
M A N N I N G

FIFTH EDITION

Craig Walls

Covers Spring 5.0

www.allitebooks.com

http://www.allitebooks.org

Praise for Spring in Action, 4th edition

“The best book for Spring—updated and revised.”

—Gregor Zurowski, Sotheby’s

“The classic, remastered and full of awesomeness.”

—Mario Arias, Cake Solutions Ltd.

“Informative, accurate, and insightful!

 —Jeelani Shaik, D3Banking.com

“After ten years, this is still the clearest and most comprehensive introduction to the
core concepts of the Spring platform.”

 —James Wright, Sword-Apak

“This book is a quick and easy way to get into the Spring Framework Universe. Simply
perfect for Java developers.”

—Jens O’Richter, freelance Senior Software Architect

“This book belongs on the bookshelf of any serious Java developer who uses Spring.”

—Jonathan Thoms, Expedia Inc.

“Spring in Action is an excellent travel companion for the huge landscape that is the
Spring Framework.”

—Ricardo Lima, Senado Federal do Brasil

“Pragmatic advice for Java’s most important framework.”

—Mike Roberts, Information Innovators

 www.allitebooks.com

http://D3Banking.com
http://www.allitebooks.org

Spring in Action
Fifth Edition

COVERS SPRING 5.0

CRAIG WALLS

M A N N I N G
SHELTER ISLAND
 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Project manager: Janet Vail
PO Box 761 Copy editors: Frances Buran, Andy Carroll
Shelter Island, NY 11964 Proofreaders: Melody Dolab, Katie Tennant

Technical proofreader: Joshua White
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617294945
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18
 www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 FOUNDATIONAL SPRING ..1

1 ■ Getting started with Spring 3

2 ■ Developing web applications 29

3 ■ Working with data 56

4 ■ Securing Spring 84

5 ■ Working with configuration properties 114

PART 2 INTEGRATED SPRING ...135

6 ■ Creating REST services 137

7 ■ Consuming REST services 169

8 ■ Sending messages asynchronously 178

9 ■ Integrating Spring 209

PART 3 REACTIVE SPRING ...239

10 ■ Introducing Reactor 241

11 ■ Developing reactive APIs 269

12 ■ Persisting data reactively 296
iii

 www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSiv
PART 4 CLOUD-NATIVE SPRING..321

13 ■ Discovering services 323

14 ■ Managing configuration 343

15 ■ Handling failure and latency 376

PART 5 DEPLOYED SPRING ..393

16 ■ Working with Spring Boot Actuator 395

17 ■ Administering Spring 429

18 ■ Monitoring Spring with JMX 446

19 ■ Deploying Spring 454

contents
preface xiii
acknowledgments xv
about this book xvii

PART 1 FOUNDATIONAL SPRING1

1 Getting started with Spring 3
1.1 What is Spring? 4
1.2 Initializing a Spring application 6

Initializing a Spring project with Spring Tool Suite 7
Examining the Spring project structure 11

1.3 Writing a Spring application 17
Handling web requests 17 ■ Defining the view 19
Testing the controller 20 ■ Building and running the
application 21 ■ Getting to know Spring Boot DevTools 23
Let’s review 25

1.4 Surveying the Spring landscape 26
The core Spring Framework 26 ■ Spring Boot 26
Spring Data 27 ■ Spring Security 27 ■ Spring Integration
and Spring Batch 27 ■ Spring Cloud 28
v

CONTENTSvi
2 Developing web applications 29
2.1 Displaying information 30

Establishing the domain 31 ■ Creating a controller class 32
Designing the view 35

2.2 Processing form submission 40
2.3 Validating form input 45

Declaring validation rules 46 ■ Performing validation at
form binding 48 ■ Displaying validation errors 49

2.4 Working with view controllers 51
2.5 Choosing a view template library 52

Caching templates 54

3 Working with data 56
3.1 Reading and writing data with JDBC 57

Adapting the domain for persistence 59 ■ Working with
JdbcTemplate 60 ■ Defining a schema and preloading data 64
Inserting data 66

3.2 Persisting data with Spring Data JPA 75
Adding Spring Data JPA to the project 76 ■ Annotating the
domain as entities 76 ■ Declaring JPA repositories 80
Customizing JPA repositories 81

4 Securing Spring 84
4.1 Enabling Spring Security 85
4.2 Configuring Spring Security 86

In-memory user store 88 ■ JDBC-based user store 89
LDAP-backed user store 92 ■ Customizing user
authentication 96

4.3 Securing web requests 103
Securing requests 104 ■ Creating a custom login page 106
Logging out 109 ■ Preventing cross-site request forgery 109

4.4 Knowing your user 110

5 Working with configuration properties 114
5.1 Fine-tuning autoconfiguration 115

Understanding Spring’s environment abstraction 116
Configuring a data source 117 ■ Configuring the embedded
server 119 ■ Configuring logging 120 ■ Using special
property values 121

CONTENTS vii
5.2 Creating your own configuration properties 122
Defining configuration properties holders 124 ■ Declaring
configuration property metadata 126

5.3 Configuring with profiles 129
Defining profile-specific properties 130 ■ Activating profiles 131
Conditionally creating beans with profiles 132

PART 2 INTEGRATED SPRING135

6 Creating REST services 137
6.1 Writing RESTful controllers 138

Retrieving data from the server 140 ■ Sending data to the
server 145 ■ Updating data on the server 146 ■ Deleting data
from the server 148

6.2 Enabling hypermedia 149
Adding hyperlinks 152 ■ Creating resource assemblers 154
Naming embedded relationships 159

6.3 Enabling data-backed services 160
Adjusting resource paths and relation names 162 ■ Paging and
sorting 164 ■ Adding custom endpoints 165 ■ Adding custom
hyperlinks to Spring Data endpoints 167

7 Consuming REST services 169
7.1 Consuming REST endpoints with RestTemplate 170

GETting resources 172 ■ PUTting resources 173
DELETEing resources 174 ■ POSTing resource data 174

7.2 Navigating REST APIs with Traverson 175

8 Sending messages asynchronously 178
8.1 Sending messages with JMS 179

Setting up JMS 179 ■ Sending messages with JmsTemplate 181
Receiving JMS messages 188

8.2 Working with RabbitMQ and AMQP 192
Adding RabbitMQ to Spring 193 ■ Sending messages with
RabbitTemplate 194 ■ Receiving message from RabbitMQ 198

8.3 Messaging with Kafka 202
Setting up Spring for Kafka messaging 203 ■ Sending messages
with KafkaTemplate 204 ■ Writing Kafka listeners 206

CONTENTSviii
9 Integrating Spring 209
9.1 Declaring a simple integration flow 210

Defining integration flows with XML 211 ■ Configuring
integration flows in Java 213 ■ Using Spring Integration’s
DSL configuration 215

9.2 Surveying the Spring Integration landscape 216
Message channels 217 ■ Filters 219 ■ Transformers 220
Routers 221 ■ Splitters 223 ■ Service activators 225
Gateways 227 ■ Channel adapters 228 ■ Endpoint
modules 230

9.3 Creating an email integration flow 231

PART 3 REACTIVE SPRING ...239

10 Introducing Reactor 241
10.1 Understanding reactive programming 242

Defining Reactive Streams 243

10.2 Getting started with Reactor 245
Diagramming reactive flows 246 ■ Adding Reactor
dependencies 247

10.3 Applying common reactive operations 248
Creating reactive types 249 ■ Combining reactive types 253
Transforming and filtering reactive streams 257 ■ Performing
logic operations on reactive types 266

11 Developing reactive APIs 269
11.1 Working with Spring WebFlux 269

Introducing Spring WebFlux 271 ■ Writing reactive
controllers 272

11.2 Defining functional request handlers 276
11.3 Testing reactive controllers 279

Testing GET requests 279 ■ Testing POST requests 282
Testing with a live server 284

11.4 Consuming REST APIs reactively 285
GETting resources 285 ■ Sending resources 287
Deleting resources 288 ■ Handling errors 289
Exchanging requests 290

CONTENTS ix
11.5 Securing reactive web APIs 292
Configuring reactive web security 292 ■ Configuring a reactive
user details service 294

12 Persisting data reactively 296
12.1 Understanding Spring Data’s reactive story 297

Spring Data reactive distilled 297 ■ Converting between
reactive and non-reactive types 298 ■ Developing reactive
repositories 300

12.2 Working with reactive Cassandra repositories 300
Enabling Spring Data Cassandra 301 ■ Understanding Cassandra
data modeling 303 ■ Mapping domain types for Cassandra
persistence 304 ■ Writing reactive Cassandra repositories 309

12.3 Writing reactive MongoDB repositories 312
Enabling Spring Data MongoDB 312 ■ Mapping domain types
to documents 314 ■ Writing reactive MongoDB repository
interfaces 317

PART 4 CLOUD-NATIVE SPRING....................................321

13 Discovering services 323
13.1 Thinking in microservices 324
13.2 Setting up a service registry 326

Configuring Eureka 330 ■ Scaling Eureka 333

13.3 Registering and discovering services 334
Configuring Eureka client properties 335 ■ Consuming
services 337

14 Managing configuration 343
14.1 Sharing configuration 344
14.2 Running Config Server 345

Enabling Config Server 346 ■ Populating the configuration
repository 349

14.3 Consuming shared configuration 352
14.4 Serving application- and profile-specific properties 353

Serving application-specific properties 354 ■ Serving properties
from profiles 355

14.5 Keeping configuration properties secret 357
Encrypting properties in Git 357 ■ Storing secrets in Vault 360

CONTENTSx
14.6 Refreshing configuration properties on the fly 364
Manually refreshing configuration properties 365
Automatically refreshing configuration properties 367

15 Handling failure and latency 376
15.1 Understanding circuit breakers 376
15.2 Declaring circuit breakers 378

Mitigating latency 381 ■ Managing circuit breaker
thresholds 382

15.3 Monitoring failures 383
Introducing the Hystrix dashboard 384 ■ Understanding Hystrix
thread pools 387

15.4 Aggregating multiple Hystrix streams 389

PART 5 DEPLOYED SPRING ..393

16 Working with Spring Boot Actuator 395
16.1 Introducing Actuator 396

Configuring Actuator’s base path 397 ■ Enabling and
disabling Actuator endpoints 398

16.2 Consuming Actuator endpoints 399
Fetching essential application information 400 ■ Viewing
configuration details 403 ■ Viewing application activity 411
Tapping runtime metrics 413

16.3 Customizing Actuator 416
Contributing information to the /info endpoint 416
Defining custom health indicators 421 ■ Registering
custom metrics 422 ■ Creating custom endpoints 424

16.4 Securing Actuator 426

17 Administering Spring 429
17.1 Using the Spring Boot Admin 430

Creating an Admin server 430 ■ Registering Admin clients 431

17.2 Exploring the Admin server 435
Viewing general application health and information 436
Watching key metrics 437 ■ Examining environment
properties 438 ■ Viewing and setting logging levels 439
Monitoring threads 440 ■ Tracing HTTP requests 441

CONTENTS xi
17.3 Securing the Admin server 442
Enabling login in the Admin server 443 ■ Authenticating with
the Actuator 444

18 Monitoring Spring with JMX 446
18.1 Working with Actuator MBeans 446
18.2 Creating your own MBeans 449
18.3 Sending notifications 451

19 Deploying Spring 454
19.1 Weighing deployment options 455
19.2 Building and deploying WAR files 456
19.3 Pushing JAR files to Cloud Foundry 458
19.4 Running Spring Boot in a Docker container 461
19.5 The end is where we begin 465

appendix Bootstrapping Spring applications 466

index 487

preface
After nearly 15 years of working with Spring and having written five editions of this
book (not to mention Spring Boot in Action), you’d think that it’d be hard to come up
with something exciting and new to say about Spring when writing the preface for this
book. But nothing could be further from the truth!

 Every single release of Spring, Spring Boot, and all of the other projects in the
Spring ecosystem unleashes some new amazing capabilities that rekindle the fun in
developing applications. With Spring reaching a significant milestone with its 5.0
release and Spring Boot releasing version 2.0, there’s so much more Spring to enjoy
that it was a no-brainer to write another edition of Spring in Action.

 The big story of Spring 5 is reactive programming support, including Spring Web-
Flux, a brand new reactive web framework that borrows its programming model from
Spring MVC, allowing developers to create web applications that scale better and make
better use of fewer threads. Moving toward the backend of a Spring application, the lat-
est edition of Spring Data enables the creation of reactive, non-blocking data reposito-
ries. And all of this is built on top of Project Reactor, a Java library for working with
reactive types.

 In addition to the new reactive programming features of Spring 5, Spring Boot 2
now provides even more autoconfiguration support than ever before as well as a com-
pletely reimagined Actuator for peeking into and manipulating a running application.

 What’s more, as developers look to break down their monolithic applications into
discrete microservices, Spring Cloud provides facilities that make it easy to configure
and discover microservices, as well as fortify them so they’re more resilient to failure.
xiii

PREFACExiv
 I’m happy to say that this fifth edition of Spring in Action covers all of this and
more! If you’re a seasoned veteran with Spring, Spring in Action, Fifth Edition will be
your guide to everything new that Spring has to offer. On the other hand, if you’re
new to Spring, then there’s no better time than now to get in on the action and the
first few chapters will get you up and running in no time!

 It’s been an exciting 15 years of working with Spring. And now that I’ve written this
fifth edition of Spring in Action, I’m eager to share that excitement with you!

acknowledgments
One of the most amazing things that Spring and Spring Boot do is to automatically
provide all of the foundational plumbing for an application, leaving you as a devel-
oper to focus primarily on the logic that’s unique to your application. Unfortunately,
no such magic exists for writing a book. Or does it?

 At Manning, there were several people working their magic to make sure that this
book is the best it can possibly be. Many thanks in particular to Jenny Stout, my devel-
opment editor, and to the production team, including project manager Janet Vail,
copyeditors Andy Carroll and Frances Buran, and proofreaders Katie Tennant and
Melody Dolab. Thanks, too, to technical proofer Joshua White who was thorough
and helpful.

 Along the way, we got feedback from several peer reviewers who made sure that the
book stayed on target and covered the right stuff. For this, my thanks goes to Andrea
Barisone, Arnaldo Ayala, Bill Fly, Colin Joyce, Daniel Vaughan, David Witherspoon,
Eddu Melendez, Iain Campbell, Jettro Coenradie, John Gunvaldson, Markus Matzker,
Nick Rakochy, Nusry Firdousi, Piotr Kafel, Raphael Villela, Riccardo Noviello, Sergio
Fernandez Gonzalez, Sergiy Pylypets, Thiago Presa, Thorsten Weber, Waldemar
Modzelewski, Yagiz Erkan, and Željko Trogrlić.

 As always, there’d be absolutely no point in writing this book if it weren’t for the
amazing work done by the members of the Spring engineering team. I’m amazed at
what you’ve created and how we continue to change how software is developed.

 Many thanks to my fellow speakers on the No Fluff/Just Stuff tour. I continue to
learn so much from every one of you. I especially want to thank Brian Sletten, Nate
xv

ACKNOWLEDGMENTSxvi
Schutta, and Ken Kousen for conversations and emails about Spring that have helped
shape this book.

 Once again, I’d like to thank the Phoenicians. You know what you did.
 Finally, to my beautiful wife Raymie, the love of my life, my sweetest dream, and my

inspiration: Thank you for your encouragement and for putting up with another book
project. And to my sweet and wonderful girls, Maisy and Madi: I am so proud of you
and of the amazing young ladies you are becoming. I love all of you more than you
can imagine or I can possible express.

about this book
Spring in Action, Fifth Edition was written to equip you to build amazing applications
using the Spring Framework, Spring Boot, and a variety of ancillary members of the
Spring ecosystem. It begins by showing you how to develop web-based, database-
backed Java applications with Spring and Spring Boot. It then expands on the essen-
tials by showing how to integrate with other applications, program using reactive
types, and then break an application into discrete microservices. Finally, it discusses
how to ready an application for deployment.

 Although all of the projects in the Spring ecosystem provide excellent documenta-
tion, this book does something that none of the reference documents do: provide a
hands-on, project-driven guide to bringing the elements of Spring together to build a
real application.

Who should read this book
Spring in Action, 5th edition is for Java developers who want to get started with Spring
Boot and the Spring Framework as well as for seasoned Spring developers who want to
go beyond the basics and learn the newest features of Spring.

How this book is organized: a roadmap
The book has 5 parts spanning 19 chapters. Part 1 covers the foundational topics of
building Spring applications:

■ Chapter 1 introduces Spring and Spring Boot and how to initialize a Spring
project. In this chapter, you’ll take the first steps toward building a Spring appli-
cation that you’ll expand upon throughout the course of the book.
xvii

ABOUT THIS BOOKxviii
■ Chapter 2 discusses building the web layer of an application using Spring MVC.
In this chapter, you’ll build controllers that handle web requests and views that
render information in the web browser.

■ Chapter 3 delves into the backend of a Spring application where data is per-
sisted to a relational database.

■ In chapter 4, you’ll use Spring Security to authenticate users and prevent unau-
thorized access to an application.

■ Chapter 5 reveals how to configure a Spring application using Spring Boot con-
figuration properties. You’ll also learn how to selectively apply configuration
using profiles.

Part 2 covers topics that help integrate your Spring application with other applications:

■ Chapter 6 expands on the discussion of Spring MVC started in chapter 2 by
looking at how to write REST APIs in Spring.

■ Chapter 7 turns the tables on chapter 6 to show how a Spring application can
consume a REST API.

■ Chapter 8 looks at using asynchronous communication to enable a Spring
application to both send and receive messages using the Java Message Service,
RabbitMQ, or Kafka.

■ Chapter 9 discusses declarative application integration using the Spring Inte-
gration project.

Part 3 explores the exciting new support for reactive programming in Spring:

■ Chapter 10 introduces Project Reactor, the reactive programming library that
underpins Spring 5’s reactive features.

■ Chapter 11 revisits REST API development, introducing Spring WebFlex, a new
web framework that borrows much from Spring MVC while offering a new reac-
tive model for web development.

■ Chapter 12 takes a look at writing reactive data persistence with Spring Data to
read and write data to Cassandra and Mongo databases.

Part 4 breaks down the monolithic application model, introducing you to Spring
Cloud and microservice development:

■ Chapter 13 dives into service discovery, using Spring with Netflix’s Eureka regis-
try to both register and discover Spring-based microservices.

■ Chapter 14 shows how to centralize application configuration in a configura-
tion server that shares configuration across multiple microservices.

■ Chapter 15 introduces the circuit breaker pattern with Hystrix, enabling micro-
services that are resilient in the face of failure.

In part 5, you’ll ready an application for production and see how to deploy it:

■ Chapter 16 introduces the Spring Boot Actuator, an extension to Spring Boot
that exposes the internals of a running Spring application as REST endpoints.

ABOUT THIS BOOK xix
■ In chapter 17 you’ll see how to use the Spring Boot Admin to put a user-friendly
browser-based administrative application on top of the Actuator.

■ Chapter 18 discusses how to expose and consume Spring beans as JMX MBeans.
■ Finally, in chapter 19 you’ll see how to deploy your Spring application in a vari-

ety of production environments.

In general, developers new to Spring should start with chapter 1 and work through
each chapter sequentially. Experienced Spring developers may prefer to jump in at
any point that interests them. Even so, each chapter builds upon the previous chapter,
so there may be some context missing if you dive into the middle of the book.

About the code
This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 Source code for the examples in this book is available for download from the pub-
lisher’s website at www.manning.com/books/spring-in-action-fifth-edition as well as
from the author’s GitHub account at github.com/habuma/spring-in-action-5-samples.

Book forum
Purchase of Spring in Action, 5th edition, includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access
the forum, go to https://forums.manning.com/forums/spring-in-action-fifth-edition.
You can also learn more about Manning’s forums and the rules of conduct at https://
forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://forums.manning.com/forums/spring-in-action-fifth-edition
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
http://www.manning.com/books/spring-in-action-fifth-edition
http://github.com/habuma/spring-in-action-5-samples

ABOUT THIS BOOKxx
Other online resources
Need additional help?

■ The Spring website has several useful getting-started guides (some of which
were written by the author of this book) at https://spring.io/guides.

■ The Spring tag at StackOverflow (https://stackoverflow.com/questions/tagged/
spring) as well as the Spring Boot tag at StackOverflow are great places to ask
questions and help others with Spring. Helping someone else with their Spring
questions is a great way to learn Spring!

About the author
CRAIG WALLS is a principal engineer with Pivotal. He’s a zealous promoter of the
Spring Framework, speaking frequently at local user groups and conferences and writ-
ing about Spring. When he’s not slinging code, Craig is planning his next trip to Dis-
ney World or Disneyland and spending as much time as he can with his wife, two
daughters, two birds, and three dogs.

About the cover illustration
The figure on the cover of Spring in Action, 5th edition, is “Le Caraco,” or an inhabi-
tant of the province of Karak in southwest Jordan. Its capital is the city of Al-Karak, which
boasts an ancient hilltop castle with magnificent views of the Dead Sea and surround-
ing plains. The illustration is taken from a French travel book, Encyclopédie des Voyages
by J. G. St. Sauveur, published in 1796. Travel for pleasure was a relatively new phe-
nomenon at the time and travel guides such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other regions of
France and abroad.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the dis-
tinctiveness and individuality of the world’s towns and provinces just two hundred
years ago. This was a time when the dress codes of two regions separated by a few
dozen miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period, and of every other
historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitants of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life—or a more varied and interesting intellectual
and technical life. We at Manning celebrate the inventiveness, the initiative, and the
fun of the computer business with book covers based on the rich diversity of regional
life two centuries ago brought back to life by the pictures from this travel guide.

https://spring.io/guides
https://stackoverflow.com/questions/tagged/spring
https://stackoverflow.com/questions/tagged/spring

Part 1

Foundational Spring

Part 1 of this book will get you started writing a Spring application, learning
the foundations of Spring along the way.

 In chapter 1, I’ll give you a quick overview of Spring and Spring Boot essen-
tials and show you how to initialize a Spring project as you work on building
Taco Cloud, your first Spring application. In chapter 2, you’ll dig deeper into
the Spring MCV and learn how to present model data in the browser and how to
process and validate form input. You’ll also get some tips on choosing a view tem-
plate library. You’ll add data persistence to the Taco Cloud application in chapter
3. There, we’ll cover using Spring’s JDBC template, how to insert data, and how to
declare JPA repositories with Spring Data. Chapter 4 covers security for your
Spring application, including autoconfiguring Spring Security, defining custom
user storage, customizing the login page, and securing against cross-site request
forgery (CSRF) attacks. To close out part 1, we'll look at configuration properties
in chapter 5. You’ll learn how to fine-tune autoconfigured beans, apply configura-
tion properties to application components, and work with Spring profiles.

Getting started
with Spring
Although the Greek philosopher Heraclitus wasn’t well known as a software devel-
oper, he seemed to have a good handle on the subject. He has been quoted as say-
ing, “The only constant is change.” That statement captures a foundational truth of
software development.

 The way we develop applications today is different than it was a year ago, 5 years
ago, 10 years ago, and certainly 15 years ago, when an initial form of the Spring
Framework was introduced in Rod Johnson’s book, Expert One-on-One J2EE Design
and Development (Wrox, 2002, http://mng.bz/oVjy).

 Back then, the most common types of applications developed were browser-
based web applications, backed by relational databases. While that type of develop-
ment is still relevant, and Spring is well equipped for those kinds of applications,
we’re now also interested in developing applications composed of microservices
destined for the cloud that persist data in a variety of databases. And a new interest
in reactive programming aims to provide greater scalability and improved perfor-
mance with non-blocking operations.

This chapter covers
 Spring and Spring Boot essentials

 Initializing a Spring project

 An overview of the Spring landscape
3

https://shortener.manning.com/oVjy

4 CHAPTER 1 Getting started with Spring
 As software development evolved, the Spring Framework also changed to address
modern development concerns, including microservices and reactive programming.
Spring also set out to simplify its own development model by introducing Spring Boot.

 Whether you’re developing a simple database-backed web application or con-
structing a modern application built around microservices, Spring is the framework
that will help you achieve your goals. This chapter is your first step in a journey
through modern application development with Spring.

1.1 What is Spring?
I know you’re probably itching to start writing a Spring application, and I assure you
that before this chapter ends, you’ll have developed a simple one. But first, let me set
the stage with a few basic Spring concepts that will help you understand what makes
Spring tick.

 Any non-trivial application is composed of many components, each responsible for
its own piece of the overall application functionality, coordinating with the other
application elements to get the job done. When the application is run, those compo-
nents somehow need to be created and introduced to each other.

 At its core, Spring offers a container, often referred to as the Spring application con-
text, that creates and manages application components. These components, or beans,
are wired together inside the Spring application context to make a complete applica-
tion, much like bricks, mortar, timber, nails, plumbing, and wiring are bound together
to make a house.

 The act of wiring beans together is based on a pattern known as dependency injection
(DI). Rather than have components create and maintain the lifecycle of other beans
that they depend on, a dependency-injected application relies on a separate entity
(the container) to create and maintain all components and inject those into the beans
that need them. This is done typically through constructor arguments or property
accessor methods.

 For example, suppose that among an application’s many components, there are
two that you’ll address: an inventory service (for fetching inventory levels) and a prod-
uct service (for providing basic product information). The product service depends
on the inventory service to be able to provide a complete set of information about
products. Figure 1.1 illustrates the relationships between these beans and the Spring
application context.

 On top of its core container, Spring and a full portfolio of related libraries offer a
web framework, a variety of data persistence options, a security framework, integra-
tion with other systems, runtime monitoring, microservice support, a reactive pro-
gramming model, and many other features necessary for modern application
development.

 Historically, the way you would guide Spring’s application context to wire beans
together was with one or more XML files that described the components and their
relationship to other components. For example, the following XML declares two

5What is Spring?
beans, an InventoryService bean and a ProductService bean, and wires the Inven-
toryService bean into ProductService via a constructor argument:

<bean id="inventoryService"
 class="com.example.InventoryService" />

<bean id="productService"
 class="com.example.ProductService" />
 <constructor-arg ref="inventoryService" />
</bean>

In recent versions of Spring, however, a Java-based configuration is more common.
The following Java-based configuration class is equivalent to the XML configuration:

@Configuration
public class ServiceConfiguration {
 @Bean
 public InventoryService inventoryService() {
 return new InventoryService();
 }

 @Bean
 public ProductService productService() {
 return new ProductService(inventoryService());
 }
}

The @Configuration annotation indicates to Spring that this is a configuration class
that will provide beans to the Spring application context. The configuration’s class meth-
ods are annotated with @Bean, indicating that the objects they return should be added
as beans in the application context (where, by default, their respective bean IDs will
be the same as the names of the methods that define them).

Inventory

service

Injected into

Other application components also managed by Spring

Product

service

Spring application context

Figure 1.1 Application components are managed and injected into each
other by the Spring application context.

6 CHAPTER 1 Getting started with Spring
 Java-based configuration offers several benefits over XML-based configuration,
including greater type safety and improved refactorability. Even so, explicit configura-
tion with either Java or XML is only necessary if Spring is unable to automatically con-
figure the components.

 Automatic configuration has its roots in the Spring techniques known as autowiring
and component scanning. With component scanning, Spring can automatically discover
components from an application’s classpath and create them as beans in the Spring
application context. With autowiring, Spring automatically injects the components
with the other beans that they depend on.

 More recently, with the introduction of Spring Boot, automatic configuration has
gone well beyond component scanning and autowiring. Spring Boot is an extension
of the Spring Framework that offers several productivity enhancements. The most
well-known of these enhancements is autoconfiguration, where Spring Boot can make
reasonable guesses of what components need to be configured and wired together,
based on entries in the classpath, environment variables, and other factors.

 I’d like to show you some example code that demonstrates autoconfiguration. But
I can’t. You see, autoconfiguration is much like the wind. You can see the effects of it,
but there’s no code that I can show you and say “Look! Here’s an example of autocon-
figuration!” Stuff happens, components are enabled, and functionality is provided
without writing code. It’s this lack of code that’s essential to autoconfiguration and
what makes it so wonderful.

 Spring Boot autoconfiguration has dramatically reduced the amount of explicit
configuration (whether with XML or Java) required to build an application. In fact, by
the time you finish the example in this chapter, you’ll have a working Spring applica-
tion that has only a single line of Spring configuration code!

 Spring Boot enhances Spring development so much that it’s hard to imagine
developing Spring applications without it. For that reason, this book treats Spring and
Spring Boot as if they were one and the same. We’ll use Spring Boot as much as possi-
ble, and explicit configuration only when necessary. And, because Spring XML config-
uration is the old-school way of working with Spring, we’ll focus primarily on Spring’s
Java-based configuration.

 But enough of this chitchat, yakety-yak, and flimflam. This book’s title includes the
phrase in action, so let’s get moving, and you can start writing your first application
with Spring.

1.2 Initializing a Spring application
Through the course of this book, you’ll create Taco Cloud, an online application
for ordering the most wonderful food created by man—tacos. Of course, you’ll use
Spring, Spring Boot, and a variety of related libraries and frameworks to achieve
this goal.

 You’ll find several options for initializing a Spring application. Although I could
walk you through the steps of manually creating a project directory structure and

7Initializing a Spring application
defining a build specification, that’s wasted time—time better spent writing applica-
tion code. Therefore, you’re going to lean on the Spring Initializr to bootstrap your
application.

 The Spring Initializr is both a browser-based web application and a REST API,
which can produce a skeleton Spring project structure that you can flesh out with
whatever functionality you want. Several ways to use Spring Initializr follow:

 From the web application at http://start.spring.io
 From the command line using the curl command
 From the command line using the Spring Boot command-line interface
 When creating a new project with Spring Tool Suite
 When creating a new project with IntelliJ IDEA
 When creating a new project with NetBeans

Rather than spend several pages of this chapter talking about each one of these options,
I’ve collected those details in the appendix. In this chapter, and throughout this book,
I’ll show you how to create a new project using my favorite option: Spring Initializr
support in the Spring Tool Suite.

 As its name suggests, Spring Tool Suite is a fantastic Spring development environ-
ment. But it also offers a handy Spring Boot Dashboard feature that (at least at the
time I write this) isn’t available in any of the other IDE options.

 If you’re not a Spring Tool Suite user, that’s fine; we can still be friends. Hop over
to the appendix and substitute the Initializr option that suits you best for the
instructions in the following sections. But know that throughout this book, I may
occasionally reference features specific to Spring Tool Suite, such as the Spring Boot
Dashboard. If you’re not using Spring Tool Suite, you’ll need to adapt those instruc-
tions to fit your IDE.

1.2.1 Initializing a Spring project with Spring Tool Suite

To get started with a new Spring project in Spring Tool Suite, go to the File menu and
select New, and then Spring Starter Project. Figure 1.2 shows the menu structure to
look for.

Once you select Spring Starter Project, a new project wizard dialog (figure 1.3) appears.
The first page in the wizard asks you for some general project information, such as the
project name, description, and other essential information. If you’re familiar with the

Figure 1.2 Starting a new project with the Initializr in Spring Tool Suite

http://start.spring.io/

8 CHAPTER 1 Getting started with Spring
contents of a Maven pom.xml file, you’ll recognize most of the fields as items that end
up in a Maven build specification. For the Taco Cloud application, fill in the dialog as
shown in figure 1.3, and then click Next.

The next page in the wizard lets you select dependencies to add to your project (see
figure 1.4). Notice that near the top of the dialog, you can select which version of
Spring Boot you want to base your project on. This defaults to the most current ver-
sion available. It’s generally a good idea to leave it as is unless you need to target a
different version.

 As for the dependencies themselves, you can either expand the various sections
and seek out the desired dependencies manually, or search for them in the search box
at the top of the Available list. For the Taco Cloud application, you’ll start with the
dependencies shown in figure 1.4.

