise the desired behavior and would pass even
if the code didn’t do what it is supposed to.
Make sure also that the test doesn’t just fail but that it fails for the
right reason: because the assertion fails in the way you intended
rather than because there’s an error in the test itself that causes an
exception.

The Power Assert
Spock introduced a feature that has subsequently been adopted into the core Groovy
language called the power assert. Java’s assert keyword was really designed for
enforcing invariants in production code rather than for implementing unit tests. In
Java when an assertion fails, an AssertionError is thrown, but not a great deal of
information about what caused the failure is discernible from the error object itself.
Although it’s possible to add a message to the assertion like this:

assert a == b : String.format("expected %d to equal %d", a, b);

Doing so for every assertion in a suite of tests would soon grow pretty tiresome. For
more complex assertions, the construction of the message would probably require
considerably more code than the assertion itself!

22 | Chapter 3: Spock Assertions



JUnit introduced various methods such as assertEquals so that good diagnostics
would be output in the test report. JUnit 4+ introduced the assertThat method with
the use of Hamcrest matchers to provide a framework for defining composable asser‐
tions that produce good-quality diagnostic messages in the event of a failure.

Hamcrest matchers are powerful, extremely flexible, and produce excellent diagnos‐
tics (when implemented well). However, Hamcrest matchers are fairly complex to
implement, and there are some curious omissions from the CoreMatchers class such
as a way to assert that a string matches a regular expression.

Spock’s power assert takes a different approach to the problem. Because of the flexi‐
bility afforded by Groovy, Spock’s power assert is able to use simple Boolean expres‐
sions while retaining high-quality diagnostics. The same assertion made in Spock
provides much more useful output than a standard Java assert without requiring a
custom assertion message:

given:
int a = 1
int b = 2

expect:
a == b

If you look in the test report, you will find this:

Condition not satisfied:

a == b
| |  |
1 |  2
  false

The message contains the assertion statement broken down into its constituent parts
and showing the values of the variables, methods, and operators that make up the
expression.

More complex Boolean expressions are broken down. Let’s look again at the failure
generated by the test for a user following another user in our application before the
User.follow method is implemented:

user.following.contains(other)
|    |         |        |
|    []        false    squawker.User@689259a
squawker.User@323c17

You can clearly see the value of both variables user and other, the value of the
user.following property (an empty collection), and the result of the contains
method.

The Power Assert | 23



Improving Assertion Failures by Using toString

The values displayed for the two User objects are not particularly
helpful, because they are the result of calling the default
Object.toString method. To improve the diagnostic you can
implement a User.toString method:

@Override
public String toString() {
  return "@" + username;
}

With that in place, the assertion failure becomes:
user.following.contains(other)
|    |         |        |
|    []        false    @spock
@kirk

Power assert output makes it incredibly easy to implement really good diagnostics of
assertion failures using nothing more than simple Boolean expressions and standard
operators and methods.

Type Information in Power Asserts
The fact that the power assert relies on the toString value of the various components
of the assertion expression is a double-edged sword. Although it’s very easy to pro‐
vide some good output, what happens when the toString value of an instance of one
class is the same as that of another? For example, it might be difficult to spot the
problem if comparing an int with a numeric String.

Fortunately, Spock helps us out here. Let’s assume that we’ve made a naïve mistake in
the specification and tried to compare a User instance with a toString value:

when:
user.follow(other)

then:
user.following[0] == other.toString()

Spock detects that the toString values on either side of the expression are the same
but the types are different, so it adds that information to the assertion message. The
report now contains this:

user.following[0] == other.toString()
|    |        |   |  |     |
|    [@spock] |   |  |     @spock (java.lang.String)
@kirk         |   |  @spock
              |   false
              @spock (squawker.User)

24 | Chapter 3: Spock Assertions



Using Groovy for Effective Assertions
The Groovy language includes many capabilities not present in Java. In addition, it
extends many of the standard Java types with additional methods. It’s a good idea to
become familiar with these because many are useful in composing concise, highly
readable assertions in Spock specifications.

To demonstrate some of these capabilities, we’re going to implement a new feature in
Squawker allowing a user to post messages. We’re adding two methods to the User
class:

public Message post(String text, Instant postedAt) 
public List<Message> getPosts() 

Creates and returns a new message containing the specified text

Returns a list of the Message objects the user has posted

We could begin with a test like this:

def "a user can post a message"() {
  when:
  user.post("@kirk that is illogical, Captain!", now())

  then:
  user.posts.size() == 1
  def message = user.posts[0]
  message.text == "@kirk that is illogical, Captain!"
}

We’re asserting that after the user has posted a message, the getPosts method returns
a list with a single Message whose text is correct.

Using List Comprehensions and List Literals
We can simplify the assertion, though. Groovy implements a functional-
programming style map operation on collections and arrays. If you use the spread
operator 0. followed by a property name belonging to the collection element type, the
result is a List of the values of that property on each element. For example:

def kirk = new User("kirk")
def spock = new User("spock")
def scotty = new User("scotty")
def users = [kirk, spock, scotty]
assert users*.username == ["kirk", "spock", "scotty"]

The spread operator works in exactly the same way when calling a method on each
member of the collection:

assert users*.toString() == ["@kirk", "@spock", "@scotty"]

Using Groovy for Effective Assertions | 25



Using the spread operator, our assertion could instead be implemented like this:

def "a user can post a message"() {
  when:
  user.post("@kirk that is illogical, Captain!", now())

  then:
  user.posts*.text == ["@kirk that is illogical, Captain!"]
}

The feature method now compares a List<String> of the text property of every
message returned by getPosts() with another List<String> containing the
expected text. The righthand side of the assertion expression is a Groovy List literal.

The assertion for the size of the list of posts is now redundant because we’re no longer
only asserting the text of the first message, so the test would fail anyway if the list was
the wrong size.

The equivalent Java code for the assertion would be something like this:

List<String> messageTexts = new ArrayList<>();
for (Message message : user.getPosts()) {
  messageTexts.add(message.getText());
}
List<String> expected = Collections.singletonList(messageText);
assertThat(messageTexts, equalTo(expected));

Although there are more concise ways to express the assertion using the stream API
in Java 8 or a Hamcrest matcher, this gives you a good idea of what the Groovy code
is doing.

If you want to add a feature method to ensure that posts are returned most recent
first, you can use this same technique:

def "a user's posts are listed most recent first"() {
  when:
  user.post("It's life, Jim", now())
  user.post("but not as we know it", now())

  then:
  user.posts*.text == ["but not as we know it", "It's life, Jim"]
}

In fact, when accessing properties on members of a collection, the 0 in the spread
operator is redundant. Groovy will evaluate any unknown property reference on a
collection against each member of the collection. The example earlier could be writ‐
ten as follows:

26 | Chapter 3: Spock Assertions



def kirk = new User("kirk")
def spock = new User("spock")
def scotty = new User("scotty")
def users = [kirk, spock, scotty]
assert users.username == ["kirk", "spock", "scotty"]

In this book, I’ve tended to prefer using the spread operator because I think the
implicit form can be a little confusing for people who are less familiar with Groovy. It
also makes it easier for me to change my mind between using a property and a
method. You should use whichever you are comfortable with in your own code.

Asserting Something About Every Item in a Collection
The Message class also records which user posted the message. You should ensure
that when a user posts a message that the correct value is stored in the postedBy
property of the message.

You could implement such a test like this:

def "the posting user is recorded in the message"() {
  when:
  user.post("Fascinating!", now())
  user.post("@bones I was merely stating a fact, Doctor.", now())

  then:
  user.posts[0].postedBy == user
  user.posts[1].postedBy == user
}

Warning: Assertions in Loops
The automatic assertion behavior of a then: or expect: block does not apply in the
scope of any block expressions such as for loops or if statements.

It might occur to you to test the previous example like this:

then:
for (post in user.posts) {
  post.postedBy == user
}

However, this will not work. Worse, it will appear to work because the test will pass
regardless. The expression in the loop is evaluated but because it is in the nested
scope of the loop, it is not converted into an assertion. This kind of thing is exactly
why, as we’ve stated before, you should never trust a test you haven’t seen fail.

Consider that the following assertion appears to pass:

Using Groovy for Effective Assertions | 27



expect:
for (int i = 1; i <= 10; i++) {
  i == -i
}

If you’re really interested in why this happens, read on.

Spock applies a compile-time AST (abstract syntax tree) transformation to the code
inside a then: or expect: block. It looks for Boolean expressions or expressions that
can be coerced to Boolean (which in Groovy covers just about any expression with a
value) and transforms them into assertions. A loop like the for loops in the preceding
examples looks like a single expression, and in Groovy—unlike some languages—
loop expressions and conditionals do not have a value. Spock sees the for loop as a
void expression and does not convert it into an assertion.

Theoretically, it would be possible to enhance Spock’s AST transformation to traverse
the block inside a loop and find Boolean-like expressions there but the idea is fraught
with edge cases and unintended side effects. How deep should the parser go? What
should be done with intermediate lines of code in more complex expressions? Should
only the last line be assumed to be an assertion or all lines?

A better way to handle this assertion is by using the every method that Groovy
attaches to collections. This method takes a closure parameter and returns true if
that closure returns true when called with every member of the collection in turn. If
the closure returns false for any of the collection’s members, the every method itself
returns false.

In fact, Groovy makes the every(Closure) method and others like
it available on all objects, not just collections and arrays. On other
types of objects, the closure is invoked only once, with the object
itself as a parameter.

Here is the feature method reworked to use every:

def "the posting user is recorded in the message"() {
  when:
  user.post("Fascinating!", now())
  user.post("@bones I was merely stating a fact, Doctor.", now())

  then:
  user.posts.every {
    it.postedBy == user
  }
}

28 | Chapter 3: Spock Assertions



This avoids some unnecessary duplication. There is a problem, however. The asser‐
tion failure doesn’t create a very good message if the test fails. For example, if the post
method fails to set the posting user on the message at all, this is what is output to the
test report:

user.posts.every { it.postedBy == user }
|    |     |
|    |     false
|    [squawker.Message@154b0848, squawker.Message@17b645b0]
@spock

Not terribly useful. Because we can’t see what the postedBy value of the individual
messages actually is, we can’t determine what’s wrong with it.

The solution is to combine the use of every with the list comprehension you learned
previously:

def "the posting user is recorded in the message"() {
  when:
  user.post("Fascinating!", now())
  user.post("@bones I was merely stating a fact, Doctor.", now())

  then:
  user.posts.postedBy.every {
    it == user
  }
}

Now, every is called on the list of postedBy values mapped from the list of messages.
The report shows us exactly what is wrong; we haven’t actually set the postedBy field:

user.posts.postedBy.every { it == user }
|    |     |        |
|    |     |        false
|    |     [null, null]
|    [squawker.Message@154b0848, squawker.Message@17b645b0]
@spock

Expressive Assertions with Groovy Operators
Groovy, unlike Java, supports operator overriding. In fact, the various operators are
implemented by methods. For example, operators such as <, >, <=, and >= use the
compareTo implementation of the object on the lefthand side of the expression if it
implements java.util.Comparable.

Using Groovy for Effective Assertions | 29



Using operators such as == with anything other than primitives
looks “wrong” to programmers accustomed to Java, where it would
likely be incorrect. However, it is correct and idiomatic in Groovy
because Groovy operators are aliases for underlying methods that
classes can override. Although there’s no reason why you can’t use
methods such as compareTo and equals as you would in Java, after
you become used to Groovy, the operator form is more legible and
concise.

Squawker messages should be ordered most recent first by default. We’ll need to store
a timestamp when a message is created and make the Message class implement Compa
rable<Message>. To test the behavior we can simply use the < and > operators:

def user = new User("spock")

def "messages are ordered most recent first"() {
  given:
  def clock = Clock.fixed(now(), UTC)
  def olderMessage = new Message(user, "Fascinating.", clock.instant())

  and:
  clock = Clock.offset(clock, Duration.of(1, MINUTES))
  def newerMessage = new Message(user, "Live long and prosper.", clock.instant())

  expect:
  newerMessage < olderMessage

  and:
  olderMessage > newerMessage
}

We could implement the test by checking the return value of the compareTo method
directly, but using an operator is more concise and more clearly communicates the
desired behavior—ordering messages correctly—rather than exposing the implemen‐
tation detail.

In an earlier test, we asserted that the collection returned by getFollowing()
included a particular user by using the Collection.contains(Object) method. We
could reimplement this by using Groovy’s in operator:

def "a user can follow another user"() {
  when:
  user.follow(other)

  then:
  user.following.size() == 1
  other in user.following
}

30 | Chapter 3: Spock Assertions



Expecting Exceptions
It’s an important consideration when writing tests to not test only the happy path.
That is, don’t just test what happens when everything goes right; the user enters cor‐
rect data, external dependencies are available and working correctly, and so on. It’s
just as important, if not more so, to test that your program correctly handles error
conditions, incorrect input, unreliable external services, and network failures.

Frequently, the right way for a unit to handle an error is to throw an exception. With
Spock, it’s possible to expect a when: step to throw an exception.

For a very simple example, let’s look at the User class again. The getPosts() method
returns a list of messages posted by the user. Of course, it shouldn’t be possible for the
caller to violate the encapsulation of the User class by modifying that list.

Here, we’ll use another Groovy operator 0 implemented by the leftShift method.
Groovy enhances the collection API to allow elements to be appended using 1.

def "the list of posts is not modifiable"() {
  when:
  user.posts << new Message(user, "Fascinating!", now())

  then:
  thrown(UnsupportedOperationException)
}

Spock’s thrown(Class<E extends Throwable>) method must appear in a then:
block and asserts that the preceding when: block threw an exception of the specified
type.

If the getPosts() method returns a modifiable list, the test will fail and report the
following message:

Expected exception java.lang.UnsupportedOperationException,
but no exception was thrown

The thrown method will pass only if the exception was thrown
from within the when: block. This is another instance of the special
behavior of different block types discussed in Chapter 1. The
thrown method will fail if an exception is thrown from any other
block in the feature method, even if it is an exception of the
expected type.

Interrogating the Exception
Occasionally, it’s necessary to assert something about the exception itself, and to that
end the thrown method also returns the exception instance.

Expecting Exceptions | 31



Let’s turn to another example where this can be useful. Squawker allows only mes‐
sages of up to 140 characters, so if a user attempts to post a longer message, an excep‐
tion should be thrown:

def "a posted message may not be longer than 140 characters"() {
  given:
  def messageText = """Lieutenant, I am half Vulcanian. Vulcanians do not
    speculate. I speak from pure logic. If I let go of a hammer on a planet
    that has a positive gravity, I need not see it fall to know that it has in
    fact fallen."""

  expect:
  messageText.length() > Message.MAX_TEXT_LENGTH

  when:
  user.post(messageText, now())

  then:
  def e = thrown(IllegalArgumentException)
  e.message == "Message text cannot be longer than 140 characters"
}

Type Inference and the Thrown Method

It’s possible to omit the parameter passed to thrown if you are
assigning the returned exception to an explicitly typed variable. For
example:

IllegalArgumentException e = thrown()

Idiomatic Groovy code tends not to explicitly type local variables
because the type can be inferred from the righthand side of the
expression that initialized the variable. However, this can be useful
if you’re using an IDE that doesn’t recognize Groovy’s type infer‐
ence rules.

Grouping Assertions on the Same Object
When writing multiple assertions against the same object, Spock allows you to group
them together by using the with(Object, Closure) method. All property and
method names inside the closure are resolved against the object, and the semantics of
the current block apply. Therefore, when with is used in a then: or expect: block, all
Boolean expressions are treated as assertions.

This means that instead of writing repetitive code like this:

def "initial state of a user is correct"() {
  given: def user = new User("kirk")

  expect:

32 | Chapter 3: Spock Assertions



  user.username == "kirk"
  user.following.isEmpty()
  user.posts.isEmpty()
  user.registered instanceof Instant
}

The assertions can be grouped like this:

def "initial state of a user is correct"() {
  given:
  def user = new User("kirk")

  expect:
  with(user) {
    username == "kirk"
    following.isEmpty()
    posts.isEmpty()
    registered instanceof Instant
  }
}

Spock’s with and Groovy’s with

Be aware that Spock’s with(Object, Closure) method is not the
same as Groovy’s Object.with(Closure). Accidentally using the
Groovy form in a then: or expect: block will result in the asser‐
tions not working. The following code will compile but not assert
anything.

expect:
user.with {
  username == "kirk"
  following.isEmpty()
  posts.isEmpty()
  registered instanceof Instant
}

Groovy’s with method can be useful in reducing repetition in
given blocks, just be careful not to use it in then: or expect:
blocks.

Summary
Bringing some of these techniques together, we’ll now create a full specification for
retrieving a timeline of posts from Squawker. A user’s timeline contains their posts
and the posts of any users they are following, ordered most recent first.

We’ll introduce a new annotation—@spock.lang.Subject—which simply documents
the variable or field that represents the unit-under-test (we’ll see more about docu‐
mentation annotations later):

Summary | 33



package squawker

import java.time.*
import spock.lang.*
import static java.time.Instant.*
import static java.time.ZoneOffset.*
import static java.time.temporal.ChronoUnit.*

class TimelineSpec extends Specification {

  
  @Subject user = new User("khan")
  def followedUser = new User("kirk")
  def otherUser = new User("spock")

  
  def setup() {
    user.follow(followedUser) 

    def now = Instant.now()
    
    postMessage(otherUser, now.minus(6, MINUTES),
      "His pattern indicates two-dimensional thinking.")
    postMessage(user, now.minus(5, MINUTES),
      "@kirk You're still alive, my old friend?")
    postMessage(followedUser, now.minus(4, MINUTES),
      "@khan KHAAANNNN!")
    postMessage(followedUser, now.minus(3, MINUTES),
      "@scotty I need warp speed in three minutes or we're all dead!")
    postMessage(otherUser, now.minus(2, MINUTES),
      "@bones I'm sorry, Doctor, I have no time to explain this logically.")
    postMessage(user, now.minus(1, MINUTES),
      "It is very cold in space!")
  }

  def "a user's timeline contains posts from themselves and followed users"() {
    expect:
    with(user.timeline()) {
      size() == 4

      
      it*.postedBy.every {
        it in [user, followedUser]
      }

      
      !it*.postedBy.any {
        it == otherUser
      }
    }
  }

34 | Chapter 3: Spock Assertions



  def "a user's timeline is ordered most recent first"() {
    expect:
    with(user.timeline()) {
      postedAt == postedAt.sort().reverse() 
    }
  }

  def "a timeline cannot be modified directly"() {
    when:
    user.timeline() << new Message(
      user,
      "@kirk You're still alive, my old friend?",
    now()
)

    then:
    thrown(UnsupportedOperationException)
  }

  private void postMessage(User poster, Instant at, String text) {
    def clock = Clock.fixed(at, UTC)
    poster.post(text, clock.instant())
  }
}

We create three users, one of which is the subject of the test whose timeline will
be tested.

We use a setup method to establish the same data fixtures for each feature
method.

The subject user follows only one of the other users.

We then post several messages from each user using a private fixture method.

We combine the every method with a list comprehension inside a with closure!
We’re asserting that all messages in the timeline were posted by the user they fol‐
low or by the user themselves.

We use a similar Groovy method (any) to ensure that none of the messages in the
timeline are from the user our subject user does not follow. The any method, as
you can probably guess, returns true if the closure returns true for one or more
elements in a collection. Strictly speaking, this assertion is redundant because
there’s no way it could fail if the previous assertion passed.

We ensure that the messages are sorted correctly by comparing the list compre‐
hension of their timestamps with a reverse-sorted version of the same list of

Summary | 35



timestamps. We could compare the timeline list itself with a sorted version
because the Message class’ compareTo method orders by timestamp. But if the
assertion failed, the message would show us a list of Message.toString values,
which wouldn’t tell us anything about what is wrong with the ordering.

Testing Dates and Timestamps
Date and timestamp values are notoriously difficult to deal with correctly in tests. Ide‐
ally, the Message class would not expose a way to set the message timestamp, because
it would just be assigned in the constructor using Instant.now(). However, that
makes testing very tricky—how could we set up fixtures for messages that were pos‐
ted earlier?

One way would be to use a package-protected constructor or something similar to
allow tests to set the timestamp to a desired value. The Guava library provides a @Vis
ibleForTesting annotation to document these kinds of elements.

I prefer not to include production code that only the tests are supposed to use. There’s
too much danger that either other production code will end up using it inappropri‐
ately or the code will behave differently so that the test is actually invalid.

Another approach would be to use the extract and override technique, as described by
Roy Osherove in The Art of Unit Testing [osherove]. This involves using a protected
method to create the timestamp and then overriding that method in the instance
under test:

public class Message {
  private final Instant postedAt = currentTime();

  protected Instant currentTime() {
    Instant.now()
  }
}

def fixedInstant = // create a fixed timestamp somehow 

def message = new Message() { 

  @Override protected Instant currentTime() { 
    fixedInstant
  }
}

A field in the test holds the value of the fixed instant used in place of the real
current timestamp.

Instead of using an instance of the Message class directly, the specification creates
an anonymous inner class that extends Message.

36 | Chapter 3: Spock Assertions

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/annotations/VisibleForTesting.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/annotations/VisibleForTesting.html


The anonymous inner class overrides the currentTime method and simply
returns the fixed instant.

I have mixed feelings about this technique because it feels like opening backdoors in
production code. It also won’t work with immutable classes that are declared final or
those using Groovy’s @Immutable annotation.

If we were using Joda time, we’d have a simpler alternative because the library pro‐
vides a way to override the global clock.

Instead, I’ve chosen to require the message timestamp to be passed in to the construc‐
tor. That way we can easily set a value for test purposes. The production system can
use its own Clock instance to generate timestamps.

Summary | 37





CHAPTER 4

Managing Resources

So far, the User and Message classes in the Squawker application have existed only in
memory. We’ve specified some of the behavior, but ultimately, the data itself is going
to need to be persisted somehow.

How (Not) to Approach Persistence Testing
Testing persistence is one of the most frequently encountered types of integration
test. If done incorrectly it can mean death to a suite of tests because they will run
slowly and be incredibly brittle.

One of the most common antipatterns encountered is to test everything by reference
to a single monolithic fixture containing an ever-growing volume of data that
attempts to cater to every corner-case. The fixture will soon become the victim of
combinatorial explosion—there are so many combinations of entities in various states
required that the sheer amount of data becomes overwhelming and impossible to
monitor. Tests based on monolithic fixtures tend to be replete with false moniker test‐
ing—“I know the pantoffler widget is the one set up with three variants, one of which
has a negative price modifier and is zero-rated for tax.”

If any kind of write-testing is done, it’s almost certainly going to mean restoring the
database between each test. Given the complexity of all the foreign-key constraints in
that huge fixture, it’s going to be a practical impossibility to do that in any other way
than by truncating all of the tables and setting everything up again. Before you know
it, the test suite takes hours to run and no one has any idea whether it works
anymore.

39



This might sound like an exaggeration, but I once worked on a project that did
exactly this. A gargantuan XML file would populate an entire database before each
and every test. Each of the test classes extended AbstractTransactionalSpringCon
textTests and thus would also initialize the entire Spring application context before
each test. Teams had to coordinate data changes because adding new fixtures or mod‐
ifying existing ones could break unrelated tests. The “integration suite” job on the
continuous integration server took more than three-and-a-half hours to run, and I
don’t recall it ever passing.

Don’t do that.

You should always try to set up the minimum amount of data required for the specific
test. That doesn’t mean not sharing fixtures between tests for which there are com‐
monalities but only where appropriate.

As far as possible you should try to keep everything in-memory, as well. When test‐
ing the peculiarities of a particular database’s SQL syntax, that’s obviously not going
to work, but a lightweight in-memory database such as H2 is an excellent option for
the majority of persistence tests.

Testing a Persistence Layer
The first thing we need to test is persisting User instances to a database. We’ll create a
data access object (DAO) class DataStore with methods for writing to and reading
from the database.

We’ll begin with a feature method that tests storing a user object. Don’t worry about
how the handle and dataStore fields are initialized right now: we’re coming to that.
All you need to know at the moment is that handle is the direct connection to the
database, and dataStore is the DAO we’re testing.

Handle handle
@Subject DataStore dataStore

def "can insert a user object"() {
  given:
  def clock = Clock.fixed(now(), UTC) 

  and:
  def user = new User("spock", clock.instant()) 

  when:
  dataStore.insert(user) 

  then:
  def iterator = handle.createQuery("select username, registered from user")
                       .iterator() 
  iterator.hasNext() 

40 | Chapter 4: Managing Resources

http://www.h2database.com/
http://en.wikipedia.org/wiki/Data_access_object


  with(iterator.next()) {
    username == user.username
    registered.time == clock.instant().toEpochMilli()
  } 

  and:
  !iterator.hasNext() 
}

Because the test needs to ensure the registered timestamp is inserted to the data‐
base correctly, we’ll use a fixed clock to generate the timestamps.

Create a user object.

Invoke the insert method of our DAO passing the user.

Query the database directly.

Assert that we get a first row back.

Assert that the username and registered values on the first row correspond to
the values on the user object.

Assert that no further rows were found.

The feature method is reasonably straightforward; however, one thing merits discus‐
sion. The test queries the database directly to verify the insert operation has worked.
It would likely result in more concise code if the test used another DAO method to
read the database back again. This feels wrong, though. The DAO class is the subject
of the test so if any of the assertions failed, it would not be possible to determine
whether the problem lies in inserting the data or reading it back. The least ambiguity
in any potential failure arises if the test reads the database directly.

That’s not to say that reading the database is always the right thing to do. The ques‐
tion, as always, is what behavior am I trying to test here? In this case, the question
we’re interested in is does the persistence layer work? Is the correct data being written to
the database? Given that, it’s appropriate to directly read the database. A browser-
based end-to-end test that fills in a form should almost certainly not then look
directly in the database to see if the data was persisted correctly. Even a test for a dif‐
ferent aspect of the DAO might use the insertion and query methods if their behavior
is adequately covered elsewhere.

Similarly, we will want to test that data is read from the database correctly. In that
case, it’s appropriate to insert data directly to the database because we’re interested in
the translation between database rows and objects.

Let’s add that feature method to the specification:

Testing a Persistence Layer | 41



def "can retrieve a list of user objects"() {
  given:
  def timestamp = LocalDateTime.of(1966, 9, 8, 20, 0).toInstant(UTC)
  ["kirk", "spock"].each {
    handle.createStatement("""insert into user (username, registered)
                              values (?, ?)""")
          .bind(0, it)
          .bind(1, timestamp)
          .execute()
  }

  when:
  def users = dataStore.findAllUsers()

  then:
  with(users.toList()) {
    username == ["kirk", "spock"]
    registered.every {
      it == timestamp
    }
  }
}

Managing Resources with the Spock Lifecycle
The feature method in the previous example uses a dataStore object, which is a DAO
wrapping a database connection. A database connection is a classic example of a
managed resource that needs to be acquired and disposed of correctly. We saw setup
and cleanup methods in Chapter 2; now we’ll take a look at lifecycle management in
a little more depth.

JDBI
For the persistence in the Squawker application we’re using JDBI, which is a light‐
weight library for mapping a relational database to a strongly typed Java API. The
underlying database is an H2 in-memory database.

For the purposes of this chapter, it’s not essential that you know JDBI. The concepts
are general enough that they could apply to almost any persistence solution.

JDBI allows for simple working examples with a minimum of configuration and a
concise API for doing direct database access.

Before the feature method can run, there are some things that you need to do:

• Acquire a connection to the database
• Configure the object-relational mapping (ORM)

42 | Chapter 4: Managing Resources

http://jdbi.org/


• Create the DAO we are testing
• Ensure that the tables needed to store our data in fact exist

Afterward, to clean up, the specification must do the following:

• Clean up any data that was created
• Dispose of the database connection properly

Test Leakage

A very important feature of any unit test is that it should be idem‐
potent. That is to say, the test should produce the same result
regardless of whether it is run alone or with other tests in a suite
and regardless of the order in which the tests in that suite are run.
When side effects from a test affect subsequent tests in the suite, we
can describe that test as leaking.
Test leakage is caused by badly managed resources. Typical causes
of leakage include data in a persistent store that is not removed,
changes to a class’ metaclass that are unexpectedly still in place
later, mocks injected into objects reused between tests, and uncon‐
trolled changes to global state such as the system clock.
Test leakage can be very difficult to track down. Simply identifying
which test is leaking can be time consuming. For example, the leak‐
ing test might not affect the one running directly after it, or contin‐
uous integration servers might run test suites in a different order
from that of the developer’s computers, leading to protests of but, it
works on my machine!

As a starting point, we’ll use a setup and cleanup method, as we saw in “Block
Taxonomy” on page 12:

@Subject DataStore dataStore

def dbi = new DBI("jdbc:h2:mem:test")
Handle handle

def setup() {
  dbi.registerArgumentFactory(new TimeTypesArgumentFactory())
  dbi.registerMapper(new TimeTypesMapperFactory())

  handle = dbi.open()
  dataStore = handle.attach(DataStore)

  dataStore.createUserTable()
}

Testing a Persistence Layer | 43



def cleanup() {
  handle.execute("drop table user if exists")
  handle.close()
}

This means that the database connection is acquired and disposed of before and after
each feature method. Given that we’re using a lightweight in-memory database, this is
probably not much overhead. Still, there’s no reason why we can’t reuse the same
database connection for every feature method.

In JUnit, we could accomplish this by using a static field managed via methods anno‐
tated with @BeforeClass and @AfterClass. Spock specifications can contain static
fields but can better accomplish the same thing using the @spock.lang.Shared anno‐
tation.

Notice that when the cleanup method drops the tables, it does so
by using drop table user if exists. It’s a good idea to try to
avoid potential errors in cleanup methods because they can muddy
the waters of debugging problems.
Here, if anything fundamental went wrong with initializing the
DataStore class the specification might not get as far as creating
the table, so when cleanup tries to drop it, a SQLException would
be thrown.

Fields annotated with @Shared have a different lifecycle to regular fields. Instead of
being reinitialized before each feature method is run they are initialized only once—
when the specification is created, before the first feature method is run. @Shared fields
are not declared static. They are regular instance fields, but the annotation causes
Spock to manage their lifecycle differently. As we’ll see later, they are also useful when
parameterizing feature methods using the where: block.

It doesn’t make sense to manage @Shared fields with the setup and cleanup method.
Instead, Spock provides setupSpec and cleanupSpec methods. As you’d expect, these
are run, respectively, before the first and after the last feature method. Again, they are
not static, unlike methods that use JUnit’s @BeforeClass and @AfterClass annota‐
tions. Just like setup and cleanup, setupSpec and cleanupSpec are typed def or void
and do not have parameters.

We can make the dbi field in the specification @Shared and then only perform the
ORM configuration once in a setupSpec method.

@Subject DataStore dataStore

@Shared dbi = new DBI("jdbc:h2:mem:test") 
Handle handle

44 | Chapter 4: Managing Resources



def setupSpec() { 
  dbi.registerArgumentFactory(new TimeTypesArgumentFactory())
  dbi.registerMapper(new TimeTypesMapperFactory())
}

def setup() {
  handle = dbi.open()
  dataStore = handle.attach(DataStore)

  dataStore.createUserTable()
}

def cleanup() {
  handle.execute("drop table user if exists")
  handle.close()
}

The dbi field is now annotated @Shared.

A setupSpec method now handles class-wide setup.

At this stage, we’re still opening a connection and creating tables before each test and
then dropping the tables and releasing the connection after. Even though each feature
method will need its own data, it seems like the table itself could persist between fea‐
tures.

@Subject @Shared DataStore dataStore 

@Shared dbi = new DBI("jdbc:h2:mem:test")
@Shared Handle handle 

def setupSpec() {
  dbi.registerArgumentFactory(new TimeTypesArgumentFactory())
  dbi.registerMapper(new TimeTypesMapperFactory())

  handle = dbi.open() 
  dataStore = handle.attach(DataStore)
  dataStore.createUserTable()
}

def cleanupSpec() { 
  handle.execute("drop table user if exists")
  handle.close()
}

def cleanup() {
  handle.execute("delete from user") 
}

Now, the DAO instance is @Shared so that we can use it to create the tables it
requires in setupSpec.

Testing a Persistence Layer | 45



The database handle we need to create the DAO also needs to be @Shared.

We now create the handle and the DAO in setupSpec rather than setup.

Instead of dropping the tables in cleanup we do so in cleanupSpec.

In cleanup, we’ll ensure that all data is removed from the user table so that each
feature method is running in a clean environment.

Using @Shared in this way results in some tradeoffs. It’s important to manage shared
fields very carefully to ensure state does not leak between feature methods. In the pre‐
ceding example, we had to add a cleanup step to ensure that any data persisted by the
feature methods is deleted.

In this specification, we’ve made the test subject @Shared, meaning
that it is not reinitialized before each feature method. Although
generally this is not a good idea, it’s reasonable if—like in this case
—the test subject is stateless.
Yes, the database is stateful, but we need to manage that anyway,
regardless of the lifecycle of the DAO instance.

It’s not always obvious that state is leaking between feature methods until you restruc‐
ture the specification or run things in a different order. As we saw in “Basic Block
Usage” on page 13, an expect: block can appear before a when: block as a way of veri‐
fying preconditions before the action of the test starts. If there’s any danger of state
leakage, using an expect: block at the start of the feature method to verify the initial
state is a good option. Let’s add that to the feature method we saw earlier:

def "can insert a user object"() {
  given:
  def clock = Clock.fixed(now(), UTC)

  and:
  def user = new User("spock", clock.instant())

  expect:
  rowCount("user") == 0 

  when:
  dataStore.insert(user)

  then:
  def iterator = handle.createQuery("select username, registered from user")
                       .iterator()
  iterator.hasNext()
  with(iterator.next()) {

46 | Chapter 4: Managing Resources



    username == user.username
    registered.time == clock.instant().toEpochMilli()
  }

  and:
  !iterator.hasNext()
}

private int rowCount(String table) {
  handle.createQuery("select count(*) from $table")
        .map(IntegerColumnMapper.PRIMITIVE)
        .first()
} 

The feature method now ensures that the database is in the expected state before
performing the tested action.

A helper method allows for a concise assertion in the expect: block.

Specifications and Inheritance
The lifecycle management that the specification is doing is probably not just applica‐
ble to tests for persisting users, but for similar tests that also need to integrate with
the database. So far we’ve made the User class persistent, but we need to do the same
for the Message class. We’ll add some methods to the DataStore DAO with a specifi‐
cation that tests reading from and writing to the database:

class MessagePersistenceSpec extends Specification {

  @Subject @Shared DataStore dataStore
  User kirk, spock

  @Shared dbi = new DBI("jdbc:h2:mem:test")
  @Shared Handle handle

  def setupSpec() {
    dbi.registerArgumentFactory(new TimeTypesArgumentFactory())
    dbi.registerMapper(new TimeTypesMapperFactory())

    handle = dbi.open()

    dataStore = handle.attach(DataStore)

    dataStore.createUserTable()
    dataStore.createMessageTable()
  }

  def cleanupSpec() {
    handle.execute("drop table message if exists")
    handle.execute("drop table user if exists")

Specifications and Inheritance | 47



    handle.close()
  }

  def setup() {
    kirk = new User("kirk")
    spock = new User("spock")
    [kirk, spock].each { dataStore.insert(it) }
  }

  def cleanup() {
    handle.execute("delete from message")
    handle.execute("delete from user")
  }

  def "can retrieve a list of messages posted by a user"() {
    given:
    insertMessage(kirk, "@khan KHAAANNN!")
    insertMessage(spock, "Fascinating!")
    insertMessage(spock, "@kirk That is illogical, Captain.")

    when:
    def posts = dataStore.postsBy(spock)

    then:
    with(posts) {
      size() == 2
      postedBy.every { it == spock }
    }
  }

  def "can insert a message"() {
    given:
    def clock = Clock.fixed(now(), UTC)
    def message = spock.post(
      "@bones I was merely stating a fact, Doctor.",
      clock.instant()
    )

    when:
    dataStore.insert(message)

    then:
    def iterator = handle.createQuery("""select u.username, m.text, m.posted_at
                                         from message m, user u
                                         where m.posted_by_id = u.id""")
                         .iterator()
    iterator.hasNext()
    with(iterator.next()) {
      text == message.text
      username == message.postedBy.username
      posted_at.time == clock.instant().toEpochMilli()
    }

48 | Chapter 4: Managing Resources



    and:
    !iterator.hasNext()
  }

  private void insertMessage(User postedBy, String text) {
    handle.createStatement("""insert into message
                              (posted_by_id, text, posted_at)
                              select id, ?, ? from user where username = ?""")
          .bind(0, text)
          .bind(1, now())
          .bind(2, postedBy.username)
          .execute()
  }
}

This code is doing an awful lot of the same work as the test for user persistence. It
would make sense to extract a common superclass that can do some of the lifecycle
management and provide some utility methods, such as the rowCount method we
used earlier.

One of the advantages of the fact that @Shared fields and the setupSpec and cleanup
Spec methods are nonstatic is that they can participate in inheritance hierarchies.
Let’s refactor and extract a superclass:

abstract class BasePersistenceSpec extends Specification {

  @Shared DataStore dataStore

  @Shared dbi = new DBI("jdbc:h2:mem:test")
  @Shared Handle handle

  def setupSpec() {
    dbi.registerArgumentFactory(new TimeTypesArgumentFactory())
    dbi.registerMapper(new TimeTypesMapperFactory())

    handle = dbi.open()
    dataStore = handle.attach(DataStore)
    dataStore.createUserTable()
  }

  def cleanupSpec() {
    handle.execute("drop table user if exists")
    handle.close()
  }

  def cleanup() {
    handle.execute("delete from user")
  }

  protected int rowCount(String table) {
    handle.createQuery("select count(*) from $table")

Specifications and Inheritance | 49



          .map(IntegerColumnMapper.PRIMITIVE)
          .first()
  }
}

Here, we’ve simply moved all the lifecycle methods and fields up from MessagePersis
tenceSpec. The @Subject annotation is gone from the dataStore field because it’s no
longer appropriate, and the rowCount method is now protected rather than private.
Otherwise, the code is unchanged.

We don’t need anything else for the UserPersistenceSpec class, but MessagePersis
tenceSpec has to manage the message table as well as the user table.

The feature methods remain unchanged but we can now remove the common parts
of the lifecycle management code that are currently handled by the superclass:

class MessagePersistenceSpec extends BasePersistenceSpec {
  User kirk, spock
  
  def setupSpec() {
    dataStore.createMessageTable()
  }
  
  def cleanupSpec() {
    handle.execute("drop table message if exists")
  }
  
  def setup() {
    kirk = new User("kirk")
    spock = new User("spock")
    [kirk, spock].each { dataStore.insert(it) }
  }
  
  def cleanup() {
    handle.execute("delete from message")
  }

If you’re paying attention, you might notice something missing from the lifecycle
methods in this derived class. None of them are invoking the superclass method they
override! Because forgetting to do so will likely cause problems that can be difficult to
debug and could be prone to copy-and-paste errors, Spock helps you by doing the
right thing automatically.

If a specification’s superclass has any of the lifecycle management methods, they are
automatically executed along with those of the specification itself. It is not necessary
to call super.setup() from a specification’s setup method, for example.

50 | Chapter 4: Managing Resources



Execution Order of Lifecycle Methods in an Inheritance Hierarchy
Thinking about the order in which the lifecycle methods execute, you might also
notice a couple of interesting things:

• The base class’ setupSpec method initializes the dataStore DAO field, and the
subclass setupSpec method uses it to create the message table.

• The base class’ cleanupSpec method calls handle.close() (which is JDBI’s way
of closing the database connection), but the subclass cleanupSpec method uses
the handle field to drop the message table.

Spock treats the lifecycle methods like an onion skin. Execution of the setupSpec and
setup methods proceeds down the inheritance tree, whereas the cleanupSpec and
cleanup methods execute in the opposite order up the inheritance tree.

Let’s look at a simple example of an inheritance hierarchy that prints something to
standard output in each lifecycle method:

abstract class SuperSpec extends Specification {
  def setupSpec() {
    println "> super setupSpec"
  }

  def cleanupSpec() {
    println "> super cleanupSpec"
  }

  def setup() {
    println "--> super setup"
  }

  def cleanup() {
    println "--> super cleanup"
  }
}

class SubSpec extends SuperSpec {
  def setupSpec() {
    println "-> sub setupSpec"
  }

  def cleanupSpec() {
    println "-> sub cleanupSpec"
  }

  def setup() {
    println "---> sub setup"
  }

Specifications and Inheritance | 51



  def cleanup() {
    println "---> sub cleanup"
  }

  def "feature method 1"() {
    println "----> feature method 1"
    expect:
    2 * 2 == 4
  }

  def "feature method 2"() {
    println "----> feature method 2"
    expect:
    3 * 2 == 6
  }
}

The output generated is as follows:

> super setupSpec
-> sub setupSpec
--> super setup
---> sub setup
----> feature method 1
---> sub cleanup
--> super cleanup
--> super setup
---> sub setup
----> feature method 2
---> sub cleanup
--> super cleanup
-> sub cleanupSpec
> super cleanupSpec

This means that the setupSpec method in BasePersistenceSpec executes before the
setupSpec method in MessageStoreSpec. Therefore, dataStore has been acquired
before it’s used to create the message table. Conversely, the cleanupSpec method of
BasePersistenceSpec is executed after the one in MessageStoreSpec, so handle has
not been closed when we try to use it to drop the message table.

Of course, if you have more complex requirements for execution order, there’s noth‐
ing to prevent you from defining abstract methods in the base class that are refer‐
enced from the lifecycle methods and implemented in different ways in the
subclasses.

52 | Chapter 4: Managing Resources



Summary
In this chapter, we covered how to manage resources and fixtures with Spock’s lifecy‐
cle hooks. You learned about the following:

• The four lifecycle methods setupSpec, setup, cleanup and cleanupSpec
• Using @Shared fields for objects that are not reinitialized between each feature

method
• Structuring specifications in inheritance hierarchies and what that means for the

execution order of the lifecycle methods

Exercise: Handling Time Zones
Write a feature method that ensures the postedAt timestamp on a message is correct
if stored in the database in one time zone and retrieved in another.

Summary | 53





CHAPTER 5

Interaction Testing

Testing how the code-under-test deals with collaborators by using mock and stub test
doubles is called interaction testing. This is one of the most misunderstood and
abused techniques in automated testing. Inappropriate use of mocks and stubs can
tightly couple your test code to the implementation details, causing brittle tests and
making refactoring difficult because changes in how a unit works can break tests,
even though the behavior is still correct. At the same time, mocks and stubs can
enable a modular design that uses Inversion of Control (IoC) to define the relation‐
ships between units resulting in loosely coupled code that cooperates through well-
defined interfaces.

Mocks and Stubs
The terms “mock” and “stub” are used inconsistently in discussions of testing. They
are both forms of test double—a stand-in for a real code unit that is a collaborator of
the unit under test. “Collaborator” simply means some other object whose methods
are invoked by the unit under test. In Spock, and in this book, the terms are used as
follows:

Mock
A test double that tracks when its methods are called and the parameters that are
passed to them. Tests can then verify that calls were made as expected.

Stub
A test double whose methods will return a predetermined response or take a pre‐
determined action such as throwing an exception. Stubs do not track the calls
made to them but can use sequences of predetermined responses or actions to
behave differently when their methods are called multiple times.

55



In this chapter, we look at Spock’s support for mocks and stubs along with how, and
crucially, when to use each type. We look at the differences between mocks and stubs,
how they are defined, and how we can attach behavior to them. Most important, we
discuss how to prevent the kind of tight coupling that can make overuse of mocks so
painful.

We can now persist the User and Message classes of the Squawker application, but
methods on User such as follow(User), getFollowing(), getPosts(), and time
line() are not yet reading from the database. The DataStore DAO will act like a fac‐
tory for user instances, so we’ll extend the User class with a PersistentUser that is
accessible only to the factory methods. Internally, PersistentUser has an instance of
the DataStore DAO that it can use to perform further queries or updates.

When testing PersistentUser, we don’t want to use the real DAO; its methods have
already been tested against the database independently. We don’t want the overhead
of managing database connections, tidying up tables, and so on. What we’re interes‐
ted in is “does the PersistentUser method use the DAO correctly?” We need to iso‐
late the PersistentUser and test its interactions with its collaborators. To do that, we
can mock the DAO.

Asserting that a Method Is Called
Let’s begin with a simple case: testing that when a user follows another user, the rela‐
tionship is persisted via the DAO. In practical terms, we want to ensure that the fol
low method of the DataStore is called and is passed the correct parameters:

def dataStore = Mock(DataStore) 
@Subject user = new PersistentUser(dataStore, "spock", now()) 

def "following another user is persisted"() {
  given:
  def other = new User("kirk")

  when:
  user.follow(other) 

  then:
  1 * dataStore.follow(user, other) 
}

In this example, several interesting things are happening, and a couple of new bits of
syntax are introduced:

We create a mock DataStore by using Spock’s Mock(Class) factory method.

We create a PersistentUser instance that is the test subject.

56 | Chapter 5: Interaction Testing



The when: block calls the follow method of the test subject.

The then: block asserts that the follow method of DataStore is called once with
the two users as parameters.

Mock and Stub Type Inference

You can omit the parameter to the Mock or Stub factory methods if
Spock can infer the type from the lefthand side of the declaration.
In this example, we could equally declare the mock by using:

DataStore dataStore = Mock()

Most often, this comes down to a matter of preference, although
IDEs that do not understand Spock’s type inference might cope
better when the type is declared on the lefthand side.

The then: block contains what at first sight looks like a curious expression—a
method call result multiplied by 1! In fact, this is an example of Spock’s highly expres‐
sive syntax for asserting the cardinality of calls to a mocked method.

Reading the statement from left to right, it states “assert that exactly 1 call is made to
the dataStore.follow method, passing user and other as parameters.”

Before the behavior is implemented, the feature method fails and we get the following
report when the specification runs:

Too few invocations for:

1 * dataStore.follow(user, other)   (0 invocations)

The Position of Mock Verifications
One of the strengths of Spock’s mock syntax is that the verification of method invoca‐
tions appears in the then: block after the action occurs. The resulting specifications
read very well as the result of the action—the mocked method being invoked—
appears in the same place as any other assertion would.

Most Java-based mock libraries require that the expected method invocations are set
up beforehand and then a verification method of some kind is called after the action.
For example, our specification rewritten using JMock would look like this:

@Test
public void followingAnotherUserIsPersisted() {
  final User other = new User("kirk");

  context.checking(new Expectations() {
    {

Asserting that a Method Is Called | 57



      oneOf(dataStore).follow(user, other);
    }
  });

  user.follow(other);

  context.assertIsSatisfied();
}

Specifying Invocation Cardinality
Now you know how to expect a single call to a mocked method, but what happens if a
method is called too many times? In the preceding example, the expectation was that
a single call is made to the mocked method. We saw the report generated when the
mocked method was not called at all. Let’s look at another example in which we want
to ensure that the mocked method is not called too many times.

The User.getFollowing() method fetches a list of other users whom a user follows.
Now that we’re persisting following status to the database, this method needs to per‐
form a query to get the list we want. However, if the method is called multiple times,
it makes sense that it doesn’t keep on querying the database. The base User class
already maintains a list of followed users so PersistentUser can simply override the
method and use the superclass implementation as a result cache. We can test it like
this:

def "the following list is read from the database and cached"() {
  given:
  def otherUsers = ["kirk", "bones", "scotty"].collect {
    new User(it, now())
  }

  when: "the list of followed users is requested multiple times"
  def result1 = user.following
  def result2 = user.following

  then: "the database is queried only once"
  1 * dataStore.findFollowing(user) >> otherUsers

  and: "both calls return consistent results"
  result1 == otherUsers as Set
  result2 == result1
}

Here, we’re asserting that although User.getFollowing() is called twice, the database
is queried only once. The feature method also checks that both calls return the same
results. If we implement PersistentUser.getFollowing() in a naïve way so that it
simply queries the database on every call, the specification will fail and we’ll get this
report:

58 | Chapter 5: Interaction Testing



Too many invocations for:

1 * dataStore.findFollowing(user) >> otherUsers   (2 invocations)

Matching invocations (ordered by last occurrence):

2 * dataStore.findFollowing(@spock)   <-- this triggered the error

Declaring the Return Value from a Mocked Method
Notice that the feature method in this example uses the right-shift operator >> to con‐
figure the return value of the dataStore.findFollowing(user) call. In this case,
regardless of how many times the mocked method is called, it will always return the
same value. Later, we’ll see how to define more complex behavior for returning data
from mocks.

If no return value is specified in this way and the method is not void, a default “zero
value” is returned. The exact value is determined by the return type—false for
Boolean methods, zero for numeric primitives, and null for object types.

Parameter Predicates
So far, we’ve seen literal parameters used on mock method calls. When Spock
matches a call to the dataStore.follow(user, other) in our first example, it will
use the equals implementation of the actual parameter with the expected parameter
to determine if the call matches the expectation. Sometimes, you don’t have access to
the expected parameter object (if it’s constructed within the code being tested, for
example) or want to be less strict about the parameters. There are a couple of ways to
do this. The first is to use a closure that makes an assertion about the parameter.

Let’s now implement a persistent version of User.post(String). Internally, this con‐
structs a Message object and stores it via DataStore.insert(Message). Because the
message is constructed inside the post method, the specification does not have access
to it.

We can use the dataStore mock to test that the message is inserted:

def "posting a message inserts it to the database"() {
  given:
  def messageText = "Fascinating!"

  when:
  user.post(messageText, now())

  then:
  1 * dataStore.insert({ it.text == messageText })
}

Declaring the Return Value from a Mocked Method | 59



The closure parameter predicate used in the then: block asserts that the actual value
passed has a property called text with a value equal to the expected message text.

If the implementation of the post method sets the text incorrectly, we’ll get a report
like this:

Too few invocations for:

1 * dataStore.insert({ it.text == messageText })   (0 invocations)

Unmatched invocations (ordered by similarity):

1 * dataStore.insert(squawker.Message@237e142b)

The insert method of the mock was called but with an argument that did not pass
the closure test.

Note that we’re just seeing the toString output of the Message object in the
“unmatched invocations” section of the report there. A better toString implementa‐
tion would improve the quality of the error message, but there is no detailed break‐
down of the argument mismatch the way there is with a Boolean expression.

Disallowing Unexpected Calls or “Strict Mocking”
Spock mocks are lenient, meaning that they allow calls that were not explicitly
expected. As mentioned in the previous section, unexpected calls to nonvoid methods
return a “zero value.” Lenient mocking has the important advantage that it allows you
to concentrate on the interactions that are the subject of the test while ignoring any
that might be incidental. However, sometimes you need to ensure that a call is not
made, and Spock allows you to do that by simply declaring the cardinality as zero.

Recall that messages in Squawker may not be longer than 140 characters. If a user
attempts to post a longer message it should throw an exception and no attempt
should be made to write the value to the database.

def "a message that is too long is not written to the database"() {
  given: "some message text that exceeds the maximum allowed length"
  def messageText = """On my planet, 'to rest' is to rest, to cease using
                       energy. To me it is quite illogical to run up and down
                       on green grass using energy instead of saving it."""

  expect:
  messageText.length() > Message.MAX_TEXT_LENGTH

  when: "a user attempts to post the message"
  user.post(messageText, now())

  then: "an exception is thrown"
  thrown(IllegalArgumentException)

60 | Chapter 5: Interaction Testing



  and: "no attempt is made to write the message to the database"
  0 * dataStore.insert(_)
}

If the length of the message is ignored and the database insert is attempted anyway,
the feature method will fail and issue the following report:

Too many invocations for:

0 * dataStore.insert(_)   (1 invocation)

Matching invocations (ordered by last occurrence):

1 * dataStore.insert(squawker.Message@1dd64fb5)   <-- this triggered the error

Looser Matching with Wildcard Parameters
Notice the underscore character used as the parameter predicate to the mock method.
0 is Spock’s wildcard variable, which you can use in a number of ways. When you use
it as a parameter predicate like this, it means “any single value.”

You can mix the use of wildcards with other parameter predicates in the same call.
You can also cast the wildcard using _ as <class> to enforce the type of the parame‐
ter without enforcing the particular value.

A special syntax is available for matching any number of parameters. As an example,
let’s create a feature method that ensures a user cannot attempt to follow himself:

def "users cannot follow themselves"() {
  when:
  user.follow(user)

  then:
  thrown(IllegalArgumentException)

  and:
  0 * dataStore.follow(*_)
}

The 0 parameter predicate means zero or more parameters of any type with any
value.

Wildcard Shortcuts
0 is an example of a wildcard shortcut. In the previous examples, we asserted that
particular methods, DataStore.post and DataStore.follow, were not called. We
could go further and decide we want to ensure that no methods at all are called on the
mock. We can use the wildcard as a method name constraint as well as a parameter
predicate:

Looser Matching with Wildcard Parameters | 61



0 * dataStore._(_)

There’s a problem there, though. We’re only asserting that no methods that accept a
single parameter are invoked. We could use the 0 construct again, but there’s no need,
because Spock gives you the option of omitting the parameters altogether when using
a wildcard method name constraint:

0 * dataStore._

This means “assert there are no calls to any method on the dataStore mock.”

When there are potential interactions with multiple mocked collaborators, we can use
the wildcard in place of the target constraint, as well:

0 * _._

This means “assert there are no calls to any method on any mock.” In fact, there’s an
even shorter way of writing that:

0 * _

Defining Behavior for Mocked Methods
There’s an important consideration that needs to be covered with the Persisten
tUser class. Instances are acquired from the DAO and are intended to be used only
while the DAO is still connected to the database. After the DAO’s close() method is
called, the database connection will go stale and start throwing exceptions if anything
tries to use it.

There’s not a lot the PersistentUser class can do about such an exception, but it’s a
violation of how the class should be used. We can trap the exception and wrap it with
an IllegalStateException to convey this.

We’ve seen how to return a value from a mocked method, but how can we instruct
the dataStore mock to throw an exception? As well as simply using a return value
with the right-shift operator, Spock allows a closure to define the behavior of the
method:

def "an exception is thrown if the database connection is stale"() {
  when:
  user.posts

  then:
  1 * dataStore.postsBy(user) >> {
    throw new UnableToCreateStatementException(null)
  } 

  and:
  def e = thrown(IllegalStateException) 

62 | Chapter 5: Interaction Testing



  e.cause instanceof UnableToCreateStatementException
}

Here, instead of a simple return value, we’re using a closure that throws an excep‐
tion. Spock invokes the closure if a call is made to the mock that matches the tar‐
get, method, and parameter predicates.

We’re asserting that if the DAO throws a particular type of exception, our method
wraps it with an IllegalStateException and throws that.

Removing Invocation Constraints with Stubs
A stub is like a mock in that it emulates the behavior of a real object. It differs from a
mock in that we don’t want to verify that the stub is invoked; we want only to declare
that if and when it is invoked, it behaves in a certain way.

Look again at the previous example. The behavior we’re interested in is that the Per
sistentUser.getPosts() method throws an IllegalStateException, and yet we’re
still asserting that precisely one call is made to the DAO. This doesn’t feel right. We
have other tests that prove the DAO is invoked correctly by the getPosts() method,
so why make the assertion again? After all, if the interaction doesn’t happen, the
exception will never be thrown and the feature method will fail anyway.

One option is that we can replace the cardinality constraint of the mock expression
with a wildcard:

def "an exception is thrown if the database connection is stale"() {
  when:
  user.posts

  then:
  _ * dataStore.postsBy(user) >> {
    throw new UnableToCreateStatementException(null)
  }

  and:
  def e = thrown(IllegalStateException)
  e.cause instanceof UnableToCreateStatementException
}

That’s still not really sufficient. Really, we want to treat the dataStore object as a stub.
To do that we simply need to move the behavior declaration to the given: block and
remove the cardinality constraint:

def "an exception is thrown if the database connection is stale"() {
  given:
  dataStore.postsBy(user) >> {
    throw new UnableToCreateStatementException(null)
  }

Removing Invocation Constraints with Stubs | 63



  when:
  user.posts

  then:
  def e = thrown(IllegalStateException)
  e.cause instanceof UnableToCreateStatementException
}

This reads much better. Going from top to bottom through the spec we can read the
following:

• “Given any call to dataStore.postsBy(user) will throw an UnableToCreateSta
tementException"

• “When we fetch a list of posts from a user”
• “An IllegalArgumentException is thrown that wraps the original exception”

We probably want to go slightly further here, though. We don’t particularly care pre‐
cisely which method is invoked or with what parameters. Wildcard parameters work
exactly the same way with stubs as they do with mocks:

def "an exception is thrown if the database connection is stale"() {
  given:
  dataStore._ >> {
    throw new UnableToCreateStatementException(null)
  }

  when:
  user.posts

  then:
  def e = thrown(IllegalStateException)
  e.cause instanceof UnableToCreateStatementException
}

When Should I Use a Mock and When Should I Use a Stub?
This is a question that comes up a lot when discussing testing. The distinction
between mocks and stubs as different types of test doubles seems to confuse some
developers. Many seem to think that an argument can be made for always using
mocks and never using stubs, or vice versa. In fact, mocks and stubs have different
purposes, and which to use depends on what your test needs.

Many developers use mocks as a general-purpose test double. I frequently see tests
that I would consider overly strict because they are asserting that mock interactions
occur. What they are really trying to test is the way the system responds when a col‐
laborator behaves in a certain way.

64 | Chapter 5: Interaction Testing



Ask yourself: what is the test attempting to prove? If the test is concerned with prov‐
ing that the test subject interacts with a collaborator in a particular way, use a mock. If
the fact that a collaborator behaves in a certain way exposes particular behavior in the
test subject and the outcome of that behavior is what you are testing, use a stub.

Think of the behavior you’re testing in terms of indirect inputs and outputs. If the
collaborator is an input—that is, the fact that it returns a particular value or throws a
particular exception causes the behavior you’re testing—you probably want to use a
stub. If the interaction with the collaborator is an output—something you need to
prove occurs in order for the behavior of your code to be correct—you want a mock.

A good rule of thumb is that if you need to define the behavior of the test double—
have it return a value or throw an exception—you probably want a stub. If you’re
defining the behavior of the test double, it seems likely that you’re testing how your
code reacts to that behavior. In other words, the test double is an input to your system.
In turn, that probably means that you don’t really need to verify that the interaction
occurred, because without it, the code under test would behave differently and the
test would fail. If you have other assertions that are indirectly dependent on the
behavior of the test double, verifying the interaction using a mock is probably not
adding anything and might just be making your test brittle.

This is just a heuristic, though. There are absolutely times when you need to assert
that an interaction occurred and specify the behavior of that interaction.

Thinking about how the test reads can also be a good way to clarify if you should use
a mock or a stub.

Spock’s syntax is particularly helpful in that regard because stubbed behavior is
declared as a precondition in the given: block, and mocked behavior as an assertion
in the then: block. Try writing block descriptions before the test code and see if that
helps.

Adding block descriptions to the example here, we might get something like the
following:

given: "the database connection is stale"
when: "we try to get a list of the user's posts"
then: "an IllegalStateException is thrown"

Try to rearrange this so that the “database connection is stale” part occurs in the then:
block. It’s pretty difficult to make it read sensibly.

Mixing Mocks and Stubs
Spock’s stubs and mocks are interchangeable. In fact, the same object can simultane‐
ously behave as a stub and a mock.