Figure 1.3 Specifying general project information for the Taco Cloud application

9Initializing a Spring application
At this point, you can click Finish to generate the project and add it to your work-
space. But if you’re feeling slightly adventurous, click Next one more time to see the
final page of the new starter project wizard, as shown in figure 1.5.

 By default, the new project wizard makes a call to the Spring Initializr at
http://start.spring.io to generate the project. Generally, there’s no need to override
this default, which is why you could have clicked Finish on the second page of the

Figure 1.4 Choosing starter dependencies

http://start.spring.io

10 CHAPTER 1 Getting started with Spring
wizard. But if for some reason you’re hosting your own clone of Initializr (perhaps a
local copy on your own machine or a customized clone running inside your company
firewall), then you’ll want to change the Base Url field to point to your Initializr
instance before clicking Finish.

 After you click Finish, the project is downloaded from the Initializr and loaded
into your workspace. Wait a few moments for it to load and build, and then you’ll be

Figure 1.5 Optionally specifying an alternate Initializr address

11Initializing a Spring application
ready to start developing application functionality. But first, let’s take a look at what
the Initializr gave you.

1.2.2 Examining the Spring project structure

After the project loads in the IDE, expand it to see what it contains. Figure 1.6 shows
the expanded Taco Cloud project in Spring Tool Suite.

You may recognize this as a typical Maven or Gradle project structure, where applica-
tion source code is placed under src/main/java, test code is placed under src/test/java,
and non-Java resources are placed under src/main/resources. Within that project
structure, you’ll want to take note of these items:

 mvnw and mvnw.cmd—These are Maven wrapper scripts. You can use these scripts
to build your project even if you don’t have Maven installed on your machine.

 pom.xml—This is the Maven build specification. We’ll look deeper into this
in a moment.

 TacoCloudApplication.java—This is the Spring Boot main class that boot-
straps the project. We’ll take a closer look at this class in a moment.

 application.properties—This file is initially empty, but offers a place where you
can specify configuration properties. We’ll tinker with this file a little in this
chapter, but I’ll postpone a detailed explanation of configuration properties to
chapter 5.

Figure 1.6 The initial Spring project structure as shown in Spring
Tool Suite

12 CHAPTER 1 Getting started with Spring
 static—This folder is where you can place any static content (images, stylesheets,
JavaScript, and so forth) that you want to serve to the browser. It’s initially
empty.

 templates—This folder is where you’ll place template files that will be used to
render content to the browser. It’s initially empty, but you’ll add a Thymeleaf
template soon.

 TacoCloudApplicationTests.java—This is a simple test class that ensures that
the Spring application context loads successfully. You’ll add more tests to the
mix as you develop the application.

As the Taco Cloud application grows, you’ll fill in this barebones project structure
with Java code, images, stylesheets, tests, and other collateral that will make your proj-
ect more complete. But in the meantime, let’s dig a little deeper into a few of the
items that Spring Initializr provided.

EXPLORING THE BUILD SPECIFICATION

When you filled out the Initializr form, you specified that your project should be built
with Maven. Therefore, the Spring Initializr gave you a pom.xml file already popu-
lated with the choices you made. The following listing shows the entire pom.xml file
provided by the Initializr.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>sia</groupId>
 <artifactId>taco-cloud</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>taco-cloud</name>
 <description>Taco Cloud Example</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.4.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>
 UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>
 UTF-8</project.reporting.outputEncoding>

Listing 1.1 The initial Maven build specification

JAR packaging

Spring Boot version

13Initializing a Spring application
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <scope>runtime</scope>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>htmlunit-driver</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

</project>

The first noteworthy item in the pom.xml file is the <packaging> element. You chose
to build your application as an executable JAR file, as opposed to a WAR file. This is
probably one of the most curious choices you’ll make, especially for a web application.
After all, traditional Java web applications are packaged as WAR files, leaving JAR files
the packaging of choice for libraries and the occasional desktop UI application.

Starter
dependencies

Spring Boot
plugin

14 CHAPTER 1 Getting started with Spring
 The choice of JAR packaging is a cloud-minded choice. Whereas WAR files are per-
fectly suitable for deploying to a traditional Java application server, they’re not a natu-
ral fit for most cloud platforms. Although some cloud platforms (such as Cloud
Foundry) are capable of deploying and running WAR files, all Java cloud platforms
are capable of running an executable JAR file. Therefore, the Spring Initializr defaults
to JAR packaging unless you tell it to do otherwise.

 If you intend to deploy your application to a traditional Java application server,
then you’ll need to choose WAR packaging and include a web initializer class. We’ll
look at how to build WAR files in more detail in chapter 2.

 Next, take note of the <parent> element and, more specifically, its <version>
child. This specifies that your project has spring-boot-starter-parent as its parent
POM. Among other things, this parent POM provides dependency management for
several libraries commonly used in Spring projects. For those libraries covered by the
parent POM, you won’t have to specify a version, as it’s inherited from the parent. The
version, 2.0.4.RELEASE, indicates that you’re using Spring Boot 2.0.4 and, thus, will
inherit dependency management as defined by that version of Spring Boot.

 While we’re on the subject of dependencies, note that there are three dependen-
cies declared under the <dependencies> element. The first two should look somewhat
familiar to you. They correspond directly to the Web and Thymeleaf dependencies that
you selected before clicking the Finish button in the Spring Tool Suite new project
wizard. The third dependency is one that provides a lot of helpful testing capabilities.
You didn’t have to check a box for it to be included because the Spring Initializr
assumes (hopefully, correctly) that you’ll be writing tests.

 You may also notice that all three dependencies have the word starter in their arti-
fact ID. Spring Boot starter dependencies are special in that they typically don’t have
any library code themselves, but instead transitively pull in other libraries. These
starter dependencies offer three primary benefits:

 Your build file will be significantly smaller and easier to manage because you
won’t need to declare a dependency on every library you might need.

 You’re able to think of your dependencies in terms of what capabilities they
provide, rather than in terms of library names. If you’re developing a web appli-
cation, you’ll add the web starter dependency rather than a laundry list of indi-
vidual libraries that enable you to write a web application.

 You’re freed from the burden of worry about library versions. You can trust that
for a given version of Spring Boot, the versions of the libraries brought in tran-
sitively will be compatible. You only need to worry about which version of
Spring Boot you’re using.

Finally, the build specification ends with the Spring Boot plugin. This plugin performs
a few important functions:

 It provides a Maven goal that enables you to run the application using Maven.
You’ll try out this goal in section 1.3.4.

15Initializing a Spring application
 It ensures that all dependency libraries are included within the executable JAR
file and available on the runtime classpath.

 It produces a manifest file in the JAR file that denotes the bootstrap class
(TacoCloudApplication, in your case) as the main class for the executable JAR.

Speaking of the bootstrap class, let’s open it up and take a closer look.

BOOTSTRAPPING THE APPLICATION

Because you’ll be running the application from an executable JAR, it’s important to
have a main class that will be executed when that JAR file is run. You’ll also need at
least a minimal amount of Spring configuration to bootstrap the application. That’s
what you’ll find in the TacoCloudApplication class, shown in the following listing.

package tacos;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class TacoCloudApplication {

 public static void main(String[] args) {
 SpringApplication.run(TacoCloudApplication.class, args);
 }

}

Although there’s little code in TacoCloudApplication, what’s there packs quite a
punch. One of the most powerful lines of code is also one of the shortest. The
@SpringBootApplication annotation clearly signifies that this is a Spring Boot appli-
cation. But there’s more to @SpringBootApplication than meets the eye.

 @SpringBootApplication is a composite application that combines three other
annotations:

 @SpringBootConfiguration—Designates this class as a configuration class.
Although there’s not much configuration in the class yet, you can add Java-
based Spring Framework configuration to this class if you need to. This annota-
tion is, in fact, a specialized form of the @Configuration annotation.

 @EnableAutoConfiguration—Enables Spring Boot automatic configuration.
We’ll talk more about autoconfiguration later. For now, know that this annota-
tion tells Spring Boot to automatically configure any components that it thinks
you’ll need.

 @ComponentScan—Enables component scanning. This lets you declare other
classes with annotations like @Component, @Controller, @Service, and others,
to have Spring automatically discover them and register them as components in
the Spring application context.

Listing 1.2 The Taco Cloud bootstrap class

Spring Boot
application

Runs the
application

16 CHAPTER 1 Getting started with Spring
The other important piece of TacoCloudApplication is the main() method. This is the
method that will be run when the JAR file is executed. For the most part, this method is
boilerplate code; every Spring Boot application you write will have a method similar or
identical to this one (class name differences notwithstanding).

 The main() method calls a static run() method on the SpringApplication class,
which performs the actual bootstrapping of the application, creating the Spring appli-
cation context. The two parameters passed to the run() method are a configuration
class and the command-line arguments. Although it’s not necessary that the configu-
ration class passed to run() be the same as the bootstrap class, this is the most conve-
nient and typical choice.

 Chances are you won’t need to change anything in the bootstrap class. For simple
applications, you might find it convenient to configure one or two other components
in the bootstrap class, but for most applications, you’re better off creating a separate
configuration class for anything that isn’t autoconfigured. You’ll define several config-
uration classes throughout the course of this book, so stay tuned for details.

TESTING THE APPLICATION

Testing is an important part of software development. Recognizing this, the Spring
Initializr gives you a test class to get started. The following listing shows the baseline
test class.

package tacos;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)
@SpringBootTest
public class TacoCloudApplicationTests {

 @Test
 public void contextLoads() {
 }

}

There’s not much to be seen in TacoCloudApplicationTests: the one test method in
the class is empty. Even so, this test class does perform an essential check to ensure
that the Spring application context can be loaded successfully. If you make any
changes that prevent the Spring application context from being created, this test fails,
and you can react by fixing the problem.

 Also notice the class annotated with @RunWith(SpringRunner.class). @RunWith is
a JUnit annotation, providing a test runner that guides JUnit in running a test. Think

Listing 1.3 A baseline application test

Uses the
Spring runner

A Spring
Boot test

The test
method

17Writing a Spring application
of it as applying a plugin to JUnit to provide custom testing behavior. In this case,
JUnit is given SpringRunner, a Spring-provided test runner that provides for the cre-
ation of a Spring application context that the test will run against.

A TEST RUNNER BY ANY OTHER NAME...
If you’re already familiar with writing Spring tests or are maybe looking at some exist-
ing Spring-based test classes, you may have seen a test runner named SpringJUnit4-
ClassRunner. SpringRunner is an alias for SpringJUnit4ClassRunner, and was
introduced in Spring 4.3 to remove the association with a specific version of JUnit (for
example, JUnit 4). And there’s no denying that the alias is easier to read and type.

 @SpringBootTest tells JUnit to bootstrap the test with Spring Boot capabilities.
For now, it’s enough to think of this as the test class equivalent of calling Spring-
Application.run() in a main() method. Over the course of this book, you’ll see
@SpringBootTest several times, and we’ll uncover some of its power.

 Finally, there’s the test method itself. Although @RunWith(SpringRunner.class)
and @SpringBootTest are tasked to load the Spring application context for the test,
they won’t have anything to do if there aren’t any test methods. Even without any
assertions or code of any kind, this empty test method will prompt the two annotations
to do their job and load the Spring application context. If there are any problems in
doing so, the test fails.

 At this point, we’ve concluded our review of the code provided by the Spring Ini-
tializr. You’ve seen some of the boilerplate foundation that you can use to develop a
Spring application, but you still haven’t written a single line of code. Now it’s time to
fire up your IDE, dust off your keyboard, and add some custom code to the Taco
Cloud application.

1.3 Writing a Spring application
Because you’re just getting started, we’ll start off with a relatively small change to
the Taco Cloud application, but one that will demonstrate a lot of Spring’s good-
ness. It seems appropriate that as you’re just starting, the first feature you’ll add to
the Taco Cloud application is a homepage. As you add the homepage, you’ll create
two code artifacts:

 A controller class that handles requests for the homepage
 A view template that defines what the homepage looks like

And because testing is important, you’ll also write a simple test class to test the home-
page. But first things first ... let’s write that controller.

1.3.1 Handling web requests

Spring comes with a powerful web framework known as Spring MVC. At the center of
Spring MVC is the concept of a controller, a class that handles requests and responds
with information of some sort. In the case of a browser-facing application, a controller

18 CHAPTER 1 Getting started with Spring
responds by optionally populating model data and passing the request on to a view to
produce HTML that’s returned to the browser.

 You’re going to learn a lot about Spring MVC in chapter 2. But for now, you’ll
write a simple controller class that handles requests for the root path (for example, /)
and forwards those requests to the homepage view without populating any model
data. The following listing shows the simple controller class.

package tacos;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;

@Controller
public class HomeController {

 @GetMapping("/")
 public String home() {
 return "home";
 }

}

As you can see, this class is annotated with @Controller. On its own, @Controller
doesn’t do much. Its primary purpose is to identify this class as a component for com-
ponent scanning. Because HomeController is annotated with @Controller, Spring’s
component scanning automatically discovers it and creates an instance of Home-
Controller as a bean in the Spring application context.

 In fact, a handful of other annotations (including @Component, @Service, and
@Repository) serve a purpose similar to @Controller. You could have just as effec-
tively annotated HomeController with any of those other annotations, and it would
have still worked the same. The choice of @Controller is, however, more descriptive
of this component’s role in the application.

 The home() method is as simple as controller methods come. It’s annotated with
@GetMapping to indicate that if an HTTP GET request is received for the root path /,
then this method should handle that request. It does so by doing nothing more than
returning a String value of home.

 This value is interpreted as the logical name of a view. How that view is imple-
mented depends on a few factors, but because Thymeleaf is in your classpath, you can
define that template with Thymeleaf.

WHY THYMELEAF?
You may be wondering why you chose Thymeleaf for a template engine. Why not JSP?
Why not FreeMarker? Why not one of several other options?

 Put simply, I had to choose something, and I like Thymeleaf and generally prefer it
over those other options. And even though JSP may seem like an obvious choice,

Listing 1.4 The homepage controller

The controller

Handles requests
for the root path /

Returns the
view name

19Writing a Spring application
there are some challenges to overcome when using JSP with Spring Boot. I didn’t want
to go down that rabbit hole in chapter 1. Hang tight. We’ll look at other template
options, including JSP, in chapter 2.

 The template name is derived from the logical view name by prefixing it with
/templates/ and postfixing it with .html. The resulting path for the template is
/templates/home.html. Therefore, you’ll need to place the template in your project
at /src/main/resources/templates/home.html. Let’s create that template now.

1.3.2 Defining the view

In the interest of keeping your homepage simple, it should do nothing more than wel-
come users to the site. The next listing shows the basic Thymeleaf template that
defines the Taco Cloud homepage.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 </head>

 <body>
 <h1>Welcome to...</h1>

 </body>
</html>

There’s not much to discuss with regard to this template. The only notable line of
code is the one with the tag to display the Taco Cloud logo. It uses a Thymeleaf
th:src attribute and an @{...} expression to reference the image with a context-
relative path. Aside from that, it’s not much more than a Hello World page.

 But let’s talk about that image a bit more. I’ll leave it up to you to define a Taco
Cloud logo that you like. You’ll need to make sure you place it at the right place
within the project.

 The image is referenced with the context-relative path /images/TacoCloud.png.
As you’ll recall from our review of the project structure, static content such as images
is kept in the /src/main/resources/static folder. That means that the Taco Cloud
logo image must also reside within the project at /src/main/resources/static/images/
TacoCloud.png.

 Now that you’ve got a controller to handle requests for the homepage and a view
template to render the homepage, you’re almost ready to fire up the application and
see it in action. But first, let’s see how you can write a test against the controller.

Listing 1.5 The Taco Cloud homepage template

20 CHAPTER 1 Getting started with Spring
1.3.3 Testing the controller

Testing web applications can be tricky when making assertions against the content of
an HTML page. Fortunately, Spring comes with some powerful test support that
makes testing a web application easy.

 For the purposes of the homepage, you’ll write a test that’s comparable in com-
plexity to the homepage itself. Your test will perform an HTTP GET request for the
root path / and expect a successful result where the view name is home and the result-
ing content contains the phrase “Welcome to...”. The following should do the trick.

package tacos;

import static org.hamcrest.Matchers.containsString;
import static

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;
import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;
import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.view;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.MockMvc;

@RunWith(SpringRunner.class)
@WebMvcTest(HomeController.class)
public class HomeControllerTest {

 @Autowired
 private MockMvc mockMvc;

 @Test
 public void testHomePage() throws Exception {
 mockMvc.perform(get("/"))

 .andExpect(status().isOk())

 .andExpect(view().name("home"))

 .andExpect(content().string(
 containsString("Welcome to...")));
 }

}

Listing 1.6 A test for the homepage controller

Web test for
HomeController

Injects MockMvc

Performs GET /

Expects HTTP 200

Expects home view

Expects Welcome to...

21Writing a Spring application
The first thing you might notice about this test is that it differs slightly from the Taco-
CloudApplicationTests class with regard to the annotations applied to it. Instead of
@SpringBootTest markup, HomeControllerTest is annotated with @WebMvcTest. This
is a special test annotation provided by Spring Boot that arranges for the test to run in
the context of a Spring MVC application. More specifically, in this case, it arranges for
HomeController to be registered in Spring MVC so that you can throw requests
against it.

 @WebMvcTest also sets up Spring support for testing Spring MVC. Although it
could be made to start a server, mocking the mechanics of Spring MVC is sufficient for
your purposes. The test class is injected with a MockMvc object for the test to drive the
mockup.

 The testHomePage() method defines the test you want to perform against the
homepage. It starts with the MockMvc object to perform an HTTP GET request for /
(the root path). From that request, it sets the following expectations:

 The response should have an HTTP 200 (OK) status.
 The view should have a logical name of home.
 The rendered view should contain the text “Welcome to....”

If, after the MockMvc object performs the request, any of those expectations aren’t
met, then the test fails. But your controller and view template are written to satisfy
those expectations, so the test should pass with flying colors—or at least with some
shade of green indicating a passing test.

 The controller has been written, the view template created, and you have a passing
test. It seems that you’ve implemented the homepage successfully. But even though
the test passes, there’s something slightly more satisfying with seeing the results in a
browser. After all, that’s how Taco Cloud customers are going to see it. Let’s build the
application and run it.

1.3.4 Building and running the application

Just as there are several ways to initialize a Spring application, there are several ways to
run one. If you like, you can flip over to the appendix to read about some of the more
common ways to run a Spring Boot application.

 Because you chose to use Spring Tool Suite to initialize and work on the project,
you have a handy feature called the Spring Boot Dashboard available to help you run
your application inside the IDE. The Spring Boot Dashboard appears as a tab, typi-
cally near the bottom left of the IDE window. Figure 1.7 shows an annotated screen-
shot of the Spring Boot Dashboard.

 I don’t want to spend much time going over everything the Spring Boot Dash-
board does, although figure 1.7 covers some of the most useful details. The important
thing to know right now is how to use it to run the Taco Cloud application. Make sure
taco-cloud application is highlighted in the list of projects (it’s the only application
shown in figure 1.7), and then click the start button (the left-most button with both a
green triangle and a red square). The application should start right up.

22 CHAPTER 1 Getting started with Spring
As the application starts, you’ll see some Spring ASCII art fly by in the console, fol-
lowed by some log entries describing the steps as the application starts. Before the log-
ging stops, you’ll see a log entry saying Tomcat started on port(s): 8080 (http), which
means that you’re ready to point your web browser at the homepage to see the fruits
of your labor.

 Wait a minute. Tomcat started? When did you deploy the application to Tomcat?
 Spring Boot applications tend to bring everything they need with them and don’t

need to be deployed to some application server. You never deployed your application
to Tomcat ... Tomcat is a part of your application! (I’ll describe the details of how
Tomcat became part of your application in section 1.3.6.)

 Now that the application has started, point your web browser to http://local-
host:8080 (or click the globe button in the Spring Boot Dashboard) and you should
see something like figure 1.8. Your results may be different if you designed your own
logo image. But it shouldn’t vary much from what you see in figure 1.8.

 It may not be much to look at. But this isn’t exactly a book on graphic design. The
humble appearance of the homepage is more than sufficient for now. And it provides
you a solid start on getting to know Spring.

 One thing I’ve glossed over up until now is DevTools. You selected it as a depen-
dency when initializing your project. It appears as a dependency in the produced

Starts/restarts the
selected project
in debug mode

Opens a web browser
on the running

application
Stops the

selected projectStarts/restarts the
selected project

List of
Spring Boot

projects
Indicates that the

project has Spring Boot
DevTools enabled

Indicates that the
running application

is listening on port 8080

Opens the console
on the running

application

Figure 1.7 Highlights of the Spring Boot Dashboard

23Writing a Spring application
pom.xml file. And the Spring Boot Dashboard even shows that the project has
DevTools enabled. But what is DevTools, and what does it do for you? Let’s take a
quick survey of a couple of DevTools’ most useful features.

1.3.5 Getting to know Spring Boot DevTools

As its name suggests, DevTools provides Spring developers with some handy develop-
ment-time tools. Among those are

 Automatic application restart when code changes
 Automatic browser refresh when browser-destined resources (such as templates,

JavaScript, stylesheets, and so on) change
 Automatic disable of template caches
 Built in H2 Console if the H2 database is in use

It’s important to understand that DevTools isn’t an IDE plugin, nor does it require
that you use a specific IDE. It works equally well in Spring Tool Suite, IntelliJ IDEA,
and NetBeans. Furthermore, because it’s only intended for development purposes, it’s
smart enough to disable itself when deploying in a production setting. (We’ll discuss
how it does this when you get around to deploying your application in chapter 19.)
For now, let’s focus on the most useful features of Spring Boot DevTools, starting with
automatic application restart.

AUTOMATIC APPLICATION RESTART

With DevTools as part of your project, you’ll be able to make changes to Java code and
properties files in the project and see those changes applied after a brief moment.

Figure 1.8 The Taco Cloud homepage

24 CHAPTER 1 Getting started with Spring
DevTools monitors for changes, and when it sees something has changed, it automati-
cally restarts the application.

 More precisely, when DevTools is in play, the application is loaded into two sepa-
rate class loaders in the Java virtual machine (JVM). One class loader is loaded with
your Java code, property files, and pretty much anything that’s in the src/main/ path
of the project. These are items that are likely to change frequently. The other class
loader is loaded with dependency libraries, which aren’t likely to change as often.

 When a change is detected, DevTools reloads only the class loader containing your
project code and restarts the Spring application context, but leaves the other class
loader and the JVM intact. Although subtle, this strategy affords a small reduction in
the time it takes to start the application.

 The downside of this strategy is that changes to dependencies won’t be available in
automatic restarts. That’s because the class loader containing dependency libraries
isn’t automatically reloaded. This means that any time you add, change, or remove a
dependency in your build specification, you’ll need to do a hard restart of the applica-
tion for those changes to take effect.

AUTOMATIC BROWSER REFRESH AND TEMPLATE CACHE DISABLE

By default, template options such as Thymeleaf and FreeMarker are configured to
cache the results of template parsing so that templates don’t need to be reparsed
with every request they serve. This is great in production, as it buys a bit of perfor-
mance benefit.

 Cached templates, however, are not so great at development time. Cached tem-
plates make it impossible to make changes to the templates while the application is
running and see the results after refreshing the browser. Even if you’ve made changes,
the cached template will still be in use until you restart the application.

 DevTools addresses this issue by automatically disabling all template caching. Make
as many changes as you want to your templates and know that you’re only a browser
refresh away from seeing the results.

 But if you’re like me, you don’t even want to be burdened with the effort of click-
ing the browser’s refresh button. It’d be much nicer if you could make the changes
and witness the results in the browser immediately. Fortunately, DevTools has some-
thing special for those of us who are too lazy to click a refresh button.

 When DevTools is in play, it automatically enables a LiveReload (http://livere-
load.com/) server along with your application. By itself, the LiveReload server isn’t
very useful. But when coupled with a corresponding LiveReload browser plugin, it
causes your browser to automatically refresh when changes are made to templates,
images, stylesheets, JavaScript, and so on—in fact, almost anything that ends up being
served to your browser.

 LiveReload has browser plugins for Google Chrome, Safari, and Firefox browsers.
(Sorry, Internet Explorer and Edge fans.) Visit http://livereload.com/extensions/ to
find information on how to install LiveReload for your browser.

http://livereload.com/
http://livereload.com/
http://livereload.com/extensions/

25Writing a Spring application
BUILT IN H2 CONSOLE

Although your project doesn’t yet use a database, that will change in chapter 3. If you
choose to use the H2 database for development, DevTools will also automatically
enable an H2 Console that you can access from your web browser. You only need to
point your web browser to http://localhost:8080/h2-console to gain insight into the
data your application is working with.

 At this point, you’ve written a complete, albeit simple, Spring application. You’ll
expand on it throughout the course of the book. But now is a good time to step back
and review what you’ve accomplished and how Spring played a part.

1.3.6 Let’s review

Think back on how you got to this point. In short, these are the steps you’ve taken to
build your Spring-based Taco Cloud application:

 You created an initial project structure using Spring Initializr.
 You wrote a controller class to handle the homepage request.
 You defined a view template to render the homepage.
 You wrote a simple test class to prove out your work.

Seems pretty straightforward, doesn’t it? With the exception of the first step to boot-
strap the project, each action you’ve taken has been keenly focused on achieving the
goal of producing a homepage.

 In fact, almost every line of code you’ve written is aimed toward that goal. Not
counting Java import statements, I count only two lines of code in your controller
class and no lines in the view template that are Spring-specific. And although the bulk
of the test class utilizes Spring testing support, it seems a little less invasive in the con-
text of a test.

 That’s an important benefit of developing with Spring. You can focus on the
code that meets the requirements of an application rather than on satisfying the
demands of a framework. Although you’ll no doubt need to write some framework-
specific code from time to time, it’ll usually be only a small fraction of your code-
base. As I said before, Spring (with Spring Boot) can be considered the frameworkless
framework.

 How does this even work? What is Spring doing behind the scenes to make sure
your application needs are met? To understand what Spring is doing, let’s start by
looking at the build specification.

 In the pom.xml file, you declared a dependency on the Web and Thymeleaf start-
ers. These two dependencies transitively brought in a handful of other dependencies,
including

 Spring’s MVC framework
 Embedded Tomcat
 Thymeleaf and the Thymeleaf layout dialect

http://localhost:8080/h2-console

26 CHAPTER 1 Getting started with Spring
It also brought Spring Boot’s autoconfiguration library along for the ride. When
the application starts, Spring Boot autoconfiguration detects those libraries and
automatically

 Configures the beans in the Spring application context to enable Spring MVC
 Configures the embedded Tomcat server in the Spring application context
 Configures a Thymeleaf view resolver for rendering Spring MVC views with

Thymeleaf templates

In short, autoconfiguration does all the grunt work, leaving you to focus on writing
code that implements your application functionality. That’s a pretty sweet arrange-
ment, if you ask me!

 Your Spring journey has just begun. The Taco Cloud application only touched on a
small portion of what Spring has to offer. Before you take your next step, let’s survey
the Spring landscape and see what landmarks you’ll encounter on your journey.

1.4 Surveying the Spring landscape
To get an idea of the Spring landscape, look no further than the enormous list of
checkboxes on the full version of the Spring Initializr web form. It lists over 100
dependency choices, so I won’t try to list them all here or to provide a screenshot.
But I encourage you to take a look. In the meantime, I’ll mention a few of the
highlights.

1.4.1 The core Spring Framework

As you might expect, the core Spring Framework is the foundation of everything else
in the Spring universe. It provides the core container and dependency injection
framework. But it also provides a few other essential features.

 Among these is Spring MVC, Spring’s web framework. You’ve already seen how to
use Spring MVC to write a controller class to handle web requests. What you’ve not yet
seen, however, is that Spring MVC can also be used to create REST APIs that produce
non-HTML output. We’re going to dig more into Spring MVC in chapter 2 and then
take another look at how to use it to create REST APIs in chapter 6.

 The core Spring Framework also offers some elemental data persistence support,
specifically template-based JDBC support. You’ll see how to use JdbcTemplate in
chapter 3.

 In the most recent version of Spring (5.0.8), support was added for reactive-style
programming, including a new reactive web framework called Spring WebFlux that
borrows heavily from Spring MVC. You’ll look at Spring’s reactive programming
model in part 3 and Spring WebFlux specifically in chapter 10.

1.4.2 Spring Boot

We’ve already seen many of the benefits of Spring Boot, including starter dependen-
cies and autoconfiguration. Be certain that we’ll use as much of Spring Boot as possi-
ble throughout this book and avoid any form of explicit configuration, unless it’s

27Surveying the Spring landscape
absolutely necessary. But in addition to starter dependencies and autoconfiguration,
Spring Boot also offers a handful of other useful features:

 The Actuator provides runtime insight into the inner workings of an applica-
tion, including metrics, thread dump information, application health, and envi-
ronment properties available to the application.

 Flexible specification of environment properties.
 Additional testing support on top of the testing assistance found in the core

framework.

What’s more, Spring Boot offers an alternative programming model based on Groovy
scripts that’s called the Spring Boot CLI (command-line interface). With the Spring
Boot CLI, you can write entire applications as a collection of Groovy scripts and run
them from the command line. We won’t spend much time with the Spring Boot CLI,
but we’ll touch on it on occasion when it fits our needs.

 Spring Boot has become such an integral part of Spring development; I can’t imag-
ine developing a Spring application without it. Consequently, this book takes a Spring
Boot–centric view, and you might catch me using the word Spring when I’m referring
to something that Spring Boot is doing.

1.4.3 Spring Data

Although the core Spring Framework comes with basic data persistence support,
Spring Data provides something quite amazing: the ability to define your application’s
data repositories as simple Java interfaces, using a naming convention when defining
methods to drive how data is stored and retrieved.

 What’s more, Spring Data is capable of working with a several different kinds of
databases, including relational (JPA), document (Mongo), graph (Neo4j), and others.
You’ll use Spring Data to help create repositories for the Taco Cloud application in
chapter 3.

1.4.4 Spring Security

Application security has always been an important topic, and it seems to become
more important every day. Fortunately, Spring has a robust security framework in
Spring Security.

 Spring Security addresses a broad range of application security needs, including
authentication, authorization, and API security. Although the scope of Spring Security
is too large to be properly covered in this book, we’ll touch on some of the most com-
mon use cases in chapters 4 and 12.

1.4.5 Spring Integration and Spring Batch

At some point, most applications will need to integrate with other applications or
even with other components of the same application. Several patterns of application

28 CHAPTER 1 Getting started with Spring
integration have emerged to address these needs. Spring Integration and Spring
Batch provide the implementation of these patterns for Spring-based applications.

 Spring Integration addresses real-time integration where data is processed as it’s
made available. In contrast, Spring Batch addresses batched integration where data is
allowed to collect for a time until some trigger (perhaps a time trigger) signals that it’s
time for the batch of data to be processed. You’ll explore both Spring Batch and
Spring Integration in chapter 9.

1.4.6 Spring Cloud

As I’m writing this, the application development world is entering a new era where
we’ll no longer develop our applications as single deployment unit monoliths and will
instead compose applications from several individual deployment units known as
microservices.

 Microservices are a hot topic, addressing several practical development and run-
time concerns. In doing so, however, they bring to fore their own challenges. Those
challenges are met head-on by Spring Cloud, a collection of projects for developing
cloud-native applications with Spring.

 Spring Cloud covers a lot of ground, and it’d be impossible to cover it all in this
book. We’ll look at some of the most common components of Spring Cloud in chap-
ters 13, 14, and 15. For a more complete discussion of Spring Cloud, I suggest taking a
look at Spring Microservices in Action by John Carnell (Manning, 2017, www.manning
.com/books/spring-microservices-in-action).