Removing Invocation Constraints with Stubs | 65



Perhaps we’re testing a background process that invalidates the login credentials of
any user who has not updated her password in the past six months. We might want to
stub the method in the DAO that finds users with an out-of-date password, and mock
the method that updates their status.

Summary
In this chapter we looked at the fundamentals of how to use Spock’s mocks and stubs
for interaction testing. We also discussed some of the pitfalls of overly strict mock
usage that can cause tests to be too tightly coupled to the details of the implementa‐
tion and therefore brittle.

We’ll return to some more advanced and specialized mock and stub usage later in the
book, but armed with the information in this chapter, you have all you need to use
Spock’s mocks and stubs effectively.

66 | Chapter 5: Interaction Testing



CHAPTER 6

Parameterized Specifications

In “Block Taxonomy” on page 12, we briefly mentioned the where: block with the
promise that it would be explained more fully in a later chapter. This is that chapter,
and we will dive deep into the primary use of the where: block: parameterized
testing.

Parameterized testing is executing common test logic against different data. “Data”
typically means inputs or expected outputs. In Spock, the common test logic is repre‐
sented as a feature method, like those we’ve seen already, and the data is represented
by parameters defined in a where: block. For each set of parameters, the feature
method is executed once. Thus, you can apply the same test to a variety of values,
boundary conditions, or edge cases.

JUnit has a couple of mechanisms for doing parameterized testing, which we’ll look at
briefly and hopefully see that Spock’s where: block offers a much simpler and more
flexible way to achieve the same result.

To begin, we’ll look at a simple feature method that checks a range of invalid values
and ensures that they are all rejected.

We included some simple validation in the User class we created in Chapter 2, but if
we’re going to allow people to register for Squawker accounts, we should really ensure
that their registration details are correct. We’ll add a new RegistrationService class
that handles the creation of new user accounts. For the moment, the only thing we
need in order to create a User is a username string. We can worry about passwords
and other data later. For now, we’ll add a method public User register(String
username) to the new service.

67



We’ll disallow any of the following as a username:

• null

• An empty string
• Any characters other than simple alphanumerics or underscores
• An existing username (regardless of case; for example, if there’s already a “spock”

we won’t allow a “Spock”)

Naïvely, we’ll begin with the following feature methods:

def "a new user cannot register with a null username"() {
  when:
  service.register(null) 

  then:
  thrown(RegistrationException) 

  and:
  0 * dataStore.insert(_ as User) 
}

def "a new user cannot register with a blank username"() {
  when:
  service.register("")

  then:
  thrown(RegistrationException)

  and:
  0 * dataStore.insert(_ as User)
}

def "a new user cannot register with an empty username"() {
  when:
  service.register("     ")

  then:
  thrown(RegistrationException)

  and:
  0 * dataStore.insert(_ as User)
}

def "a new user cannot register with a username containing illegal characters"() {
  when:
  service.register("@&%\$+[")

  then:
  thrown(RegistrationException)

68 | Chapter 6: Parameterized Specifications



  and:
  0 * dataStore.insert(_ as User)
}

def "a new user cannot register with the same username as an existing user"() {
  given:
  dataStore.usernameInUse("spock") >> true 

  when:
  service.register("spock")

  then:
  thrown(RegistrationException)

  and:
  0 * dataStore.insert(_ as User)
}

There’s an awful lot of duplication in these feature methods.

Each method is attempting to register a user with a different type of invalid user‐
name, but each is making exactly the same assertions…

that a RegistrationException is thrown and…

that no attempt is made to insert a new user to the database via the DataStore.

The only variation is when one feature method simulates a username clash using
a stub of the dataStore.usernameInUse method.

With a structure like this, it’s needlessly expensive to add additional cases for similar
conditions. Also, if requirements change, it’s necessary to make similar changes to
numerous tests. Viewing the specification class as a description of behavior, it seems
clear that all of these feature methods correspond to the same behavior: “a user cannot
register with an invalid username.”

The word “invalid” covers a variety of meanings, but the essential behavior remains
the same. We need to prove that any representative example of an invalid username is
rejected. It would also be nice if it were easy to add further cases as we define them or
as we discover inadequacies in the current username policy and want to fix them.

Parameterized Specifications | 69



Antipattern: Testing Variants by Using Loops
A bad way to solve this would be to iterate over some invalid usernames and test that
each of them is rejected, as follows:

given:
dataStore.usernameInUse("spock") >> true

and:
def invalidUsernames = [null, "", "     ", "@&%\$+[", "spock"]

when:
invalidUsernames.each {
  try {
    service.register(it)
    assert false, "expected RegistrationException to be thrown"
  } catch (RegistrationException e) {
    // expected
  }
}

then:
0 * dataStore.insert(_ as User)

There are several problems here:

• The test will fail fast as soon as one of the values in invalidUsernames is incor‐
rectly accepted. If we have a number of problems affecting individual cases, we’d
fix one only to find the next failed, fix that, find another failure, and so on. It’s
not a good specification of behavior, because you can’t see all of the failures (the
places where our code fails to meet that specification) at once.

• We’re using the mock DataStore at the end of the test to ensure that nothing has
been inserted but that assertion is not tied to a specific rule—it’s applied at the
end after we’ve tried all of them. With a more complex scenario, it might not be
possible to define a condition that applies across all cases like that.

• We’re confusing action and assertion in our test. The primary thing being asser‐
ted is that a RegistrationException is thrown, but the validation of that hap‐
pening is part of the where: block. There’s no way for us to use Spock’s thrown
method to validate multiple exceptions thrown from the where: block, so we
have no choice but to do an ugly try/catch with a hard failure if execution is
allowed to continue past the service.register call.

70 | Chapter 6: Parameterized Specifications



Paramaterization in JUnit
JUnit provides a couple of ways of doing parameterized testing. The most commonly
encountered is the org.junit.runners.Parameterized test runner. Let’s see how our
RegistrationSpec class would look implemented as a parameterized JUnit test:

@RunWith(Parameterized.class)
public class RegistrationParameterizedTest {

  @Parameters
  public static Collection<Object[]> invalidUsernames() { 
    Object[][] data = new Object[][] {
      {null}, {""}, {"    "}, {"@&%$+["}, {"spock"}
    };
    return Arrays.asList(data);
  }

  @Rule public final JUnitRuleMockery context = new JUnitRuleMockery() {
    {
      setImposteriser(ClassImposteriser.INSTANCE);
    }
  };

  private DataStore dataStore = context.mock(DataStore.class);
  private RegistrationService service = new RegistrationService(dataStore);
  private String username; 

  public RegistrationParameterizedTest(String username) { 
    this.username = username;
  }

  @Test(expected = RegistrationException.class)
  public void cannotRegisterWithAnInvalidUsername() {
    context.checking(new Expectations() {
      {
        allowing(dataStore).usernameInUse("spock"); will(returnValue(true));
        never(dataStore).insert(with(any(User.class)));
      }
    });

    service.register(username); 
  }
}

A public static method annotated with @Parameterized provides parameters for
the test. The method must return a Collection of object arrays. Each element in
the collection represents a single set of parameters and is used to reflectively call
the test’s constructor. Even when there is only a single parameter for each itera‐
tion, as in this case, it must be wrapped in an array.

Paramaterization in JUnit | 71



Each parameter value is defined as a field in the test itself.

The test must have a public constructor with a parameter corresponding to each
element in the data returned by the @Parameters method.

The parameter values are referenced from the test method.

Although it’s better than writing a slew of almost identical test methods there are a
number of problems with this solution:

• The test method itself and its parameters are not defined in a very cohesive way.
The parameters are not bound to parameters on the test method, but on the
class.

• The return type of the @Parameters method is complex. It’s easy for you to make
a mistake in the definition of the data returned by the @Parameters method that
will cause initialization to fail. With more complex parameter sets, that kind of
error can be difficult to spot.

• The parameters are at class level, not method level. This means that each test
method must share the same set of parameters. If we want other tests that are
logically part of this specification but require different sets of parameters, they
need to be defined in a separate test class.

• When the test executes, it will output a separate entry in the test report for each
iteration—which is good. However, there’s no way to tie a failing iteration back to
the individual set of parameters used.

Another option with JUnit is to use the @Theories runner, as shown here:

@RunWith(Theories.class)
public class RegistrationTheory {

  @DataPoints
  public static String[] invalidUsernames = {
    null, "", " ", "@&%$+[", "spock"
  }; 

  @Rule public final JUnitRuleMockery context = new JUnitRuleMockery() {
    {
      setImposteriser(ClassImposteriser.INSTANCE);
    }
  };

  private DataStore dataStore = context.mock(DataStore.class);
  private RegistrationService service = new RegistrationService(dataStore);

  @Theory
  public void cannotRegisterWithAnInvalidUsername(String username) { 

72 | Chapter 6: Parameterized Specifications



    context.checking(new Expectations() {
      {
        allowing(dataStore).usernameInUse("spock"); will(returnValue(true));
        never(dataStore).insert(with(any(User.class)));
      }
    });

    try {
      service.register(username);
      fail("Should have thrown RegistrationException"); 
    } catch (RegistrationException e) {
      // expected
    }
  }
}

The data points for this example are in a simple array. It’s possible to have multi‐
ple methods and fields annotated with @DataPoints @DataPoint, in which case
the @Theories runner will execute the test for every possible combination.

The test method is annotated with @Theory instead of @Test and accepts parame‐
ters that match the data points.

Unfortunately the @Theory annotation does not allow for expected exceptions the
way @Test does, so it’s necessary to use a try/catch block that directly causes the
test to fail if the expected exception is not thrown.

Although the @Theories runner provides a more flexible way to define data points
and passes the data points directly to the test method rather than the class construc‐
tor, it has some drawbacks of its own. The biggest downside is that the test report it
generates does not contain separate entries for each iteration of the test. If one itera‐
tion fails the test simply reports a failure, and it’s up to the developer to determine
which particular combination of data points caused the problem.

Spock’s where: block
Spock provides a fantastic method for reducing duplication by running a feature
method several times with a different set of parameters each time. Instead of separate
methods for each similar case, you can use the where: block to define an iterable set
of data points. The feature method will then execute once for every data point, as
demonstrated here:

def "a new user cannot register with an invalid username"() {
  given:
  dataStore.usernameInUse("spock") >> true

  when:

Spock’s where: block | 73



  service.register(username) 

  then:
  thrown(RegistrationException)

  and:
  0 * dataStore.insert(_ as User)

  where:
  username << [null, "", "     ", "@&%\$+[", "spock"] 
}

In the where: block, we use the << left shift operator to define a set of data points
known as a data pipe for the username variable. Note that the variable is not
defined anywhere else, it’s just a name in the where: block.

Parameters defined in the where: block are available in the body of the test. Here
we’re using the username to attempt an invalid registration.

This means that we can collapse all the previous feature methods into a single method
that is executed once for every data point we provide in the where: block. A failure
with one data point will not prevent the subsequent iterations from running, so all
results are available after every test run.

You can use anything that implements java.lang.Iterable as a data pipe for a
where: block parameter, and the feature method will run once for every element. The
example here uses a simple List literal but @Shared or static fields work the same as
methods returning Iterable data. Later in the book, we’ll see a couple of examples of
dynamically building data pipes. For this chapter, we’ll stick with literals, though.

In this case, the definition of the stub behavior of dataStore done
in the given: block is only necessary for one of the iterations.
There’s a good argument that rather than collapsing everything
down to a single feature method, you should use two because the
behavior is a little different and the presence of the stub could con‐
fuse someone trying to understand what the test is telling them
about how the production code works.

Every iteration of the feature method is isolated from the others as well as from any
other feature methods in the specification class. This means that the setup and
cleanup lifecycle methods are executed before and after each iteration.

Spock’s where: block has one huge advantage over JUnit parameterized tests in that
the parameters are confined to a single feature method. Specification classes can con‐
tain multiple parameterized feature methods, each with their own unique set of
parameters. You can include nonparameterized feature methods in the same class,

74 | Chapter 6: Parameterized Specifications



and it will run normally. Spock makes it incredibly easy to add iteration to an existing
feature method by simply adding a where: block and replacing regular variables or
hardcoded values with the where: block parameters.

Separating Iteration Reporting by Using @Unroll
If one or more iterations of the previous parameterized feature method fails, we’ll see
a single failure in the test report. This isn’t ideal, because it means that we need to use
a debugger, some println statements, or some other mechanism to determine which
iteration of the method and therefore which element in the data pipe caused the
problem.

Spock has a really nice solution for this, as well. Meet the @spock.lang.Unroll anno‐
tation.

Annotating the feature method with @Unroll will cause a separate test report entry to
be generated for each iteration rather than a single report entry for the entire feature
method. The report output will look something like this:

Test Duration Result
a new user cannot register with an invalid username[0] 0.001s passed

a new user cannot register with an invalid username[1] 0s passed

a new user cannot register with an invalid username[2] 0.001s passed

a new user cannot register with an invalid username[3] 0s passed

a new user cannot register with an invalid username[4] 0.001s passed

Adding @Unroll Descriptions
Although this is helpful, it doesn’t really assist much in finding which particular set of
data points caused the failure. Fortunately @Unroll has a really clever trick up its
sleeve. We can give the annotation a description string with placeholders for the
parameters from the where: block, as is done in the following:

@Unroll("a new user cannot register with the username '#username'")
def "a new user cannot register with an invalid username"() {

Now, the test report can point us directly to a failing iteration:

Test Duration Result
a new user cannot register with the username      0s passed

a new user cannot register with the username '' 0.001s passed

a new user cannot register with the username @&%$+[ 0.001s passed

a new user cannot register with the username null 0.001s passed

a new user cannot register with the username spock 0s passed

Separating Iteration Reporting by Using @Unroll | 75



@Unroll Tokens in Feature Method Names
In fact, it’s possible to go further and embed the expression into the feature method
name itself, as shown here:

@Unroll
def "a new user cannot register with the username '#username'"() {

Although embedding the expression in the feature method name like this is powerful,
it makes sense to exercise caution. If you are using multiple where: block parameters,
it can make your test name very difficult to read and understand because it might be
largely comprised of parameter tokens. A good approach is often to use the feature
method name to describe the general case and add an @Unroll expression via the
annotation to describe a specific iteration. Sometimes, though, that’s overkill because
the feature method name remains perfectly understandable with a token or two in it.
Take each feature method individually and use whichever approach makes it read
better.

Class Level @Unroll Annotations
If you have multiple parameterized feature methods in a specification class and don’t
need to add explicit @Unroll expressions to any of them, you can move the @Unroll
annotation up to class level, and it will apply to every feature method. Token replace‐
ment still works in the feature method name when @Unroll is placed on the class.

IDE Support for the where: Block
The IntelliJ IDEA IDE can offer autocompletion support and type inference for
where: block parameters throughout the feature method. In addition, it can auto‐
complete tokens in an @Unroll expression. As of this writing, it doesn’t work for
expressions in the feature method name itself, only for annotation parameters.

If you’re using an IDE that isn’t aware of Spock’s where: block, or if you’re using a
data pipe for which the type of the individual elements cannot be inferred, you can
still get help from your IDE. You can define formal parameters to the feature method
that match the where: block parameter names—this is in fact what Spock is doing
anyway via a compile-time transformation:

@Unroll
def "a new user cannot register with the username '#username'"(
  String username
) {

76 | Chapter 6: Parameterized Specifications



Multiple Data Pipes
If a feature method needs more than one parameter, it’s possible to add them to the
where: block. Let’s extend our test to verify that a more specific type of exception is
thrown in response to various types of errors the user can make:

@Unroll
def "a new user cannot register with the username '#username'"() {
  given:
  dataStore.usernameInUse("spock") >> true

  when:
  service.register(username)

  then:
  thrown(exceptionType) 

  and:
  0 * dataStore.insert(_ as User)

  where:
  username << [null, "", "     ", "@&%\$+[", "spock"]
  exceptionType << [
    MissingUsernameException,
    MissingUsernameException,
    InvalidCharactersInUsernameException,
    InvalidCharactersInUsernameException,
    UsernameAlreadyInUseException
  ] 
}

A second parameter has been introduced to specify the exception type that
should be thrown for the various types of validation errors.

The new parameter is used as the parameter to the thrown method.

Spock will throw an error on initialization if data pipes have differ‐
ent lengths or if a data pipe is empty.

Data Tables
As you can imagine from looking at the previous example, it’s easy for a where: block
to become very confusing if there are more than a couple of data pipes. Because of
this problem, Spock introduced another format for declaring where: block parame‐
ters: the data table. A data table allows you to lay out parameters in a simple text table

Multiple Data Pipes | 77



with the parameter names as column headers and pipes separating each column.
Each row in the table corresponds to a single iteration of the test, and each column in
that row is a single parameter value. It’s really just some syntactic sugar for multiple
data pipes, and there are no differences in the semantics of the parameters created by
using a data table from those created by using data pipes. Data tables are much easier
to read and maintain, though.

Here’s our registration specification rewritten to use a data table:

@Unroll
def "a new user cannot register with the username '#username'"() {
  given:
  dataStore.usernameInUse("spock") >> true

  when:
  service.register(username)

  then:
  thrown(exceptionType)

  and:
  0 * dataStore.insert(_ as User)

  where:
  username  | exceptionType 
  null      | MissingUsernameException 
  ""        | MissingUsernameException
  "     "   | InvalidCharactersInUsernameException
  "@&%\$+[" | InvalidCharactersInUsernameException
  "spock"   | UsernameAlreadyInUseException
}

The first row in the table defines the parameter names.

Subsequent rows define parameter values for a single iteration of the feature
method.

It’s now much clearer what constitutes the parameters for an iteration of the feature
method. It’s very easy to add further cases to the table to check for additional edge
cases.

IntelliJ IDEA can automatically format Spock data tables with the
Reformat Code command, so there’s no need to painstakingly align
the table columns yourself.

78 | Chapter 6: Parameterized Specifications



Fields and Methods as Data Providers
There’s a restriction on usernames we haven’t enforced yet. We’re ensuring that a user
cannot register with a username that is already in use, but that check is supposed to
be case-insensitive.

To enforce this, we’ll define a @Shared field holding the existing username and then
use some variants of it as parameters to the feature method:

@Shared usedUsername = "Spock" 
def dataStore = Mock(DataStore)
@Subject service = new RegistrationService(dataStore)

def setup() {
  dataStore.usernameInUse({
    usedUsername.equalsIgnoreCase(it)
  }) >> true 
}

@Unroll
def "a new user cannot register with the username '#username'"() {
  when:
  service.register(username)

  then:
  thrown(exceptionType)

  and:
  0 * dataStore.insert(_ as User)

  where:
  username                   | exceptionType
  null                       | MissingUsernameException
  ""                         | MissingUsernameException
  "     "                    | InvalidCharactersInUsernameException
  "@&%\$+["                  | InvalidCharactersInUsernameException
  usedUsername               | UsernameAlreadyInUseException 
  usedUsername.toLowerCase() | UsernameAlreadyInUseException 
  usedUsername.toUpperCase() | UsernameAlreadyInUseException
}

The usedUsername field is defined as @Shared.

The stub interaction is configured in a setup method and uses a Closure to
match a parameter that is equal to usedUsername, irrespective of case.

The usedUsername field can be used as a parameter value in the data table. This is
possible only because the field is @Shared (although a static field would also
work).

Fields and Methods as Data Providers | 79



It’s also possible to use the result of a method call in the data table.

Derived Values
As well as data pipes and data tables, where: blocks can include straightforward
assignments. Assignments can coexist with data pipes or tables. They are evaluated
once per iteration and can refer to other parameters. Assignments are particularly
useful for encapsulating repetitive value conversions and formatting values for use in
@Unroll expressions.

Let’s revisit the idea of a user having a timeline of messages. We’ll take a slightly dif‐
ferent approach to our previous example. This time, we’ll post a message and make
an assertion about whether that message appears in a user’s timeline based on
whether the user follows the message poster. Unlike the previous examples in Chap‐
ter 2, we’ll be testing the persistent API using JDBI.

class TimelineSpec extends BasePersistenceSpec {

  @Shared @Subject User user
  @Shared User followedUser
  @Shared User notFollowedUser

  def setupSpec() {
    user = dataStore.newUser("spock")
    followedUser = dataStore.newUser("kirk")
    notFollowedUser = dataStore.newUser("khan")

    user.follow(followedUser) 
  }

  def cleanup() {
    handle.execute("delete from message")
  }

  @Unroll
  def "a user only sees messages from users they follow in their timeline"() {
    given:
    def message = new Message(postedBy, "Lorem ipsum dolor sit amet")
    dataStore.insert(message) 

    expect:
    user.timeline().contains(message) == shouldAppearInTimeline 

    where:
    postedBy        | shouldAppearInTimeline 
    user            | true
    followedUser    | true
    notFollowedUser | false

80 | Chapter 6: Parameterized Specifications



  }
}

We set up three users. One is the @Subject, whose timeline the feature method
will check. One of the others is followed by the subject, and one is not.

The where: block contains a data table with two columns: the user who will post
a message, and a Boolean indicating whether we expect to see the message in the
subject user’s timeline.

As part of the given: block, we create a message and store it on the database.

The feature method asserts that the message does or does not appear in the sub‐
ject user’s timeline according to the expectation from the where: block.

You can think of the Message instance created in the given: block as another param‐
eter to the test. We could add another column to the data table to create the message,
but because we don’t really care about the message text, only the posting user, it
wouldn’t make sense to duplicate the constructor call on every row. However, Spock
allows straightforward assignments in a where: block that can refer to the parameters
of the current iteration. We can use that to construct the message.

@Unroll
def "a user only sees messages from users they follow in their timeline"() {
  given:
  dataStore.insert(message) 

  expect:
  user.timeline().contains(message) == shouldAppear

  where:
  postedBy        | shouldAppear
  user            | true
  followedUser    | true
  notFollowedUser | false

  message = new Message(postedBy, "Lorem ipsum dolor sit amet") 
}

The Message instance is constructed in the where: block. Note that the first
parameter to the constructor is one of the parameters from the data table.

The message parameter is accessible from the body of the feature method in
exactly the same way as any other where: block parameter.

Derived Values | 81



Clarifying @Unroll Expressions
Another important use for assignments in where: blocks is creating parameters that
are used only as tokens in an @Unroll annotation. As we discussed earlier, it is
extremely important to strike a balance between feature method names that are read‐
able in the code and @Unroll descriptions that describe behavior well in the test
reports. So far, we have not added an expression to the @Unroll annotation in Timeli
neSpec, so the output in the test report looks like this:

Test Duration Result
a user only sees messages from users they follow in their timeline[0] 0.006s passed

a user only sees messages from users they follow in their timeline[1] 0.002s passed

a user only sees messages from users they follow in their timeline[2] 0.001s passed

Attempting to add an @Unroll expression using only the parameters we need for the
feature method is not particularly easy. I find this is very often the case when using
Boolean values in a data table. We could settle for something like this:

@Unroll("a message posted by #postedBy appears in the timeline? #shouldAppear")

Which would give us this test report:

Test Duration Result
a message posted by @khan appears in the timeline? false 0.001s passed

a message posted by @kirk appears in the timeline? true 0.001s passed

a message posted by @spock appears in the timeline? true 0.002s passed

Although it’s something of an improvement, reports like this bother me. They don’t
read very naturally and their awkward grammar can be difficult to interpret. I think
it’s worth making an effort to output a report that reads as proper, grammatical
English. There’s no reason we can’t assign parameters in the where: block that are
purely used to make the @Unroll expression read better in the test report. Here’s how
to do that:

@Unroll("a message posted by #postedBy #behavior in #whose timeline") 
def "a user only sees messages from users they follow in their timeline"() {
  given:
  dataStore.insert(message)

  expect:
  user.timeline().contains(message) == shouldAppearInTimeline

  where:
  postedBy        | shouldAppearInTimeline
  user            | true

82 | Chapter 6: Parameterized Specifications



  followedUser    | true
  notFollowedUser | false

  message = new Message(postedBy, "Lorem ipsum dolor sit amet")
  behavior = shouldAppearInTimeline ? "appears" : "does not appear" 
  whose = postedBy == user ? "their own" : "$user's" 
}

The Boolean value is translated into a phrase that describes the behavior it repre‐
sents.

The ownership of the timeline is described differently when testing whether the
user sees their own message. Not doing this would leave us with "a message pos
ted by @spock appears in @spock's timeline" in the report, which sounds
slightly odd.

The @Unroll expression uses the new behavior and whose parameters.

The report now reads very nicely:

Test Duration Result
a message posted by @khan does not appear in @spock’s timeline 0.001s passed

a message posted by @kirk appears in @spock’s timeline 0.002s passed

a message posted by @spock appears in their own timeline 0.003s passed

It’s wise in cases like this to keep the @Unroll expression separate from the feature
method name. To anyone browsing the code, the method name should explain the
general terms of the behavior being tested. If the @Unroll expression in this case were
inlined into the method name, it would be difficult to make sense of without the
actual test report to use as a reference.

Summary
In this chapter, you learned how to use Spock’s where: block to reduce duplication in
test code by iteratively running the same feature method with different sets of param‐
eters. The where: block makes it very easy to test edge cases and boundary conditions
by making generalized assertions and proving them against a variety of data.

We covered the use of data pipes to iterate feature methods against an Iterable data
provider that can be anything from a List literal to a @Shared field or a helper method.
You also saw how data tables can clarify multiparameter features.

With an emphasis always on generating good diagnostics in the case of test failures,
we looked at the @Unroll annotation. You saw how and where you can apply it and

Summary | 83



how to use the parameters from the where: block to generate meaningful names for
individual feature method iterations.

At this point, we’ve covered all the basics of Spock. You have the tools to write effec‐
tive and expressive specifications for your code. Now it’s time to go further and look
at how you can creatively use Spock and the Groovy language it’s built on to tackle
more advanced scenarios.

84 | Chapter 6: Parameterized Specifications



PART II

Advanced Spock

Part I provided you with a good grasp of how to write a Spock specification. Now
we’ll move on to some more advanced topics. How do you design and write good
specifications? How do you get the most out of the Groovy language that underlies
Spock? How do you use the features of Spock in some less obvious ways?





CHAPTER 7

Idiomatic Spock

So far, we’ve looked at the mechanics of how to write specifications with Spock as well
as all the core functionality. If you’ve read this far and followed along with the exam‐
ples, you basically know how to write specifications.

However, it’s easy to take Spock and write very verbose, Java-like, JUnit-like specifica‐
tions that don’t really get the best out of what Spock or Groovy have to offer. There’s
more to Spock than just the given, when, then structure and implicit assertions.

In this chapter, I want to explore a range of smaller topics that serve as tips on writing
idiomatic Spock specifications. By “idiomatic,” I mean that test code seamlessly uses
the features and grammar of Spock and Groovy.

Let’s begin at the highest level by looking at how to structure a suite of specification
classes.

Organizing Tests
Many IDEs and frameworks will automatically generate stub test classes for you. For
example, IntelliJ IDEA can generate a skeleton Spock specification based on a class. It
can even generate a feature method for each public method in the class.

Perhaps because such tools encourage them down this path, many developers seem to
become stuck in a rut in which each production class has a one-to-one correspond‐
ence with a test class. This doesn’t need to be the case.

It’s a perfectly acceptable way to begin, but there are many valid reasons why strictly
maintaining a one-to-one relationship between production classes and text classes is
a bad idea.

87



Refactoring can (and should) change the boundaries of production classes. For exam‐
ple, moving functionality from one class to another where it fits more appropriately.
Does that mean the test classes should be changed to follow the new boundaries? Isn’t
that just creating unnecessary rework?

Tests can be usefully organized around behavior rather than units of code. Each test
class can deal with a single behavioral aspect of the system that might cut across mul‐
tiple units of code. When organized that way, refactoring doesn’t necessarily require
extensive busywork maintaining tests.

Common setup might apply to some feature methods and not others. Grouping tests
into a single class without allowing for this can lead to the antipattern known as “The
Cuckoo” (discussed next).

The Cuckoo Antipattern
The Cuckoo is a feature method that sits in the same specification class as others but
doesn’t really belong there.

Perhaps it’s testing a different unit or behavior. Perhaps it’s ignoring the shared setup
used by the other feature methods, which can be very misleading for someone trying
to understand the intent of the test. Worst of all, perhaps it’s actively undoing some of
the shared setup because it requires different preconditions to all the other feature
methods.

The Cuckoo is often a result of a misguided assumption that all tests for an individual
unit of code belong in a single test class.

This is not to say it’s never appropriate to have a one-to-one relationship between test
and production classes, simply that it shouldn’t be something to which you are behol‐
den. By all means, start your tests organized in that way. After you begin to feel that
adding further tests to the same class is like trying to bash square pegs into a round
hole, create a new test class.

When you’re implementing a new feature of the system, consider adding new specifi‐
cation classes organized around the behaviors required to implement that feature
rather than tacking new feature methods on to existing specification classes. That’s
not to say it’s always wrong to add new feature methods to an existing specification.
But you should at least consider the alternatives.

The “Test-per-Method” Antipattern
Although a one-to-one relationship between test and production classes is a reason‐
able starting point, a one-to-one relationship between test and production methods is
almost always a bad idea. Even the simplest method is likely to have multiple paths

88 | Chapter 7: Idiomatic Spock



through its code. There are pathological cases to cover—invalid inputs or system
states. Trying to pack coverage for all of those aspects into a single feature method is
either going to result in a violation of the single responsibility principle or missing
coverage.

The single responsibility principle states that a unit of code should be concerned with
one thing and one thing only. As Robert C. Martin says, “A class should have only one
reason to change.”

When he described the idea in his article Principles of Object-Oriented Design [pood],
Robert C. Martin (“Uncle Bob”) was talking about classes and modules, but the prin‐
ciple can be applied at all levels of software design.

When it comes to feature methods in Spock, I consider the principle to mean that a
feature method should be responsible for testing a single aspect of behavior. Not that
it should be responsible for exhaustively testing a single unit of code. As we’ve dis‐
cussed earlier, units of code and the boundaries between them can change with refac‐
toring and are therefore a shaky foundation upon which to build.

Required behavior changes, too, but it does so in response to the intent of the project
as a whole. When requirements change, tests should change to specify the new behav‐
ior. When code is being refactored, ideally the tests should change very little, if at all,
so that they provide assurance that the refactored code works as before.

Well-Factored Specifications
Programs must be written for people to read, and only incidentally for machines to
execute.

—Abelson and Sussman, Structure and Interpretation of Computer Programs

One of the most important features of test code is its readability. This principle is
about more than just failure diagnostics. New programmers joining your team, col‐
leagues reviewing your code, even yourself six months from now, when you’ve forgot‐
ten the details of what you are implementing, all benefit from being able to read tests
to understand the desired behavior of the system. Clear, concise, and descriptive test
code helps immeasurably.

Feature methods can become very difficult to understand if they exhibit any of the
following:

• They contain line upon line of complex setup establishing multiple precondi‐
tions.

• They use complex code to retrieve the values against which assertions are made.
• They perform multiple actions in order to exercise the behavior being specified.

Well-Factored Specifications | 89



• They need to walk through a number of steps to get the system to the point at
which the behavior can be tested (this is common with end-to-end tests).

Remember that test code is still just code. We typically approach breaking down com‐
plexity in production code by refactoring long methods into multiple shorter ones. If
you’ve read Clean Code by Robert C. Martin [cleancode], you will be very familiar
with this technique and his mantra of “extract till you drop”; that is, keep breaking
methods down into multiple smaller and simpler methods until each is so simple it’s
trivial to understand.

If the methods you extract are well-named, the resulting program reads as a layered
description of the behavior. The higher-level methods deal in abstracts, calling lower-
level methods that deal in details. It’s possible to get a clear understanding of what the
program does by just reading the higher-level methods. The lower-level methods deal
with the how.

It’s possible to break down Spock feature methods in the same way.

Sharing Helper Methods
Sometimes, you might find that helper methods can be useful across more than one
specification class. When working with Spock, you have a number of options for
sharing helper methods between classes.

Let’s reconsider some of the testing we had around the user’s message timeline. Our
initial attempt at a specification looked like this:

@Subject user = new User("khan")
def followedUser = new User("kirk")
def otherUser = new User("spock")

def setup() {
  handle = dbi.open()

  userStore = handle.attach(UserStore)
  userStore.createUserTable()

  messageStore = handle.attach(MessageStore)
  messageStore.createMessageTable()

  followingStore = handle.attach(FollowingStore)
  followingStore.createFollowingTable()

  [user, followedUser, otherUser].each {
    userStore.insert(it.username)
  }
  followingStore.follow(user, followedUser)

  def now = now()

90 | Chapter 7: Idiomatic Spock



  messageStore.insert(
    otherUser,
    "His pattern indicates two-dimensional thinking.",
    now.minus(6, MINUTES))
  messageStore.insert(
    user,
    "@kirk You're still alive, my old friend?",
    now.minus(5, MINUTES))
  messageStore.insert(
    followedUser,
    "@khan KHAAANNNN!",
    now.minus(4, MINUTES))
  messageStore.insert(
    followedUser,
    "@scotty I need warp speed in three minutes or we're all dead!",
    now.minus(3, MINUTES))
  messageStore.insert(
    otherUser, "@bones I'm sorry, Doctor, I have no time to explain this.",
    now.minus(2, MINUTES))
  messageStore.insert(
    user,
    "It is very cold in space!",
    now.minus(1, MINUTES))
}

def "a user's timeline contains posts from themselves and followed users"() {
  expect:
  with(messageStore.timeline(user)) {
    size() == 4
    !postedBy.any {
      it == otherUser
    }
  }
}

def "a user's timeline is ordered most recent first"() {
  expect:
  with(messageStore.timeline(user)) {
    postedAt == postedAt.sort().reverse()
  }
}

We’re setting up three users and a number of messages posted by different users at
different times. The code creating the messages is very repetitive and long-winded.
One feature method ensures that only the messages from followed users appear. The
other ensures that messages appear in the correct order. Because of the tedious nature
of creating the messages, we’ve reused the same data in each feature method, but in
fact the first feature method is concerned only with the user that posted the message,
and the second is concerned only with the times at which the messages were posted.
Because creating messages is awkward, we’ve inadvertently coupled the feature meth‐
ods’ fixtures. As the specification evolves, this might well turn out to be inconvenient.

Well-Factored Specifications | 91



Let’s address the inconvenience of creating messages and define a couple of helper
methods:

@Subject User user

def setup() {
  handle = dbi.open()

  userStore = handle.attach(UserStore)
  userStore.createUserTable()

  messageStore = handle.attach(MessageStore)
  messageStore.createMessageTable()

  followingStore = handle.attach(FollowingStore)
  followingStore.createFollowingTable()

  user = userStore.insert("khan")
}

def "a user's timeline contains posts from themselves and followed users"() {
  given:
  def followedUser = newFollowedUser("kirk")
  def otherUser = newUser("spock")
  [user, followedUser, otherUser].each { poster ->
    2.times { postMessageBy(poster) }
  }

  expect:
  with(messageStore.timeline(user)) {
    size() == 4
    !postedBy.any {
      it == otherUser
    }
  }
}

def "a user's timeline is ordered most recent first"() {
  given:
  (6..1).each { minutesAgo ->
    postMessageAt(minutesAgo)
  }

  expect:
  with(messageStore.timeline(user)) {
    postedAt == postedAt.sort().reverse()
  }
}

void postMessageBy(User poster) {
  messageStore.insert(poster, "aaaa", now())
}

92 | Chapter 7: Idiomatic Spock



void postMessageAt(int minutesAgo) {
  def timestamp = now().minus(minutesAgo, MINUTES)
  messageStore.insert(user, "aaaaa", timestamp)
}

User newFollowedUser(String username) {
  def newUser = newUser(username)
  followingStore.follow(user, newUser)
  return newUser
}

User newUser(String username) {
  userStore.insert(username)
}

We’ve now defined specialized helper methods for creating a new user, creating and
following a new user, inserting a message posted by a particular user, and posting a
message at a specific time. Each feature method can then conveniently set up only the
data it cares about without having to specify unnecessary detail. The feature methods
are no longer coupled by shared fixtures.

Sharing Methods by Using import static
The helper methods we’ve defined could easily be shared with other specifications.
Although we could share methods by defining an abstract base specification class and
extending that, it’s probably more appropriate to mix in the fixture-creating behavior
we’re defining. The most straightforward way to share methods is by defining them as
static methods in a new class and then use import static to include them in the
specification classes, as demonstrated here:

class Fixtures {
  static void postMessageBy(MessageStore messageStore, User poster) {
    messageStore.insert(poster, "aaaa", Instant.now())
  }

  static void postMessageAt(MessageStore messageStore,
                          User poster,
                          int minutesAgo) {
    def timestamp = Instant.now().minus(minutesAgo, ChronoUnit.MINUTES)
    messageStore.insert(poster, "aaaaa", timestamp)
  }

  static User followNewUser(UserStore userStore,
                          FollowingStore followingStore,
                          User user,
                          String username) {
    def newUser = newUser(userStore, username)
    followingStore.follow(user, newUser)
    return newUser

Well-Factored Specifications | 93



  }

  static User newUser(UserStore userStore, String username) {
    userStore.insert(username)
  }
}

Unfortunately, because static methods in classes cannot share state via properties, we
are forced to pass more parameters to the fixture methods than we did when they
were members of the specification class itself.

Sharing Methods with Groovy Traits
Groovy 2.3 introduced traits, allowing multiple inheritance in the style of Scala. Traits
are like interfaces in that a class can implement many traits. However, like the inter‐
faces in Java 8, they can also contain nonabstract methods. Unlike Java 8 interfaces,
traits can also be stateful and have their own fields.

Traits cannot have constructors, so any fields needed in the trait will need to be pro‐
vided another way. Recall that properties in Groovy—defined like fields with no visi‐
bility keyword—have implied getter and setter methods. We can define abstract getter
methods in our trait that will automatically be implemented by the properties already
declared in the specification class:

trait FixturesTrait {

  abstract MessageStore getMessageStore() 
  abstract UserStore getUserStore()

  abstract FollowingStore getFollowingStore()

  abstract User getUser()

  void postMessageBy(User poster) {
    messageStore.insert(poster, "aaaa", Instant.now())
  }

  void postMessageAt(int minutesAgo) {
    def timestamp = Instant.now().minus(minutesAgo, ChronoUnit.MINUTES)
    messageStore.insert(user, "aaaaa", timestamp)
  }

  User followNewUser(String username) {
    def newUser = newUser(username)
    followingStore.follow(user, newUser)
    return newUser
  }

  User newUser(String username) {
    userStore.insert(username)
  }

94 | Chapter 7: Idiomatic Spock



  List<Message> getTimeline() {
    messageStore.timeline(user)
  }
}

The trait defines abstract getter methods for the fields it will need that are imple‐
mented in the specification class by the fields we have already seen.

One inconvenient feature of traits is that the abstract getter methods defined in the
trait cannot be implemented with @Shared fields due to the way Spock transforms the
Java bytecode. Depending on your specification classes, this may or may not be a
problem. Delegates have no such restriction and do work with @Shared fields.

Because they can encapsulate state, traits are more useful than static helper methods.
However, having to define abstract methods introduces quite a lot of boilerplate.

Sharing Methods with Delegation
Another option instead of using traits is to declare the fixture methods in a delegate
class that the specification initializes once:

@Delegate FixturesDelegate fixtures 

def setup() {
  fixtures = new FixturesDelegate(
    messageStore,
    userStore,
    followingStore,
    user
  )
}

The delegate is created as a property of the specification class and annotated with
@Delegate.

@TupleConstructor

class FixturesDelegate {

  final MessageStore messageStore 
  final UserStore userStore
  final FollowingStore followingStore
  final User user

  void postMessageBy(User poster) {
    messageStore.insert(poster, "aaaa", Instant.now())
  }

  void postMessageBy(String posterName) {
    postMessageBy(userStore.find(posterName))

Well-Factored Specifications | 95



  }

  void postMessageAt(int minutesAgo) {
    def timestamp = Instant.now().minus(minutesAgo, ChronoUnit.MINUTES)
    messageStore.insert(user, "aaaaa", timestamp)
  }

  User followNewUser(String username) {
    def newUser = newUser(username)
    followingStore.follow(user, newUser)
    return newUser
  }

  void followExistingUser(String username) {
    def userToFollow = userStore.find(username)
    if (!userToFollow) throw new IllegalStateException("No such user $username")
    followingStore.follow(user, userToFollow)
  }

  User newUser(String username) {
    userStore.insert(username)
  }

  // tag::get-timeline-fixture[]
  List<Message> getTimeline() {
    messageStore.timeline(user)
  }
  // end::get-timeline-fixture[]
}

The @TupleConstructor annotation will create a constructor that accepts a
parameter initializing each property in the class. Alternatively, you can just
declare a constructor.

Properties can (and I think should) be declared final because nothing in the dele‐
gate class or in the specification should reassign them.

You can think of delegation as a way to import instance methods of an object in much
the same way that import static imports static methods. Groovy’s @Delegate anno‐
tation intercepts any unknown method calls and redirects them to the delegate object.
Because the delegate is just a regular class with instance methods, it can share proper‐
ties between its methods.

A class can declare many delegates, and if there are any conflicts between their
declared methods, the first delegate with a matching method signature is used.

96 | Chapter 7: Idiomatic Spock



The Geb test framework uses @Delegate to provide specification
classes with convenient access to the page and browser objects.

Helper Methods and Assertions
Remember that implicit assertions are processed only directly in the body of a feature
method. It’s not a good idea to extract the entire assertion into a helper method.
Instead, extract the code required to derive the expected and/or actual values used in
the assertion and leave the Boolean expression in the body of the test itself.

In a couple of the examples shown earlier, we extracted a getTimeline() method
that’s used in assertions. For example:

timeline.size() == 2

The property timeline there references this helper method:

List<Message> getTimeline() {
  messageStore.timeline(user)
}

We could wrap the boolean condition in a method:

boolean timelineSizeIs(int expectedSize) {
  messageStore.timeline(user).size() == expectedSize
}

Because the helper method returns boolean it can be used as an assertion in a then:
block. But we lose all of the diagnostics provided by Spock’s power assert. If the size is
incorrect, the test result will not include the actual size report, only that the method
returned false.

We could create a helper method that encapsulates the assertion.

We regain diagnostic information if we explicitly use the assert keyword, such as
this:

void timelineSizeIs(int expectedSize) {
  assert messageStore.timeline(user).size() == expectedSize
}

However, doing the assertion like this is not very flexible, because it allows us to make
only one specific assertion about the timeline.

Helper Methods and Mock Interactions
Although Spock’s mocks rely on a special syntax interpreted in the context of a then:
block, it is possible to set expectations for interactions in helper methods. To do so,

Well-Factored Specifications | 97



it’s necessary to call the helper in a closure passed to the interaction method. Let’s
take a look at an example from our earlier tests for the PersistentUser class that we
saw in Chapter 5.

void insertsMessageOnce(String text) {
  1 * dataStore.insert({ it.text == text }) 
}

def "posting a message inserts it to the database"() {
  when:
  user.post(messageText, now())

  then:
  interaction {
    insertsMessageOnce(messageText) 
  }

  where:
  messageText = "Fascinating!"
}

We define a helper method that performs a mock interaction check.

Calls to the method are wrapped in an interaction block that informs Spock it
needs to parse the mock expectation syntax within the method.

Comparing “Before” and “After” Values
A common case when writing tests is to compare a value after an action takes place to
the same value before the action took place. Although it’s possible to hardcode values
in many circumstances, comparing old and new values can assist in separating test
data from test logic.

If values are unpredictable, it’s not really possible to use hardcoded values. Even if
values are predictable, if they appear arbitrary, it can be more difficult for a reader to
understand the intent of the specification.

For example, perhaps we want to test that a newly posted message appears first in a
user’s timeline:

def "when new messages are posted they appear in the timeline"() {
  given:
  def followedUser = followNewUser("kirk")

  and:
  postMessageBy(followedUser)

  expect:
  timeline.size() == 1

98 | Chapter 7: Idiomatic Spock



  when:
  postMessageBy(followedUser)

  then:
  // tag::assertion-helper[]
  timeline.size() == 2
  // end::assertion-helper[]
}

Here we compare the size of the timeline before and after posting a second message.
This proves that the timeline becomes larger, but it doesn’t ensure that the newer
message appears first in the list. The postedAt timestamp of each message is unpre‐
dictable.

Sure, we could specify a relative or absolute timestamp for each message, but it’s not
really necessary. We can keep things simpler by just comparing the timestamps of the
first timeline message.

def "when new messages are posted they appear in the timeline"() {
  given:
  def followedUser = followNewUser("kirk")

  and:
  postMessageBy(followedUser)
  def oldSize = timeline.size()
  def oldTimestamp = timeline.first().postedAt

  when:
  postMessageBy(followedUser)

  then:
  timeline.size() == oldSize + 1
  timeline.first().postedAt > oldTimestamp
}

This specification looks very much like the typical approach we’d use in a JUnit test.
The “previous” values of the size of the message list and the timestamp of the first
message are stored in variables and then compared with the updated values later.

Spock provides a convenient way to apply exactly this pattern without having to
declare variables.

The old method can be used in a then: block. It takes a single expression parameter
and returns the value that expression had before the preceding when: block ran.

The old method does clarify assertions nicely, as shown here:

def "when new messages are posted they appear in the timeline"() {
  given:
  def followedUser = followNewUser("kirk")

  and:

Well-Factored Specifications | 99



  postMessageBy(followedUser)

  when:
  postMessageBy(followedUser)

  then:
  timeline.size() == old(timeline.size()) + 1
  timeline.first().postedAt > old(timeline.first().postedAt)
}

Now we’re no longer cluttering up the feature method with local variables, and the
relationship between the old and new values in the assertion is very clear.

The old method works with any type of value. It’s not limited to simple types or unit
tests. It’s possible to use old with Geb, for example, to get the previous content of an
element in the browser window.

The only restrictions are that old can be used only in a then: block and it cannot
refer to any local variable declared in or after the preceding when: block.

How Does old Work?

If you’re used to Java, the behavior of old probably seems remarka‐
bly odd.
In fact, it’s a fairly simple trick. At compile time, Spock replaces the
call to the old method with a variable assigned earlier in the
method.
The actual bytecode executed is almost identical to the previous
example in which we declared our own variables for storing the
previous values.
If you follow execution of a feature method with a debugger, it
becomes apparent what is going on. The debugger will jump ahead
to the old method and then back to the when: block.

The Grammar of Blocks
We’ve seen what the different blocks do, but there are no hard and fast rules enforcing
exactly how they are used. Good “grammar” makes a test easier to understand for the
reader and modify later when requirements change.

Let’s consider how blocks in a feature method can best communicate the intent of the
test.

100 | Chapter 7: Idiomatic Spock



Separation of Logic and Data with where: Blocks
A typical unit test contains both logic describing the behavior being verified and
example data used to trigger the behavior. In Spock, when you want to test a range of
different values for the example data, you use a where: block. This has a neat side
effect, though. With example data declared in the where: block and represented in
the body of the test by symbolic variable names, we have a clean separation between
the behavior verification logic and the example data we use to put that logic through
its paces.

The body of the test describes a general case and reads like a formal description of the
desired behavior.

In Chapter 6, we looked at using Spock’s where: block to repeatedly run a feature
method using different parameters. However, it’s also possible to use the where: block
even in tests that aren’t run iteratively.

Remember that assigning to a where: block parameter using = rather than << will
result in a parameter that is evaluated the same way for each iteration. If there are no
iterable parameters, straightforward assignments in the where: block still work. I find
them useful for separating example data from the logic of the feature method.

Let’s take another look at one of the tests from Chapter 3. Here, we are testing that
posts appear in reverse chronological order:

def "a user's posts are listed most recent first"() {
  when:
  user.post("It's life, Jim", now())
  user.post("but not as we know it", now())

  then:
  user.posts*.text == ["but not as we know it", "It's life, Jim"]
}

In this test, we see sample data mixed with the test logic. What’s worse, the sample
data is repeated. It would be fairly easy to break the test by making a mistake in one of
the literal strings of sample data. We can use a where: block to tidy this up:

def "a user's posts are listed most recent first"() {
  when:
  messages.each {
    user.post(it, now())
  }

  then:
  user.posts().text == messages.reverse()

  where:
  messages = ["It's life, Jim", "but not as we know it"]
}

The Grammar of Blocks | 101



Not only have we now removed the duplication, we have also separated the sample
data from the test logic. It’s actually clearer that we expect the messages to be listed in
reverse order because we’re explicitly reversing the messages list. The where: block
adds example data to drive the specification, but the when: and then: blocks deal
only with the general case. When the main part of the feature method is read without
the where: block, it reads as a pure logical description of the behavior being specified.

You might be asking why we couldn’t just set up sample data in a given: block. That’s
certainly possible, but in many cases the given: block is already doing things related
to the test logic. If we add sample data there, we’re no longer achieving the separation
from logic that using the where: block affords us.

Let’s revisit another example, this time from Chapter 4.

def "can retrieve a list of user objects"() {
  given:
  def timestamp = LocalDateTime.of(1966, 9, 8, 20, 0).toInstant(UTC)
  ["kirk", "spock"].each {
    handle.createStatement("""insert into user (username, registered)
                              values (?, ?)""")
          .bind(0, it)
          .bind(1, timestamp)
          .execute()
  }

  when:
  def users = dataStore.findAllUsers()

  then:
  with(users.toList()) {
    username == ["kirk", "spock"]
    registered.every {
      it == timestamp
    }
  }
}

Here, we’re inserting some records in the database before testing that data read by a
data access object (DAO) is correct. Again, there’s some repeated sample data in the
given: and then: blocks. We can remove that duplication, but the given: block also
contains the logic that writes the data to the database.

If we set up the sample data there, we’re compounding the detail of the sample data
itself (which is orthogonal to the logic of the test) with the fact that its existence in the
database drives the behavior we’re testing. By using the where: block, we clearly sepa‐
rate our sample data from the test logic:

def "can retrieve a list of user objects"() {
  given:
  usernames.each { 

102 | Chapter 7: Idiomatic Spock



    handle.createStatement("""insert into user (username, registered)
                              values (?, ?)""")
          .bind(0, it)
          .bind(1, timestamp) 
          .execute()
  }

  when:
  def users = userStore.findAllUsers()

  then:
  with(users.toList()) {
    username == usernames 
    registered.every {
      it == timestamp
    }
  }

  where:
  usernames = ["kirk", "spock"] 
  timestamp = LocalDateTime.of(1966, 9, 8, 20, 0).toInstant(UTC)
}

We provide a list in the where: block, but using the = operator rather than the <<
operator so that the feature method doesn’t repeat.

We iterate over the list of usernames and create a record in the database for each.

We use the other where: block parameter to assign a registration timestamp to
each user.

We use the where: block parameters again to assert the data returned by the
DAO is correct.

Of course, assignments in the where block can be mixed with data pipes and data
tables. Even if a feature method is iterating over a sample data set, if there are
unchanging bits of example data, consider extracting them to the where: block, as
well.

Using when/then or given/expect
We’ve talked about composing assertions, but we should also consider where they are
placed in the feature method.

Spock has two blocks that can contain implicit assertions—then: and expect:. Their
meaning is somewhat different if we think about the “grammar” of a specification.

A then: block naturally appears after some kind of action, such as the following:

The Grammar of Blocks | 103



• When a user posts a message, then it appears at the top of their timeline.
• When a user follows someone, then that person is sent a notification.
• When a user tries to follow someone they already follow, then an exception is

thrown.

However, its also possible to think of examples that don’t fit so neatly into the when/
then structure:

• When a user is not following anyone, then their timeline contains only their own
messages.

• When a user is logged out, then they cannot post messages.
• When a message contains an at sign (@) followed by a user’s name, then it is ren‐

dered as a link to that user’s profile.

You might think that all those sound reasonable, and indeed, it is of course possible to
construct feature methods with such a structure. For example:

def "a user who does not follow anyone sees only their own messages"() {
  when:
  def user = newUser("spock")
  3.times { postMessageBy(user) }
  def other = newUser("kirk")
  3.times { postMessageBy(other) }

  then:
  user.timeline().postedBy.every {
    it == user
  }
}

But think about the action or behavior being tested in each case. The when: block
should contain the action being tested. Are we testing creating users and posting
messages? No, we’re testing the algorithm that selects messages for the timeline. The
creation of users and messages is a precondition for the behavior we expect to see.
The test would read better as "given a user is not following anyone, expect that their
timeline contains only their own messages,” as demonstrated in the following:

def "a user who does not follow anyone sees only their own messages"() {
  given:
  def user = newUser("spock")
  3.times { postMessageBy(user) }
  def other = newUser("kirk")
  3.times { postMessageBy(other) }

  expect:
  user.timeline().postedBy.every {
    it == user

104 | Chapter 7: Idiomatic Spock



  }
}

This reads better. The given: block contains the preconditions that establish the con‐
text for the test. The expect: block contains an assertion of the behavior we should
see.

Separating Preconditions
We can go further and divide the two preconditions—the existence of the user whose
timeline we’ll be checking and the existence of another user whose messages we
should not see—into a given: and an and: block. We can even separate the test data
(the usernames) out to a where: block, as shown here:

def "a user who does not follow anyone sees only their own messages"() {
  given:
  def user = newUser(username)
  3.times { postMessageBy(user) }

  and:
  def other = newUser(otherUsername)
  3.times { postMessageBy(other) }

  expect:
  user.timeline().postedBy.every {
    it == user
  }

  where:
  username = "spock"
  otherUsername = "kirk"
}

This reads much better to me. Even without block labels, the intent of the test is very
clear. We have two clear and straightforward preconditions: a simple assertion and
some test data parameters that are neatly separate from the test logic.

Separating Preconditions from Actions
Let’s look at another of the when/then examples: "when a user tries to follow someone
they already follow, then an exception is thrown.”

We can begin with a specification like this:

def "a user cannot follow someone they already follow"() {
  when:
  def user = userStore.insert("spock")
  def other = userStore.insert("kirk")
  followingStore.follow(user, other)
  followingStore.follow(user, other)

The Grammar of Blocks | 105



  then:
  thrown UnableToExecuteStatementException
}

Again, think about what the action is that we’re testing. In this case, it’s that trying to
follow a user we’re already following is an error. In the feature method as it stands,
we’re conflating the preconditions—two users exist and one follows the other—from
the action we’re testing—trying to follow a user we’re already following raises an
exception.

This is a fairly common antipattern that can result in a feature method for which it’s
difficult to identify what the test is really about.

Our feature method becomes clearer if we separate the preconditions and keep the
when: block very focused on the cause of the effect we’re making an assertion about:

def "a user cannot follow someone they already follow"() {
  given:
  def user = userStore.insert("spock")
  def other = userStore.insert("kirk")
  followingStore.follow(user, other)

  when:
  followingStore.follow(user, other)

  then:
  thrown UnableToExecuteStatementException
}

We can further separate the two preconditions and parameterize the test data to keep
it distinct from the logic:

def "a user cannot follow someone they already follow"() {
  given:
  def user = userStore.insert(username)
  def other = userStore.insert(otherUsername)

  and:
  followingStore.follow(user, other)

  when:
  followingStore.follow(user, other)

  then:
  thrown UnableToExecuteStatementException

  where:
  username = "spock"
  otherUsername = "kirk"
}

106 | Chapter 7: Idiomatic Spock



A fairly useful rule of thumb is that declaring variables (other than a result type that
needs to be verified) is typically part of a precondition rather than a when: block. Like
any such heuristic, there are certainly exceptions, but it’s worth considering if you
find yourself with an overlong when: block.

Method Parameter Capture with Mocks
1. Chapter 5 demonstrates how to use parameter predicates on a mock or stub to

effectively assert that a method is invoked with a particular parameter or parame‐
ters. Sometimes, for more complex parameters, it’s nice to have more fine-
grained control than this mechanism affords. To get a good diagnostic of a
failure, what we really want is to "capture" the parameters sent to the method
and make individual assertions about them.

To show you what I mean, let’s consider a simple example. In Squawker, when a user
gets a new follower, we want to send the user an email notification. Let’s create a ser‐
vice interface that can send arbitrary messages to users:

public interface EmailSender {
  void send(User to, EmailMessage message);
}

The sendEmail method simply accepts the User to whom the email should go and a
Map containing the details of the message: subject, from address, and so on. Then, we’ll
create a class that will listen for an event raised when a new follower is added:

public class NewFollowerNotifier {

  private EmailSender emailSender; 

  @Subscribe 
  public void onNewFollower(NewFollowerEvent event) throws Exception {
    EmailMessage message = new EmailMessage( 
      "admin@squawker.io",
      "You have a new follower!",
      "new-follower",
      event.getNewFollower().getUsername()
    );
    emailSender.send(event.getUser(), message); 
  }

  public void setEmailSender(EmailSender emailSender) {
    this.emailSender = emailSender;
  }
}

The EmailSender is an injected dependency.

Method Parameter Capture with Mocks | 107



The onNewFollower method subscribes to an event.

The message will need a from address, a subject, a template name for the body,
and the username of the new follower.

Finally, the sendEmail method is called.

To test that the message details are passed correctly, we could simply use a map literal
as the parameter predicate:

@Subject notifier = new NewFollowerNotifier()

def "sends email to user when someone follows them"() {
  given:
  def emailSender = Mock(EmailSender)
  notifier.emailSender = emailSender 

  when:
  notifier.onNewFollower(event) 

  then:
  1 * emailSender.send(user1, new EmailMessage(
    "admin@squawker.io",
    "You have a new follower!",
    "new-follower",
    user2.username
  )) 

  where:
  user1 = new User("spock")
  user2 = new User("kirk")
  event = new NewFollowerEvent(user1, user2) 
}

In the where: block, we set up an event object that simply contains the two users:
the user spock and his new follower kirk.

We inject a mock EmailService into the notifier.

We send the event to notifier. There’s no need to use a real event bus here,
because we’re just testing how the NewFollowerNotifier interacts with the Email
Sender.

The then: block asserts that the sendEmail method is called using two precise
parameters: the user spock and a Map of message details.

108 | Chapter 7: Idiomatic Spock



This test certainly works but feels a bit overly strict. Maybe we don’t want to exactly
specify the subject, only that there is one. Using a map literal, we can’t exactly match
some properties and not others.

Using a Closure as a Parameter Predicate
Recall from Chapter 5 that you can use a closure as a parameter predicate on a mock
or stub. We could use a closure here to match more flexibly:

then:
1 * emailSender.send(user1, {
  it.from == "admin@squawker.io" &&
    it.subject ==~ /.+/ && 
    it.template == "new-follower" &&
    it.follower == user2.username
})

Now we’re able to use a regular expression to simply assert that the subject con‐
tains something.

Again, this works but is quite ugly. Notice that we have to chain all of the individual
conditions together using && because the closure must return a single Boolean value
rather than making a series of assertions.

Another problem is the diagnostic output when the mock interaction does not occur
as expected. If our NewFollowerNotifier mixes up its messages and sends a "__Wel
come to Squawker!__" email by mistake, this is what the output will look like:

Too few invocations for:

1 * emailSender.send(user1, {
      it.from == "admin@squawker.io" &&
        it.subject ==~ /.+/ &&
        it.template == "new-follower" &&
        it.follower == user2.username
    })   (0 invocations)

Unmatched invocations (ordered by similarity):

1 * emailSender.send(@spock, ['template':'welcome', 'follower':'spock',
'subject':'Welcome to Squawker!', 'from':'admin@squawker.io'])

The information we need is all there so that we can debug the problem, but it’s not
obvious at a glance what’s wrong. Also, remember that it’s the default toString
behavior of a Map that’s giving us enough detail to go on. If we were using a different
class to pass the message details, the diagnostics would be at the mercy of its
toString method.

Method Parameter Capture with Mocks | 109



Using Hamcrest for Parameter Predicates
Another approach would be to use a Hamcrest matcher in place of the parameter.
Hamcrest provides a library of matchers as static methods that you can import with
the following:

import static org.hamcrest.Matchers.*

then:
1 * emailSender.send(
  user1, 
  allOf( 
    hasProperty("from", equalTo("admin@squawker.io")), 
    hasProperty("subject"), 
    hasProperty("template", equalTo("new-follower")),
    hasProperty("follower", equalTo(user2.username))
  ))

Parameter literals can be mixed with matchers. Here, the to user is a literal.

The Hamcrest allOf matcher is used to compose other matchers.

The hasEntry matcher is used to assert that a key-value pair exists in a Map.

It’s possible to mix in a less strict assertion. Here, we’re ensuring a subject exists
but not validating its content.

Hamcrest matchers suffer some of the same problems as using closures, though. Pri‐
marily it’s not always easy to determine what’s wrong if a match fails. Diagnostic
information tends to depend on the quality of the toString implementation used by
the actual parameter value. Even here the failure message is not particularly easy to
decipher:

Too few invocations for:

1 * emailSender.send(
      user1,
      allOf(
        hasEntry("from", "admin@squawker.io"),
        hasKey("subject"),
        hasEntry("template", "new-follower"),
        hasEntry("follower", user2.username)
      ))   (0 invocations)

Unmatched invocations (ordered by similarity):

1 * emailSender.send(@spock, ['template':'new-follower', 'follower':'spock',
'subject':'You have a new follower!', 'from':'admin@squawker.io'])

110 | Chapter 7: Idiomatic Spock



Parameter Capture Using a Mock Responder
What would really be nice here is a way to make individual assertions about the con‐
tent of the second parameter to sendEmail in the then: block. Luckily, there is a way
to do it.

Remember that by using the >> operator, we can attach a return value to a mock
method call or—what we’ll do here—use a closure to provide a dummy implementa‐
tion called a “responder.” Remember also that Groovy closures close over a scope that
includes variables local to the declaration of the closure. We can put these two things
together to capture the sendMessage parameter like this:

def "sends email to user when someone follows them"() {
  given:
  def emailSender = Mock(EmailSender)
  notifier.emailSender = emailSender

  and:
  def message 

  when:
  notifier.onNewFollower(event)

  then:
  1 * emailSender.send(user1, _) >> { 
    message = it[1] 
  }

  and: 
  message.from == "admin@squawker.io"
  message.subject == "You have a new follower!"
  message.template == "new-follower"
  message.follower == user2.username

  where:
  user1 = new User("spock")
  user2 = new User("kirk")
  event = new NewFollowerEvent(user1, user2)
}

We create a local variable message that will be used to capture the mock call
parameter.

We no longer apply a predicate to the second parameter because we’ll be han‐
dling that separately. The _ wildcard means any parameter can be passed in that
position. Then, we use the >> operator to assign a closure as a dummy implemen‐
tation for the method.

Method Parameter Capture with Mocks | 111



The closure’s implicit parameter it is an array of all the parameters passed to the
method. So, index 1 is the second parameter to sendEmail. We assign that to the
message variable we declared earlier.

After we’ve validated that the mock was invoked, we can make assertions directly
on the captured parameter.

The code feels a lot less cluttered than when we were trying to cram four Boolean
conditions into an parameter predicate. Also, a failing test now gives us much better
output, as is illustrated here:

message.subject == "You have a new follower!"
|       |       |
|       |       false
|       |       18 differences (25% similarity)
|       |       (Welcom-)e (to---) (Squa-)w(k)er!
|       |       (You hav)e (a new) (follo)w(-)er!
|       Welcome to Squawker!
[template:welcome, follower:spock, subject:Welcome to Squawker!,
from:admin@squawker.io]

However, notice that we had to declare the message variable in the given: block.
That’s because Spock will do an early evaluation on the mock interaction, and the
variable won’t actually be in the closure’s scope unless it was declared before the
when: block. That might seem confusing and counterintuitive but remember that the
behavior specified in the interaction needs to actually happen in the when: block.

I don’t think the separation between the declaration of the message variable and the
mock interaction is very tidy. It feels like we need to add a comment to explain why
the message variable is declared there.

The proper use of comments is to compensate for our failure to express ourself
in code.

—Robert C. “Uncle Bob” Martin, Clean Code: A Handbook of Agile Software Crafts‐
manship [cleancode]

The ability to declare mock interactions in a then: block is not a requirement; it’s a
convenience that Spock provides so that tests can be written in a more readable order.
It’s acceptable to have the interaction defined in the given: block, as we would do
with a stub:

given:
def message
notifier.emailSender = Mock(EmailSender) { 
  1 * send(user1, _) >> { message = it[1] } 
}

when:

112 | Chapter 7: Idiomatic Spock



notifier.onNewFollower(event)

then:
message.from == "admin@squawker.io"
message.subject == "You have a new follower!"
message.template == "new-follower"
message.follower == user2.username

The Mock and Stub methods can accept a closure as a second parameter that is
used to declare interactions.

We’re declaring exactly the same interaction as before, but notice the mock vari‐
able is no longer required as the interaction is declared in the closure passed to
the Mock(Class, Closure) method that creates the mock.

We’ve removed the confusing separation between the declaration of message and the
interaction that initializes it. Generally, I much prefer declaring mock interactions in
a then: block, but I think the tradeoff in clarity is worth it here. We could also use a
stub rather than a mock because message will be assigned only if the sendEmail
method is called. In that case, a failure to call the method at all would be detected by
NullPointerException being thrown when we try to read any of the properties of
message. As ever, consider what will make for a clearer diagnostic in the event of a
failure. I don’t think a NullPointerException does a particularly good job of point‐
ing out the source of the error, so the mock should stay.

One small modification that might clarify things is to use explicit parameters in the
closure used as the mock responder, as we’ve done here:

given:
def message
notifier.emailSender = Mock(EmailSender) {
  1 * send(user1, _) >> { _, msg -> message = msg } 
}

Instead of using the implied parameter it, we’ve declared two explicit parame‐
ters. Because we’re not interested in the first, we can use Spock’s 0 wildcard to
ignore it.

If the uninitialized variable bothers you, it’s possible to capture the values by using a
container type instead. One obvious option is to use a map:

given:
def message = [:]
notifier.emailSender = Mock(EmailSender) {
  1 * send(user1, _) >> { _, EmailMessage msg -> message.putAll(msg.properties) }
}

It’s easy to imagine using a list to collect parameters from multiple calls to a mocked
method in a very similar way.

Method Parameter Capture with Mocks | 113



Java provides a class AtomicReference that’s ideal for this case. It’s simply a wrapper
around any type. The underlying value can be read and written in a concurrency-safe
manner. For typical parameter capture, we don’t need the thread-safety features, but
AtomicReference provides a neat container type that avoids the dangling uninitial‐
ized variable.

given:
def message = new AtomicReference<EmailMessage>()
notifier.emailSender = Mock(EmailSender) {
  1 * send(user1, _) >> { _, EmailMessage msg -> message.set(msg) }
}

Parameter capture is great if you need to verify multiple facets of a complex parame‐
ter passed to a collaborator. As with many techniques, I think it should be used spar‐
ingly. In many cases, there’s probably a better way to break up the test coverage so
that parameter capture is not necessary, but for cases like the example here, it’s a use‐
ful technique to know.

Can’t I Just Make Assertions in the Behavior Closure?
Yes, you can. And they will even fail and throw AssertionError. However, Spock’s
mocking framework catches errors thrown inside a result generator closure so that
the assertion failure will not cause the feature method to fail.

Good thing we always ensure our tests fail, right?

Also, I really don’t like placing raw assert keywords in Spock specifications. It doesn’t
feel like an idiomatic way to express the intent of the test.

We’ll see in “Asynchronous Parameter Capture” on page 146 how method parameter
capture can also be useful when dealing with interactions that happen asynchro‐
nously.

@Stepwise Specifications
As we’ve seen, a typical Spock specification should ideally have isolated feature meth‐
ods that do not affect one another. An instance of the Specification class is created
for each feature method to help avoid modifications to fields leaking between fea‐
tures. Theoretically, feature methods also can be run in any order. When using an
IDE, it’s possible to isolate a single feature method and run it without the others.

However, on very rare occasions it’s actually desirable to create a specification whose
feature methods are dependent on one another and need to run in order, and whose
changes to shared state are maintained.

114 | Chapter 7: Idiomatic Spock



One typical example of when you might want to do this is to mitigate slow-running
browser-based tests, particularly if a user needs to go through a long process in order
to get to the stage being tested. A checkout workflow in an online store might be a
good example of where you might want to optimize test-running time by verifying
several things at once during a single pass through the checkout.

Another is to test some step-by-step process in which each step is naturally interde‐
pendent, but the entire process is too complex to fit neatly into a single feature
method.

Spock accommodates this with the @Stepwise annotation. A Specification class
annotated with @Stepwise will run each of its feature methods in source order. If any
feature method fails, the subsequent ones are skipped on the assumption that the ini‐
tial conditions they rely upon are likely incorrect.

How to Use @Stepwise
Let’s look at a simple example based on the timeline specifications we’ve been using.
Instead of setting everything up anew for each feature method, we can test several
cases with the same fixtures using @Stepwise, as shown here:

@Stepwise
class TimelineSpec extends Specification {

  @Shared dbi = new DBI("jdbc:h2:mem:test")

  
  @Shared Handle handle
  @Shared UserStore userStore
  @Shared MessageStore messageStore
  @Shared FollowingStore followingStore
  @Shared User user

  def setupSpec() {
    dbi.registerArgumentFactory(new TimeTypesArgumentFactory())
    dbi.registerMapper(new TimeTypesMapperFactory())

    handle = dbi.open()

    userStore = handle.attach(UserStore)
    userStore.createUserTable()

    messageStore = handle.attach(MessageStore)
    messageStore.createMessageTable()

    followingStore = handle.attach(FollowingStore)
    followingStore.createFollowingTable()

    user = userStore.insert("khan")
  }

@Stepwise Specifications | 115



  def cleanupSpec() { 
    dbi.withHandle { handle ->
      handle.execute("drop table user if exists")
      handle.execute("drop table message if exists")
      handle.execute("drop table following if exists")
    }
  }

  @Delegate FixturesDelegate fixtures 

  def setup() {
    fixtures = new FixturesDelegate(
      messageStore,
      userStore,
      followingStore,
      user
    )
  }

  def followedUsername = "kirk"
  def otherUsername = "spock"

  def "a user's timeline contains posts from themselves and followed users"() {
    given:
    def followedUser = followNewUser(followedUsername)
    def otherUser = newUser(otherUsername)
    [user, followedUser, otherUser].each { poster ->
      2.times { postMessageBy(poster) }
    }

    expect:
    timeline.size() == 4
    !timeline.postedBy.username.contains(otherUsername)
  }

  def "when new messages are posted they appear in the timeline"() {
    when:
    postMessageBy(followedUsername) 

    then:
    timeline.size() == 5
    timeline.first().postedAt > old(timeline.first().postedAt)
  }

  def "after following a user their posts appear in the timeline"() {
    expect:
    !messageStore.postsBy(otherUsername).empty

    when:
    followExistingUser(otherUsername)

116 | Chapter 7: Idiomatic Spock



    then:
    timeline.size() > old(timeline.size())
    timeline.postedBy.username.contains(otherUsername)
  }
}

Because we’ll no longer be destroying data between features, any data we need
must set up only once using setupSpec.

Similarly, we’ll now delete data after all of the feature methods have completed by
using cleanupSpec rather than after each one using cleanup.

The @Delegate annotation cannot be used on @Shared fields, so the FixtureDele
gate still needs to be created in setup.

Data created in a previous feature method, such as the user posting a message
here, can be relied on to be present in subsequent ones.

Reading the feature methods carefully, you should be able to see that the second and
third rely on data created in the first. The first feature method sets up two additional
users and has them post some messages. The second feature tests that if one of those
users posts more messages, they appear in the timeline. The third tests that if we fol‐
low a user who has already posted messages, those messages will begin appearing in
the timeline.

Remember that setup and cleanup still run before and after each
feature method in a @Stepwise specification. If a cleanup method
(or @Autocleanup annotated field) has destructive side effects, it
might break subsequent feature methods.

Disadvantages of @Stepwise
Now you know how to use @Stepwise; the question is whether you should.

Deciding to use @Stepwise is always a compromise. You should not do it without rec‐
ognizing what is lost by having feature methods dependent on one another.

First, it’s an extreme case of a test with too many assertions. We looked at the problem
of assertions that fail-fast earlier in this chapter. A single feature method that contains
multiple assertion statements can result in you playing whack-a-mole with failures.
With a @Stepwise specification, the problem is even worse. Not only will multiple
assertions in a single feature method fail-fast, but the feature methods in the specifi‐
cation will fail-fast, too.

@Stepwise Specifications | 117



It can be frustrating to deal with failures in a @Stepwise specification because each
must be dealt with in turn, and fixing one might just move you on to the next error
rather than getting you to a passing suite of tests.

This is particularly true for the case in which @Stepwise is used to mitigate a slow-
running sequence of steps that would otherwise need to be repeated in each feature
method. The time spent correcting successive failures and rerunning can become
more of a burden than any inherent slowness of more isolated tests.

Another problem is that as systems evolve, tests that are coupled to one another are
likely to be more difficult to change. A change to an earlier feature method will have a
cascade effect on the subsequent ones in a @Stepwise specification, and it’s much
more likely you will need to make changes to downstream tests that are unrelated to
the behavior on which you’re actually trying to work.

The bottom line is that I don’t think you should never use @Stepwise, but certainly it
should be used only with justification and not as a matter of course.

Conditional Specifications
Like JUnit, Spock provides an @Ignore annotation that will cause the test runner to
skip a particular feature method or specification class. There is also an @IgnoreRest
that allows you to isolate a single feature method or specification class that should be
executed while the rest of the suite is skipped.

The intention is that these annotations should be used only transiently to isolate a
particular bit of functionality you’re working on. It’s definitely a bad sign if code with
@Ignore or @IgnoreRest annotations ends up in source control.

Marking Pending Features
The @PendingFeature annotation is a variant of @Ignore that was added in Spock 1.1.
Unlike with @Ignore, feature methods annotated with @PendingFeature are executed
with the expectation that they will fail. If a feature method annotated with @Pending
Feature actually passes, that is reported as an error.

This can be very useful when developing new functionality because, as we discussed
earlier, tests should pass only for the right reason. If a feature method passes before it
“should”—that is, before the functionality that ought to make it pass has been imple‐
mented—this means that the test is not correctly isolating the behavior it is validat‐
ing. If a subsequent change breaks the correct behavior, the test might not detect it.

118 | Chapter 7: Idiomatic Spock



Selectively Executing Tests
Sometimes, a test is valid only under certain conditions. There might be a variant
behavior on different operating systems, Java versions, or browsers, for example.

Spock provides two annotations that are useful in such cases: @IgnoreIf and
@Requires. @IgnoreIf evaluates a condition and will skip the annotated feature
method or specification class if the condition is true. @Requires is exactly the oppo‐
site: the annotated feature method or class will run only if the condition is true.

The conditions in these annotations are closures whose delegates have some special
properties that are typically useful in determining whether a test should be evaluated:

javaVersion

A floating-point value representing the Java version, for example 1.8.

os

The current operating system with subproperties for name, family, and version.

env

A Map of the current environment variables.

properties

The JVM system properties.

For example, you could skip certain tests if a particular environment variable is set.

@IgnoreIf({
  env.SKIP_INTEGRATION_TESTS == "yes"
})

When using the Geb browser-testing framework, you could skip a test that is known
to be unreliable in certain browsers, as demonstrated in the following:

@IgnoreIf({
  properties."geb.env" == "ie"
})

If your test suite includes a smoke test for a web application, you could skip it if there
is no internet connection available.

@Requires({
  available("http://spockframework.org/")
})

With the preceding example, it’s worth mentioning that it’s less than ideal if the con‐
ditional used in an @IgnoreIf or @Requires annotation is itself slow. For example,
checking whether a URL is available is probably reasonably quick in the case of a suc‐
cessful result but may take a few seconds to time-out if it fails. We can mitigate this by
ensuring the result of any repeated check is cached:

Conditional Specifications | 119



@Memoized
static boolean available(String url) {
  try {
    url.toURL().openConnection().with {
      connectTimeout = 1000
      connect()
    }
    true
  } catch (IOException e) {
    false
  }
}

The @Memoized annotation is part of the Groovy standard library and will cache the
results of a method call. A separate cache is maintained for each unique set of param‐
eters. In this case, that means each unique URL will be checked only once.

Automatically Cleaning Up Resources
Spock’s @AutoCleanup annotation allows you to declaratively release resources after
each test.

For example, our timeline specification could automatically close the Handle it uses
for connecting to the in-memory database. Instead of explicitly calling close() at the
end of the cleanup method:

Handle handle

def cleanup() {
  handle.execute("drop table user if exists")
  handle.execute("drop table message if exists")
  handle.execute("drop table following if exists")
  handle.close()
}

we can instead annotate the field with @AutoCleanup:

@AutoCleanup Handle handle

def cleanup() {
  handle.execute("drop table user if exists")
  handle.execute("drop table message if exists")
  handle.execute("drop table following if exists")
}

After the end of the cleanup method, any fields annotated with @AutoCleanup have
their close method called. If the field is in @Shared, cleanup happens after the clea
nupSpec method completes.

If the field uses a method named something other than close, you need to specify the
name in the value of the @AutoCleanup closure.

120 | Chapter 7: Idiomatic Spock



Documenting Specifications
Previously, I discussed how the strings attached to block labels in a feature method
are retained in the byte code and can be accessed by documentation tools.

In addition, Spock provides some annotations to aid in documenting specifications in
a manner accessible to tooling. Let’s take a look at them:

@Issue

The @Issue annotation is used to provide a link to your issue tracker that relates
to the feature method or specification class. Typically, you use this when a test is
written in response to a bug report, but you also can use it for new features, in
which case the annotation might well be placed on a specification class that tests
various aspects of the feature.

@Subject

The @Subject annotation indicates the unit under test. The examples we’ve seen
so far in this book have used @Subject liberally. The annotation helps readers to
understand the purpose of the test and could potentially be used by tools to pro‐
vide links to the documentation for the unit under test. The annotation can be
used in a couple of different ways:

1. On a field of the specification class or a local variable in a feature method,
the annotation indicates the “instance under test”; that is, the object whose
behavior is being verified.

2. On a specification class with a java.lang.Class parameter that indicates the
class whose behavior is being specified.

@Title

The @Title annotation is for attaching a natural language name to a specification
class. Feature methods in Spock can have natural language names, but the specifi‐
cation classes themselves must conform to typical Java class name restrictions.

@Narrative

Similar to the @Title annotation, @Narrative allows you to attach a long-form,
natural language description to the specification class.

Documenting Specifications | 121



The Spock Reports Extension
If you’re going to the trouble of writing nice feature method names and block labels
and using documentation annotations, it would be nice if they were used for some‐
thing. Luckily, there is a report-generation tool that takes all of the documentation
data stored in the byte code and uses it to generate a rich HTML test report.

To include Spock Reports in your project, just add the following to your build.gra
dle file:

repositories {
  jcenter()
}

dependencies {
  testCompile("com.athaydes:spock-reports:1.2.7") {
    transitive = false
  }
}

You can find more information at the Spock Reports repository.

We’ll also look at accessing the data from @Title and @Narrative annotations as well
as block descriptions from our own Spock extension in Chapter 10.

Summary
In this chapter, you hopefully learned a selection of tips and tricks that you can use to
write better specifications. Nothing is set in stone and you should exercise your own
judgment. I encourage you to at least consider readability and maintainability. A jum‐
bled, confusing test will bite you down the line when you need to change it or it
detects a regression. If the test is clear, concise, and provides good diagnostics, you’ll
be able to deal with things quickly. On the other hand, if you struggle to understand
the intent of the author (which can happen even if “the author” was you), it can be a
frustrating experience.

122 | Chapter 7: Idiomatic Spock

https://github.com/renatoathaydes/spock-reports


CHAPTER 8

Advanced where: Blocks

In Chapter 6, we saw how a Spock feature method can iterate over a data pipe defined
in the where: block. The examples in that chapter showed where: blocks that used
statically defined data and some using @Shared fields as data providers. In this chap‐
ter, we look at a couple of less typical examples of data providers backed by external
data: first a database and then a set of files output by a previous build step.

A Primary Key Verifier
I once implemented a test that confirmed that every table in our database schema had
a primary key defined. A couple of times, we had forgotten to do this when adding a
new table to the application and had experienced data integrity issues and perfor‐
mance degradation. We wanted a simple test that would catch this for us automati‐
cally; that is, whenever a new table was added, the test would check it automatically
without the need for anyone to inform it about the existence of the new table.

This was a great opportunity to use a dynamic data pipe in a Spock where: block.
Recall that data pipes can use any Iterable value as their source. In this case, we
want a list of the names of every table in the database.

This example uses a @Shared connection to a simple in-memory database and a Sche
maBuilder object that uses the connection to create the application’s database schema
for us. The precise details of the schema itself aren’t important for this discussion.
Assume that the SchemaBuilder.createSchema() method creates some tables, for‐
eign keys, and so on. The @AutoCleanup annotation will ensure the schema is
destroyed at the end of the specification.

123



class PrimaryKeySpec extends Specification {

  @Shared @AutoCleanup Connection connection 
  @Shared @AutoCleanup("destroySchema") SchemaBuilder schemaBuilder

  def setupSpec() { 
    Class.forName("org.h2.Driver")
    connection = DriverManager.getConnection("jdbc:h2:mem:test", "sa", "")

    schemaBuilder = new SchemaBuilder(connection)
    schemaBuilder.createSchema()
  }

  private Iterable<String> readTableNames() { 
    def list = []
    def tables = connection.metaData.getTables(
      null, null, "%", ["TABLE"] as String[]
    )
    try {
      while (tables.next()) {
        list << tables.getString(3)
      }
    } finally {
      tables.close()
    }
    list.asImmutable()
  }

  @Unroll
  def "the #tableName table has a primary key"() { 
    expect:
    keys.next() 

    cleanup:
    keys.close()

    where:
    tableName << readTableNames() 
    keys = connection.metaData.getPrimaryKeys(null, null, tableName) 
  }
}

The @AutoCleanup annotation ensures that the connection’s close method is
called at the end of the specification class without us having to do it explicitly in
cleanupSpec.

In the setupSpec method we establish the connection and create the database
schema.

We define a method that will retrieve the names of all the tables in the database.

124 | Chapter 8: Advanced where: Blocks



The method is used as the source for a data pipe in the where: block of a feature
method. If there were more than one such feature method, it would make sense
to use a @Shared field so that readTableNames is called only once.

Using the table name for the current iteration of the test we fetch the table’s pri‐
mary keys.

The @Unroll expression in the feature method name refers to the database table
name of the current iteration.

We assert that the ResultSet keys has at least one row. The test doesn’t care
about the details of the primary key, only that there is one.

Notice that the readTableNames method is used as the source for a data pipe using
the 0 operator so that the test will run once for each table in the database. The where
block also contains an assignment that fetches the primary keys of the table for the
current iteration of the test. The getPrimaryKeys method of DatabaseConnectionMe
taData is part of the standard JDBC API. It returns a java.sql.ResultSet contain‐
ing details of the primary key columns of the specified table.

This is a simple but very effective test. The real beauty of it is that no maintenance is
required; as tables are added to the application, they will be checked automatically
when the unit tests are run.

It’s easy to imagine a more complex version of this specification that checks for for‐
eign key definitions for relationships present in a set of ORM model classes or
indexes on the columns used by queries.

A Static Site Link Checker
JBake is a static site generator for the JVM. You can use it to write content in Mark‐
down, Asciidoc, or plain HTML that JBake then merges with layout templates to
build a static website. If we’re building such a static site, we might want to test that we
don’t have any broken links.

In this section, we’ll work up a Spock specification that can do just that. It will scrape
the generated content for HTML anchors and verify that their href attributes contain
valid URLs. Each link is tested with an individual iteration of a parameterized feature
method. As more links are added to the site, the specification will pick them up and
test them automatically.

Recall from Chapter 6 that a data pipe in a Spock where: block can be any Iterable
including the result of a method call.

A Static Site Link Checker | 125

http://jbake.org


JBake Configuration
There is a Gradle plugin that enables the building of a JBake site as part of an applica‐
tion build. This example uses that plugin to build the static site along with the Groovy
plugin to execute Spock tests.

The Gradle build looks like this:

buildscript {
  repositories {
    jcenter()
  }

  dependencies {
    classpath "me.champeau.gradle:jbake-gradle-plugin:0.2"
    classpath "org.freemarker:freemarker:2.3.22"
    classpath "org.asciidoctor:asciidoctor-java-integration:0.1.4"
  }
}

apply plugin: "groovy"
apply plugin: "me.champeau.jbake" 

dependencies {
  testCompile "org.spockframework:spock-core:1.1-groovy-2.4"
}

assemble.dependsOn jbake 

Here, we apply the JBake Gradle plugin.

This forces the assemble task to depend on the jbake task, which means that the
JBake site will be built before the tests run.

After that, the JBake site content is added to src/jbake and the specification class to
src/test/groovy. When the Gradle jbake task runs, the static site is built to build/
jbake. Here’s a diagram of the resulting files:

build/jbake
├── about.html
├── archive.html
├── blog
│   └── 2013
│       ├── first-post.html
│       ├── fourth-post.html
│       ├── second-post.html
│       └── third-post.html
├── css
│   ├── …
├── favicon.ico
├── feed.xml

126 | Chapter 8: Advanced where: Blocks



├── fonts
│   ├── …
├── index.html
├── js
│   ├── …
└── sitemap.xml

A Data Pipe Driven by a File
As a first step, the specification will verify external links from the site HTML files,
ignoring any internal links.

The specification uses a @Shared File object representing the root directory of the
JBake output. We’ll recursively read the contents of that directory in setupSpec, look‐
ing for HTML files. Each file is parsed, and any links it contains are stored in a collec‐
tion we can use as the source for the feature method’s data pipe. For the time being,
the test deals only with fully qualified URLs, most likely links to external websites. As
the chapter progresses, we’ll begin dealing with relative links, as well.

File.traverse()
traverse is a method Groovy adds to java.io.File that allows recursive traversal of
a directory subtree. The method accepts a closure that is called for by each file in the
subtree and passed that file as a parameter. Optionally, the files in the subtree can be
filtered. In the example that follows, the callback closure is invoked once for every file
below rootDir whose name matches the regular expression 0.

@Shared rootDir = new File("build/jbake")

@Shared Set<String> links = new HashSet<>() 

void setupSpec() {
  rootDir.traverse(nameFilter: ~/.*\.html/) { file ->

    $(file.text).find("a")*.attr("href").each { href -> 
      if (href.toURI().absolute) {
        links << href
      }
    }
  }
}

@Unroll("link to '#link' is valid")

def "site external links are valid"() {
  expect:

  Unirest.head(link).asBinary().status == HTTP_OK 

  where:

A Static Site Link Checker | 127



  link << links 
}

A @Shared Set will store URLs extracted from the HTML documents. A Set is
preferable to a List here so that multiple links to the same URL are tested only
once.

Jerry extracts all a[href] attributes from the document.

The @Unroll expression uses the href value being tested on the current iteration.

The where: block uses the @Shared field links as a data pipe.

The feature method performs a HEAD request on the URL and ensures it
receives a valid response.

Jerry
Jerry is a part of the Jodd library, a set of lightweight tools and utilities for Java. Jerry
is a component for HTML document parsing and manipulation that closely mirrors
the jQuery API. As such, the API is likely familiar to most developers who have done
any JavaScript development for browsers.

To make Jerry even more jQuery-like, I like to alias its factory method as $ with
import static jodd.jerry.Jerry.jerry as $.

The factory method accepts an HTML document string and returns a Jerry object,
which, like a jQuery object, is a wrapper for a collection of DOM nodes. Here’s a com‐
plete breakdown of the Jerry call in the LinkVerifierSpec class:

// Parse the HTML document returning a Jerry object that wraps the document
// root node.
$(file.text)
  // Find all <a> tags in the document.
  .find("a")
  // Use Groovy's spread operator to call Jerry's attr method on each node and
  // collect the results as a list.
  *.attr("href")
  // Use Groovy's `each` method on the list of href values.
  .each { href ->

128 | Chapter 8: Advanced where: Blocks

http://jodd.org/doc/jerry/
http://jodd.org


Unirest
Unirest is a simple HTTP client library available for a number of languages including
Java. Although it has some limitations—its configuration is static, so it’s not possible
to have multiple clients configured in different ways—for simple URL scraping of the
sort done by this specification, it’s extremely straightforward to use.

A Filtered Data Pipe
So far, LinkVerifierSpec is only dealing with external URLs, but it should really
check the internal links within the site, as well. Those will be relative URLs, but since
the entire site is static, the test can simply check for the presence of a correspond‐
ing .html file.

It would be possible to rewrite the existing test so that it made a different assertion for
absolute and relative URLs, making an HTTP HEAD request in the former case and
checking for a local file in the latter. However, it would make more sense to treat
those cases as two separate feature methods. In that case, the test will need to create
two different data pipes: one containing external absolute URLs and the other con‐
taining local file:// URLs.

// TODO: better way to supply this
@Shared rootDir = new File("build/jbake")
@Shared Set<URI> links = new HashSet<>() 

void setupSpec() {
  rootDir.traverse(nameFilter: ~/.*\.html/) { file ->
    $(file.text).find("a")*.attr("href").each { href ->
      if (href.toURI().absolute) {
        links << href.toURI()
      } else if (!href.startsWith("#")) { 
        links << new File(file.parentFile, href).toURI() 
      }
    }
  }
}

@Unroll("link to '#link' is valid")
def "site external links are valid"() {
  expect:
  Unirest.head(link.toString()).asBinary().status == HTTP_OK

  where:
  link << links.findAll { it.scheme == "http" } 
}

@Unroll("link to '#link' is valid")

A Static Site Link Checker | 129

http://unirest.io


def "site internal links are valid"() {
  expect:
  new File(link).exists() 

  where:
  link << links.findAll { it.scheme == "file" }
}

Each link is now represented as a java.net.URI instead of a string. URI objects
have an accessor method for their scheme, so it’s easy to distinguish HTTP URIs
from file URIs.

The test is ignoring fragment links within the same document. Those will need to
be handled another way.

When a relative URL is found, the setupSpec creates a file URI relative from the
directory of the file containing the link.

The original feature method now uses Groovy’s findAll(Closure) method to fil‐
ter the data pipe so that it deals only with http URIs.

A new feature method verifies file URIs by converting them back to
java.io.File instances and using the exists method.

Relative Filepaths
One problem with LinkVerifierSpec currently is that the URI for an internal link is
an absolute filepath, which is long and contains some irrelevant information that
would be useful to exclude from the test report. As illustrated in the following report,
the part of each filepath up to and including build/jbake is the same for each file
and will vary when the test is run on different computers:

Test Duration Result
link to file:/Users/rob/Development/site/build/jbake/ is valid 0s passed

link to file:/Users/rob/Development/site/build/jbake/about.html is valid 0s passed

link to file:/Users/rob/Development/site/build/jbake/archive.html is valid 0s passed

link to file:/Users/rob/Development/site/build/jbake/blog/2013/../../ is valid 0.001s passed

link to file:/Users/rob/Development/site/build/jbake/blog/2013/../../about.html is valid 0s passed

link to file:/Users/rob/Development/site/build/jbake/blog/2013/../../feed.xml is valid 0s passed

link to file:/Users/rob/Development/site/build/jbake/blog/2013/../../index.html is valid 0.001s passed

link to file:/Users/rob/Development/site/build/jbake/blog/2013/first-post.html is valid 0s passed

link to file:/Users/rob/Development/site/build/jbake/blog/2013/fourth-post.html is valid 0s passed

link to file:/Users/rob/Development/site/build/jbake/blog/2013/second-post.html is valid 0s passed

130 | Chapter 8: Advanced where: Blocks



Test Duration Result
link to file:/Users/rob/Development/site/build/jbake/blog/2013/third-post.html is valid 0s passed

link to file:/Users/rob/Development/site/build/jbake/feed.xml is valid 0s passed

link to file:/Users/rob/Development/site/build/jbake/index.html is valid 0s passed

link to http://example.org is valid 0.090s passed

link to http://getbootstrap.com/ is valid 0.220s passed

link to http://jbake.org is valid 0.021s passed

Although it makes sense to use an absolute file URI for the test so that it’s easy to
resolve correctly, it would be neater to shorten the form output in the @Unroll
expression so that it is relative to the root directory of the site. This is quite straight‐
forward to achieve with a where: block assignment.

Recall from Chapter 6 that where: block assignments can reference the current value
of a parameter assigned from a data pipe or data table. This is ideal for manipulating
the parameter values of the where: block. In the case of LinkVerifierSpec, we can
use an assignment to convert the absolute file URI in the link parameter to a relative
form.

@Unroll("link to '#relative' is valid")
def "site internal links are valid"() {
  expect:
  new File(link).exists()

  where:
  link << links.findAll { it.scheme == "file" }
  relative = link.toString() - rootDir.toURI().toString() 
}

The variable relative is assigned a relative form of link. The assignment is
reevaluated on every iteration, and thus will contain the relative version of the
link in the current iteration.

Groovy’s Minus Operator and Strings

The assignment of relative in the previous example uses the
minus operator on two strings. In Groovy, this will return a new
string, which is the left argument with the first occurrence of the
right argument removed. For example:

def rootDir = "file:/Users/rob/site/build/jbake/blog/"
def absolutePath =
  "file:/Users/rob/site/build/jbake/blog/2013/
  first-post.html"
assert absolutePath - rootDir ==
  "blog/2013/first-post.html"

A Static Site Link Checker | 131

http://example.org
http://getbootstrap.com/
http://jbake.org


The report now looks a lot better because we’ve removed the redundant directory
path from each filename:

Test Duration Result
link to '' is valid 0s passed

link to about.html is valid 0.001s passed

link to archive.html is valid 0s passed

link to blog/2013/../../ is valid 0s passed

link to blog/2013/../../about.html is valid 0s passed

link to blog/2013/../../feed.xml is valid 0s passed

link to blog/2013/../../index.html is valid 0s passed

link to blog/2013/first-post.html is valid 0s passed

link to blog/2013/fourth-post.html is valid 0s passed

link to blog/2013/second-post.html is valid 0s passed

link to blog/2013/third-post.html is valid 0s passed

link to feed.xml is valid 0s passed

link to http://example.org is valid 0.090s passed

link to http://getbootstrap.com/ is valid 0.190s passed

link to http://jbake.org is valid 0.025s passed

link to index.html is valid 0s passed

Summary
David St. Hubbins: It’s such a fine line between stupid, and uh…
Nigel Tufnel: Clever.
David St. Hubbins: Yeah, and clever.

—Spinal Tap

Spock’s where: block can be driven by data from all kinds of sources. We’ve seen
examples here of using database metadata read by using JDBC and HTML files read
from the filesystem. It’s easy to imagine specifications driven by spreadsheet data,
CSV files, rows in a database, data read over a network connection, and so on.

That being said, some of the most important characteristics of a good test are idem‐
potence (by which I mean that a test will always behave in the same way regardless of
when or how many times it is run or any other tests that might or might not run
alongside it) isolation, and speed. Don’t sacrifice those in order to do “clever” things
with where: blocks.

The database example in this chapter does not attempt to test a live production data‐
base. Instead, it loads the production schema to an in-memory H2 database and tests
it there. In the real-world project I worked on in which that test was used, that’s

132 | Chapter 8: Advanced where: Blocks

http://example.org
http://getbootstrap.com/
http://jbake.org


exactly what we did. The schema was loaded to an in-memory database by the Grails
database migration plugin. That means the test can execute fast and does not depend
on external systems running, network availability, or anything else.

The link validator example needs to be run after the JBake site is generated, but we’ve
made that as seamless as possible by configuring the Gradle build to do this for us.
The test depends only on local resources; it does not attempt to validate a deployed
version of the site. The only real external dependency is network availability and the
availability of any sites linked to from the JBake pages. This is a tradeoff—it’s not
ideal that we need to connect to real URLs on the internet, but there’s not a sensible
way to isolate the test from that requirement. It’s fine to make those kind of tradeoffs
when you understand the implications, and in this case it makes sense.

Exercise: Diagnostics for Bad Links
Currently LinkVerifierSpec does not produce great information when an invalid
link is found. The report will contain the invalid link URL but no information about
where the link was found. Adapt the specification so that it reports the file or files
where an invalid link occurred.

Exercise: Test Fragment Links
Extend LinkVerifierSpec so that it also tests fragment links within a document; for
example, <a href="#foo">Foo</a>.

Summary | 133

http://grails.org/plugin/database-migration
http://grails.org/plugin/database-migration




CHAPTER 9

Asynchronous Testing

One of the trickiest aspects of testing is dealing safely with asynchronous behavior;
that is, things that happen on a different thread from the one executing the test. If
handled badly, tests for off-thread behavior can be slow, brittle, or prone to leaking
state.

The fundamental problem when dealing with asynchronous behavior is that asser‐
tions need to be delayed until the other thread has completed its work. A naïve
approach is to simply sleep the main thread for long enough that other threads can
complete their work. But how long is long enough? Sleeping the thread tends to result
in tests that fail intermittently on different machines under different conditions or
run unnecessarily slowly because they sleep far longer than is typically necessary.

Other, better approaches are to either block or poll until the result of the off-thread
process is ready. Spock offers constructs that can help with both of those approaches.

Blocking Constructs
One simple and highly effective way to deal with asynchronous behavior is to use
some kind of blocking construct that allows the test to ensure the asynchronous
behavior has completed before making assertions about the result.

Spock has two blocking constructs in the spock.util.concurrent package that you
can use to capture values generated by asynchronous processes: BlockingVariable,
which captures a single value, and BlockingVariables (note the plural), which can
capture multiple values.

135



BlockingVariable
BlockingVariable is a little like Java’s AtomicReference. It is simply a container for a
single generically typed value with get and set methods. The difference from Atomi
cReference is that the get operation blocks until set has been called, presumably in
a different thread.

The typical use for BlockingVariable is to have the code under test call set some‐
where off the main thread while the Spock feature method calls get in its then:
block. Because the call to get blocks the feature method, execution will pause exactly
as long as necessary before making assertions about the value placed in the Blocking
Variable instance.

BlockingVariables
The BlockingVariables class is similar to BlockingVariable except that it is a con‐
tainer for many values rather than just one. It is basically a map whose get operation
blocks until set is called for the same key.

BlockingVariables awaits each key separately, so you can use it for scenarios with
more than one asynchronous action that might complete at different times.

Testing Nonblocking APIs by Using Callbacks
A typical use for BlockingVariable is to substitute for a callback parameter when
testing a nonblocking method.

Nonblocking Methods with Callbacks
Nonblocking methods are simply those that do not make the caller wait for a result,
which might take some time to generate.

Nonblocking methods that generate a result will typically either return a Future or
accept a callback parameter instead of having a return type.

A callback parameter is simply a function—for example, a Java single abstract method
(SAM) type or a Groovy closure—that will be invoked and passed the result of the
asynchronous operation when it is complete. The calling code does not then need to
wait for the completion of the method before moving on and potentially releasing the
thread. Such APIs are very common in JavaScript development and are becoming
more so in Java, particularly with the addition of lambdas and the java.util.func
tion package in Java 8.

Of course, callbacks are used not only by asynchronous, nonblocking methods. If
you’ve used Groovy’s each, collect, find, or any of the other common iterator

136 | Chapter 9: Asynchronous Testing



methods, you’re used to providing closures as callbacks. Although those methods are
not typically asynchronous, there’s nothing in the API that prevents them from being
implemented in a nonblocking way.

Let’s imagine that we decided to provide a nonblocking implementation of the Messa
geStore in Squawker. We can do so by simply wrapping nonblocking versions of the
API methods around the existing MessageStore using a delegate pattern, as demon‐
strated here:

public class AsyncMessageStore {

  private final MessageStore delegate; 
  private final ExecutorService executor; 

  public AsyncMessageStore(MessageStore delegate, ExecutorService executor) {
    this.delegate = delegate;
    this.executor = executor;
  }

  public void latestPostBy(String username, Consumer<Message> callback) { 
    executor.submit(() -> { 
      Message result = delegate.latestPostBy(username); 
      callback.accept(result); 
    });
  }
}

The asynchronous implementation simply wraps around a delegate instance of
the existing MessageStore.

The asynchronous methods will use an ExecutorService to do work off the
main thread.

An asynchronous implementation of latestPostBy accepts a callback parameter,
which is an instance of java.util.function.Consumer.

The method submits a lambda to the ExecutorService. Note that this is itself an
example of calling a method and passing a callback.

Inside the lambda we call the existing, blocking implementation of latestPostBy
to generate the result.

Finally, the result is passed to our callback parameter.

Testing Nonblocking APIs by Using Callbacks | 137



The existing implementation of latestPostBy returns a Message instance and there‐
fore must block until data is read from the database and the Message instance is con‐
structed and mapped to the retrieved data.

Our new asynchronous implementation is void; that is, it does not require the calling
code to wait for a result. Instead, as soon as a result is available, it passes it to the
Consumer parameter. The Consumer interface is simply a SAM type with a single
method accept that takes one parameter and does not return anything.

The invocation of the delegate’s latestPostBy method and the passing of the result to
the callback happen off the calling thread.

Nonblocking is great for performance-sensitive or high-throughput code, but when
testing it, we almost certainly want to block. In fact, if we try a naïve implementation
of a feature method for our new asynchronous latestPostBy implementation, it’s
easy to come up with something that appears to work but doesn’t:

def "retrieves the latest post by a user"() {
  given:
  userStore.insert(username).with { user ->
    user.post(messageText, now())
  }

  expect:
  asyncMessageStore.latestPostBy(username) {
    assert it.text == messageText 
  }

  where:
  username = "spock"
  messageText = "Fascinating!"
}

Here we attempt to assert that the result object is correct inside a closure passed
as the callback parameter to latestPostBy.

This test will appear to work but in fact doesn’t assert anything. Remember that the
new implementation of latestPostBy does not block the calling thread. Therefore,
there is a very good chance that the feature method will complete execution before
the callback is invoked.

138 | Chapter 9: Asynchronous Testing



Closures and SAM Types

You might have noticed that we used a Groovy closure as the call‐
back parameter to latestPostBy in the previous example when in
fact that method expects an instance of Consumer, which is a Java 8
SAM type.
Java’s SAM types are interfaces with a single abstract method. You
can implement them by using inline lambdas in Java 8 code. Simi‐
larly, Groovy closures will be automatically coerced to the correct
SAM type so long as the parameters of the closure match those in
the SAM type method.

Using BlockingVariable in a Callback
Instead of trying to make assertions directly in the context of the other thread, we can
use a BlockingVariable instance in our callback and then block until it receives the
result.

def "retrieves the latest post by a user"() {
  given:
  userStore.insert(username).with { user ->
    user.post(messageText, now())
  }

  when:
  def result = new BlockingVariable<Message>() 
  asyncMessageStore.latestPostBy(username) { message ->
    result.set(message) 
  }

  then:
  result.get().text == messageText 

  where:
  username = "spock"
  messageText = "Fascinating!"
}

We construct a BlockingVariable instance.

In the callback closure, we set the BlockingVariable value.

In the then: block, we can await the result and then make assertions as usual.

This is very straightforward and eliminates all the uncertainty about when the work
thread will complete.

Testing Nonblocking APIs by Using Callbacks | 139



Using a Reference to BlockingVariable.set as a Callback
In fact, we can go one step further and avoid the use of a closure literal. Remember
that the callback is an instance of Consumer—a SAM type with a void method that
takes one parameter. Well, BlockingVariable.set is also void and takes one param‐
eter!

We can use the Groovy .& operator to get a reference to the set method in much the
same way as the :: operator works in Java 8. The Groovy version predates the Java
one by several years, which is why the syntax doesn’t match:

when:
def callback = new BlockingVariable<Message>()
asyncMessageStore.latestPostBy(username, callback.&set)

then:
callback.get().text == messageText

This is a little neater and works in exactly the same way as before. We’ve simply avoi‐
ded a layer of indirection.

Awaiting Multiple Values with BlockingVariables
The BlockingVariable construct is great for dealing with a single value generated
asynchronously, but what about when we’re testing multiple values in a similar way?
Spock provides the class BlockingVariables (note the plural), which is effectively a
Map-like container whose get operation blocks until a corresponding set operation has
been performed.

Suppose that we implement a method latestPostsByFollowed on our AsyncMessa
geStore class. Given a user, it will fetch the latest message posted by each user they
follow and pass them to a callback. There’s no guarantee regarding the order in which
the messages are retrieved. Further, there’s no guarantee that they will all be retrieved
at the same time. The fact that the latest post by follower A is passed to the callback
does not mean the latest post by follower B has been retrieved yet.

A simple implementation might look like this:

public void latestPostsByFollowed(User user, Consumer<Message> callback) {
  user
    .following()
    .forEach(followed -> latestPostBy(followed.getUsername(), callback));
}

This implementation just repeatedly calls the asynchronous latestPostBy method
we defined earlier. There are other ways we could solve this, such as doing a single
join fetch, but this implementation will demonstrate multiple asynchronous invoca‐
tions of the callback parameter.

140 | Chapter 9: Asynchronous Testing



Here, we can’t use a single BlockingVariable, because the callback will be invoked
many times—once for each user followed. Instead, we can assign each message
retrieved to a key in a BlockingVariables object according to the username of the
poster. We know that there will be one message per user followed.

We can write a feature method that exercises the functionality like this:

def "can retrieve latest message by all followers"() {
  given:
  def user = userStore.insert(username)
  followedUsernames.each {
    def followed = userStore.insert(it)
    user.follow(followed)
    followed.post("Older message", now().minusSeconds(5))
    followed.post("Hi @$username from @$it", now())
  }

  expect:
  user.following*.username.containsAll(followedUsernames)

  when:
  def messages = new BlockingVariables() 
  asyncMessageStore.latestPostsByFollowed(user) { message ->
    messages[message.postedBy.username] = message 
  }

  then:
  followedUsernames.every {
    messages[it].text == "Hi @$username from @$it" 
  }

  where:
  username = "spock"
  followedUsernames = ["kirk", "bones", "sulu"]
}

We create a BlockingVariables instance to store the retrieved messages.

Passing a closure as the callback, we store each individual message in the Block
ingVariables instance keyed by the username of the poster.

Using Groovy’s every method, we assert that the latest message for each followed
user corresponds to what we expect.

The key feature is that messages[it] used in the assertion will block until a value has
been set under that key.

The assertion isn’t coupled to the mechanism used to retrieve the messages. It doesn’t
concern itself with the order in which the messages are passed to the callback.

Testing Nonblocking APIs by Using Callbacks | 141



Whether the messages are retrieved all at once or each in a separate thread, the fea‐
ture method will continue to work.

Improving diagnostics
One thing we’ve neglected in the assertion is that a failure is not going to produce a
very good diagnostic breakdown of the error.

If the callback is never invoked the assertion will fail, as illustrated here:

BlockingVariable.get() timed out after 1.00 seconds

However, if the assertion itself is faulty, the failure message is not very informative. A
small error in the assertion (see if you can spot it) will cause a failure:

followedUsernames.every {
  messages[it].text == "Hi @$username from $it"
}

But the failure message is not very helpful at all:

followedUsernames.every { messages[it].text == "Hi @$username from $it" }
|                 |
|                 false
[kirk, bones, sulu]

It’s not clear if the expectation is incorrect, if the retrieved message text is not what we
expected, or if we’ve simply attempted to read the wrong value from the message
object.

A good way to provide additional diagnostic information in assertion failures is
always to break down the top-level expression into additional steps. Here, we can
transform the list of usernames we’re interested in and the BlockingVariables object
into a map of usernames to message text:

then:
followedUsernames
  .collectEntries { [(it): messages[it].text] } 
  .every { it.value == "Hi @$username from $it.key" } 

The list of usernames is transformed to a map of each username to the message
text posted by that user.

The assertion can then operate on the map entries, which contain all of the infor‐
mation required.

If the assertion fails (that error is still present), we should have a much better chance
of spotting what the problem is. Here’s the assertion output now:

142 | Chapter 9: Asynchronous Testing



followedUsernames .collectEntries { [(it): messages[it].text] } .every { ... }
|                  |                                             |
[kirk, bones, sulu]|                                             false
                   [kirk:Hi @spock from @kirk, bones:Hi @spock from @bones, ...]

Don’t neglect assertion diagnostics even if they’re somewhat tricky to improve, as was
the case here.

Polling for Eventual State
An alternative approach to the use of blocking constructs to capture values generated
asynchronously is to poll for an expected result. Spock includes the PollingCondi
tions class in order to accommodate this approach.

The PollingConditions class provides two methods: within(double, Closure) and
eventually(Closure). Both methods return true if any assertions made within the
closure pass before the timeout expires. The within method requires a specified
timeout in seconds, whereas eventually uses the default timeout of the PollingCon
ditions object.

Let’s look at an alternate way to deal with the feature method we’ve been working on
using PollingConditions instead of BlockingVariables:

when:
def messages = [] 
asyncMessageStore.latestPostsByFollowed(user) { message ->
  messages << message
}

then:
def conditions = new PollingConditions() 
conditions.eventually {
  assert messages.text.containsAll(expectedMessages) 
}

where:
username = "spock"
followedUsernames = ["kirk", "bones", "sulu"]
expectedMessages = followedUsernames.collect {
  "Hi @$username from @$it".toString()
}

Instead of using a BlockingVariables instance, we’ll just store messages in a list.

We need to create an instance of PollingConditions. At this point, we could
specify the timeout, polling frequency, and so on, but the default—timeout after
one second, poll every tenth of a second—is fine.

Polling for Eventual State | 143



The eventually closure needs to contain assertion statements. Here, we’re check‐
ing that sooner or later all the messages we expect are received.

Within the closure it’s necessary to use the assert keyword. A
common mistake (one I frequently make) is to think PollingCondi
tions is evaluating Boolean statements in the same way as a then
block. This is not the case. Instead, it will execute the closure
repeatedly until either all the assertions pass or the timeout expires.

Using PollingConditions as a Delegate
If you’re using a PollingConditions instance in more than one feature method,
instead of declaring it as a local variable, you can declare it as a delegate of the specifi‐
cation class. This cuts down on the verbosity and is an elegant way to extend Spock’s
grammar.

First, declare the delegate field. It’s necessary for the type to be declared for the @Dele
gate annotation to work because it can’t infer the type from the assignment on the
righthand side of the expression:

@Delegate PollingConditions conditions = new PollingConditions()

Then, in the feature method itself, we can treat the methods of PollingConditions as
though they were methods of Specification:

then:
eventually {
  assert messages.text.containsAll(expectedMessages)
}

Removing the PollingConditions variable from the feature method reduces the clut‐
ter and could make the test easier to read.

If you have many specification classes that use PollingConditions, I’d even be
tempted to define a trait to import this extension.

trait Polling {
  @Delegate PollingConditions conditions = new PollingConditions()
}

Any specification classes can then declare extends Specification implements

Polling and do away with the need to declare its own PollingConditions delegate.

Asynchronous Interaction Testing
One of the limitations of Spock’s interaction testing syntax is that it doesn’t offer any
way to make assertions about interactions that happen off the main thread.

144 | Chapter 9: Asynchronous Testing



Let’s look at an example. Suppose that we want to automatically trigger an event any
time a user in Squawker follows another user. This will allow the application to do
things like send email or push a notification to a user’s mobile device. Obviously, the
event mechanism is not as time-sensitive as the actual updating of the database, so it’s
acceptable for the event to fire asynchronously. For example, the application could
use a database trigger that fires any time an insert is made to the table linking users to
followers, or a background process could poll for new data periodically.

To test such an asynchronous event, we want to register a mock event subscriber,
make one user follow another, and assert that the mock subscriber is sent an event.
That sounds simple enough, but it turns out that standard interaction cardinality
assertions don’t work very well if the interaction happens asynchronously, as demon‐
strated in the following:

def executor = newSingleThreadExecutor()
def eventBus = new AsyncEventBus(executor) 

interface Subscriber {
  @Subscribe
  
  void onEvent(NewFollowerEvent event)
}

def "publishes event when a user follows another"() {
  given:
  def user1 = userStore.insert(username1)
  def user2 = userStore.insert(username2)

  and:
  def subscriber = Mock(Subscriber)
  eventBus.register(subscriber) 

  when:
  user2.follow(user1)

  then:
  1 * subscriber.onEvent(new NewFollowerEvent(user1, user2)) 

  where:
  username1 = "spock"
  username2 = "kirk"
}

We begin by declaring an eventBus, which is used to publish events.

Because EventBus requires annotated subscriber methods, we create a simple
interface.

A mock of that interface is registered with the EventBus.

Asynchronous Interaction Testing | 145



Finally, we assert that the subscriber is called with a matching event.

Some of the fine detail of the setup is omitted here; the eventBus will need to be
injected into the underlying data persistence layer so that it publishes events when
new followers are registered on a user. Attempting to use a Spock mock as a sub‐
scriber looks straightforward enough and would work if the event were triggered and
published on the main thread. However, if the event is triggered asynchronously or
published asynchronously, as it is in this example, the mock interaction is never
tracked.

The Guava Event Bus
Guava’s EventBus is a simple publish-subscribe event system. The EventBus class is
used to publish events. Subscribers do not need to implement any interface; instead,
they are identified by SAMs annotated with @Subscribe. This means that a single
class can contain multiple subscriber methods for different types of events. Subscrib‐
ers are registered with the event bus instance and will receive events that match the
declared parameter type of their subscriber methods.

We can take a naïve approach to fixing this by sleeping the thread until the interac‐
tion happens, as shown here:

  when:
  user2.follow(user1)
  
  and:
  sleep 1000 
  
  then:
  1 * subscriber.onEvent(new NewFollowerEvent(user1, user2))

A one second delay before evaluating the mock interaction might be sufficient
time for the asynchronous event to occur.

However, sleeping the thread is not a good solution for a number of reasons. Is one
second too long or too short? If it’s too long, by how much? How much time are we
actually wasting? If we have many such tests, we could be unnecessarily slowing down
the test suite a significant amount.

Asynchronous Parameter Capture
We looked at method parameter capture in “Method Parameter Capture with Mocks”
on page 107. The technique is also a very effective way to verify interactions that hap‐
pen off the main thread.

146 | Chapter 9: Asynchronous Testing



In the previous examples, we used simple variables or collections to capture parame‐
ters. When dealing with asynchronous interactions, we can use BlockingVariable
instead:

def "publishes event when a user follows another"() {
  given:
  def user1 = userStore.insert(username1)
  def user2 = userStore.insert(username2)

  and:
  def event = new BlockingVariable<NewFollowerEvent>() 
  def subscriber = Stub(Subscriber) {
    onEvent(_) >> { event.set(it[0]) } 
  }
  eventBus.register(subscriber)

  when:
  user2.follow(user1)

  then:
  with(event.get()) { 
    user == user1
    newFollower == user2
  }

  where:
  username1 = "spock"
  username2 = "kirk"
}

We create a BlockingVariable instance.

Instead of a mock subscriber, we use a stub that passes the event it receives to the
BlockingVariable’s set method.

The then block uses BlockingVariable.get to retrieve the value and make
assertions about it.

This is much neater because we don’t sleep unnecessarily. Instead, the test blocks until
the interaction has occurred and we can examine the parameter value passed to the
stub.

Asynchronous Interaction Testing | 147



BlockingVariable and Timeouts
Obviously we wouldn’t want the get operation on BlockingVariable to block indefi‐
nitely. By default it times out after one second, but you can reduce or extend that by
specifying a timeout in the constructor.

new BlockingVariable(3) 

new BlockingVariable(1, TimeUnit.MINUTES) 

The timeout can be specified in seconds…

…or any other time unit.

Extending BlockingVariable
We can make it even neater by just making the Subscriber type extend Blocking
Variable, as in the following:

static class AsyncSubscriber<T> extends BlockingVariable<T> {
  @Subscribe
  @Override
  void set(T event) {
    super.set(event)
  }
}

def "publishes event when a user follows another"() {
  given:
  def user1 = userStore.insert(username1)
  def user2 = userStore.insert(username2)

  and:
  def subscriber = new AsyncSubscriber<NewFollowerEvent>()
  eventBus.register(subscriber)

  when:
  user2.follow(user1)

  then:
  with(subscriber.get()) {
    user == user1
    newFollower == user2
  }

  where:
  username1 = "spock"
  username2 = "kirk"
}

148 | Chapter 9: Asynchronous Testing



Here, there’s no need to even use a stub because the EventBus will send the event to
our AsyncSubscriber’s annotated method directly.

Summary
Asynchronous testing remains a tricky proposition. It’s always wise to separate the
logic of your code from the asynchronous aspects as far as possible so that you can
test that logic without having to deal with the added complexity of asynchrony.

However, at some point you obviously need to test that you are handling multiple
threads and their shared data correctly. Spock’s blocking and polling constructs pro‐
vide a simple way to eliminate the uncertainty from dealing with asynchronous
behavior.

Hopefully, with these tools you’ll be able to eliminate the temptation to use
Thread.sleep in your specifications!

Summary | 149





CHAPTER 10

Extending Spock

Although Spock has a great selection of built-in features, it’s always useful to have
extensibility. In this chapter, we look at various ways by which you can extend the
default capabilities of your Spock specifications. We’ll look at composing assertions
with Hamcrest matchers, providing reusable functionality with JUnit rules and
Spock’s own extension mechanism.