Summary
 Spring aims to make developer challenges easy, like creating web applications,

working with databases, securing applications, and microservices.
 Spring Boot builds on top of Spring to make Spring even easier with simplified

dependency management, automatic configuration, and runtime insights.
 Spring applications can be initialized using the Spring Initializr, which is web-

based and supported natively in most Java development environments.
 The components, commonly referred to as beans, in a Spring application con-

text can be declared explicitly with Java or XML, discovered by component
scanning, or automatically configured with Spring Boot autoconfiguration.

http://www.manning.com/books/spring-microservices-in-action
http://www.manning.com/books/spring-microservices-in-action
http://www.manning.com/books/spring-microservices-in-action

Developing web
applications
First impressions are important. Curb appeal can sell a house long before the
home buyer enters the door. A car’s cherry paint job will turn more heads than
what’s under the hood. And literature is replete with stories of love at first sight.
What’s inside is very important, but what’s outside—what’s seen first—is important.

 The applications you’ll build with Spring will do all kinds of things, including
crunching data, reading information from a database, and interacting with other
applications. But the first impression your application users will get comes from the
user interface. And in many applications, that UI is a web application presented in
a browser.

 In chapter 1, you created your first Spring MVC controller to display your applica-
tion homepage. But Spring MVC can do far more than simply display static content.
In this chapter, you’ll develop the first major bit of functionality in your Taco Cloud
application—the ability to design custom tacos. In doing so, you’ll dig deeper into
Spring MVC, and you’ll see how to display model data and process form input.

This chapter covers
 Presenting model data in the browser

 Processing and validating form input

 Choosing a view template library
29

30 CHAPTER 2 Developing web applications
2.1 Displaying information
Fundamentally, Taco Cloud is a place where you can order tacos online. But more
than that, Taco Cloud wants to enable its customers to express their creative side and
to design custom tacos from a rich palette of ingredients.

 Therefore, the Taco Cloud web application needs a page that displays the selection
of ingredients for taco artists to choose from. The ingredient choices may change at
any time, so they shouldn’t be hardcoded into an HTML page. Rather, the list of avail-
able ingredients should be fetched from a database and handed over to the page to be
displayed to the customer.

 In a Spring web application, it’s a controller’s job to fetch and process data. And
it’s a view’s job to render that data into HTML that will be displayed in the browser.
You’re going to create the following components in support of the taco creation page:

 A domain class that defines the properties of a taco ingredient
 A Spring MVC controller class that fetches ingredient information and passes it

along to the view
 A view template that renders a list of ingredients in the user’s browser

The relationship between these components is illustrated in figure 2.1.

Because this chapter focuses on Spring’s web framework, we’ll defer any of the data-
base stuff to chapter 3. For now, the controller will be solely responsible for providing
the ingredients to the view. In chapter 3, you’ll rework the controller to collaborate
with a repository that fetches ingredients data from a database.

Request

Request

Design

view

Ingredients

Web browser

HTML

Taco

design

controller

Figure 2.1 A typical Spring MVC request flow

31Displaying information
 Before you write the controller and view, let’s hammer out the domain type that
represents an ingredient. This will establish a foundation on which you can develop
your web components.

2.1.1 Establishing the domain

An application’s domain is the subject area that it addresses—the ideas and concepts
that influence the understanding of the application.1 In the Taco Cloud application,
the domain includes such objects as taco designs, the ingredients that those designs
are composed of, customers, and taco orders placed by the customers. To get started,
we’ll focus on taco ingredients.

 In your domain, taco ingredients are fairly simple objects. Each has a name as well
as a type so that it can be visually categorized (proteins, cheeses, sauces, and so on).
Each also has an ID by which it can easily and unambiguously be referenced. The fol-
lowing Ingredient class defines the domain object you need.

package tacos;

import lombok.Data;
import lombok.RequiredArgsConstructor;

@Data
@RequiredArgsConstructor
public class Ingredient {

 private final String id;
 private final String name;
 private final Type type;

 public static enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

As you can see, this is a run-of-the-mill Java domain class, defining the three proper-
ties needed to describe an ingredient. Perhaps the most unusual thing about the
Ingredient class as defined in listing 2.1 is that it seems to be missing the usual set of
getter and setter methods, not to mention useful methods like equals(), hashCode(),
toString(), and others.

 You don’t see them in the listing partly to save space, but also because you’re using
an amazing library called Lombok to automatically generate those methods at run-
time. In fact, the @Data annotation at the class level is provided by Lombok and tells

1 For a much more in-depth discussion of application domains, I suggest Eric Evans’ Domain-Driven Design
(Addison-Wesley Professional, 2003).

Listing 2.1 Defining taco ingredients

32 CHAPTER 2 Developing web applications
Lombok to generate all of those missing methods as well as a constructor that accepts
all final properties as arguments. By using Lombok, you can keep the code for
Ingredient slim and trim.

 Lombok isn’t a Spring library, but it’s so incredibly useful that I find it hard to
develop without it. And it’s a lifesaver when I need to keep code examples in a book
short and sweet.

 To use Lombok, you’ll need to add it as a dependency in your project. If you’re
using Spring Tool Suite, it’s an easy matter of right-clicking on the pom.xml file and
selecting Edit Starters from the Spring context menu option. The same selection of
dependencies you were given in chapter 1 (in figure 1.4) will appear, giving you a
chance to add or change your selected dependencies. Find the Lombok choice, make
sure it’s checked, and click OK; Spring Tool Suite will automatically add it to your
build specification.

 Alternatively, you can manually add it with the following entry in pom.xml:

<dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <optional>true</optional>
</dependency>

This dependency will provide you with Lombok annotations (such as @Data) at devel-
opment time and with automatic method generation at runtime. But you’ll also need
to add Lombok as an extension in your IDE, or your IDE will complain with errors
about missing methods and final properties that aren’t being set. Visit https://pro-
jectlombok.org/ to find out how to install Lombok in your IDE of choice.

 I think you’ll find Lombok to be very useful, but know that it’s optional. You don’t
need it to develop Spring applications, so if you’d rather not use it, feel free to write
those missing methods by hand. Go ahead ... I’ll wait. When you finish, you’ll add
some controllers to handle web requests in your application.

2.1.2 Creating a controller class

Controllers are the major players in Spring’s MVC framework. Their primary job is to
handle HTTP requests and either hand a request off to a view to render HTML
(browser-displayed) or write data directly to the body of a response (RESTful). In this
chapter, we’re focusing on the kinds of controllers that use views to produce content
for web browsers. When we get to chapter 6, we’ll look at writing controllers that han-
dle requests in a REST API.

 For the Taco Cloud application, you need a simple controller that will do the fol-
lowing:

 Handle HTTP GET requests where the request path is /design
 Build a list of ingredients
 Hand the request and the ingredient data off to a view template to be rendered

as HTML and sent to the requesting web browser

https://projectlombok.org/
https://projectlombok.org/

33Displaying information
The following DesignTacoController class addresses those requirements.

package tacos.web;

import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;

import javax.validation.Valid;

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.Errors;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;

import lombok.extern.slf4j.Slf4j;
import tacos.Taco;
import tacos.Ingredient;
import tacos.Ingredient.Type;

@Slf4j
@Controller
@RequestMapping("/design")
public class DesignTacoController {

 @GetMapping
 public String showDesignForm(Model model) {
 List<Ingredient> ingredients = Arrays.asList(
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP),
 new Ingredient("COTO", "Corn Tortilla", Type.WRAP),
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN),
 new Ingredient("CARN", "Carnitas", Type.PROTEIN),
 new Ingredient("TMTO", "Diced Tomatoes", Type.VEGGIES),
 new Ingredient("LETC", "Lettuce", Type.VEGGIES),
 new Ingredient("CHED", "Cheddar", Type.CHEESE),
 new Ingredient("JACK", "Monterrey Jack", Type.CHEESE),
 new Ingredient("SLSA", "Salsa", Type.SAUCE),
 new Ingredient("SRCR", "Sour Cream", Type.SAUCE)
);

 Type[] types = Ingredient.Type.values();
 for (Type type : types) {
 model.addAttribute(type.toString().toLowerCase(),
 filterByType(ingredients, type));
 }

 model.addAttribute("design", new Taco());

 return "design";
 }

}

Listing 2.2 The beginnings of a Spring controller class

34 CHAPTER 2 Developing web applications
The first thing to note about DesignTacoController is the set of annotations applied
at the class level. The first, @Slf4j, is a Lombok-provided annotation that, at runtime,
will automatically generate an SLF4J (Simple Logging Facade for Java, https://www
.slf4j.org/) Logger in the class. This modest annotation has the same effect as if you
were to explicitly add the following lines within the class:

private static final org.slf4j.Logger log =
 org.slf4j.LoggerFactory.getLogger(DesignTacoController.class);

You’ll make use of this Logger a little later.
 The next annotation applied to DesignTacoController is @Controller. This

annotation serves to identify this class as a controller and to mark it as a candidate for
component scanning, so that Spring will discover it and automatically create an
instance of DesignTacoController as a bean in the Spring application context.

 DesignTacoController is also annotated with @RequestMapping. The @Request-
Mapping annotation, when applied at the class level, specifies the kind of requests that
this controller handles. In this case, it specifies that DesignTacoController will han-
dle requests whose path begins with /design.

HANDLING A GET REQUEST

The class-level @RequestMapping specification is refined with the @GetMapping annota-
tion that adorns the showDesignForm() method. @GetMapping, paired with the class-
level @RequestMapping, specifies that when an HTTP GET request is received for
/design, showDesignForm() will be called to handle the request.

 @GetMapping is a relatively new annotation, having been introduced in Spring 4.3.
Prior to Spring 4.3, you might have used a method-level @RequestMapping annota-
tion instead:

@RequestMapping(method=RequestMethod.GET)

Clearly, @GetMapping is more succinct and specific to the HTTP method that it targets.
@GetMapping is just one member of a family of request-mapping annotations. Table 2.1
lists all of the request-mapping annotations available in Spring MVC.

Table 2.1 Spring MVC request-mapping annotations

Annotation Description

@RequestMapping General-purpose request handling

@GetMapping Handles HTTP GET requests

@PostMapping Handles HTTP POST requests

@PutMapping Handles HTTP PUT requests

@DeleteMapping Handles HTTP DELETE requests

@PatchMapping Handles HTTP PATCH requests

https://www.slf4j.org/
https://www.slf4j.org/
https://www.slf4j.org/

35Displaying information
Now that you know that the showDesignForm() method will handle the request, let’s
look at the method body to see how it ticks. The bulk of the method constructs a list of
Ingredient objects. The list is hardcoded for now. When we get to chapter 3, you’ll
pull the list of available taco ingredients from a database.

 Once the list of ingredients is ready, the next few lines of showDesignForm() filters
the list by ingredient type. A list of ingredient types is then added as an attribute to the
Model object that’s passed into showDesignForm(). Model is an object that ferries data
between a controller and whatever view is charged with rendering that data. Ulti-
mately, data that’s placed in Model attributes is copied into the servlet response attri-
butes, where the view can find them. The showDesignForm() method concludes by
returning "design", which is the logical name of the view that will be used to render
the model to the browser.

 Your DesignTacoController is really starting to take shape. If you were to run
the application now and point your browser at the /design path, the DesignTaco-
Controller’s showDesignForm() would be engaged, fetching data from the reposi-
tory and placing it in the model before passing the request on to the view. But
because you haven’t defined the view yet, the request would take a horrible turn,
resulting in an HTTP 404 (Not Found) error. To fix that, let’s switch our attention
to the view where the data will be decorated with HTML to be presented in the
user’s web browser.

2.1.3 Designing the view

After the controller is finished with its work, it’s time for the view to get going. Spring
offers several great options for defining views, including JavaServer Pages (JSP),
Thymeleaf, FreeMarker, Mustache, and Groovy-based templates. For now, we’ll use
Thymeleaf, the choice we made in chapter 1 when starting the project. We’ll consider
a few of the other options in section 2.5.

Making the right thing the easy thing
It’s always a good idea to be as specific as possible when declaring request map-
pings on your controller methods. At the very least, this means declaring both a path
(or inheriting a path from the class-level @RequestMapping) and which HTTP method
it will handle.

The lengthier @RequestMapping(method=RequestMethod.GET) made it tempting to
take the lazy way out and leave off the method attribute. Thanks to Spring 4.3’s new
mapping annotations, the right thing to do is also the easy thing to do—with less typing.

The new request-mapping annotations have all of the same attributes as @Request-
Mapping, so you can use them anywhere you’d otherwise use @RequestMapping.

Generally, I prefer to only use @RequestMapping at the class level to specify the base
path. I use the more specific @GetMapping, @PostMapping, and so on, on each of
the handler methods.

36 CHAPTER 2 Developing web applications
 In order to use Thymeleaf, you need to add another dependency to your project
build. The following <dependency> entry uses Spring Boot’s Thymeleaf starter to
make Thymeleaf available for rendering the view you’re about to create:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

At runtime, Spring Boot autoconfiguration will see that Thymeleaf is in the classpath
and will automatically create the beans that support Thymeleaf views for Spring MVC.

 View libraries such as Thymeleaf are designed to be decoupled from any particular
web framework. As such, they’re unaware of Spring’s model abstraction and are
unable to work with the data that the controller places in Model. But they can work
with servlet request attributes. Therefore, before Spring hands the request over to a
view, it copies the model data into request attributes that Thymeleaf and other view-
templating options have ready access to.

 Thymeleaf templates are just HTML with some additional element attributes that
guide a template in rendering request data. For example, if there were a request attri-
bute whose key is "message", and you wanted it to be rendered into an HTML <p> tag
by Thymeleaf, you’d write the following in your Thymeleaf template:

<p th:text="${message}">placeholder message</p>

When the template is rendered into HTML, the body of the <p> element will be
replaced with the value of the servlet request attribute whose key is "message". The
th:text attribute is a Thymeleaf-namespaced attribute that performs the replace-
ment. The ${} operator tells it to use the value of a request attribute ("message", in
this case).

 Thymeleaf also offers another attribute, th:each, that iterates over a collection of
elements, rendering the HTML once for each item in the collection. This will come in
handy as you design your view to list taco ingredients from the model. For example, to
render just the list of "wrap" ingredients, you can use the following snippet of HTML:

<h3>Designate your wrap:</h3>
<div th:each="ingredient : ${wrap}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}" />
 INGREDIENT

</div>

Here, you use the th:each attribute on the <div> tag to repeat rendering of the <div>
once for each item in the collection found in the wrap request attribute. On each iter-
ation, the ingredient item is bound to a Thymeleaf variable named ingredient.

 Inside the <div> element, there’s a check box <input> element and a ele-
ment to provide a label for the check box. The check box uses Thymeleaf’s th:value
to set the rendered <input> element’s value attribute to the value found in the

37Displaying information
ingredient’s id property. The element uses th:text to replace the "INGREDIENT"
placeholder text with the value of the ingredient’s name property.

 When rendered with actual model data, one iteration of that <div> loop might
look like this:

<div>
 <input name="ingredients" type="checkbox" value="FLTO" />
 Flour Tortilla

</div>

Ultimately, the preceding Thymeleaf snippet is just part of a larger HTML form
through which your taco artist users will submit their tasty creations. The complete
Thymeleaf template, including all ingredient types and the form, is shown in the fol-
lowing listing.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 <link rel="stylesheet" th:href="@{/styles.css}" />
 </head>

 <body>
 <h1>Design your taco!</h1>

 <form method="POST" th:object="${design}">
 <div class="grid">
 <div class="ingredient-group" id="wraps">
 <h3>Designate your wrap:</h3>
 <div th:each="ingredient : ${wrap}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="proteins">
 <h3>Pick your protein:</h3>
 <div th:each="ingredient : ${protein}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="cheeses">
 <h3>Choose your cheese:</h3>
 <div th:each="ingredient : ${cheese}">

Listing 2.3 The complete design-a-taco page

38 CHAPTER 2 Developing web applications
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"
/>

 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="veggies">
 <h3>Determine your veggies:</h3>
 <div th:each="ingredient : ${veggies}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="sauces">
 <h3>Select your sauce:</h3>
 <div th:each="ingredient : ${sauce}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>
 </div>

 <div>

 <h3>Name your taco creation:</h3>
 <input type="text" th:field="*{name}"/>

 <button>Submit your taco</button>
 </div>
 </form>
 </body>
</html>

As you can see, you repeat the <div> snippet for each of the types of ingredients. And
you include a Submit button and field where the user can name their creation.

 It’s also worth noting that the complete template includes the Taco Cloud logo
image and a <link> reference to a stylesheet.2 In both cases, Thymeleaf’s @{} operator
is used to produce a context-relative path to the static artifacts that they’re referenc-
ing. As you learned in chapter 1, static content in a Spring Boot application is served
from the /static directory at the root of the classpath.

 Now that your controller and view are complete, you can fire up the application to
see the fruits of your labor. There are many ways to run a Spring Boot application. In
chapter 1, I showed you how to run the application by first building it into an executable

2 The contents of the stylesheet aren’t relevant to our discussion; it only contains styling to present the ingre-
dients in two columns instead of one long list of ingredients.

39Displaying information
JAR file and then running the JAR with java -jar. I also showed how you can run the
application directly from the build with mvn spring-boot:run.

 No matter how you fire up the Taco Cloud application, once it starts, point your
browser to http://localhost:8080/design. You should see a page that looks something
like figure 2.2.

It’s looking good! A taco artist visiting your site is presented with a form containing a
palette of taco ingredients from which they can create their masterpiece. But what
happens when they click the Submit Your Taco button?

Figure 2.2 The rendered taco design page

http://localhost:8080/design

40 CHAPTER 2 Developing web applications
 Your DesignTacoController isn’t yet ready to accept taco creations. If the design
form is submitted, the user will be presented with an error. (Specifically, it will be an
HTTP 405 error: Request Method “POST” Not Supported.) Let’s fix that by writing
some more controller code that handles form submission.

2.2 Processing form submission
If you take another look at the <form> tag in your view, you can see that its method
attribute is set to POST. Moreover, the <form> doesn’t declare an action attribute. This
means that when the form is submitted, the browser will gather up all the data in the
form and send it to the server in an HTTP POST request to the same path for which a
GET request displayed the form—the /design path.

 Therefore, you need a controller handler method on the receiving end of that
POST request. You need to write a new handler method in DesignTacoController
that handles a POST request for /design.

 In listing 2.2, you used the @GetMapping annotation to specify that the show-
DesignForm() method should handle HTTP GET requests for /design. Just like @Get-
Mapping handles GET requests, you can use @PostMapping to handle POST requests.
For handling taco design submissions, add the processDesign() method in the fol-
lowing listing to DesignTacoController.

@PostMapping
public String processDesign(Design design) {
 // Save the taco design...
 // We'll do this in chapter 3
 log.info("Processing design: " + design);

 return "redirect:/orders/current";
}

As applied to the processDesign() method, @PostMapping coordinates with the class-
level @RequestMapping to indicate that processDesign() should handle POST
requests for /design. This is precisely what you need to process a taco artist’s submit-
ted creations.

 When the form is submitted, the fields in the form are bound to properties of a
Taco object (whose class is shown in the next listing) that’s passed as a parameter into
processDesign(). From there, the processDesign() method can do whatever it wants
with the Taco object.

package tacos;
import java.util.List;
import lombok.Data;

Listing 2.4 Handling POST requests with @PostMapping

Listing 2.5 A domain object defining a taco design

41Processing form submission
@Data
public class Taco {

 private String name;
 private List<String> ingredients;

}

As you can see, Taco is a straightforward Java domain object with a couple of proper-
ties. Like Ingredient, the Taco class is annotated with @Data to automatically generate
essential JavaBean methods for you at runtime.

 If you look back at the form in listing 2.3, you’ll see several checkbox elements, all
with the name ingredients, and a text input element named name. Those fields in the
form correspond directly to the ingredients and name properties of the Taco class.

 The Name field on the form only needs to capture a simple textual value. Thus
the name property of Taco is of type String. The ingredients check boxes also have
textual values, but because zero or many of them may be selected, the ingredients
property that they’re bound to is a List<String> that will capture each of the cho-
sen ingredients.

 For now, the processDesign() method does nothing with the Taco object. In fact,
it doesn’t do much of anything at all. That’s OK. In chapter 3, you’ll add some per-
sistence logic that will save the submitted Taco to a database.

 Just as with the showDesignForm() method, processDesign() finishes by return-
ing a String value. And just like showDesignForm(), the value returned indicates a
view that will be shown to the user. But what’s different is that the value returned from
processDesign() is prefixed with "redirect:", indicating that this is a redirect view.
More specifically, it indicates that after processDesign() completes, the user’s browser
should be redirected to the relative path /order/current.

 The idea is that after creating a taco, the user will be redirected to an order form
from which they can place an order to have their taco creations delivered. But you
don’t yet have a controller that will handle a request for /orders/current.

 Given what you now know about @Controller, @RequestMapping, and @Get-
Mapping, you can easily create such a controller. It might look something like the fol-
lowing listing.

package tacos.web;
import javax.validation.Valid;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.Errors;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import lombok.extern.slf4j.Slf4j;
import tacos.Order;

Listing 2.6 A controller to present a taco order form

42 CHAPTER 2 Developing web applications
@Slf4j
@Controller
@RequestMapping("/orders")
public class OrderController {

 @GetMapping("/current")
 public String orderForm(Model model) {
 model.addAttribute("order", new Order());
 return "orderForm";
 }

}

Once again, you use Lombok’s @Slf4j annotation to create a free SLF4J Logger
object at runtime. You’ll use this Logger in a moment to log the details of the order
that’s submitted.

 The class-level @RequestMapping specifies that any request-handling methods in
this controller will handle requests whose path begins with /orders. When combined
with the method-level @GetMapping, it specifies that the orderForm() method will han-
dle HTTP GET requests for /orders/current.

 As for the orderForm() method itself, it’s extremely basic, only returning a logical
view name of orderForm. Once you have a way to persist taco creations to a database in
chapter 3, you’ll revisit this method and modify it to populate the model with a list of
Taco objects to be placed in the order.

 The orderForm view is provided by a Thymeleaf template named orderForm.html,
which is shown next.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 <link rel="stylesheet" th:href="@{/styles.css}" />
 </head>

 <body>

 <form method="POST" th:action="@{/orders}" th:object="${order}">
 <h1>Order your taco creations!</h1>

 <a th:href="@{/design}" id="another">Design another taco

 <div th:if="${#fields.hasErrors()}">

 Please correct the problems below and resubmit.

 </div>

Listing 2.7 A taco order form view

43Processing form submission
 <h3>Deliver my taco masterpieces to...</h3>
 <label for="name">Name: </label>
 <input type="text" th:field="*{name}"/>

 <label for="street">Street address: </label>
 <input type="text" th:field="*{street}"/>

 <label for="city">City: </label>
 <input type="text" th:field="*{city}"/>

 <label for="state">State: </label>
 <input type="text" th:field="*{state}"/>

 <label for="zip">Zip code: </label>
 <input type="text" th:field="*{zip}"/>

 <h3>Here's how I'll pay...</h3>
 <label for="ccNumber">Credit Card #: </label>
 <input type="text" th:field="*{ccNumber}"/>

 <label for="ccExpiration">Expiration: </label>
 <input type="text" th:field="*{ccExpiration}"/>

 <label for="ccCVV">CVV: </label>
 <input type="text" th:field="*{ccCVV}"/>

 <input type="submit" value="Submit order"/>
 </form>

 </body>
</html>

For the most part, the orderForm.html view is typical HTML/Thymeleaf content, with
very little of note. But notice that the <form> tag here is different from the <form> tag
used in listing 2.3 in that it also specifies a form action. Without an action specified,
the form would submit an HTTP POST request back to the same URL that presented
the form. But here, you specify that the form should be POSTed to /orders (using
Thymeleaf’s @{…} operator for a context-relative path).

 Therefore, you’re going to need to add another method to your OrderController
class that handles POST requests for /orders. You won’t have a way to persist orders
until the next chapter, so you’ll keep it simple here—something like what you see in
the next listing.

44 CHAPTER 2 Developing web applications
@PostMapping
public String processOrder(Order order) {
 log.info("Order submitted: " + order);
 return "redirect:/";
}

When the processOrder() method is called to handle a submitted order, it’s given an
Order object whose properties are bound to the submitted form fields. Order, much
like Taco, is a fairly straightforward class that carries order information.

package tacos;
import javax.validation.constraints.Digits;
import javax.validation.constraints.Pattern;
import org.hibernate.validator.constraints.CreditCardNumber;
import org.hibernate.validator.constraints.NotBlank;
import lombok.Data;

@Data
public class Order {

 private String name;
 private String street;
 private String city;
 private String state;
 private String zip;
 private String ccNumber;
 private String ccExpiration;
 private String ccCVV;

}

Now that you’ve developed an OrderController and the order form view, you’re
ready to try it out. Open your browser to http://localhost:8080/design, select some
ingredients for your taco, and click the Submit Your Taco button. You should see a
form similar to what’s shown in figure 2.3.

 Fill in some fields in the form, and press the Submit Order button. As you do, keep
an eye on the application logs to see your order information. When I tried it, the log
entry looked something like this (reformatted to fit the width of this page):

Order submitted: Order(name=Craig Walls,street1=1234 7th Street,
city=Somewhere, state=Who knows?, zip=zipzap, ccNumber=Who can guess?,

ccExpiration=Some day, ccCVV=See-vee-vee)

If you look carefully at the log entry from my test order, you can see that although the
processOrder() method did its job and handled the form submission, it let a little bit
of bad information get in. Most of the fields in the form contained data that couldn’t

Listing 2.8 Handling a taco order submission

Listing 2.9 A domain object for taco orders

http://localhost:8080/design

45Validating form input
possibly be correct. Let’s add some validation to ensure that the data provided at least
resembles the kind of information required.

2.3 Validating form input
When designing a new taco creation, what if the user selects no ingredients or fails to
specify a name for their creation? When submitting the order, what if they fail to fill in
the required address fields? Or what if they enter a value into the credit card field that
isn’t even a valid credit card number?

 As things stand now, nothing will stop the user from creating a taco without any
ingredients or with an empty delivery address, or even submitting the lyrics to their

Figure 2.3 The taco order form

46 CHAPTER 2 Developing web applications
favorite song as the credit card number. That’s because you haven’t yet specified how
those fields should be validated.

 One way to perform form validation is to litter the processDesign() and process-
Order() methods with a bunch of if/then blocks, checking each and every field to
ensure that it meets the appropriate validation rules. But that would be cumbersome
and difficult to read and debug.

 Fortunately, Spring supports Java’s Bean Validation API (also known as JSR-303;
https://jcp.org/en/jsr/detail?id=303). This makes it easy to declare validation rules
as opposed to explicitly writing declaration logic in your application code. And with
Spring Boot, you don’t need to do anything special to add validation libraries to your
project, because the Validation API and the Hibernate implementation of the Valida-
tion API are automatically added to the project as transient dependencies of Spring
Boot’s web starter.

 To apply validation in Spring MVC, you need to

 Declare validation rules on the class that is to be validated: specifically, the
Taco class.

 Specify that validation should be performed in the controller methods that
require validation: specifically, the DesignTacoController’s processDesign()
method and OrderController’s processOrder() method.

 Modify the form views to display validation errors.

The Validation API offers several annotations that can be placed on properties of
domain objects to declare validation rules. Hibernate’s implementation of the Valida-
tion API adds even more validation annotations. Let’s see how you can apply a few of
these annotations to validate a submitted Taco or Order.

2.3.1 Declaring validation rules

For the Taco class, you want to ensure that the name property isn’t empty or null and
that the list of selected ingredients has at least one item. The following listing shows
an updated Taco class that uses @NotNull and @Size to declare those validation rules.

package tacos;
import java.util.List;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import lombok.Data;

@Data
public class Taco {

 @NotNull
 @Size(min=5, message="Name must be at least 5 characters long")
 private String name;

Listing 2.10 Adding validation to the Taco domain class

https://jcp.org/en/jsr/detail?id=303

47Validating form input
 @Size(min=1, message="You must choose at least 1 ingredient")
 private List<String> ingredients;

}

You’ll notice that in addition to requiring that the name property isn’t null, you
declare that it should have a value that’s at least 5 characters in length.

 When it comes to declaring validation on submitted taco orders, you must apply
annotations to the Order class. For the address properties, you only want to be sure
that the user doesn’t leave any of the fields blank. For that, you’ll use Hibernate Vali-
dator’s @NotBlank annotation.

 Validation of the payment fields, however, is a bit more exotic. You need to not
only ensure that the ccNumber property isn’t empty, but that it contains a value that
could be a valid credit card number. The ccExpiration property must conform to
a format of MM/YY (two-digit month and year). And the ccCVV property needs to be a
three-digit number. To achieve this kind of validation, you need to use a few other Java
Bean Validation API annotations and borrow a validation annotation from the Hiber-
nate Validator collection of annotations. The following listing shows the changes
needed to validate the Order class.

package tacos;
import javax.validation.constraints.Digits;
import javax.validation.constraints.Pattern;
import org.hibernate.validator.constraints.CreditCardNumber;
import javax.validation.constraints.NotBlank;
import lombok.Data;

@Data
public class Order {

 @NotBlank(message="Name is required")
 private String name;

 @NotBlank(message="Street is required")
 private String street;

 @NotBlank(message="City is required")
 private String city;

 @NotBlank(message="State is required")
 private String state;

 @NotBlank(message="Zip code is required")
 private String zip;

 @CreditCardNumber(message="Not a valid credit card number")
 private String ccNumber;

Listing 2.11 Validating order fields

48 CHAPTER 2 Developing web applications
 @Pattern(regexp="^(0[1-9]|1[0-2])([\\/])([1-9][0-9])$",
 message="Must be formatted MM/YY")
 private String ccExpiration;

 @Digits(integer=3, fraction=0, message="Invalid CVV")
 private String ccCVV;

}

As you can see, the ccNumber property is annotated with @CreditCardNumber. This
annotation declares that the property’s value must be a valid credit card number that
passes the Luhn algorithm check (https://en.wikipedia.org/wiki/Luhn_algorithm).
This prevents user mistakes and deliberately bad data but doesn’t guarantee that the
credit card number is actually assigned to an account or that the account can be used
for charging.

 Unfortunately, there’s no ready-made annotation for validating the MM/YY format
of the ccExpiration property. I’ve applied the @Pattern annotation, providing it with
a regular expression that ensures that the property value adheres to the desired for-
mat. If you’re wondering how to decipher the regular expression, I encourage you to
check out the many online regular expression guides, including http://www.regular-
expressions.info/. Regular expression syntax is a dark art and certainly outside the
scope of this book.

 Finally, the ccCVV property is annotated with @Digits to ensure that the value con-
tains exactly three numeric digits.

 All of the validation annotations include a message attribute that defines the mes-
sage you’ll display to the user if the information they enter doesn’t meet the require-
ments of the declared validation rules.

2.3.2 Performing validation at form binding

Now that you’ve declared how a Taco and Order should be validated, we need to
revisit each of the controllers, specifying that validation should be performed when
the forms are POSTed to their respective handler methods.

 To validate a submitted Taco, you need to add the Java Bean Validation API’s @Valid
annotation to the Taco argument of DesignTacoController’s processDesign() method.