The Message Timeline
We’ll refer back a couple of times in this chapter to a TimelineSpec specification class
that tests the database queries and object marshalling around retrieving a user’s time‐
line. We saw some variation on this earlier in the book, but let’s just revisit it quickly
here:

class TimelineSpec extends Specification {

  @Shared
  def dataSource = new JdbcDataSource(
    url: "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=false"
  )

  DBI dbi = new DBI(dataSource)
  @AutoCleanup Handle handle

  UserStore userStore
  MessageStore messageStore
  FollowingStore followingStore

  @Subject User user
  User followedUser
  User otherUser

151



  def setup() {
    dbi.registerArgumentFactory(new TimeTypesArgumentFactory())
    dbi.registerMapper(new TimeTypesMapperFactory())

    // tag::fixtures[]
    handle = dbi.open()

    userStore = handle.attach(UserStore)
    userStore.createUserTable()

    messageStore = handle.attach(MessageStore)
    messageStore.createMessageTable()

    followingStore = handle.attach(FollowingStore)
    followingStore.createFollowingTable()

    user = userStore.insert("khan")
    followedUser = userStore.insert("kirk")
    otherUser = userStore.insert("spock")
    user.follow(followedUser)

    def now = now()
    messageStore.insert(
      otherUser,
      "His pattern indicates two-dimensional thinking.",
      now.minus(6, MINUTES))
    messageStore.insert(
      user,
      "@kirk You're still alive, my old friend?",
      now.minus(5, MINUTES))
    messageStore.insert(
      followedUser,
      "@khan KHAAANNNN!",
      now.minus(4, MINUTES))
    messageStore.insert(
      followedUser,
      "@scotty I need warp speed in three minutes or we're all dead!",
      now.minus(3, MINUTES))
    messageStore.insert(
      otherUser, "@bones I'm sorry, Doctor, I have no time to explain this.",
      now.minus(2, MINUTES))
    messageStore.insert(
      user,
      "It is very cold in space!",
      now.minus(1, MINUTES))
    // end::fixtures[]
  }

  def cleanup() {
    dbi.withHandle { Handle handle ->
      handle.execute("delete from following")
      handle.execute("delete from message")

152 | Chapter 10: Extending Spock



      handle.execute("delete from user")
    }
  }

  def "a user's timeline does not contains posts by users they do not follow"() {
    when:
    def timeline = messageStore.timeline(user)

    then:
    !timeline.empty

    and:
    !timeline.postedBy.any {
      it == otherUser
    }
  }

  def "a user's timeline is ordered most recent first"() {
    when:
    def timeline = messageStore.timeline(user)

    then:
    !timeline.empty

    and:
    timeline.postedAt == timeline.postedAt.sort().reverse()
  }

  def "a user's timeline can contain multiple messages from each user"() {
    when:
    def timeline = messageStore.timeline(user)

    then:
    timeline.postedBy == [user, followedUser, followedUser, user]
  }
}

The specification sets up three users: the primary one whose timeline we’ll be testing,
another that the primary “follows,” and another that the primary does not follow. It
also creates two messages posted by each of those users. The timeline should include
the primary user’s messages and the messages of the user the primary follows but not
those of the third user.

The specification does some fairly complex setup and data management, which we’ll
clean up later. First, let’s look at the assertion made in that last feature method and see
if we can improve it.

The Message Timeline | 153



Hamcrest Matchers
Although I’d argue that Spock’s assertion syntax, with its simplicity, preference for
Boolean expressions over assertion methods, and excellent diagnostics is one of
Spock’s most compelling features, it’s not the only way to write assertions.

Hamcrest predates Spock by several years. It is a library for writing “matchers”—
functional types that determine if expected and actual values match according to
some criteria. Matchers are intended to make tests more readable and, crucially, to
provide better failure diagnostics. JUnit 4 introduced the assertThat method, which
relies on Hamcrest matchers.

Matchers are composable, so you can build up complex match conditions by combin‐
ing them. Hamcrest also bundles a selection of standard matcher implementations,
including equalTo(T) that checks for equality, not(Matcher<T>) that inverts condi‐
tions, allOf(Matcher<T>...) that aggregates matchers, hasProperty(String,

Matcher<T>) that can be used to traverse object properties, and so on.

Let’s look at that last feature method from the timeline specification. It’s ensuring that
a timeline can contain multiple messages from a given user. That’s the kind of error
that could happen if the SQL query is incorrectly de-duplicating rows from a join
fetch; for example:

def "a user's timeline can contain multiple messages from each user"() {
  when:
  def timeline = messageStore.timeline(user)

  then:
  timeline.postedBy == [user, followedUser, followedUser, user]
}

In the preceding example, we’re retrieving the timeline and then asserting that there
are two instances of both user and followedUser in the list of message posters.

In this example, Groovy’s implicit map operation is used to turn
the List<Message> variable timeline into a List<User> using the
postedBy property of each message in the list.
The expression timeline.postedBy is exactly equivalent to time
line.collect { it.postedBy }.

To make the test pass, however, it’s necessary to order the expected elements correctly.
This feels like it could be brittle. If the rules for ordering timelines change the test
could break, even though the behavior it’s testing is still correct.

154 | Chapter 10: Extending Spock



What can we do to remove this brittleness? A first thing to try might be to ensure that
the expected and actual lists are in a known order so that ordering becomes irrelevant
to the success of the assertion:

then:
timeline.postedBy.sort() == [user, user, followedUser, followedUser]

Unfortunately, we’re relying on the default sort order of the User class. If that
changes, the test could again give us a false negative.

Of course, we can sort both sides of the expression:

then:
timeline.postedBy.sort() == [user, user, followedUser, followedUser].sort()

This solution removes the brittleness, but it feels rather cluttered and inelegant. A
reader of the test might wonder why the values are being sorted.

Not only that, but this approach is only reliable if the items in the two lists implement
Comparable. Groovy’s sort method does not throw an exception if the list elements
are not sortable. However, neither does it have any defined behavior, so we can’t rely
on its results.

If we delve deep enough into the Groovy standard library, we dis‐
cover that if the elements are not Comparable, they are sorted
according to their hashCode values, but that’s not something on
which the correctness of the test should rely.

Instead of sorting, we can use another Groovy extension to Java’s Collection. The
countBy method takes a Closure<T> and turns a List<E> into a Map<T, Integer>,
for which the keys are the distinct values returned by the closure and the values are
the cardinality of those values.

That’s perhaps an overly formal explanation that makes it sound more complicated
that it actually is, so let’s look at the example:

then:
timeline.countBy { it.postedBy } == [(user): 2, (followedUser): 2]

The closure passed to countBy returns the postedBy property for each message, so we
end up with a Map<User, Integer> containing the cardinalities of each user.

This solution is much less brittle, but it requires good knowledge of Groovy, and
some people might be confused by the syntax.

Hamcrest Support in Spock
We can also use a Hamcrest matcher to make the assertion.

Hamcrest Matchers | 155



Spock supports making assertions with matchers via the HamcrestSupport class that
you can find in the spock.util.matcher package. It contains two static methods:

public static <T> void expect(T value, Matcher<? super T> matcher)
public static <T> void that(T value, Matcher<? super T> matcher)

The only difference between the two methods is their names—inside a then: block,
expect reads better; and inside an expect: block, that reads better.

Using Hamcrest support and one of the standard matchers from the hamcrest-all
library, we can write our assertion like this:

then:
HamcrestSupport.expect(
  timeline.postedBy,
  Matchers.containsInAnyOrder(user, user, followedUser, followedUser)
)

That’s very long-winded and Java-like, but by using static imports and removing
unnecessary braces, it’s much less verbose:

then:
expect timeline.postedBy, containsInAnyOrder(
  user, user, followedUser, followedUser
)

The assertion is now expressive—the containsInAnyOrder matcher name tells the
reader very clearly what is being verified—and is not prone to breaking due to
changes in the timeline ordering or the default sort order of User objects.

Spock’s assertion syntax means that Hamcrest matchers aren’t always, or even often,
necessary, but it’s handy to be able to use them when they add clarity.

Hamcrest and Spock Mocks

As we saw in Chapter 7, Hamcrest matchers can also be used as
predicates for parameters in a mock or stub interaction.

JUnit Rules
Rules are a reusable way to extend the @Before and @After semantics of JUnit tests.
Rules are simply fields in a test class with an annotation that instructs JUnit how the
rule fits in the test lifecycle. Rules annotated with @Rule can execute code before and
after each test method; rules annotated with @ClassRule can execute code before and
after a test class.

156 | Chapter 10: Extending Spock



You probably noticed that these phases correspond to Spock’s setup, cleanup, setup
Spec, and cleanupSpec phases, and indeed because Spock runs using JUnit’s test run‐
ner, JUnit rules are compatible with Spock specifications.

That opens up a variety of rules your tests can use. For example, JUnit’s Temporary
Folder rule is useful in tests that need to do filesystem IO.

Of course, you can write your own rules, as well.

Reusable Data Cleanup
In many of the specifications we’ve looked at so far, we’ve been careful to delete data
from the in-memory database in the cleanup method. Because of referential integrity
rules, the tests need to be careful to delete data in a particular order. Copy-and-paste
errors could mean test data leaking and hard-to-debug failures. Cleaning up data
seems an ideal candidate for some reusable code that we only need to write once.

Let’s take a closer look at the data management in our timeline specification.

We have three fields involved in the management of the data source:

@Shared
def dataSource = new JdbcDataSource(
  url: "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=false"
)

DBI dbi = new DBI(dataSource)
@AutoCleanup Handle handle

A @Shared in-memory database will persist between feature methods. A DBI bridges
the data source to JDBI and the Handle is used to provide connections for the DAOs.

The setup method creates fixture data:

handle = dbi.open()

userStore = handle.attach(UserStore)
userStore.createUserTable()

messageStore = handle.attach(MessageStore)
messageStore.createMessageTable()

followingStore = handle.attach(FollowingStore)
followingStore.createFollowingTable()

user = userStore.insert("khan")
followedUser = userStore.insert("kirk")
otherUser = userStore.insert("spock")
user.follow(followedUser)

def now = now()

JUnit Rules | 157



messageStore.insert(
  otherUser,
  "His pattern indicates two-dimensional thinking.",
  now.minus(6, MINUTES))
messageStore.insert(
  user,
  "@kirk You're still alive, my old friend?",
  now.minus(5, MINUTES))
messageStore.insert(
  followedUser,
  "@khan KHAAANNNN!",
  now.minus(4, MINUTES))
messageStore.insert(
  followedUser,
  "@scotty I need warp speed in three minutes or we're all dead!",
  now.minus(3, MINUTES))
messageStore.insert(
  otherUser, "@bones I'm sorry, Doctor, I have no time to explain this.",
  now.minus(2, MINUTES))
messageStore.insert(
  user,
  "It is very cold in space!",
  now.minus(1, MINUTES))

First, a handle is opened that maintains a dedicated database connection. The handle
is then used to create the userStore, messageStore, and followingStore DAOs and
ensure that the database tables they need are created.

The create...Table methods that set up the schema will be no-ops when called
again because they use create table if not exists... in their DDL commands.

Finally, setup inserts user and message fixtures. The fixtures will violate uniqueness
constraints if we do not clean them up after the first feature method.

At the end of each feature method, the data is torn down in the cleanup method.

def cleanup() {
  dbi.withHandle { Handle handle ->
    handle.execute("delete from following")
    handle.execute("delete from message")
    handle.execute("delete from user")
  }
}

Because in this specification we are sharing the in-memory database between all fea‐
ture methods, if the data is not cleaned up, it will leak between tests. In this case, that
will cause the setup method to fail because re-creating the same users will violate the
uniqueness constraints on the user table. The cleanup method simply deletes data
from the three tables that the specification uses.

158 | Chapter 10: Extending Spock



However, it’s important to note that the tables need to be cleaned up in this order (or
at least the user table must be cleaned up last). The following and message tables
have foreign keys referencing user, so trying to delete from user first would violate
referential integrity constraints.

This is a little error-prone. In a more complex scenario, it could be extremely frustrat‐
ing and time-consuming to identify exactly which tables need to be cleaned up, and
in what order.

Why Not Just Drop the Database?
The problems we’re seeing around data cleanup could be avoided here by simply not
using a @Shared database. If I were writing exactly this test for real, that’s what I’d do.

This example is simplified because what we’re really interested in here is the way rules
and extensions work in Spock.

However, don’t assume that dropping the database is always possible. Dropping an H2
in-memory database is cheap and fast. If you’re integration testing against a different
product, that might not be the case.

Alternatively, the database might be a single component of an application container
that itself is costly to re-create for every test. As we’ll see in Chapter 12, when writing
Spring integration tests, the database is managed by the Spring container and is
retained between tests (along with the entire application context). The techniques we
discuss in this chapter for cleaning up data are genuinely useful in that scenario.

Many specifications could conceivably require the same cleanup method, so this data
cleanup seems like an obvious candidate for reuse. Because JUnit rules can act after
each test method—or feature method when used with Spock—we can move the
cleanup logic to a rule and share it between specification classes.

To apply the rule, we simply remove the cleanup method and declare a field annota‐
ted with @Rule, as shown here:

@Rule TruncateTablesRule dataCleanup = new TruncateTablesRule(dbi)

Explicit Types for Rule Fields

You might have noticed that I’ve declared the rule type on the left‐
hand side of the expression even though it’s simply initialized with
a constructor. Normally, I would just use def because the type can
be inferred from the righthand side of the expression. However,
when using JUnit rules, it’s necessary to specify the type explicitly.

JUnit Rules | 159



To implement the rule itself, we need to implement JUnit’s TestRule interface, as fol‐
lows:

public class TruncateTablesRule implements TestRule {

  private final DBI dbi;

  public TruncateTablesRule(DBI dbi) {
    this.dbi = dbi;
  }

  @Override
  public Statement apply(final Statement base, Description description) { 
    return new Statement() { 
      @Override public void evaluate() throws Throwable {
        try {
          base.evaluate(); 
        } finally {
          truncateTables(); 
        }
      }
    };
  }

  private void truncateTables() {
    dbi.withHandle(handle -> {
      handle.execute("delete from following");
      handle.execute("delete from message");
      handle.execute("delete from user");
      return null;
    });
  }
}

TestRule has a single abstract method, apply, that we need to implement. This
method is passed a Statement that you can think of as a function parameter rep‐
resenting the feature method itself.

The method returns another Statement, which in this case simply wraps a try /
finally block around the invocation of the feature method.

The evaluate() method on Statement executes the feature method.

The finally block simply ensures that our cleanup routine runs regardless of
whether the feature method passed, failed, or threw an exception.

160 | Chapter 10: Extending Spock



Statements in Rules
JUnit rules are somewhat similar to Aspect-Oriented Programming (AOP) pointcuts
in that they modify the original behavior by proxying a call.

In this case, we’ve wrapped the original Statement object in another Statement, effec‐
tively wrapping a try block around it. It’s easy to imagine rules that do other things
with the original statement; for example:

• Allowing the feature method to pass even if certain types of exceptions are
thrown

• Conditionally returning the original statement or a no-op statement, meaning
that the feature method is skipped

• Evaluating the original statement more than once

Simplifying the Rule by Using ExternalResource
The pattern of wrapping the original statement passed to a rule in a try / finally
block is so common that JUnit provides a base class that we can extend to avoid deal‐
ing with Statement objects and anonymous inner classes. Instead of implementing
TestRule, we can extend ExternalResource:

public class TruncateTablesRule extends ExternalResource {

  private final DBI dbi;

  public TruncateTablesRule(DBI dbi) {
    this.dbi = dbi;
  }

  @Override protected void after() {
    dbi.withHandle(handle -> {
      handle.execute("delete from following");
      handle.execute("delete from message");
      handle.execute("delete from user");
      return null;
    });
  }
}

The ExternalResource base class has two methods, before() and after(), that are
no-ops by default. We don’t need to do anything before the feature method, so we
don’t need to override before(). Any logic in after() is executed in a finally block
after the original statement is evaluated.

JUnit Rules | 161



Making the Cleanup Logic Generic
So far, we have a reusable rule that cleans up some specific tables. That’s fine if we
always create the same set of tables in any specification. However, our original specifi‐
cation only created the three tables it needs. Other specifications might create more
or a completely different set of tables. When we get into the integration testing chap‐
ters later, we’ll be adding new tables, and it would be nice to be able to use the same
rule again.

Using database metadata available from a java.sql.Connection, it’s actually fairly
easy to write a function to delete data automatically. The function should find all
database tables and delete data from each in turn. If any table has exported foreign
keys, the related tables should be processed first recursively.

public class TruncateTablesRule extends ExternalResource {

  private final DBI dbi;

  public TruncateTablesRule(DBI dbi) {
    this.dbi = dbi;
  }

  @Override protected void after() {
    dbi.withHandle(handle -> {
      truncateTables(handle.getConnection());
      return null; 
    });
  }
}

The lambda returns null simply because it’s standing in for a non-void SAM
type—JDBI’s HandleCallback.

Implementing truncateTables(Connection) is left as an exercise for you to com‐
plete. However, after that’s been done, we have a highly reusable component that you
can use not just for a specific set of tables, but across the entire suite of specifications,
as well as in other projects.

I encourage you to try writing the implementation yourself. Test drive it. What issues
do you run into when testing a JUnit rule or extension? Does it make sense to imple‐
ment the truncateTables method as a separate component that you can test in isola‐
tion from its integration with the scope of the test lifecycle? Can you extend the rule
so that it works with other types of properties—a javax.sql.DataSource, for
example?

162 | Chapter 10: Extending Spock



You can use DatabaseMetaData.getTables to discover tables and
DatabaseMetaData.getExportedKeys to find exported foreign
keys. Armed with that information, you should be able to automat‐
ically work out the order to delete tables so that no foreign key con‐
straints are violated.

Spock Extensions
Spock specifications are not limited to using JUnit rules; Spock also has its own
extension mechanism with annotation-driven and global extensions.

Annotation-driven extensions are triggered by the presence of an annotation in the
specification class. Depending on the extension, the annotation might appear in the
specification class itself, a field, or method. Many of the features of Spock we’ve
looked at—for example, @Unroll, @Ignore, and @AutoCleanup—are implemented as
annotation-driven extensions.

Global extensions are attached to every specification if they are present on the class‐
path. Spring integration testing support is implemented as a global extension in the
spock-spring library that you’ll meet in Chapter 12. The integration that allows
Spock to use JUnit rules is also implemented as a global extension!

Data Cleanup as a Spock Extension
Instead of using a JUnit rule, we could implement our cleanup routine as an
annotation-driven extension.

Because the crucial truncateTables method requires a java.sql.Connection it
makes sense to apply an annotation to a field that can supply the connection. In the
case of our specification, that will be the DBI. The field in the specification will end up
looking like this:

@TruncateTables
DBI dbi = new DBI(dataSource)

We’ll need to build three components:

• The @TruncateTables annotation itself, obviously
• An extension class implementing IAnnotationDrivenExtension that has a call‐

back Spock will invoke when it finds our annotation on a field
• An interceptor implementing IMethodInterceptor that runs in the cleanup

phase of the test lifecycle and actually does the work of deleting data from tables

First, we need to define the annotation itself:

Spock Extensions | 163



@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.FIELD}) 
@ExtensionAnnotation(TruncateTablesExtension.class) 
public @interface TruncateTables {
}

This particular annotation specifies that it’s valid only when applied to a field.

The @ExtensionAnnotation defines the extension class this annotation activates.

There’s not a whole lot to the annotation itself. The crucial thing is that it defines the
extension class that actually supplies the extension’s behavior.

Next, let’s look at the extension class that will discover the annotation and apply the
behavior to any feature methods.

In the org.spockframework.runtime.extension, Spock includes the interface IAnno
tationDrivenExtension<T extends Annotation>, which is the base for any
annotation-driven extensions. The interface defines the following methods:

void visitSpecAnnotation(T annotation, SpecInfo spec);
void visitFeatureAnnotation(T annotation, FeatureInfo feature);
void visitFixtureAnnotation(T annotation, MethodInfo fixtureMethod);
void visitFieldAnnotation(T annotation, FieldInfo field);
void visitSpec(SpecInfo spec);

The visitSpec method is called for any extension and provides hooks for intercept‐
ing the various phases of the specification lifecycle. The remaining methods are called
when Spock finds an annotated component.

In our case, we’ll only need to implement visitFieldAnnotation because our anno‐
tation can be applied only to fields.

In theory, multiple fields could be annotated with the same annota‐
tion, although it doesn’t really make sense in our case. Other anno‐
tations—for example, @AutoCleanup—work in exactly the same
way, and you can sensibly apply them to any number of fields.

public class TruncateTablesExtension
  extends AbstractAnnotationDrivenExtension<TruncateTables> { 

  @Override
  public void visitFieldAnnotation(TruncateTables annotation, FieldInfo field) {
    SpecInfo spec = field.getParent(); 
    spec.addCleanupInterceptor(new TruncateTablesInterceptor(field));
  }
}

164 | Chapter 10: Extending Spock



We extend AbstractAnnotationDrivenExtension, which provides default imple‐
mentations of all the callback methods we don’t need, so our implementation
needs to override only the one method.

The parent property of the field parameter is the specification itself, which has
the hooks we need to attach an interceptor to the cleanup phase.

The default implementations of the visit...Annotation methods
in AbstractAnnotationDrivenExtension throw an exception that
tells developers the annotation should not be used on that particu‐
lar element type. In our case, for example, it makes no sense to
annotate a fixture method (setup or cleanup), a feature method, or
the specification class itself.

As you can see, the extension class really just attaches the interceptor to the specifica‐
tion. The interceptor itself does the actual work.

Let’s take a look at that implementation now.

The interceptor implements Spock’s IMethodInterceptor interface, which has a sin‐
gle method intercept(IMethodInvocation):

public class TruncateTablesInterceptor implements IMethodInterceptor {

  private final FieldInfo field;

  TruncateTablesInterceptor(FieldInfo field) {
    this.field = field;
  }

  @Override
  public void intercept(IMethodInvocation invocation) throws Throwable {
    try {
      invocation.proceed(); 
    } finally {
      DBI dbi = (DBI) field.readValue(invocation.getInstance()); 
      if (dbi != null) {
        try (Connection connection = dbi.open().getConnection()) {
          truncateTables(connection);
        }
      }
    }
  }
}

The IMethodInvocation parameter in a method interceptor is similar to the
Statement parameter passed to a JUnit rule’s apply method: by calling pro
ceed(), the original method is run. You can do this either before or after any

Spock Extensions | 165



additional code is executed. In this example, we’re letting the original cleanup
proceed first before truncating database tables.

The interceptor accesses the actual value of the annotated field and can use that
to acquire a database connection and run the same truncateTables method that
we saw in the JUnit rule version.

As you can see, the interceptor implementation is conceptually quite similar to the
JUnit rule we created earlier. Remember, though, that the method we’re intercepting
here is not a feature method but the cleanup method.

At this point, we have a fully functional Spock extension.

Further Steps
The extension is straightforward to implement but is also pretty basic. We could defi‐
nitely take it further. Here are some ideas:

• The interceptor is always attached to the cleanup phase. If the annotated field is
also @Shared, the interceptor should probably be attached by using SpecInfo.add
CleanupSpecInterceptor.

• What happens if more than one field is annotated with @TruncateTables? This
likely won’t happen, but the extension doesn’t explicitly prevent it.

• Currently, the extension assumes that the annotated field will be an instance of
DBI, but we could make the extension more generally useful by supporting other
types such as javax.sql.DataSource, as well.

• We could also allow the annotation to be applied to a factory method for connec‐
tions rather than just to fields.

• Although the implementation so far doesn’t need to do so, the interceptor can
access the annotation itself from the field parameter. This means it is possible to
customize the extension behavior by using fields on the annotation class. For
example, we could provide a list of tables to ignore in cleanup (perhaps they con‐
tain static data that does not need to be torn down) or we could use the Boolean
properties of the annotation to ignore errors or log activity to the console.

Global Extensions
Unlike annotation-driven extensions, global extensions do not rely on annotated ele‐
ments in the specification. Instead, any global extensions found on the classpath are
applied to every specification.

166 | Chapter 10: Extending Spock



Global extensions are detected and loaded due to the existence of a file named
org.spockframework.runtime.extension.IGlobalExtension in META-INF/serv

ices. That file can be part of a .jar that bundles an extension or can exist under src/
test/resources in a standard Gradle project layout if the extension is local to the
project.

Let’s take a look at how a global extension works by writing our own. We’ll create an
extension that does some simple reporting by generating a Cucumber style .feature
file for each specification run. The file will contain a summary of the specification in
Cucumber’s Gherkin syntax.

Gherkin Syntax
Gherkin is a human-readable way to express specification requirements using a sim‐
ple structure and a few keywords. When used with Cucumber, specifications written
in Gherkin are mapped to executable implementations.

A Gherkin file begins with a Feature: line and some free-form descriptive text
describing the behavior being specified. It then has one or more scenarios beginning
with the Scenario: keyword. Each scenario is roughly analogous to a feature method
in Spock. Scenarios are comprised of lines starting with the keywords Given, When,
Then, or And, which should feel pretty familiar by now!

Scenarios are indented within features; Given, When, and Then lines are indented
within the scenario; and And lines are indented after the preceding line (unlike typical
Spock formatting).

This structure maps to Spock’s in a pretty straightforward way.

We’ll need to write two classes to implement our extension. First, the extension class
itself and then a listener that implements IRunListener, an interface that provides
callbacks invoked before and after specs, feature methods, and blocks.

Global extensions implement the IGlobalExtension interface, which is very simple:

public interface IGlobalExtension {
  void start();
  void visitSpec(SpecInfo spec);
  void stop();
}

The start and stop methods are callbacks for the start and end of a test suite. The
visitSpec method, like the one in IAnnotationDrivenExtension, is called for each
specification as it is run. For convenience, there is also a AbstractGlobalExtension
base class that provides no-op implementations of all the methods from the interface.

Global Extensions | 167



We can simply write a separate file for each spec executed so that we don’t need to
worry about implementing start and stop at this time. Our visitSpec implementa‐
tion will just create an output file and pass it to a listener that does the actual work of
generating the Gherkin syntax file:

public class GherkinExtension extends AbstractGlobalExtension {

  @Override public void visitSpec(SpecInfo spec) {
    File file = new File(format(
      "./build/reports/gherkin/%s.%s.feature",
      spec.getPackage(),
      spec.getName()
    ));

    try {
      file.getParentFile().mkdirs();
      Writer writer = new FileWriter(file);
      spec.addListener(new GherkinListener(writer));
    } catch (IOException e) {
      throw new ExtensionException("Error writing to file", e);
    }
  }
}

The listener implements Spock’s IRunListener interface, which provides callbacks for
the start and end of specifications, feature methods, iterations (when a feature
method uses a where: block), errors, and skipped features. We won’t need to imple‐
ment all of those, so again, we can extend a convenient base class AbstractRunLis
tener that provides no-op implementations for those methods that we don’t need:

class GherkinListener extends AbstractRunListener {

  private final Writer writer;

  GherkinListener(Writer writer) {
    this.writer = writer;
  }

  @Override public void beforeSpec(SpecInfo spec) { 
    writeFeature(spec);
    writeNarrative(spec);
  }

  @Override public void beforeFeature(FeatureInfo feature) { 
    writeScenario(feature);
    feature
      .getBlocks()
      .stream()
      .filter(this::isSupportedBlockType)
      .forEach(this::beforeBlock);
  }

168 | Chapter 10: Extending Spock



  @Override public void afterFeature(FeatureInfo feature) { 
    appendLine("");
  }

  @Override public void afterSpec(SpecInfo spec) { 
    try {
      writer.close();
    } catch (IOException e) {
      throw new ExtensionException("Cannot close writer", e);
    }
  }

  private void beforeBlock(BlockInfo block) {
    List<String> lines = block.getTexts(); 
    if (!lines.isEmpty()) {
      writeStep(block.getKind(), lines.get(0));
      lines
        .subList(1, lines.size())
        .forEach(this::writeAndStep);
    } else {
      writeStep(block.getKind(), "DESCRIPTION MISSING");
    }
  }

  private void writeFeature(SpecInfo spec) {
    appendLine("Feature: %s", spec.getName());
  }

  private void writeNarrative(SpecInfo spec) {
    String narrative = spec.getNarrative(); 
    if (narrative != null) {
      stream(narrative.split("\n"))
        .forEach(line -> appendLine("\t%s", line));
    }
    appendLine("");
  }

  private void writeScenario(FeatureInfo feature) {
    appendLine("\tScenario: %s", feature.getName());
  }

  private void writeStep(BlockKind blockKind, String description) {
    String keyword = keywordFor(blockKind);
    appendLine("\t\t%s %s", keyword, description);
  }

  private void writeAndStep(String description) {
    appendLine("\t\t\tAnd %s", description);
  }

  private boolean isSupportedBlockType(BlockInfo block) {

Global Extensions | 169



    List<BlockKind> supported = Arrays.asList(SETUP, WHEN, THEN, EXPECT);
    return supported.contains(block.getKind());
  }

  private String keywordFor(BlockKind block) {
    switch (block) {
      case SETUP:
        return "Given";
      case WHEN:
        return "When";
      case THEN:
      case EXPECT:
        return "Then";
      default:
        throw new IllegalArgumentException(
          format("Block kind %s not supported", block)
        );
    }
  }

  private void appendLine(String format, Object... args) {
    try {
      writer
        .append(format(format, args))
        .append("\n");
    } catch (IOException e) {
      throw new ExtensionException("Unable to write", e);
    }
  }
}

When the specification is started, we can extract the Gherkin Feature: line and a
description if a @Narrative annotation is present on the specification.

When a feature method starts, we can write the Gherkin Scenario: using the
feature method name and then iterate over the blocks. We’re actually interested
in only certain block types—Gherkin has no syntax equivalent to Spock’s
cleanup: or where: blocks so we’ll ignore those.

After each feature method, we insert a blank line.

After the specification is done, we simply close the writer.

BlockInfo.getTexts() returns a List<String> of any description added to the
block and those of any following and: blocks. Note that FeatureInfo.get
Blocks() does not return separate BlockInfo instances for and: blocks. If there
is no text attached to a block, the list returned by getTexts() might be empty.

170 | Chapter 10: Extending Spock



The SpecInfo.getNarrative() method will return the text supplied in a @Narra
tive annotation. If there is no such annotation, it will return null, so we need to
allow for that possibility.

Running the specification from earlier in the chapter with this extension in place pro‐
duces a TimelineSpec.feature file:

Feature: TimelineSpec

  Scenario: a user's timeline contains posts from themselves and followed users
    When DESCRIPTION MISSING
    Then DESCRIPTION MISSING

  Scenario: a user's timeline is ordered most recent first
    When DESCRIPTION MISSING
    Then DESCRIPTION MISSING

We can certainly improve the results by adding @Title and @Narrative annotations
and adding label text to the blocks in our feature methods, as demonstrated here:

@Title("Timeline")
@Narrative("""
A user can access a 'timeline' -- a reverse-chronologically ordered list
of messages posted by themselves and any users they follow.
Messages posted by users they do not follow should not appear in the timeline.
""")
class TimelineSpec extends Specification {

  // ...

  def "a user's timeline does not contains posts by users they do not follow"() {
    when: "a user retrieves their timeline"
    def timeline = messageStore.timeline(user)

    then: "it contains some messages"
    !timeline.empty

    and: "it does not contain any messages posted by users they do not follow"
    !timeline.postedBy.any {
      it == otherUser
    }
  }

  def "a user's timeline is ordered most recent first"() {
    when: "a user retrieves their timeline"
    def timeline = messageStore.timeline(user)

    then: "it contains some messages"
    !timeline.empty

    and: "the messages are ordered most recent first"
    timeline.postedAt == timeline.postedAt.sort().reverse()

Global Extensions | 171



  }

  def "a user's timeline can contain multiple messages from each user"() {
    when: "a user retrieves their timeline"
    def timeline = messageStore.timeline(user)

    then: "it may contain multiple messages from the same user"
    expect timeline.postedBy, containsInAnyOrder(
      user, user, followedUser, followedUser
    )
  }
}

After running the tests again, the Gherkin output looks a lot better:

Feature: Timeline
  A user can access a 'timeline'—a reverse-chronologically ordered list
  of messages posted by themselves and any users they follow.
  Messages posted by users they do not follow should not appear in the timeline.

  Scenario: a user's timeline contains posts from themselves and followed users
    When a user retrieves their timeline
    Then it contains some messages
      And it does not contain any messages posted by users they do not follow

  Scenario: a user's timeline is ordered most recent first
    When a user retrieves their timeline
    Then it contains some messages
      And the messages are ordered most recent first

Taking it Further
Try improving the Gherkin extension so that it can do the following:

• Write to a file or to the console as the tests run
• Handle tests that use the @Unroll annotation

Summary
You now have several options for moving beyond the core functionality of Spock
when writing your Spock specifications.

To make complex assertions while retaining readability, Hamcrest matchers can be
very helpful.

When it comes to sharing or abstracting away setup and cleanup code, you can use
JUnit rules. Numerous rules are available, and they work seamlessly with Spock.

172 | Chapter 10: Extending Spock



You should also now have a good headstart on writing your own annotation-driven
or global extensions. If you find yourself repeating or copy-pasting setup or cleanup
code between multiple specification classes, it’s well worth considering whether an
extension is appropriate.

Summary | 173





CHAPTER 11

Test-Driven Development:
The Diamond Kata

The Diamond Kata is a well-known test-driven development (TDD) exercise. In this
chapter, we work our way to a solution demonstrating the use of Spock in a TDD
workflow.

As we work through the exercise, we’ll always implement a test before implementing
the code that makes it pass. Thus, until we have implemented tests for every condi‐
tion and made them pass, we will have an incomplete solution—but with each test, it
will inch closer to completeness. As we add tests, we’ll see how we can simplify what
we need to assert at each step because of the conditions in place.

The Diamond Kata
In case you haven’t come across the Diamond Kata prior to this, let’s review what is
involved. The aim is to create a function that accepts a single character as input and
returns a matrix of characters in a specific pattern. The matrix should be a perfect
square whose dimensions depend on the input character. Starting at A, each row in
the pattern uses the next letter of the alphabet up to the argument character and then
back down to A. The letters in the matrix form a diamond. The first row should
include A, vertically centered surrounded by padding. The second row should include
two B characters in the center, separated by a single padding character.

175



Here are some examples of the pattern:

-A-
B-B
-A-

---A---
--B-B--
-C---C-
D-----D
-C---C-
--B-B--
---A---

The simplest form is the diamond of A.

A

As you can see, all diamonds exhibit vertical and horizontal, but not rotational,
symmetry.

Implementation
We’ll implement the diamond function in Java as a java.util.Function<Character,
List<String>>. Each row in the matrix is represented by a string element in the
result list; each column is represented by a character in that string.

Our implementation will accept only characters in the range A..Z, throwing Illegal
ArgumentException in all other cases.

First Step: The Pathological Case
When test-driving code, it makes sense to divide the requirements up into discrete
behaviors exhibited by the correct solution. Each behavior is tackled in order from
the simplest to the most complex.

Frequently, the simplest behaviors to start with are those that can be termed patholog‐
ical cases: what happens when the input or the preexisting state is invalid?

In the case of our Diamond function, we can start by asserting that characters outside
the valid range are rejected, as shown in the following code:

@Shared char aChar = 'A'
@Shared char zChar = 'Z'
@Shared Range<Character> validRange = aChar..zChar

@Unroll("rejects '#c'")
def "rejects characters outside the range A-Z"() {
  when:
  diamond.apply(c)

176 | Chapter 11: Test-Driven Development: The Diamond Kata



  then:
  thrown IllegalArgumentException

  where:
  c << Gen.character
          .filter { !validRange.contains(it) }
          .take(50) 
}

We use spock-genesis to generate up to 50 unique characters and test that each is
rejected.

The implementation that makes this first test pass couldn’t be simpler:

public List<String> apply(Character c) {
  throw new IllegalArgumentException(c + " is outside the valid range A..Z");
}

We just always throw an exception, regardless of what character is passed. Clearly this
is wrong, but our test should continue to pass as we implement the actual solution.

The Simplest Valid Diamond
Where should we go next? Looking at the algorithm we’re going to require, it’s clear
that we’re going to need some way to verify the leading and trailing padding and that
the correct character appears on each row. However, it seems that we have a very sim‐
ple special case that we could handle without having to think about anything very
much.

Diamond(A) is simply a single-element array with a single character string containing
A. It’s a case that stands alone because there is no padding to verify, and because it’s a
boundary condition, it might be tricky to implement the math we’ll use to divide up
the diamond without falling afoul of fencepost errors.

So in our next test, we’ll just check the special case of diamond(A) without diving into
any complex paramaterized tests.

def "The diamond of A is 'A'"() {
  expect:
  diamond.apply(aChar) == ["A"]
}

You can force this test to pass by returning the diamond(A) for any valid input char‐
acter:

public List<String> apply(Character c) {
  if (c < 'A' || c > 'Z') {
    throw new IllegalArgumentException(c + " is outside the valid range A..Z");
  } else {
    return singletonList("A"); 

Implementation | 177



  }
}

The static method java.util.Collections.singletonList returns a single ele‐
ment List.

The previous test for invalid input still passes, and now so does the new test for dia‐
mond(A).

Enforcing Invariants
It would be tedious to approach the solution by writing 26 individual tests for each
character from A to Z. At this point, we need to start thinking about how to really
implement a generic diamond solution. We probably don’t have much idea of where
to begin. It’s clear that there is an algorithm generating each line in the diamond, but
it’s probably not immediately obvious what it is. It’s also not immediately obvious
how we should write a single test that covers every aspect of every possible diamond
matrix. Even if we could figure out how to write such a test, it seems highly unlikely
that it would be very readable.

We can begin to break the problem down in the hopes that by implementing a step-
by-step process, the tests will guide us to a solution that works correctly. There are a
number of things we know to be true about any diamond. They are symmetrical,
their size is a function of the input character, and perhaps simplest, they are always
square.

That seems pretty straightforward to test. All we need to do is assert that the width
and the height of the matrix are equal. In other words, the length of the result list is
the same as the length of every string in the list, as demonstrated here:

@Shared char bChar = 'B'
@Shared Range<Character> testRange = bChar..zChar 

@Unroll
def "diamond('#c') is square"() {
  given:
  def result = diamond.apply(c)

  expect:
  result.every {
    it.length() == result.size()
  }

  where:
  c << testRange 
}

178 | Chapter 11: Test-Driven Development: The Diamond Kata



Because we already have a comprehensive test for diamond(A), there’s no need to
test it again. Instead, we’ll create a shared range that we can use to drive subse‐
quent tests.

Our test will assert that every possible diamond is square.

Running this, we might be surprised to find that it already passes. Remember that all
our diamond function does so far is return the diamond(A) matrix. We need to add
another test as a forcing function to make our test for “squareness” work against
some other sized matrices.

The size of a diamond is a pretty simple formula. It should be 2x + 1, where x is the
index of the argument character, treating 'A' as zero. Thus, diamond(B) should have
(2 × 1) + 1 = 3 rows; diamond(D) should have (2 × 3) + 1 = 7 rows; and so on.

Let’s implement that test next, which will force us to produce diamonds of varying
heights.

@Unroll("diamond(#c) should have #expectedHeight rows")
def "a diamond's height is determined by the character argument"() {
  given:
  def result = diamond.apply(c)

  expect:
  result.size() == expectedHeight

  where:
  c << testRange 
  expectedHeight = ((c - aChar) * 2) + 1 
}

We’ll use the same B..Z range as before because we know the height of dia‐
mond(A) is correct.

Calculating the expected height here allows us to use it in the @Unroll expres‐
sion. Note that Java’s char type is a scalar numeric, so we can perform math oper‐
ations that will promote the result to int.

Now, to make the new test pass, we can simply create a list of the correct size.

If we naïvely do that by just putting a single character in each list element, we’ll also
see that the “squareness” test begins to fail. Good!

Let’s fill out the implementation to make both tests pass:

public List<String> apply(Character c) {
  if (c < 'A' || c > 'Z') {
    throw new IllegalArgumentException(c + " is outside the valid range A..Z");
  } else {

Implementation | 179



    final int size = (2 * (c - 'A')) + 1; 
    List<String> result = new ArrayList<>();
    while (result.size() < size) {
      StringBuilder row = new StringBuilder();
      while (row.length() < size) {
        row.append('A'); 
      }
      result.add(row.toString());
    }
    return result;
  }
}

We calculate the desired size using our formula and then use loops to build the
width and height of the matrix to the same size.

Because none of our tests other than the test for diamond(A) are yet checking the
content of the rows, we’ll just fill each row with 'A' characters.

Matrix Content
We now have an implementation that produces matrices of the correct size. We
haven’t yet made any attempt to insert the correct characters into the pattern. We’ll
need to come up with a way to calculate the positions at which a character should
appear in each row.

We know that the first line should contain 'A' in the center, the second should con‐
tain two 'B' characters separated by a single space, the third should contain two 'C'
characters separated by three spaces, and so on. Each character should appear at four
coordinates:

topLeft

x: (length ÷ 2) – row, y: row, where length is the length of the row string and row
is the zero-indexed row number determined by subtracting the character from
the ASCII value of 'A'

topRight

x: (length – 1) – topLeft.x, y: row

bottomLeft

x: topLeft.x, y: (height – 1) – row

bottomRight

x: topRight.x, y: bottomLeft.y

180 | Chapter 11: Test-Driven Development: The Diamond Kata



In the center line, topLeft and bottomLeft will be the same coordinate as will top
Right and bottomRight. In the first line topLeft is the same as topRight. In the last
line bottomLeft is the same as bottomRight.

Let’s try to implement that with the following test:

@Unroll
def "the appropriate character appears in each row and column in diamond(#c)"() {
  given:
  def result = diamond.apply(c)

  expect:
  int lastIndex = result.size() - 1
  int midpoint = result.size().intdiv(2) 

  for (rowChar in aChar..c) { 
    int rowIndex = (rowChar - aChar) 

    def topLeft = [x: midpoint - rowIndex, y: rowIndex] 
    def topRight = [x: lastIndex - topLeft.x, y: rowIndex]
    def bottomLeft = [x: topLeft.x, y: lastIndex - rowIndex]
    def bottomRight = [x: topRight.x, y: bottomLeft.y]

    assert result[topLeft.y].charAt(topLeft.x) == rowChar 
    assert result[topRight.y].charAt(topRight.x) == rowChar
    assert result[bottomLeft.y].charAt(bottomLeft.x) == rowChar
    assert result[bottomRight.y].charAt(bottomRight.x) == rowChar
  }

  where:
  c << testRange
}

We need to know the last valid index and the midpoint of the matrix in order to
work out some of the coordinates, so we might as well calculate them once
upfront. Groovy’s intdiv method will discard the noninteger part of the result.

It’s generally not a good idea to use loops to make Spock assertions. We can look
at refactoring this later. For now, we want to test every character from 'A' to the
argument character and verify that it appears in the correct positions.

We work out in which row the character should first appear.

We calculate the x and y coordinates where we expect to find the character. There
will be some overlap on these coordinates for 'A' and c, but we won’t worry
about that for now.

Implementation | 181



Finally, we make some assertions that the expected character appears in each
coordinate. Because we’re inside a for loop, we need to use the assert keyword.

This test isn’t ideal. Making assertions in loops means that the test will fail-fast on the
first failing character, as we’ll see, if we run the test against our current implementa‐
tion. Because for the moment we’re filling the entire matrix with 'A' characters, the
test will fail when it gets to 'B':

Condition not satisfied:

result[topLeft.y].charAt(topLeft.x) == rowChar
|     ||       |  |      |       |  |  |
|     ||       1  A      |       1  |  B
|     |[x:1, y:1]        [x:1, y:1] false
|     AAAAA
[AAAAA, AAAAA, AAAAA, AAAAA, AAAAA]

Because of the complexity of the assertion we’re making, using every will ruin any
diagnostic information. We could replace the for loop with (aChar..c).every, but
an assertion failure wouldn’t reveal anything about what is wrong with the diamond.
We could try iterating over the rows of result instead, but it’s actually really difficult
to compose the relevant assertions because we need so many different values: the row
index, the expected character, and whether we’re past the midpoint of the matrix.

For now, we’ll acknowledge that this test could use some improvement, but it is at
least verifying things correctly, so we’ll move on to the implementation:

public List<String> apply(Character c) {
  if (c < 'A' || c > 'Z') {
    throw new IllegalArgumentException(c + " is outside the valid range A..Z");
  } else {
    final int size = (2 * (c - 'A')) + 1;

    char nextChar = 'A'; 
    boolean pastHalfWay = false; 

    List<String> result = new ArrayList<>();
    while (result.size() < size) {
      StringBuilder row = new StringBuilder();
      while (row.length() < size) {
        row.append(nextChar); 
      }
      result.add(row.toString());

      if (pastHalfWay) { 
        nextChar--;
      } else {
        nextChar++;
        if (nextChar == c) {
          pastHalfWay = true;

182 | Chapter 11: Test-Driven Development: The Diamond Kata



        }
      }
    }
    return result;
  }

We’ll need a variable to track the character we’re going to use to fill each row.

We also need to know when we’ve gone past the halfway point in the diamond,
because we’ll need to start reversing the order of the characters at that point.

Instead of appending a literal 'A' to each row, we now append our nextChar
value.

Finally, at the end of each row we increment or decrement nextChar to get it
ready for the next row. If nextChar is equal to the argument character, we know
we’re at the halfway point and need to decrement nextChar until it’s back down
to 'A' again.

Note that we haven’t actually attempted to put only the characters in the correct posi‐
tions in each row. For our test, it’s sufficient to fill each row with the desired character
given that nothing is yet asserting that the row is padded correctly. This means that
we’ll now be generating “diamonds” like this:

AAAAA
BBBBB
CCCCC
BBBBB
AAAAA

It’s definitely progress, but before we go any further, it’s probably time for some refac‐
toring.

Symmetry
In the latest test, we’re working out four coordinates for each character and verifying
all of them. In addition, in the implementation, we’re incrementing all the way up to c
and then decrementing all the way back down to 'A'. If we consider another invari‐
ant behavior of the diamond, this is completely unnecessary.

Diamonds are symmetrical both horizontally and vertically. If we simply build the top
half of the diamond and then fill the remaining rows with a mirror image of the top
half we will get the same result.

We can also save a lot of effort on testing multiple coordinates if we first write
another test that ensures the diamond is symmetrical. After we know that, we actually

Implementation | 183



only need to check character positions in one quadrant of the diamond because we
will know the other quadrants must be correct, too.

The test for symmetry is very easy to write:

@Unroll
def "diamond(#c) is symmetrical"() {
  given:
  def result = diamond.apply(c)

  expect:
  result == result.reverse() 

  and:
  result.every {
    it == it.reverse() 
  }

  where:
  c << testRange
}

Groovy decorates java.util.List with a reverse method that returns a copy of
the list in reverse order. Because list equality is dependent on every element being
equal, we can easily check for vertical symmetry by asserting that the diamond is
identical if its rows are reversed.

Similarly, Groovy also adds reverse to java.lang.String, so we can assert that
every row is horizontally symmetrical in exactly the same way.

Now that we know all diamonds are symmetrical, we can simplify the previous test to
only look at the one quadrant of the diamond:

@Unroll
def "the appropriate character appears in each row and column in diamond(#c)"() {
  given:
  def result = diamond.apply(c)

  and:
  int midpoint = result.size().intdiv(2)

  expect:
  for (rowChar in aChar..c) {
    int y = (rowChar - aChar)
    int x = midpoint - y
    assert result[y].charAt(x) == rowChar
  }

  where:
  c << testRange
}

184 | Chapter 11: Test-Driven Development: The Diamond Kata



It’s remarkable how much we are able to simplify and clarify this test now that the
symmetry is handled separately. Instead of four separate coordinates, we need only
one.

Most important, if we try running this improved test against the previous iteration of
the diamond function, the assertion failure gives a very good breakdown of what is
wrong:

Condition not satisfied:

result[y].charAt(x) == rowChar
|     ||  |      |  |  |
|     |1  A      1  |  B
|     AAAAA         false
[AAAAA, AAAAA, AAAAA, AAAAA, AAAAA]

We’ve taken advantage of the symmetry of the diamond pattern in the tests; now, it’s
time to do so in the implementation itself:

public List<String> apply(Character c) {
  if (c < 'A' || c > 'Z') {
    throw new IllegalArgumentException(c + " is outside the valid range A..Z");
  } else {
    final int size = (2 * (c - 'A')) + 1;

    List<String> result = new ArrayList<>();
    for (char nextChar = 'A'; nextChar <= c; nextChar++) { 
      StringBuilder row = new StringBuilder();
      while (row.length() < size) {
        row.append(nextChar);
      }
      result.add(row.toString());
    }

    
    final int index = result.size();
    for (int i = 0; i < (index - 1); i++) {
      result.add(index, result.get(i));
    }

    return result;
  }
}

Instead of looping while the number of rows is less than the desired size, we can
iterate from 'A' up to the argument character. We’ve removed a couple of local
variables including the Boolean that tracked whether we should increment or
decrement the character at the end of the loop. The loop now builds the rows
only up to the halfway mark.

Implementation | 185



After the top half of the diamond is built, we simply mirror all but the last row.

There are a number of ways to approach the vertical mirroring, and it doesn’t particu‐
larly matter exactly how you do it. This implementation definitely looks more
straightforward than the previous one. We haven’t actually pushed the solution any
further, but we’ve clarified the tests and simplified the in-progress solution.

Eliminating the Assertion Loop
In the previous test that deals with validating the characters in one quadrant of the
diamond, we used a for loop with a nested assert, which is not very idiomatic Spock
style. Assertion loops are not ideal for a couple of reasons. First, it’s very easy to forget
to use the assert keyword and inadvertently write a test that doesn’t really verify any‐
thing. Second, the test will fail-fast on an earlier iteration of the loop without running
the subsequent ones.

We can eliminate the loop by moving the iteration of the character we’re looking for
into the where block. In effect, we want a nested iteration. Currently, we iterate over
the characters B through Z, which are the valid parameters for the diamond function
(omitting the simple case of A). However, for each of those characters, we also want to
iterate from A to the character and run the feature method once for that individual
character.

We need two parameters in the where block: the character c as we have now, and
rowChar. The values of c and rowChar will be the same for numerous iterations of the
feature method, but we want to test each unique combination.

If we draw this out as a data table, it’s simple enough:

c   | rowChar
'B' | 'A'
'B' | 'B'
'C' | 'A'
'C' | 'B'
'C' | 'D'
'D' | 'A'
'D' | 'B'
...
'Z' | 'Y'
'Z' | 'Z'

Unfortunately, the full table has 350 rows!

We can solve this by collecting all the combinations for each value of c and perform‐
ing a flat-map operation over them. A flat-map operation is simply taking a collection
that contains other collections and iterating over all of the nested collections as if they
were concatenated.

186 | Chapter 11: Test-Driven Development: The Diamond Kata



Groovy’s implementation of flat-map is called collectMany. Let’s look at that here to
see how we can use it to finally get rid of the assertion loop in our feature method:

@Unroll
def "#rowChar appears in the correct row and column in diamond(#c)"() {
  given:
  def result = diamond.apply(c)

  and:
  int midpoint = result.size().intdiv(2)
  int y = (rowChar - aChar)
  int x = midpoint - y

  expect:
  result[y].charAt(x) == rowChar

  where:
  row << testRange.collectMany { c2 -> 
    (aChar..c2).collect { new Tuple(c2, it) } 
  }
  c = row[0] 
  rowChar = row[1]
}

The combinations forming our previous table are generated by collectMany
operating on the range of valid characters, B to Z.

Inside the collectMany closure, we do a nested collect call that generates tuples
with each combination for that value of c. So, each iteration of the feature
method will have a single Tuple instance as the value for row.

For convenience, we can unpack the tuple into the c and rowChar parameters we
want.

The assertion itself has not changed from the previous version of the feature method;
we have simply moved the iteration outside the body of the test itself. When you run
this feature method, it will execute 350 times!

Adding Padding to the Rows
We now know that we have the correct characters in the correct diamond formation.
However, our solution is incomplete because we haven’t yet checked that the coordi‐
nates—other than the “interesting” ones that form part of the diamond—are filled
with padding characters.

We can approach this assertion with a similar feature method as the last one. In fact,
the where block is identical. Instead of checking the character at a particular x posi‐

Implementation | 187



tion in each row, we’ll simply remove the character at that position and check that
everything remaining is a padding character.

The key to keeping this feature method simple is in remembering what we don’t need
to prove. Here’s what we know from the previous feature methods:

• The correct character appears in the correct place, so we don’t need to make any
consideration for what character we remove from the row.

• The diamond is symmetrical, so we can save some complexity by checking only
the first half of the row.

• The diamond is the correct size, so we don’t need to worry about how long the
row is.

@Unroll
def "areas around the character `#rowChar` in diamond(#c) are padded"() {
  given:
  def result = diamond.apply(c)

  and:
  int midpoint = result.size().intdiv(2)
  int y = (rowChar - aChar)
  int x = midpoint - y

  expect:
  new StringBuilder(result[y][0..midpoint])
    .deleteCharAt(x)
    .toString()
    .every { it == '-' }

  where:
  row << testRange.collectMany { c2 ->
    (aChar..c2).collect { new Tuple(c2, it) }
  }
  c = row[0]
  rowChar = row[1]
}

The feature method is pretty straightforward. We use the deleteCharAt method of
StringBuilder to remove the known character, and then Groovy’s every method to
ensure that everything remaining is padding.

At last, we can implement a change to the diamond algorithm that makes it generate
the correct pattern:

public List<String> apply(Character c) {
  if (c < 'A' || c > 'Z') {
    throw new IllegalArgumentException(c + " is outside the valid range A..Z");
  } else {
    final int midpoint = c - 'A'; 

188 | Chapter 11: Test-Driven Development: The Diamond Kata



    List<String> result = new ArrayList<>();
    for (char nextChar = 'A'; nextChar <= c; nextChar++) {
      final int x = midpoint - result.size(); 
      StringBuilder row = new StringBuilder();
      while (row.length() < x) { 
        row.append('-');
      }
      row.append(nextChar); 
      while (row.length() <= midpoint) { 
        row.append('-');
      }

      row.append(new StringBuilder(row.substring(0, midpoint)).reverse()); 

      result.add(row.toString());
    }

    int index = result.size();
    for (int i = 0; i < (index - 1); i++) {
      result.add(index, result.get(i));
    }

    return result;
  }
}

Instead of the size of the diamond, we work out the index of the center row or
column.

The x position where the A..Z character belongs is derived from the center index
and the current index.

Before the character position, we add padding characters.

Now we add a single instance of the A..Z character.

If we’re not at the center yet, we add more padding until we are.

Finally, the row is mirrored horizontally in a similar way to the vertical mirroring
we did previously.

Refinement
We now have a correct diamond implementation. However, looking at the last test we
wrote, it seems overspecified. We’re removing a character from a specific index in the
row and verifying that we’re left with only padding. But we already verified that the
index was correct in a previous test. Instead of calculating the index again, we could
simplify things by just removing any single instance of the character. In fact, because

Implementation | 189



we’ve already verified that the correct character is placed on the correct row, we could
just remove the first instance of any uppercase character, as shown in the following:

@Unroll
def "areas outside diamond(#c) are filled with padding"() {
  given:
  def result = diamond.apply(c)

  expect:
  upperLeftQuadrant(result)*.replaceFirst(/[A-Z]/, "").every {
    it ==~ /-+/
  }

  where:
  c << testRange
}

private List<String> upperLeftQuadrant(List<String> result) {
  int midpoint = result.size().intdiv(2)
  result[0..midpoint].collect { row ->
    row[0..midpoint]
  }
}

We’ve also introduced a helper method to allow us to get the truncated List<String>
representing just the upper-left quadrant of the diamond from the full result.

Summary
In this chapter, we explored implementing some code in a test-driven manner by
dividing a problem into behavioral slices and incrementing toward a complete solu‐
tion. Each step along the way brought us closer and kept existing tests passing.

We saw how we can reduce complexity by using multiple tests that complement one
another so that behavior covered by another test can be assumed.

We also saw how to use where blocks to exhaustively test a range of possible inputs
with either predetermined or generated data.

Exercise: Customizable Diamonds
Modify the diamond implementation so that it has a constructor that accepts a char‐
acter range, making it possible for you to do things like create numeric or lowercase
diamond patterns.

Try to drive the changes with tests so that you write a test before introducing the cor‐
responding change into the implementation.

190 | Chapter 11: Test-Driven Development: The Diamond Kata



PART III

Integrating Spock

In the third part of this book, we look at how to integrate Spock with other software.
We examine end-to-end testing of REST applications, testing applications written
using the Spring framework, and end-to-end testing web applications using Geb
among other things.

http://www.gebish.org




CHAPTER 12

Spock and Spring

In this chapter, we dive into integration testing with the Spring application frame‐
work.

In the examples in this chapter, we use Spring Boot 1.4 and Spock 1.1, which include
some new features that streamline integration testing. In particular, until Spock 1.1,
mocking beans in the application context of an integration test was awkward.

What Do We Mean by “Integration Tests”?
In unit tests, the specification class deals with a unit of code in isolation. Collabora‐
tors are mocked or stubbed.

With integration tests, the entire application—or a subset of it—is started and the
behavior of the system as a whole is tested. Integration tests typically deal with the
larger-scale behavior exhibited by units of code working together.

Integration tests are also a useful way to protect against incorrect assumptions about
the way units interact that might have been made in unit tests. For example, if a mock
collaborator in a unit test does not behave the way the real collaborator does, the unit
test might be incorrect, and without any kind of integration test, this would not be
obvious until someone tries to use the application.

Container Tests
Container tests are similar to integration tests in that the application or some subset
of it is started; however, their intent is a little different. Container tests focus on how
units of code interact with the functionality of the container or framework in which
they run. They ensure the framework features have been properly understood and are
being applied correctly.

193



For example, we’ll see some examples of testing annotation-driven behavior in
Spring. Without the Spring framework annotations such as @Transactional have no
effect. To ensure that we’re using those kinds of features correctly, it’s necessary to
exercise the code in the context of a Spring application.

There is a fine line between container-testing code and testing the container itself.
Container tests should deal with the behavior we want our code to exhibit that is
implemented via the container, not whether the container itself works as docu‐
mented.

For the purposes of this chapter the distinction between integration and container
tests is not particularly important. We’re going to deal with some practical examples
and techniques that you can apply in either context.

Should You Run Integration Tests in a Separate Test Suite?
Some people advocate splitting integration tests into a separate test suite that you can
run separately from the unit tests. Some frameworks even enforce such a separation.
For example, the Grails framework has separate unit, integration, and functional test
phases. Tests that run in each phase are placed in separate source trees.

Spring Boot, on the other hand, uses annotations to define integration test behavior
that needs to start the application container. Annotated tests can be mixed with regu‐
lar unit tests in the same source tree.

However, just because Spring Boot doesn’t require separation, there’s nothing to pre‐
vent you from deciding to keep integration tests separate. You just need to define a
separate test phase in a Gradle build. Many people advocate such a separation because
integration tests are typically slower-running than unit tests.

So which is the correct approach?

Getting fast feedback from unit tests while developing and then running the integra‐
tion suite less frequently might save some time. But I lean toward the school of
thought that says if the integration tests are so slow that there would be a real benefit
from running them separately, the problem is not how the tests are run but the fact
they’re so slow the question even arises. Fix the cause of the slowness before resorting
to separate test suites.

Spring Compatibility
Spring Boot provides several annotations to support JUnit tests, and because Spock
runs using the JUnit test runner, they are compatible with Spock. To hook in correctly
to the Spring test framework, you need to add the spock-spring module to your build.

For example, the examples in this chapter declare the following dependency:

194 | Chapter 12: Spock and Spring



testCompile("org.spockframework:spock-spring:+")

With that module in place, Spock will automatically detect Spring-based tests based
on the presence of one or more Spring test annotations. As we’ll see later, the spock-
spring module also provides support for defining Spock mocks and stubs as Spring
beans.

Older versions of Spring Boot provided a variety of different annotations. @Integra
tionTest or @WebIntegrationTest specify whether just the application context or
the entire application including the HTTP listener need to be started. @SpringAppli
cationConfiguration specifies the configuration classes or XML files to load.

In Spring Boot 1.4, these annotations were deprecated in favor of an all-in-one
@SpringBootTest annotation. The @SpringBootTest annotation is what the examples
in this chapter use.

@SpringBootTest
Just adding @SpringBootTest to a specification class will mean the Spring container
is started. Spring will search for a root configuration class or XML file and initialize
the application context.

This is done once for all annotated tests that share the same configuration, so the
time cost of starting Spring is not compounded every time you add a new test to the
suite.

Testing Annotation-Driven Transactions
Spring uses aspect-oriented programming (AOP) in various ways to provide cross-
cutting behavior defined by the presence of annotations. One of the most commonly
used AOP annotations is @Transactional. When applied to a method on a Spring-
managed bean class, the @Transactional annotation wraps invocations of the
method in a proxy that will start a transaction at the start of the method call and
commit it at the end. If any runtime exception is thrown by the method, the transac‐
tion will be rolled back.

Transactions 101
You’re probably familiar with database transactions, but if not, here’s a quick over‐
view.

If you have a number of operations that you need to run on a database that must be
performed as an atomic unit, you should use a transaction. For example, if when
inserting a new inventory item into a warehouse system you need to add pricing
information in several currencies, you might do so like this:

Testing Annotation-Driven Transactions | 195



insert into inventory (name) values ('Tricorder');
insert into prices (inv_id, currency, price)
            select id, 'USD', 199.95
              from inventory
             where name = 'Tricorder';
insert into prices (inv_id, currency, price)
            select id, 'GBP', 154.2
              from inventory
             where name = 'Tricorder';
insert into prices (inv_id, currency, price)
            select id, 'ZAR', 2747.02
              from inventory
             where name = 'Tricorder';

If any single insert operation fails, you want none of the operations to take effect;
otherwise, you would have invalid data in the database—missing prices, or worse, pri‐
ces referring to a nonexistent row on the inventory table.

Using a transaction guarantees that atomicity. The operations executed within a
transaction are pending until the transaction completes. If an error occurs, the trans‐
action is rolled back and all pending operations are undone. If the operations com‐
plete successfully the transaction is committed and the pending operations are made
permanent.

Tracking Who Is Mentioned in a Message
Let’s introduce some transactional behavior into Squawker.

Because users might want to easily access a list of messages that mention them
directly, we’ll create a new table to index “mentions.” When a message is inserted, its
text is scanned for references to usernames, and for each match, a row is inserted in
the mention table.

For example, let’s assume that the user table contains the following rows:

id username
1 kirk

2 spock

3 bones

If the user @kirk posts a message—“have @spock, @bones, and @redshirt report to the
transporter room.”—we should insert the message itself and two rows on the mention
table so that the data looks like the following two tables, respectively:

196 | Chapter 12: Spock and Spring



id posted_by_id text
1 1 have @spock, @bones, and @redshirt report to the transporter room.

user_id message_id
2 1

3 1

Only two rows are inserted because part of the message looks like it mentions a user,
@redshirt, but no such user actually exists on the user table. Any such “phantom”
mentions should just be ignored.

If any of those inserts fails we don’t want to be left with missing entries from the men
tion table or, worse, rows on the mention table that don’t refer to a valid row on the
message table. This is something we should definitely handle as a transaction.

To do that, we can define a Spring bean that’s at a slightly higher level than our exist‐
ing MessageStore DAO. The new MessageService class will delegate the lower-level
operations to MessageStore and a new DAO MentionStore that manages the entries
on the mention table:

public void insert(String username, Message message); 

public List<Message> mentionsOf(User user); 

insert adds a row to the mention table if username refers to a valid user and a
row does not already exist linking the particular user and message; in other
words, it silently ignores duplicates.

mentionsOf simply returns all the messages that mention a particular user.

@Transactional
public Message postMessage(User user, String text); 

postMessage is the higher-level method that will insert rows to the message and
mention tables.

When MessageService.postMessage is called, it should in turn call MessageS
tore.insert once and MentionStore.insert zero or more times, depending on how
many users are mentioned in the message text.

Testing Annotation-Driven Transactions | 197



Non-Spring-Dependent Tests
We can begin with some unit tests that validate the basic functionality of MessageSer
vice.postMessage. To test most of the functionality, we don’t need a Spring con‐
tainer, as demonstrated here:

class MessageServiceSpec extends Specification {

  def messageStore = Mock(MessageStore)
  def mentionStore = Mock(MentionStore)

  @Subject
  def messageService = new MessageService(messageStore, mentionStore)

  def "inserts a mention if the text mentions another user"() {
    when:
    messageService.postMessage(user, messageText)

    then:
    1 * mentionStore.insert(mentionedUsername, _)

    where:
    user = new User("kirk")
    mentionedUsername = "spock"
    messageText = "Strike that from the record, Mr. @$mentionedUsername!"
  }

  def "does not insert a mention if the text mentions a nonexistent user"() {
    when:
    messageService.postMessage(user, messageText)

    then:
    0 * mentionStore.insert(mentionedUsername, _)

    where:
    user = new User("kirk")
    mentionedUsername = "spock"
    messageText = "Strike that from the record, Mr. @$mentionedUsername!"
  }

  def "does not count multiple mentions in a single message"() {
    when:
    messageService.postMessage(user, messageText)

    then:
    1 * mentionStore.insert(mentionedUsername, _)

    where:
    user = new User("kirk")
    mentionedUsername = "spock"
    messageText = "@$mentionedUsername, come in! @$mentionedUsername, report!"
  }

198 | Chapter 12: Spock and Spring



  def "inserts multiple mentions if necessary"() {
    when:
    messageService.postMessage(user, messageText)

    then:
    1 * mentionStore.insert(mentionedUsernames[0], _)
    1 * mentionStore.insert(mentionedUsernames[1], _)

    where:
    user = new User("kirk")
    mentionedUsernames = ["spock", "bones"]
    messageText = "Mr @spock, @bones... to the transporter room."
  }
}

However, we begin to run into some problems with a mock and stub approach here.
The two feature methods, "does not insert a mention if the text mentions a
nonexistent user" and "does not count multiple mentions in a single mes
sage", fail. In both cases, unexpected calls to MentionStore.insert are made. In fact,
the functionality described in those cases is implemented by MentionStore itself.

Let’s look at the SQL command used by MentionStore.insert:

INSERT INTO mention (user_id, message_id)
  SELECT
    u.id,
    :message.id
  FROM user u
  WHERE u.username = :username AND NOT EXISTS(
    SELECT 1
    FROM mention
    WHERE user_id = u.id AND message_id = :message.id
  )

If the subselect finds no user with a matching username, zero rows will be inserted.
Likewise, the AND NOT EXISTS clause prevents duplicates from being inserted.

This means that MessageService is free to call MentionStore.insert for usernames
that do not exist on the user table or multiple times for the same username. It simpli‐
fies the implementation required in MessageService—no de-duplication or lookup
of usernames is required. It’s not an error for a user to post a message with text that
includes an “@” character followed by something that is not actually a valid user‐
name. The right thing to do is just ignore such cases when recording mentions.

Testing a Transaction Rollback
Now, let’s try to write a feature method that should result in a transaction rollback
and see what happens:

Testing Annotation-Driven Transactions | 199



def "if mention insert fails a message is not persisted"() {
  given:
  mentionStore.insert(*_) >> {
    throw new RuntimeException("test")
  }

  when:
  messageService.postMessage(user, messageText)

  then:
  def e = thrown(RuntimeException)
  e.message == "test"

  and:
  // ... what do we do here?

  where:
  user = new User("kirk")
  mentionedUsernames = ["spock", "bones"]
  messageText = "@${mentionedUsernames[0]}, @${mentionedUsernames[1]}" +
    " meet me in the transporter room!"
}

First, we ensure that an exception will occur by trying to insert a mention, which
should result in a transaction rollback. But what can we do to prove the message was
not inserted?

We can’t assert that messageStore.insert is not called because it will be called; we
just expect the result of that call to be backed out.

Although this test will start and run fast because it is not dependent on the Spring
context being initialized properly or even existing at all, it’s not really sufficient for
what we need. There are end-to-end scenarios that can’t be validated using a mock
MentionStore, and when it comes to testing the transactional behavior provided by
Spring, the test can’t prove anything without Spring’s transactional proxy wrapping
the MessageService.

Instead, we’ll need to start a Spring container and test the MessageService after it’s
wrapped with a transactional proxy.

We should absolutely leave the working unit tests in place. There’s really nothing to
gain from replicating those tests in an integration test, and the more functionality we
can test without requiring Spring, the better.

Setting Up the Spring Application
Spring Boot uses a Main class to boot the application. The class can declare beans just
like any other configuration class, but instead of being annotated with @Configura
tion, it is annotated with @SpringBootApplication:

200 | Chapter 12: Spock and Spring



@SpringBootApplication(scanBasePackages = {"squawker.jdbi", "squawker.mentions"})
public class Main {
  public static void main(String... args) {
    SpringApplication.run(Main.class, args);
  }
}

The static main method allows the application to run as an executable jar after it’s
packaged.

A First Integration Test
When writing an integration test, we can actually avoid a lot of the setup necessary
for a unit test. After all, the integration test uses the context and configuration
defined for the actual production application. There’s no need to configure a data
source or wire up DAOs to the data source and the service because the test will use
the beans from the application context. Spring’s test framework will automatically
provide a data source connected to an in-memory database.

Let’s take a detailed look at how we can write the test for transactional rollback:

@SpringBootTest(classes = Main)

class MessageServiceSpec extends Specification {

  @Autowired @Subject MessageService messageService 
  @Autowired @TruncateTables(DBIConnector) DBI dbi 
  @Autowired UserStore userStore
  @Autowired MentionStore mentionStore

  def "does not insert a mention if the text mentions a nonexistent user"() {
    given:
    def user = userStore.insert(username)

    expect:
    !userStore.find(mentionedUsername)

    when:
    messageService.postMessage(user, messageText)

    then:
    count("mention") == 0 

    where:
    username = "kirk"
    mentionedUsername = "spock"
    messageText = "Strike that from the record, Mr. @$mentionedUsername!"
  }

  def "does not count multiple mentions in a single message"() {
    given:

Testing Annotation-Driven Transactions | 201



    def user = userStore.insert(username)
    userStore.insert(mentionedUsername)

    when:
    messageService.postMessage(user, messageText)

    then:
    count("mention") == 1

    where:
    username = "kirk"
    mentionedUsername = "spock"
    messageText = "Mr. @$mentionedUsername, come in! " +
      "@$mentionedUsername, report!"
  }

  def "if mention insert fails a message is not persisted"() {
    given:
    def user = userStore.insert(username)
    mentionedUsernames.each {
      userStore.insert(it)
    }

    and:
    dbi.withHandle { handle ->
      handle.execute("drop table mention") 
    }

    when:
    messageService.postMessage(user, messageText)

    then:
    thrown(DBIException)

    and:
    count("message") == 0

    where:
    username = "kirk"
    mentionedUsernames = ["spock", "bones"]
    messageText = "@${mentionedUsernames[0]}, @${mentionedUsernames[1]}" +
      " meet me in the transporter room!"
  }
}

The first difference is that the test is annotated with @SpringBootTest and pro‐
vided a reference to the Main application class.

Notice that instead of instantiating instances of the classes we’ll need for the test,
we have Spring autowire them.

202 | Chapter 12: Spock and Spring



We can reuse the @TruncateTables annotation we developed in Chapter 10 on
an injected bean.

count(String tableName) is a helper method that returns the number of rows
on a database table using a SELECT COUNT(*) FROM... query.

Instead of having a mock MentionStore throw an exception, we need to force an
error in another way. Dropping the mention table will certainly do that! However,
as we’ll see shortly, this is not actually a good idea and should not be emulated.

The two cases that failed in our unit test now work. Instead of attempting to validate
whether MentionStore.insert is called for nonexistent users or multiple mentions,
we can simply look at the resulting rows on the database. The behavior is abstracted
from implementation. With this test, it really doesn’t matter whether MessageService
validates and de-duplicates usernames before calling MentionStore.insert or
whether MentionStore simply ignores invalid usernames and repeated calls. What we
care about is that data is not incorrectly persisted, and that’s what the test verifies.

In addition, the transaction rollback test now works. We have a transactional proxy
around the autowired MessageService instance and therefore a transaction is started
when the test calls postMessage in the when: block. When the method returns, the
transaction is committed or if the method throws an exception, as it does here, the
transaction is rolled back.

You can autowire any bean into a Spock specification. This could
mean that beans that are explicitly declared by the application, such
as the MessageService and the various DAOs in our specification
or beans registered by the framework itself such as the DataSource.
Specifications can also use the @Value annotation to wire-in values
from a Spring configuration.
Because of the way Spock’s lifecycle integrates with Spring’s test
support, it is not possible to combine the @Autowired and @Shared
annotations in a single field.

Convenience and Cost
The convenience of autowiring dependencies directly into the specification is consid‐
erable. This convenience comes at a cost, though: the test is significantly slower to
run than a unit test. On my laptop, the integration test takes more than four seconds
to run, whereas the unit test—with more feature methods—takes far less than a sec‐
ond. Although Spring mitigates this by starting the application context only once and
sharing it between multiple feature methods or specifications, that comes with its
own disadvantages, which we’ll discuss a little later.

Testing Annotation-Driven Transactions | 203



The thing to take away is to test as much as possible in simple unit tests and only use
integration tests where it’s really necessary. That is, where you’re testing interdepen‐
dencies between components, configuration, or, as here, the way components interact
with the application framework.

Unexpected Side Effects
In the previous integration test for transaction rollback, we dropped a database table
in order to provoke an error. It’s actually tricky to craft a scenario in which referential
integrity is violated. If we construct the service properly, data integrity issues should
be avoided. A more likely cause of failure might well be some kind of error connect‐
ing to the database.

Regardless of how realistic it is and the fact that it works, this turns out to be a pretty
bad idea.

As I mentioned previously, Spring caches application contexts between tests to avoid
the time cost of reinitializing the application for every feature method. Unfortunately,
this means that the table we just dropped as a cute way to cause our transactional
method to roll back…well, it’s still dropped when the next feature method starts. It’s
not much fun to debug an error with the message org.h2.jdbc.JdbcSQLException:
Table "MENTION" not found in a completely different test than the one causing the
problem.

That’s a classic example of leaking side effects between tests.

We can certainly fix the leak by adding a cleanup: block to the feature method, like
this:

cleanup:
mentionStore.createMentionTable()

Forcing Spring to Re-Create the Application Context
As we’ve seen, Spring caches application contexts used by tests and reuses them if
another test declares the same configuration; this typically means that the combina‐
tion of configuration classes in the @SpringBootTest annotation is the same. Because
of this any modifications to the application context (e.g., by mutating singleton
beans) or any resources it manages (such as an embedded in-memory database) will
leak into other tests.

Spring provides an annotation to help us here—@DirtiesContext. When applied to a
feature method, it will mark the application context in the cache as dirty so that when
the next test runs using the same context configuration, it will actually be re-created.

The annotation can also be applied to the specification class so that it will mark the
context as dirty after all the feature methods run (think of it as part of the cleanup

204 | Chapter 12: Spock and Spring



Spec phase), or if written as @DirtiesContext(classMode =

AFTER_EACH_TEST_METHOD) after each feature method runs (think of it as part of the
cleanup phase).

Instead of using a manual cleanup specification that re-creates the table, we can sim‐
ply annotate the feature method:

@DirtiesContext
def "if mention insert fails a message is not persisted"() {
  given:
  def user = userStore.insert(username)
  mentionedUsernames.each {
    userStore.insert(it)
  }

  and:
  dbi.withHandle { handle ->
    handle.execute("drop table mention")
  }

  when:
  messageService.postMessage(user, messageText)

  then:
  thrown(DBIException)

  and:
  count("message") == 0

  where:
  username = "kirk"
  mentionedUsernames = ["spock", "bones"]
  messageText = "@${mentionedUsernames[0]}, @${mentionedUsernames[1]}" +
    " meet me in the transporter room!"
}

Obviously, there is a cost associated with this. The startup time of a Spring applica‐
tion context is nontrivial in the best of scenarios, and preventing Spring from opti‐
mizing that time by reusing contexts will add to the time it takes to run the suite.

Where possible, it’s best to avoid having to use @DirtiesContext, but it’s useful for
certain scenarios in which modifying the application context is inevitable or is the
point of the test.

In the scenario we’re dealing with here, it feels like we really need a better way to pro‐
voke that error, though.

Testing Annotation-Driven Transactions | 205



A Better Way to Force Errors
In a typical unit test, we’d probably generate that kind of error using a stub, and that
seems like a much saner way to go about things. Could we do that in a Spring integra‐
tion test? Ideally, the test should look like this:

def "if mention insert fails a message is not persisted"() {
  given:
  def user = userStore.insert(username)
  mentionedUsernames.each {
    userStore.insert(it)
  }

  and:
  mentionStore.insert(*_) >> {
    throw new RuntimeException("test") 
  }

  when:
  messageService.postMessage(user, messageText)

  then:
  def e = thrown(RuntimeException)
  getRootCause(e).message == "test" 

  and:
  count("message") == 0 

  where:
  username = "kirk"
  mentionedUsernames = ["spock", "bones"]
  messageText = "@${mentionedUsernames[0]}, @${mentionedUsernames[1]}" +
    " meet me in the transporter room!"
}

Instead of dropping a table, we ensure that the MentionStore stub will throw an
exception when invoked.

In the interest of ensuring the test is actually doing what we think it is, it’s pru‐
dent to check that the exception thrown by MessageService was caused by our
stub and not something else.

As before, we can validate that the rollback happened by checking that no rows
exist on the mention table.

The crucial thing the test needs to know is whether the data created on the message
table was rolled back. For that reason, we can’t use a mock MessageStore, because
MessageStore.insert is called, as we saw in the unit test earlier. But MentionStore
doesn’t need to be a real object.

206 | Chapter 12: Spock and Spring



This is indeed possible. In the next part of this chapter, we explore how you can use
Spock’s mocks and stubs as beans in the Spring application context.

Mock and Stub Beans
Until Spock 1.1, writing Spring integration tests that used mock and stub beans was
tricky. Spock’s mocks are tied closely to the specification lifecycle. This enables the
seamless expectation syntax used in then: blocks. Mocks have (or had) to be defined
in the context of a specification, either as a local variable in a feature method or as a
nonshared field of the specification class. However, because Spring beans are defined
in configuration classes or XML configuration files, they need to be defined inde‐
pendent of the specification context.

Spock 1.1 introduced the idea of detached mocks—mocks (or stubs, spies, etc.)
defined outside of the context of the specification class that can then be “attached” to
the specification lifecycle and used as normal. Defining mock and stub Spring beans
is now actually very easy!

Let’s take a look at some examples.

Mention Events
To tie in with the “mention” mechanism that we’ve been working on, it would also be
good to send users a notification when someone mentions them in a message.

To implement this, we can use Spring’s application event mechanism. Whenever a
mention is inserted, we’ll raise an application event, and at some point we can plug
event listeners in that will email or send push notifications to users who are the sub‐
ject of a mention.

Spring Application Events
Spring’s application event mechanism is pretty simple. A bean class ApplicationE
ventPublisher is available in the application context. Components can autowire the
publisher and then use its publishEvent method to publish events.

Any component that needs to be notified of events can then implement the Applica
tionListener<E> interface. Any event object that is in the bounds of the generic type
on the listener is passed to its onApplicationEvent method.

It’s also possible in recent versions of Spring to define listener methods using annota‐
tions rather than by implementing ApplicationListener. That is convenient when a
component needs to respond in different ways to multiple event types.

Mock and Stub Beans | 207



Events themselves can either extend ApplicationEvent or just be defined as simple
Plain Old Java Objects (POJOs). POJO event types are wrapped in a PayloadApplica
tionEvent when passed to the listener.

We’re going to inject a ApplicationEventPublisher dependency into MessageSer
vice and then trigger an event every time a mention is inserted.

Our new specification is going to test that events are triggered correctly. The obvious
way to do that is to register a mock ApplicationListener<MentionEvent> bean and
assert that its onApplicationEvent method is called.

Mock Beans Before Spock 1.1
Before Spock 1.1, there were a couple of options for registering mock beans in a
Spring application context.

• Drop Spock mocks and use another library such as Mockito
• Abandon annotation-driven tests and register the mock beans programmatically
• Register bean delegates into which mocks are injected by the specification

We’ll skip over the first option, but take a brief look at the second and third.

If we don’t mind losing some of the simplicity of annotation-driven integration tests,
we can just set up an application context by hand and wire-up whatever beans we
need:

class MentionNotificationSpec extends Specification {

  def applicationContext = new AnnotationConfigApplicationContext() 

  ApplicationListener<MentionEvent> mentionListener = Mock() 

  @Autowired MessageStore messageStore
  @Autowired MentionStore mentionStore

  def setup() {
    applicationContext.with {
      register(Main) 
      beanFactory.registerSingleton("mentionListener", mentionListener) 
      refresh() 
      beanFactory.autowireBean(this) 
    }

    userStore.createUserTable() 
    messageStore.createMessageTable()
    mentionStore.createMentionTable()
  }

208 | Chapter 12: Spock and Spring



  // everything below this point is common in the next few examples

  @Autowired @TruncateTables(DBIConnector) DBI dbi
  @Autowired UserStore userStore
  @Autowired MessageService messageService

  def "registered listeners are notified of mentions"() {
    given:
    def user = userStore.insert(postingUsername)
    userStore.insert(mentionedUsername)

    and:
    def event = new BlockingVariable<MentionEvent>()
    mentionListener.onApplicationEvent(_) >> { MentionEvent it ->
      event.set(it)
    }

    when:
    def message = messageService.postMessage(user, messageText)

    then:
    with(event.get()) {
      mentionedUsername == mentionedUsername
      message.id == message.id
    }

    where:
    postingUsername = "kirk"
    mentionedUsername = "spock"
    messageText = "Report, Mr @$mentionedUsername!"
  }
}

Instead of using @SpringBootTest, the specification creates its own application
context.

The mock listener bean is created just like any other mock.

applicationContext.register tells Spring the base class to use to configure the
application. It’s possible to register multiple configuration classes or XML files,
much as @SpringBootTest accepts an array for its classes property.

We then register the mock listener as a singleton bean—a preconfigured object
rather than one created by the Spring container.

We call applicationContext.refresh() in order to initialize the container
properly. This will wire our mock beans in to any other beans that depend on
them.

Mock and Stub Beans | 209



We need to explicitly autowire the specification class itself.

Unfortunately, because we’re not using the Spring Boot bootstrap, we also need to
initialize the data source ourselves.

Obviously, this is fairly complex and although it works, we’re also missing some of the
enhancements @SpringBootTest gives us. We’ve had to initialize the database tables
because we’ve lost the automatic bootstrapping done by Spring Boot. If the startup
was more complex, we’d have had to do even more manual steps, and the process of
figuring out exactly what is necessary and how to do it is crude and error prone.

Perhaps the most crucial thing lost is the reuse of the application context. As we add
more feature methods to this specification, it will become slower and slower because
a new application context is started for every feature method.

Mock Bean Delegates
Instead of this approach, we can define a bean delegate that will wrap a mock.

@SpringBootTest(classes = [
  Main,
  DelegatingApplicationListener 
])
@DirtiesContext
class MentionNotificationSpec extends Specification {

  @Autowired DelegatingApplicationListener listener 

  ApplicationListener<MentionEvent> mentionListener = Mock()

  def setup() {
    listener.delegate = mentionListener 
  }

  static class DelegatingApplicationListener
    implements ApplicationListener<MentionEvent> {
    @Delegate ApplicationListener<MentionEvent> delegate 
  }

  // ...

In this case, we are using @SpringBootTest, but we’re adding an extra class: our
DelegatingApplicationListener to the context.

We can then autowire the delegate bean into the specification.

In the setup method, we inject our actual mock into the delegate bean.

210 | Chapter 12: Spock and Spring



The DelegatingApplicationListener class is very simple; it’s not intended for
use outside the context of this specification.

The actual feature method in this example is identical to the one in the previous
example; we’ve just simplified the setup a little.

This is better, but it’s not always convenient to define bean delegate classes for every‐
thing. If a specification needs more than one mock or stub, or the interface being
mocked is complex, it can result in a lot of boilerplate code.

Another issue is that by adding the mock to the delegate we’re modifying a bean man‐
aged by the application context. We need to be very careful here; otherwise, we could
start leaking state into other tests that happen to share the same application context.
It’s not a problem for other feature methods within this specification that will run the
same setup method and therefore reset the delegate property, but having this state
change leak out of the Specification class and break another test could be very frus‐
trating to debug. For that reason, using @DirtiesContext at the specification level
makes sense here.

Detached Mocks in the Spring Context
Detached mocks are potentially useful in a number of scenarios, but the spock-spring
library provides special support for automatically attaching mocks registered as beans
to the specification when running a Spring integration test.

Registering mock beans is now fairly transparent. Instead of needing a bean delegate,
we can use a test configuration class that directly creates a mock or stub bean:

@SpringBootTest(classes = [
  Main,
  Config 
])
class MentionNotificationSpec extends Specification {

  @Autowired ApplicationListener<MentionEvent> mentionListener 

  static class Config {
    private final mockFactory = new DetachedMockFactory() 

    @Bean
    ApplicationListener<MentionEvent> mentionListener() {
      mockFactory.Mock(ApplicationListener)
    }
  }

  // ...

Mock and Stub Beans | 211



Instead of specifying a mock delegate, we’re going to use a test-specific configura‐
tion class.

Now the mock listener is directly autowired into the specification.

In the configuration class, we use a DetachedMockFactory to create mock instan‐
ces as beans.

Spring Autoconfiguration and Test Configuration Classes
If you’re accustomed to working with Spring configuration classes you might notice
that the Config inner class in the previous specification was not annotated with @Con
figuration. Also, look back at the example with the bean delegate and notice that
DelegatingApplicationListener is not annotated with @Component. There’s a good
reason for this.

The @Configuration and @Component annotations are used to expose classes to
Spring’s configuration autoscanning. If we annotate classes that are intended for use
only in a single specification, they can accidentally be picked up and loaded into the
application context used by another specification. Needless to say, this can be very
confusing.

It’s not necessary to annotate classes if you directly refer to them in the @SpringBoot
Test annotation.

Mock Beans in XML Configuration
It’s also possible to define Spock mock beans in XML configuration if you need to:

@ContextConfiguration(locations = "mention-notification-spec.xml")

@SpringBootTest(classes = Main)
class MentionNotificationSpec extends Specification {

  @Autowired ApplicationListener<MentionEvent> mentionListener

  // ...
}

@SpringBootTest does not offer a way to specify XML configuration files, so it’s 
necessary to add a @ContextConfiguration annotation.

The XML bean definition uses SpockMockFactoryBean to create mock instances. Like
the ones we’ve seen so far, you can autowire them into specifications where they are
automatically attached to the specification lifecycle:

212 | Chapter 12: Spock and Spring



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:spock="http://www.spockframework.org/spring"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
           http://www.springframework.org/schema/beans/spring-beans.xsd
           http://www.spockframework.org/spring
           http://www.spockframework.org/spring/spock.xsd">

  <spock:mock id="mentionListener"
              class="org.springframework.context.ApplicationListener"/>

</beans>

In addition to the <spock:mock> element shown in this example, there are also
<spock:stub> and <spock:spy> elements.

It’s also possible to use SpockMockFactoryBean in a configuration class, although
there’s no particular reason to prefer it over creating mocks with DetachedMockFac
tory.

static class Config {
  @Bean
  FactoryBean<ApplicationListener<MentionEvent>> mentionListener() {
    new SpockMockFactoryBean(ApplicationListener)
  }
}

Replacing Application Beans with Mocks
Now that we’ve covered the use of mocks and stub beans in the Spring application
context, let’s revisit the original transactional spec and see if we can use a stub version
of MentionService to provoke the exception we need to cause a transaction rollback.

We’ll separate the transaction test out into its own class, MessageServiceTransac
tionSpec, because the other test cases rely on MentionStore not being a mock and
actually writing rows to the database:

static class Config {
  private final DetachedMockFactory mockFactory = new DetachedMockFactory()

  @Bean
  MentionStore mentionStore() {
    mockFactory.Stub(MentionStore)
  }
}

Instead of using the Mock method of DetachedMockFactory, the config here uses
Stub. These methods are exactly equivalent to those available inside a specification
and produce test doubles with the same characteristics.

Mock and Stub Beans | 213



One other thing to note is that there’s an interdependence between the mock configu‐
ration and the “real” application configuration:

The two DAOs, MessageStore and MentionStore, are autowired into MessageSer
vice. However, the test overrides the “real” MentionStore bean with a stub.

Because Spring handles all the autowiring, after beans are defined there’s no need for
the test config class to worry about the relationship between MentionStore and Messa
geService. Because the MentionStore bean is replaced with a stub, it is the stub that
is autowired into MessageService.

You might be wondering how Spring determines which of the two definitions of Men
tionStore takes precedence. In this example, it’s simply due to the declared order of
the configuration classes.

@SpringBootTest(classes = [Main, Config])

The stub should take precedence because its bean definition is loaded last. In practice,
I’ve found that sometimes bean precedence is nonintuitive. For example, if the bean
name is not speicified in a @Bean or @Component annotation, it is derived from the
class or bean method name. If your mock needs to replace a bean that exists in the
“real” application context, the bean name needs to be identical.

Assuming two beans have the same name, the last one loaded should take prece‐
dence. Alternatively, if one of the beans is annotated with @Primary, it should take
precedence.

214 | Chapter 12: Spock and Spring



Spock provides a way to actually assert whether an object is a Spock test double. We
can use that to verify that our bean override is working as expected:

def "mock beans are auto-wired"() {
  expect:
  new MockUtil().isMock(mentionStore)
}

We can make this assertion fail by just reversing the declared order of the configura‐
tion classes in our example:

@SpringBootTest(classes = [Config, Main])

Now, the mock MentionStore bean is loaded first and then replaced with the real one
from the main application context.

To make the bean precedence a little more explicit, there are a couple of approaches
we can take. One is to annotate the mock bean definition method with @Primary.
Another is to have our test configuration depend on the main configuration in a heir‐
archical relationship rather than specifying them both in the @SpringBootTest anno‐
tation.

First, we change the annotation on the specification class:

@SpringBootTest(classes = Config)

Then we import the main configuration in the test configuration class:

@Import(Main)
static class Config {
  private final DetachedMockFactory mockFactory = new DetachedMockFactory()

  @Bean
  MentionStore mentionStore() {
    mockFactory.Stub(MentionStore)
  }
}

Now the bean order is explicit: the main configuration is always loaded first and the
test configuration extends it. The specification class depends only on the test configu‐
ration and inherits the main application configuration transitively.

Declarative Test Data
A suite of tests can have common data requirements, in which case Spring provides a
couple of convenient ways to define fixtures.

Until now, we’ve been using our JDBI DAO classes such as UserStore and MessageS
tore to create test data. There’s nothing wrong with this approach; in fact, I think the
advantages of abstracting the tasks of creating data from the raw SQL used to insert
rows to the database are considerable.

Declarative Test Data | 215



However, sharing fixtures in the form of SQL scripts can be a useful approach.

Using the @Sql Annotation for Data Fixtures
You can place Spring’s @Sql annotation on a specification class or feature method,
where it will use Spring’s data source to execute SQL commands before the feature
method runs (or before each feature method if the annotation is placed at the class
level):

@Sql(statements = ["""
  insert into user (username, registered)
            values ('kirk', current_timestamp),
                   ('spock', current_timestamp),
                   ('bones', current_timestamp);
"""])
def "mentions are persisted with message"() {
  given:
  def user = userStore.find(username)

  when:
  def message = messageService.postMessage(user, messageText)

  then:
  count("mention") == mentionedUsernames.size()
  mentionedUsernames.every {
    mentionStore.mentionsOf(userStore.find(it)) == [message]
  }

  where:
  username = "kirk"
  mentionedUsernames = ["spock", "bones"]
  messageText = "@${mentionedUsernames[0]}, @${mentionedUsernames[1]}" +
    " meet me in the transporter room!"
}

Here, instead of creating data using the DAOs, we set it up directly by using SQL
statements.

This is not much of an advantage when talking about the data for a single test. We’ve
lost the type safety afforded to us by the DAOs and have had to specify some values—
the timestamps—that the DAO handled for us. We’ve also lost the ability to tie values
in the data to parameters from the where: block.

So, given all these disadvantages, why would you want to use @Sql? Well, mainly
because it makes it easy to share fixtures between tests.

If we move that setup script to a file in src/resources/fixtures, we can refer to it
from the @Sql annotation:

216 | Chapter 12: Spock and Spring



@Sql("/fixtures/users.sql")
def "mentions are persisted with message"() {
  // ...

Or we can even load it at a class level so that the same fixture is shared by all feature
methods in the specification:

@SpringBootTest(classes = Main)
@Sql("/fixtures/users.sql")
class MessageServiceSpec extends Specification

Common Fixtures or Per-Test Data?
Scripts can be convenient, but I still worry that they divorce the test data from the
context in which it is used. In the previous examples, we’ve relied on the fact that we
haven’t misspelled the values for username and mentionedUsernames in the where:
block. They’re simply repeated from the values in the fixture SQL script.

Another danger of using fixtures shared between many tests is that they tend to
become overly generalized. Rather than having data fine-tuned to each case, they
might contain data that many of the individual feature methods do not need. Trying
to write new tests and adapt the fixtures to new requirements becomes increasingly
difficult over time.

Unless the test requires a large volume of data, I much prefer to manage test data in
individual feature methods or setup methods rather than with fixtures. As always,
that’s a preference that comes with valid exceptions.

Global Fixture Data
Spring Boot will automatically run a script found at src/test/resources/data.sql
to populate the database. Alternately, you can override the spring.datasource.data
property in application.properties or application.yml to specify a different
script or multiple scripts.

This approach is really intended for bootstrapping reference data or running simple
migration scripts rather than for integration testing. Although it is possible to create a
Spring profile that will run a special integration test fixture, doing so comes with sig‐
nificant disadvantages.

Defining a profile that sets up our user data is straightforward:

---

spring:
  profiles: integration

Declarative Test Data | 217



  datasource:
    data: classpath*:fixtures/users.sql

We can then use the @ActiveProfiles annotation to have a specification use the new
profile:

@SpringBootTest(classes = Main)
@ActiveProfiles("integration")

However, when using this approach, we can’t truncate the tables between each feature
method, because the fixture data will not be re-created. It might be appropriate if you
have tables with static data that does not need to be torn down between tests.

Cleaning Up Test Data Spring-Style
Because the Spring test framework maintains application contexts between tests for
performance reasons, and because those application contexts typically contain an
embedded in-memory database, data cleanup is vitally important.

We looked at this in some detail in Chapter 4. Nothing is particularly different in
Spring. We can still clean up data manually:

def cleanup() {
  dbi.withHandle { handle ->
    handle.execute("delete from mention")
    handle.execute("delete from message")
    handle.execute("delete from user")
  }
}

We can still use the @TruncateTables annotation we developed in Chapter 10:

@TruncateTables
@Autowired DataSource dataSource

The only difference is that these two approaches use a dependency-injected method
to connect to the database—either a JDBI DBI instance or Spring’s DataSource bean.

Spring also provides a JdbcTemplate class that we can inject into specifications and
use to execute SQL:

@Autowired JdbcTemplate jdbcTemplate

def cleanup() {
  jdbcTemplate.with {
    execute("delete from mention")
    execute("delete from message")
    execute("delete from user")
  }
}

218 | Chapter 12: Spock and Spring



Another option is to use the @Sql annotation again, this time specifying an execution
phase so that the commands run after each feature method:

@SpringBootTest(classes = Main)
@Sql(executionPhase = AFTER_TEST_METHOD, statements = [
  "delete from mention",
  "delete from message",
  "delete from user"
])

Even better, use a cleanup script in src/test/resources that can be shared by many
tests:

@SpringBootTest(classes = Main)
@Sql(executionPhase = AFTER_TEST_METHOD, scripts = "/cleanup.sql")

I like our @TruncateTables solution because it doesn’t require any maintenance; it
just figures out the order in which it needs to clean up tables and will automatically
truncate any new tables we might add to the application as it grows. However, if you
have certain tables that should not be cleaned up or other special requirements, using
@Sql is a good approach.

Tests in Transactions
Another way to approach data cleanup is to run each feature method in a transaction
that is automatically rolled back at the end. Spring’s test framework supports doing so
by just adding a @Transactional annotation to the specification class or an individ‐
ual feature method.

Recall our very first integration test earlier in the chapter. We verified that mentions
were not inserted for unknown usernames or more than one mention of the same
username in a single message. With those scenarios, a transactional test works very
well.

We can modify the specification to remove the explicit database cleanup and instead
add a @Transactional annotation to the class:

@Transactional
@SpringBootTest(classes = Main)
class MessageServiceSpec extends Specification {

  @Autowired MessageService messageService
  @Autowired UserStore userStore
  @Autowired MessageStore messageStore
  @Autowired MentionStore mentionStore

  def "does not insert a mention if the text mentions a nonexistent user"() {
    given:
    def user = userStore.insert(username)

Tests in Transactions | 219



    expect:
    !userStore.find(mentionedUsername)

    when:
    messageService.postMessage(user, messageText)

    then:
    count("mention") == 0

    where:
    username = "kirk"
    mentionedUsername = "spock"
    messageText = "Strike that from the record, Mr. @$mentionedUsername!"
  }

  def "does not count multiple mentions in a single message"() {
    given:
    def user = userStore.insert(username)
    userStore.insert(mentionedUsername)

    when:
    messageService.postMessage(user, messageText)

    then:
    count("mention") == 1

    where:
    username = "kirk"
    mentionedUsername = "spock"
    messageText = "Mr. @$mentionedUsername, come in! " +
      "@$mentionedUsername, report!"
  }
}

Propagated Transactions
However, if we make the same change to our mock-using specification that verifies
the transaction rollback, things don’t go as smoothly.

@Transactional
@SpringBootTest(classes = Config)
class MessageServiceTransactionSpec extends Specification {

  @Autowired MessageService messageService
  @Autowired UserStore userStore
  @Autowired MessageStore messageStore
  @Autowired MentionStore mentionStore

  def "if mention insert fails a message is not persisted"() {
    given:
    def user = userStore.insert(username)
    mentionedUsernames.each {

220 | Chapter 12: Spock and Spring



      userStore.insert(it)
    }

    and:
    mentionStore.insert(*_) >> {
      throw new RuntimeException("test")
    }

    when:
    messageService.postMessage(user, messageText)

    then:
    def e = thrown(RuntimeException)
    e.message == "test"

    and:
    count("message") == 0

    where:
    username = "kirk"
    mentionedUsernames = ["spock", "bones"]
    messageText = "@${mentionedUsernames[0]}, @${mentionedUsernames[1]}" +
      " meet me in the transporter room!"
  }

  @Import(Main)
  static class Config {
    def mockFactory = new DetachedMockFactory()

    @Bean
    MentionStore mentionStore() {
      mockFactory.Stub(MentionStore)
    }
  }
}

This test will fail on the assertion that there are no messages:

count("message") == 0
|                |
1                false

Why is that? Well, because the feature method itself is wrapped in a transaction, the
transactional proxy wrapped around MessageService.postMessage inherits the
transaction from the test rather than creating its own. This means that the call to post
Message is no longer the transaction boundary: the end of the feature method is. At
the point at which we make the assertion about the size of the message table, the
transaction has not been rolled back yet.

It’s possible to make this work by changing the annotation on MessageService.post
Message to specify that a new transaction is always required:

Tests in Transactions | 221



@Transactional(propagation = Propagation.REQUIRES_NEW)

This would mean that a new transaction is always created by the transactional proxy
even if there’s an existing transaction active before the call is made.

However, now we’re starting to modify the behavior of production code to make test‐
ing easier. Depending on how the application handles errors and manages wider
transactions, requiring a new transaction at that point may not be desirable.

Although it seems convenient, I find that wrapping tests in transactions can often
lead to some confusion. Because of the simplicity of our @TruncateTables annota‐
tion, it doesn’t benefit us very much.

Summary
You should now have a good grasp of integration and container tests with Spring. In
this chapter, we looked at the following:

• How to test transactional behavior in Spring components
• How to trigger and respond to Spring application events
• How to register mocks and stubs as Spring beans
• How to override Spring beans with test configuration
• How to manage test data
• How to run tests in a transactional context
• How to ensure changes to the application context don’t leak between tests

Building on the integration testing in this chapter, the next two chapters explore end-
to-end testing REST APIs and web applications. We’ll build out the Squawker appli‐
cation, exposing a REST API and then a JavaScript web application that uses it.

222 | Chapter 12: Spock and Spring



CHAPTER 13

Testing REST APIs

REST (Representational State Transfer) is an architectural style for managing data
over HTTP. In the past decade, REST—or approximations of it—have become one of
the default mechanisms for interapplication communication. With the increasing
popularity of stateful browser applications and microservice architectures, REST has
become a fundamental component of internal- and external-facing applications.
Although we would want to test as much application behavior as possible using sim‐
ple, fast-running unit tests, end-to-end testing REST applications is a common
requirement. Spock is more than equal to the task.

In this chapter, we look at building and testing a REST frontend for the Squawker
application. The examples build on the Spring Boot application we’ve been building
but are equally applicable to any platform.

The general approach for testing REST APIs is to use an HTTP client to connect to a
running instance of the application, send realistic requests, and make assertions
about the HTTP headers and response data that come back. That approach is applica‐
ble using any one of the many HTTP client libraries available (or even just a plain old
java.net.HttpUrlConnection). Spring Boot includes a built-in HTTP client, Tes
tRestTemplate, that the examples in this chapter use; however, it should not be diffi‐
cult to translate lessons learned here to a different HTTP client API. There are
numerous HTTP client libraries available for the JVM and their abstractions over
HTTP vary a little, but the examples in this chapter should be easy enough to trans‐
late.

Defining the Application URL
Because we’ll be starting an actual HTTP server and connecting to it via its URL, we’ll
need to know what that URL is, or at least what the port number is, given that the

223



application will run on localhost. Obviously, we don’t want to hardcode the port
number, because there’s no guarantee some other process isn’t using the port we
choose, which would cause the tests to fail. It would also make it more difficult to
share the tests between different team members who might have their machines con‐
figured differently as well as make it difficult to parallelize test suite execution on a
continuous integration server.

Spring Boot, like most frameworks, allows an application to start on a random unal‐
located port. We just need a way to determine what port is actually being used so that
our HTTP client can construct request URLs correctly. The details of how you can do
this will vary depending on what web application framework you use.

The Root URL in Spring Boot REST Specifications
Tests for the REST or web API of a Spring Boot application are annotated with
@SpringBootTest just as integration tests are. To run the embedded server on a ran‐
dom port we need to add webEnvironment = SpringBootTest.WebEnvironment.RAN
DOM_PORT.

Spring’s HTTP client TestRestTemplate, which the examples in this chapter use, can
automatically convert relative URLs to absolute ones. But in some places, we’ll be
constructing the request outside the context of the TestRestTemplate, so we’ll need
to be able to figure out the port in order to construct absolute URLs.

We can inject the actual assigned port into the specification class by providing an int
field annotated with @LocalServerPort.

I also like to create a simple private method that turns a relative URL into an absolute
one so that each feature method can ignore the base URL and port number:

@LocalServerPort int port

protected URI url(String relativeUrl) {
  "http://localhost:$port$relativeUrl".toURI()
}

A First Specification
We’ll begin with a very simple failure case. A GET request to a URL such as spock/
messages should retrieve a list of messages posted by the user @spock. If the user‐
name in the URL is not valid—because no such user actually exists—the server
should return a 404 not found status.

We can write the specification for this behavior and make it pass before really imple‐
menting much code, and keep it passing as we add more functionality.

224 | Chapter 13: Testing REST APIs



Remember the embedded web application is managed by Spring Boot because of the
@SpringBootTest annotation. If you’re using another platform, you’ll need a way to
start and stop the embedded server.

The example also uses the TestRestTemplate HTTP client provided by Spring Boot
to make requests and decode responses:

@SpringBootTest(
  webEnvironment = RANDOM_PORT,
  classes = [Main] 
)
class MessageEndpointSpec extends Specification { 

  @Autowired TestRestTemplate client 

  def "returns a not found response for a nonexistent user"() {
    when:
    def entity = client.getForEntity("/api/$username/messages", Map) 

    then:
    entity.statusCode == NOT_FOUND 
    entity.body.message == "No user $username found"

    where:
    username = "spock"
  }
}
// tag::failure-case[]

We specify the root configuration class or classes that will start the Spring Boot
application.

No special superclass is required; the class just extends spock.lang.Specifica
tion.

The client field is the HTTP client that the specification uses to communicate
with the application. Here, we’re using an autowired instance of TestRestTem
plate, which is provided by the Spring test environment.

The feature method uses the client to make an HTTP GET request to the mes‐
sages endpoint. Don’t worry about the final parameter: that’s specifying the type
to which the response should be deserialized, but because we’re not expecting a
response, it’s not particularly important here.

The application should return a 404 status. I like to use constants when testing
HTTP response codes rather than raw integers, so they are statically imported
from org.springframework.http.HttpStatus in this example.

A First Specification | 225



Because we haven’t defined any endpoints in the application yet, this test should pass
right away! Starting with a negative case like this is often very easy and doesn’t require
writing any application code. It will be important to keep this feature method passing
as we develop the functionality.

Because we’ve autowired the TestRestTemplate and we’re using
the getForEntity method that accepts a relative URL string here,
we don’t need to worry about the port and base URL of the applica‐
tion.

Web Application Lifecycle
The lifecycle of the embedded application in this example is managed by Spring
Boot’s test support. Because application initialization can take a few seconds Spring
starts the application once for the entire test suite. This is a reasonable approach
because the application itself—the contents of the Spring application context, in this
case—are typically immutable.

With other application frameworks, it might be practical to start and stop the embed‐
ded server for each feature method. Ratpack applications, for example, are light‐
weight and start extremely fast.

Starting the server clean for each feature method is ideal but not always practical
unless the application’s startup time is extremely fast. The crucial concern is that the
application itself is not left in a different state at the end of any individual feature
method. That means clearing caches, invalidating HTTP sessions, and obviously,
cleaning up test data.

Creating Data for End-to-End Tests
We’ve tested a case that doesn’t require any data to exist, but the vast majority of spec‐
ifications will need to create data to exercise the behavior they’re testing. Managing
data in end-to-end tests is a different proposition compared to unit and integration
tests. Tests need to be able to create the data they require and clean up afterward so
that state does not “bleed” between individual tests.

One solution is to run the application in the same JVM as the test and simply access
the object-relational mapping (ORM) classes or underlying database directly from the
test. The only downside is that it makes it impossible to run the tests against an exter‐
nal instance of the application on a virtual or physical server.

Another common solution is to provide a series of special endpoints for setting up
and tearing down data. Although simple to do, you need to give thought to security in
so much as production applications should not expose such endpoints. Accidentally

226 | Chapter 13: Testing REST APIs



hitting an endpoint that creates or destroys test data in a production environment can
be catastrophic.

In addition, it’s very easy to end up with a mess of endpoints that provide inconsis‐
tent capabilities for customizing the data created or end up being shared inappropri‐
ately by multiple tests because it’s easier than writing hundreds of individual test data
endpoints for many tests. There’s a loss of cohesion, too, between the test and the fix‐
ture that creates its data. It’s easy to break tests by making changes to test data con‐
struction that is not obviously associated with a specific test.

Bleeding Data Between Tests
Test data is said to “bleed” between tests when the data created for one test is not
cleaned up or only partially cleaned up and still exists when the subsequent tests run.
Because some unpredictable quantity of data exists, the subsequent tests can behave
differently. For example, subsequent tests might fail when attempting to create their
own test data due to database constraint violations or the code under test might
behave differently due to the additional data.

Data bleeding between tests can be harmless, or it can be catastrophic and extremely
difficult to debug. Typically, it can result in a test that fails when run as part of a suite
but passes in isolation.

In the worst cases, the affected test is far downstream of the one causing the problem,
potentially making it very difficult to identify the offending test that isn’t cleaning up
data properly.

Bleeding between tests can also be caused by long-lived caches or meta-programming
that changes the behavior of application classes at runtime.

Disposable Persistence

Another factor to consider when isolating test data is that if data
persists after the entire test suite completes, it will still be there for
the next run. For this reason, it’s a very good idea to either ensure
that you are using an in-memory database, such as H2, rather than
persisting to a real on-disk store or re-creating the entire database
schema from scratch at the start of the suite.

Creating Test Data on Demand
Because we’re using the @SpringBootTest annotation, Spring Boot allows beans from
the application to be injected into our test classes. That makes it extremely easy to
create and tear down test data.

Creating Data for End-to-End Tests | 227



It will allow our tests to set up very fine-grained and specific data without having to
rely on monolithic shared data fixtures or requiring us to create custom endpoints for
managing test data.

Let’s use that to create a test that does retrieve and verify some data:

@Autowired UserStore userStore 

def "returns an empty array for a user who has not posted any messages"() {
  given:
  userStore.insert(username) 

  when:
  def response = template.getForEntity("/api/$username/messages", List) 

  then:
  response.statusCode == OK 
  response.body == [] 

  where:
  username = "spock"
}

Using Spring’s @Autowired annotation we can acquire an instance of the User
Store DAO class.

The feature method can then create a new User object and insert it in the data‐
base. Note that the username variable is not local to the closure; it’s a where:
block parameter. Any variable references that can be serialized will be accessible
in the closure. Trying to access a nonserializable value here would have caused an
error.

The same request is made as in the previous test. Note that this time we expect a
List rather than a Map.

This time an HTTP 200 successful response is expected.

The endpoint should return an empty JSON array.

Cleaning Up Test Data
Something is missing in the previous test case that will rapidly become a problem.
The data created in the given: block is never cleaned up again. Let’s do that now by
autowiring another bean that we can use to directly destroy data in the database:

228 | Chapter 13: Testing REST APIs



@Autowired DBI dbi

def cleanup() {
  dbi.open().withCloseable { handle ->
    handle.execute("delete from user")
  }
}

This time, we’ll inject an instance of JDBI’s DBI rather than a DAO class. In the
cleanup method, we can then simply truncate the relevant tables.

The example uses Groovy’s withCloseable method, which is analogous to Java’s try-
with-resources construct.

The open() method in DBI acquires an instance of Handle, which is a wrapper around
a database connection. Closing the Handle closes the underlying connection or
returns it to the pool depending on what kind of data source is being used.

Cleanup like this could just as well be done with a DAO method, but in this case it’s
easy enough to just access the table directly.

Java’s try-with-resources and Groovy’s withCloseable
Java’s try-with-resources, introduced in Java 7, automatically calls a close method in
an implied finally block, as shown here:

try (Handle handle = dbi.open()) {
  handle.execute("delete from user");
}

Although Groovy does not support the try-with-resources syntax, its withCloseable
method does the same thing to the object it was called on. Both the withCloseable
call shown in the listing and the preceding try-with-resources example are simply a
more convenient way to do this:

Handle handle = dbi.open();
try {
  handle.execute("delete from user");
} finally {
  handle.close();
}

Requests with Data
REST APIs distinguish different actions on the same object by using the HTTP verb.
So far, we’ve used HTTP GET requests, which don’t require a message body, but in
order to create new data, we’ll use an HTTP POST:

Requests with Data | 229



def "can post a message"() {
  given:
  createUser(username)

  when:
  def request = RequestEntity
    .post(url("/api/$username/messages"))
    .contentType(MediaType.TEXT_PLAIN)
    .body(messageText) 
  def response = client.exchange(request, Message) 

  then:
  response.statusCode == CREATED 

  where:
  username = "spock"
  messageText = "@kirk That is illogical, Captain!"
}

We’ll use Spring’s request builder to construct a POST request with a Content-
Type header of text/plain and a message body consisting of the message we’d like
to post.

The request is executed using the HTTP client.

The response code should be an HTTP 201 to indicate that new data was created.

Fixture Methods
Since the same code is required to set up a user as in the previous feature method it
makes sense to extract a helper method createUser.

protected void createUser(String username) {
  userStore.insert(username)
}

Testing for HTTP Errors
When a REST client receives an invalid request, it should respond with a status code
in the 400 to 499 range. It’s a good idea to test edge cases and error scenarios to
ensure that your REST service is handling invalid requests cleanly and returning the
correct information to the client.

Some HTTP client libraries will throw exceptions if the response has an HTTP status
code of 400 or higher. Spring Boot’s TestRestTemplate does not do this, but Apache
HttpClient does by default, for example. That might make sense in production code
when connecting to remote APIs, but it’s not what you want when explicitly testing
for error conditions. When your specification expects the request to be rejected it’s a

230 | Chapter 13: Testing REST APIs



good idea to turn this behavior off and make assertions about the response code
rather than trapping the exception that’s thrown.

HTTP Status Ranges
HTTP status codes are divided into ranges, which give a general indication of the
class of response. Let’s take a look at them:

100–199
Indicates that the request has been received but the server is not yet ready to
respond.

200–299
Indicates a successful request. For example, 200 is the default “OK” code, and 201
indicates data was successfully created.

300–399
Indicates that the client needs to go to a different URL to complete the request.
For example, 301 and 302 are permanent and temporary redirects, respectively.

400–499
The client has made an error such as requesting a nonexistent URL (404), using
the wrong HTTP verb (405), or sending data that fails validation (422).

500–599
The request was valid but the server failed to deal with it. Typical examples are
500 indicating a general error such as an uncaught exception on the server or 503
indicating the server is not available.

More simply put…

HTTP status ranges in a nutshell:
 
1xx: hold on
2xx: here you go
3xx: go away
4xx: you fucked up
5xx: I fucked up

—Steve Losh, https://twitter.com/stevelosh/status/372740571749572610

If we attempt to post a Squawker message with no content, the server should reject
our request. We can test that very easily:

def "cannot post a message with no text"() {
  given:
  createUser(username)

Testing for HTTP Errors | 231

https://twitter.com/stevelosh/status/372740571749572610


  when:
  def request = RequestEntity
    .post(url("/api/$username/messages"))
    .build() 
  def response = client.exchange(request, Map)

  then:
  response.statusCode == BAD_REQUEST 

  where:
  username = "spock"
}

We build a POST request without a request body.

The server should respond with an HTTP 400.

Verifying Response Data
In the earlier example when we successfully posted a message, we simply asserted that
an HTTP 201 is returned. We didn’t do any verification of the response headers or
content. A REST endpoint will typically include a Location header pointing to the
new entity and/or a response body with the entity’s data.

It would make sense to verify that the entity data looks correct based on the request
the specification sent.

A successful POST to our message endpoint should return a JSON response some‐
thing like this:

{
  "message": {
    "id": 1,
    "text": "@kirk That is illogical, Captain!",
    "postedBy": {
      "username": "spock",
      "registered": "2016-02-05T09:13:19.744Z"
    },
    "postedAt": "2016-02-05T09:13:19.751Z"
  }
}

It’s never a good idea to verify structured response data such as JSON, XML, or
HTML by using string matching. Always parse the response and make assertions
about individual properties. Many HTTP client libraries provide automatic parsing of
known response types, and indeed that is the case with Spring Boot’s TestRestTem
plate.

232 | Chapter 13: Testing REST APIs



The exchange we’ve been using thus far takes two parameters—the request and the
type of the expected response:

def "a user can post a message"() {
  given:
  createUser(username)

  when:
  def request = post(url("/api/$username/messages"))
    .contentType(TEXT_PLAIN)
    .body(messageText)
  def response = client.exchange(request, Message) 

  then:
  response.statusCode == CREATED

  and:
  with(response.body) { 
    postedBy.username == username 
    text == messageText
  }

  where:
  username = "spock"
  messageText = "@kirk That is illogical, Captain!"
}

We can specify Message as the response type, which will parse the JSON into an
actual Message instance for us.

Spock’s with(Object, Closure) method makes the first parameter the delegate
of the closure and treats every statement as an assertion.

We can then assert that each property of the JSON response is correct.

We could specify Message instead of Map as the response type, but that would require
us to be able to deserialize JSON to instances of Message. Because there isn’t any‐
where in the API that we need to do that, it seems unnecessary to configure JSON
deserialization just for the tests.

Typed Response Entities
Until now, we’ve specified only List or Map as the return type from an API request.
Now, however, because the POST endpoint will actually return a JSON representation
of the message that is inserted, the call to client.exchange can specify a return type
of Message. Right now we’re not doing anything with it but we’ll see examples shortly
where the returned data is verified.

Verifying Response Data | 233



Of course, it would be possible to just specify Map, which will result in a nested Map
that corresponds to the JSON structure. However, it’s often simpler to verify a typed
response. Consider that Message has a postedAt timestamp property. If we want to
write a test that verifies that timestamp, it’s easier to do so with a real Message object
with a postedAt property that is a java.time.Instant than a Map for which the post
edAt property would be a string. We need to ensure that the assertion formatted the
expected timestamp correctly:

def "message endpoint renders correct timestamp"() {
  given:
  createUser(username)
  def messageId = createMessage(username, messageText, timestamp) 

  when:
  def response = client.getForEntity("/api/messages/$messageId", Map) 

  then:
  response.statusCode == OK
  response.body.postedAt == ISO_INSTANT.format(timestamp) 

  where:
  username = "spock"
  messageText = "@kirk That is illogical, Captain!"
  timestamp = now()
}

First, we specify a known timestamp when creating the message fixture so that
the feature method does not fail sporadically because the assertion is made a few
milliseconds after the message is inserted.

A response type of Map will work, but any timestamps will be represented as
strings.

We need to format the expected timestamp in the same way as the one in the
response.

If the intent is to test the rendering of timestamps in JSON, this is actually a good test.
But if the intent is to test that the response uses the correct timestamp—the postedAt
time rather than the request time, for example—it’s a little unnecessary to have to
work out the exact format to use. Not only that, but if we later change the way time‐
stamps are rendered in JSON, the test will break even if the timestamp is actually cor‐
rect.

When writing this example, I initially had a feature method that failed 1 in 10 times
because I’d used a subtly different DateTimeFormatter that dropped trailing zeros
from the milliseconds value in the timestamp. You can avoid the kind of head-
scratching that ensues with errors like that by using a typed response!

234 | Chapter 13: Testing REST APIs



Using a typed response the feature method is a little simpler:

when:
def response = client.getForEntity("/api/messages/$messageId", Message)

then:
response.statusCode == OK
response.body.postedAt == timestamp

Directly comparing Instant instances is much less error prone.

Using Map or List as the response type is a good default when you just need to verify
the size of an array or a simple property such as an error message. For anything more
complex, a typed response is usually preferable.

Multiple HTTP Requests in a Feature Method
The examples we’ve seen so far have made a single request to the REST API in each
feature method, but of course it’s possible to make multiple requests. For example, it
would be reasonable to ensure that a message appears in a user’s timeline after being
posted:

def "a message appears in a user's timeline after they post it"() {
  given:
  createUser(username)

  and:
  def request = post(url("/api/$username/messages"))
    .contentType(TEXT_PLAIN)
    .body(messageText)
  def response = client.exchange(request, Message) 

  expect:
  response.statusCode == CREATED 

  when:
  def request2 = get(url("/api/$username/timeline")).build()
  def response2 = client.exchange(request2, LIST_OF_MESSAGES) 

  then:
  with(response2.body.first()) { 
    text == messageText
    postedBy.username == username
  }

  where:
  username = "spock"
  messageText = "@kirk That is illogical, Captain!"
}

Multiple HTTP Requests in a Feature Method | 235



The feature method makes an initial request to post a message as part of the
given: block.

We use a precondition expect: block to make sure the request was successful.

The feature method makes a second request to a different URL as part of the
when: block…

…and verifies that the result corresponds to the data posted earlier.

You might be wondering what that weird response type is on the second request.
Because Java generics uses type erasure, we cannot pass List<Message> to exchange
and expect it to parse the response JSON correctly. At runtime, the <Message> part of
the type is erased, so the Spring REST template code has no way to determine what
class it should use as the element type of the list.