@PostMapping
public String processDesign(@Valid Taco design, Errors errors) {
 if (errors.hasErrors()) {
 return "design";
 }

 // Save the taco design...
 // We'll do this in chapter 3
 log.info("Processing design: " + design);

Listing 2.12 Validating a POSTed Taco

https://en.wikipedia.org/wiki/Luhn_algorithm
http://www.regular-expressions.info/
http://www.regular-expressions.info/

49Validating form input
 return "redirect:/orders/current";
}

The @Valid annotation tells Spring MVC to perform validation on the submitted Taco
object after it’s bound to the submitted form data and before the processDesign()
method is called. If there are any validation errors, the details of those errors will be
captured in an Errors object that’s passed into processDesign(). The first few lines
of processDesign() consult the Errors object, asking its hasErrors() method if
there are any validation errors. If there are, the method concludes without processing
the Taco and returns the "design" view name so that the form is redisplayed.

 To perform validation on submitted Order objects, similar changes are also required
in the processOrder() method of OrderController.

@PostMapping
public String processOrder(@Valid Order order, Errors errors) {
 if (errors.hasErrors()) {
 return "orderForm";
 }

 log.info("Order submitted: " + order);
 return "redirect:/";
}

In both cases, the method will be allowed to process the submitted data if there are no
validation errors. If there are validation errors, the request will be forwarded to the
form view to give the user a chance to correct their mistakes.

 But how will the user know what mistakes require correction? Unless you call out
the errors on the form, the user will be left guessing about how to successfully sub-
mit the form.

2.3.3 Displaying validation errors

Thymeleaf offers convenient access to the Errors object via the fields property and
with its th:errors attribute. For example, to display validation errors on the credit
card number field, you can add a element that uses these error references to
the order form template, as follows.

<label for="ccNumber">Credit Card #: </label>
<input type="text" th:field="*{ccNumber}"/>
<span class="validationError"
 th:if="${#fields.hasErrors('ccNumber')}"
 th:errors="*{ccNumber}">CC Num Error

Aside from a class attribute that can be used to style the error so that it catches the
user’s attention, the element uses a th:if attribute to decide whether or not

Listing 2.13 Validating a POSTed Order

Listing 2.14 Displaying validation errors

50 CHAPTER 2 Developing web applications
to display the . The fields property’s hasErrors() method checks if there are
any errors in the ccNumber field. If so, the will be rendered.

 The th:errors attribute references the ccNumber field and, assuming there are
errors for that field, it will replace the placeholder content of the element with
the validation message.

 If you were to sprinkle similar tags around the order form for the other
fields, you might see a form that looks like figure 2.4 when you submit invalid informa-
tion. The errors indicate that the name, city, and ZIP code fields have been left blank,
and that all of the payment fields fail to meet the validation criteria.

Figure 2.4 Validation errors displayed on the order form

51Working with view controllers
Now your Taco Cloud controllers not only display and capture input, but they
also validate that the information meets some basic validation rules. Let’s step back
and reconsider the HomeController from chapter 1, looking at an alternative
implementation.

2.4 Working with view controllers
Thus far, you’ve written three controllers for the Taco Cloud application. Although
each controller serves a distinct purpose in the functionality of the application, they
all pretty much follow the same programming model:

 They’re all annotated with @Controller to indicate that they’re controller
classes that should be automatically discovered by Spring component scanning
and instantiated as beans in the Spring application context.

 All but HomeController are annotated with @RequestMapping at the class level
to define a baseline request pattern that the controller will handle.

 They all have one or more methods that are annotated with @GetMapping or
@PostMapping to provide specifics on which methods should handle which
kinds of requests.

Most of the controllers you’ll write will follow that pattern. But when a controller is
simple enough that it doesn’t populate a model or process input—as is the case with
your HomeController—there’s another way that you can define the controller. Have a
look at the next listing to see how you can declare a view controller—a controller that
does nothing but forward the request to a view.

package tacos.web;

import org.springframework.context.annotation.Configuration;
import

org.springframework.web.servlet.config.annotation.ViewControllerRegistry
;

import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
public class WebConfig implements WebMvcConfigurer {

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 }

}

The most significant thing to notice about @WebConfig is that it implements the Web-
MvcConfigurer interface. WebMvcConfigurer defines several methods for configuring
Spring MVC. Even though it’s an interface, it provides default implementations of all

Listing 2.15 Declaring a view controller

52 CHAPTER 2 Developing web applications
the methods, so you only need to override the methods you need. In this case, you
override addViewControllers().

 The addViewControllers() method is given a ViewControllerRegistry that you
can use to register one or more view controllers. Here, you call addViewController()
on the registry, passing in "/", which is the path for which your view controller will
handle GET requests. That method returns a ViewControllerRegistration object,
on which you immediately call setViewName() to specify home as the view that a
request for "/" should be forwarded to.

 And just like that, you’ve been able to replace HomeController with a few lines in a
configuration class. You can now delete HomeController, and the application should
still behave as it did before. The only other change required is to revisit Home-
ControllerTest from chapter 1, removing the reference to HomeController from the
@WebMvcTest annotation, so that the test class will compile without errors.

 Here, you’ve created a new WebConfig configuration class to house the view con-
troller declaration. But any configuration class can implement WebMvcConfigurer
and override the addViewController method. For instance, you could have added
the same view controller declaration to the bootstrap TacoCloudApplication class
like this:

@SpringBootApplication
public class TacoCloudApplication implements WebMvcConfigurer {

 public static void main(String[] args) {
 SpringApplication.run(TacoCloudApplication.class, args);
 }

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 }

}

By extending an existing configuration class, you can avoid creating a new configura-
tion class, keeping your project artifact count down. But I tend to prefer creating a
new configuration class for each kind of configuration (web, data, security, and so
on), keeping the application bootstrap configuration clean and simple.

 Speaking of view controllers, and more generically the views that controllers for-
ward requests to, so far you’ve been using Thymeleaf for all of your views. I like
Thymeleaf a lot, but maybe you prefer a different template model for your application
views. Let’s have a look at Spring’s many supported view options.

2.5 Choosing a view template library
For the most part, your choice of a view template library is a matter of personal taste.
Spring is very flexible and supports many common templating options. With only a

53Choosing a view template library
few small exceptions, the template library you choose will itself have no idea that it’s
even working with Spring.3

 Table 2.2 catalogs the template options supported by Spring Boot autoconfiguration.

Generally speaking, you select the view template library you want, add it as a depen-
dency in your build, and start writing templates in the /templates directory (under
the src/main/resources directory in a Maven- or Gradle-built project). Spring Boot
will detect your chosen template library and automatically configure the components
required for it to serve views for your Spring MVC controllers.

 You’ve already done this with Thymeleaf for the Taco Cloud application. In chap-
ter 1, you selected the Thymeleaf check box when initializing the project. This resulted
in Spring Boot’s Thymeleaf starter being included in the pom.xml file. When the appli-
cation starts up, Spring Boot autoconfiguration detects the presence of Thymeleaf and
automatically configures the Thymeleaf beans for you. All you had to do was start writ-
ing templates in /templates.

 If you’d rather use a different template library, you simply select it at project initial-
ization or edit your existing project build to include the newly chosen template
library.

 For example, let’s say you wanted to use Mustache instead of Thymeleaf. No prob-
lem. Just visit the project pom.xml file and replace this,

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

with this:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-mustache</artifactId>
</dependency>

3 One such exception is Thymeleaf’s Spring Security dialect, which we’ll talk about in chapter 4.

Table 2.2 Supported template options

Template Spring Boot starter dependency

FreeMarker spring-boot-starter-freemarker

Groovy Templates spring-boot-starter-groovy-templates

JavaServer Pages (JSP) None (provided by Tomcat or Jetty)

Mustache spring-boot-starter-mustache

Thymeleaf spring-boot-starter-thymeleaf

54 CHAPTER 2 Developing web applications
Of course, you’d need to make sure that you write all the templates with Mustache syn-
tax instead of Thymeleaf tags. The specifics of working with Mustache (or any of the
template language choices) is well outside of the scope of this book, but to give you an
idea of what to expect, here’s a snippet from a Mustache template that will render one
of the ingredient groups in the taco design form:

<h3>Designate your wrap:</h3>
{{#wrap}}
<div>
 <input name="ingredients" type="checkbox" value="{{id}}" />
 {{name}}

</div>
{{/wrap}}

This is the Mustache equivalent of the Thymeleaf snippet in section 2.1.3. The
{{#wrap}} block (which concludes with {{/wrap}}) iterates through a collection in
the request attribute whose key is wrap and renders the embedded HTML for each
item. The {{id}} and {{name}} tags reference the id and name properties of the item
(which should be an Ingredient).

 You’ll notice in table 2.2 that JSP doesn’t require any special dependency in the
build. That’s because the servlet container itself (Tomcat by default) implements
the JSP specification, thus requiring no further dependencies.

 But there’s a gotcha if you choose to use JSP. As it turns out, Java servlet contain-
ers—including embedded Tomcat and Jetty containers—usually look for JSPs some-
where under /WEB-INF. But if you’re building your application as an executable JAR
file, there’s no way to satisfy that requirement. Therefore, JSP is only an option if
you’re building your application as a WAR file and deploying it in a traditional servlet
container. If you’re building an executable JAR file, you must choose Thymeleaf,
FreeMarker, or one of the other options in table 2.2.

2.5.1 Caching templates

By default, templates are only parsed once, when they’re first used, and the results
of that parse are cached for subsequent use. This is a great feature for production,
as it prevents redundant template parsing on each request and thus improves
performance.

 That feature is not so awesome at development time, however. Let’s say you fire
up your application and hit the taco design page and decide to make a few changes
to it. When you refresh your web browser, you’ll still be shown the original version.
The only way you can see your changes is to restart the application, which is quite
inconvenient.

 Fortunately, there’s a way to disable caching. All you need to do is set a template-
appropriate caching property to false. Table 2.3 lists the caching properties for each
of the supported template libraries.

55Summary
By default, all of these properties are set to true to enable caching. You can disable
caching for your chosen template engine by setting its cache property to false. For
example, to disable Thymeleaf caching, add the following line in application.properties:

spring.thymeleaf.cache=false

The only catch is that you’ll want to be sure to remove this line (or set it to true)
before you deploy your application to production. One option is to set the property in
a profile. (We’ll talk about profiles in chapter 5.)

 A much simpler option is to use Spring Boot’s DevTools, as we opted to do in chap-
ter 1. Among the many helpful bits of development-time help offered by DevTools, it
will disable caching for all template libraries but will disable itself (and thus reenable
template caching) when your application is deployed.

Summary
 Spring offers a powerful web framework called Spring MVC that can be used to

develop the web frontend for a Spring application.
 Spring MVC is annotation-based, enabling the declaration of request-handling

methods with annotations such as @RequestMapping, @GetMapping, and @Post-
Mapping.

 Most request-handling methods conclude by returning the logical name of a
view, such as a Thymeleaf template, to which the request (along with any model
data) is forwarded.

 Spring MVC supports validation through the Java Bean Validation API and
implementations of the Validation API such as Hibernate Validator.

 View controllers can be used to handle HTTP GET requests for which no
model data or processing is required.

 In addition to Thymeleaf, Spring supports a variety of view options, including
FreeMarker, Groovy Templates, and Mustache.

Table 2.3 Properties to enable/disable template caching

Template Cache enable property

FreeMarker spring.freemarker.cache

Groovy Templates spring.groovy.template.cache

Mustache spring.mustache.cache

Thymeleaf spring.thymeleaf.cache

Working with data
Most applications offer more than just a pretty face. Although the user interface
may provide interaction with an application, it’s the data it presents and stores that
separates applications from static websites.

 In the Taco Cloud application, you need to be able to maintain information
about ingredients, tacos, and orders. Without a database to store this information,
the application wouldn’t be able to progress much further than what you devel-
oped in chapter 2.

 In this chapter, you’re going to add data persistence to the Taco Cloud applica-
tion. You’ll start by using Spring support for JDBC (Java Database Connectivity) to
eliminate boilerplate code. Then you’ll rework the data repositories to work with
the JPA (Java Persistence API), eliminating even more code.

This chapter covers
 Using Spring’s JdbcTemplate

 Inserting data with SimpleJdbcInsert

 Declaring JPA repositories with Spring Data
56

57Reading and writing data with JDBC
3.1 Reading and writing data with JDBC
For decades, relational databases and SQL have enjoyed their position as the leading
choice for data persistence. Even though many alternative database types have emerged
in recent years, the relational database is still a top choice for a general-purpose data
store and will not likely be usurped from its position any time soon.

 When it comes to working with relational data, Java developers have several
options. The two most common choices are JDBC and the JPA. Spring supports both
of these with abstractions, making working with either JDBC or JPA easier than it
would be without Spring. In this section, we’ll focus on how Spring supports JDBC,
and then we’ll look at Spring support for JPA in section 3.2.

 Spring JDBC support is rooted in the JdbcTemplate class. JdbcTemplate provides a
means by which developers can perform SQL operations against a relational database
without all the ceremony and boilerplate typically required when working with JDBC.

 To gain an appreciation of what JdbcTemplate does, let’s start by looking at an
example of how to perform a simple query in Java without JdbcTemplate.

@Override
public Ingredient findOne(String id) {
 Connection connection = null;
 PreparedStatement statement = null;
 ResultSet resultSet = null;
 try {
 connection = dataSource.getConnection();
 statement = connection.prepareStatement(
 "select id, name, type from Ingredient");
 statement.setString(1, id);
 resultSet = statement.executeQuery();
 Ingredient ingredient = null;
 if(resultSet.next()) {
 ingredient = new Ingredient(
 resultSet.getString("id"),
 resultSet.getString("name"),
 Ingredient.Type.valueOf(resultSet.getString("type")));
 }
 return ingredient;
 } catch (SQLException e) {
 // ??? What should be done here ???
 } finally {
 if (resultSet != null) {
 try {
 resultSet.close();
 } catch (SQLException e) {}
 }
 if (statement != null) {
 try {
 statement.close();
 } catch (SQLException e) {}
 }

Listing 3.1 Querying a database without JdbcTemplate

58 CHAPTER 3 Working with data
 if (connection != null) {
 try {
 connection.close();
 } catch (SQLException e) {}
 }
 }
 return null;
}

I assure you that somewhere in listing 3.1 there are a couple of lines that query the
database for ingredients. But I’ll bet you had a hard time spotting that query needle in
the JDBC haystack. It’s surrounded by code that creates a connection, creates a state-
ment, and cleans up by closing the connection, statement, and result set.

 To make matters worse, any number of things could go wrong when creating the
connection or the statement, or when performing the query. This requires that you
catch a SQLException, which may or may not be helpful in figuring out what went
wrong or how to address the problem.

 SQLException is a checked exception, which requires handling in a catch block.
But the most common problems, such as failure to create a connection to the data-
base or a mistyped query, can’t possibly be addressed in a catch block and are likely to
be rethrown for handling upstream. In contrast, consider the methods that use Jdbc-
Template.

private JdbcTemplate jdbc;

@Override
public Ingredient findOne(String id) {
 return jdbc.queryForObject(
 "select id, name, type from Ingredient where id=?",
 this::mapRowToIngredient, id);
}

private Ingredient mapRowToIngredient(ResultSet rs, int rowNum)
 throws SQLException {
 return new Ingredient(
 rs.getString("id"),
 rs.getString("name"),
 Ingredient.Type.valueOf(rs.getString("type")));
}

The code in listing 3.2 is clearly much simpler than the raw JDBC example in listing 3.1;
there aren’t any statements or connections being created. And, after the method is
finished, there isn’t any cleanup of those objects. Finally, there isn’t any handling of
exceptions that can’t properly be handled in a catch block. What’s left is code that’s
focused solely on performing a query (the call to JdbcTemplate’s queryForObject()
method) and mapping the results to an Ingredient object (in the mapRowTo-
Ingredient() method).

Listing 3.2 Querying a database with JdbcTemplate

59Reading and writing data with JDBC
 The code in listing 3.2 is a snippet of what you need to do to use JdbcTemplate to
persist and read data in the Taco Cloud application. Let’s take the next steps neces-
sary to outfit the application with JDBC persistence. We’ll start by making a few tweaks
to the domain objects.

3.1.1 Adapting the domain for persistence

When persisting objects to a database, it’s generally a good idea to have one field that
uniquely identifies the object. Your Ingredient class already has an id field, but you
need to add id fields to both Taco and Order.

 Moreover, it might be useful to know when a Taco is created and when an Order is
placed. You’ll also need to add a field to each object to capture the date and time that
the objects are saved. The following listing shows the new id and createdAt fields
needed in the Taco class.

@Data
public class Taco {

 private Long id;

 private Date createdAt;

 ...

}

Because you use Lombok to automatically generate accessor methods at runtime,
there’s no need to do anything more than declare the id and createdAt properties.
They’ll have appropriate getter and setter methods as needed at runtime. Similar
changes are required in the Order class, as shown here:

@Data
public class Order {

 private Long id;

 private Date placedAt;

 ...

}

Again, Lombok automatically generates the accessor methods, so these are the only
changes required in Order. (If for some reason you choose not to use Lombok, you’ll
need to write these methods yourself.)

 Your domain classes are now ready for persistence. Let’s see how to use Jdbc-
Template to read and write them to a database.

Listing 3.3 Adding ID and timestamp fields to the Taco class

60 CHAPTER 3 Working with data
3.1.2 Working with JdbcTemplate

Before you can start using JdbcTemplate, you need to add it to your project classpath.
This can easily be accomplished by adding Spring Boot’s JDBC starter dependency to
the build:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>
</dependency>

You’re also going to need a database where your data will be stored. For development
purposes, an embedded database will be just fine. I favor the H2 embedded database,
so I’ve added the following dependency to the build:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
</dependency>

Later, you’ll see how to configure the application to use an external database. But for
now, let’s move on to writing a repository that fetches and saves Ingredient data.

DEFINING JDBC REPOSITORIES

Your Ingredient repository needs to perform these operations:

 Query for all ingredients into a collection of Ingredient objects
 Query for a single Ingredient by its id
 Save an Ingredient object

The following IngredientRepository interface defines those three operations as
method declarations:

package tacos.data;

import tacos.Ingredient;

public interface IngredientRepository {

 Iterable<Ingredient> findAll();

 Ingredient findOne(String id);

 Ingredient save(Ingredient ingredient);

}

Although the interface captures the essence of what you need an ingredient reposi-
tory to do, you’ll still need to write an implementation of IngredientRepository that
uses JdbcTemplate to query the database. The code shown next is the first step in writ-
ing that implementation.

61Reading and writing data with JDBC
package tacos.data;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.stereotype.Repository;

import tacos.Ingredient;

@Repository
public class JdbcIngredientRepository
 implements IngredientRepository {

 private JdbcTemplate jdbc;

 @Autowired
 public JdbcIngredientRepository(JdbcTemplate jdbc) {
 this.jdbc = jdbc;
 }

 ...

}

As you can see, JdbcIngredientRepository is annotated with @Repository. This
annotation is one of a handful of stereotype annotations that Spring defines, includ-
ing @Controller and @Component. By annotating JdbcIngredientRepository with
@Repository, you declare that it should be automatically discovered by Spring compo-
nent scanning and instantiated as a bean in the Spring application context.

 When Spring creates the JdbcIngredientRepository bean, it injects it with Jdbc-
Template via the @Autowired annotated construction. The constructor assigns
JdbcTemplate to an instance variable that will be used in other methods to query and
insert into the database. Speaking of those other methods, let’s take a look at the
implementations of findAll() and findById().

@Override
public Iterable<Ingredient> findAll() {
 return jdbc.query("select id, name, type from Ingredient",
 this::mapRowToIngredient);
}

@Override
public Ingredient findOne(String id) {
 return jdbc.queryForObject(
 "select id, name, type from Ingredient where id=?",
 this::mapRowToIngredient, id);
}

Listing 3.4 Beginning an ingredient repository with JdbcTemplate

Listing 3.5 Querying the database with JdbcTemplate

62 CHAPTER 3 Working with data
private Ingredient mapRowToIngredient(ResultSet rs, int rowNum)
 throws SQLException {
 return new Ingredient(
 rs.getString("id"),
 rs.getString("name"),
 Ingredient.Type.valueOf(rs.getString("type")));
}

Both findAll() and findById() use JdbcTemplate in a similar way. The findAll()
method, expecting to return a collection of objects, uses JdbcTemplate’s query()
method. The query() method accepts the SQL for the query as well as an implemen-
tation of Spring’s RowMapper for the purpose of mapping each row in the result set to
an object. findAll() also accepts as its final argument(s) a list of any parameters
required in the query. But, in this case, there aren’t any required parameters.

 The findById() method only expects to return a single Ingredient object, so it
uses the queryForObject() method of JdbcTemplate instead of query(). queryFor-
Object() works much like query() except that it returns a single object instead of a
List of objects. In this case, it’s given the query to perform, a RowMapper, and the id
of Ingredient to fetch, which is used in place of the ? in the query.

 As shown in listing 3.5, the RowMapper parameter for both findAll() and find-
ById() is given as a method reference to the mapRowToIngredient() method. Java 8’s
method references and lambdas are convenient when working with JdbcTemplate as
an alternative to an explicit RowMapper implementation. But if for some reason you
want or need an explicit RowMapper, then the following implementation of findAll()
shows how to do that:

@Override
public Ingredient findOne(String id) {
 return jdbc.queryForObject(
 "select id, name, type from Ingredient where id=?",
 new RowMapper<Ingredient>() {
 public Ingredient mapRow(ResultSet rs, int rowNum)
 throws SQLException {
 return new Ingredient(
 rs.getString("id"),
 rs.getString("name"),
 Ingredient.Type.valueOf(rs.getString("type")));
 };
 }, id);
}

Reading data from a database is only part of the story. At some point, data must be
written to the database so that it can be read. So let’s see about implementing the
save() method.

INSERTING A ROW

JdbcTemplate’s update() method can be used for any query that writes or updates
data in the database. And, as shown in the following listing, it can be used to insert
data into the database.

63Reading and writing data with JDBC
@Override
public Ingredient save(Ingredient ingredient) {
 jdbc.update(
 "insert into Ingredient (id, name, type) values (?, ?, ?)",
 ingredient.getId(),
 ingredient.getName(),
 ingredient.getType().toString());
 return ingredient;
}

Because it isn’t necessary to map ResultSet data to an object, the update() method is
much simpler than query() or queryForObject(). It only requires a String contain-
ing the SQL to perform as well as values to assign to any query parameters. In this
case, the query has three parameters, which correspond to the final three parameters
of the save()method, providing the ingredient’s ID, name, and type.

 With JdbcIngredientRepository complete, you can now inject it into Design-
TacoController and use it to provide a list of Ingredient objects instead of using
hardcoded values (as you did in chapter 2). The changes to DesignTacoController
are shown next.

@Controller
@RequestMapping("/design")
@SessionAttributes("order")
public class DesignTacoController {

 private final IngredientRepository ingredientRepo;

 @Autowired
 public DesignTacoController(IngredientRepository ingredientRepo) {
 this.ingredientRepo = ingredientRepo;
 }

 @GetMapping
 public String showDesignForm(Model model) {
 List<Ingredient> ingredients = new ArrayList<>();
 ingredientRepo.findAll().forEach(i -> ingredients.add(i));

 Type[] types = Ingredient.Type.values();
 for (Type type : types) {
 model.addAttribute(type.toString().toLowerCase(),
 filterByType(ingredients, type));
 }

 return "design";
 }

 ...

}

Listing 3.6 Inserting data with JdbcTemplate

Listing 3.7 Injecting and using a repository in the controller

64 CHAPTER 3 Working with data
Notice that the second line of the showDesignForm() method now makes a call to
the injected IngredientRepository’s findAll() method. The findAll() method
fetches all the ingredients from the database before filtering them into distinct types
in the model.

 You’re almost ready to fire up the application and try these changes out. But
before you can start reading data from the Ingredient table referenced in the que-
ries, you should probably create that table and populate it with some ingredient data.

3.1.3 Defining a schema and preloading data

Aside from the Ingredient table, you’re also going to need some tables that hold
order and design information. Figure 3.1 illustrates the tables you’ll need, as well as
the relationships between those tables.

The tables in figure 3.1 serve the following purposes:

 Ingredient—Holds ingredient information
 Taco—Holds essential information about a taco design
 Taco_Ingredients—Contains one or more rows for each row in Taco, mapping

the taco to the ingredients for that taco
 Taco_Order—Holds essential order details
 Taco_Order_Tacos—Contains one or more rows for each row in Taco_Order,

mapping the order to the tacos in the order

The next listing shows the SQL that creates the tables.

Taco_Order

id: identity

deliveryName: varchar

deliveryStreet: varchar

deliveryCity: varchar

deliveryState: varchar

deliveryZip: varchar

ccNumber: varchar

ccExpiration: varchar

ccCVV: varchar

placedAt: timestamp

Taco

id: identity

name: varchar

createdAt: timestamp

Ingredient

id: varchar

name: varchar

*

*

*
Taco_Order_Tacos

tacoOrder: bigint,

taco: bigint

Taco_Ingredients

taco: bigint,

ingredient: varchar

type: varchar

*

Figure 3.1 The tables for the Taco Cloud schema

65Reading and writing data with JDBC
create table if not exists Ingredient (
 id varchar(4) not null,
 name varchar(25) not null,
 type varchar(10) not null
);

create table if not exists Taco (
 id identity,
 name varchar(50) not null,
 createdAt timestamp not null
);

create table if not exists Taco_Ingredients (
 taco bigint not null,
 ingredient varchar(4) not null
);

alter table Taco_Ingredients
 add foreign key (taco) references Taco(id);
alter table Taco_Ingredients
 add foreign key (ingredient) references Ingredient(id);

create table if not exists Taco_Order (
 id identity,
 deliveryName varchar(50) not null,
 deliveryStreet varchar(50) not null,
 deliveryCity varchar(50) not null,
 deliveryState varchar(2) not null,
 deliveryZip varchar(10) not null,
 ccNumber varchar(16) not null,
 ccExpiration varchar(5) not null,
 ccCVV varchar(3) not null,
 placedAt timestamp not null
);

create table if not exists Taco_Order_Tacos (
 tacoOrder bigint not null,
 taco bigint not null
);

alter table Taco_Order_Tacos
 add foreign key (tacoOrder) references Taco_Order(id);
alter table Taco_Order_Tacos
 add foreign key (taco) references Taco(id);

The big question is where to put this schema definition. As it turns out, Spring Boot
answers that question.

 If there’s a file named schema.sql in the root of the application’s classpath, then
the SQL in that file will be executed against the database when the application starts.
Therefore, you should place the contents of listing 3.8 in your project as a file named
schema.sql in the src/main/resources folder.

Listing 3.8 Defining the Taco Cloud schema

66 CHAPTER 3 Working with data
 You also need to preload the database with some ingredient data. Fortunately,
Spring Boot will also execute a file named data.sql from the root of the classpath when
the application starts. Therefore, you can load the database with ingredient data using
the insert statements in the next listing, placed in src/main/resources/data.sql.

delete from Taco_Order_Tacos;
delete from Taco_Ingredients;
delete from Taco;
delete from Taco_Order;

delete from Ingredient;
insert into Ingredient (id, name, type)
 values ('FLTO', 'Flour Tortilla', 'WRAP');
insert into Ingredient (id, name, type)
 values ('COTO', 'Corn Tortilla', 'WRAP');
insert into Ingredient (id, name, type)
 values ('GRBF', 'Ground Beef', 'PROTEIN');
insert into Ingredient (id, name, type)
 values ('CARN', 'Carnitas', 'PROTEIN');
insert into Ingredient (id, name, type)
 values ('TMTO', 'Diced Tomatoes', 'VEGGIES');
insert into Ingredient (id, name, type)
 values ('LETC', 'Lettuce', 'VEGGIES');
insert into Ingredient (id, name, type)
 values ('CHED', 'Cheddar', 'CHEESE');
insert into Ingredient (id, name, type)
 values ('JACK', 'Monterrey Jack', 'CHEESE');
insert into Ingredient (id, name, type)
 values ('SLSA', 'Salsa', 'SAUCE');
insert into Ingredient (id, name, type)
 values ('SRCR', 'Sour Cream', 'SAUCE');

Even though you’ve only developed a repository for ingredient data, you can fire up
the Taco Cloud application at this point and visit the design page to see JdbcIngredi-
entRepository in action. Go ahead ... give it a try. When you get back, you’ll write the
repositories for persisting Taco, Order, and data.

3.1.4 Inserting data

You’ve already had a glimpse into how to use JdbcTemplate to write data to the data-
base. The save() method in JdbcIngredientRepository used the update() method
of JdbcTemplate to save Ingredient objects to the database.

 Although that was a good first example, it was perhaps a bit too simple. As you’ll
soon see, saving data can be more involved than what JdbcIngredientRepository
needed. Two ways to save data with JdbcTemplate include the following:

 Directly, using the update() method
 Using the SimpleJdbcInsert wrapper class

Listing 3.9 Preloading the database

67Reading and writing data with JDBC
Let’s first see how to use the update() method when the persistence needs are more
complex than what was required to save an Ingredient.

SAVING DATA WITH JDBCTEMPLATE

For now, the only thing that the taco and order repositories need to do is to save their
respective objects. To save Taco objects, the TacoRepository declares a save() method
like this:

package tacos.data;

import tacos.Taco;

public interface TacoRepository {

 Taco save(Taco design);

}

Similarly, OrderRepository also declares a save() method:

package tacos.data;

import tacos.Order;

public interface OrderRepository {

 Order save(Order order);

}

Seems simple enough, right? Not so quick. Saving a taco design requires that you also
save the ingredients associated with that taco to the Taco_Ingredients table. Like-
wise, saving an order requires that you also save the tacos associated with the order to
the Taco_Order_Tacos table. This makes saving tacos and orders a bit more challeng-
ing than what was required to save an ingredient.

 To implement TacoRepository, you need a save() method that starts by saving
the essential taco design details (for example, the name and time of creation), and
then inserts one row into Taco_Ingredients for each ingredient in the Taco object.
The following listing shows the complete JdbcTacoRepository class.

package tacos.data;

import java.sql.Timestamp;
import java.sql.Types;
import java.util.Arrays;
import java.util.Date;

import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.PreparedStatementCreator;

Listing 3.10 Implementing TacoRepository with JdbcTemplate

68 CHAPTER 3 Working with data
import org.springframework.jdbc.core.PreparedStatementCreatorFactory;
import org.springframework.jdbc.support.GeneratedKeyHolder;
import org.springframework.jdbc.support.KeyHolder;
import org.springframework.stereotype.Repository;

import tacos.Ingredient;
import tacos.Taco;

@Repository
public class JdbcTacoRepository implements TacoRepository {

 private JdbcTemplate jdbc;

 public JdbcTacoRepository(JdbcTemplate jdbc) {
 this.jdbc = jdbc;
 }

 @Override
 public Taco save(Taco taco) {
 long tacoId = saveTacoInfo(taco);
 taco.setId(tacoId);
 for (Ingredient ingredient : taco.getIngredients()) {
 saveIngredientToTaco(ingredient, tacoId);
 }

 return taco;
 }

 private long saveTacoInfo(Taco taco) {
 taco.setCreatedAt(new Date());
 PreparedStatementCreator psc =
 new PreparedStatementCreatorFactory(
 "insert into Taco (name, createdAt) values (?, ?)",
 Types.VARCHAR, Types.TIMESTAMP
).newPreparedStatementCreator(
 Arrays.asList(
 taco.getName(),
 new Timestamp(taco.getCreatedAt().getTime())));

 KeyHolder keyHolder = new GeneratedKeyHolder();
 jdbc.update(psc, keyHolder);

 return keyHolder.getKey().longValue();
 }

 private void saveIngredientToTaco(
 Ingredient ingredient, long tacoId) {
 jdbc.update(
 "insert into Taco_Ingredients (taco, ingredient) " +
 "values (?, ?)",
 tacoId, ingredient.getId());
 }

}

69Reading and writing data with JDBC
As you can see, the save() method starts by calling the private saveTacoInfo()
method, and then uses the taco ID returned from that method to call saveIngredient-
ToTaco(), which saves each ingredient. The devil is in the details of saveTacoInfo().