In the examples so far, we’ve just used a plain List with no specified element type.
This has been adequate because the feature methods have made assertions only about
the number of elements returned. Here, we want to actually inspect and verify one of
the list elements. We could just leave the response type as List, which would mean
we’d be dealing with Map elements. However, Spring provides an alternative way to
specify the generic type.

Spring provides a class called ParameterizedTypeReference, and the exchange
method will accept instances of that in place of Class to define the response type.
Because ParameterizedTypeReference can retain generic type information at run‐
time, it’s ideal for this kind of scenario.

The odd-looking response type in the feature method is defined like this:

protected final ParameterizedTypeReference<List<Message>> LIST_OF_MESSAGES =
  new ParameterizedTypeReference<List<Message>>() {}

Using a ParameterizedTypeReference like that means that when the feature method
makes assertions about elements in the response, it’s dealing with actual Message
instances.

Backdoors or “Pure” API Testing?
In the previous example, the feature method inputs some data via the REST API and
then reads it back via the API in order to verify that the data was created correctly.
There are two conflicting schools of thought for scenarios like this, both of which
have their merits:

236 | Chapter 13: Testing REST APIs



Viewpoint 1: Data should not pass through the system-under-test in both directions
If you’re testing how your system handles input of data, don’t verify it by using its
mechanism for outputting data.

Tests that pass data through the system in both directions are vulnerable to mul‐
tiple points of failure in a single test.

End-to-end tests that insist on doing everything via the user interface can easily
become brittle and long running. If the test has to perform a lot of preliminary
steps in order to get the system into a state where the behavior it’s interested in is
exposed, those preliminary steps could break. Think of an online store; should
end-to-end tests for the checkout process log in, visit product pages, add items to
the cart, and so on, or should the test use a back-door that tweaks the system into
a state where a user is logged in and has items in their cart? If the "__add to
cart__" button is changed or broken by a regression, all the checkout-related
tests will begin failing simply because they can’t complete their "__given__" steps.

The cumulative time spent on preliminary steps in a medium-to-large test suite
can seriously affect the speed of running that test suite, as well.

If we had followed this approach, we should have either set up the message or verified
the message had been stored correctly by using the injected DAOs, not both. The way
it’s written now, if the message we expect doesn’t appear in the timeline, we don’t
know if that is because the POST request failed to insert it to the database or because
the GET request failed to read it back.

Viewpoint 2: An end-to-end test should not resort to backdoors
Although it makes sense for a unit test to only test the system in one direction,
end-to-end tests are necessarily different. The aim of an end-to-end test is to ver‐
ify the system by driving it as a user would—controlling it via its external inter‐
face. In the case of a REST API, that “user” is probably another application, but
the principle holds.

Using a backdoor to insert or read back data, or to tweak the system into some
state that enables testing of a particular feature is cheating. Users aren’t able to do
this, so the test might be missing some vital flaw in the end-to-end workflow by
taking a shortcut.

Backdoors in the system are a security risk: it’s easy to accidentally leave those
backdoors enabled in released software.

Also, they tightly couple an interface-level test with the underlying details of how
things like persistence and security are handled in the application. Uncle Bob
Martin writes in Clean Code [cleancode] that a function should interact with the
system only at one level of abstraction. Inappropriately leaking implementation
details out into end-to-end tests can cause brittleness. Tests can begin failing

Backdoors or “Pure” API Testing? | 237



because of minor changes in low-level implementation such as changes to the
database schema.

Both of these viewpoints are worth bearing in mind. That’s not to say either should be
followed religiously. Be aware of the advantages and problems of each approach and
make an informed decision about where and why you are going to make compromi‐
ses when writing specifications.

Using “fixture methods” like the createUser and createMessage methods we’ve
defined achieves a reasonable level of abstraction, and I think makes for a good com‐
promise. I’ve seen extremely unwieldy end-to-end test suites that did everything via
the user interface, and they were slow and brittle. Tests should always be as small,
simple, and focused as possible. At the same time, I think reading data back for verifi‐
cation via the REST API in the previous example is probably straightforward enough
that we can overlook the fact that it’s introducing an additional point of failure into
the test.

Handling Redirect Responses
Sometimes a REST API will issue an HTTP redirect response code. Many HTTP cli‐
ents will by default follow a redirect and seamlessly return the response from the
redirected URL.

Let’s create an endpoint for Squawker that will redirect to the latest message posted by
a user. If the client requests /spock/messages/latest, it will be redirected to /
messages/__<id-of-latest-message>__. We can write a test for this easily enough:

def "can get a user's latest post"() {
  given:
  createUser(username)
  def messageId = createMessage(username, messageText) 

  when:
  def response = client.getForEntity("/api/$username/messages/latest", Message)

  then:
  response.statusCode == OK 
  response.body.id == messageId 

  where:
  username = "spock"
  messageText = "@kirk That is illogical, Captain!"
}

We’ve added another data fixture method, which this time is returning a value—
the id of the message it sets up.

238 | Chapter 13: Testing REST APIs



The HTTP client automatically follows the redirect, so the HTTP status code is
the one returned by the final URL.

We assert that the id of the message returned matches the one we set up at the
beginning of the test.

The new fixture method is very simple:

protected Serializable createMessage(String username,
                                     String text,
                                     Instant postedAt = now()) {
  def user = userStore.find(username)
  messageStore.insert(user, text, postedAt).id
}

It just retrieves a User object from the database, uses the MessageStore.insert(Mes
sage) method to create a message, and then returns its id.

Remember that the value of the last statement in a Groovy method is returned even
without a return keyword (unless the method is declared void).

Verifying Redirect Details
There are subtleties to redirects that are not being tested here. As soon as the user
"@spock" posts another message, the /spock/messages/latest endpoint should
begin redirecting to the new message URL. In other words, this is a temporary redi‐
rect. An HTTP 301 status code tells a client that it should not attempt to use the origi‐
nal URL again because the content has moved permanently. A 302 tells the client that
the redirect is temporary and that the endpoint can begin redirecting to a different
URL or stop redirecting at all at some time in the future.

The /spock/messages/latest URL should use a 302 status code and not a 301. From
the specification so far, we have no way to determine what type of redirect the client
followed, so we’re not testing for the correctness of this behavior. In fact, we’re not
even testing that a redirect is happening at all—the test would still pass if the end‐
point responded with an HTTP 200 and returned the data directly.

Most of the time, you want an HTTP client to transparently follow redirects but when
you’re trying to test the specifics of the redirect like this, it gets in the way. Most
HTTP clients have a way to disable automatic redirect following for exactly this rea‐
son. Let’s do that in the feature method we just wrote. Instead of verifying the content
of the response data, we’ll verify the details of the redirect.

Handling Redirect Responses | 239



Spring’s TestRestTemplate scans the classpath for various HTTP
client libraries and will use whichever is available for the underly‐
ing HTTP transport. If the client it finds can disable following redi‐
rects, TestRestTemplate will do so. For example, just adding
Apache HttpClient to the classpath will make TestRestTemplate
not follow redirects.
If you find it is following redirects, just add the following to your
build.gradle:

testRuntime "org.apache.httpcomponents:httpclient:4.5.2"

After the HTTP client is configured to not follow redirects, the feature method can
change.

def "can get a user's latest post"() {
  given:
  createUser(username)
  def messageId = createMessage(username, messageText)

  when:
  def response = client.getForEntity("/api/$username/messages/latest", String)

  then:
  with(response) {
    statusCode == FOUND 
    headers.getFirst(LOCATION).toURI() == url("/api/messages/$messageId")
    
  }

  where:
  username = "spock"
  messageText = "@kirk That is illogical, Captain!"
}

Now, we can verify the specific redirect status code that the server returns.

A redirect status should always be accompanied by a Location header instructing
the client as to where to redirect. The Location header must be an absolute URL.
Here, we’re asserting that the server is redirecting us to the correct message.

REST API Security
So far, we’ve allowed data to be created with a simple, unauthenticated POST request.
Obviously, this is not good enough for a production system, because we would be
opening Squawker up to abuse by anyone able to send fake messages purported to be
written by any user. We need to secure the REST API so that endpoints that create
data require authentication.

240 | Chapter 13: Testing REST APIs



Until now, the user posting the message has been determined by the username in the
URL. In previous examples, when we post to /api/spock/messages our application
works out that @spock is the user posting the message because the username is
present in the URL. Although that URL scheme makes sense for retrieving data,
which can be done by anonymous users, it’s redundant after we begin using authenti‐
cation.

With an authenticated request the application server can derive the user making the
request from the credentials presented in the request headers, as you will see shortly.
It would not make sense to allow posting if the credentials matched a different user
than the one in the URL. In fact, because the authenticated user is determined by the
security filter, there is no need to specify it in the URL at all. We’ll change the applica‐
tion so that new messages are posted to just /api/messages and the posting user is
determined by authentication.

Let’s start with a simple test that ensures an unauthenticated request is rejected. In
this example, we’ll attempt to post a message exactly as we have to this point but
using our new endpoint:

def "an anonymous user cannot post a message"() {
  given:
  createUser(username)

  when:
  def request = post(url("/api/messages"))
    .contentType(TEXT_PLAIN)
    .body(messageText) 
  def response = client.exchange(request, Map)

  then:
  response.statusCode == UNAUTHORIZED 

  where:
  username = "spock"
  messageText = "@kirk That is illogical, Captain!"
}

The URL to which we’re posting has changed, but the request is otherwise identi‐
cal to those made in earlier examples.

We should now get an HTTP 401 response code indicating that the action we
tried to take requires authentication.

Now that we have shown authentication is required in order to post a message, it’s
time to update the earlier feature method that posts a message successfully. We’ll need
to generate credentials in the form of an API token and add it to the request in the
Authorization header.

REST API Security | 241



Token authentication is a typical scheme for REST APIs. An API token is associated
with each user and provided to them. To make an authenticated request, the user
adds an Authorization header that looks something like this:

Authorization: Token OGY2NTY3MTEtMjg3Zi00ZWY5LWJjYzAtZWJjNWNmMWY5MmZk

When the server receives the request, it identifies the requesting user by using the
token provided in the header.

That’s exactly what we’ll implement in the example that follows. We’ll use remote
access to set up an API token in the database associated with the user and then use it
in the request header:

def "a user can post a message"() {
  given:
  createUser(username)
  def authToken = generateToken(username) 

  when:
  def request = post(url("/api/messages")) 
    .header(AUTHORIZATION, authToken) 
    .contentType(TEXT_PLAIN)
    .body(messageText)
  def response = client.exchange(request, Message)

  then:
  response.statusCode == CREATED

  and:
  with(response.body) {
    postedBy.username == username 
    text == messageText
  }

  where:
  username = "spock"
  messageText = "@kirk That is illogical, Captain!"
}

In addition to creating a user, we need to create an API token.

The URL needs to change to the new authenticated endpoint.

We attach an Authorization header to the request that contains the token.

It’s important to ensure that the message is posted by the correct user because
that proves the authentication filter is identifying the user correctly.

Let’s look at the fixture method that creates the API token:

242 | Chapter 13: Testing REST APIs



@Autowired ApiTokenStore apiTokenStore 

protected String generateToken(String username) {
  def user = userStore.find(username)
  def token = apiTokenStore.generateTokenFor(user) 
  "Token $token" 
}

def cleanup() {
  dbi.open().withCloseable { Handle handle ->
    // ... existing code
    handle.execute("delete from api_token") 
  }
}

We autowire a new DAO…

… and then use that to generate an API key for a user.

For convenience, the fixture method returns the token in the format used in an
Authorization header.

Of course, we don’t want to leave any API tokens around for the next test.

Token Security

The sample code attached to this project uses a very naïve token
scheme. This example is concerned with the details of how a gener‐
ated token is attached to the request in a test, not how to properly
secure a REST endpoint. In a real application, the API token should
be salted and stored in an encrypted form. This book is not a secu‐
rity reference, so be sure to consult appropriate sources before
implementing a security scheme in your own application.

Now we have a way to set up authenticated requests for REST API endpoints.

Authentication versus Authorization
In the context of a REST API like this, authentication means establishing who the
requesting user is. We’ve done that when posting a message. Because that’s an action
open to any user, there’s no need to perform any further checks beyond ensuring that
the request is being made by a valid user.

Authorization, on the other hand, means establishing that the authenticated user is
permitted to do whatever it is they’re trying to do.

Authentication and authorization errors are represented in HTTP with two different
status codes. There’s a subtle difference between HTTP 401—Unauthorized and

REST API Security | 243



HTTP 403—Forbidden. 401—Unauthorized, which we tested for when making an
anonymous request to the /api/messages endpoint, means that either the request did
not provide any credentials or the credentials provided are invalid. Examples of inva‐
lid credentials include an expired API token or an incorrect username and password
combination.

403—Forbidden means that credentials were provided and they are valid but the
authenticated user is not allowed to perform the action. For example, although the
user @spock may delete messages he posted earlier, he may not delete a message pos‐
ted by @kirk.

Let’s put together a test to show the difference. First, we’ll ensure that a user can
delete a message he posted himself. In this example, we create a user, API token, and
message, just as before, and then send a request to delete it:

def "a user can delete their own message"() {
  given:
  createUser(username)
  def authToken = generateToken(username)
  def messageId = createMessage(username, messageText)
  def messageUrl = url("/api/messages/$messageId")

  when:
  def request = delete(messageUrl) 
    .header(AUTHORIZATION, authToken)
    .build()
  def response = client.exchange(request, Map)

  then:
  response.statusCode == OK 

  and:
  client.getForEntity(messageUrl, Map).statusCode == NOT_FOUND 

  where:
  username = "spock"
  messageText = "@kirk That is illogical, Captain!"
}

We’re going to send an HTTP DELETE request to the URL for a specific message.

The response should indicate the action was successful but does not contain any
data.

We then ensure that the message really was deleted by proving that we now
receive a 404 when we try to make a GET request for it.

244 | Chapter 13: Testing REST APIs



So far, so good. We’ve allowed a user to delete a message. However, we shouldn’t allow
just any user to do this. Users should be permitted to delete only messages they pos‐
ted themselves; otherwise, our application is ripe for abuse.

To ensure this is the case, we’ll add another test that sets up two users, posts a mes‐
sage as one, then tries to delete it as the other. The delete request should this time
receive a 403 response code, indicating that even though the user provided valid cre‐
dentials, she is not actually allowed to delete that particular message.

def "a user cannot delete another user's message"() {
  given:
  createUser(postingUser)
  def messageId = createMessage(postingUser, messageText) 
  def messageUrl = url("/api/messages/$messageId")

  and:
  createUser(requestingUser)
  def authToken = generateToken(requestingUser)

  when:
  def request = delete(messageUrl)
    .header(AUTHORIZATION, authToken) 
    .build()
  def response = client.exchange(request, Map)

  then:
  response.statusCode == FORBIDDEN 

  and:
  client.getForEntity(messageUrl, Map).statusCode == OK 

  where:
  postingUser = "spock"
  requestingUser = "kirk"
  messageText = "@kirk That is illogical, Captain!"
}

Here a message is posted by postingUser.

We then generate an API token for requestingUser and attach that to the
request.

The response code should be 403, indicating that authentication succeeded but
authorization failed.

Of course, just getting a 403 doesn’t prove we didn’t do something silly in the
implementation and just delete the message regardless, so it’s prudent to also
prove that the message is still accessible.

REST API Security | 245



Now, we’ve shown that only the posting user can delete a message and we’ve respon‐
ded appropriately to an unauthorized request.

Of course, we should also implement tests to ensure that anonymous users cannot
delete messages and a 404 response code is returned when a user attempts to delete a
message that does not exist or was deleted already.

Summary
In this chapter, we looked at testing a REST API via an HTTP client. You should now
have a good idea how to do the following:

• Set data up using a backdoor into the server
• Access endpoints with different HTTP methods
• Send data along with a request
• Test for various error conditions
• Test for authentication and authorization

Although the examples have used the Spring Boot web application platform, the con‐
cepts are common to any kind of REST API testing. The specific way to attach an
Authorization header might differ, but the content of the header and the general con‐
cept of token authentication are identical when using a different client or server plat‐
form.

246 | Chapter 13: Testing REST APIs



CHAPTER 14

End-to-End Web Testing

One of the trickier types of automated testing is checking a web application via the
browser. Differences in rendering in different browsers, frequent upgrades, and—
more than anything—speed can be major issues when it comes to testing in a
browser. Web UIs can change rapidly and break tests that are too tightly coupled to
the fine-grained structure of the page. It’s very important to develop a good abstrac‐
tion so that the details of HTML structure, such as hierarchies of elements and partic‐
ular classes and IDs, are not liberally spread throughout your test suite making it very
difficult to change the structure without considerable rework repairing tests. If you’re
using a continuous integration server, it can be difficult to make browser-based tests
work when the server probably does not have a display attached and typically might
not even have a graphical environment at all.

In this chapter, we’ll develop some in-browser tests using Spock and a library called
Geb. We’ll build and test a web frontend for the Squawker application. As we do this,
we’ll examine how to build a page model abstraction that decouples tests from the
DOM structure of the web pages.

Geb
Geb (pronounced “jeb”) is a browser automation API that wraps around Selenium.
With Geb, Java code can issue commands to a browser and interact with pages.
Although you can use it for scripting purposes, the primary use of Geb is to write
functional or end-to-end tests for web applications.

247



Getting Started with Geb
Geb itself is a simple jar dependency. For example, if you’re using Gradle to build
your project, you can add the dependency for Geb like this:

testCompile "org.gebish:geb-spock:0.13.1"

In addition to Geb, you’ll need a Selenium driver. Precisely which one depends on
which browser you want to use. For example, assuming that we’ll run the tests using
Firefox, we need to add the following dependencies to our Gradle build:

testCompile "org.seleniumhq.selenium:selenium-firefox-driver:2.53.0"

Driving Chrome and Other Browsers
Chrome requires a special executable, called chromedriver, to be controlled by Sele‐
nium. You can avoid having to manage the executable by using WebDriverManager, a
library that takes care of installing the executables required to drive Chrome and
other browsers.

You can add the dependency to Gradle like this:

testCompile "io.github.bonigarcia:webdrivermanager:1.4.8"

Then, add the following to src/test/resources/GebConfig.groovy

import io.github.bonigarcia.wdm.ChromeDriverManager
import org.openqa.selenium.chrome.ChromeDriver
import org.openqa.selenium.firefox.FirefoxDriver

    ChromeDriverManager.getInstance().setup()
    driver = { new ChromeDriver() }

Running Tests with Different Browsers
You can run your test suite in different browsers by using the geb.env system prop‐
erty. First, specify the environment rules Geb will use, as follows:

// tag::chrome-imports[]
import io.github.bonigarcia.wdm.ChromeDriverManager
import org.openqa.selenium.chrome.ChromeDriver
import org.openqa.selenium.firefox.FirefoxDriver

// end::chrome-imports[]
environments {
  chrome {
    // tag::chromedriver[]

248 | Chapter 14: End-to-End Web Testing



    ChromeDriverManager.getInstance().setup()
    driver = { new ChromeDriver() }
    // end::chromedriver[]
  }

  firefox {
    driver = { new FirefoxDriver() }
  }
}

You can add branches for as many different browsers and system architectures as you
like.

Next, ensure that Gradle will pass the geb.env property to the test task and provide a
default.

test {
  systemProperties "geb.env": System.properties."geb.env" ?: "chrome"
}

You can now run tests with a different browser using gradle -Dgeb.env=firefox, for
example. If you don’t specify any geb.env value, the tests will run with the default
(Chrome, in the preceding example).

Using this mechanism, it’s easy to set up cross-browser test suites on continuous inte‐
gration servers.

A First Frontend Test
We’ll start by building a timeline page for a user. To begin with, we won’t worry about
logging in; let’s assume that the user is authorized. We simply want to see a list of
messages that include those from the user and anyone she follows but don’t include
messages from anyone else.

We want our page to be served up at 0. For example, using Spring Boot to run the
application locally, we’d look at 1 to see our timeline. As we saw when looking at test‐
ing REST APIs, you’ll need to be able to determine the address and port where your
application is running.

The example in this chapter uses an Angular JS frontend to the same REST API we
developed in previous chapters. We could serve up static pages from Spring Boot, but
because single-page applications are so common these days and bring a handful of
special considerations to the table when testing with Geb, it’s useful to do the example
that way.

@SpringBootTest(webEnvironment = RANDOM_PORT, classes = [Main])
class TimelineSpec extends GebSpec { 

  @LocalServerPort int port

A First Frontend Test | 249



  @Autowired DBI dbi
  @Autowired UserStore userStore
  @Autowired MessageStore messageStore
  @Autowired ApiTokenStore apiTokenStore

  def cleanup() {
    dbi.open().withCloseable { Handle handle ->
      handle.execute("delete from message")
      handle.execute("delete from following")
      handle.execute("delete from api_token")
      handle.execute("delete from user")
    }
  }

  Serializable createUser(String username) {
    def user = userStore.insert(username)
    apiTokenStore.generateTokenFor(user)
    return user.id
  }

  Serializable createMessage(String username, String text) {
    def user = userStore.find(username)
    messageStore.insert(user, text, now()).id
  }

  void loginAs(String username) {
    // ...
  }

  def "a user can see their own messages in their timeline"() {
    given:
    createUser("spock") 
    createMessage("spock", "Fascinating!")

    and:
    loginAs("spock") 

    when:
    go("http://localhost:$port/#/timeline") 

    then:
    waitFor {
      $(".page-header").text() == "Timeline" 
    }
    $(".sq-message-text").text() == "Fascinating!" 
    $(".sq-posted-by").text() == "@spock"
  }
}

Specifications using Geb extend from geb.spock.GebSpec.

250 | Chapter 14: End-to-End Web Testing



First, we create some test data in a similar way as we did when testing REST APIs.

A user must log in to see his timeline. We’ll revisit the details of this shortly. For
now, assume that it’s a no-op or that we haven’t actually implemented the authen‐
tication functionality yet.

Then, we connect to the 0 page in the application.

We wait until Angular JS has composed and displayed the page.

Finally, we assert that the test data we created is visible.

Data Fixtures for End-to-End Tests
Because we’re building on top of the Spring Boot REST API, we can inject DAOs to
set up our test data in exactly the way that we saw previously. If you’re using a differ‐
ent platform, you might need to approach data setup differently. Some typical
approaches are to use a special endpoint that accepts JSON data or that creates prede‐
fined named fixtures.

It is usually not a good idea to set up test data by having the test step through the
application as a user would. Tests that do that are very brittle because a regression in
parts of the system dealing with data setup can break a huge swathe of unrelated tests.
For example, a test for an order checkout process that relies on adding items to the
customer’s cart by stepping through product pages and clicking add to cart will break
if there’s a regression in displaying product pages, adding items to the cart, user login,
and so on.

Not only does setting up data in that way become brittle but it’s usually too limiting. If
you want to test that items expire from a user’s cart after 30 minutes, you don’t want
to have your test wait around for 30 minutes after adding items to the cart! If you
want to test that price changes that happen after a user adds items to her cart are
reflected, do you really want to log in as a user, add items to the cart, log out, log in to
the admin interface, tweak the prices, log out again, log in again as the user, view the
cart, and assert that the prices have updated?

There are a couple of things here specific to Geb. The go method is provided by Geb
and sends the browser to the specified URL. It’s the equivalent of typing a full URL in
the address bar of a browser and pressing Enter. The $ method finds elements in the
page rendered by the browser. There are a handful of overloaded versions of the
method, but the one shown in this example uses a CSS selector expression to locate
the element or elements.

A First Frontend Test | 251



The return type of the $ method is a Geb Navigator object, which provides various
further methods for interacting with the element or elements returned. The API
deliberately emulates jQuery’s, which many programmers will find familiar.

The $ method similarly locates elements on the page using a CSS selector expression
and returns an object that wraps around those elements, allowing further interaction.
The crucial aspect is that the Navigator value returned can represent zero, one, or
many page elements. It provides the methods isEmpty() and size() to determine if
the element set is empty or how many elements it contains, and an iterator()
method for iterating over each element individually. The example uses the text()
method of Navigator, which returns the text content of all elements in the set. This is
typically useful only when there is a single element and that element is a leaf node.
Otherwise, text() will return the text from all elements concatenated together.

Waiting for Pages to Be Ready
One of the trickiest things in browser-based end-to-end testing is knowing when it is
safe to begin interacting with the page. With “traditional” web applications that reload
the entire page when navigating, submitting forms, and so on, this is not an issue.
There, the test can wait for the load event on the document or window and be sure
that everything is ready at that time. When you begin adding JavaScript-powered
components to the page that can take a few milliseconds to initialize, things become
much less reliable.

Nowadays with the popularity of single-page apps, things are more difficult still.
Single-page apps load a skeleton HTML file, trap navigation and form submission
with JavaScript event handlers, and dynamically replace portions of the document
rather than reloading the entire page. Unfortunately, it can be quite tricky to know
when navigation has completed and the “new” page is ready.

If the test tries to interact with the page too soon, elements might not be present or
data might not have been merged into the HTML template. Because JavaScript usually
initializes pretty fast in modern browsers, the test might not fail every time. A typical
tactic is to wait for some condition to be true before interacting with the page. In the
previous example, the test waits until the page heading text is present, indicating that
Angular JS has loaded the view template into the DOM.

Introducing Page Models
This feature method so far works okay, but it has a couple of issues that will affect its
usefulness long term.

First, the address of the timeline page is hardcoded into the test. It’s possible that
might never change, but in a more complex suite of tests, it becomes less and less sus‐

252 | Chapter 14: End-to-End Web Testing



tainable to hardcode URLs. If a change to the application changes a URL scheme,
there will suddenly be a spate of failing tests that need to be fixed individually.

Similarly, and worse still, the feature method has hardcoded details of the page struc‐
ture. Whereas URLs might change infrequently and can probably be updated with a
simple search-and-replace macro, hardcoding page structure can be catastrophically
brittle. Classes and IDs in an HTML page can be a very low-impact change, and even
switching around the relationship of elements to one another is simple. If browser-
based tests like this have HTML classes hardcoded, they can break in ways that are
very tedious to fix. If the structure changes, rather than use a simple search-and-
replace macro, it will likely be necessary to tediously inspect and fix each test individ‐
ually.

To combat this brittleness, browser-based tests frequently use an abstraction known
as a page model. The idea is that instead of hardcoding the page structure directly into
the test, that structure is encapsulated in a class or hierarchy of classes that represent
the page and its various components in logical terms. The tests can then interact with
the page model objects without making assumptions about the fine details of the page
structure. If and when the HTML structure changes, the page model classes are upda‐
ted in a single place. For simple changes such as a change in the name of an HTML
class, the tests should immediately begin working again. For radical structural
changes, the tests might still need to be changed as well as the page model classes, but
at least when that’s necessary, you can bring IDE refactoring tools to bear.

Geb has first-class support for page model classes. Let’s restructure our feature
method to use such a class:

def "a user can see their own messages in their timeline"() {
  given:
  createUser("spock")
  createMessage("spock", "Fascinating!")

  and:
  loginAs("spock")

  when:
  to(TimelinePage)

  then:
  page.messageText == "Fascinating!"
  page.postedBy == "@spock"
}

Now instead of using a hardcoded URL, we’re telling the browser to go to a particular
page using the to(Page) method. The page model class encapsulates the URL. Also,
instead of directly referencing HTML classes in CSS expressions to find elements on
the page, the feature method now just references properties on the page object. The
page property is inherited from GebSpec.

Introducing Page Models | 253



Not only is the test less brittle now, but it actually reads better, too. It’s simpler and
deals with the logical structure of the page rather than any fine-grained detail.

So, what does the TimelinePage class look like?

Geb uses a template defined via static properties in the page class to construct the
individual objects:

import geb.Page

class TimelinePage extends Page {

  static url = "#/timeline" 

  static atCheckWaiting = true
  static at = { 
    $(".page-header").text() == "Timeline"
  }

  static content = { 
    messageText {
      $(".sq-message-text").text()
    }
    postedBy {
      $(".sq-posted-by").text()
    }
  }
}

First, the page’s URL is declared as a static property named url.

Then, the static property at defines a way to check that the page is indeed the
correct one. In this case, we simply check that the header on the page is correct.

Finally, a content property defines the structure of the page.

This probably looks quite unfamiliar—there are no instance properties or methods in
this example, so where are the messageText and postedBy properties the feature
method references coming from?

The static content property is a closure that allows us to use a DSL to define the page
structure. Inside the content closure, you can see further named closures that con‐
tain the exact same CSS expressions that we earlier used directly in the test. Geb maps
this content DSL against the actual page when it is loaded and can lazily evaluate the
elements on the page when properties are referenced on the resulting page object.

254 | Chapter 14: End-to-End Web Testing



Setting the Base URL
Notice that the url property in TimelinePage is a relative URL. In the very first test
we wrote, we passed a fully qualified URL to go, but now that we’re dealing with page
objects, it wouldn’t make sense to hardcode the entire URL into the pages themselves.
Geb’s browser has a baseUrl property that we can set once and then just use relative
URLs everywhere, as shown here:

@LocalServerPort int port

def setup() {
  baseUrl = "http://localhost:$port"
}

Because we’re using Spring Boot, we can inject the random server port by using the
@LocalServerPort annotation. If you’re using another platform, you’ll need a way to
determine the port or run on a known port.

Why a Content DSL?
Why define a content DSL rather than actual straightforward instance properties on a
page class? You might reasonably think it’s more straightforward to define content
properties in the page class, like this:

String messageText = $(".sq-message-text").text()

String postedBy = $(".sq-posted-by").text()

However, this will attempt to initialize the properties before the page has actually
been loaded in the browser and result in Geb throwing PageInstanceNotInitialize
dException.

Instead, maybe we could define the content properties as methods by using the Java
bean convention, which will ensure that the CSS expressions are not evaluated until
the page is actually loaded.

String getMessageText() {
  $(".sq-message-text").text()
}

String getPostedBy() {
  $(".sq-posted-by").text()
}

This does actually work. However, there’s a significant downside in that the CSS
expressions are reevaluated every time the get methods are called. In more complex
tests, that could be inefficient and slow down execution. Geb’s content DSL will create
lazily evaluated properties that cache the elements found on the page so that they can
be reused at will throughout the test.

Introducing Page Models | 255



The key to the content DSL is Groovy’s meta-programming model that allows refer‐
ences to nonexistent properties and methods to be intercepted. In our example, the
TimelinePage class does not have a messageText property, but when the feature
method tries to reference it, Geb intercepts the call and determines it can supply a
value based on the model defined in the content DSL.

The at property is another closure that returns a Boolean value indicating whether
the page loaded by the browser is the correct one. This check can be as simple or as
complex as necessary. In our example, a simple check against the header text is per‐
formed. The at closure can reference properties from the content DSL if necessary.

We’ve also specified static atCheckWaiting = true. This is a convenience Geb pro‐
vides for tests running against JavaScript applications running in the browser. By
default, Geb will run the at check after it detects a “page loaded” event from the
browser. However, in a JavaScript application, the page might appear to be loaded
before any or all of the content appears because the content is created by the Java‐
Script application itself. By setting atCheckWaiting to true, Geb will wait until the at
check passes rather than just evaluating it once.

Geb’s Automatic Delegation
In the previous feature method, we referenced the page property defined by the Geb
Spec superclass. In fact, this isn’t necessary, because GebSpec automatically delegates
to those objects. Using more idiomatic Geb style, we can write the test like this:

  when:
  to(TimelinePage)
  
  then:
  messageText == "Fascinating!"
  postedBy == "@spock"

Authentication
At this point, we can look again at the loginAs(String) method introduced in the
first example. Timelines are unique to users, so it’s necessary to log in to access it. In
the browser interface we’re developing, this means having a typical username and
password login form that drops a cookie with an authentication token when the login
is successful.

The GebSpec base class automatically clears cookies at the end of each feature
method, so we know that at the start of each we won’t be logged in.

To handle the login process, we can build a page class similar to the TimelinePage:

256 | Chapter 14: End-to-End Web Testing



class LoginPage extends Page {

  static url = "#/login"

  static atCheckWaiting = true
  static at = {
    $(".page-header").text() == "Log in"
  }

  static content = {
    usernameField {
      $(".sq-login #username")
    }
    passwordField {
      $(".sq-login #password")
    }
    submitButton {
      $(".sq-login [type=submit]")
    }
    authenticatedUser {
      $(".sq-authenticated-user").text()
    }
  }
}

The login page contains content properties for the username and password input
fields, the submit button, and a text element that will display a message if a user is
logged in successfully.

Encapsulating Interactions by Using Methods
Page model classes can define methods, and can be an effective way to encapsulate
logical operations performed on the page. In our example, the logical operation is
“logging in.” It has a two inputs: the username and password. We can define an
instance method login in the page class that encapsulates entering the username and
password, submitting the form, and waiting for a confirmation message to appear
showing that the login succeeded:

void login(String username, String password) {
  usernameField.value(username)
  passwordField.value(password)
  submitButton.click()
  waitFor {
    authenticatedUser == "Logged in as @$username"
  }
}

That’s much neater than having to repeat each of those steps outside when interacting
with the page object. It encapsulates the functionality of the page still further than just
defining content properties.

Authentication | 257



If the login fails for whatever reason, the waitFor step will time out and the feature
method will fail.

We can add a further method to a base specification class or trait so that we don’t
even need to explicitly go to(LoginPage) in the feature methods:

void loginAs(String username, String password = "password") {
  to(LoginPage)
    .login(username, password)
}

Default Parameter Values with Groovy

The loginAs method uses a default parameter value to save you
from always having to specify a password when test users are
always created with the same one by default. Groovy allows any or
all parameters to have default values. The only restriction is that
nondefaulted parameters must appear before defaulted ones. When
called, the defaulted parameters can simply be omitted unless dif‐
ferent values are needed.

To ensure that the login functionality is working as expected, we can create a test that
logs in as two different users and verifies that different timelines are displayed:

def "different users see different timelines"() {
  given:
  createUser("kirk")
  createUser("spock")
  createMessage("kirk", "Report, Mr Spock.")
  createMessage("spock", "Fascinating!")

  when:
  loginAs("kirk")

  then:
  at(TimelinePage) 
  messageText == "Report, Mr Spock."
  postedBy == "@kirk"

  when: 
  loginAs("spock")

  then:
  at(TimelinePage)
  messageText == "Fascinating!"
  postedBy == "@spock"
}

Geb’s at(Page) method asserts that the browser is on the specified page by using
the page class’ at check. If successful, it also changes the current page object.

258 | Chapter 14: End-to-End Web Testing



This is an unusual feature method in that it has multiple when and then blocks.
Although not frequently seen, this is valid.

Multiple when and then Blocks

As demonstrated in the preceding example, it’s possible to have
multiple pairs of when and then blocks. In the feature method here,
there’s a good reason to do so because we want to directly contrast
the content seen when two different users log in.
It’s not a good idea to abuse this capability to write very long fea‐
ture methods that test multiple conditions or run through an entire
workflow. Such tests “fail fast,” meaning a problem early on must
be fixed before later problems even become apparent.

Modules
Although we’ve seen the basics of how to define a page model, the model we have so
far is a little naïve. Because we’ve created only a single message in the feature method,
we can get away with a page model that defines a single messageText and postedBy
property. But what happens when the page displays multiple messages? We need a
way to reference the same messageText and postedBy property on each message so
that the test can verify them. This is where breaking down the page model into sub‐
components makes sense. The structure of the HTML block containing each message
will be identical, so it makes sense to represent it in the page abstraction with a collec‐
tion of smaller model objects that define the content for just that block.

The following is the structure of the relevant parts of the page:

<div class="container">           
  <h1></h1>
  <ol class="sq-message-list">    
    <li>                          
      <figure class="sq-message">
        <figcaption class="sq-message-heading">
          <span class="sq-posted-by"><a></a></span>
          <time class="sq-posted-at"></time>
        </figcaption>
        <div class="sq-message-text"></div>
      </figure>
    </li>
    <li>
      <!-- ... -->                
    </li>
  </ol>
</div>

Modules | 259



The container <div> wraps around the main content of the page; only such
things as a global header and footer will be outside it.

The container for the list of messages is an ordered list element: <ol>.

Each individual message is a list element (<li>) containing a <figure>.

The same structure is repeated for each message.

We can represent that structure with a hierarchy of modules like this:

The TimelinePage is a page object like the one we have defined previously, but now
instead of containing messageText and postedBy properties, it has a single Message
ListModule. The MessageListModule itself contains any number of MessageModule
objects and each of those will contain a messageText and postedBy property.

First, we’ll change the TimelinePage class to contain a single content property time
line. This uses Geb’s module method to initialize a new module object using the
selected node as the root:

  static content = {
    timeline {
      $(".sq-message-list").module(MessageListModule)
    }
  }

The module method is passed a class MessageListModule, so let’s see how that looks
next:

import geb.Module

class MessageListModule extends Module {
  static content = {

260 | Chapter 14: End-to-End Web Testing



    messages {
      $("li").collect {
        it.module(MessageModule)
      }
    }
  }
}

Instead of extending Page module classes, extend Module. They do not have url or at
properties, but their content is defined in exactly the same way as a page’s. The vital
thing is that the $ method works within the context of the module’s root element, not
the entire page. This means that here we can simply select all the li elements know‐
ing we’ll get those inside of the root element of the module and not any others that
happen to appear somewhere in the page.

In MessageListModule we transform the node-set of li elements into a List<Messa
geModule> using Groovy’s collect method and a closure that simply applies the
module class to every element.

Finally, the MessageModule class itself looks like this:

import geb.Module

class MessageModule extends Module {
  static content = {
    text { $(".sq-message-text").text() }
    postedBy { $(".sq-posted-by").text() }
  }
}

Now, we have our text and postedBy properties. This time they’re defined in the
context of a single message li element. We can have many such modules in the page.

Putting the new modules into use in a test is very easy. We can manipulate the mod‐
ule properties just like any other list:

def "a user can see their own messages in their timeline"() {
  given:
  createUser("spock")
  messages.each {
    createMessage("spock", it)
  }

  and:
  loginAs("spock")

  when:
  to(TimelinePage)

  then:
  timeline.messages.size() == messages.size() 

Modules | 261



  timeline.messages[0].text == messages[1] 
  timeline.messages[1].text == messages[0]
  timeline.messages*.postedBy.every { it == "@spock" } 

  where:
  messages = [
    "Fascinating!",
    "I remind you that this is a silicon-based form of life."
  ]
}

Assert that the number of modules matches the number of messages we expect to
appear.

Ensure that the text of each individual message is displayed correctly.

Use Groovy’s every method to assert that all of the messages display the same
username as the postedBy value.

We can also reuse the module classes in other pages. If we want to build a user page
that displays some details about a user along with a list of that user’s recent messages,
we can reuse the MessageListModule class:

class UserPage extends Page {

  static url = "#/user/spock"

  static atCheckWaiting = true
  static at = {
    $(".page-header").text() == "User @spock"
  }

  static content = {
    recent {
      $(".sq-message-list").module(MessageListModule)
    }
  }
}

Here, we have an identical content property to timeline from the timeline page, but
in this instance, it’s called recent. We can write a feature method to test the page in
the same way we tested the content of the timeline:

def "a user can see their own messages on their user page"() {
  given:
  createUser("spock")
  createMessage("spock", "Fascinating!")

  when:
  to(UserPage)

262 | Chapter 14: End-to-End Web Testing



  then:
  recent.messages.size() == 1
  recent.messages[0].text == "Fascinating!"
}

Parameterized Pages
The UserPage class defined here has a pretty serious limitation: it works only for the
user @spock! The username is hardcoded into the url property and the at check.
What we really need is a page object that we can use to model any user page. Essen‐
tially, instead of just supplying the page class as a parameter to the to method, we
need to be able to pass other parameters as well that will modify the state of the page
object, including its url property.

To do this, we can simply remove the hardcoded /spock portion of the URL in the
page class and instead pass it to the to method. Any extra parameters passed to the to
method are appended to the URL automatically, like so:

static url = "#/user"

when:
to(UserPage, "spock")

Unfortunately, we had also hardcoded the username in the at check, so that also
needs to be modified to make it work for any page. For example, it might be sufficient
to check the page header by using a regular expression:

static at = {
  $(".page-header").text() ==~ /User @.+/
}

For situations in which the parameters to the page need to be used beyond just the
URL, it’s possible to simply define a property or properties in the page class.

When doing this, it’s also necessary to override the method convertToPath, which is
responsible for taking the parameters passed to the to method and converting them
to a URL. The default implementation just chains parameters together separated by 0
and appends them to the url property. For example, with a url property of "foo" and
a call to FooPage, "bar", "baz", the resulting URL will be /foo/bar/baz:

private final String username

UserPage(String username) {
  this.username = username
}

@Override
String convertToPath(Object... args) {
  super.convertToPath(username, *args) 
}

Parameterized Pages | 263



static url = "#/user" 

Here we prepend the username property before any other parameters in convert
ToPath. There might not be any other parameters when the page is loaded.

The url is just 0 because we know that we’ll be adding the username in convert
ToPath.

The nice thing is we can now use the username property to make the at check simpler
again.

Spreading varargs with Groovy
You might be wondering what 0 means in the previous example. The 1 prepended
before an array or collection reference is Groovy’s “spread” operator. It spreads the
values from the array or collection to fill varargs.

Here’s the signature of the superclass method we’re calling:

String convertToPath(Object... args)

We want to pass it a single known value, plus any others that might or might not be
present in the args parameter. In Java, that would require us to create a new array one
element larger than the args parameter, add in username, and then use System.array
copy to copy over the remaining values from args. Finally, we could pass the new
array to the superclass method, as shown here:

Object[] newArgs = new Object[args.length + 1];
newArgs[0] = username;
System.arraycopy(args, 0, newArgs, 1, args.length);
super.convertToPath(newArgs);

In Groovy, the spread operator makes this much easier.

static at = {
  $(".page-header").text() == "User @$username"
}

We now have a flexible UserPage class that we can use in a variety of scenarios rather
than being restricted to a particular test user.

Interacting with Forms
The page model is not used only to read and verify data on the page—it can also be
used interactively.

264 | Chapter 14: End-to-End Web Testing



We’re going to add a page that allows the user to post a message. To do that, we’ll need
to have the user type into a text area and click a submit button. Figure 14-1 shows
what the page will look like.

Figure 14-1. The new message page

The HTML for the form section of the page looks approximately like this (I’ve
removed some irrelevant classes and other attributes):

<form class="sq-new-message">
  <div class="form-group">
    <label>
      Message
      <textarea name="text" ng-model="message.text"></textarea>
    </label>
  </div>
  <div class="btn-group">
    <button name="submit" type="submit" ng-click="post()">Post</button>
  </div>
</form>

The page model is easy enough to define. We’ll need a content property for the tex
tarea and another for the submit button:

class NewMessagePage extends Page {

  static url = "#/new-message"

  static atCheckWaiting = true
  static at = {
    $(".page-header").text() == "New Message"
  }

  static content = {
    textarea {

Interacting with Forms | 265



      $(".sq-new-message textarea") 
    }
    postButton {
      $(".sq-new-message button[type=submit]") 
    }
  }
}

We can then write a test fairly easily:

def "a user can post a message"() {
  given:
  createUser("spock")

  and:
  to(NewMessagePage)

  when:
  textarea.value(text) 
  postButton.click()   

  then:
  // ...

  where:
  text = "Fascinating!"
}

The value(String) method enters the form value.

The click() method is self-explanatory. In this case, it will also submit the form
because the button has type="submit".

So far, so good. But how do we verify that the message was created successfully?

It would make sense to have a page that displays a single message. Not only would
this be useful for deep links into the site, but it’s a sensible place to which to redirect
to after successfully submitting a new message.

Because we’ve already defined a MessageModule class, we can simply wrap that in a
very simple page and begin to see some reuse from our page model.

class MessagePage extends Page {

  static url = "#/message" 

  static atCheckWaiting = true
  static at = {
    $(".page-header").empty && $(".sq-message") 
  }

  static content = {

266 | Chapter 14: End-to-End Web Testing



    message {
      $(".sq-message").module(MessageModule) 
    }
  }
}

The URL for the page is 0, where :id is the unique ID of the message. The ID
value will come from the convertToPath method as in the UserPage class.

The at check is a little more complex because the message page has no header
but should have a message block.

We can reuse the MessageModule class we developed for the timeline page model
earlier. Note that there is no MessageListModule, because this page displays a
single message.

With that page model in place we can complete the feature method like this:

  at(MessagePage)      
  message.text == text 

Geb’s at method confirms that the browser is now at a new page. It runs the
specified page’s at check and, if successful, updates the current page so that sub‐
sequent delegated calls go to the new page type.

We can then refer to content properties of the new page. In this case, we just want
to verify the message text.

Accessing Form Elements by Name
The textarea is defined as a unique content property of NewMessagePage, but on
larger forms, this might become unwieldy. Geb has special support for forms, allow‐
ing data to be read and updated on named form elements. This is particularly useful
for larger forms, but we can reimplement NewMessagePage to take advantage of it:

static content = {
  form {
    $("form.sq-new-message") 
  }
}

Instead of defining separate properties for the textarea and submit button we just
define a single property for the entire form.

Any field in the form can then be automatically accessed by name on the Navigator
object represented by the content property. If referenced as a property, a field name is
used to get or set the value of a form field. If referenced as a method, a field name
provides access to the element as a Navigator object.

Interacting with Forms | 267



Let’s update the feature method to use this technique:

def "a user can post a message"() {
  given:
  createUser("spock")

  and:
  to(NewMessagePage)

  when:
  form.text = text      
  form.submit().click() 

  then:
  at(MessagePage)
  message.text == text

  where:
  text = "Fascinating!"
}

The textarea’s value is set by just assigning a string to a property on the form
whose name matches the form element’s name attribute.

The button is accessed by using the button’s name attribute like a method name.
This returns a Navigator object that we can click.

This is neat and convenient, but we’re back to exposing page structure in the test
rather than in the page model. If the form structure changes, we might need to revisit
a number of tests in order to update element names. We’ve also rather artificially
added a name property on the submit button when it doesn’t really need one, just so
that we can access it conveniently.

Encapsulating Interactions with Methods
As we saw with page model classes earlier, modules can define methods, and doing so
can be an effective way to encapsulate logical operations performed on the page. In
our example, the logical operation is “posting a message.” It has a single direct input:
the message text. We can easily define a method on the page class, as follows:

void postMessage(String text) {
  form.text = text
  form.find("[type=submit]").click()
}

Instead of accessing the submit button by name, we define a content property that
accesses it by its type attribute. This means that we can remove the redundant name
property from the button itself.

268 | Chapter 14: End-to-End Web Testing



At this point, we’ve completely encapsulated any detail of the page structure in the
page model, and the feature method deals only with high-level behavior:

def "a user can post a message"() {
  given:
  createUser("spock")

  and:
  to(NewMessagePage)

  when:
  postMessage(text)

  then:
  at(MessagePage)
  message.text == text

  where:
  text = "Fascinating!"
}

Form Validation
It’s typically important to test not only that users can submit forms successfully, but
also that errors are detected and displayed.

In the case of Squawker’s message form, the user should not be allowed to post a mes‐
sage that is too long and an error should display if that happens, as depicted in
Figure 14-2.

Figure 14-2. Error messages in the new message form

Form Validation | 269



The feature method to test that behavior could look like this:

def "a user cannot post a message with too much text"() {
  given:
  createUser("spock")

  and:
  to(NewMessagePage)

  when:
  postMessage(text)

  then:
  at(NewMessagePage)
  errors == ["Messages cannot be longer than 140 characters."]

  where:
  text = "You find it easier to understand the death of one than the death " +
    "of a million. You speak about the objective hardness of the Vulcan " +
    "heart, yet how little room there seems to be in yours."
}

After attempting to submit the form as before, the feature method asserts that the
browser has remained on the NewMessagePage using the at method. Then we look for
some validation error text to ensure an appropriate message is visible that explains
what is wrong.

The errors property is a fairly simple example of mixing Geb’s Navigator class with
Groovy’s functional iterator style. The content property extracts a list of error mes‐
sage strings from an HTML <ul> element:

static content = {
  form {
    $("form.sq-new-message")
  }
  submitButton {
    form.find("[type=submit]")
  }
  errors {
    $(".alert li").collect { it.text() }
  }
}

If there are no errors displayed, the list will be empty because calling collect on an
empty Navigator will always return an empty list.

We can go on to ensure that particular fields in the form are highlighted, the submit
button is disabled when errors are present, and so on.

270 | Chapter 14: End-to-End Web Testing



CHAPTER 15

Testing JavaScript Using Spock

So far, we’ve used Spock exclusively to test Java code. One of the reasons all of the
examples in the book use Java is that I want to stress that Spock is able to test more
than just Groovy. However, Java is not the only other language that we can test using
Spock.

In this chapter, we take a brief look at testing JavaScript using Spock. We’ll use the
Nashorn script engine (introduced in Java 8) to evaluate JavaScript and invoke it from
Spock.

Nashorn
The Java Virtual Machine (JVM) has long had a JavaScript interpreter—Rhino—
shipped along with it, and it has been possible to run simple scripts in the JVM. How‐
ever, Rhino had some limitations with respect to performance and the interoperabil‐
ity of objects created in Java and JavaScript. Typically, it’s necessary to convert Java
objects to a JavaScript representation before passing them to a script running in
Rhino and then convert any response value back again.

Nashorn (from the German for “rhino”), introduced alongside Java 8, has fewer such
limitations. It is very fast and can in many cases handle regular Java objects passed as
arguments to functions. It is necessary to translate lists and arrays to a JavaScript ver‐
sion, but many other structured object types work seamlessly.

Nashorn can also compile JavaScript code for more efficient repeated execution.

271



Why Test JavaScript from the JVM?
Why would we want to test JavaScript code from the JVM when JavaScript has its
own rich suite of testing tools? One possibility might be that you want to test some
small JavaScript components alongside a much larger Java codebase. Setting up the
infrastructure required to execute Jasmine tests as part of your build might seem like
unnecessary effort. Another is that in the production application, you’ll be invoking
JavaScript from Java and it would be beneficial to test that there aren’t any interopera‐
bility issues; for example, if you’re developing web page templates that are rendered
both on the server and in the browser. In fact, we’ll take a look at doing just that later
in this chapter.

Setting Up Nashorn for Tests
JavaScript is executed by a javax.script.ScriptEngine instance. In a Spock specifi‐
cation, we’ll probably want to create the engine once and reuse it across all our tests.
Here’s how we can do that:

@Shared ScriptEngine engine

def setupSpec() {
  def manager = new ScriptEngineManager()
  engine = manager.getEngineByName("nashorn")
}

Calling JavaScript Functions
After we have a script engine, we can use it to evaluate and execute bits of JavaScript
code. The javax.script package includes an interface, Invocable, that Nashorn’s
script engine implements. With the Invocable interface, we can call functions or
methods on objects inside the context of the script engine.

In the following simple example, we declare a JavaScript function in Nashorn and
then call it from a Spock specification:

def "can call a named function"() {
  given:
  engine.eval """ 
    function up(s) {
      return s.toUpperCase();
    }
  """

  expect:
  (engine as Invocable).invokeFunction("up", "Fascinating") == "FASCINATING" 
}

272 | Chapter 15: Testing JavaScript Using Spock



The engine.eval call parses a chunk of JavaScript code in the context of the
script engine. Here we’re declaring a simple function.

After it is cast to Invocable, we can call the invokeFunction method on the
script engine, passing the name of the function and a vararg array of parameters.
The return value is whatever the JavaScript function returns.

Why Do We Need to Cast ScriptEngine to Invocable?

Unfortunately, the declared return type of ScriptEngineMan

ager.getEngineByName is just javax.script.ScriptEngine, and
instances of that interface do not necessarily implement Invocable.
This means that we either need to cast our script engine instance to
Invocable or let Groovy dynamically call the method. A dynamic
call will succeed but obviously runs the risk of a typo and doesn’t
allow the IDE to help find and complete the invokeFunction call.
Invocable does not extend ScriptEngine, so if we declared engine
as Invocable, we’d have the exact same problem with the eval
method.
Because Groovy does not have intersection types like Ceylon—
where we could declare ScriptEngine & Invocable engine and
avoid any casting—we’re stuck with a couple of different imperfect
solutions.

JavaScript Functions as Objects
Instead of using invokeFunction, it’s also possible to use a JavaScript function as an
object that we can pass around and call in the same way we would a Groovy closure
or a Java functional interface.

Using the previous example, we can actually use the return value from engine.eval,
which in this case is the function declared in the script.

def "can call a function"() {
  given:
  def fn = engine.eval("""
    function up(s) {
      return s.toUpperCase();
    }
  """) as JSObject

  expect:
  fn.call(null, "Fascinating") == "FASCINATING"
}

Calling JavaScript Functions | 273



Because eval can return almost anything, it’s return type is declared as Object. For
cases like this in which eval returns a JavaScript function, the actual type will be
jdk.nashorn.api.scripting.JSObject.

The method of JSObject we need in order to call the function it represents is
call(Object this, Object... arguments). You can dynamically bind JavaScript
functions to a this context, so the first parameter of the call method provides a way
of supplying such a context. We do not need to bind our up function to any context,
so we can just supply null. The remaining parameters are whatever arguments the
JavaScript function expects; in this case, it’s a single string.

Because call is a special method name in Groovy that can be represented with the
brace operator, we can even use the JavaScript function almost as though it were a
Groovy closure:

expect:
fn(null, "Fascinating") == "FASCINATING"

Specifying this in a JavaScript Function
As I mentioned just a moment ago, that first parameter to which we’re passing null is
the function’s this.

If we change our simple function so that it operates on this instead of a parameter,
we can invoke it like this:

def "can bind tho 'this'"() {
  given:
  def fn = engine.eval("""
    function up() {
      return this.toUpperCase(); 
    }
  """) as JSObject

  expect:
  fn("Fascinating") == "FASCINATING" 
}

The JavaScript function itself no longer declares a parameter and now assumes its
this value is a string.

To invoke the function, we just pass the this value as the first parameter.

What we’ve done is roughly equivalent to the JavaScript, as illustrated here:

var up = function() {
  return this.toUpperCase();
}

274 | Chapter 15: Testing JavaScript Using Spock



var boundUp = up.bind('Fascinating');
return boundUp();

Testing an Isomorphic View Component
Let’s look at a slightly more involved example. When a message is rendered in
Squawker, we’ll include a timestamp displayed in a “friendly” way with text such as “a
few minutes ago” or “last month” instead of an absolute date and time.

Because we want Squawker to be a dynamic JavaScript application, we’re using client-
side rendering of the various pages, so we’ll need a little view component that trans‐
lates the absolute timestamp in a JSON representation of a message into the friendly
format we’ll show to the user. However, because we’re concerned about the time it
takes a user to begin interacting with the page and we also want search engines to
index Squawker, we want to be able to render the pages on the server, as well.

Isomorphic Web Applications

An isomorphic web application is one that can render its views on
either the server or client browser. Typically, a first load of a page
will be rendered on the server and delivered to the user’s browser
as HTML. Subsequent interactions make API calls to endpoints on
the server, which returns JSON, and the page in the browser is
modified in place by using JavaScript.
Search engines can “spider” an isomorphic application. In addition,
users do not need to wait for multiple HTTP round-trips before
they see the initial page. It retains the stateful flexibility of a rich cli‐
ent web application, though.

It would be crazy to duplicate the logic for rendering the views in JavaScript on the
client and Java on the server, so using Nashorn to execute the same JavaScript on the
server side as the browser uses on the client side seems like a good idea.

Our simple JavaScript function will accept a timestamp in the form of a number of
milliseconds and return a string.

This time, instead of inlining the JavaScript in the specification itself, we’ll load the
actual file that is deployed as part of the web application. Because Nashorn’s script
engine can accept a java.io.Reader, that’s easy enough to do:

@Shared ScriptEngine engine
@Shared CompiledScript script

def setupSpec() {
  def manager = new ScriptEngineManager()
  engine = manager.getEngineByName("nashorn")
  getClass().getResource("relative-time.js").withReader { reader -> 

Testing an Isomorphic View Component | 275



      script = ((Compilable) engine).compile(reader) 
    }
  script.eval() 
}

We can load the JavaScript file just like any other classpath resource.

Notice we’re also compiling the script. Nashorn is able to compile JavaScript for
more efficient repeated execution. The Compilable interface is another optional
interface like Invocable that script engines can implement.

After compiling the script, we still need to call eval to load it into the running
script engine.

After we have loaded, compiled, and evaluated the script, we can write the following
feature method that exercises it, just as we would for a Java or Groovy function:

@Unroll
def "can render relative timestamp"() {
  expect:
  (engine as Invocable)
    .invokeFunction("relativeTime", timestamp.toEpochMilli()) == expected

  where:
  timestamp               | expected
  now()                   | "just now"
  now().minus(1, MINUTES) | "a minute ago"
  now().minus(5, MINUTES) | "a few minutes ago"
  now().minus(1, HOURS)   | "an hour ago"
  now().minus(2, HOURS)   | "earlier today"
  now().minus(1, DAYS)    | "yesterday"
}

The JavaScript function itself is simple. It’s easy to see how we could extend it to cover
further cases, test driving by adding rows to the where: table:

function relativeTime(timestamp) {
  var now = new Date();
  var difference = now.getTime() - timestamp;
  if (difference >= 86400000) {
    return 'yesterday';
  } else if (difference >= 7200000) {
    return 'earlier today';
  } else if (difference >= 3600000) {
    return 'an hour ago';
  } else if (difference >= 120000) {
    return 'a few minutes ago';
  } else if (difference >= 60000) {
    return 'a minute ago';
  } else {
    return 'just now';

276 | Chapter 15: Testing JavaScript Using Spock



  }
}

An Invocable Script Engine as a Delegate
That ugly cast to Invocable is annoying, so it would make sense to provide a helper
method to hide it. One thing we could also do is use a @Delegate-annotated field
with type Invocable, allowing us to just call invokeFunction as though it were a
method of the specification class itself:

@Delegate Invocable invocableScriptEngine = engine as Invocable

@Unroll
def "can render relative timestamp"() {
  expect:
  invokeFunction("relativeTime", timestamp.toEpochMilli()) == expected

  where:
  timestamp               | expected
  now()                   | "just now"
  now().minus(1, MINUTES) | "a minute ago"
  now().minus(5, MINUTES) | "a few minutes ago"
  now().minus(1, HOURS)   | "an hour ago"
  now().minus(2, HOURS)   | "earlier today"
  now().minus(1, DAYS)    | "yesterday"
}

This seems much neater and will certainly be clearer to read and easier to write as we
add more feature methods to the specification.

You cannot use @Shared fields as delegates, so the Invocable is
reinitialized for every feature method.

Passing Mocks to JavaScript
For the moment, our friendly timestamp function returns a string, but another com‐
mon pattern in JavaScript is to use a callback function, which is passed the result.

Unlike Java methods, JavaScript functions can be called with fewer (or more) parame‐
ters than they declare in their signature. Any missing parameters are undefined in
the body of the function.

This means that our function could accept a second argument: a callback. If the call‐
back parameter is present, the result value is passed to the callback instead of being
returned.

Passing Mocks to JavaScript | 277



But how do we test such a thing? Our existing feature method is still valid for the case
in which we don’t supply a callback and the function should return its result. What
can we pass as the callback parameter, though? If we were testing the same kind of
callback in Java or Groovy, we’d probably use a mock; luckily, Spock’s mocks are
totally compatible with Nashorn:

@Unroll
def "can pass result to a callback"() {
  given:
  def callback = Mock(Consumer) 

  when:
  invokeFunction("relativeTime", timestamp.toEpochMilli(), callback)

  then:
  1 * callback.accept(expected) 

  where:
  timestamp               | expected
  now()                   | "just now"
  now().minus(1, MINUTES) | "a minute ago"
  now().minus(5, MINUTES) | "a few minutes ago"
  now().minus(1, HOURS)   | "an hour ago"
  now().minus(2, HOURS)   | "earlier today"
  now().minus(1, DAYS)    | "yesterday"
}

The Nashorn script engine can use any Java type annotated with @FunctionalIn
terface as if it were a JavaScript function. Consumer seems a logical choice for
the mock because it simply accepts a single value.

The mock verification is done just as it would be when testing Java or Groovy
code.

The updated JavaScript function with the optional callback looks like this:

function relativeTime(timestamp, callback) {
  var now = new Date();
  var difference = now.getTime() - timestamp;
  var result;
  if (difference >= 86400000) {
    result = 'yesterday';
  } else if (difference >= 7200000) {
    result = 'earlier today';
  } else if (difference >= 3600000) {
    result = 'an hour ago';
  } else if (difference >= 120000) {
    result = 'a few minutes ago';
  } else if (difference >= 60000) {
    result = 'a minute ago';
  } else {

278 | Chapter 15: Testing JavaScript Using Spock



    result = 'just now';
  }

  if (callback === undefined) {
    return result;
  } else {
    callback(result);
  }
}

Using stubs can also be very useful for simulating other JavaScript components with
which the function that’s being tested interacts.

Rendering a View with the Handlebars Library
If we’re really going to attempt to build an isomorphic application, we’ll want to do
more than just run simple script functions on the server. JavaScript has numerous
solutions for templating HTML, and we will probably want to use one to construct
the pages and components for the Squawker website.

In the following examples, we’ll use the Handlebars template library, but most of the
techniques we’ll look at for loading libraries and template files and using them to con‐
struct HTML would be equally applicable to Mustache, Jade, Underscore, Dust.js, or
whatever template library you end up using.

Handlebars
Handlebars is one of the most popular JavaScript template libraries. Although pri‐
marily used for rendering HTML, you can use it for any kind of text template.

Handlebars’ tags are delimited by double curly braces (that look like handlebar mus‐
taches, hence the name). Expressions within the braces can refer to properties on the
current context object, helper methods, and their parameters or “partial” templates
used to render modular parts of the document.

Handlebars is “logicless” in that you cannot embed logical operations within the tem‐
plate itself. What you can do is define helper methods that can either return a value to
be rendered or selectively render the content between their opening and closing tags.

Handlebars includes built-in helpers such as if and each that allow for conditional
and loop constructs. The if helper renders or skips the content between its opening
and closing tags, depending on the truthiness of the value passed as a parameter. The
each helper renders the content between its opening and closing tags once for each
element in the array value passed as a parameter.

Rendering a View with the Handlebars Library | 279



Because we’ll want to render a Squawker message in various contexts—individual
message pages, timelines, search results, user profiles, and so on—we’ll definitely
need a template to render a message that we can reuse in various contexts.

Let’s start with a simple form of the template and add some more detail later:

<article class="message">
  <div class="text">{{text}}</div>
  <footer>
    Posted by
    <a href="/users/{{postedBy.username}}">@{{postedBy.username}}</a>
  </footer>
</article>

When rendered, the template will produce HTML something like this:

<article class="message">
  <div class="text">Fascinating!</div>
  <footer>
    Posted by <a href="/users/spock">@spock</a>
  </footer>
</article>

The Template Context

Handlebars templates have the concept of a “context,” which can be
thought of as the object the template is rendering. In this case, the
template is referring to the properties of a message, so the message
object is the template’s context.
You use the keyword this if a template needs to refer to the context
object itself rather than one of its properties.
Some helper functions in Handlebars can affect the context within
their tag body. For example, the context within the body of an
{{#each}}...{{/each}} helper block is the individual element of
the current iteration.

Compiling Handlebars Templates
Handlebars has a compile function that turns a template string into a JavaScript func‐
tion. We don’t want to embed the template as a string in the specification class, so the
first thing we’ll need to do is load the template from a file and have Handlebars com‐
pile it.

Because this is something we’ll need to do repeatedly with different templates it
makes sense to create some helper methods that encapsulate some of the necessary
steps:

280 | Chapter 15: Testing JavaScript Using Spock



@Shared ScriptEngine engine
@Shared JSObject handlebars

def setupSpec() {
  def manager = new ScriptEngineManager()
  engine = manager.getEngineByName("nashorn") 
  loadResource("/handlebars.js") { reader ->
    (engine as Compilable).compile(reader).eval() 
  }
  handlebars = engine.eval("Handlebars") as JSObject 
}

@Delegate Invocable invocableEngine

def setup() {
  // end::jackson[]
  invocableEngine = engine as Invocable
}
// end::jackson[]

protected JSObject compile(String path) {
  loadResource(path) { reader ->
    invokeMethod(handlebars, "compile", reader.text) as JSObject 
  }
}

protected <T> T loadResource(
  String path,
  @ClosureParams(value = SimpleType, options = "java.io.Reader")
    Closure<T> callback) {
  getClass().getResource(path).withReader(callback) 
}

We set up the Nashorn script engine just as before.

We need to load and evaluate the Handlebars library itself.

Then, we get a reference to the Handlebars object in the script engine.

To compile a template, we call the compile method on that Handlebars object.
invokeMethod is a method on the Invocable script engine delegate. It’s similar to
invokeFunction except that it requires a target object as the first parameter and a
method name as the second.

Our loadResource helper method is used to read any JavaScript or template file
from src/main/resources and pass a reader to a callback.

Rendering a View with the Handlebars Library | 281



Testing Template Rendering
INow that we have Handlebars itself loaded into the script engine and have set up a
mechanism for compiling templates, we can move on to the following simple test for
our message template:

def "can render a message"() {
  given:
  def template = compile("message.hbs") 

  expect:
  with(render(template, message)) { 
    find(".text").text() == message.text
    find("footer a").attr("href") == "/users/$user.username"
    find("footer a").text() == user.toString()
  }

  where:
  user = new User("spock")
  message = new Message(user, "Fascinating", now())
}

Jerry render(JSObject template, Object... parameters) {
  $(template(null, *parameters) as String)
}

We begin by compiling the message template using the helper method we defined
earlier.

To make assertions against individual elements of the rendered HTML, we parse
the template result into a DOM tree–like structure.

There are a couple of things worth discussing here. First, note that the feature method
passes an actual Message instance to the template function. We’re passing a POJO to a
JavaScript function that is able to access the object’s properties by name. Remember
that the message.hbs template referred to the text and postedBy.username proper‐
ties.

Second, to turn the string result of the template function into something we can make
sensible assertions about, we’re using the Jerry library again. (You saw this library ear‐
lier in Chapter 8.) To recap quickly, Jerry parses an HTML string into a JQuery-like
structure that can be navigated and queried by using CSS selectors. It’s extremely use‐
ful for this kind of scenario in which trying to use regular expressions or other text-
parsing techniques to verify the rendered content would result in an extremely brittle
test.

To make Jerry seem very JQuery-like, we can import its factory method like this:

import static jodd.jerry.Jerry.jerry as $

282 | Chapter 15: Testing JavaScript Using Spock



Handling Properties That Don’t Convert to JavaScript
So far, we’ve used a regular Message as the context parameter for our template func‐
tion. That’s been fine because we accessed only plain string properties of the message.

But Message also has a postedAt property that is a java.time.Instant. Although
there’s nothing preventing a template from accessing properties or calling methods on
an Instant, if this was the case we’d then be tying our template to the server-side rep‐
resentation of the message.

It makes sense to include information about when a message was posted in our tem‐
plate. Let’s extend what we currently have to include that:

<article class="message">
  <div class="text">{{text}}</div>
  <footer>
    Posted by
    <a href="/users/{{postedBy.username}}">@{{postedBy.username}}</a>
    at
    <time>{{postedAt}}</time>
  </footer>
</article>

If we really want to use this template for both server- and client-side rendering, we
need to remember that the client-side rendering will use a JSON representation of the
message that looks something like this:

{
  "id":"852abf98-e519-4e99-abe2-51ace53498e5",
  "postedBy":{
    "id":"384e7e80-ba14-4325-b3f4-843602ab237c",
    "username":"spock",
    "registered":1485958195153
  },
  "text":"Fascinating",
  "postedAt":1485958195153
}

The postedAt timestamp is expressed as milliseconds since epoch. We can’t reference
that millisecond value in the same way we’d reference a java.time.Instant and
expect the same rendered output.

We’ll need to convert the Message instance into a JSON-like form. One way to do that
is to just produce a java.util.Map:

def "can render a message"() {
  given:
  def template = compile("message.hbs")

  and:
  def messageObj = [

Rendering a View with the Handlebars Library | 283



    text    : message.text,
    postedBy: message.postedBy,
    postedAt: message.postedAt.toEpochMilli() 
  ]

  expect:
  with(render(template, messageObj)) {
    find(".text").text() == message.text
    find("footer a").attr("href") == "/users/$user.username"
    find("footer a").text() == user.toString()
    find("footer time").text() == message.postedAt.toEpochMilli() as String
  }

  where:
  user = new User("spock")
  message = new Message(user, "Fascinating", now())
}

As part of the map declaration, the Instant value is converted to a millisecond
value.

This works but is a little clunky. We’re dealing with only a couple of properties here,
but this will get tedious when we’re dealing with more complex objects.

The REST API is presumably already converting Message instances back and forth to
JSON. It makes sense to simply reuse that conversion here, so that we know we’re
dealing with values formatted in the same way.

We can configure a Jackson ObjectMapper instance and use it to convert the Message
instance to a Map. This is essentially the same conversion we were previously doing
manually, but now it’s a far less cumbersome process. We also have some confidence
that the resulting structure will be the same as the JSON emitted by the API that we’ll
be dealing with when rendering templates client-side:

  def mapper = new ObjectMapper()
  // tag::compile-templates[]

  def setup() {
    mapper.registerModule(new JavaTimeModule()) 
    mapper.disable(WRITE_DATE_TIMESTAMPS_AS_NANOSECONDS) 
    // tag::compile-templates[]
  }

  def "can render a message"() {
    given:
    def template = compile("message.hbs")

    and:
    def messageObj = mapper.convertValue(message, Map) 

    expect:

284 | Chapter 15: Testing JavaScript Using Spock



    with(render(template, messageObj)) {
      find(".text").text() == message.text
      find("footer a").attr("href") == "/users/$user.username"
      find("footer a").text() == user.toString()
      find("footer time").text() == message.postedAt.toEpochMilli() as String
    }

    where:
    user = new User("spock")
    message = new Message(user, "Fascinating", now())
  }
  // tag::jackson-convert[]
}

We register a JavaTimeModule with Jackson that has converters for serializing
and deserializing various java.time types.

By default, Instant instances are converted to values with nanosecond precision,
but we don’t need that.

We can then convert our Message to a Map using the object mapper.

The conversion done by Jackson has arbitrary depth, so this technique will scale to
more complex objects.

Jackson Dependencies

The JavaTimeModule class comes from an optional Jackson pack‐
age that provides support for the java.time API. The minimum
set of dependencies we need to add to run this specification is:

dependencies {
  testCompile
    "com.fasterxml.jackson.core:jackson-databind:2.8.6"
  testCompile
    "com.fasterxml.jackson.datatype:jackson-datatype-
    jsr310:2.8.6"
}

Registering Handlebars Helper Functions
We’re now dealing with a consistent model in both server- and client-side template
rendering. However, rendering a millisecond timestamp to HTML is not exactly user-
friendly! It would be nice to reuse our relativeTime JavaScript function to display
something more human readable.

Handlebars allows registration of helper functions for exactly this kind of use case.
We can register our relativeTime function as a Handlebars helper, which makes it
available to templates:

Rendering a View with the Handlebars Library | 285



def setupSpec() {

  // ...

  // end::java-from[]
  loadResource("relative-time.js") { reader ->
    (engine as Compilable).compile(reader).eval()
  }
  engine.eval """
    Handlebars.registerHelper("relativeTime", relativeTime);
  """
}

Now that the helper function is registered, we can reference it from our templates:

<article class="message">
  <div class="text">{{text}}</div>
  <footer>
    Posted by
    <a href="/users/{{postedBy.username}}">@{{postedBy.username}}</a>
    <time>{{relativeTime postedAt}}</time>
  </footer>
</article>

To ensure everything works, let’s update the feature method:

  def "can render a message"() {
    given:
    def template = compile("message.hbs")

    and:
    def messageObj = mapper.convertValue(message, Map)

    expect:
    with(render(template, messageObj)) {
      find(".text").text() == message.text
      find("footer a").attr("href") == "/users/$user.username"
      find("footer a").text() == user.toString()
      find("footer time").text() == "just now" 
    }

    where:
    user = new User("spock")
    message = new Message(user, "Fascinating", now())
  }

We can now check for a friendly relative value for the postedAt property.

286 | Chapter 15: Testing JavaScript Using Spock



Exercise: Let’s Make That HTML Valid!
The HTML5 <time> element requires a properly formatted timestamp in the body of
the tag or a datetime attribute with a properly formatted timestamp if the tag body
contains some kind of human-readable text. We’re not providing either at the
moment.

Instead of

<time>just now</time>

we need to output something like:

<time datetime="2017-02-01T09:22:00-08:00">just now</time>

See if you can update the message.hbs template to render the datetime attribute in
the correct format. Here are some things you might want to try:

• Register a new Handlebars helper function to format the timestamp differently.
• Bring in a new library such as Moment.js to help manipulate date and time val‐

ues.
• Render the timestamp differently in the JSON representation (which would mean

changing the implementation of relativeTime).

If you decide to format the timestamp server-side, java.time.DateTimeFormat
ter.ISO_OFFSET_DATE_TIME will get you the correct format for the datetime element.

Composing Templates with Handlebars Partials
So far we’ve used a single template, message.hbs, which renders one Message
instance. One place we’ll want to use that rendered format is in a list of messages such
as in a user’s timeline or on his profile page. Obviously, we don’t want to have to copy
and paste the HTML code for our message template, so we need to be able to delegate
to that template from other contexts.

To do so, we can register the template with Handlebars as a “partial.” Partial templates
can be referenced from other templates.

Let’s look at an example in which we render a list of messages. We’ll start with a new
template for the message list that delegates to our existing message template for each
individual message:

<div class="message-list">
  {{#each this}}
    {{> message}}

Rendering a View with the Handlebars Library | 287

https://momentjs.com/


  {{/each}}
</div>

The context of the template is an array of messages that is iterated over with Handle‐
bars’ built-in each helper. That {{> message}} line is a reference to a partial template
called “message” that needs to be registered with Handlebars.

We can create a new helper method in our specification that wraps the Handle
bars.registerPartial method in the same way we already wrap the Handle
bars.compile method. Here’s how:

protected void registerPartial(String name, String path) {
  loadResource(path) { reader ->
    invokeMethod(handlebars, "registerPartial", name, reader.text)
  }
}

Passing Iterable Values to JavaScript
One limitation of the interoperability of Java objects in Nashorn is that Java’s lists and
arrays don’t work seamlessly as though they were JavaScript arrays. You need to
explicitly convert them to JavaScript before you can use them. The Nashorn script
engine provides a built-in function, Java.from, that can do the conversion (and an
equivalent, Java.to, that is used for the reverse conversion). We just need to call that,
passing our list of messages.

Of course, it doesn’t make much sense to call Java.from in a Handlebars helper or
reference it directly from a template, because the function won’t be either available or
necessary when rendering templates in the browser.

Instead, we can make the Java.from method accessible to Spock and convert the list
parameter before we pass it to the template.

First, we’ll declare a @Shared field, much like the one we use to hold a reference to the
Handlebars JavaScript object:

  @Shared JSObject java

  // tag::register-helper[]
  def setupSpec() {

    // ...

    java = engine.eval("Java") as JSObject
    // tag::register-helper[]
  }
  // end::register-helper[]

Then we can write a Spock helper method that converts a Java vararg into a JavaScript
array using the Java.from method:

288 | Chapter 15: Testing JavaScript Using Spock



  Object array(Object... elements) {
    invokeMethod(java, "from", elements.toList())
  }

Okay, now we can convert a Java list or array to a JavaScript form. We also need to
translate the elements in the list—Message instances—to a JSON-like form as we did
for each individual message in the earlier example. It makes sense to define a helper
that will do both of those things in a single step:

  Object array(List<?> list) {
    def targetType = new TypeReference<List<Map>>() {} 
    def json = mapper.convertValue(list, targetType) 
    invokeMethod(java, "from", json) 
  }

Because we’re converting our list to a type with generic type information, we
need to use a TypeReference rather than just a raw class. It’s important that Jack‐
son converts the elements of the list.

Applying the conversion transforms each individual Message instance in the list
into a JSON-like map, just as before.

Now we can call the Java.from method to convert everything to a JavaScript
array.

With our partial template and the helper function that converts a list to a JavaScript
array, we’re finally ready to put together a feature method to test the rendering of an
entire list of messages:

  def "can render a list of messages"() {
    given:
    registerPartial("message", "message.hbs") 
    def template = compile("messages.hbs") 

    and:
    def messagesArray = array(messages) 

    expect:
    with(render(template, messagesArray)) { 
      def elements = find(".message-list article")
      elements.size() == messages.size()
      elements.first().find(".text").text() == messages[0].text
      elements.first().find("time").text() == "just now"
      elements.last().find(".text").text() == messages[1].text
      elements.last().find("time").text() == "a few minutes ago"
    }

    where:
    user = new User("spock")
    messages = [

Rendering a View with the Handlebars Library | 289



      new Message(user, "Fascinating", now()),
      new Message(user, "Live long and prosper", now().minus(10, MINUTES))
    ]
  }

First, we register our original message.hbs template as a partial.

Then we compile the messages.hbs template that calls message.hbs.

The list of messages to render is converted to a JavaScript array.

Finally, we render the template and make assertions about the resulting HTML
structure.

Summary
We’ve looked at testing JavaScript in Spock from very basic examples—calling a sim‐
ple function—to fairly complex ones.

Hopefully, it’s clear that the combination of Nashorn and Spock can be powerful. The
ability to directly pass (most) Java types to Nashorn greatly simplifies interaction with
scripts. Where conversion is necessary—either because of limitations in the script
engine’s automatic conversion, as with array types, or because we need the data in a
different format as with our conversion of Message instances to a JSON-like structure
—there are ways to accomplish what we need.

Being able to pass Spock’s mocks and stubs to JavaScript functions means that we can
test interactions occurring within the script engine seamlessly.

None of this is to suggest testing JavaScript code with Spock is preferable to testing
with native JavaScript tools such as Jasmine. It’s not. However, when your application
is using JavaScript in the JVM, whether for the server-side component of an isomor‐
phic web app, nested script functionality, or whatever other reason, it might make
sense to test from the JVM, too, and Spock is certainly up to the task.

290 | Chapter 15: Testing JavaScript Using Spock



CHAPTER 16

Test Driving an RxJava Application

In this chapter, we work through an example of test driving an implementation. We’re
going to implement a class that polls for new messages on a user’s Squawker timeline
and then hands them off to another component for processing. We could use this as
the core of a simple command-line client, a desktop GUI application, or a websocket-
based browser application.

For the implementation we’ll use RxJava.

RxJava
RxJava is an implementation of the reactive streams pattern for the JVM. It was first
developed as an open source project by Netflix.

If you’ve looked at some of the API extensions added in Java 8, stream processing will
be familiar to you. If not, don’t worry too much. The point of this chapter is to pro‐
vide an example of test driving a solution with the implementation following a failing
test. We won’t be using any particularly complex RxJava code and won’t be getting
into advanced reactive streams topics such as backpressure.

It will be helpful for you to be familiar with the Java 8 concept of a function type and
the syntax for lambdas and method references.

Before starting, let’s consider what we mean by “test-driven development” and what a
test-driven development (TDD) workflow looks like.

Rather than trying to implement the entire solution at once, either before or after its
tests, we’ll work iteratively. Each iteration involves deciding on a feature or behavior
to implement next, writing a failing test, implementing the behavior in the test sub‐

291

https://github.com/ReactiveX/RxJava


ject so the test passes, and then refactoring until we’re happy with the code we’ve writ‐
ten.

I find it useful to break down the behavior required of a unit into bullet points. Each
bullet point is represented by one (or occasionally more) feature methods. Any com‐
pound behaviors—it should x and y—are broken out into separate points. Doing so
helps keep each feature method focused and frequently simplifies the required setup
code.

Often the behaviors will have some reasonably logical order or at least an initial
behavior without which none of the others will be possible. That will become the first
feature method. From there we can decide what feature makes sense to implement
next after we’ve finished with the previous one. Generally it’s just a case of picking the
lowest hanging fruit—the easiest next step.

When developing using this method, it’s important to resist the urge to rush ahead
when the next step of the implementation seems obvious. The code required to make
each successive test pass might be obviously wrong given what we know of the other
required behaviors, but in this way, we can ensure behavior is not implemented
without being tested and the tests will guide the solution.

Tests, Behaviors, and Properties
We can think about the behaviors we expect our unit of code to exhibit and the prop‐
erties it should have. Each of those will become one or more feature methods in a
specification class. As we progress, we’ll refactor the tests to remove duplication in
setup.

Before we begin, we should think about the “surface” of the unit of code—the inter‐
face with which our test will interact. This can evolve over time as further tests refine
our understanding of what we’re trying to achieve, but it’s good to have some kind of
starting point.

The Skeleton Implementation
We’ll need an interface to the Squawker REST service. The interface looks like this:

public interface SquawkerApi {
  List<Message> getTimeline(String username, Serializable sinceId); 
}

The getTimeline method accepts a username and a message ID and returns a list
of messages on the user’s timeline, starting with the one after the specified ID. If
sinceId is null, the method returns all messages.

292 | Chapter 16: Test Driving an RxJava Application



We’ve seen the implementation of this REST endpoint in Chapter 13. When we run
the Squawker client for real, we will use a library like Retrofit to bind this interface to
the REST endpoint. For the purposes of this chapter, it just needs to be an interface
because we’ll be using a test double in our specification.

Next, we’ll define our subject class TimelineStream, which we’ll flesh out over the
course of the chapter. TimelineStream will poll Squawker at a regular interval and
pass any messages to a subscriber. At this stage, we have only a skeleton:

public class TimelineStream {

  private final String username; 
  private final int interval; 
  private final TimeUnit intervalUnit;
  private final SquawkerApi squawker; 

  public TimelineStream(String username,
                        int interval,
                        TimeUnit intervalUnit,
                        SquawkerApi squawker) {
    this.username = username;
    this.interval = interval;
    this.intervalUnit = intervalUnit;
    this.squawker = squawker;
  }

  public void start() {
    
  }
}

We’ll need the username to fetch the timeline.

We’ll poll the API at a regular interval.

Obviously, we’ll need the API interface itself.

The start method should connect to the API and begin streaming messages.

Test Driving the Implementation
With the skeleton implementation in place, we can begin defining the behavior we
expect. From there, we can move on to writing tests.

Defining the Behavior
The TimelineStream class should do the following:

Test Driving the Implementation | 293



• Poll the user’s timeline once every minute
• Ask for messages since the last one received
• Pass received messages to a subscriber one at a time
• Continue in the event of a REST service outage
• Continue if the subscriber experiences an error

A First Test
Given that skeleton, where do we start? The first thing we know we want to do is to
poll the Squawker API at a regular interval, so let’s write a test to ensure that happens.

Naïvely, we could implement a test by calling start and then waiting until a multiple
of the polling interval is expired and asserting that some calls were made to the API,
as demonstrated here:

@Shared interval = 1 
def squawker = Mock(SquawkerApi) 
@Subject timeline = new TimelineStream("spock", interval, SECONDS, squawker)

@Unroll
def "polls Squawker #ticks times in #delay seconds"() {
  when:
  timeline.start() 
  sleep SECONDS.toMillis(delay) 

  then:
  ticks * squawker.getTimeline(*_) 

  where:
  ticks << [2, 3] 
  delay = ticks * interval 
}

We’ll use a shared property for the interval so we can refer to it in a where: block.

We want to assert that calls are made to the SquawkerApi interface, so we’ll use a
mock to represent it.

The subject of the test is an instance of TimelineStream.

First, the test calls the start method to being polling the Squawker API.

The test waits for the expected interval.

294 | Chapter 16: Test Driving an RxJava Application



After that time the API interface should have received a number of calls. Because
we’re not concerned with validating the parameters passed in this particular test,
we’ll use Spock’s wildcard parameter matcher.

We can try a couple of different variations of ticks.

The time we need to wait is simply the number of ticks multiplied by the interval
between them.

Running the test results in an assertion failure because SquawkerApi is never called.
We’re off to a good start. Now we can implement the first bit of behavior.

Polling at Regular Intervals
To poll regularly in RxJava, we can use the Observable.interval method. It returns
an Observable<Long> that emits an incrementing value at the specified interval. We
don’t care about the value emitted; we simply want to do something at each interval.
At each tick, we want to call SquawkerApi.getTimeline and do something with each
Message returned. In RxJava terms, we can think of this as a transformation from an
Observable<Long> to an Observable<Message>.

RxJava uses various map operations to transform streams. We’ll start by simply call‐
ing SquawkerApi.getTimeline in a map operation.

public void start() {
  Observable
    .interval(interval, intervalUnit) 
    .map(tick -> squawker.getTimeline(username, null)) 
    .subscribe(System.out::println); 
}

Observable.interval accepts parameters that define the regularity with which it
will emit ticks.

We use map to transform the stream of ticks. At each tick we call Squawker
Api.getTimeline.

Without some kind of subscription, the stream will not emit any values. We
haven’t defined the downstream behavior in the test yet, so for now, we’ll simply
dump the message to standard output.

No Sleep `Til the Test Goes Green
Running our test shows an annoying inconsistency: the test sometimes passes and
sometimes fails. We’re using Thread.sleep to wait until we think the API should have

Polling at Regular Intervals | 295



been called. Of course, the instructions to call into TimelineStream.start, create an
RxJava stream, and so on do not take zero time, so waiting for exactly the polling
interval might not be enough. We can wait a little longer—say another 100 ms—but
how can we ensure that this is long enough? Just as important, how can we ensure
that it’s not too long?

One of the key goals of TDD is to give fast feedback. To this end, tests should run in
the absolute minimum time possible. We might think a one-second sleep in a test is
acceptable, but we’re going to be writing an entire suite of tests for TimelineStream.
All of them are going to need to wait until at least one polling cycle happens. Those
one-second waits are going to start adding up very soon.

As we’ve already seen, sleeping is unreliable. We can never really be sure we’re waiting
long enough that we won’t occasionally get a test failure. The only solution is to sleep
longer, making the test run slower still.

Hopefully, you’re getting the idea here. Tests should never, ever sleep!

What can we do, though, in a situation like this in which the subject of the test is
using a timer to do things at regular intervals? Let’s think about how it’s doing that.
Underlying that behavior is a reliance on a piece of global state: the system clock. The
system clock sends timing events that Observable.interval waits for. After a certain
number, it responds by emitting a value to the stream. If we can isolate the test sub‐
ject from that dependency, substituting a fake clock that emits timing events without
any time actually having passed, we can make our test work without sleeping. If the
emission of the timing events is directly controlled by the test, we can also eliminate
the unreliability we’ve experienced when we don’t know how long we need to wait for
something to happen.

In TDD, we talk about introducing a “seam” to the system under test. A seam is
defined as a place that allows the behavior to be modified without modifying the
code. What we’re considering here is using a seam to separate the generation of ticks
by Observable.interval from the system clock. We want to substitute our own
source of timing events that look like they come from the system clock but happen
when we instruct them to rather than after some period of time has passed.

“Seam” might be an unfamiliar term to you, but we’ve already used
one in our test. We’re using a test double of the SquawkerApi inter‐
face to separate the subject from its dependency on a real REST
API. A mock is really just a particular type of seam that allows us to
verify that an interaction happened without having it happen for
real.

Luckily, the RxJava library exposes a seam that allows to replace the rx.Scheduler
used by Observable.interval. The library also includes a test implementation that

296 | Chapter 16: Test Driving an RxJava Application



gives us the fake clock behavior we need. Let’s add that to the TimelineStream class
and its specification:

private final Scheduler scheduler; 
private final int interval;
private final TimeUnit intervalUnit;
private final SquawkerApi squawker;
private final String username;

public TimelineStream(Scheduler scheduler,
                      String username,
                      int interval,
                      TimeUnit intervalUnit, SquawkerApi squawker) {
  this.scheduler = scheduler;
  this.username = username;
  this.interval = interval;
  this.intervalUnit = intervalUnit;
  this.squawker = squawker;
}

public void start() {
  Observable
    .interval(interval, intervalUnit, scheduler) 
    .map(tick -> squawker.getTimeline(username, null))
    .subscribe(System.out::println);
}

We now inject a Scheduler into the SquawkerApi class.

The Scheduler is passed directly to the Observable.interval method.

def scheduler = Schedulers.test() 
@Subject timeline = new TimelineStream(
  scheduler, "spock", interval, SECONDS, squawker
)

@Unroll
def "polls Squawker #ticks times in #delay seconds"() {
  when:
  timeline.start()
  scheduler.advanceTimeBy(delay, SECONDS) 

  then:
  ticks * squawker.getTimeline(*_)

  where:
  ticks << [2, 3]
  delay = ticks * interval
}

We can use RxJava’s test Scheduler implementation in our specification.

Polling at Regular Intervals | 297



To simulate system clock timing events, we use the advanceTimeBy method.

Now, we can test long-running processes without introducing wait times into the
specification itself.

Because we’re going to be calling scheduler.advanceTimeBy a lot, it makes sense to
introduce a helper method that clarifies what we’re doing and lets us simply wait for a
number of interval ticks rather than having to use seconds. Here’s how we can do
that:

@Unroll
def "polls Squawker #ticks times in #delay seconds"() {
  when:
  timeline.start()
  waitForTicks(ticks) 

  then:
  ticks * squawker.getTimeline(*_)

  where:
  ticks << [2, 3]
  delay = ticks * interval
}

private void waitForTicks(int ticks) {
  scheduler.advanceTimeBy(ticks * interval, SECONDS)
}

Our test is now a little easier to read because the intent of waiting for a certain
number of ticks is clearer and we’ve removed the multiplication used to convert
ticks into seconds.

Testing Subscription to the Stream
The next piece of behavior we need to implement is one that lets us subscribe to the
message stream. To do this, we’ll inject a function type into TimelineStream that
receives each Message emitted by the Observable stream. The actual functionality of
the subscriber is not the concern of the TimelineStream class. The subscriber could
log the messages, display them in a GUI window, stream them over a web-socket to a
browser client, etc.—there are all kinds of possibilities.

This means there’s another seam between the generation of the message stream and
the handling of that stream. Because what our test is interested in is whether the sub‐
scriber is sent the right messages, we can introduce another mock, as follows:

def subscriber = Mock(Action1) 
@Subject timeline = new TimelineStream(
  scheduler, "spock", interval, SECONDS, squawker, subscriber
)

298 | Chapter 16: Test Driving an RxJava Application



@Shared user = new User("spock")

def "passes each message to the subscriber"() {
  given:
  squawker.getTimeline(*_) >> [message1] >> [message2] 

  when:
  timeline.start()
  waitForTicks(ticks)

  then: 
  1 * subscriber.call([message1])
  1 * subscriber.call([message2])

  where:
  ticks = 2
  message1 = new Message(1L, user, "fascinating", now())
  message2 = new Message(
    2L, user, "The complexities of human pranks escape me", now()
  )
}

We’ll define a mock subscriber. The class rx.functions.Action1 is a functional
interface with a method that accepts a single argument.

The new feature method will use the SquawkerApi as a stub rather than a mock.
On successive calls it will return a different group of messages.

We can then assert that the subscriber receives each group of messages once.

To implement the behavior required by the specification, we just need to inject a sub‐
scriber into the TimelineStream class and use it when we subscribe to the Observa
ble stream:

private final Action1<List<Message>> subscriber;

public void start() {
  Observable
    .interval(interval, intervalUnit, scheduler)
    .map(tick -> squawker.getTimeline(username, null))
    .subscribe(subscriber);
}

Unchunking the Message Stream
We’re now subscribing to the stream successfully, but we’re processing it in “chunks.”
Each call to getTimeline produces a List<Message>, which is passed to the sub‐
scriber.

Polling at Regular Intervals | 299



There are a couple of problems with this. First, on a practical level it’s quite possible
that an individual iteration of the polling loop will find no new messages on the time‐
line. If that’s the case, it seems unnecessary to call the subscriber with an empty list.

Let’s implement a feature method that asserts that should not happen:

def "if no new messages are received the subscriber is not called"() {
  given:
  squawker.getTimeline(*_) >> [] 

  when:
  timeline.start()
  waitForTicks(1)

  then:
  0 * subscriber.call(_) 
}

We stub the getTimeline call to return an empty list as it would if no new mes‐
sages were on the timeline.

We assert that the subscriber is not called.

When we run this new feature method, it fails because we’re passing each chunk of
messages to the subscriber:

rx.exceptions.OnErrorNotImplementedException: Too many invocations for:

0 * subscriber.call(_)   (1 invocation)

Matching invocations (ordered by last occurrence):

1 * subscriber.call([])   <-- this triggered the error

We could fix this by filtering the stream to ignore empty lists. That’s easy enough, but
there’s really a second problem with dealing with the messages in chunks.

By producing a chunked stream of messages, we’re tying the downstream operations
to the mechanism used to produce the stream of messages. If the subscriber is an
Action<List<Message>>, it makes it more difficult to later refactor the Timeline
Stream implementation to produce the message stream in a different way, such as
subscribing to a socket that sends each message individually.

It’s much more natural in this scenario to have the downstream operations deal with
each individual message. This means that we’ll need to change the actual map opera‐
tion used to transform the interval stream.

First, we’ll write the following new feature method to specify the behavior we want:

300 | Chapter 16: Test Driving an RxJava Application



def "transforms chunked messages into a continuous stream"() {
  given:
  squawker.getTimeline(*_) >> [message1] >> [] >> [message2, message3] 

  when:
  timeline.start()
  waitForTicks(chunks)

  then: 
  1 * subscriber.call(message1)
  1 * subscriber.call(message2)
  1 * subscriber.call(message3)

  and:
  0 * subscriber.call(_) 

  where:
  chunks = 3
  message1 = new Message(
    1L, user, "fascinating", now()
  )
  message2 = new Message(
    2L, user, "The complexities of human pranks escape me", now()
  )
  message3 = new Message(
    3L, user,
    "the statistical likelihood that our plan will succeed is less than 4.3%",
    now()
  )
}

We stub getTimeline to produce a chunked stream of messages. One message on
the first call, none on the second, and two on the third.

We assert that the subscriber receives each individual message once.

Additionally we ensure no further calls are made to the subscriber to ensure that
we’re not doing something like passing null when the empty chunk is processed.

To implement the behavior we want, we simply need to change the RxJava map oper‐
ation:

private final Action1<Message> subscriber; 

public void start() {
  Observable
    .interval(interval, intervalUnit, scheduler)
    .flatMapIterable(tick -> squawker.getTimeline(username, null)) 
    .subscribe(subscriber);
}

Polling at Regular Intervals | 301



The type of the subscriber changes from Action1<List<Message>> to
Action1<Message>.

Using flatMapIterable rather than map produces an Observable<Message> by
iterating over each list returned by getTimeline and coalescing the results into a
single stream.

After making that change, we’ll also need to update our previous feature method to
expect single messages rather than lists.

Requesting Messages Since the Last Received
Recall that when TimelineStream calls SquawkerApi.getTimeline, it should pass the
ID of the last message seen so that the next call only returns new messages. So far, we
haven’t made any assertions about the parameters we pass to getTimeline. In fact,
our implementation thus far has just been passing null in place of a message ID.
Hooked up to the real REST API, that would mean each call gets an ever-increasing
number of duplicate messages.

To specify this behavior correctly, we’ll introduce a new feature method in which we
assert that on subsequent calls the ID of the most recent message is passed to getTime
line:

def "passes the id of the last message seen on each poll"() {
  when:
  timeline.start()
  waitForTicks(ticks)

  then:
  1 * squawker.getTimeline(_, null) >> [message1] 
  1 * squawker.getTimeline(_, message1.id) >> [message2, message3] 
  1 * squawker.getTimeline(_, message3.id) 

  where:
  ticks = 3
  message1 = new Message(1L, user, "fascinating", now())
  message2 = new Message(
    2L, user, "The complexities of human pranks escape me", now()
  )
  message3 = new Message(
    3L,
    user,
    "the likelihood that our plan will succeed is less than 4.3%",
    now()
  )
}

302 | Chapter 16: Test Driving an RxJava Application



The first call should pass null because we have no previous messages. We’re
specifying that the call should return a single message.

The second call should pass the ID of the message seen previously. This time we’ll
return multiple messages.

Finally, we’ll test that the last message’s ID is passsed. Here we’re not specifying a
return value, because we’re not going to go round the loop again.

This is a fairly complex feature method. We’re using a mock that is both asserting that
a call is made and returning a value that will drive the next iteration of the polling
loop. Recall that in “When Should I Use a Mock and When Should I Use a Stub?” on
page 64, I said that a test double that both asserted a call was made and specified a
return value was often an indication that you should really just be using a stub. This is
a good example of a situation in which it actually is valid to do both.

We’re primarily concerned with asserting that on successive iterations of the polling
loop we pass the correct parameter to the getTimeline method. However, it’s also
necessary that the same interaction returns the value used on the next iteration of the
loop.

To implement the behavior, we can simply store each message ID in a field in Timeli
neStream, as shown here:

private Serializable lastMessageId = null; 

public void start() {
  Observable
    .interval(interval, intervalUnit, scheduler)
    .flatMapIterable(tick -> squawker.getTimeline(username, lastMessageId)) 
    .doOnNext(message -> lastMessageId = message.getId()) 
    .subscribe(subscriber);
}

The field lastMessageId starts out null.

We pass lastMessageId to the getTimeline method.

The doOnNext operation allows us to define a side effect on processing each item
in the stream. Here we’re simply recording the ID of the message.

Recovering from Polling Errors
What would happen if the Squawker REST API experienced a temporary outage? Our
call to getTimeline would throw an exception. At that point, we’d really want to just
ignore (and possibly log) the error and try again at the next polling interval.

Polling at Regular Intervals | 303



If we write a test to enforce that resilience, we see that it currently fails:

def "continues polling if the API experiences an error"() {
  given:
  squawker.getTimeline(*_) >> { throw unavailable() } >> [message] 

  when:
  timeline.start()
  waitForTicks(2)

  then:
  1 * subscriber.call(message) 

  where:
  message = new Message(1L, user, "fascinating", now())
}

Throwable unavailable() { 
  throw new RuntimeException("HTTP 503: Service Unavailable")
}

We stub getTimeline to throw an exception the first time it is called and return a
single message on subsequent calls.

The subscriber should receive the message despite the error on the first attempt
at polling.

The exception class is quite general here because we really just want to retry in
the event of any error.

Running this test, we find that the exception actually halts the RxJava stream:

rx.exceptions.OnErrorNotImplementedException: HTTP 503: Service Unavailable

To fix this, we simply need to tell RxJava to retry upstream operations in the event of
an error:

public void start() {
  Observable
    .interval(interval, intervalUnit, scheduler)
    .flatMapIterable(tick -> squawker.getTimeline(username, lastMessageId))
    .doOnError(this::onApiError) 
    .retry() 
    .doOnNext(message -> lastMessageId = message.getId())
    .subscribe(subscriber);
}

private void onApiError(Throwable throwable) {
  System.out.println(throwable);
}

304 | Chapter 16: Test Driving an RxJava Application



We can use doOnError to log or notify the user of an error.

The retry operation just directs RxJava to ignore the error and continue with the
next item in the stream, in our case the next interval tick.

Recovering from Downstream Errors
We’re now resilient to errors when polling the API, but what happens if the subscriber
fails to handle a message and instead throws an exception?

The behavior we want here depends very much on what we’re trying to do with the
subscriber. It might be appropriate to halt processing on an error. Effectively, this
means that the subscriber is responsible for handling its own errors, and any it allows
to propagate will halt the stream. Alternatively, we might want to retry later, do so
conditionally depending on the type of error, or implement a more complex policy
such as retrying a certain number of times before failing.

Let’s assume that we want to retry if the subscriber throws a certain type of exception
and allow the program to halt otherwise.

In this case, it’s very important that we do not store the ID of the message that was
passed to the subscriber because we want to retry the same message again.

We’ll start by implementing a pair of feature methods that describe the behavior we
want:

def "stops processing if the subscriber throws an unrecoverable error"() {
  given:
  subscriber.call(_) >> { throw new RuntimeException("unrecoverable") } 

  when:
  timeline.start()
  waitForTicks(2)

  then:
  1 * squawker.getTimeline(*_) >> [message] 

  where:
  message = new Message(1L, user, "fascinating", now())
}

def "re-tries the chunk if the subscriber throws an recoverable error"() {
  given:
  subscriber.call(_) >> { throw new RecoverableSubscriberException() }

  and:
  def messageIds = [] 
  squawker.getTimeline(*_) >> { username, messageId ->
    messageIds << messageId
    [message]

Polling at Regular Intervals | 305



  }

  when:
  timeline.start()
  waitForTicks(2)

  then:
  messageIds[0] == messageIds[1] 

  where:
  message = new Message(1L, user, "fascinating", now())
}

The first feature method is very simple. It stubs subscriber.call to throw an
exception…

…and then it ensures that getTimeline is called only once because the exception
will stop the subscription.

The second feature method capture the second parameter of the stub getTime
line call…

…and then asserts that both calls to getTimeline are sent the same message ID.

To implement this behavior, we’ll introduce an error handler when we subscribe to
the stream:

public void start() {
  Observable
    .interval(interval, intervalUnit, scheduler)
    .flatMapIterable(tick -> squawker.getTimeline(username, lastMessageId))
    .doOnError(this::onApiError)
    .retry()
    .subscribe(this::onMessage, this::onSubscriberError); 
}

private void onMessage(Message message) {
  subscriber.call(message);
  lastMessageId = message.getId(); 
}

private void onSubscriberError(Throwable throwable) {
  if (throwable instanceof RecoverableSubscriberException) {
    System.err.println("Caught recoverable error");
  } else {
    throw new OnErrorFailedException(throwable); 
  }
}

306 | Chapter 16: Test Driving an RxJava Application



The doOnNext operation has been removed given that we don’t want to store
every message ID, only those that are successfully processed. We now define our
own success and error handling functions for subscribing to the stream.

We store the message ID after the subscriber is called. If the subscriber throws an
exception, this statement will never be reached.

The error handler reraises an unhandled exception.

Final Implementation
Now that we have all our tests in place, we can tidy up the implementation while
keeping the tests passing. For reference, here is the final implementation that passes
all the tests:

public class TimelineStream {

  private final Scheduler scheduler;
  private final int interval;
  private final TimeUnit intervalUnit;
  private final SquawkerApi squawker;
  private final String username;
  private final Action1<Message> subscriber;

  private Serializable lastMessageId = null;

  public TimelineStream(Scheduler scheduler,
                        String username,
                        int interval,
                        TimeUnit intervalUnit,
                        SquawkerApi squawker,
                        Action1<Message> subscriber) {
    this.scheduler = scheduler;
    this.username = username;
    this.interval = interval;
    this.intervalUnit = intervalUnit;
    this.squawker = squawker;
    this.subscriber = subscriber;
  }

  public void start() {
    Observable
      .interval(interval, intervalUnit, scheduler)
      .flatMapIterable(this::onPollingInterval)
      .doOnError(this::onApiError)
      .retry()
      .subscribe(this::onMessage, this::onSubscriberError);
  }

Final Implementation | 307



  private List<Message> onPollingInterval(long tick) {
    return squawker.getTimeline(username, lastMessageId);
  }

  private void onMessage(Message message) {
    subscriber.call(message);
    lastMessageId = message.getId();
  }

  private void onSubscriberError(Throwable throwable) {
    if (throwable instanceof RecoverableSubscriberException) {
      System.err.println("Caught recoverable error");
    } else {
      throw new OnErrorFailedException(throwable);
    }
  }

  private void onApiError(Throwable throwable) {
    System.err.println(throwable);
  }
}

Exercise: Message Ordering
We’ve assumed that the API returns messages in oldest-first order. That way we can
just use the ID of the last message we processed to request the next chunk.

See if you can test drive an implementation in which the messages in a chunk
returned by the API might be out of sequence.

Hint: the Message class has a postedAt timestamp property.

Exercise: Greater Resilience
See if you can test drive a change in the subscriber error handling such that if the sub‐
scriber throws a recoverable error the chunk is retried. If the subscriber throws any
other kind of error, we should log and continue polling at the next chunk.

Exercise: Backpressure
Implement a test to ensure that if the API call responds slowly or the subscriber pro‐
cesses messages slowly, the polling intervals do not “stack up.”

308 | Chapter 16: Test Driving an RxJava Application



APPENDIX A

Groovy Primer

This appendix is a crash course in the features of the Groovy programming language
that you need to know in order to write Spock specifications effectively. It is not
meant to be an exhaustive language reference. Partly because there are some language
features—metaprogramming, for example—that are very complex but of limited use
in understanding the examples in this book, but mostly because there is already a ple‐
thora of books on Groovy written by much smarter people than me.

History
Groovy was started in 2003 by James Strachan. Version 1.0 was released on 2007, and
version 2.0 in 2012. In 2015, Groovy became a project of the Apache foundation. As
of this writing, the current version is 2.4.8.

The language is syntactically derived from Java. In fact most pre–Java 8 Java code is
also valid Groovy code. However, Groovy also takes a lot of inspiration from Ruby
and Smalltalk.

From its inception, Groovy was a dynamic language. Method calls and property ref‐
erences are dispatched at runtime and can be intercepted by a type’s “metaclass” in
order to extend the functionality of a class.

Groovy 2.0 added optional compile-time type checking and static compilation.

Syntactic and Semantic Differences to Java
There are some obvious syntactic differences that are noticeable the first time you
look at Groovy code.

309



Semicolons
Groovy does not require a semicolon at the end of each statement. In fact, it is con‐
sidered nonidiomatic to use semicolons. The only time semicolons are necessary is to
separate multiple statements on a single line; however, that’s a fairly rare use.

Import Statements
Groovy automatically imports 0, 1, and 2.

Class Literals
When referring to a class literal, it is not necessary to use .class.

Visibility
By default, Groovy methods are public. The protected and private scopes are the
same as in Java. Java’s default scope can be emulated by using the @PackageScope
annotation.

Exceptions
Groovy does not have checked exceptions. Although you may declare a throws clause
on a method you are not required to, and all exceptions are effectively treated like
RuntimeException.

Implicit Return
Groovy methods return the value of the last statement by default unless defined void. 
This means that the return keyword is unnecessary, although you are free to use it
and it sometimes enhances the clarity of the code.

Implicit returns mean functional code in Groovy can be very concise because clo‐
sures can contain simple expressions without the return keyword.

Default Parameters
Groovy allows methods to define default parameter values. Any parameter or param‐
eters can have default values, the only restriction being that no parameters without
defaults can appear after those with defaults.

For example, if we define a method with a default parameter value like this:

String crewTitle(String name, String title = "Mr") {
  title + " " + name
}

310 | Appendix A: Groovy Primer



we can then call the method with or without the second parameter:

assert crewTitle("Kirk", "Captain") == "Captain Kirk"
assert crewTitle("McCoy", "Doctor") == "Doctor McCoy"
assert crewTitle("Spock") == "Mr Spock"

To achieve the same thing in Java, we would need to create two overloaded methods:

String crewTitle(String name, String title) {
  return title + " " + name;
}

String crewTitle(String name) {
  return crewTitle(name, "Mr");
}

Method Dispatch
Java dispatches calls by using compile-time type information. For example, given
these method declarations:

void method(String s) {
}

void method(Object o) {
}

the following call will invoke the overload that accepts Object:

Object o = "Spock";
method(o);

Groovy uses runtime type information for dispatch, so it would invoke the method
that accepts String.

Valid Java Code That Is Not Valid Groovy Code
There are a handful of things in Java that are not valid syntax in Groovy.

Array initialization
Array literals are not valid in Groovy. For example:

int[] array1 = {1, 2, 3};
int[] array2 = new int[] {1, 2, 3};

Instead of array literals, Groovy allows for list literals (that can be converted to
arrays):

int[] array = [1, 2, 3] as int[]

This also affects annotation parameters, which are written with square braces rather
than curly braces in Groovy (square braces being Groovy’s syntax for list literals).

Groovy Primer | 311



Multiple for loop variables or increments

Groovy’s for loop cannot have multiple variables or increments; thus, an accumulator
like this would not compile:

StringBuilder seq = new StringBuilder();
for (int i = 0, j = 0; i < 5; i++, j += i) {
  seq.append(j).append(" ");
}
assert "0 1 3 6 10".equals(seq.toString().trim());

The do…while loop

The rarely used do…while loop is not available in Groovy:

do {
  text.append(" ");
} while (text.length() < 80);

Instead, you can almost always use a regular while loop or some other construct.

Try with resource (Java 7+)
Groovy does not support the try-with resource construct introduced in Java 7.

try (Writer writer = new FileWriter(file)) {
  writer.append("Fascinating!");
}

Instead, Groovy decorates the Closeable interface with a withCloseable(Closure)
method that does the same thing:

new FileWriter(file).withCloseable { writer ->
  writer.append("Fascinating!")
}

In fact, there’s an even shorter form when dealing with things like InputStream, Out
putStream, Reader, and Writer:

file.withWriter { writer ->
  writer.append("Fascinating!")
}

Lambdas (Java 8+)
The lambda syntax in Java 8 is not compatible with Groovy. Groovy’s closures predate
lambdas and use a slightly different syntax. However, the good news is that Groovy
closures are compatible with the functional interfaces lambda support relies on, so
you can use a closure in Groovy anywhere you can use a lambda in Java.

312 | Appendix A: Groovy Primer



Method references (Java 8+)

Along with the lambda syntax, Groovy does not support the Java 8 :: operator for
getting a callable reference to a method. Groovy’s own .& operator does the same
thing.

Dynamic-Typed Variables
Variables, method return types, parameters, and fields can be declared by using def
in place of a specific type.

A def variable or field may be assigned a value of any type. A method returning def
may return any type, as shown here:

def x = "hi"
assert x instanceof String

x = 1
assert x instanceof Number

x++
assert x == 2

x += "0"
assert x == "20"

x = { -> x instanceof String }
assert x instanceof Closure

assert !x()

However, it’s actually fairly unusual to reassign variables different types like that. One
of the primary benefits of def is that it can reduce the clutter of redundant type infor‐
mation seen in Java code. Groovy’s compiler—and developer tools such as IDEs—can
usually infer the type of a variable declared with def based on the way it is initialized
or the value subsequently assigned to it.

Many developers new to Groovy from Java are often wary of using def. Shortly after
that they often start overusing def in places where a definitive type would actually be
helpful!

Groovy Primer | 313



When to Use def and When to Use a Type

My own rule of thumb is to use def whenever additional type
information does not enhance the readability of the code or is
redundant.
I almost always use def for local variables because their type can be
inferred from their initialization. I find the type on the left of the
expression totally redundant here:

Person p = new Person(firstName: "James", lastName: "Kirk")

I will always declare a type for a method return because it’s more
difficult to infer from context (although the compiler can probably
do it in many cases). A strongly typed method return also has doc‐
umentation value and helps an IDE keep track of the type of a ref‐
erence initialized with a call to the method.
Similarly, method parameters are better with specified types. It can
be terribly confusing and frustrating to have to dig in to a method’s
implementation to figure out what type of value you are expected
to pass to each of its parameters.

List and Map literals
Although Groovy does not have array literals, it does have List and Map literals.
These are a huge improvement on the way lists and maps need to be created in Java.

Lists
A List is defined by using comma-separated values surrounded by square braces.
Thus,

def crew = ["Kirk", "Spock", "Bones"]

defines a three-element ArrayList. It is equivalent to the following Java code:

List<String> crew = new ArrayList<>();
crew.add("Kirk");
crew.add("Spock");
crew.add("Bones");

Indexing lists
List elements can be accessed by using square braces with a numeric index or range
value:

assert crew[0] == "Kirk" 
def i = 1
assert crew[i] == "Spock" 
assert crew[0..1] == ["Kirk", "Spock"] 
assert crew[1..-1] == ["Spock", "Bones"] 

314 | Appendix A: Groovy Primer



assert crew[1..0] == ["Spock", "Kirk"] 

crew[2] = "McCoy" 
assert crew == ["Kirk", "Spock", "McCoy"]

crew[3] = "Sulu" 
assert crew == ["Kirk", "Spock", "McCoy", "Sulu"]

crew[5] = "Chekov" 
assert crew == ["Kirk", "Spock", "McCoy", "Sulu", null, "Chekov"]

Accessing a literal index

Accessing an index by using an int variable

Slicing the list by using an inclusive range literal

Slicing the list by using the -1 range bound to indicate the end of the list

Slicing the list by using a reverse range

Replacing a list element

Assigning to a new list index

Any missing indexes are initialized with null

Maps
A Map is defined by using comma-separated key-value pairs, each separated by a
colon.

def crew = [captain: "Kirk", science: "Spock", medical: "Bones"]

The keys in a map literal are treated as literal strings. There is no need to quote the
keys. The preceding listing is identical to this:

def crew = ["captain": "Kirk", "science": "Spock", "medical": "Bones"]

Map literals create instances of LinkedHashMap. That map implementation preserves
the insertion order of its entries so that it’s possible to make assumptions about the
order of keys, values, and entries in the map. For example:

assert crew.values().asList() == ["Kirk", "Spock", "Bones"]

In many map implementations, we could not assume that values() would return the
values in any particular order.

Groovy Primer | 315



Programmatically assigning map keys
Map keys can reference variables or nonstring literals if they are bracketed, as shown
here:

def posts = ["captain", "science officer", "chief medical officer"]
def crew = [(posts[0]): "Kirk", (posts[1]): "Spock", (posts[2]): "Bones"]

Accessing map values
Like lists, map elements can be accessed by using square braces. If the keys are
strings, they can also be accessed by using property notation.

def post = "captain"
assert crew[post] == "Kirk" 
assert crew.captain == "Kirk" 

crew.medical = "McCoy" 
assert crew == [captain: "Kirk", science: "Spock", medical: "McCoy"]

crew["engineer"] = "Scotty" 
assert crew.size() == 4
assert crew.engineer == "Scotty"

Accessing a map value by using square braces

Accessing a map value by using property notation

Assigning a map value by using property notation

Assigning a map value by using square braces

Ranges
Ranges are a special form of iterable that encapsulate a range of values between low
and high values. Simple ranges such as integer ranges are implemented in Groovy as
lists. More complex ranges (e.g., floating-point ranges) would not be.

Ranges are defined by using two values separated by .. for an inclusive range or ..<
for a range that’s exclusive at the upper bound:

def ints = 1..5
assert ints == [1, 2, 3, 4, 5]

def ints = 1..<5
assert ints == [1, 2, 3, 4]

316 | Appendix A: Groovy Primer



Ranges are frequently used for slicing strings and lists, such as the following:

def name = "James T Kirk"
assert name[0..4] == "James"
assert name[0..<5] == "James"
assert name[8..-1] == "Kirk"

Immutability
To create an immutable form of a list or map you can call .asImmutable() on it. The
Groovy declaration

def crew = ["Kirk", "Spock", "Bones"].asImmutable()

is equivalent to this Java code:

List<String> crew = new ArrayList<>();
crew.add("Kirk");
crew.add("Spock");
crew.add("Bones");
crew = Collections.unmodifiableList(crew);

Maps as Named Arguments
When passing a map literal to a method that takes a single map parameter, the square
braces can be omitted.

In addition, a Groovy class with no explicitly defined constructor is given a default
constructor accepting a Map<String, ?> that will assign any properties to the values
found in the map:

def person = new Person(firstName: "James", lastName: "Kirk")
assert person.firstName == "James"
assert person.lastName == "Kirk"

Set and Array Literals
sGroovy does not have Set or array literals, but you can convert a list to a set or an
array by using Groovy’s safe cast:

def crew = ["Kirk", "Spock", "Bones"] as Set
assert crew instanceof HashSet

def crew = ["Kirk", "Spock", "Bones"] as String[]
assert crew instanceof String[]

Truthiness
Any value in Groovy can be coerced to a Boolean. This often results in slightly more
terse conditional expressions than in Java. For example, it’s common to check for
null like this:

Groovy Primer | 317



def person = ship.getScienceOfficer()
if (!person) {
  throw new NoScienceOfficerAboardException(ship)
}

This is valid because the value of person will coerce to false if it is null, and to true
otherwise.

null, a numeric zero (but not the string "0"), an empty string, an empty collection,
an empty map, and a nonmatching java.util.regex.Matcher all coerce automati‐
cally to false.

It’s possible to customize the “truthiness” of your own classes by implementing asBoo
lean(). Hopefully, I don’t need to emphasize that it’s wise to be careful that the result‐
ing behavior is intuitive.

Properties
Whereas methods are public by default, fields are not, although it might look like
they are:

class Person {
  String firstName
  String lastName
}

In this example, firstName and lastName might look like fields but are in fact proper‐
ties. The important difference is that in the bytecode produced by the Groovy com‐
piler there is a private field, a getter, and a setter, just as there would be in a typical
Java POJO or bean class.

The following example shows that the declaration is identical in Java:

public class Person {
  private String firstName;
  private String lastName;

  public String getFirstName() {
    return firstName;
  }

  public String getLastName() {
    return lastName;
  }

  public void setFirstName(String firstName) {
    this.firstName = firstName;
  }

  public void setLastName(String lastName) {
    this.lastName = lastName;

318 | Appendix A: Groovy Primer



  }
}

If you want to define your own getter or setter you can do so just as you would in Java.
Explicitly declared getters and setters take precedence over the default ones.

If a property is declared final, it has no setter, only a getter.

Accessing Properties
You access properties in Groovy by name. For example, if we define an instance of
our Person class, we can refer to its firstName and lastName properties directly:

def person = new Person(firstName: "Leonard", lastName: "Nimoy")
assert person.lastName == "Nimoy"

In this example, person.lastName is equivalent to person.getLastName() in Java.

To set a property value, you assign to it as though it were a variable:

def person = new Person(firstName: "James", lastName: "Kirk")
person.firstName = "Jim"
assert person.firstName == "Jim"

Note the = assignment operator. The statement `person.lastName = "Spock" is
equivalent to the Java person.setLastName("Spock").

It’s also possible to access property getters and setters the more verbose Java way, of
course.

Properties of Java Classes
The property syntax does not only apply to types defined in Groovy. When accessing
an instance of a Java class from Groovy, the same property syntax can be used. A Java
method with no arguments that takes the form getName() or isValid() can be
accessed from Groovy by using simply .name or .valid, respectively.

Strings in Groovy
Strings in Groovy can use several different delimiters. The double-quote delimiter of
Java is valid. In addition, single quotes are acceptable as are forward slashes and the
less frequently seen $/ opening and /$ closing delimiter.

Why all the different delimiter types?