 When you insert a row into Taco, you need to know the ID generated by the data-
base so that you can reference it in each of the ingredients. The update() method,
used when saving ingredient data, doesn’t help you get at the generated ID, so you
need a different update() method here.

 The update() method you need accepts a PreparedStatementCreator and a Key-
Holder. It’s the KeyHolder that will provide the generated taco ID. But in order to use
it, you must also create a PreparedStatementCreator.

 As you can see from listing 3.10, creating a PreparedStatementCreator is non-
trivial. Start by creating a PreparedStatementCreatorFactory, giving it the SQL you
want to execute, as well as the types of each query parameter. Then call newPrepared-
StatementCreator() on that factory, passing in the values needed in the query parame-
ters to produce the PreparedStatementCreator.

 With a PreparedStatementCreator in hand, you can call update(), passing in
PreparedStatementCreator and KeyHolder (in this case, a GeneratedKeyHolder
instance). Once the update() is finished, you can return the taco ID by returning
keyHolder.getKey().longValue().

 Back in save(), cycle through each Ingredient in Taco, calling saveIngredient-
ToTaco(). The saveIngredientToTaco() method uses the simpler form of update()
to save ingredient references to the Taco_Ingredients table.

 All that’s left to do with TacoRepository is to inject it into DesignTacoController
and use it when saving tacos. The following listing shows the changes necessary for
injecting the repository.

@Controller
@RequestMapping("/design")
@SessionAttributes("order")
public class DesignTacoController {

 private final IngredientRepository ingredientRepo;

 private TacoRepository designRepo;

 @Autowired
 public DesignTacoController(
 IngredientRepository ingredientRepo,
 TacoRepository designRepo) {
 this.ingredientRepo = ingredientRepo;
 this.designRepo = designRepo;
 }

 ...

}

Listing 3.11 Injecting and using TacoRepository

70 CHAPTER 3 Working with data
As you can see, the constructor takes both an IngredientRepository and a Taco-
Repository. It assigns both to instance variables so that they can be used in the show-
DesignForm() and processDesign() methods.

 Speaking of the processDesign() method, its changes are a bit more extensive
than the changes you made to showDesignForm(). The next listing shows the new
processDesign() method.

@Controller
@RequestMapping("/design")
@SessionAttributes("order")
public class DesignTacoController {

 @ModelAttribute(name = "order")
 public Order order() {
 return new Order();
 }

 @ModelAttribute(name = "taco")
 public Taco taco() {
 return new Taco();
 }

 @PostMapping
 public String processDesign(
 @Valid Taco design, Errors errors,
 @ModelAttribute Order order) {

 if (errors.hasErrors()) {
 return "design";
 }

 Taco saved = designRepo.save(design);
 order.addDesign(saved);

 return "redirect:/orders/current";
 }

 ...

}

The first thing you’ll notice about the code in listing 3.12 is that DesignTaco-
Controller is now annotated with @SessionAttributes("order") and that it has a
new @ModelAttribute annotated method, order(). As with the taco() method, the
@ModelAttribute annotation on order() ensures that an Order object will be created
in the model. But unlike the Taco object in the session, you need the order to be
present across multiple requests so that you can create multiple tacos and add them
to the order. The class-level @SessionAttributes annotation specifies any model

Listing 3.12 Saving taco designs and linking them to orders

71Reading and writing data with JDBC
objects like the order attribute that should be kept in session and available across
multiple requests.

 The real processing of a taco design happens in the processDesign() method,
which now accepts an Order object as a parameter, in addition to Taco and Errors
objects. The Order parameter is annotated with @ModelAttribute to indicate that its
value should come from the model and that Spring MVC shouldn’t attempt to bind
request parameters to it.

 After checking for validation errors, processDesign() uses the injected Taco-
Repository to save the taco. It then adds the Taco object to the Order that’s kept in
the session.

 In fact, the Order object remains in the session and isn’t saved to the database until
the user completes and submits the order form. At that point, OrderController
needs to call out to an implementation of OrderRepository to save the order. Let’s
write that implementation.

INSERTING DATA WITH SIMPLEJDBCINSERT

You’ll recall that saving a taco involved not only saving the taco’s name and creation
time to the Taco table, but also saving a reference to the ingredients associated with the
taco to the Taco_Ingredients table. And you’ll also recall that this required you to know
the Taco’s ID, which you obtained using KeyHolder and PreparedStatementCreator.

 When it comes to saving orders, a similar circumstance exists. You must not only
save the order data to the Taco_Order table, but also references to each taco in the
order to the Taco_Order_Tacos table. But rather than use the cumbersome Prepared-
StatementCreator, allow me to introduce you to SimpleJdbcInsert, an object that
wraps JdbcTemplate to make it easier to insert data into a table.

 You’ll start by creating JdbcOrderRepository, an implementation of OrderRepos-
itory. But before you write the save() method implementation, let’s focus on the
constructor, where you’ll create a couple of instances of SimpleJdbcInsert for insert-
ing values into the Taco_Order and Taco_Order_Tacos tables. The following listing
shows JdbcOrderRepository (without the save() method).

package tacos.data;

import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.simple.SimpleJdbcInsert;
import org.springframework.stereotype.Repository;

import com.fasterxml.jackson.databind.ObjectMapper;

Listing 3.13 Creating a SimpleJdbcInsert from a JdbcTemplate

72 CHAPTER 3 Working with data
import tacos.Taco;
import tacos.Order;

@Repository
public class JdbcOrderRepository implements OrderRepository {

 private SimpleJdbcInsert orderInserter;
 private SimpleJdbcInsert orderTacoInserter;
 private ObjectMapper objectMapper;

 @Autowired
 public JdbcOrderRepository(JdbcTemplate jdbc) {
 this.orderInserter = new SimpleJdbcInsert(jdbc)
 .withTableName("Taco_Order")
 .usingGeneratedKeyColumns("id");

 this.orderTacoInserter = new SimpleJdbcInsert(jdbc)
 .withTableName("Taco_Order_Tacos");

 this.objectMapper = new ObjectMapper();
 }

...

}

Like JdbcTacoRepository, JdbcOrderRepository is injected with JdbcTemplate
through its constructor. But instead of assigning JdbcTemplate directly to an instance
variable, the constructor uses it to construct a couple of SimpleJdbcInsert instances.

 The first instance, which is assigned to the orderInserter instance variable, is con-
figured to work with the Taco_Order table and to assume that the id property will be
provided or generated by the database. The second instance, assigned to order-
TacoInserter, is configured to work with the Taco_Order_Tacos table but makes no
claims about how any IDs will be generated in that table.

 The constructor also creates an instance of Jackson’s ObjectMapper and assigns it
to an instance variable. Although Jackson is intended for JSON processing, you’ll see
in a moment how you’ll repurpose it to help you as you save orders and their associ-
ated tacos.

 Now let’s take a look at how the save() method uses the SimpleJdbcInsert
instances. The next listing shows the save() method, as well as a couple of private
methods that save() delegates for the real work.

 @Override
 public Order save(Order order) {
 order.setPlacedAt(new Date());
 long orderId = saveOrderDetails(order);
 order.setId(orderId);
 List<Taco> tacos = order.getTacos();

Listing 3.14 Using SimpleJdbcInsert to insert data

73Reading and writing data with JDBC
 for (Taco taco : tacos) {
 saveTacoToOrder(taco, orderId);
 }

 return order;
 }

 private long saveOrderDetails(Order order) {
 @SuppressWarnings("unchecked")
 Map<String, Object> values =
 objectMapper.convertValue(order, Map.class);
 values.put("placedAt", order.getPlacedAt());

 long orderId =
 orderInserter
 .executeAndReturnKey(values)
 .longValue();
 return orderId;
 }

 private void saveTacoToOrder(Taco taco, long orderId) {
 Map<String, Object> values = new HashMap<>();
 values.put("tacoOrder", orderId);
 values.put("taco", taco.getId());
 orderTacoInserter.execute(values);
 }

The save() method doesn’t actually save anything. It defines the flow for saving an
Order and its associated Taco objects, and delegates the persistence work to save-
OrderDetails() and saveTacoToOrder().

 SimpleJdbcInsert has a couple of useful methods for executing the insert:
execute() and executeAndReturnKey(). Both accept a Map<String, Object>, where
the map keys correspond to the column names in the table the data is inserted into.
The map values are inserted into those columns.

 It’s easy to create such a Map by copying the values from Order into entries of the
Map. But Order has several properties, and those properties all share the same name
with the columns that they’re going into. Because of that, in saveOrderDetails(),
I’ve decided to use Jackson’s ObjectMapper and its convertValue() method to con-
vert an Order into a Map.1 Once the Map is created, you’ll set the placedAt entry to the
value of the Order object’s placedAt property. This is necessary because Object-
Mapper would otherwise convert the Date property into a long, which is incompatible
with the placedAt field in the Taco_Order table.

 With a Map full of order data ready, you can now call executeAndReturnKey() on
orderInserter. This saves the order information to the Taco_Order table and returns

1 I’ll admit that this is a hackish use of ObjectMapper, but you already have Jackson in the classpath; Spring
Boot’s web starter brings it in. Also, using ObjectMapper to map an object into a Map is much easier than
copying each property from the object into the Map. Feel free to replace the use of ObjectMapper with any
code you prefer that builds the Map you’ll give to the inserter objects.

74 CHAPTER 3 Working with data
the database-generated ID as a Number object, which a call to longValue() converts to
a long returned from the method.

 The saveTacoToOrder() method is significantly simpler. Rather than use the
ObjectMapper to convert an object to a Map, you create the Map and set the appropri-
ate values. Once again, the map keys correspond to column names in the table. A sim-
ple call to the orderTacoInserter’s execute() method performs the insert.

 Now you can inject OrderRepository into OrderController and start using it. The
following listing shows the complete OrderController, including the changes to use
an injected OrderRepository.

package tacos.web;
import javax.validation.Valid;

import org.springframework.stereotype.Controller;
import org.springframework.validation.Errors;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.SessionAttributes;
import org.springframework.web.bind.support.SessionStatus;

import tacos.Order;
import tacos.data.OrderRepository;

@Controller
@RequestMapping("/orders")
@SessionAttributes("order")
public class OrderController {

 private OrderRepository orderRepo;

 public OrderController(OrderRepository orderRepo) {
 this.orderRepo = orderRepo;
 }

 @GetMapping("/current")
 public String orderForm() {
 return "orderForm";
 }

 @PostMapping
 public String processOrder(@Valid Order order, Errors errors,
 SessionStatus sessionStatus) {
 if (errors.hasErrors()) {
 return "orderForm";
 }

 orderRepo.save(order);
 sessionStatus.setComplete();

Listing 3.15 Using an OrderRepository in OrderController

75Persisting data with Spring Data JPA
 return "redirect:/";
 }

}

Aside from injecting OrderRepository into the controller, the only significant changes
in OrderController are in the processOrder() method. Here, the Order object sub-
mitted in the form (which also happens to be the same Order object maintained in
session) is saved via the save() method on the injected OrderRepository.

 Once the order is saved, you don’t need it hanging around in a session anymore.
In fact, if you don’t clean it out, the order remains in session, including its associated
tacos, and the next order will start with whatever tacos the old order contained.
Therefore, the processOrder() method asks for a SessionStatus parameter and
calls its setComplete() method to reset the session.

 All of the JDBC persistence code is in place. Now you can fire up the Taco Cloud
application and try it out. Feel free to create as many tacos and as many orders as
you’d like.

 You might also find it helpful to dig around in the database. Because you’re
using H2 as your embedded database, and because you have Spring Boot DevTools in
place, you should be able to point your browser to http://localhost:8080/h2-console
to see the H2 Console. The default credentials should get you in, although you’ll
need to be sure that the JDBC URL field is set to jdbc:h2:mem:testdb. Once logged
in, you should be able to issue any query you like against the tables in the Taco
Cloud schema.

 Spring’s JdbcTemplate, along with SimpleJdbcInsert, makes working with rela-
tional databases significantly simpler than plain vanilla JDBC. But you may find that
JPA makes it even easier. Let’s rewind your work and see how to use Spring Data to
make data persistence even easier.

3.2 Persisting data with Spring Data JPA
The Spring Data project is a rather large umbrella project comprised of several sub-
projects, most of which are focused on data persistence with a variety of different data-
base types. A few of the most popular Spring Data projects include these:

 Spring Data JPA—JPA persistence against a relational database
 Spring Data MongoDB—Persistence to a Mongo document database
 Spring Data Neo4j—Persistence to a Neo4j graph database
 Spring Data Redis—Persistence to a Redis key-value store
 Spring Data Cassandra—Persistence to a Cassandra database

One of the most interesting and useful features provided by Spring Data for all of
these projects is the ability to automatically create repositories, based on a repository
specification interface.

http://localhost:8080/h2-console

76 CHAPTER 3 Working with data
 To see how Spring Data works, you’re going to start over, replacing the JDBC-based
repositories from earlier in this chapter with repositories created by Spring Data JPA.
But first, you need to add Spring Data JPA to the project build.

3.2.1 Adding Spring Data JPA to the project

Spring Data JPA is available to Spring Boot applications with the JPA starter. This
starter dependency not only brings in Spring Data JPA, but also transitively includes
Hibernate as the JPA implementation:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

If you want to use a different JPA implementation, then you’ll need to, at least,
exclude the Hibernate dependency and include the JPA library of your choice. For
example, to use EclipseLink instead of Hibernate, you’ll need to alter the build
as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 <exclusions>
 <exclusion>
 <artifactId>hibernate-entitymanager</artifactId>
 <groupId>org.hibernate</groupId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>eclipselink</artifactId>
 <version>2.5.2</version>
</dependency>

Note that there may be other changes required, depending on your choice of JPA
implementation. Consult the documentation for your chosen JPA implementation for
details. Now let’s revisit your domain objects and annotate them for JPA persistence.

3.2.2 Annotating the domain as entities

As you’ll soon see, Spring Data does some amazing things when it comes to creat-
ing repositories. But unfortunately, it doesn’t help much when it comes to annotat-
ing your domain objects with JPA mapping annotations. You’ll need to open up
the Ingredient, Taco, and Order classes and throw in a few annotations. First up is the
Ingredient class.

77Persisting data with Spring Data JPA
package tacos;

import javax.persistence.Entity;
import javax.persistence.Id;

import lombok.AccessLevel;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.RequiredArgsConstructor;

@Data
@RequiredArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@Entity
public class Ingredient {

 @Id
 private final String id;
 private final String name;
 private final Type type;

 public static enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

In order to declare this as a JPA entity, Ingredient must be annotated with @Entity.
And its id property must be annotated with @Id to designate it as the property that will
uniquely identify the entity in the database.

 In addition to the JPA-specific annotations, you’ll also note that you’ve added a
@NoArgsConstructor annotation at the class level. JPA requires that entities have a no-
arguments constructor, so Lombok’s @NoArgsConstructor does that for you. You
don’t want to be able to use it, though, so you make it private by setting the access
attribute to AccessLevel.PRIVATE. And because there are final properties that must
be set, you also set the force attribute to true, which results in the Lombok-generated
constructor setting them to null.

 You also add a @RequiredArgsConstructor. The @Data implicitly adds a required
arguments constructor, but when a @NoArgsConstructor is used, that constructor gets
removed. An explicit @RequiredArgsConstructor ensures that you’ll still have a
required arguments constructor in addition to the private no-arguments constructor.

 Now let’s move on to the Taco class and see how to annotate it as a JPA entity.

package tacos;
import java.util.Date;
import java.util.List;

Listing 3.16 Annotating Ingredient for JPA persistence

Listing 3.17 Annotating Taco as an entity

78 CHAPTER 3 Working with data
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.ManyToMany;
import javax.persistence.OneToMany;
import javax.persistence.PrePersist;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

import lombok.Data;

@Data
@Entity
public class Taco {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;

 @NotNull
 @Size(min=5, message="Name must be at least 5 characters long")
 private String name;

 private Date createdAt;

 @ManyToMany(targetEntity=Ingredient.class)
 @Size(min=1, message="You must choose at least 1 ingredient")
 private List<Ingredient> ingredients;

 @PrePersist
 void createdAt() {
 this.createdAt = new Date();
 }
}

As with Ingredient, the Taco class is now annotated with @Entity and has its id prop-
erty annotated with @Id. Because you’re relying on the database to automatically
generate the ID value, you also annotate the id property with @GeneratedValue, spec-
ifying a strategy of AUTO.

 To declare the relationship between a Taco and its associated Ingredient list, you
annotate ingredients with @ManyToMany. A Taco can have many Ingredient objects,
and an Ingredient can be a part of many Tacos.

 You’ll also notice that there’s a new method, createdAt(), which is annotated with
@PrePersist. You’ll use this to set the createdAt property to the current date and
time before Taco is persisted. Finally, let’s annotate the Order object as an entity. The
next listing shows the new Order class.

79Persisting data with Spring Data JPA
package tacos;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.ManyToMany;
import javax.persistence.OneToMany;
import javax.persistence.PrePersist;
import javax.persistence.Table;
import javax.validation.constraints.Digits;
import javax.validation.constraints.Pattern;
import org.hibernate.validator.constraints.CreditCardNumber;
import org.hibernate.validator.constraints.NotBlank;
import lombok.Data;

@Data
@Entity
@Table(name="Taco_Order")
public class Order implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;

 private Date placedAt;

 ...

 @ManyToMany(targetEntity=Taco.class)
 private List<Taco> tacos = new ArrayList<>();

 public void addDesign(Taco design) {
 this.tacos.add(design);
 }

 @PrePersist
 void placedAt() {
 this.placedAt = new Date();
 }

}

As you can see, the changes to Order closely mirror the changes to Taco. But there’s
one new annotation at the class level: @Table. This specifies that Order entities should
be persisted to a table named Taco_Order in the database.

Listing 3.18 Annotating Order as a JPA entity

80 CHAPTER 3 Working with data
 Although you could have used this annotation on any of the entities, it’s necessary
with Order. Without it, JPA would default to persisting the entities to a table named
Order, but order is a reserved word in SQL and would cause problems. Now that the
entities are properly annotated, it’s time to write your repositories.

3.2.3 Declaring JPA repositories

In the JDBC versions of the repositories, you explicitly declared the methods you
wanted the repository to provide. But with Spring Data, you can extend the Crud-
Repository interface instead. For example, here’s the new IngredientRepository
interface:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.Ingredient;

public interface IngredientRepository
 extends CrudRepository<Ingredient, String> {

}

CrudRepository declares about a dozen methods for CRUD (create, read, update,
delete) operations. Notice that it’s parameterized, with the first parameter being the
entity type the repository is to persist, and the second parameter being the type of the
entity ID property. For IngredientRepository, the parameters should be Ingredient
and String.

 You can similarly define the TacoRepository like this:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.Taco;

public interface TacoRepository
 extends CrudRepository<Taco, Long> {

}

The only significant differences between IngredientRepository and TacoRepository
are the parameters to CrudRepository. Here, they’re set to Taco and Long to specify
the Taco entity (and its ID type) as the unit of persistence for this repository interface.
Finally, the same changes can be applied to OrderRepository:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.Order;

81Persisting data with Spring Data JPA
public interface OrderRepository
 extends CrudRepository<Order, Long> {

}

And now you have your three repositories. You might be thinking that you need to
write the implementations for all three, including the dozen methods for each imple-
mentation. But that’s the good news about Spring Data JPA—there’s no need to write
an implementation! When the application starts, Spring Data JPA automatically gener-
ates an implementation on the fly. This means the repositories are ready to use from
the get-go. Just inject them into the controllers like you did for the JDBC-based imple-
mentations, and you’re done.

 The methods provided by CrudRepository are great for general-purpose persistence
of entities. But what if you have some requirements beyond basic persistence? Let’s see
how to customize the repositories to perform queries unique to your domain.

3.2.4 Customizing JPA repositories

Imagine that in addition to the basic CRUD operations provided by CrudRepository,
you also need to fetch all the orders delivered to a given ZIP code. As it turns out,
this can easily be addressed by adding the following method declaration to Order-
Repository:

List<Order> findByDeliveryZip(String deliveryZip);

When generating the repository implementation, Spring Data examines any methods
in the repository interface, parses the method name, and attempts to understand the
method’s purpose in the context of the persisted object (an Order, in this case). In
essence, Spring Data defines a sort of miniature domain-specific language (DSL)
where persistence details are expressed in repository method signatures.

 Spring Data knows that this method is intended to find Orders, because you’ve
parameterized CrudRepository with Order. The method name, findByDelivery-
Zip(), makes it clear that this method should find all Order entities by matching their
deliveryZip property with the value passed in as a parameter to the method.

 The findByDeliveryZip() method is simple enough, but Spring Data can handle
even more-interesting method names as well. Repository methods are composed of a
verb, an optional subject, the word By, and a predicate. In the case of findByDelivery-
Zip(), the verb is find and the predicate is DeliveryZip; the subject isn’t specified and is
implied to be an Order.

 Let’s consider another, more complex example. Suppose that you need to query
for all orders delivered to a given ZIP code within a given date range. In that case, the
following method, when added to OrderRepository, might prove useful:

List<Order> readOrdersByDeliveryZipAndPlacedAtBetween(
 String deliveryZip, Date startDate, Date endDate);

82 CHAPTER 3 Working with data
Figure 3.2 illustrates how Spring Data parses and understands the readOrdersBy-
DeliveryZipAndPlacedAtBetween() method when generating the repository implemen-
tation. As you can see, the verb in readOrdersByDeliveryZipAndPlacedAtBetween() is
read. Spring Data also understands find, read, and get as synonymous for fetching one
or more entities. Alternatively, you can also use count as the verb if you only want the
method to return an int with the count of matching entities.

Although the subject of the method is optional, here it says Orders. Spring Data
ignores most words in a subject, so you could name the method readPuppiesBy...
and it would still find Order entities, as that is the type that CrudRepository is param-
eterized with.

 The predicate follows the word By in the method name and is the most interesting
part of the method signature. In this case, the predicate refers to two Order proper-
ties: deliveryZip and placedAt. The deliveryZip property must be equal to the
value passed into the first parameter of the method. The keyword Between indicates
that the value of deliveryZip must fall between the values passed into the last two
parameters of the method.

 In addition to an implicit Equals operation and the Between operation, Spring
Data method signatures can also include any of these operators:

 IsAfter, After, IsGreaterThan, GreaterThan
 IsGreaterThanEqual, GreaterThanEqual
 IsBefore, Before, IsLessThan, LessThan
 IsLessThanEqual, LessThanEqual
 IsBetween, Between
 IsNull, Null
 IsNotNull, NotNull
 IsIn, In
 IsNotIn, NotIn
 IsStartingWith, StartingWith, StartsWith

readOrdersByDeliveryZipAndPlacedAtBetween()

This method will read
data (“get” and “find” are

also allowed here).

Match .deliveryZip or
.delivery.zip property

Match .placedAt or
.placed.at property

Signifies the start of
properties to match The value must fall

between the given
values.

...and...

Figure 3.2 Spring Data parses repository method signatures to
determine the query that should be performed.

83Summary
 IsEndingWith, EndingWith, EndsWith
 IsContaining, Containing, Contains
 IsLike, Like
 IsNotLike, NotLike
 IsTrue, True
 IsFalse, False
 Is, Equals
 IsNot, Not
 IgnoringCase, IgnoresCase

As alternatives for IgnoringCase and IgnoresCase, you can place either AllIgnoring-
Case or AllIgnoresCase on the method to ignore case for all String comparisons.
For example, consider the following method:

List<Order> findByDeliveryToAndDeliveryCityAllIgnoresCase(
 String deliveryTo, String deliveryCity);

Finally, you can also place OrderBy at the end of the method name to sort the results
by a specified column. For example, to order by the deliveryTo property:

List<Order> findByDeliveryCityOrderByDeliveryTo(String city);

Although the naming convention can be useful for relatively simple queries, it doesn’t
take much imagination to see that method names could get out of hand for more-
complex queries. In that case, feel free to name the method anything you want and
annotate it with @Query to explicitly specify the query to be performed when the
method is called, as this example shows:

@Query("Order o where o.deliveryCity='Seattle'")
List<Order> readOrdersDeliveredInSeattle();

In this simple usage of @Query, you ask for all orders delivered in Seattle. But you can
use @Query to perform virtually any query you can dream up, even when it’s difficult
or impossible to achieve the query by following the naming convention.

Summary
 Spring’s JdbcTemplate greatly simplifies working with JDBC.
 PreparedStatementCreator and KeyHolder can be used together when you

need to know the value of a database-generated ID.
 For easy execution of data inserts, use SimpleJdbcInsert.
 Spring Data JPA makes JPA persistence as easy as writing a repository interface.

Securing Spring
Have you ever noticed that most people in television sitcoms don’t lock their
doors? In the days of Leave it to Beaver, it wasn’t so unusual for people to leave their
doors unlocked. But it seems crazy that in a day when we’re concerned with privacy
and security, we see television characters enabling unhindered access to their apart-
ments and homes.

 Information is probably the most valuable item we now have; crooks are looking
for ways to steal our data and identities by sneaking into unsecured applications. As
software developers, we must take steps to protect the information that resides in
our applications. Whether it’s an email account protected with a username-password
pair or a brokerage account protected with a trading PIN, security is a crucial aspect
of most applications.

This chapter covers
 Autoconfiguring Spring Security

 Defining custom user storage

 Customizing the login page

 Securing against CSRF attacks

 Knowing your user
84

85Enabling Spring Security
4.1 Enabling Spring Security
The very first step in securing your Spring application is to add the Spring Boot secu-
rity starter dependency to your build. In the project’s pom.xml file, add the following
<dependency> entry:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

If you’re using Spring Tool Suite, this is even easier. Right-click on the pom.xml file and
select Edit Starters from the Spring context menu. The Starter Dependencies dialog box
will appear. Check the Security entry under the Core category, as shown in figure 4.1.

Figure 4.1 Adding the security starter with Spring Tool Suite

86 CHAPTER 4 Securing Spring
Believe it or not, that dependency is the only thing that’s required to secure an appli-
cation. When the application starts, autoconfiguration will detect that Spring Security
is in the classpath and will set up some basic security configuration.

 If you want to try it out, fire up the application and try to visit the homepage (or
any page for that matter). You’ll be prompted for authentication with an HTTP basic
authentication dialog box. To get past it, you’ll need to provide a username and pass-
word. The username is user. As for the password, it’s randomly generated and written
to the application log file. The log entry will look something like this:

Using default security password: 087cfc6a-027d-44bc-95d7-cbb3a798a1ea

Assuming you enter the username and password correctly, you’ll be granted access to
the application.

 It seems that securing Spring applications is pretty easy work. With the Taco Cloud
application secured, I suppose I could end this chapter now and move on to the next
topic. But before we get ahead of ourselves, let’s consider what kind of security auto-
configuration has provided.

 By doing nothing more than adding the security starter to the project build, you
get the following security features:

 All HTTP request paths require authentication.
 No specific roles or authorities are required.
 There’s no login page.
 Authentication is prompted with HTTP basic authentication.
 There’s only one user; the username is user.

This is a good start, but I think that the security needs of most applications (Taco
Cloud included) will be quite different from these rudimentary security features.

 You have more work to do if you’re going to properly secure the Taco Cloud appli-
cation. You’ll need to at least configure Spring Security to do the following:

 Prompt for authentication with a login page, instead of an HTTP basic dialog box.
 Provide for multiple users, and enable a registration page so new Taco Cloud

customers can sign up.
 Apply different security rules for different request paths. The homepage and

registration pages, for example, shouldn’t require authentication at all.

To meet your security needs for Taco Cloud, you’ll have to write some explicit config-
uration, overriding what autoconfiguration has given you. You’ll start by configuring a
proper user store so that you can have more than one user.

4.2 Configuring Spring Security
Over the years there have been several ways of configuring Spring Security, including
lengthy XML-based configuration. Fortunately, several recent versions of Spring Secu-
rity have supported Java-based configuration, which is much easier to read and write.

87Configuring Spring Security
 Before this chapter is finished, you’ll have configured all of your Taco Cloud secu-
rity needs in Java-based Spring Security configuration. But to get started, you’ll ease
into it by writing the barebones configuration class shown in the following listing.

package tacos.security;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.web
 .configuration.EnableWebSecurity;
import org.springframework.security.config.annotation.web
 .configuration.WebSecurityConfigurerAdapter;

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

}

What does this barebones security configuration do for you? Well, not much, but it
does move you a step closer to the security functionality you need. If you attempt to
hit the Taco Cloud homepage again, you’ll still be prompted to sign in. But instead of
being prompted with an HTTP basic authentication dialog box, you’ll be shown a
login form like the one in figure 4.2.

Listing 4.1 A barebones configuration class for Spring Security

Figure 4.2 Spring Security gives you a plain login page for free.

88 CHAPTER 4 Securing Spring
TIP Going incognito: You may find it useful to set your browser to private or
incognito mode when manually testing security. This will ensure that you
have a fresh session each time you open a private/incognito window. You’ll
have to sign in to the application each time, but you can be assured that any
changes you’ve made in security are applied, and that there aren’t any rem-
nants of an older session preventing you from seeing your changes.

This is a small improvement—prompting for login with a web page (even if it is rather
plain in appearance) is always more user-friendly than an HTTP basic dialog box.
You’ll customize the login page in section 4.3.2. The current task at hand, however, is
to configure a user store that can handle more than one user.

 As it turns out, Spring Security offers several options for configuring a user store,
including these:

 An in-memory user store
 A JDBC-based user store
 An LDAP-backed user store
 A custom user details service

No matter which user store you choose, you can configure it by overriding a configure()
method defined in the WebSecurityConfigurerAdapter configuration base class. To
get started, you’ll add the following method override to the SecurityConfig class:

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {

 ...

}

Now you just need to replace those ellipses with code that uses the given Authentica-
tionManagerBuilder to specify how users will be looked up during authentication.
First up, you’ll try the in-memory user store.

4.2.1 In-memory user store

One place where user information can be kept is in memory. Suppose you have only a
handful of users, none of which are likely to change. In that case, it may be simple
enough to define those users as part of the security configuration.

 For example, the next listing shows how to configure two users, "buzz" and
"woody", in an in-memory user store.

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {

Listing 4.2 Defining users in an in-memory user store

89Configuring Spring Security
 auth
 .inMemoryAuthentication()
 .withUser("buzz")
 .password("infinity")
 .authorities("ROLE_USER")
 .and()
 .withUser("woody")
 .password("bullseye")
 .authorities("ROLE_USER");

}

As you can see, AuthenticationManagerBuilder employs a builder-style API to con-
figure authentication details. In this case, a call to the inMemoryAuthentication()
method gives you an opportunity to specify user information directly in the security
configuration itself.

 Each call to withUser() starts the configuration for a user. The value given to
withUser() is the username, whereas the password and granted authorities are speci-
fied with the password() and authorities() methods. As shown in listing 4.2, both
users are granted ROLE_USER authority. User buzz is configured to have infinity as their
password. Likewise, woody’s password is bullseye.

 The in-memory user store is convenient for testing purposes or for very simple
applications, but it doesn’t allow for easy editing of users. If you need to add, remove,
or change a user, you’ll have to make the necessary changes and then rebuild and
redeploy the application.

 For the Taco Cloud application, you want customers to be able to register with the
application and manage their own user accounts. That doesn’t fit with the limitations
of the in-memory user store, so let’s take a look at another option that allows for a
database-backed user store.

4.2.2 JDBC-based user store

User information is often maintained in a relational database, and a JDBC-based user
store seems appropriate. The following listing shows how to configure Spring Security
to authenticate against user information kept in a relational database with JDBC.

@Autowired
DataSource dataSource;

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {

 auth
 .jdbcAuthentication()
 .dataSource(dataSource);

}

Listing 4.3 Authenticating against a JDBC-based user store

90 CHAPTER 4 Securing Spring
This implementation of configure() calls jdbcAuthentication() on the given
AuthenticationManagerBuilder. From there, you must also set the DataSource so
that it knows how to access the database. The DataSource used here is provided by the
magic of autowiring.

OVERRIDING THE DEFAULT USER QUERIES

Although this minimal configuration will work, it makes some assumptions about your
database schema. It expects that certain tables exist where user data will be kept. More
specifically, the following snippet of code from Spring Security’s internals shows the
SQL queries that will be performed when looking up user details:

public static final String DEF_USERS_BY_USERNAME_QUERY =
 "select username,password,enabled " +
 "from users " +
 "where username = ?";
public static final String DEF_AUTHORITIES_BY_USERNAME_QUERY =
 "select username,authority " +
 "from authorities " +
 "where username = ?";
public static final String DEF_GROUP_AUTHORITIES_BY_USERNAME_QUERY =
 "select g.id, g.group_name, ga.authority " +
 "from groups g, group_members gm, group_authorities ga " +
 "where gm.username = ? " +
 "and g.id = ga.group_id " +
 "and g.id = gm.group_id";

The first query retrieves a user’s username, password, and whether or not they’re
enabled. This information is used to authenticate the user. The next query looks up
the user’s granted authorities for authorization purposes, and the final query looks
up authorities granted to a user as a member of a group.

 If you’re OK with defining and populating tables in your database that satisfy those
queries, there’s not much else for you to do. But chances are your database doesn’t
look anything like this, and you’ll want more control over the queries. In that case,
you can configure your own queries.

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {

 auth
 .jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery(
 "select username, password, enabled from Users " +
 "where username=?")
 .authoritiesByUsernameQuery(
 "select username, authority from UserAuthorities " +
 "where username=?");

}

Listing 4.4 Customizing user detail queries

91Configuring Spring Security
In this case, you only override the authentication and basic authorization queries. But
you can also override the group authorities query by calling groupAuthoritiesBy-
Username() with a custom query.

 When replacing the default SQL queries with those of your own design, it’s import-
ant to adhere to the basic contract of the queries. All of them take the username as
their only parameter. The authentication query selects the username, password, and
enabled status. The authorities query selects zero or more rows containing the user-
name and a granted authority. The group authorities query selects zero or more rows,
each with a group ID, a group name, and an authority.

WORKING WITH ENCODED PASSWORDS

Focusing on the authentication query, you can see that user passwords are expected to
be stored in the database. The only problem with this is that if the passwords are
stored in plain text, they’re subject to the prying eyes of a hacker. But if you encode
the passwords in the database, authentication will fail because it won’t match the
plaintext password submitted by the user.

 To remedy this problem, you need to specify a password encoder by calling the
passwordEncoder() method:

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {

 auth
 .jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery(
 "select username, password, enabled from Users " +
 "where username=?")
 .authoritiesByUsernameQuery(
 "select username, authority from UserAuthorities " +
 "where username=?")
 .passwordEncoder(new StandardPasswordEncoder("53cr3t");

}

The passwordEncoder() method accepts any implementation of Spring Security’s
PasswordEncoder interface. Spring Security’s cryptography module includes several
such implementations:

 BCryptPasswordEncoder—Applies bcrypt strong hashing encryption
 NoOpPasswordEncoder—Applies no encoding
 Pbkdf2PasswordEncoder—Applies PBKDF2 encryption
 SCryptPasswordEncoder—Applies scrypt hashing encryption
 StandardPasswordEncoder—Applies SHA-256 hashing encryption

The preceding code uses StandardPasswordEncoder. But you can choose any of the
other implementations or even provide your own custom implementation if none of

92 CHAPTER 4 Securing Spring
the out-of-the-box implementations meet your needs. The PasswordEncoder interface
is rather simple:

public interface PasswordEncoder {
 String encode(CharSequence rawPassword);
 boolean matches(CharSequence rawPassword, String encodedPassword);
}

No matter which password encoder you use, it’s important to understand that the
password in the database is never decoded. Instead, the password that the user enters
at login is encoded using the same algorithm, and it’s then compared with the
encoded password in the database. That comparison is performed in the Password-
Encoder’s matches() method.

 Ultimately, you’ll maintain Taco Cloud user data in a database. Rather than use
jdbcAuthentication(), however, I’ve got another authentication option in mind. But
before we go there, let’s look at how you can configure Spring Security to rely on
another common source of user data: a user store accessed with LDAP (Lightweight
Directory Access Protocol).

4.2.3 LDAP-backed user store

To configure Spring Security for LDAP-based authentication, you can use the ldap-
Authentication() method. This method is the LDAP analog to jdbcAuthentication().
The following configure() method shows a simple configuration for LDAP authen-
tication:

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchFilter("(uid={0})")
 .groupSearchFilter("member={0}");
}

The userSearchFilter() and groupSearchFilter() methods are used to provide fil-
ters for the base LDAP queries, which are used to search for users and groups. By
default, the base queries for both users and groups are empty, indicating that the
search will be done from the root of the LDAP hierarchy. But you can change that by
specifying a query base:

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchBase("ou=people")
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=groups")
 .groupSearchFilter("member={0}");
}

93Configuring Spring Security
The userSearchBase() method provides a base query for finding users. Likewise, the
groupSearchBase() method specifies the base query for finding groups. Rather than
search from the root, this example specifies that users be searched for where the orga-
nizational unit is people. Groups should be searched for where the organizational
unit is groups.

CONFIGURING PASSWORD COMPARISON

The default strategy for authenticating against LDAP is to perform a bind operation,
authenticating the user directly to the LDAP server. Another option is to perform a
comparison operation. This involves sending the entered password to the LDAP direc-
tory and asking the server to compare the password against a user’s password attri-
bute. Because the comparison is done within the LDAP server, the actual password
remains secret.

 If you’d rather authenticate by doing a password comparison, you can declare so
with the passwordCompare() method:

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchBase("ou=people")
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=groups")
 .groupSearchFilter("member={0}")
 .passwordCompare();
}

By default, the password given in the login form will be compared with the value of the
userPassword attribute in the user’s LDAP entry. If the password is kept in a different
attribute, you can specify the password attribute’s name with passwordAttribute():

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchBase("ou=people")
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=groups")
 .groupSearchFilter("member={0}")
 .passwordCompare()
 .passwordEncoder(new BCryptPasswordEncoder())
 .passwordAttribute("passcode");
}

In this example, you specify that the passcode attribute is what should be compared
with the given password. Moreover, you also specify a password encoder. It’s nice that
the actual password is kept secret on the server when doing server-side password com-
parison. But the attempted password is still passed across the wire to the LDAP server

94 CHAPTER 4 Securing Spring
and could be intercepted by a hacker. To prevent that, you can specify an encryption
strategy by calling the passwordEncoder() method.

 In the preceding example, passwords are encrypted using the bcrypt password
hashing function. This assumes that the passwords are also encrypted using bcrypt in
the LDAP server.

REFERRING TO A REMOTE LDAP SERVER

The one thing I’ve left out until now is where the LDAP server and data actually reside.
You’ve been happily configuring Spring to authenticate against an LDAP server, but
where is that server?

 By default, Spring Security’s LDAP authentication assumes that the LDAP server is
listening on port 33389 on localhost. But if your LDAP server is on another machine,
you can use the contextSource() method to configure the location:

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchBase("ou=people")
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=groups")
 .groupSearchFilter("member={0}")
 .passwordCompare()
 .passwordEncoder(new BCryptPasswordEncoder())
 .passwordAttribute("passcode")
 .contextSource()
 .url("ldap://tacocloud.com:389/dc=tacocloud,dc=com");
}

The contextSource() method returns a ContextSourceBuilder, which, among other
things, offers the url() method, which lets you specify the location of the LDAP server.

CONFIGURING AN EMBEDDED LDAP SERVER

If you don’t happen to have an LDAP server lying around waiting to be authenticated
against, Spring Security can provide an embedded LDAP server for you. Instead of set-
ting the URL to a remote LDAP server, you can specify the root suffix for the embed-
ded server via the root() method:

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchBase("ou=people")
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=groups")
 .groupSearchFilter("member={0}")
 .passwordCompare()
 .passwordEncoder(new BCryptPasswordEncoder())
 .passwordAttribute("passcode")

95Configuring Spring Security
 .contextSource()
 .root("dc=tacocloud,dc=com");
}

When the LDAP server starts, it will attempt to load data from any LDIF files that it
can find in the classpath. LDIF (LDAP Data Interchange Format) is a standard way of
representing LDAP data in a plain text file. Each record is composed of one or more
lines, each containing a name:value pair. Records are separated from each other by
blank lines.

 If you’d rather that Spring not rummage through your classpath looking for any
LDIF files it can find, you can be more explicit about which LDIF file gets loaded by
calling the ldif() method:

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchBase("ou=people")
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=groups")
 .groupSearchFilter("member={0}")
 .passwordCompare()
 .passwordEncoder(new BCryptPasswordEncoder())
 .passwordAttribute("passcode")
 .contextSource()
 .root("dc=tacocloud,dc=com")
 .ldif("classpath:users.ldif");
}

Here, you specifically ask the LDAP server to load its content from the users.ldif file at
the root of the classpath. In case you’re curious, here’s an LDIF file that you could use
to load the embedded LDAP server with user data:

dn: ou=groups,dc=tacocloud,dc=com
objectclass: top
objectclass: organizationalUnit
ou: groups
dn: ou=people,dc=tacocloud,dc=com
objectclass: top
objectclass: organizationalUnit
ou: people
dn: uid=buzz,ou=people,dc=tacocloud,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: Buzz Lightyear
sn: Lightyear
uid: buzz
userPassword: password
dn: cn=tacocloud,ou=groups,dc=tacocloud,dc=com

96 CHAPTER 4 Securing Spring
objectclass: top
objectclass: groupOfNames
cn: tacocloud
member: uid=buzz,ou=people,dc=tacocloud,dc=com

Spring Security’s built-in user stores are convenient and cover some common use cases.
But the Taco Cloud application needs something a bit special. When the out-of-the-box
user stores don’t meet your needs, you’ll need to create and configure a custom user
details service.

4.2.4 Customizing user authentication

In the last chapter, you settled on using Spring Data JPA as your persistence option for
all taco, ingredient, and order data. It would thus make sense to persist user data in
the same way. If you do so, the data will ultimately reside in a relational database, so
you could use JDBC-based authentication. But it’d be even better to leverage the
Spring Data repository used to store users.

 First things first, though. Let’s create the domain object and repository interface
that represents and persists user information.

DEFINING THE USER DOMAIN AND PERSISTENCE

When Taco Cloud customers register with the application, they’ll need to provide more
than just a username and password. They’ll also give you their full name, address, and
phone number. This information can be used for a variety of purposes, including pre-
populating the order form (not to mention potential marketing opportunities).

 To capture all of that information, you’ll create a User class, as follows.

package tacos;
import java.util.Arrays;
import java.util.Collection;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import org.springframework.security.core.GrantedAuthority;
import org.springframework.security.core.authority.
 SimpleGrantedAuthority;
import org.springframework.security.core.userdetails.UserDetails;
import lombok.AccessLevel;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.RequiredArgsConstructor;

@Entity
@Data
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@RequiredArgsConstructor
public class User implements UserDetails {

Listing 4.5 Defining a user entity

97Configuring Spring Security
 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;

 private final String username;
 private final String password;
 private final String fullname;
 private final String street;
 private final String city;
 private final String state;
 private final String zip;
 private final String phoneNumber;

 @Override
 public Collection<? extends GrantedAuthority> getAuthorities() {
 return Arrays.asList(new SimpleGrantedAuthority("ROLE_USER"));
 }

 @Override
 public boolean isAccountNonExpired() {
 return true;
 }

 @Override
 public boolean isAccountNonLocked() {
 return true;
 }

 @Override
 public boolean isCredentialsNonExpired() {
 return true;
 }

 @Override
 public boolean isEnabled() {
 return true;
 }

}

You’ve no doubt noticed that the User class is a bit more involved than any of the
other entities defined in chapter 3. In addition to defining a handful of properties,
User also implements the UserDetails interface from Spring Security.

 Implementations of UserDetails will provide some essential user information to
the framework, such as what authorities are granted to the user and whether the user’s
account is enabled or not.

 The getAuthorities() method should return a collection of authorities granted
to the user. The various is___Expired() methods return a boolean to indicate whether
or not the user’s account is enabled or expired.

 For your User entity, the getAuthorities() method simply returns a collection
indicating that all users will have been granted ROLE_USER authority. And, at least for

98 CHAPTER 4 Securing Spring
now, Taco Cloud has no need to disable users, so all of the is___Expired() methods
return true to indicate that the users are active.

 With the User entity defined, you now can define the repository interface:

package tacos.data;
import org.springframework.data.repository.CrudRepository;
import tacos.User;

public interface UserRepository extends CrudRepository<User, Long> {

 User findByUsername(String username);

}

In addition to the CRUD operations provided by extending CrudRepository, User-
Repository defines a findByUsername() method that you’ll use in the user details ser-
vice to look up a User by their username.

 As you learned in chapter 3, Spring Data JPA will automatically generate the imple-
mentation of this interface at runtime. Therefore, you’re now ready to write a custom
user details service that uses this repository.

CREATING A USER-DETAILS SERVICE

Spring Security’s UserDetailsService is a rather straightforward interface:

public interface UserDetailsService {
 UserDetails loadUserByUsername(String username)
 throws UsernameNotFoundException;
}

As you can see, implementations of this interface are given a user’s username and are
expected to either return a UserDetails object or throw a UsernameNotFoundException
if the given username doesn’t turn up any results.

 Because your User class implements UserDetails, and because UserRepository
provides a findByUsername() method, they’re perfectly suitable for use in a custom
UserDetailsService implementation. The following listing shows the user details ser-
vice you’ll use in the Taco Cloud application.

package tacos.security;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.
 UserDetailsService;
import org.springframework.security.core.userdetails.
 UsernameNotFoundException;
import org.springframework.stereotype.Service;

import tacos.User;
import tacos.data.UserRepository;

Listing 4.6 Defining a custom user details service

99Configuring Spring Security
@Service
public class UserRepositoryUserDetailsService
 implements UserDetailsService {

 private UserRepository userRepo;

 @Autowired
 public UserRepositoryUserDetailsService(UserRepository userRepo) {
 this.userRepo = userRepo;
 }

 @Override
 public UserDetails loadUserByUsername(String username)
 throws UsernameNotFoundException {
 User user = userRepo.findByUsername(username);
 if (user != null) {
 return user;
 }
 throw new UsernameNotFoundException(
 "User '" + username + "' not found");
 }

}

UserRepositoryUserDetailsService is injected with an instance of UserRepository
through its constructor. Then, in its loadByUsername() method, it calls findByUser-
name() on the UserRepository to look up a User.

 The loadByUsername() method has one simple rule: it must never return null.
Therefore, if the call to findByUsername() returns null, loadByUsername() will throw a
UsernameNotFoundException. Otherwise, the User that was found will be returned.

 You’ll notice that UserRepositoryUserDetailsService is annotated with @Service.
This is another one of Spring’s stereotype annotations that flag it for inclusion in Spring’s
component scanning, so there’s no need to explicitly declare this class as a bean.
Spring will automatically discover it and instantiate it as a bean.

 You do, however, still need to configure your custom user details service with
Spring Security. Therefore, you’ll return to the configure() method once more:

@Autowired
private UserDetailsService userDetailsService;

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {

 auth
 .userDetailsService(userDetailsService);

}

This time, you simply make a call to the userDetailsService() method, passing in
the UserDetailsService instance that has been autowired into SecurityConfig.

100 CHAPTER 4 Securing Spring
 As with JDBC-based authentication, you can (and should) also configure a pass-
word encoder so that the password can be encoded in the database. You’ll do this by
first declaring a bean of type PasswordEncoder and then injecting it into your user
details service configuration by calling passwordEncoder():

@Bean
public PasswordEncoder encoder() {
 return new StandardPasswordEncoder("53cr3t");
}

@Override
protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {

 auth
 .userDetailsService(userDetailsService)
 .passwordEncoder(encoder());

}

It’s important that we discuss the last line in the configure() method. It would appear
that you call the encoder() method and pass its return value to passwordEncoder().
In reality, however, because the encoder() method is annotated with @Bean, it will
be used to declare a PasswordEncoder bean in the Spring application context. Any
calls to encoder()will then be intercepted to return the bean instance from the
application context.

 Now that you have a custom user details service that reads user information via a JPA
repository, you just need a way to get users into the database in the first place. You need
to create a registration page for Taco Cloud patrons to register with the application.

REGISTERING USERS

Although Spring Security handles many aspects of security, it really isn’t directly
involved in the process of user registration, so you’re going to rely on a little bit of
Spring MVC to handle that task. The RegistrationController class in the following
listing presents and processes registration forms.

package tacos.security;
import org.springframework.security.crypto.password.PasswordEncoder;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import tacos.data.UserRepository;

@Controller
@RequestMapping("/register")
public class RegistrationController {

Listing 4.7 A user registration controller

101Configuring Spring Security
 private UserRepository userRepo;
 private PasswordEncoder passwordEncoder;

 public RegistrationController(
 UserRepository userRepo, PasswordEncoder passwordEncoder) {
 this.userRepo = userRepo;
 this.passwordEncoder = passwordEncoder;
 }

 @GetMapping
 public String registerForm() {
 return "registration";
 }

 @PostMapping
 public String processRegistration(RegistrationForm form) {
 userRepo.save(form.toUser(passwordEncoder));
 return "redirect:/login";
 }

}

Like any typical Spring MVC controller, RegistrationController is annotated with
@Controller to designate it as a controller and to mark it for component scanning.
It’s also annotated with @RequestMapping such that it will handle requests whose path
is /register.

 More specifically, a GET request for /register will be handled by the register-
Form() method, which simply returns a logical view name of registration. The fol-
lowing listing shows a Thymeleaf template that defines the registration view.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 </head>

 <body>
 <h1>Register</h1>

 <form method="POST" th:action="@{/register}" id="registerForm">

 <label for="username">Username: </label>
 <input type="text" name="username"/>

 <label for="password">Password: </label>
 <input type="password" name="password"/>

 <label for="confirm">Confirm password: </label>
 <input type="password" name="confirm"/>

Listing 4.8 A Thymeleaf registration form view

102 CHAPTER 4 Securing Spring
 <label for="fullname">Full name: </label>
 <input type="text" name="fullname"/>

 <label for="street">Street: </label>
 <input type="text" name="street"/>

 <label for="city">City: </label>
 <input type="text" name="city"/>

 <label for="state">State: </label>
 <input type="text" name="state"/>

 <label for="zip">Zip: </label>
 <input type="text" name="zip"/>

 <label for="phone">Phone: </label>
 <input type="text" name="phone"/>

 <input type="submit" value="Register"/>
 </form>

 </body>
</html>

When the form is submitted, the HTTP POST request will be handled by the
processRegistration() method. The RegistrationForm object given to process-
Registration() is bound to the request data and is defined with the following class:

package tacos.security;
import org.springframework.security.crypto.password.PasswordEncoder;
import lombok.Data;
import tacos.User;

@Data
public class RegistrationForm {

 private String username;
 private String password;
 private String fullname;
 private String street;
 private String city;
 private String state;
 private String zip;
 private String phone;

 public User toUser(PasswordEncoder passwordEncoder) {
 return new User(
 username, passwordEncoder.encode(password),
 fullname, street, city, state, zip, phone);
 }

}

103Securing web requests
For the most part, RegistrationForm is just a basic Lombok-enabled class with a
handful of properties. But the toUser() method uses those properties to create a new
User object, which is what processRegistration() will save, using the injected User-
Repository.

 You’ve no doubt noticed that RegistrationController is injected with a Pass-
wordEncoder. This is the exact same PasswordEncoder bean you declared before.
When processing a form submission, RegistrationController passes it to the
toUser() method, which uses it to encode the password before saving it to the data-
base. In this way, the submitted password is written in an encoded form, and the user
details service will be able to authenticate against that encoded password.

 Now the Taco Cloud application has complete user registration and authentication
support. But if you start it up at this point, you’ll notice that you can’t even get to the
registration page without being prompted to log in. That’s because, by default, all
requests require authentication. Let’s look at how web requests are intercepted and
secured so you can fix this strange chicken-and-egg situation.

4.3 Securing web requests
The security requirements for Taco Cloud should require that a user be authenticated
before designing tacos or placing orders. But the homepage, login page, and registra-
tion page should be available to unauthenticated users.

 To configure these security rules, let me introduce you to WebSecurityConfigurer-
Adapter’s other configure() method:

@Override
protected void configure(HttpSecurity http) throws Exception {
 ...
}

This configure() method accepts an HttpSecurity object, which can be used to con-
figure how security is handled at the web level. Among the many things you can con-
figure with HttpSecurity are these:

 Requiring that certain security conditions be met before allowing a request to
be served

 Configuring a custom login page
 Enabling users to log out of the application
 Configuring cross-site request forgery protection

Intercepting requests to ensure that the user has proper authority is one of the most
common things you’ll configure HttpSecurity to do. Let’s ensure that your Taco
Cloud customers meet those requirements.

104 CHAPTER 4 Securing Spring
4.3.1 Securing requests

You need to ensure that requests for /design and /orders are only available to authen-
ticated users; all other requests should be permitted for all users. The following con-
figure() implementation does exactly that:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/design", "/orders")
 .hasRole("ROLE_USER")
 .antMatchers(“/”, "/**").permitAll()
 ;
}

The call to authorizeRequests() returns an object (ExpressionInterceptUrlRegis-
try) on which you can specify URL paths and patterns and the security requirements
for those paths. In this case, you specify two security rules:

 Requests for /design and /orders should be for users with a granted authority
of ROLE_USER.

 All requests should be permitted to all users.

The order of these rules is important. Security rules declared first take precedence
over those declared lower down. If you were to swap the order of those two security
rules, all requests would have permitAll() applied to them; the rule for /design and
/orders requests would have no effect.

 The hasRole() and permitAll() methods are just a couple of the methods for
declaring security requirements for request paths. Table 4.1 describes all the avail-
able methods.

Table 4.1 Configuration methods to define how a path is to be secured

Method What it does

access(String) Allows access if the given SpEL expression evaluates to true

anonymous() Allows access to anonymous users

authenticated() Allows access to authenticated users

denyAll() Denies access unconditionally

fullyAuthenticated() Allows access if the user is fully authenticated (not remembered)

hasAnyAuthority(String…) Allows access if the user has any of the given authorities

hasAnyRole(String…) Allows access if the user has any of the given roles

hasAuthority(String) Allows access if the user has the given authority

hasIpAddress(String) Allows access if the request comes from the given IP address

105Securing web requests
Most of the methods in table 4.1 provide essential security rules for request handling,
but they’re self-limiting, only enabling security rules as defined by those methods.
Alternatively, you can use the access() method to provide a SpEL expression to
declare richer security rules. Spring Security extends SpEL to include several security-
specific values and functions, as listed in table 4.2.

As you can see, most of the security expression extensions in table 4.2 correspond to
similar methods in table 4.1. In fact, using the access() method along with the has-
Role() and permitAll expressions, you can rewrite configure() as follows.

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()

hasRole(String) Allows access if the user has the given role

not() Negates the effect of any of the other access methods

permitAll() Allows access unconditionally

rememberMe() Allows access for users who are authenticated via remember-me

Table 4.2 Spring Security extensions to the Spring Expression Language

Security expression What it evaluates to

authentication The user’s authentication object

denyAll Always evaluates to false

hasAnyRole(list of roles) true if the user has any of the given roles

hasRole(role) true if the user has the given role

hasIpAddress(IP address) true if the request comes from the given IP address

isAnonymous() true if the user is anonymous

isAuthenticated() true if the user is authenticated

isFullyAuthenticated() true if the user is fully authenticated (not authenticated with
remember-me)

isRememberMe() true if the user was authenticated via remember-me

permitAll Always evaluates to true

principal The user’s principal object

Listing 4.9 Using Spring expressions to define authorization rules

Table 4.1 Configuration methods to define how a path is to be secured (continued)

Method What it does

106 CHAPTER 4 Securing Spring
 .antMatchers("/design", "/orders")
 .access("hasRole('ROLE_USER')")
 .antMatchers(“/”, "/**").access("permitAll")
 ;
}

This may not seem like a big deal at first. After all, these expressions only mirror what
you already did with method calls. But expressions can be much more flexible. For
instance, suppose that (for some crazy reason) you only wanted to allow users with
ROLE_USER authority to create new tacos on Tuesdays (for example, on Taco Tuesday);
you could rewrite the expression as shown in this modified version of configure():

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/design", "/orders")
 .access("hasRole('ROLE_USER') && " +
 "T(java.util.Calendar).getInstance().get("+
 "T(java.util.Calendar).DAY_OF_WEEK) == " +
 "T(java.util.Calendar).TUESDAY")
 .antMatchers(“/”, "/**").access("permitAll")
 ;
}

With SpEL-based security constraints, the possibilities are virtually endless. I’ll bet that
you’re already dreaming up interesting security constraints based on SpEL.

 The authorization needs for the Taco Cloud application are met by the simple use
of access() and the SpEL expressions in listing 4.9. Now let’s see about customizing
the login page to fit the look of the Taco Cloud application.

4.3.2 Creating a custom login page

The default login page is much better than the clunky HTTP basic dialog box you
started with, but it’s still rather plain and doesn’t quite fit into the look of the rest of
the Taco Cloud application.

 To replace the built-in login page, you first need to tell Spring Security what path
your custom login page will be at. That can be done by calling formLogin() on the
HttpSecurity object passed into configure():

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/design", "/orders")
 .access("hasRole('ROLE_USER')")
 .antMatchers(“/”, "/**").access("permitAll")

 .and()
 .formLogin()

107Securing web requests
 .loginPage("/login")
 ;
}

Notice that before you call formLogin(), you bridge this section of configuration
and the previous section with a call to and(). The and() method signifies that you’re
finished with the authorization configuration and are ready to apply some addi-
tional HTTP configuration. You’ll use and() several times as you begin new sections
of configuration.

 After the bridge, you call formLogin() to start configuring your custom login
form. The call to loginPage() after that designates the path where your custom login
page will be provided. When Spring Security determines that the user is unauthenti-
cated and needs to log in, it will redirect them to this path.

 Now you need to provide a controller that handles requests at that path. Because
your login page will be fairly simple—nothing but a view—it’s easy enough to declare
it as a view controller in WebConfig. The following addViewControllers() method
sets up the login page view controller alongside the view controller that maps "/" to
the home controller:

@Override
public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 registry.addViewController("/login");
}

Finally, you need to define the login page view itself. Because you’re using Thymeleaf
as your template engine, the following Thymeleaf template should do fine:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 </head>

 <body>
 <h1>Login</h1>

 <div th:if="${error}">
 Unable to login. Check your username and password.
 </div>

 <p>New here? Click
 <a th:href="@{/register}">here to register.</p>

 <!-- tag::thAction[] -->
 <form method="POST" th:action="@{/login}" id="loginForm">
 <!-- end::thAction[] -->
 <label for="username">Username: </label>
 <input type="text" name="username" id="username" />

108 CHAPTER 4 Securing Spring
 <label for="password">Password: </label>
 <input type="password" name="password" id="password" />

 <input type="submit" value="Login"/>
 </form>
 </body>
</html>

The key things to note about this login page are the path it posts to and the names of
the username and password fields. By default, Spring Security listens for login
requests at /login and expects that the username and password fields be named user-
name and password. This is configurable, however. For example, the following config-
uration customizes the path and field names:

.and()
 .formLogin()
 .loginPage("/login")
 .loginProcessingUrl("/authenticate")
 .usernameParameter("user")
 .passwordParameter("pwd")

Here, you specify that Spring Security should listen for requests to /authenticate to
handle login submissions. Also, the username and password fields should now be
named user and pwd.

 By default, a successful login will take the user directly to the page that they were
navigating to when Spring Security determined that they needed to log in. If the user
were to directly navigate to the login page, a successful login would take them to the
root path (for example, the homepage). But you can change that by specifying a
default success page:

.and()
 .formLogin()
 .loginPage("/login")
 .defaultSuccessUrl("/design")

As configured here, if the user were to successfully log in after directly going to the
login page, they would be directed to the /design page.

 Optionally, you can force the user to the design page after login, even if they were
navigating elsewhere prior to logging in, by passing true as a second parameter to
defaultSuccessUrl:

.and()
 .formLogin()
 .loginPage("/login")
 .defaultSuccessUrl("/design", true)

Now that you’ve dealt with your custom login page, let’s flip to the other side of the
authentication coin and see how you can enable a user to log out.

109Securing web requests
4.3.3 Logging out

Just as important as logging into an application is logging out. To enable logout, you
simply need to call logout on the HttpSecurity object:

.and()
 .logout()
 .logoutSuccessUrl("/")

This sets up a security filter that intercepts POST requests to /logout. Therefore, to
provide logout capability, you just need to add a logout form and button to the views
in your application:

<form method="POST" th:action="@{/logout}">
 <input type="submit" value="Logout"/>
</form>

When the user clicks the button, their session will be cleared, and they will be logged
out of the application. By default, they’ll be redirected to the login page where they
can log in again. But if you’d rather they be sent to a different page, you can call
logoutSucessFilter() to specify a different post-logout landing page:

.and()
 .logout()
 .logoutSuccessUrl("/")

In this case, users will be sent to the homepage following logout.

4.3.4 Preventing cross-site request forgery

Cross-site request forgery (CSRF) is a common security attack. It involves subjecting a
user to code on a maliciously designed web page that automatically (and usually
secretly) submits a form to another application on behalf of a user who is often the
victim of the attack. For example, a user may be presented with a form on an
attacker’s website that automatically posts to a URL on the user’s banking website
(which is presumably poorly designed and vulnerable to such an attack) to transfer
money. The user may not even know that the attack happened until they notice
money missing from their account.

 To protect against such attacks, applications can generate a CSRF token upon dis-
playing a form, place that token in a hidden field, and then stow it for later use on the
server. When the form is submitted, the token is sent back to the server along with the
rest of the form data. The request is then intercepted by the server and compared
with the token that was originally generated. If the token matches, the request is
allowed to proceed. Otherwise, the form must have been rendered by an evil website
without knowledge of the token generated by the server.

 Fortunately, Spring Security has built-in CSRF protection. Even more fortunate is
that it’s enabled by default and you don’t need to explicitly configure it. You only

110 CHAPTER 4 Securing Spring
need to make sure that any forms your application submits include a field named
_csrf that contains the CSRF token.

 Spring Security even makes that easy by placing the CSRF token in a request attri-
bute with the name _csrf. Therefore, you could render the CSRF token in a hidden
field with the following in a Thymeleaf template:

<input type="hidden" name="_csrf" th:value="${_csrf.token}"/>

If you’re using Spring MVC’s JSP tag library or Thymeleaf with the Spring Security dia-
lect, you needn’t even bother explicitly including a hidden field. The hidden field will
be rendered automatically for you.

 In Thymeleaf, you just need to make sure that one of the attributes of the <form>
element is prefixed as a Thymeleaf attribute. That’s usually not a concern, as it’s quite
common to let Thymeleaf render the path as context relative. For example, the
th:action attribute is all you need for Thymeleaf to render the hidden field for you:

<form method="POST" th:action="@{/login}" id="loginForm">

It’s possible to disable CSRF support, but I’m hesitant to show you how. CSRF protec-
tion is important and easily handled in forms, so there’s little reason to disable it. But
if you insist on disabling it, you can do so by calling disable() like this:

.and()
 .csrf()
 .disable()

Again, I caution you not to disable CSRF protection, especially for production
applications.