Templated Strings
A single-quoted string is a literal; all other types of strings can contain templated
expressions delimited with ${...}.

Groovy Primer | 319



def name = "Spock"
def str = "Report, Mr ${name}"
assert str == 'Report, Mr Spock'

Simple expressions that are just variable or property references can omit the curly
braces:

def str = "Report, Mr $name"
assert str == 'Report, Mr Spock'

You can access property paths by using the . operator, without needing curly braces:

def person = new Person(firstName: "Mr", lastName: "Spock")
def str = "Report, $person.name"
assert str == 'Report, Mr Spock'

Expressions can contain any valid Groovy code including method calls:

def str = "Report, ${person.toString()}"
assert str == 'Report, Mr Spock'

Or even complex expressions:

def str = "Report, ${person.firstName + ' ' + person.lastName}"
assert str == 'Report, Mr Spock'

You must escape literal $ characters in all string types (except single-quoted strings):

def str = "Report, Mr \$name"
assert str == 'Report, Mr $name'

Regular Expression Literals
The / string delimiter is primarily intended for regular expression literals.

You use the \ character in Java strings to escape special characters or reference non‐
printable characters such as line breaks (\n) or tabs (\t). Unfortunately, in regular
expressions, \ also has a special meaning. For example, \d matches a decimal numeric
character, \1 is a “back-reference” to an earlier match, and so on.

The two uses of \ collide, so when writing regular expression strings in Java, it’s nec‐
essary to “double escape” the \ character. This can be extremely confusing in complex
regular expressions.

Groovy’s / delimited strings do not require double escaping of the \ character, so they
are ideal for writing regular expressions.

assert "Fascinating!" ==~ /\w+!/
assert "Report, Mr Spock!" ==~ /(\w+[,!]?\s*)+/

320 | Appendix A: Groovy Primer



Yes, that ==~ symbol is a regular expression match operator! We’ll
discuss it further when looking at Groovy’s operators later in this
appendix.

The “Dollar-Slashy” String
The “dollar slashy” string delimiter is also commonly used for regular expressions. In
particular, it’s useful when the expression contains a / character that would otherwise
be interpreted as the end of the string.

The most common reason I’ve found to use this is when using regular expressions to
match URLs or filepaths. For example:

def url = "http://shop.oreilly.com/product/0636920038597.do"
assert url ==~ $/https?://(\w+\.)+com(/\w+)*(\.\w+)?/$

Multiline Strings
A string enclosed in triple-single or double quotes can span multiple lines. That is,
the string literal can contain literal line breaks, as shown here:

def str = """
$name: Fascinating!
Kirk: Report, Mr $name!
"""
assert str == '\nSpock: Fascinating!\nKirk: Report, Mr Spock!\n'

To assist in indenting code neatly, it’s possible to exclude a line-break from a multiline
string by escaping it with \:

def s = """\
Fascinating!"""
assert s == "Fascinating!"

Groovy also provides a method stripIndent() on strings that will remove common
leading whitespace from each line of a string. This is very useful in allowing multiline
strings to be indented more readably, as demonstrated here:

def s = """\
  Kirk: Report, Mr Spock!
  Spock: The lifeform is most unusual, Captain.
         I have never encountered anything like it.\
""".stripIndent()
assert s.startsWith("Kirk:")
assert s.contains("\nSpock")

Groovy Primer | 321



Single Quotes or Double Quotes?

When writing noninterpolated strings, some Groovy developers
prefer to use single-quoted strings.
In the distant past there was a small performance penalty when
using potentially interpolated double-quoted strings, but that has
long since been eliminated.
I prefer to default to double-quoted strings and the examples
throughout this book are written that way. This way if I need to add
interpolation to a string later, I can do so without changing the
delimiters.
Use whichever convention you prefer.

Operator Overloading
Unlike Java, Groovy supports operator overloading. Each operator has a matching
named method. Implementing equals in a class overrides the == and != operators,
implementing compareTo overrides the >, <, >=, 0 and 1 operators, and so on.

Because of operator overloading, it is not incorrect to use the == operator to compare
two objects in Groovy.

In Java, == is a pointer comparison; it returns true only if both operands are pointers
to the same object instance. To check logical equality, a developer should use the
equals(Object) method. This is not the case in Groovy where the == operator is
actually an alias for equals (well, it’s slightly more complicated than that; see the
related sidebar). In fact, it is considered nonidiomatic to spell out a call to the equals
method in Groovy. The preferred way to express logical equality is by using the ==
operator.

What Is == Really Doing?
Although it’s typical (and usually safe) to consider == an alias for the Java-style equals
method, that’s something of an oversimplification.

Even though we can think of

assert a == b

as the Groovy equivalent to the Java

assert a.equals(b);

in fact, if the class of a implements Comparable, Groovy will use:

a.compareTo(b) == 0;

322 | Appendix A: Groovy Primer



The primary reason this is done is so that the == operator can be reflexive between
java.lang.String and groovy.lang.GString (the class that backs Groovy’s interpo‐
lated strings). Because java.lang.String is final, Groovy cannot extend it. Subse‐
quent versions of Java have introduced the CharSequence class to work around this
kind of problem in alternative JVM languages, but Groovy’s implementation predates
this.

Unary Math Operators
The unary sign prefix operators + and - are aliases for positive() and negative(),
respectively. I’m not sure that I’ve ever seen these overridden on anything other than
numeric types, but the option is there.

Comparison Operators
In addition to the == and != operators, the standard Java comparison operators are
aliases for compareTo. Implementing Comparable and the compareTo method means
instances of a class can be compared by using the >, <, >=, and 0 operators.

Mathematical Operators
You can override standard mathematical operators by using plus(?), minus(?), mul
tiply(?), and div(?).

In addition, the modulo operator % aliases to mod(?) and the power operator ** to
power(?).

All those mathematical operators also have assignment forms; for example, += and
**= that are also aliased to the same methods. Thus, if you implement plus(?) you
can use the + and += operators with instances of your class.

Bitwise Operators
The bitwise logical operators &, |, and ^ alias to and(?), or(?), and xor(?), respec‐
tively.

Like the mathematical operators, bitwise operators also have assignment forms: &=, |
=, and ^=.

Also, the unary bitwise negation operator ~ is an alias for bitwiseNegate().

Groovy Primer | 323



In Groovy, String implements the bitwiseNegate() method to
return a java.util.regex.Pattern:

def pattern = ~/\w+/
assert pattern instanceof Pattern

The bitwiseNegate() on a string is equivalent to the following
Java code:

Pattern.compile("\\w+");

Shift Operators
Java-like bit-shift operators <<, >>, and >>> are implemented in Groovy as aliases for
leftShift(?), rightShift(?), and rightShiftUnsigned(?), respectively.

As well as the original bit-shifting intent, Groovy typically uses <<
for chainable append operations.
For example, on collections:

def list = []
list << "a"
list << "b" << "c"
assert list == ["a", "b", "c"]

Or Appendable types such as OutputStream, Writer, or String
Builder:

def buffer = new StringBuilder()
buffer << "a" << "," << "b" << "," << "c"
assert buffer.toString() == "a,b,c"

Operators Not Present in Java
Groovy also has some operators that Java does not. We’ve already seen the regular
expression match operator ==~ (also known as the “firecracker operator”) and briefly
mentioned the comparison operator 0 (also known as the “spaceship operator”).
There are several more.

Safe Dereference Operator
As every Java developer has no doubt found out the hard way, the Java-style derefer‐
ence operator—.—will throw NullPointerException if the object on the left side of
the operator is null.

When an object could be null, it’s necessary to check whether that is actually the case
before calling methods on it. Groovy has an operator that simplifies this check. If the
object on the left of the ?. operator is null, the expression will yield null. Any

324 | Appendix A: Groovy Primer



method call or property access is short-circuited, so no NullPointerException is
thrown.

Call Operator
The standard braces used to indicate a method call are in fact an operator in Groovy.
If a class implements call() with any number of parameters (including zero), it can
be treated as a callable function.

For example, given a class

class Greeter {
  def call() {
    "Ahoy!"
  }
}

we can treat instances of the class as first-class functions, as follows:

def greeter = new Greeter()
assert greeter.call() == "Ahoy!"
assert greeter() == "Ahoy!"

Any number of parameters can appear on the call method. Varargs also work, of
course:

class Greeter2 {
  def call(String... names) {
    names.collect { "Ahoy $it!" } join("\n")
  }
}

def greeter = new Greeter2()
assert greeter("Spock", "Kirk", "Bones") == """\
Ahoy Spock!
Ahoy Kirk!
Ahoy Bones!"""

Subscript Operators
The subscript operators are square braces and are aliases for getAt(?) and putAt(?).
They are most commonly encountered when dealing with List and Map instances,
but you can implement them on any class:

def list = ["a", "b", "c"]

assert list[0] == "a" 

list[1] = "d" 
assert list.join("") == "adc"

An example of the subscript operator aliasing getAt

Groovy Primer | 325



When followed by an assignment, the operator is an alias for putAt(?)

Of course, with list instances, the argument to the subscript is an integer, but this
does not need to be the case. With a Map, the subscript can accept an argument of any
type.

Elvis Operator
Java programmers will be familiar with the ternary operator: x ? a : b. There is a
very common use case for this operator in which a value is tested for null and either
used as is if it is not null, or replaced with a default if it is—x != null ? x : y.

In fact, this use is so common that Groovy allows a shortened form of the ternary
operator known as the “Elvis operator”—x ?: y. The operator will yield the lefthand
value if it is “truthy,” or the righthand value otherwise:

def a = "a"
def b = "default"

assert a != null ? a : b == "a"
assert a ?: b == "a"

a = null
assert a != null ? a : b == "default"
assert a ?: b == "default"

Remember, the lefthand value is evaluated for truthiness, not just null, so the opera‐
tor is useful in a variety of situations.

Spaceship Operator
We briefly saw the 0 or “spaceship operator” earlier. It is simply an alias for compar
eTo.

For example, we can use it to delegate a compareTo implementation to the properties
of a class, as follows:

class Person implements Comparable<Person> {
  String firstName
  String lastName

  @Override
  int compareTo(Person o) {
    lastName <=> o.lastName ?: firstName <=> o.firstName
  }
}

326 | Appendix A: Groovy Primer



This is considerably simpler than the equivalent Java implementation. As we’ve dis‐
cussed already, implementing compareTo enables us to use the entire range of stan‐
dard comparison operators:

def kirk = new Person(firstName: "James", lastName: "Kirk")
def scotty = new Person(firstName: "Montgomery", lastName: "Scott")

assert kirk < scotty

def beverley = new Person(firstName: "Beverley", lastName: "Crusher")
def wesley = new Person(firstName: "Wesley", lastName: "Crusher")

assert wesley > beverley

Spread Operators
You use the spread operator *. to apply the same method call to each element in an
iterable and collect the results:

def crew = ["Kirk", "McCoy", "Spock"]
crew*.toUpperCase() == ["KIRK", "MCCOY", "SPOCK"]

Spreading parameters
You can use a variant of the spread operator to apply the elements of list or other
iterable value to the parameters of a method, as shown here:

def crew = ["Kirk", "McCoy", "Spock"]
def params = [0, "Picard"]
crew.set(*params)
assert crew == ["Picard", "McCoy", "Spock"]

In this example, the values in the list params are spread over the parameters of
List.set(int, Object).

This form of spread operator is also commonly used to pass the elements of a list to a
vararg parameter. For example, if we have a method that counts the number of items
passed to its vararg parameter, such as

int countParams(Object... params) {
  params.size()
}

calling it with a list will pass the entire list to a single parameter, whereas spreading
the list with * will assign each list element to a separate vararg element:

def crew = ["Kirk", "McCoy", "Spock"]
assert countParams(crew) == 1
assert countParams(*crew) == 3

Groovy Primer | 327



Regular Expression Operators
You use the =~ operator to create a Matcher, which is equivalent to the following Java
code:

Pattern.compile("\\w+!").matcher("Fascinating!");

Because of Groovy’s concept of “truthiness”, a Matcher has a truth value that corre‐
sponds to the result of its find() method. This means that you also can use the =~
operator to assert a partial regular expression match.

For example, this assertion will succeed:

assert "Fascinating!" =~ /\w/

but this one will fail:

assert "Fascinating!" =~ /\d/

You use the ==~ operator to assert a complete match. Thus the following two asser‐
tions are equivalent:

assert "Fascinating!" ==~ /\w+!/
assert "Fascinating!" =~ /^\w+!$/

Field Access Operator
You can use the .@ operator to bypass Groovy’s usual property access conventions
and access the underlying field.

For example, let’s add an optional “middle name” property to our Person class. The
backing field itself can be null, but we’ll specify a getter that returns an
Optional<String>:

String middleName

Optional<String> getMiddleName() {
  Optional.ofNullable(middleName)
}

Referring to the property .middleName on an instance will use the getter. Assigning to
the property will use the implied setter. If, for whatever reason, we need to access the
String backing field rather than the Optional<String> value of the getter, we can use
the .@ operator:

def person = new Person(firstName: "James", lastName: "Kirk")
assert person.middleName == Optional.empty()
assert person.@middleName == null

person.middleName = "Tiberius"
assert person.middleName == Optional.of("Tiberius")
assert person.@middleName == "Tiberius"

328 | Appendix A: Groovy Primer



It’s rare to see the .@ operator in use.

Method Pointer Operator
It’s possible to get a callable reference to a method as a standalone variable by
using .&:

def ref = "Spock".&contains
assert ref instanceof Closure
assert ref("k")
assert !ref("x")
assert ["S", "p", "o"].every(ref)

Method References in Java 8

Groovy’s .& operator predates the :: operator in Java 8 but is very
similar.
Here’s the same example implemented with the method reference
operator in Java 8:

Predicate<String> ref = "Spock"::contains;
assert ref.test("k");
assert !ref.test("x");
assert Stream.of("S", "p", "o").allMatch(ref);

Operator-Like Keywords
Groovy has a handful of keywords that behave like operators. Let’s take a look at
them:

in

The in keyword is an alias for the isCase(?) method.

is

The is method is used to determine strict, Java-style referential equality.

as

The as operator is used to perform a type cast in a controlled manner. Although
Java-style casts work in Groovy, they are less flexible. Casting with as will look
for an implementation of asType(T) on the class and use that to perform a coer‐
cion.

Closures
Groovy’s closures are first-class functions. They are similar to Java 8 lambdas,
although the syntax is slightly different and they have some additional capabilities
such as the ability to delegate method calls and property references to an object.

Groovy Primer | 329



You can pass closures as parameters like objects, and you can call them like methods.

Defining Closures
A closure is simply some code surrounded by curly braces with an optional parame‐
ter definition:

def closure = { String s ->
  s.toUpperCase()
}
assert closure("Spock") == "SPOCK"

The closure here has a single parameter s that is a String. It also returns a String
using the Groovy implicit return convention. The type of the closure variable is
groovy.lang.Closure<String>. The generic type on the Closure class specifies the
return type.

Optional parameter types
The type information on the closure parameter is optional and is often omitted in
places where it can be inferred from context:

def closure = { s ->
  s.toUpperCase()
}
assert closure("Spock") == "SPOCK"

The implicit closure parameter
Closures that take a single parameter can omit the parameter declaration altogether
and refer to the parameter by using it:

def closure = {
  it.toUpperCase()
}
assert closure("Spock") == "SPOCK"

Methods That Accept Closures
When passing a literal closure to a method as the last parameter, the closure can sit
outside the braces of the method call, which frequently looks neater.

For example, if we have a method that applies an arbitrary transformation to a string

String transform(String s, Closure<String> transformer) {
  transformer(s)
}

it can be called with a closure appearing after the closing method call brace.

330 | Appendix A: Groovy Primer



def result = transform("Spock") {
  it.toUpperCase()
}

If the closure is the only parameter, you can omit the braces altogether.

Closure Delegates
Closures can delegate to an object, which means method and property references will
be resolved against the delegate.

For example, we could change our string transformer method as follows:

String transform(String s, Closure<String> transformer) {
  transformer.delegate = s
  transformer()
}

The closure can then be parameterless, as is the case here:

def result = transform("Spock") {
  toUpperCase()
}

Parameter and Delegate Type Information
The Closure class has a single generic type indicating the return type. When using
static type checking or static compilation, it is necessary to specify the parameter
and/or delegate types the closure expects; otherwise, the type checker will not be able
to validate the code inside the closure.

For parameters, it’s sufficient to declare specific types on the closure’s parameters.
There is also an annotation that can supply the same information to the compiler (or
other tools such as IDEs). If type information is supplied by the annotation, the
parameter types can be inferred in the actual closures.

For example, if we want to specify parameter type information on our earlier method,
we can do it like this:

String transform(String s,
                 @ClosureParams(
                   value = SimpleType,
                   options = "java.lang.String"
                 ) Closure<String> transformer) {
  transformer(s)
}

Now, statically compiled code can make calls to the method and use type inference to
determine the type of the parameters passed to the closure itself.

Groovy Primer | 331



We can go further and make the method completely generic and have the closure
expect to receive a parameter type based on the type passed to the method itself:

<T> T transform(T s, @ClosureParams(FirstParam) Closure<T> transformer) {
  transformer(s)
}

There are a number of different options for specifying parameter types. For example,
if we want to make a version of the same method that transforms all elements in an
iterable, we can determine the closure parameter type from the generic type signature
of the method argument, as shown here:

<T> Iterable<T> transform(Iterable<T> s,
                          @ClosureParams(
                            FirstParam.FirstGenericType
                          ) Closure<T> transformer) {
  s.collect {
    transformer(it)
  }
}

Similarly, when using a closure delegate, there is an annotation that can supply miss‐
ing type information to the type checker:

String transform(String s, @DelegatesTo(String) Closure<String> transformer) {
  transformer.delegate = s
  transformer()
}

The @ClosureParams and @DelegatesTo annotations are very useful when developing
DSLs that use closures extensively because they make IDEs much more helpful.
Developers working with the DSL don’t need to specify parameter types on closures,
because they can be inferred from the information provided by the annotation.

Closures and Java 8 Functional Interfaces
Closures will coerce to Java 8 functional interfaces just as lambdas will. This means
that when writing Groovy code, you can use Java APIs designed for lambdas:

def result = ["Kirk", "Spock", "Bones"]
  .stream()
  .map({ it.toUpperCase() })
  .collect(toList())
assert result == ["KIRK", "SPOCK", "BONES"]

Here, a closure stands in for the Function<? super T, ? extends R> parameter
passed to java.util.stream.Stream.map.

332 | Appendix A: Groovy Primer



The Groovy Development Kit
The Groovy Development Kit (GDK) is Groovy’s extension to the standard Java
Development Kit (JDK). Groovy augments many of the standard Java types with
additional methods and capabilities.

This appendix is not the place for an exhaustive list of the capabilities added to classes
with the GDK. A Javadoc-like reference is available at http://groovy-lang.org/gdk.html.

Let’s look at a few of the more common capabilities, though.

Functional Iterator Methods
Some of the most frequently used methods in the GDK are functional iterators.

These methods are present on all classes. On most types (including Object), they will
“iterate” over a single instance. On collection types, they will iterate over each ele‐
ment. On maps, they will iterate over the entry set. On strings, they will iterate over
characters.

Let’s look at some of the most common iterator methods you might encounter in the
examples in this book. These are operations typically useful in writing Spock specifi‐
cations.

each(Closure)

Calls the closure once for every element. The each method is often used in preference
to a for loop in Groovy for iterating through elements of a collection:

def result = new StringBuilder()
["Kirk", "Spock", "McCoy"].each {
  result << it << ", "
}
assert result.toString() == "Kirk, Spock, McCoy, "

eachWithIndex(Closure)

Like each, but passes an index as well as the element to the closure:

def result = new StringBuilder()
["Kirk", "Spock", "McCoy"].eachWithIndex { name, i ->
  if (i > 0) {
    result << ", "
  }
  result << i + 1 << ": " << name
}
assert result.toString() == "1: Kirk, 2: Spock, 3: McCoy"

Groovy Primer | 333

http://groovy-lang.org/gdk.html


find(Closure)

Returns the first element for which the closure returns true, or null if none do:

def result = ["Kirk", "Spock", "McCoy"].find {
  it.contains("o")
}
assert result == "Spock"

findAll(Closure)

Returns a list of all elements for which the closure returns true:

def result = ["Kirk", "Spock", "McCoy"].findAll {
  it.contains("o")
}
assert result == ["Spock", "McCoy"]

collect(Closure)
Groovy’s version of the functional programming map operation. Returns a collection
of the values returned by the closure:

def crew = [
  [firstName: "James", lastName: "Kirk"],
  [firstName: "Montgomery", lastName: "Scott"],
  [firstName: "Hikari", lastName: "Sulu"]
]
assert crew.collect { it.lastName } == ["Kirk", "Scott", "Sulu"]

Implicit collect

Groovy has a shorthand for collect when collecting properties.
Instead of using the collect method explicitly, you can just refer
to the property name as though it were a property of the collection:

assert crew.lastName == ["Kirk", "Scott", "Sulu"]

It’s also possible to use the *. operator to apply a method call to
every element of a collection and collect the results:

assert crew.lastName*.toUpperCase() ==
  ["KIRK", "SCOTT", "SULU"]

any(Closure)

Returns true if the closure returns true for at least one element.

assert ["Kirk", "Spock", "McCoy"].any {
  it.contains("o")
}

334 | Appendix A: Groovy Primer



every(Closure)

Returns true if the closure returns true for all elements.

assert ["Kirk", "Spock", "McCoy"].every {
  it.contains("c") || it.contains("k")
}

Chained Functional Style
It’s very common to chain functional methods, and Groovy allows the . to be omitted
in some circumstances:

def crew = [
    [name: "Crusher", active: true, dateOfBirth: "2348-01-01"],
    [name: "Kirk", active: false, dateOfBirth: "2233-03-22"],
    [name: "McCoy", active: false, dateOfBirth: "2227-01-01"],
    [name: "Picard", active: true, dateOfBirth: "2305-07-13"],
    [name: "Spock", active: false, dateOfBirth: "2230-01-06"],
    [name: "Worf", active: true, dateOfBirth: "2340-01-01"]
]

def result = crew.findAll {
  it.active
} sort { a, b ->
  a.dateOfBirth <=> b.dateOfBirth
} collect {
  it.name
} join(", ")

assert result == "Picard, Worf, Crusher"

AST Transformations
Groovy has a number of annotations that are processed by the compiler. These are
used to apply common patterns, doing away with the boilerplate code that might
otherwise be necessary.

AST transformations are a big topic, but briefly, here is an overview of some you’re
likely to encounter:

@Memoized

Causes the result of the annotated method to be cached so that subsequent calls
are faster. The cache is keyed on the method’s parameters. This is extremely use‐
ful for long-running idempotent methods.

@TupleConstructor, @EqualsAndHashCode, @ToString
Generate a Java-like constructor with a parameter for each property in the anno‐
tated class, a standard equals and hashCode implementation, or a standard

Groovy Primer | 335



toString implementation, respectively. Parameters to the annotation can specify
which properties to include or exclude.

@Canonical

Combines @TupleConstructor, @EqualsAndHashCode, and @ToString.

@Immutable

Similar to @Canonical but also makes all properties and the class itself final.

@Sortable

Generates a compareTo method based on the properties of the annotated class.

@TypeChecked, @CompileStatic
Cause the compiler to perform compile-time type checks or statically compile the
annotated method or class. Metaprogramming is not available in statically com‐
piled Groovy code, but more rigorous type checking and inference becomes pos‐
sible.

@Lazy

Causes the annotated property to be lazily initialized.

@Singleton

Transforms the annotated class into a singleton with a static instance property
containing the single instance of the class.

There are many more annotations, and of course, it’s also possible to write your own
annotation-driven AST transformations.

Summary
In this appendix, we took a quick tour of the Groovy language, which should be
enough to enable you to follow the examples throughout this book and get you writ‐
ing effective, idiomatic Spock specifications. There is much more to the language
including metaprogramming, scripting support, multiple inheritance via traits, DSL
builders, and so on.

You can find more information online:

• The Groovy language website
• Javadocs for Groovy’s enhancements to the Java standard library
• Groovy’s own standard library

336 | Appendix A: Groovy Primer

http://www.groovy-lang.org
http://groovy-lang.org/gdk.html
http://docs.groovy-lang.org/latest/html/gapi


Bibliography

[goos] Steve Freeman & Nat Pryce. Growing Object-Oriented Software Guided by
Tests. Addison-Wesley. 2009.

[osherove] Roy Osherove. The Art of Unit Testing. Manning. 2009.
[pood] Robert C. Martin. Principles of Object-Oriented Design. http://www.butuncle

bob.com/ArticleS.UncleBob.PrinciplesOfOod.
[cleancode] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsman‐

ship. Prentice Hall. 2008.

337

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod




Index

Symbols
!= operator, 322
" (double quotes), 319

vs. single, 322
$/ delimiter, 319, 321
${…} delimiter, 319
' (single quotes), 319

vs. double, 322
*. operator, 334
. (dot operator), 320
.& operator, 313, 329
.@ (field access operator), 328
.asImmutable(), 317
/ (string delimiter), 320
/$ delimiter, 319, 321
; (semicolons), 310
= assignment operator, 319
== operator, 322
==~ operator, 321, 328
=~ operator, 328
?: (Elvis operator), 326
[] (square braces), 311, 316
\ (backslash character), 320
{} (curly braces), 311

A
acknowledgements, xviii
and: block type, 13, 18
annotation-driven extensions, 163
annotation-driven transactions

@Transactional annotation, 195
forcing errors, 206
non-Spring-dependent tests, 198
Spring convenience and costs, 203

Spring setup, 200
testing transaction rollbacks, 199
tracking mentions in messages, 196
unexpected side effects, 204

antipatterns
test-per-method, 88
testing variants using loops, 70
The Cuckoo, 88

any(Closure), 334
ApplicationEventPublisher class, 207
arrays

initialization in Groovy, 311, 314
list to set conversion, 317

Art of Unit Testing, The (Osherove), 36
as keyword, 329
asBoolean(), 318
Aspect-Oriented Programming (AOP), 161,

195
assertions

effective assertions with Groovy
about every item in a collection, 27-29
expressive assertions with operators, 29
Groovy vs. Java, 25
list comprehensions and List literals,

25-27
expecting exceptions, 31-32
goals for, 21
grouping on the same object, 32
helper methods and, 97
implicit, 97, 103
importance of good diagnostics, 22
power assert, 22-24

improving failures with toString, 24
type information in, 24

339



using Hamcrest for, 154-156
assignment operator (=), 319
AST transformations

@Canonical, 336
@CompileStatic, 336
@EqualsAndHashCode, 335
@Immutable, 336
@Lazy, 336
@Memoized, 335
@Singleton, 336
@Sortable, 336
@ToString, 335
@TupleConstructor, 335
@TypeChecked, 336
assertions and, 28

asynchronous testing
blocking constructs, 135
challenges of, 135, 149
interaction testing, 144-149

BlockingVariable and timeouts, 148
extending BlockingVariable, 148
parameter capture, 146

of nonblocking APIs, 136-143
awaiting multiple values, 140-143
referencing BlockingVariable.set, 140
using BlockingVariable, 139

polling for eventual state, 143
attributions, xvii
authentication, 256-259

vs. authorization, 243-246
default parameter values with Groovy, 258
encapsulating interactions with methods,

257
multiple when: and then: blocks, 259

@AutoCleanup, 120
automated testing

benefits of, xiii
challenges of, xiv
idempotence in, 132
importance of good diagnostics, 22
organizing tests

antipattern: The Cuckoo, 88
one-to-one relationships, 87
test-per-method antipattern, 88

selective test execution, 119

B
backslash character (\), 320
before and after values, comparing, 98

Behavior-Driven Development (BDD), xi
behavior-driven development (BDD), 10
behavioral slices, 190
bit-shift operators, 324
bitwise operators, 323
bitwiseNegate(), 323
bleeding data, 227

(see also test leakage)
BlockingVariable

extending, 148
in callbacks, 139
timeouts and, 148
uses for, 136

BlockingVariable.set, 140
BlockingVariables

awaiting multiple values with, 140-143
uses for, 136

blocks
assertions, 12
basic usage, 13
block labels, 9
comprehensibility, 18
defining, 11
description strings, 17
grammar of

separating logic and data, 101-103
separating preconditions, 105
separating preconditions from actions,

105
when/then vs. given/expect, 103

keywords, 11
label syntax, 14
labels, 11
structure, 10
taxonomy

and:, 13
cleanup:, 13
expect:, 13
given:, 12
setup:, 13
then:, 13

(see also then: block type)
when:, 13
where:, 13

(see also where: block type)
browser-based testing (see web testing)

C
call(), 325

340 | Index



callbacks
IAnnotationDrivenExtension and, 163
passing mocks to JavaScript, 277
Spock extensions and, 163-166
testing nonblocking APIs using, 136-139

BlockingVariable in, 139
referencing BlockingVariable.set, 140

@Canonical, 336
Chrome browser, 248

(see also web testing)
class literals, 310
Clean Code (Martin), 90
cleanup method

application of, 16
drop table user if exists, 44
JUnit rules, 157
order of execution in hierarchies, 51
in Spring application framework, 218

cleanup: block type, 13
cleanupSpec method, 16, 51
closures

closure delegates, 331
defining, 330
Java 8 functional interfaces and, 332
vs. lambdas, 312
methods accepting, 330
parameter and delegate type information,

331
passing, 329

code examples, obtaining and using, xvi
collect(Closure), 334
comments vs. block descriptions, 17
compareTo method, 29, 322-323, 326
comparison operators, 322-323
comparisons, before vs. after values, 98
@CompileStatic, 336
@Component, 212
comprehensibility

of blocks, 18
of feature methods, 89-100
of test reports, 9

conditional specifications, 118-120
@Configuration, 212
container tests, 193
content DSLs, 255
@ContextConfiguration, 212
Cuckoo, The (antipattern), 88
Cucumber, 11, 167
curly braces ({}), 311

D
data access object (DAO), 40
data fixtures

@Sql annotation for, 216
common fixtures vs. per-test data, 217
for end-to-end web testing, 251
global fixture data, 217

data pipes
defining, 74
driven by files, 127
filtered, 129
IDE support for, 76
multiple, 77

databases, 40
(see also resource management)
database migration plugin, 133
database transactions, 195

dates and timestamps, testing, 36
def variable

benefits of, 313
vs. explicit type, 314
vs. void, 9

@Delegate, 95
delegation, 95
detached mocks, 207, 211
Diamond Kata

adding padding to rows, 187
eliminating assertion loops, 186
enforcing invariants, 178
goals of, 175
implementation, 176
matrix content, 180
pathological case, 176
refinement, 189
simplest valid diamond, 177
symmetry, 183

@DirtiesContext, 204
dot operator (.), 320
double quoted strings ("), 319

vs. single, 322
do…while loops, 312

E
each(Closure), 333
eachWithIndex(Closure), 333
Elvis operator (?:), 326
end-to-end web testing (see web testing)
equals method, 322
equals(Object) method, 322

Index | 341



@EqualsAndHashCode, 335
EventBus, 146
eventual state, 143
eventually(Closure), 143
every(Closure), 28, 335
except: block type

uses for, 13
exceptions

failed assertions vs. errors in tests, 22
in Groovy, 310
HTTP errors, 230
IllegalStateException, 62
interrogating, 31
NullPointerException, 113, 324
PageInstanceNotInitializedException, 255
recovering from downstream, 303
RegistrationException, 69, 70
RuntimeException, 310
separating preconditions from actions, 105
thrown method and, 31
transactions and, 195
uncaught, 8
visit…Annotation methods and, 165

expect: block type
automatic assertion behavior of, 27
avoiding state leakage with, 46
basic usage, 13
Boolean expressions and, 18, 32
Groovy's with method and, 33
vs. then: block, 103

extensions
global extensions, 166-172
Hamcrest matchers, 154-156
JUnit rules, 156-163

generic cleanup logic, 162
reusable data cleanup, 157
simplifying rules, 161

message timeline, 151-153
Spock extensions, 163-166

annotation-driven extensions, 163
data cleanup as, 163
further steps, 166

ExternalResource class, 161
extract and override technique, 36
extract till you drop mantra, 90

F
false moniker testing, 39
feature methods (see also specifications)

block usage, 13
blocks, 9, 11
defined, 7
names, 8
purpose of, 8
quoted strings for names, 9
visibility, 8
void vs. def, 9

field access operator (.@), 328
file.traverse(), 127
filepaths, absolute vs. relative, 130
find(Closure), 334
findAll(Closure), 334
firecracker operator (=~), 324
fixture methods, 238
flat-map operations, 186
for loops

assertions in, 27
eliminating, 186
in Groovy, 312

forms, 264-270
accessing elements by name, 267
encapsulating interactions with methods,

268
validation of, 269

Freeman, Steve, 22
function types, 298
functional iterator methods

any(Closure), 334
behavior of, 333
collect(Closure), 334
each(Closure), 333
eachWithIndex(Closure), 333
every(Closure), 335
find(Closure), 334
findAll(Closure), 334

G
Geb test framework, 95, 247

(see also web testing)
getAt(?), 325
Gherkin file syntax, 167
given: block type, 12
global extensions, 166-172
global fixture data, 217
Gradle

Geb dependency, 248
including Spock in Gradle projects, 3-5
JBake plugin, 133

342 | Index



separate test suites, 194
Grails database migration plugin, 133
Groovy Development Kit (GDK), 333-335
Groovy language

AST transformations, 28, 335
chained functional style, 335
closures

closure delegates, 331
defining, 330
Java 8 functional interfaces and, 332
methods accepting, 330
parameter and delegate type informa‐

tion, 331
passing, 329

dynamic-typed variables, 9, 313
functional iterator methods, 333-335
Groovy Development Kit, 333-335
history of, xii, 309
vs. Java

class literals, 310
default parameters, 310
exceptions, 310
implicit returns, 310
import statements, 310
invalid syntax, 311-313
method dispatch, 311
semicolons, 310
visibility, 310

List and Map literals, 314-317
minus operator, 131
online resources, 336
operator overloading, 322-324
operator-like keywords, 329
operators not present in Java

call, 325
Elvis, 326
field access, 328
method pointer, 329
regular expression, 328
safe dereference, 324
spaceship, 326
spread, 264, 327
subscript, 325

primer, xv, 309-336
properties, 318
relationship to Spock, xii
safe cast, 317
strings, 319-322
traits, 94

truthiness, 317
Growing Object Oriented Software Guided by

Tests (Freeman and Pryce), 22
Guava Event Bus, 146

H
Hamcrest matchers, 23, 110, 154-156
Handlebars library, 279-290 (see also JavaScript

testing)
benefits of, 279
compiling templates, 280
composing templates with partials, 287
handling unconverted properties, 283
passing iterable values to JS, 288
registering helper functions, 285
template context, 280
testing template rendering, 282

helper methods
assertions and, 97
mock interactions and, 97
sharing, 90-93

HTTP status codes, 230
(see also REST applications)

I
idempotence, 132
if statements, 27
@Ignore, 118
@IgnoreIf, 119
@IgnoreRest, 118
immutability, 317
@Immutable, 336
implicit assertions, 97, 103
implicit returns, 310
import statements, 310
import static, 93
in keyword, 329
in-browser testing (see web testing)
inheritance

in application beans, 215
in transactions, 221
multiple, 94
specifications and, 47-52

lifecycle execution order, 51-52
installation

Groovy compatibility, 3
running with Gradle, 3-5
running with JUnit runner, 3
running with Maven, 5

Index | 343



integration tests (see also Spring application
framework)
re-creating application contexts, 204
vs. unit tests, 193

interaction testing
asserting method calls, 56-57

mock and stub type inference, 57
position of mock verifications, 57

asynchronous, 144-149
benefits and drawbacks of, 55
declaring return values from mocked meth‐

ods, 59
defined, 55
defining mocked method behavior, 62
disallowing unexpected calls, 60
helper methods and, 97
looser matching, 61
parameter predicates, 59
removing invocation constraints, 63-66

choosing between mocks and stubs, 64
mixing mocks and stubs, 65

specifying invocation cardinality, 58
wildcard shortcuts, 61

Inversion of Control (IoC), 55
is keyword, 329
isomorphic web applications, 275
@Issue, 121

J
Jackson dependencies, 285
Java Virtual Machine (JVM), 271
java.sql.Connection, 162
JavaScript testing

benefits of JVM, 272
calling JavaScript functions, 272-274

casting ScriptEngine to Invocable, 273
JS functions as objects, 273
specifying this in JS functions, 274

Nashorn script engine
benefits of, 271
setup, 272

passing mocks to JavaScript, 277
rendering views with Handlebars, 279-290

compiling templates, 280
composing templates with partials, 287
handling unconverted properties, 283
passing iterable values to JS, 288
registering helper functions, 285
template context, 280

testing template rendering, 282
testing isomorphic view components,

275-277
JavaTimeModule class, 285
JBake, 125, 133
JDBI library, 42
Jerry library, 128
JUnit

parameterized testing in, 71-73
reusable functionality, 156-163

data cleanup, 157
explicit types for rule fields, 159
generic cleanup logic, 162
simplifying rules, 161
statements in rules, 161

Spock compatibility, 3
test report readability, 9

K
keywords

assert, 12, 13, 97, 114, 144, 182
blocks and, 11
break, 14
finally, 13
in Cucumber, 11
in Gherkin, 167
in specifications, 9
operator-like

as, 329
in, 329
is, 329

return, 239, 310
this, 280

L
lambdas, 312
@Lazy, 336
leaking tests, 43, 227
lenient mocking, 60
lifecycle hooks/methods

execution order in inheritance hierarchy,
51-52

resource management using, 42-47
link checker

data pipes driven by files, 127
filtered data pipes, 129
JBake configuration, 125, 133
relative filepaths, 130

LinkedHashMap, 315

344 | Index



list comprehensions, 25-27
List literals

defining, 314
effective assertions with, 25-27
in Groovy, 311
immutability, 317
indexing, 314

logical equality, 322

M
Map literals

accessing map values, 316
defining, 315
immutability, 317
key assignment, 316
as named arguments, 317
order of values, 315

map operation, 25, 334
Martin, Robert C., 89, 90
Matcher, 110, 154-156, 328
mathematical operators, 323
Maven

compatibility with Spock, 3
setup for Spock, 5

@Memoized, 120, 335
mention events, 207
message timeline, 151-153
method pointer operator (.&), 329
methods (see also helper methods)

accepting closures, 330
asserting method calls, 56-57
default parameters, 310
dispatch in Groovy, 311
encapsulating interactions with, 257, 268
implicit returns, 310
method parameter capture, 107-114
referencing, 313
scope of in Groovy, 310
sharing helper methods, 90-93
sharing using Groovy traits, 94
sharing using import static, 93
sharing with delegation, 95

minus operator, 131
mocks and stubs (see also interaction testing)

benefits and drawbacks of, 55
choosing between, 64
defined, 55
detached mocks, 207, 211
lenient vs. strict, 60

method parameter capture with, 107-114
mixing, 65
mock beans in XML configurations, 212
passing mocks to JavaScript, 277
position of mock verifications, 57
removing invocation constraints with stubs,

63
in Spring application framework, 207-215
type inference, 57

N
@Narrative, 121
Nashorn script engine

benefits of, 271
setup, 272

nested iterations, 186
Niederwieser, Peter, xi, xviii
NullPointerException, 324

O
object-relational mapping (ORM), 226
Object.toString method, 24
Object.with(Closure), 33
old and new values, comparing, 98
operator overloading, 29, 322-324
Osherove, Roy, 36

P
@PackageScope, 310
page models, 252-256

content DSLs, 255
Geb's automatic delegation, 256
setting base URLs, 255
subcomponents, 259-262

parameter predicates
interaction testing and, 59
method parameter capture with mocks,

107-114
using closure, 109
using Hamcrest for, 110
using mock responders, 111-114

parameterized testing
antipattern: testing variants using loops, 70
data tables, 77
defined, 67
derived values, 80-83

clarifying @Unroll expressions, 82-83
feature methods followed, 68

Index | 345



fields and methods as data providers, 79
in JUnit, 71-73
multiple data pipes, 77
separating iteration reporting

@Unroll tokens in feature method
names, 76

adding @Unroll descriptions, 75
class level @Unroll annotations, 76
using @Unroll, 75

where: block, 73
parameters

default, 310
spreading, 327

pathological cases, 176
pending features, 118
@PendingFeature, 118
persistence (see resource management)
PersistentUser class, 62
PersistentUser.getFollowing(), 58
PollingConditions class, 143
power assert, 22-24

improving failures with toString, 24
type information in, 24

preconditions, 105-107
primary key verifier, 123
Principles of Object-Oriented Design (Martin),

89
properties

accessing, 319
collecting, 334
in Groovy, 318
of Java classes, 319

Pryce, Nat, 22
publish-subscribe event system, 146
publishEvent method, 207
putAt(?), 325

R
ranges, defining, 316
readability (see comprehensibility)
regular expressions

$/ and /$ delimiters, 321
==~ operator, 321, 328
in Java, 320
operators not present in Java, 328

@Requires, 119
resource management

automatic data deletion, 162
data cleanup and, 159, 163

database transactions, 195
declaratively releasing post-test, 120
disposable persistence, 227
Grails database migration plugin, 133
persistence testing best practices, 39
specifications and inheritance, 47-52

execution order in inheritance hierar‐
chies, 51-52

test leakage, 43, 227
testing persistence layers, 40-47

Spock lifecycle, 42-47
responder dummy implementation, 111
REST applications

creating data for end-to-end tests, 226-229
bleeding data between tests, 227
cleaning up test data, 228
creating test data on demand, 227

defining application URLs, 223
first specification, 224-226
general approach to testing, 223
handling redirect responses, 238-240

verifying redirect details, 239
multiple HTTP requests, 235
requests with data, 229
security, 240-246

authentication vs. authorization, 243
token schemes, 243

strategies for creating test data, 236-238
testing for HTTP errors, 230
verifying response data, 232-235

typed response entities, 233
web application lifecycle, 226

return keyword, 310
Rhino interpreter, 271
RuntimeException, 310
RxJava applications

final implementation, 307
polling at regular intervals, 295-307

avoiding Thread.sleep, 295
recovering from downstream errors, 305
recovering from polling errors, 303
requesting messages since last received,

302
testing subscription to streams, 298
unchunking message streams, 299

test-driven development
defined, 291
defining behaviors, 293
first test, 294

346 | Index



skeleton implementation, 292
tests, behaviors, and properties, 292

S
safe dereference operator, 324
seams, 296
selective execution, 119
semicolons (;), 310
Set literals, 317
setup method, 16, 51
setup: block type, 13
setupSpec method, 16, 51
@Shared, 44, 277
shift operators, 324
single quotes ('), 319

vs. double, 322
single responsibility principle, 18, 89
single-page apps, 252
@Singleton, 336
slices, 190
@Sortable, 336
spaceship operator, 324, 326
specifications (see also parameterized testing)

@Stepwise, 114-118
basics of, 7-10

feature methods, 8
quoted strings for feature method

names, 9
simple example, 7
spock.lang.Specification class, 8

blocks
and: block type, 18
assertions, 12
basic usage, 13
comprehensibility, 18
defining, 11
description strings, 17
keywords, 11
label syntax, 14
labels, 11
separating logic and data, 101-103
separating preconditions, 105
separating preconditions from actions,

105
structure, 10
taxonomy, 12
when/then vs. given/expect, 103

conditional, 118-120
creating well-factored

comparing before and after values,
98-100

helper methods and assertions, 97
helper methods and mock interactions,

97
potential problems, 89
sharing helper methods, 90-93
sharing methods with delegation, 95
sharing methods with Groovy traits, 94
sharing methods with import static, 93

defined, 7
documenting, 121

@Issue, 121
@Narrative, 121
@Subject, 121
@Title, 121
Spock Reports extension, 122

extensions
global extensions, 166-172
Hamcrest matchers, 154-156
JUnit rules, 156-163
message timeline, 151
Spock extensions, 163-166

functional iterator methods, 333-335
inheritance and, 47-52

lifecycle execution order, 51-52
JUnit equivalent concepts, 19
lifecycle of, 15-17

setup and cleanup methods, 15-17
organizing tests

antipattern: The Cuckoo, 88
one-to-one relationships, 87
test-per-method antipattern, 88

Spock
benefits of, xi
developer, xi, xviii
installation

Groovy compatibility, 3
running with Gradle, 3-5
running with JUnit runner, 3
running with Maven, 5

relationship to Groovy, xii
version covered, xi
vs. other testing platforms, xi

spock-core library, 3
spock-spring module, 194
spock.lang.Specification, 8
spread operator, 25, 264, 327

Index | 347



Spring application framework (see also REST
applications)
application event mechanism, 207
compatibility with Spock, 194
declarative test data, 215-219

cleaning up test data, 218
global fixture data, 217
using @Sql annotation, 216

integration vs. container tests, 193
integration vs. unit tests, 193
mock and stub beans, 207-215

autoconfiguration and test configuration
classes, 212

detached mocks in Spring, 211
mention events, 207
mock bean delegates, 210
mock beans before Spock 1.1, 208
mock beans in XML configurations, 212
replacing application beans with mocks,

213
root URL in, 224
separate test suites, 194
testing annotation-driven transactions

@Transactional annotation, 195
convenience and costs, 203
first integration test, 201
forcing errors, 206
forcing Spring to re-create application

contexts, 204
non-Spring-dependent tests, 198
setup, 200
testing transaction rollbacks, 199
tracking mentions in messages, 196
unexpected side effects, 204

tests in transactions, 219-222
propagated transactions, 220

version covered, 193
@SpringBootApplication, 200
@SpringBootTest, 195
@Sql, 216
SQL statements, 216
square braces ([]), 311, 316
Squawker web application, xiv
static site link checker

data pipes driven by files, 127
filtered data pipes, 129
JBake configuration, 125, 133
relative filepaths, 130

@Stepwise

advantages of, 114
disadvantages of, 117
how to use, 115

strict mocking, 60
string delimiter (/), 320
strings

delimiter types, 319
escaping, 320
interpolation, 322
minus operator, 131
multiline, 321
regular expression literals, 320
single vs. double quotes, 322
templated expressions, 319

stripIndent(), 321
stubs (see mocks and stubs)
@Subject, 121
subscript operators, 325

T
ternary operator, 326
@Test, 8
test doubles, 55
test first approach, 22
test leakage, 43, 227
test reports

comprehensibility, 9
every method plus list comprehension, 29
Spock Reports extension, 122

test-driven development (TDD) (see also Dia‐
mond Kata)
early days of, xiv
meaning of, 291
Red…Green…Refactor mantra, 22
seams in, 296
workflow, 175

test-per-method antipattern, 88
The Cuckoo (antipattern), 88
then: block type

assertions and, 13
mocks and, 207
vs. expect: block, 103

this function, 274
thrown method, 31
throws clause, 310
TimelineSpec class, 151
timestamps and dates, testing, 36
@Title, 121
@ToString, 335

348 | Index



toString method, 24
traits, 94
@Transactional, 195
transactions (see also annotation-driven trans‐

actions)
testing rollbacks, 199
tests in transactions, 219-222

propagated transactions, 220
uses for, 195

traverse method, 127
truthiness, 317
try-with resource construct, 229, 312
@TupleConstructor, 335
type inference

mocks and stubs, 57
thrown method and, 32

@TypeChecked, 336
typographical conventions, xvi

U
unary math operators, 323
Unirest library, 129
@Unroll, 75-76, 82-83
User.getFollowing() method, 58
User.toString method, 24

V
variables

comparing before and after values, 98
declaring, 99
def variable

benefits of, 313
vs. explicit type, 314
vs. void, 9

dynamic-typed, 9, 313
type inference and, 32
where: blocks and, 74
wildcard, 61

W
web testing

authentication, 256-259
challenges of, 247

Chrome browser, 248
first frontend test, 249-252

data fixtures for end-to-end tests, 251
form validation, 269
Geb test framework, 247
interacting with forms, 264-269

accessing elements by name, 267
encapsulating interactions with methods,

268
modules, 259-262
page models, 252-256

content DSLs, 255
Geb's automatic delegation, 256
setting base URLs, 255

parameterized pages, 263
single-page apps and, 252
using different browsers, 248

well-factored code
comparing before and after values, 98-100
helper methods and assertions, 97
helper methods and mock interactions, 97
potential problems, 89
sharing helper methods, 90-93
sharing methods with delegation, 95
sharing methods with Groovy traits, 94
sharing methods with import static, 93

when: block type, 13, 31
where: block type, 13 (see also parameterized

testing)
IDE support for, 76
primary key verifier, 123
reducing duplication with, 73
separating logic and data, 101-103
setup and cleanup methods, 16
static site link checker, 125-132

data pipes driven by files, 127
filtered data pipes, 129
JBake configuration, 126, 133
relative filepaths, 130

while loops, 312
wildcard parameters, 61, 64
with(Object, Closure) method, 32
withCloseable(Closure) method, 229, 312
within(double, Closure), 143

Index | 349



About the Author
Rob Fletcher is a senior software engineer at Netflix, where he focuses on using auto‐
mated testing as a design tool. He has more than 15 years of experience in the soft‐
ware industry and has contributed to several open source projects, including Groovy,
Geb, Ratpack, and Grails.

Colophon
The animal on the cover of Spock: Up and Running is a large treeshrew (Tupaia tana),
a mammal found in Borneo, Sumatra, and other small islands in Indonesia and
Malaysia. Tupaia is derived from tupai, the Malaysian word for squirrel. Despite their
common name, they are not true shrews, and this particular species spends more
time on the ground than any other treeshrew.

Large treeshrews have reddish-brown fur that becomes darker toward the tail. They
are 7 to 13 inches long on average, and weigh between 5.5 to 11 pounds. Though they
don’t see well in daylight, their night vision is very good, and they also have an acute
sense of smell and hearing. The animal lives in a forest habitat (primarily tropical),
and does spend part of its time in trees. Most of their foraging is done on the forest
floor, however, as they feed on fruit, earthworms, insect larvae, and arthropods like
centipedes.

Treeshrews have the highest brain-to-body-mass ratio among mammals, including
humans. Such a high ratio is common in smaller animals such as mice and bats, but is
only a rough indicator of intelligence.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com



	Copyright
	Table of Contents
	Introduction
	Meet Spock
	A Short Background on Groovy
	Who Is This Book For?
	About This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Part I. Spock 101
	Chapter 1. The “Up and Running” Part
	Installation
	Running with the JUnit Runner
	Running with Gradle
	When Groovy Is Used in the Project
	Synchronizing Groovy Versions Between Main and Test Classpaths

	Running with Maven

	Chapter 2. Specification Basics
	Anatomy of a Specification
	Why Use Quoted Strings for Feature Method Names?

	An Introduction to Spock’s Blocks
	Block Taxonomy
	Basic Block Usage

	The Specification Lifecycle
	Fixture methods: setup and cleanup

	Block Descriptions
	and: blocks
	A Note on Comprehensibility

	Summary
	Comparison with JUnit


	Chapter 3. Spock Assertions
	The Importance of Good Diagnostics
	The Power Assert
	Type Information in Power Asserts

	Using Groovy for Effective Assertions
	Using List Comprehensions and List Literals
	Asserting Something About Every Item in a Collection
	Expressive Assertions with Groovy Operators

	Expecting Exceptions
	Interrogating the Exception

	Grouping Assertions on the Same Object
	Summary

	Chapter 4. Managing Resources
	How (Not) to Approach Persistence Testing
	Testing a Persistence Layer
	Managing Resources with the Spock Lifecycle

	Specifications and Inheritance
	Execution Order of Lifecycle Methods in an Inheritance Hierarchy

	Summary

	Chapter 5. Interaction Testing
	Asserting that a Method Is Called
	Specifying Invocation Cardinality
	Declaring the Return Value from a Mocked Method
	Parameter Predicates
	Disallowing Unexpected Calls or “Strict Mocking”
	Looser Matching with Wildcard Parameters
	Wildcard Shortcuts

	Defining Behavior for Mocked Methods
	Removing Invocation Constraints with Stubs
	When Should I Use a Mock and When Should I Use a Stub?
	Mixing Mocks and Stubs

	Summary

	Chapter 6. Parameterized Specifications
	Paramaterization in JUnit
	Spock’s where: block
	Separating Iteration Reporting by Using @Unroll
	Adding @Unroll Descriptions
	@Unroll Tokens in Feature Method Names
	Class Level @Unroll Annotations

	Multiple Data Pipes
	Data Tables
	Fields and Methods as Data Providers
	Derived Values
	Clarifying @Unroll Expressions

	Summary


	Part II. Advanced Spock
	Chapter 7. Idiomatic Spock
	Organizing Tests
	The “Test-per-Method” Antipattern

	Well-Factored Specifications
	Sharing Helper Methods
	Sharing Methods by Using import static
	Sharing Methods with Groovy Traits
	Sharing Methods with Delegation
	Helper Methods and Assertions
	Helper Methods and Mock Interactions
	Comparing “Before” and “After” Values

	The Grammar of Blocks
	Separation of Logic and Data with where: Blocks
	Using when/then or given/expect
	Separating Preconditions
	Separating Preconditions from Actions

	Method Parameter Capture with Mocks
	Using a Closure as a Parameter Predicate
	Using Hamcrest for Parameter Predicates
	Parameter Capture Using a Mock Responder

	@Stepwise Specifications
	How to Use @Stepwise
	Disadvantages of @Stepwise

	Conditional Specifications
	Marking Pending Features
	Selectively Executing Tests

	Automatically Cleaning Up Resources
	Documenting Specifications
	Summary

	Chapter 8. Advanced where: Blocks
	A Primary Key Verifier
	A Static Site Link Checker
	JBake Configuration
	A Data Pipe Driven by a File
	A Filtered Data Pipe
	Relative Filepaths

	Summary

	Chapter 9. Asynchronous Testing
	Blocking Constructs
	BlockingVariable
	BlockingVariables

	Testing Nonblocking APIs by Using Callbacks
	Using BlockingVariable in a Callback
	Using a Reference to BlockingVariable.set as a Callback
	Awaiting Multiple Values with BlockingVariables

	Polling for Eventual State
	Using PollingConditions as a Delegate

	Asynchronous Interaction Testing
	Asynchronous Parameter Capture
	Extending BlockingVariable

	Summary

	Chapter 10. Extending Spock
	The Message Timeline
	Hamcrest Matchers
	Hamcrest Support in Spock

	JUnit Rules
	Reusable Data Cleanup
	Simplifying the Rule by Using ExternalResource
	Making the Cleanup Logic Generic

	Spock Extensions
	Data Cleanup as a Spock Extension
	Further Steps

	Global Extensions
	Taking it Further

	Summary

	Chapter 11. Test-Driven Development: The Diamond Kata
	The Diamond Kata
	Implementation
	First Step: The Pathological Case
	The Simplest Valid Diamond
	Enforcing Invariants
	Matrix Content
	Symmetry
	Eliminating the Assertion Loop
	Adding Padding to the Rows
	Refinement

	Summary


	Part III. Integrating Spock
	Chapter 12. Spock and Spring
	What Do We Mean by “Integration Tests”?
	Container Tests

	Spring Compatibility
	@SpringBootTest

	Testing Annotation-Driven Transactions
	Tracking Who Is Mentioned in a Message
	Non-Spring-Dependent Tests
	Testing a Transaction Rollback
	Setting Up the Spring Application
	A First Integration Test
	Convenience and Cost
	Unexpected Side Effects
	Forcing Spring to Re-Create the Application Context
	A Better Way to Force Errors

	Mock and Stub Beans
	Mention Events
	Mock Beans Before Spock 1.1
	Mock Bean Delegates
	Detached Mocks in the Spring Context
	Spring Autoconfiguration and Test Configuration Classes
	Mock Beans in XML Configuration
	Replacing Application Beans with Mocks

	Declarative Test Data
	Using the @Sql Annotation for Data Fixtures
	Global Fixture Data
	Cleaning Up Test Data Spring-Style

	Tests in Transactions
	Propagated Transactions

	Summary

	Chapter 13. Testing REST APIs
	Defining the Application URL
	A First Specification
	Web Application Lifecycle
	Creating Data for End-to-End Tests
	Bleeding Data Between Tests
	Creating Test Data on Demand
	Cleaning Up Test Data

	Requests with Data
	Fixture Methods

	Testing for HTTP Errors
	Verifying Response Data
	Typed Response Entities

	Multiple HTTP Requests in a Feature Method
	Backdoors or “Pure” API Testing?
	Handling Redirect Responses
	Verifying Redirect Details

	REST API Security
	Authentication versus Authorization

	Summary

	Chapter 14. End-to-End Web Testing
	Geb
	Getting Started with Geb
	A First Frontend Test
	Introducing Page Models
	Setting the Base URL
	Geb’s Automatic Delegation

	Authentication
	Encapsulating Interactions by Using Methods

	Modules
	Parameterized Pages
	Interacting with Forms
	Accessing Form Elements by Name
	Encapsulating Interactions with Methods

	Form Validation

	Chapter 15. Testing JavaScript Using Spock
	Why Test JavaScript from the JVM?
	Setting Up Nashorn for Tests
	Calling JavaScript Functions
	JavaScript Functions as Objects
	Specifying this in a JavaScript Function

	Testing an Isomorphic View Component
	An Invocable Script Engine as a Delegate

	Passing Mocks to JavaScript
	Rendering a View with the Handlebars Library
	Compiling Handlebars Templates
	Testing Template Rendering
	Handling Properties That Don’t Convert to JavaScript
	Registering Handlebars Helper Functions
	Composing Templates with Handlebars Partials
	Passing Iterable Values to JavaScript

	Summary

	Chapter 16. Test Driving an RxJava Application
	Tests, Behaviors, and Properties
	The Skeleton Implementation
	Test Driving the Implementation
	Defining the Behavior
	A First Test

	Polling at Regular Intervals
	No Sleep `Til the Test Goes Green
	Testing Subscription to the Stream
	Unchunking the Message Stream
	Requesting Messages Since the Last Received
	Recovering from Polling Errors
	Recovering from Downstream Errors

	Final Implementation


	Appendix A. Groovy Primer
	History
	Syntactic and Semantic Differences to Java
	Semicolons
	Import Statements
	Class Literals
	Visibility
	Exceptions
	Implicit Return
	Default Parameters
	Method Dispatch
	Valid Java Code That Is Not Valid Groovy Code

	Dynamic-Typed Variables
	List and Map literals
	Lists
	Maps
	Ranges
	Immutability
	Maps as Named Arguments
	Set and Array Literals

	Truthiness
	Properties
	Accessing Properties
	Properties of Java Classes

	Strings in Groovy
	Templated Strings
	Regular Expression Literals
	The “Dollar-Slashy” String
	Multiline Strings

	Operator Overloading
	Unary Math Operators
	Comparison Operators
	Mathematical Operators
	Bitwise Operators
	Shift Operators

	Operators Not Present in Java
	Safe Dereference Operator
	Call Operator
	Subscript Operators
	Elvis Operator
	Spaceship Operator
	Spread Operators
	Regular Expression Operators
	Field Access Operator
	Method Pointer Operator

	Operator-Like Keywords
	Closures
	Defining Closures
	Methods That Accept Closures
	Closure Delegates
	Parameter and Delegate Type Information
	Closures and Java 8 Functional Interfaces

	The Groovy Development Kit
	Functional Iterator Methods
	Chained Functional Style

	AST Transformations
	Summary

	Bibliography
	Index
	About the Author
	Colophon