 All of your web layer security is now configured for Taco Cloud. Among other
things, you now have a custom login page and the ability to authenticate users against
a JPA-backed user repository. Now let’s see how you can obtain information about the
logged-in user.

4.4 Knowing your user
Often, it’s not enough to simply know that the user has logged in. It’s usually import-
ant to also know who they are, so that you can tailor their experience.

 For example, in OrderController, when you initially create the Order object that’s
bound to the order form, it’d be nice if you could prepopulate the Order with the
user’s name and address, so they don’t have to reenter it for each order. Perhaps even
more important, when you save their order, you should associate the Order entity with
the User that created the order.

 To achieve the desired connection between an Order entity and a User entity, you
need to add a new property to the Order class:

@Data
@Entity

111Knowing your user
@Table(name="Taco_Order")
public class Order implements Serializable {

...

 @ManyToOne
 private User user;

...

}

The @ManyToOne annotation on this property indicates that an order belongs to a sin-
gle user, and, conversely, that a user may have many orders. (Because you’re using
Lombok, you won’t need to explicitly define accessor methods for the property.)

 In OrderController, the processOrder() method is responsible for saving an
order. It will need to be modified to determine who the authenticated user is and to
call setUser() on the Order object to connect the order with the user.

 There are several ways to determine who the user is. These are a few of the most
common ways:

 Inject a Principal object into the controller method
 Inject an Authentication object into the controller method
 Use SecurityContextHolder to get at the security context
 Use an @AuthenticationPrincipal annotated method

For example, you could modify processOrder() to accept a java.security.Principal
as a parameter. You could then use the principal name to look up the user from a
UserRepository:

@PostMapping
public String processOrder(@Valid Order order, Errors errors,
 SessionStatus sessionStatus,
 Principal principal) {

...

 User user = userRepository.findByUsername(
 principal.getName());

 order.setUser(user);

...

}

This works fine, but it litters code that’s otherwise unrelated to security with security
code. You can trim down some of the security-specific code by modifying process-
Order() to accept an Authentication object as a parameter instead of a Principal:

112 CHAPTER 4 Securing Spring
@PostMapping
public String processOrder(@Valid Order order, Errors errors,
 SessionStatus sessionStatus,
 Authentication authentication) {

...

 User user = (User) authentication.getPrincipal();
 order.setUser(user);

...

}

With the Authentication in hand, you can call getPrincipal() to get the principal
object which, in this case, is a User. Note that getPrincipal() returns a java.util
.Object, so you need to cast it to User.

 Perhaps the cleanest solution of all, however, is to simply accept a User object in
processOrder(), but annotate it with @AuthenticationPrincipal so that it will be
the authentication’s principal:

@PostMapping
public String processOrder(@Valid Order order, Errors errors,
 SessionStatus sessionStatus,
 @AuthenticationPrincipal User user) {

 if (errors.hasErrors()) {
 return "orderForm";
 }

 order.setUser(user);

 orderRepo.save(order);
 sessionStatus.setComplete();

 return "redirect:/";
}

What’s nice about @AuthenticationPrincipal is that it doesn’t require a cast (as with
Authentication), and it limits the security-specific code to the annotation itself. By
the time you get the User object in processOrder(), it’s ready to be used and assigned
to the Order.

 There’s one other way of identifying who the authenticated user is, although it’s
a bit messy in the sense that it’s very heavy with security-specific code. You can obtain
an Authentication object from the security context and then request its principal
like this:

Authentication authentication =
 SecurityContextHolder.getContext().getAuthentication();
User user = (User) authentication.getPrincipal();

113Summary
Although this snippet is thick with security-specific code, it has one advantage over the
other approaches described: it can be used anywhere in the application, not only in a
controller’s handler methods. This makes it suitable for use in lower levels of the code.

Summary
 Spring Security autoconfiguration is a great way to get started with security, but

most applications will need to explicitly configure security to meet their unique
security requirements.

 User details can be managed in user stores backed by relational databases,
LDAP, or completely custom implementations.

 Spring Security automatically protects against CSRF attacks.
 Information about the authenticated user can be obtained via the Security-

Context object (returned from SecurityContextHolder.getContext()) or
injected into controllers using @AuthenticationPrincipal.

Working with
configuration properties
Do you remember when the iPhone first came out? A small slab of metal and glass
hardly fit the description of what the world had come to recognize as a phone. And
yet, it pioneered the modern smartphone era, changing everything about how we
communicate. Although touch phones are in many ways easier and more powerful
than their predecessor, the flip phone, when the iPhone was first announced, it was
hard to imagine how a device with a single button could be used to place calls.

 In some ways, Spring Boot autoconfiguration is like this. Autoconfiguration
greatly simplifies Spring application development. But after a decade of setting
property values in Spring XML configuration and calling setter methods on bean
instances, it’s not immediately apparent how to set properties on beans for which
there’s no explicit configuration.

 Fortunately, Spring Boot provides a way with configuration properties. Config-
uration properties are nothing more than properties on beans in the Spring

This chapter covers
 Fine-tuning autoconfigured beans

 Applying configuration properties to application
components

 Working with Spring profiles
114

115Fine-tuning autoconfiguration
application context that can be set from one of several property sources, including
JVM system properties, command-line arguments, and environment variables.

 In this chapter, you’re going to take a step back from implementing new features
in the Taco Cloud application to explore configuration properties. What you take
away will no doubt prove useful as you move forward in the chapters that follow. We’ll
start by seeing how to employ configuration properties to fine-tune what Spring Boot
automatically configures.

5.1 Fine-tuning autoconfiguration
Before we dive in too deeply with configuration properties, it’s important to establish
that there are two different (but related) kinds of configurations in Spring:

 Bean wiring—Configuration that declares application components to be created
as beans in the Spring application context and how they should be injected into
each other.

 Property injection—Configuration that sets values on beans in the Spring applica-
tion context.

In Spring’s XML and Java-based configuration, these two types of configurations are
often declared explicitly in the same place. In Java configuration, an @Bean-annotated
method is likely to both instantiate a bean and then set values to its properties. For
example, consider the following @Bean method that declares a DataSource for an
embedded H2 database:

@Bean
public DataSource dataSource() {
 return new EmbeddedDataSourceBuilder()
 .setType(H2)
 .addScript("taco_schema.sql")
 .addScripts("user_data.sql", "ingredient_data.sql")
 .build();
}

Here the addScript() and addScripts() methods set some String properties with
the name of SQL scripts that should be applied to the database once the data source is
ready. Whereas this is how you might configure a DataSource bean if you aren’t using
Spring Boot, autoconfiguration makes this method completely unnecessary.

 If the H2 dependency is available in the run-time classpath, then Spring Boot auto-
matically creates an appropriate DataSource bean in the Spring application context.
The bean applies the SQL scripts schema.sql and data.sql.

 But what if you want to name the SQL scripts something else? Or what if you need
to specify more than two SQL scripts? That’s where configuration properties come in.
But before you can start using configuration properties, you need to understand
where those properties come from.

116 CHAPTER 5 Working with configuration properties
5.1.1 Understanding Spring’s environment abstraction

The Spring environment abstraction is a one-stop shop for any configurable property.
It abstracts the origins of properties so that beans needing those properties can con-
sume them from Spring itself. The Spring environment pulls from several property
sources, including

 JVM system properties
 Operating system environment variables
 Command-line arguments
 Application property configuration files

It then aggregates those properties into a single source from which Spring beans can
be injected. Figure 5.1 illustrates how properties from property sources flow through
the Spring environment abstraction to Spring beans.

The beans that are automatically configured by Spring Boot are all configurable by
properties drawn from the Spring environment. As a simple example, suppose that
you would like the application’s underlying servlet container to listen for requests
on some port other than the default port of 8080. To do that, specify a different port
by setting the server.port property in src/main/resources/application.properties
like this:

server.port=9090

Property Sources

JVM System

properties

Operating system

environment variables

Command line

arguments

Application.properties

Application.yml

Data source

User service

Product

service

Inventory

tracker

Audit service

T
h

e
S

p
ri
n

g
e

n
v
ir
o

n
m

e
n

t

Beans in the Spring application context

Figure 5.1 The Spring environment pulls properties from property sources and makes them
available to beans in the application context.

117Fine-tuning autoconfiguration
Personally, I prefer using YAML when setting configuration properties. Therefore,
instead of using application.properties, I might set the server.port value in src/main/
resources/application.yml like this:

server:
 port: 9090

If you’d prefer to configure that property externally, you could also specify the port
when starting the application using a command-line argument:

$ java -jar tacocloud-0.0.5-SNAPSHOT.jar --server.port=9090

If you want the application to always start on a specific port, you could set it one time
as an operating system environment variable:

$ export SERVER_PORT=9090

Notice that when setting properties as environment variables, the naming style is
slightly different to accommodate restrictions placed on environment variable names
by the operating system. That’s OK. Spring is able to sort it out and interpret
SERVER_PORT as server.port with no problems.

 As I said, there are several ways of setting configuration properties. And when we
get to chapter 14, you’ll see yet another way of setting configuration properties in a
centralized configuration server. In fact, there are several hundred configuration
properties you can use to tweak and adjust how Spring beans behave. You’ve already
seen a few: server.port in this chapter and security.user.name and security
.user.password in the previous chapter.

 It’s impossible to examine all of the available configuration properties in this chap-
ter. Even so, let’s take a look at a few of the most useful configuration properties you
might commonly encounter. We’ll start with a few properties that let you tweak the
autoconfigured data source.

5.1.2 Configuring a data source

At this point, the Taco Cloud application is still unfinished, but you’ll have several
more chapters to take care of that before you’re ready to deploy the application. As
such, the embedded H2 database you’re using as a data source is perfect for your
needs—for now. But once you take the application into production, you’ll probably
want to consider a more permanent database solution.

 Although you could explicitly configure your own DataSource bean, that’s usually
unnecessary. Instead, it’s simpler to configure the URL and credentials for your data-
base via configuration properties. For example, if you were to start using a MySQL
database, you might add the following configuration properties to application.yml:

spring:
 datasource:
 url: jdbc:mysql://localhost/tacocloud

118 CHAPTER 5 Working with configuration properties
 username: tacodb
 password: tacopassword

Although you’ll need to add the appropriate JDBC driver to the build, you won’t usu-
ally need to specify the JDBC driver class; Spring Boot can figure it out from the struc-
ture of the database URL. But if there’s a problem, you can try setting the spring
.datasource.driver-class-name property:

spring:
 datasource:
 url: jdbc:mysql://localhost/tacocloud
 username: tacodb
 password: tacopassword
 driver-class-name: com.mysql.jdbc.Driver

Spring Boot uses this connection data when autoconfiguring the DataSource bean.
The DataSource bean will be pooled using Tomcat’s JDBC connection pool if it’s avail-
able on the classpath. If not, Spring Boot looks for and uses one of these other con-
nection pool implementations on the classpath:

 HikariCP
 Commons DBCP 2

Although these are the only connection pool options available through autoconfigu-
ration, you’re always welcome to explicitly configure a DataSource bean to use what-
ever connection pool implementation you’d like.

 Earlier in this chapter, we suggested that there might be a way to specify the data-
base initialization scripts to run when the application starts. In that case, the spring
.datasource.schema and spring.datasource.data properties prove useful:

spring:
 datasource:
 schema:
 - order-schema.sql
 - ingredient-schema.sql
 - taco-schema.sql
 - user-schema.sql
 data:
 - ingredients.sql

Maybe explicit data source configuration isn’t your style. Instead, perhaps you’d pre-
fer to configure your data source in JNDI and have Spring look it up from there. In
that case, set up your data source by configuring spring.datasource.jndi-name:

spring:
 datasource:
 jndi-name: java:/comp/env/jdbc/tacoCloudDS

If you set the spring.datasource.jndi-name property, the other data source connec-
tion properties (if set) are ignored.

119Fine-tuning autoconfiguration
5.1.3 Configuring the embedded server

You’ve already seen how to set the servlet container’s port by setting server.port.
What I didn’t show you is what happens if server.port is set to 0:

server:
 port: 0

Although you’re explicitly setting server.port to 0, the server won’t start on port 0.
Instead, it’ll start on a randomly chosen available port. This is useful when running
automated integration tests to ensure that any concurrently running tests don’t clash
on a hard-coded port number. As you’ll see in chapter 13, it’s also useful when you
don’t care what port your application starts on because it’s a microservice that will be
looked up from a service registry.

 But there’s more to the underlying server than just a port. One of the most com-
mon things you’ll need to do with the underlying container is to set it up to handle
HTTPS requests. To do that, the first thing you must do is create a keystore using the
JDK’s keytool command-line utility:

$ keytool -keystore mykeys.jks -genkey -alias tomcat -keyalg RSA

You’ll be asked several questions about your name and organization, most of which
are irrelevant. But when asked for a password, remember what you choose. For the
sake of this example, I chose letmein as the password.

 Next, you’ll need to set a few properties to enable HTTPS in the embedded server.
You could specify them all on the command line, but that would be terribly inconve-
nient. Instead, you’ll probably set them in the file’s application.properties or applica-
tion.yml. In application.yml, the properties might look like this:

server:
 port: 8443
 ssl:
 key-store: file:///path/to/mykeys.jks
 key-store-password: letmein
 key-password: letmein

Here the server.port property is set to 8443, a common choice for development
HTTPS servers. The server.ssl.key-store property should be set to the path where
the keystore file is created. Here it’s shown with a file:// URL to load it from the
filesystem, but if you package it within the application JAR file, you’ll use a classpath:
URL to reference it. And both the server.ssl.key-store-password and server
.ssl.key-password properties are set to the password that was given when creating
the keystore.

 With these properties in place, your application should be listening for HTTPS
requests on port 8443. Depending on which browser you’re using, you may encounter
a warning about the server not being able to verify its identity. This is nothing to worry
about when serving from localhost during development.

120 CHAPTER 5 Working with configuration properties
5.1.4 Configuring logging

Most applications provide some form of logging. And even if your application doesn’t log
anything directly, the libraries that your application uses will certainly log their activity.

 By default, Spring Boot configures logging via Logback (http://logback.qos.ch) to
write to the console at an INFO level. You’ve probably already seen plenty of INFO-
level entries in the application logs as you’ve run the application and other examples.

 For full control over the logging configuration, you can create a logback.xml file at
the root of the classpath (in src/main/resources). Here’s an example of a simple log-
back.xml file you might use:

<configuration>
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>
 %d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n
 </pattern>
 </encoder>
 </appender>
 <logger name="root" level="INFO"/>
 <root level="INFO">
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

Aside from the pattern used for logging, this Logback configuration is more or less
equivalent to the default you’ll get if you have no logback.xml file. But by editing log-
back.xml you can gain full control over your application’s log files.

NOTE The specifics of what can go into logback.xml are outside the scope of
this book. Refer to Logback’s documentation for more information.

The most common changes you’ll make to a logging configuration are to change the
logging levels and perhaps to specify a file where the logs should be written. With
Spring Boot configuration properties, you can make those changes without having to
create a logback.xml file.

 To set the logging levels, you create properties that are prefixed with log-
ging.level, followed by the name of the logger for which you want to set the logging
level. For instance, suppose you’d like to set the root logging level to WARN, but log
Spring Security logs at a DEBUG level. The following entries in application.yml will
take care of that for you:

logging:
 level:
 root: WARN
 org:
 springframework:
 security: DEBUG

http://logback.qos.ch

121Fine-tuning autoconfiguration
Optionally, you can collapse the Spring Security package name to a single line for eas-
ier reading:

logging:
 level:
 root: WARN
 org.springframework.security: DEBUG

Now suppose that you want to write the log entries to the file TacoCloud.log at
/var/logs/. The logging.path and logging.file properties can help achieve that:

logging:
 path: /var/logs/
 file: TacoCloud.log
 level:
 root: WARN
 org:
 springframework:
 security: DEBUG

Assuming that the application has write permissions to /var/logs/, the log entries will
be written to /var/logs/TacoCloud.log. By default, the log files rotate once they reach
10 MB in size.

5.1.5 Using special property values

When setting properties, you aren’t limited to declaring their values as hard-coded
String and numeric values. Instead, you can derive their values from other configura-
tion properties.

 For example, suppose (for whatever reason) you want to set a property named
greeting.welcome to echo the value of another property named spring.application
.name. To achieve this, you could use the ${} placeholder markers when setting
greeting.welcome:

greeting:
 welcome: ${spring.application.name}

You can even embed that placeholder amidst other text:

greeting:
 welcome: You are using ${spring.application.name}.

As you’ve seen, configuring Spring’s own components with configuration properties
makes it easy to inject values into those components’ properties and to fine-tune
autoconfiguration. Configuration properties aren’t exclusive to the beans that
Spring creates. With a small amount of effort, you can take advantage of configura-
tion properties in your own beans. Let’s see how.

122 CHAPTER 5 Working with configuration properties
5.2 Creating your own configuration properties
As I mentioned earlier, configuration properties are nothing more than properties of
beans that have been designated to accept configurations from Spring’s environment
abstraction. What I didn’t mention is how those beans are designated to consume
those configurations.

 To support property injection of configuration properties, Spring Boot provides
the @ConfigurationProperties annotation. When placed on any Spring bean, it
specifies that the properties of that bean can be injected from properties in the
Spring environment.

 To demonstrate how @ConfigurationProperties works, suppose that you’ve added
the following method to OrderController to list the authenticated user’s past orders:

@GetMapping
public String ordersForUser(
 @AuthenticationPrincipal User user, Model model) {

 model.addAttribute("orders",
 orderRepo.findByUserOrderByPlacedAtDesc(user));

 return "orderList";
}

Along with that, you’ve also added the necessary findByUser() method to Order-
Repository:

List<Order> findByUserOrderByPlacedAtDesc(User user);

Notice that this repository method is named with a clause of OrderByPlacedAtDesc.
The OrderBy portion specifies a property by which the results will be ordered—in this
case, the placedAt property. The Desc at the end causes the ordering to be in
descending order. Therefore, the list of orders returned will be sorted most recent to
least recent.

 As written, this controller method may be useful after the user has placed a hand-
ful of orders. But it could become a bit unwieldy for the most avid of taco connois-
seurs. A few orders displayed in the browser are useful; a never-ending list of hundreds
of orders is just noise. Let’s say that you want to limit the number of orders displayed
to the most recent 20 orders. You can change ordersForUser()

@GetMapping
public String ordersForUser(
 @AuthenticationPrincipal User user, Model model) {

 Pageable pageable = PageRequest.of(0, 20);
 model.addAttribute("orders",
 orderRepo.findByUserOrderByPlacedAtDesc(user, pageable));

 return "orderList";
}

123Creating your own configuration properties
along with the corresponding changes to OrderRepository:

List<Order> findByUserOrderByPlacedAtDesc(
 User user, Pageable pageable);

Here you’ve changed the signature of the findByUserOrderByPlacedAtDesc() method
to accept a Pageable as a parameter. Pageable is Spring Data’s way of selecting some
subset of the results by a page number and page size. In the ordersForUser() control-
ler method, you constructed a PageRequest object that implemented Pageable to
request the first page (page zero) with a page size of 20 to get up to 20 of the most
recently placed orders for the user.

 Although this works fantastically, it leaves me a bit uneasy that you’ve hard-coded
the page size. What if you later decide that 20 is too many orders to list, and you
decide to change it to 10? Because it’s hard-coded, you’d have to rebuild and redeploy
the application.

 Rather than hardcode the page size, you can set it with a custom configuration
property. First, you need to add a new property called pageSize to OrderController
and then annotate OrderController with @ConfigurationProperties as shown in
the next listing.

@Controller
@RequestMapping("/orders")
@SessionAttributes("order")
@ConfigurationProperties(prefix="taco.orders")
public class OrderController {

 private int pageSize = 20;

 public void setPageSize(int pageSize) {
 this.pageSize = pageSize;
 }

 ...

 @GetMapping
 public String ordersForUser(
 @AuthenticationPrincipal User user, Model model) {

 Pageable pageable = PageRequest.of(0, pageSize);
 model.addAttribute("orders",
 orderRepo.findByUserOrderByPlacedAtDesc(user, pageable));

 return "orderList";
 }

}

The most significant change made in listing 5.1 is the addition of the @Configuration-
Properties annotation. Its prefix attribute is set to taco.orders, which means that

Listing 5.1 Enabling configuration properties in OrderController

124 CHAPTER 5 Working with configuration properties
when setting the pageSize property, you need to use a configuration property named
taco.orders.pageSize.

 The new pageSize property defaults to 20. But you can easily change it to any
value you want by setting a taco.orders.pageSize property. For example, you could
set this property in application.yml like this:

taco:
 orders:
 pageSize: 10

Or, if you need to make a quick change while in production, you can do so without
having to rebuild and redeploy the application by setting the taco.orders.pageSize
property as an environment variable:

$ export TACO_ORDERS_PAGESIZE=10

Any means by which a configuration property can be set can be used to adjust the
page size of the recent orders page. Next, we’ll look at how to set configuration data
in property holders.

5.2.1 Defining configuration properties holders

There’s nothing that says @ConfigurationProperties must be set on a controller or
any other specific kind of bean. @ConfigurationProperties are in fact often placed
on beans whose sole purpose in the application is to be holders of configuration data.
This keeps configuration-specific details out of the controllers and other application
classes. It also makes it easy to share common configuration properties among several
beans that may make use of that information.

 In the case of the pageSize property in OrderController, you could extract it to a
separate class. The following listing uses the OrderProps class in such a way.

package tacos.web;
import org.springframework.boot.context.properties.
 ConfigurationProperties;
import org.springframework.stereotype.Component;
import lombok.Data;

@Component
@ConfigurationProperties(prefix="taco.orders")
@Data
public class OrderProps {

 private int pageSize = 20;

}

As you did with OrderController, the pageSize property defaults to 20 and Order-
Props is annotated with @ConfigurationProperties to have a prefix of taco.orders.

Listing 5.2 Extracting pageSize to a holder class

125Creating your own configuration properties
It’s also annotated with @Component so that Spring component scanning will automati-
cally discover it and create it as a bean in the Spring application context. This is
important, as the next step is to inject the OrderProps bean into OrderController.

 There’s nothing particularly special about configuration property holders. They’re
beans that have their properties injected from the Spring environment. They can be
injected into any other bean that needs those properties. For OrderController, this
means removing the pageSize property from OrderController and instead injecting
and using the OrderProps bean:

@Controller
@RequestMapping("/orders")
@SessionAttributes("order")
public class OrderController {

 private OrderRepository orderRepo;

 private OrderProps props;

 public OrderController(OrderRepository orderRepo,
 OrderProps props) {
 this.orderRepo = orderRepo;
 this.props = props;
 }

 ...

 @GetMapping
 public String ordersForUser(
 @AuthenticationPrincipal User user, Model model) {

 Pageable pageable = PageRequest.of(0, props.getPageSize());
 model.addAttribute("orders",
 orderRepo.findByUserOrderByPlacedAtDesc(user, pageable));

 return "orderList";
 }

 ...

}

Now OrderController is no longer responsible for handling its own configuration
properties. This keeps the code in OrderController slightly neater and allows you to
reuse the properties in OrderProps in any other bean that may need them. Moreover,
you’re collecting configuration properties that pertain to orders in one place: the
OrderProps class. If you need to add, remove, rename, or otherwise change the prop-
erties therein, you only need to apply those changes in OrderProps.

 For example, let’s pretend that you’re using the pageSize property in several other
beans when you decide it would be best to apply some validation to that property to
limit its values to no less than 5 and no more than 25. Without a holder bean, you’d

126 CHAPTER 5 Working with configuration properties
have to apply validation annotations to OrderController, the pageSize property, and
all other classes using that property. But because you’ve extracted pageSize into
OrderProps, you only must make the changes to OrderProps:

package tacos.web;
import javax.validation.constraints.Max;
import javax.validation.constraints.Min;

import org.springframework.boot.context.properties.
 ConfigurationProperties;
import org.springframework.stereotype.Component;
import org.springframework.validation.annotation.Validated;

import lombok.Data;

@Component
@ConfigurationProperties(prefix="taco.orders")
@Data
@Validated
public class OrderProps {

 @Min(value=5, message="must be between 5 and 25")
 @Max(value=25, message="must be between 5 and 25")
 private int pageSize = 20;

}
//end::validated[]

Although you could as easily apply the @Validated, @Min, and @Max annotations to
OrderController (and any other beans that can be injected with OrderProps), it
would just clutter up OrderController that much more. With a configuration prop-
erty holder bean, you’ve collected configuration property specifics in one place, leav-
ing the classes that need those properties relatively clean.

5.2.2 Declaring configuration property metadata

Depending on your IDE, you may have noticed that the taco.orders.pageSize entry
in application.yml (or application.properties) has a warning saying something like
Unknown Property ‘taco’. This warning appears because there’s missing metadata
concerning the configuration property you just created. Figure 5.2 shows what this
looks like when I hover over the taco portion of the property in the Spring Tool Suite.

Configuration property metadata is completely optional and doesn’t prevent configu-
ration properties from working. But the metadata can be useful for providing some
minimal documentation around the configuration properties, especially in the IDE.

Figure 5.2 A warning for missing
configuration property metadata

127Creating your own configuration properties
For example, when I hover over the security.user.password property, I see what’s
shown in figure 5.3. Although the hover help you get is minimal, it can be enough to
help understand what the property is used for and how to use it.

To help those who might use the configuration properties that you define—which
might even be you—it’s generally a good idea to create some metadata around those
properties. At least it gets rid of those annoying yellow warnings in the IDE.

 To create metadata for your custom configuration properties, you’ll need to create
a file under the META-INF (for example, in the project under src/main/resources/
META-INF) named additional-spring-configuration-metadata.json.

QUICK-FIXING MISSING METADATA.
If you’re using the Spring Tool Suite, there’s a quick-fix option for creating missing
property metadata. Place your cursor on the line with the missing metadata warning
and open the quick-fix pop up with CMD-1 on Mac or Ctrl-1 on Windows and Linux
(see figure 5.4).

Then select the Create Metadata for … option to add some metadata for the property
(in additional-spring-configuration-metadata.json as this figure shows) and create that
file if it doesn’t already exist.

Figure 5.3 Hover documentation for
configuration properties in the Spring
Tool Suite

Figure 5.4 Creating configuration property metadata with the quick-fix pop up in Spring Tool Suite

128 CHAPTER 5 Working with configuration properties
 For the taco.orders.pageSize property, you can set up the metadata with the fol-
lowing JSON:

{
 "properties": [
 {
 "name": "taco.orders.page-size",
 "type": "java.lang.String",
 "description":
 "Sets the maximum number of orders to display in a list."
 }
]
}

Notice that the property name referenced in the metadata is taco.orders.page-
size. Spring Boot’s flexible property naming allows for variations in property names
such that taco.orders.page-size is equivalent to taco.orders.pageSize.

 With that metadata in place, the warnings should be gone. What’s more, if you
hover over the taco.orders.pageSize property, you’ll see the description shown in
figure 5.5.

Also, as shown in figure 5.6, you get autocompletion help from the IDE, just like Spring-
provided configuration properties.

As you’ve seen, configuration properties are useful for tweaking both autoconfig-
ured components as well as the details injected into your own application beans. But

Figure 5.5 Hover help for custom
configuration properties

Figure 5.6 Configuration property metadata enables autocompletion of properties.

129Configuring with profiles
what if you need to configure different properties for different deployment environ-
ments? Let’s take a look at how to use Spring profiles to set up environment-specific
configuration.

5.3 Configuring with profiles
When applications are deployed to different run-time environments, usually some
configuration details differ. The details of a database connection, for instance, are
likely not the same in a development environment as in a quality assurance environ-
ment, and different still in a production environment. One way to configure proper-
ties uniquely in one environment over another is to use environment variables to
specify configuration properties instead of defining them in application.properties
and application.yml.

 For instance, during development you can lean on the autoconfigured embedded
H2 database. But in production you can set database configuration properties as envi-
ronment variables like this:

% export SPRING_DATASOURCE_URL=jdbc:mysql://localhost/tacocloud
% export SPRING_DATASOURCE_USERNAME=tacouser
% export SPRING_DATASOURCE_PASSWORD=tacopassword

Although this will work, it’s somewhat cumbersome to specify more than one or two
configuration properties as environment variables. Moreover, there’s no good way
to track changes to environment variables or to easily roll back changes if there’s a
mistake.

 Instead, I prefer to take advantage of Spring profiles. Profiles are a type of condi-
tional configuration where different beans, configuration classes, and configuration
properties are applied or ignored based on what profiles are active at runtime.

 For instance, let’s say that for development and debugging purposes, you want to
use the embedded H2 database, and you want the logging levels for the Taco Cloud
code to be set to DEBUG. But in production, you want to use an external MySQL data-
base and set the logging levels to WARN. In the development situation, it’s easy
enough to not set any data-source properties and get the autoconfigured H2 database.
And as for debug-level logging, you can set the logging.level.tacos property for the
tacos base package to DEBUG in application.yml:

logging:
 level:
 tacos: DEBUG

This is precisely what you need for development purposes. But if you were to deploy
this application in a production setting with no further changes to application.yml,
you’d still have debug logging for the tacos package and an embedded H2 database.
What you need is to define a profile with properties suited for production.

130 CHAPTER 5 Working with configuration properties
5.3.1 Defining profile-specific properties

One way to define profile-specific properties is to create yet another YAML or properties
file containing only the properties for production. The name of the file should follow
this convention: application-{profile name}.yml or application-{profile name}.properties.
Then you can specify the configuration properties appropriate to that profile. For
example, you could create a new file named application-prod.yml that contains the
following properties:

spring:
 datasource:
 url: jdbc:mysql://localhost/tacocloud
 username: tacouser
 password: tacopassword
logging:
 level:
 tacos: WARN

Another way to specify profile-specific properties works only with YAML configura-
tion. It involves placing profile-specific properties alongside non-profiled properties
in application.yml, separated by three hyphens and the spring.profiles property to
name the profile. When applying the production properties to application.yml in this
way, the entire application.yml would look like this:

logging:
 level:
 tacos: DEBUG

spring:
 profiles: prod

 datasource:
 url: jdbc:mysql://localhost/tacocloud
 username: tacouser
 password: tacopassword

logging:
 level:
 tacos: WARN

As you can see, this application.yml file is divided into two sections by a set of triple
hyphens (---). The second section specifies a value for spring.profiles, indicating
that the properties that follow apply to the prod profile. The first section, on the other
hand, doesn’t specify a value for spring.profiles. Therefore, its properties are com-
mon to all profiles or are defaults if the active profile doesn’t otherwise have the prop-
erties set.

 Regardless of which profiles are active when the application runs, the logging level
for the tacos package will be set to DEBUG by the property set in the default profile.
But if the profile named prod is active, then the logging.level.tacos property will

131Configuring with profiles
be overridden with WARN. Likewise, if the prod profile is active, then the data-source
properties will be set to use the external MySQL database.

 You can define properties for as many profiles as you need by creating additional
YAML or properties files named with the pattern application-{profile name}.yml or
application-{profile name}.properties. Or, if you prefer, type three more dashes in
application.yml along with another spring.profiles property to specify the profile
name. Then add all of the profile-specific properties you need.

5.3.2 Activating profiles

Setting profile-specific properties will do no good unless those profiles are active. But
how can you make a profile active? All it takes to make a profile active is to include it
in the list of profile names given to the spring.profiles.active property. For exam-
ple, you could set it in application.yml like this:

spring:
 profiles:
 active:
 - prod

But that’s perhaps the worst possible way to set an active profile. If you set the active
profile in application.yml, then that profile becomes the default profile, and you
achieve none of the benefits of using profiles to separate the production-specific
properties from development properties. Instead, I recommend that you set the active
profile(s) with environment variables. On the production environment, you would set
SPRING_PROFILES_ACTIVE like this:

% export SPRING_PROFILES_ACTIVE=prod

From then on, any applications deployed to that machine will have the prod profile
active and the corresponding configuration properties would take precedence over
the properties in the default profile.

 If you’re running the application as an executable JAR file, you might also set the
active profile with a command-line argument like this:

% java -jar taco-cloud.jar --spring.profiles.active=prod

Note that the spring.profiles.active property name contains the plural word pro-
files. This means you can specify more than one active profile. Often, this is with a
comma-separated list as when setting it with an environment variable:

% export SPRING_PROFILES_ACTIVE=prod,audit,ha

But in YAML, you’d specify it as a list like this:

spring:
 profiles:
 active:

132 CHAPTER 5 Working with configuration properties
 - prod
 - audit
 - ha

It’s also worth noting that if you deploy a Spring application to Cloud Foundry, a pro-
file named cloud is automatically activated for you. If Cloud Foundry is your produc-
tion environment, you’ll want to be sure to specify production-specific properties
under the cloud profile.

 As it turns out, profiles aren’t useful only for conditionally setting configuration
properties in a Spring application. Let’s see how to declare beans specific to an
active profile.

5.3.3 Conditionally creating beans with profiles

Sometimes it’s useful to provide a unique set of beans for different profiles. Normally,
any bean declared in a Java configuration class is created, regardless of which profile is
active. But suppose there are some beans that you only need to be created if a certain
profile is active. In that case, the @Profile annotation can designate beans as only
being applicable to a given profile.

 For instance, you have a CommandLineRunner bean declared in TacoCloud-
Application that’s used to load the embedded database with ingredient data when
the application starts. That’s great for development, but would be unnecessary (and
undesirable) in a production application. To prevent the ingredient data from being
loaded every time the application starts in a production deployment, you could anno-
tate the CommandLineRunner bean method with @Profile like this:

@Bean
@Profile("dev")
public CommandLineRunner dataLoader(IngredientRepository repo,
 UserRepository userRepo, PasswordEncoder encoder) {

 ...

}

Or suppose that you need the CommandLineRunner created if either the dev profile
or qa profile is active. In that case, you can list the profiles for which the bean
should be created:

@Bean
@Profile({"dev", "qa"})
public CommandLineRunner dataLoader(IngredientRepository repo,
 UserRepository userRepo, PasswordEncoder encoder) {

 ...

}

Now the ingredient data will only be loaded if the dev or qa profiles are active. That
would mean that you’d need to activate the dev profile when running the application

133Summary
in the development environment. It would be even more convenient if that Command-
LineRunner bean were always created unless the prod profile is active. In that case, you
can apply @Profile like this:

@Bean
@Profile("!prod")
public CommandLineRunner dataLoader(IngredientRepository repo,
 UserRepository userRepo, PasswordEncoder encoder) {

 ...

}

Here, the exclamation mark (!) negates the profile name. Effectively, it states that the
CommandLineRunner bean will be created if the prod profile isn’t active.

 It’s also possible to use @Profile on an entire @Configuration-annotated class.
For example, suppose that you were to extract the CommandLineRunner bean into a
separate configuration class named DevelopmentConfig. Then you could annotate
DevelopmentConfig with @Profile:

@Profile({"!prod", "!qa"})
@Configuration
public class DevelopmentConfig {

 @Bean
 public CommandLineRunner dataLoader(IngredientRepository repo,
 UserRepository userRepo, PasswordEncoder encoder) {

 ...

 }

}

Here, the CommandLineRunner bean (as well as any other beans defined in Development-
Config) will only be created if neither the prod nor qa profiles are active.

Summary
 Spring beans can be annotated with @ConfigurationProperties to enable

injection of values from one of several property sources.
 Configuration properties can be set in command-line arguments, environment

variables, JVM system properties, properties files, or YAML files, among other
options.

 Configuration properties can be used to override autoconfiguration settings,
including the ability to specify a data-source URL and logging levels.

 Spring profiles can be used with property sources to conditionally set configura-
tion properties based on the active profile(s).

Part 2

Integrated Spring

The chapters in part 2 cover topics that help integrate your Spring applica-
tion with other applications.

 Chapter 6 expands on the discussion of Spring MVC started in chapter 2 by
looking at how to write REST APIs in Spring. We’ll look at how to define REST
endpoints in Spring MVC, enable hyperlinked REST resources, and automati-
cally generate repository-based REST endpoints with Spring Data REST. Chapter 7
switches perspective to show how a Spring application can consume a REST API.
In chapter 8, we'll look at using asynchronous communication to enable a
Spring application to both send and receive messages using the Java Message
Service (JMS), RabbitMQ, and Kafka. And finally, chapter 9 discusses declarative
application integration using the Spring Integration project. We’ll cover process-
ing data in real time, defining integration flows, and integrating with external
systems like emails and filesystems.

Creating REST services
“The web browser is dead. What now?”
 Roughly a dozen years ago, I heard someone suggest that the web browser was

nearing legacy status and that something else would take over. But how could this
be? What could possibly dethrone the near-ubiquitous web browser? How would we
consume the growing number of sites and online services if not with a web browser?
Surely these were the ramblings of a madman!

 Fast-forward to the present day and it’s clear that the web browser hasn’t gone
away. But it no longer reigns as the primary means of accessing the internet.
Mobile devices, tablets, smart watches, and voice-based devices are now common-
place. And even many browser-based applications are actually running JavaScript
applications rather than letting the browser be a dumb terminal for server-
rendered content.

 With such a vast selection of client-side options, many applications have adopted a
common design where the user interface is pushed closer to the client and the

This chapter covers
 Defining REST endpoints in Spring MVC

 Enabling hyperlinked REST resources

 Automatic repository-based REST endpoints
137

138 CHAPTER 6 Creating REST services
server exposes an API through which all kinds of clients can interact with the backend
functionality.

 In this chapter, you’re going to use Spring to provide a REST API for the Taco
Cloud application. You’ll use what you learned about Spring MVC in chapter 2 to cre-
ate RESTful endpoints with Spring MVC controllers. You’ll also automatically expose
REST endpoints for the Spring Data repositories you defined in chapter 4. Finally,
we’ll look at ways to test and secure those endpoints.

 But first, you’ll start by writing a few new Spring MVC controllers that expose back-
end functionality with REST endpoints to be consumed by a rich web frontend.

6.1 Writing RESTful controllers
I hope you don’t mind, but while you were turning the page and reading the introduc-
tion to this chapter, I took it upon myself to reimagine the user interface for Taco
Cloud. What you’ve been working with has been fine for getting started, but it lacked
in the aesthetics department.

 Figure 6.1 is just a sample of what the new Taco Cloud looks like. Pretty snazzy, huh?

Figure 6.1 The new Taco Cloud home page

139Writing RESTful controllers
And while I was spiffing up the Taco Cloud look, I also decided to build the frontend
as a single-page application using the popular Angular framework. Ultimately, this
new browser UI will replace the server-rendered pages you created in chapter 2. But
for that to work, you’ll need to create a REST API that the Angular-based1 UI will com-
municate with to save and fetch taco data.

This isn’t a book on Angular, so the code in this chapter will focus primarily on the
backend Spring code. I’ll show just enough Angular code to give you a feel for how
the client side works. Rest assured that the complete set of code, including the
Angular frontend, is available as part of the downloadable code for the book and at
https://github.com/habuma/spring-in-action-5-samples. You may also be interested
in reading Angular in Action by Jeremy Wilken (Manning, 2018) and Angular Develop-
ment with TypeScript, Second Edition by Yakov Fain and Anton Moiseev (Manning, 2018).

 In a nutshell, the Angular client code will communicate with an API that you’ll cre-
ate throughout this chapter by way of HTTP requests. In chapter 2 you used @Get-
Mapping and @PostMapping annotations to fetch and post data to the server. Those
same annotations will still come in handy as you define your REST API. In addition,
Spring MVC supports a handful of other annotations for various types of HTTP
requests, as listed in table 6.1.

1 I chose to use Angular, but the choice of frontend framework should have little to no bearing on how the
backend Spring code is written. Feel free to choose Angular, React, Vue.js, or whatever frontend technology
suits you best.

To SPA or not to SPA?
You developed a traditional multipage application (MPA) with Spring MVC in chapter 2,
and now you’re replacing that with a single-page application (SPA) based on Angular.
But I’m not suggesting that SPA is always a better choice than MPA.

Because presentation is largely decoupled from backend processing in a SPA, it
affords the opportunity to develop more than one user interface (such as a native
mobile application) for the same backend functionality. It also opens up the opportu-
nity for integration with other applications that can consume the API. But not all appli-
cations require that flexibility, and MPA is a simpler design if all you need is to display
information on a web page.

Table 6.1 Spring MVC’s HTTP request-handling annotations

Annotation HTTP method Typical usea

@GetMapping HTTP GET requests Reading resource data

@PostMapping HTTP POST requests Creating a resource

@PutMapping HTTP PUT requests Updating a resource

@PatchMapping HTTP PATCH requests Updating a resource

https://github.com/habuma/spring-in-action-5-samples

140 CHAPTER 6 Creating REST services

To see these annotations in action, you’ll start by creating a simple REST endpoint
that fetches a few of the most recently created tacos.

6.1.1 Retrieving data from the server

One of the coolest things about Taco Cloud is that it allows taco fanatics to design
their own taco creations and share them with their fellow taco lovers. To this end,
Taco Cloud needs to be able to display a list of the most recently created tacos when
the Latest Designs link is clicked.

 In the Angular code I’ve defined a RecentTacosComponent that will display the most
recently created tacos. The complete TypeScript code for RecentTacosComponent is
shown in the next listing.

import { Component, OnInit, Injectable } from '@angular/core';
import { Http } from '@angular/http';
import { HttpClient } from '@angular/common/http';

@Component({
 selector: 'recent-tacos',
 templateUrl: 'recents.component.html',
 styleUrls: ['./recents.component.css']
})

@Injectable()
export class RecentTacosComponent implements OnInit {
 recentTacos: any;

 constructor(private httpClient: HttpClient) { }

 ngOnInit() {
 this.httpClient.get('http://localhost:8080/design/recent')
 .subscribe(data => this.recentTacos = data);
 }
}

Turn your attention to the ngOnInit() method. In that method, RecentTacos-
Component uses the injected Http module to perform an HTTP GET request to http://
localhost:8080/design/recent, expecting that the response will contain a list of taco

@DeleteMapping HTTP DELETE requests Deleting a resource

@RequestMapping General purpose request handling; HTTP method
specified in the method attribute

a Mapping HTTP methods to create, read, update, and delete (CRUD) operations isn’t a perfect match, but in practice,
that’s how they’re often used and how you’ll use them in Taco Cloud.

Listing 6.1 Angular component for displaying recent tacos

Table 6.1 Spring MVC’s HTTP request-handling annotations (continued)

Annotation HTTP method Typical usea

Fetches
recent tacos
from the
server

http://localhost:8080/design/recent
http://localhost:8080/design/recent
http://localhost:8080/design/recent

141Writing RESTful controllers
designs, which will be placed in the recentTacos model variable. The view (in recents
.component.html) will present that model data as HTML to be rendered in the
browser. The end result might look something like figure 6.2, after three tacos have
been created.

The missing piece in this puzzle is an endpoint that handles GET requests for /design/
recent and responds with a list of recently designed tacos. You’ll create a new control-
ler to handle such a request. The next listing shows the controller for the job.

package tacos.web.api;

import java.util.Optional;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Sort;

Listing 6.2 A RESTful controller for taco design API requests

Figure 6.2 Displaying the most recently created tacos

142 CHAPTER 6 Creating REST services
import org.springframework.hateoas.EntityLinks;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.CrossOrigin;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;

import tacos.Taco;
import tacos.data.TacoRepository;

@RestController
@RequestMapping(path="/design",
 produces="application/json")
@CrossOrigin(origins="*")
public class DesignTacoController {
 private TacoRepository tacoRepo;

 @Autowired
 EntityLinks entityLinks;

 public DesignTacoController(TacoRepository tacoRepo) {
 this.tacoRepo = tacoRepo;
 }

 @GetMapping("/recent")
 public Iterable<Taco> recentTacos() {
 PageRequest page = PageRequest.of(
 0, 12, Sort.by("createdAt").descending());
 return tacoRepo.findAll(page).getContent();
 }
}

You may be thinking that this controller’s name sounds familiar. In chapter 2 you cre-
ated a DesignTacoController that handled similar types of requests. But where that
controller was for the multipage Taco Cloud application, this new DesignTaco-
Controller is a REST controller, as indicated by the @RestController annotation.

 The @RestController annotation serves two purposes. First, it’s a stereotype anno-
tation like @Controller and @Service that marks a class for discovery by component
scanning. But most relevant to the discussion of REST, the @RestController annota-
tion tells Spring that all handler methods in the controller should have their return
value written directly to the body of the response, rather than being carried in the
model to a view for rendering.

 Alternatively, you could have annotated DesignTacoController with @Controller,
just like with any Spring MVC controller. But then you’d need to also annotate all of
the handler methods with @ResponseBody to achieve the same result. Yet another
option would be to return a ResponseEntity object, which we’ll discuss in a moment.

 The @RequestMapping annotation at the class level works with the @GetMapping
annotation on the recentTacos() method to specify that the recentTacos() method

Handles requests
for /design

Allows cross-
origin requests

Fetches and returns
recent taco designs

143Writing RESTful controllers
is responsible for handling GET requests for /design/recent (which is exactly what
your Angular code needs).

 You’ll notice that the @RequestMapping annotation also sets a produces attribute.
This specifies that any of the handler methods in DesignTacoController will only
handle requests if the request’s Accept header includes “application/json”. Not only
does this limit your API to only producing JSON results, it also allows for another con-
troller (perhaps the DesignTacoController from chapter 2) to handle requests with
the same paths, so long as those requests don’t require JSON output. Even though this
limits your API to being JSON-based (which is fine for your needs), you’re welcome to
set produces to an array of String for multiple content types. For example, to allow
for XML output, you could add “text/html” to the produces attribute:

@RequestMapping(path="/design",
 produces={"application/json", "text/xml"})

The other thing you may have noticed in listing 6.2 is that the class is annotated with
@CrossOrigin. Because the Angular portion of the application will be running on a
separate host and/or port from the API (at least for now), the web browser will pre-
vent your Angular client from consuming the API. This restriction can be overcome
by including CORS (Cross-Origin Resource Sharing) headers in the server responses.
Spring makes it easy to apply CORS with the @CrossOrigin annotation. As applied
here, @CrossOrigin allows clients from any domain to consume the API.

 The logic within the recentTacos() method is fairly straightforward. It constructs
a PageRequest object that specifies that you only want the first (0th) page of 12 results,
sorted in descending order by the taco’s creation date. In short, you want a dozen of
the most recently created taco designs. The PageRequest is passed into the call to the
findAll() method of TacoRepository, and the content of that page of results is
returned to the client (which, as you saw in listing 6.1, will be used as model data to
display to the user).

 Now let’s say that you want to offer an endpoint that fetches a single taco by its ID.
By using a placeholder variable in the handler method’s path and accepting a path
variable, you can capture the ID and use it to look up the Taco object through the
repository:

@GetMapping("/{id}")
public Taco tacoById(@PathVariable("id") Long id) {
 Optional<Taco> optTaco = tacoRepo.findById(id);
 if (optTaco.isPresent()) {
 return optTaco.get();
 }
 return null;
}

Because the controller’s base path is /design, this controller method handles GET
requests for /design/{id}, where the {id} portion of the path is a placeholder. The

144 CHAPTER 6 Creating REST services
actual value in the request is given to the id parameter, which is mapped to the {id}
placeholder by @PathVariable.

 Inside of tacoById(), the id parameter is passed to the repository’s findById()
method to fetch the Taco. findById() returns an Optional<Taco> because there may
not be a taco with the given ID. Therefore, you need to determine whether the ID
matched a taco or not before returning a value. If it matches, you call get() on the
Optional<Taco> object to return the actual Taco.

 If the ID doesn’t match any known tacos, you return null. This, however, is less
than ideal. By returning null, the client receives a response with an empty body and
an HTTP status code of 200 (OK). The client is handed a response it can’t use, but the
status code indicates everything is fine. A better approach would be to return a
response with an HTTP 404 (NOT FOUND) status.

 As it’s currently written, there’s no easy way to return a 404 status code from taco-
ById(). But if you make a few small tweaks, you can set the status code appropriately:

@GetMapping("/{id}")
public ResponseEntity<Taco> tacoById(@PathVariable("id") Long id) {
 Optional<Taco> optTaco = tacoRepo.findById(id);
 if (optTaco.isPresent()) {
 return new ResponseEntity<>(optTaco.get(), HttpStatus.OK);
 }
 return new ResponseEntity<>(null, HttpStatus.NOT_FOUND);
}

Now, instead of returning a Taco object, tacoById() returns a ResponseEntity<Taco>.
If the taco is found, you wrap the Taco object in a ResponseEntity with an HTTP sta-
tus of OK (which is what the behavior was before). But if the taco isn’t found, you
wrap a null in a ResponseEntity along with an HTTP status of NOT FOUND to indi-
cate that the client is trying to fetch a taco that doesn’t exist.

 You now have the start of a Taco Cloud API for your Angular client—or any other
kind of client, for that matter. For development testing purposes, you may also want to
use command-line utilities like curl or HTTPie (https://httpie.org/) to poke about
the API. For example, the following command line shows how you might fetch
recently created tacos with curl:

$ curl localhost:8080/design/recent

Or like this if you prefer HTTPie:

$ http :8080/design/recent

But defining an endpoint that returns information is only the start. What if your API
needs to receive data from the client? Let’s see how you can write controller methods
that handle input on the requests.

https://httpie.org/

145Writing RESTful controllers
6.1.2 Sending data to the server

So far your API is able to return a dozen of the most recently created tacos. But how
did those tacos get created in the first place?

 You haven’t deleted any code from chapter 2 yet, so you still have the original
DesignTacoController that displays a taco design form and handles form submission.
That’s a great way to get some test data in place to test the API you’ve created. But if
you’re going to transform Taco Cloud into a single-page application, you’ll need to
create Angular components and corresponding endpoints to replace that taco design
form from chapter 2.

 I’ve already handled the client code for the taco design form by defining a new
Angular component named DesignComponent (in a file named design.component.ts).
As it pertains to handling form submission, DesignComponent has an onSubmit()
method that looks like this:

onSubmit() {
 this.httpClient.post(
 'http://localhost:8080/design',
 this.model, {
 headers: new HttpHeaders().set('Content-type', 'application/json'),
 }).subscribe(taco => this.cart.addToCart(taco));

 this.router.navigate(['/cart']);
}

In the onSubmit() method, the post() method of HttpClient is called instead of
get(). This means that instead of fetching data from the API, you’re sending data to
the API. Specifically, you’re sending a taco design, which is held in the model variable,
to the API endpoint at /design with an HTTP POST request.

 This means that you’ll need to write a method in DesignTacoController to han-
dle that request and save the design. By adding the following postTaco() method to
DesignTacoController, you enable the controller to do exactly that:

@PostMapping(consumes="application/json")
@ResponseStatus(HttpStatus.CREATED)
public Taco postTaco(@RequestBody Taco taco) {
 return tacoRepo.save(taco);
}

Because postTaco() will handle an HTTP POST request, it’s annotated with @Post-
Mapping instead of @GetMapping. You’re not specifying a path attribute here, so the
postTaco() method will handle requests for /design as specified in the class-level
@RequestMapping on DesignTacoController.

 You do set the consumes attribute, however. The consumes attribute is to request
input what produces is to request output. Here you use consumes to say that the
method will only handle requests whose Content-type matches application/json.

 The Taco parameter to the method is annotated with @RequestBody to indicate
that the body of the request should be converted to a Taco object and bound to the

146 CHAPTER 6 Creating REST services
parameter. This annotation is important—without it, Spring MVC would assume that
you want request parameters (either query parameters or form parameters) to be
bound to the Taco object. But the @RequestBody annotation ensures that JSON in the
request body is bound to the Taco object instead.

 Once postTaco() has received the Taco object, it passes it to the save() method
on the TacoRepository.

 You may have also noticed that I’ve annotated the postTaco() method with
@ResponseStatus(HttpStatus.CREATED). Under normal circumstances (when no
exceptions are thrown), all responses will have an HTTP status code of 200 (OK),
indicating that the request was successful. Although an HTTP 200 response is always
welcome, it’s not always descriptive enough. In the case of a POST request, an HTTP
status of 201 (CREATED) is more descriptive. It tells the client that not only was the
request successful, but a resource was created as a result. It’s always a good idea to use
@ResponseStatus where appropriate to communicate the most descriptive and accu-
rate HTTP status code to the client.

 Although you’ve used @PostMapping to create a new Taco resource, POST requests
can also be used to update resources. Even so, POST requests are typically used for
resource creation and PUT and PATCH requests are used to update resources. Let’s see
how you can update data using @PutMapping and @PatchMapping.

6.1.3 Updating data on the server

Before you write any controller code for handling HTTP PUT or PATCH commands, you
should take a moment to consider the elephant in the room: Why are there two differ-
ent HTTP methods for updating resources?

 Although it’s true that PUT is often used to update resource data, it’s actually the
semantic opposite of GET. Whereas GET requests are for transferring data from the server
to the client, PUT requests are for sending data from the client to the server.

 In that sense, PUT is really intended to perform a wholesale replacement operation
rather than an update operation. In contrast, the purpose of HTTP PATCH is to per-
form a patch or partial update of resource data.

 For example, suppose you want to be able to change the address on an order. One
way we could achieve this through the REST API is with a PUT request handled like this:

@PutMapping("/{orderId}")
public Order putOrder(@RequestBody Order order) {
 return repo.save(order);
}

This could work, but it would require that the client submit the complete order
data in the PUT request. Semantically, PUT means “put this data at this URL,” essen-
tially replacing any data that’s already there. If any of the order’s properties are
omitted, that property’s value would be overwritten with null. Even the tacos in the
order would need to be set along with the order data or else they’d be removed
from the order.

147Writing RESTful controllers
 If PUT does a wholesale replacement of the resource data, then how should you
handle requests to do just a partial update? That’s what HTTP PATCH requests and
Spring’s @PatchMapping are good for. Here’s how you might write a controller
method to handle a PATCH request for an order:

@PatchMapping(path="/{orderId}", consumes="application/json")
public Order patchOrder(@PathVariable("orderId") Long orderId,
 @RequestBody Order patch) {

 Order order = repo.findById(orderId).get();
 if (patch.getDeliveryName() != null) {
 order.setDeliveryName(patch.getDeliveryName());
 }
 if (patch.getDeliveryStreet() != null) {
 order.setDeliveryStreet(patch.getDeliveryStreet());
 }
 if (patch.getDeliveryCity() != null) {
 order.setDeliveryCity(patch.getDeliveryCity());
 }
 if (patch.getDeliveryState() != null) {
 order.setDeliveryState(patch.getDeliveryState());
 }
 if (patch.getDeliveryZip() != null) {
 order.setDeliveryZip(patch.getDeliveryState());
 }
 if (patch.getCcNumber() != null) {
 order.setCcNumber(patch.getCcNumber());
 }
 if (patch.getCcExpiration() != null) {
 order.setCcExpiration(patch.getCcExpiration());
 }
 if (patch.getCcCVV() != null) {
 order.setCcCVV(patch.getCcCVV());
 }

 return repo.save(order);
}

The first thing to note here is that the patchOrder() method is annotated with
@PatchMapping instead of @PutMapping, indicating that it should handle HTTP PATCH
requests instead of PUT requests.

 But the one thing you’ve no doubt noticed is that the patchOrder() method is a
bit more involved than the putOrder() method. That’s because Spring MVC’s map-
ping annotations, including @PatchMapping and @PutMapping, only specify what kinds
of requests a method should handle. These annotations don’t dictate how the request
will be handled. Even though PATCH semantically implies a partial update, it’s up to
you to write code in the handler method that actually performs such an update.

 In the case of the putOrder() method, you accepted the complete data for an
order and saved it, adhering to the semantics of HTTP PUT. But in order for patch-
Mapping() to adhere to the semantics of HTTP PATCH, the body of the method

148 CHAPTER 6 Creating REST services
requires more intelligence. Instead of completely replacing the order with the new
data sent in, it inspects each field of the incoming Order object and applies any non-
null values to the existing order. This approach allows the client to only send the
properties that should be changed and enables the server to retain existing data for
any properties not specified by the client.

In both @PutMapping and @PatchMapping, notice that the request path references the
resource that’s to be changed. This is the same way paths are handled by @GetMapping-
annotated methods.

 You’ve now seen how to fetch and post resources with @GetMapping and @Post-
Mapping. And you’ve seen two different ways of updating a resource with @PutMapping
and @PatchMapping. All that’s left is handling requests to delete a resource.

6.1.4 Deleting data from the server

Sometimes data simply isn’t needed anymore. In those cases, a client should be able to
request that a resource be removed with an HTTP DELETE request.

 Spring MVC’s @DeleteMapping comes in handy for declaring methods that handle
DELETE requests. For example, let’s say you want your API to allow for an order resource
to be deleted. The following controller method should do the trick:

@DeleteMapping("/{orderId}")
@ResponseStatus(code=HttpStatus.NO_CONTENT)
public void deleteOrder(@PathVariable("orderId") Long orderId) {
 try {
 repo.deleteById(orderId);
 } catch (EmptyResultDataAccessException e) {}
}

By this point, the idea of another mapping annotation should be old hat to you.
You’ve already seen @GetMapping, @PostMapping, @PutMapping, and @PatchMapping—
each specifying that a method should handle requests for their corresponding HTTP

There’s more than one way to PATCH
The patching approach applied in the patchOrder() method has a couple of limitations:

 If null values are meant to specify no change, how can the client indicate
that a field should be set to null?

 There’s no way of removing or adding a subset of items from a collection. If
the client wants to add or remove an entry from a collection, it must send the
complete altered collection.

There’s really no hard-and-fast rule about how PATCH requests should be handled or
what the incoming data should look like. Rather than sending the actual domain data,
a client could send a patch-specific description of the changes to be applied. Of
course, the request handler would have to be written to handle patch instructions
instead of the domain data.

149Enabling hypermedia
methods. It will probably come as no surprise to you that @DeleteMapping is used to
specify that the deleteOrder() method is responsible for handling DELETE requests
for /orders/{orderId}.

 The code within the method is what does the actual work of deleting an order. In
this case, it takes the order ID, provided as a path variable in the URL, and passes it to
the repository’s deleteById() method. If the order exists when that method is called,
it will be deleted. If the order doesn’t exist, an EmptyResultDataAccessException will
be thrown.

 I’ve chosen to catch the EmptyResultDataAccessException and do nothing with
it. My thinking here is that if you try to delete a resource that doesn’t exist, the out-
come is the same as if it did exist prior to deletion. That is, the resource will be nonex-
istent. Whether it existed before or not is irrelevant. Alternatively, I could’ve written
deleteOrder() to return a ResponseEntity, setting the body to null and the HTTP
status code to NOT FOUND.

 The only other thing to take note of in the deleteOrder() method is that it’s
annotated with @ResponseStatus to ensure that the response’s HTTP status is 204
(NO CONTENT). There’s no need to communicate any resource data back to the cli-
ent for a resource that no longer exists, so responses to DELETE requests typically have
no body and therefore should communicate an HTTP status code to let the client
know not to expect any content.

 Your Taco Cloud API is starting to take shape. The client-side code can now easily
consume this API to present ingredients, accept orders, and display recently created
tacos. But there’s something you can do that will make your API even easier for the cli-
ent to consume. Let’s look at how you can add hypermedia to the Taco Cloud API.

6.2 Enabling hypermedia
The API you’ve created thus far is fairly basic, but it does work as long as the client
that consumes it is aware of the API’s URL scheme. For example, a client may be hard-
coded to know that it can obtain a list of recently created tacos by issuing a GET request
for /design/recent. Likewise, it may be hardcoded to know that it can append the ID
of any taco in that list to /design to get the URL for that particular taco resource.

 Using hardcoded URL patterns and string manipulation is common among API
client code. But imagine for a moment what would happen if the API’s URL scheme
were to change. The hardcoded client code would have an obsolete understanding of
the API and would thus be broken. Hardcoding API URLs and using string manipula-
tion on them makes the client code brittle.

 Hypermedia as the Engine of Application State, or HATEOAS, is a means of creating
self-describing APIs wherein resources returned from an API contain links to related
resources. This enables clients to navigate an API with minimal understanding of the
API’s URLs. Instead, it understands relationships between the resources served by the API
and uses its understanding of those relationships to discover the API’s URLs as it tra-
verses those relationships.

150 CHAPTER 6 Creating REST services
 For example, suppose a client were to request a list of recently designed tacos. In
its raw form, with no hyperlinks, the list of recent tacos would be received in the client
with JSON that looks like this (with all but the first taco in the list clipped out for brev-
ity’s sake):

[
 {
 "id": 4,
 "name": "Veg-Out",
 "createdAt": "2018-01-31T20:15:53.219+0000",
 "ingredients": [
 {"id": "FLTO", "name": "Flour Tortilla", "type": "WRAP"},
 {"id": "COTO", "name": "Corn Tortilla", "type": "WRAP"},
 {"id": "TMTO", "name": "Diced Tomatoes", "type": "VEGGIES"},
 {"id": "LETC", "name": "Lettuce", "type": "VEGGIES"},
 {"id": "SLSA", "name": "Salsa", "type": "SAUCE"}
]
 },
 ...
]

If the client wished to fetch or perform some other HTTP operation on the taco
itself, it would need to know (via hardcoding) that it could append the value of the
id property to a URL whose path is /design. Likewise, if it wanted to perform an
HTTP operation on one of the ingredients, it would need to know that it could
append the value of the ingredient’s id property to a URL whose path is /ingredi-
ents. In either case, it would also need to prefix that path with http:// or https:// and
the hostname of the API.

 In contrast, if the API is enabled with hypermedia, the API will describe its own
URLs, relieving the client of needing to be hardcoded with that knowledge. The
same list of recently created tacos might look like the next listing if hyperlinks were
embedded.

{
 "_embedded": {
 "tacoResourceList": [
 {
 "name": "Veg-Out",
 "createdAt": "2018-01-31T20:15:53.219+0000",
 "ingredients": [
 {
 "name": "Flour Tortilla", "type": "WRAP",
 "_links": {
 "self": { "href": "http://localhost:8080/ingredients/FLTO" }
 }
 },
 {
 "name": "Corn Tortilla", "type": "WRAP",
 "_links": {

Listing 6.3 A list of taco resources that includes hyperlinks

151Enabling hypermedia
 "self": { "href": "http://localhost:8080/ingredients/COTO" }
 }
 },
 {
 "name": "Diced Tomatoes", "type": "VEGGIES",
 "_links": {
 "self": { "href": "http://localhost:8080/ingredients/TMTO" }
 }
 },
 {
 "name": "Lettuce", "type": "VEGGIES",
 "_links": {
 "self": { "href": "http://localhost:8080/ingredients/LETC" }
 }
 },
 {
 "name": "Salsa", "type": "SAUCE",
 "_links": {
 "self": { "href": "http://localhost:8080/ingredients/SLSA" }
 }
 }
],
 "_links": {
 "self": { "href": "http://localhost:8080/design/4" }
 }
 },

 ...
]
 },
 "_links": {
 "recents": {
 "href": "http://localhost:8080/design/recent"
 }
 }
}

This particular flavor of HATEOAS is known as HAL (Hypertext Application Lan-
guage; http://stateless.co/hal_specification.html), a simple and commonly used for-
mat for embedding hyperlinks in JSON responses.

 Although this list isn’t as succinct as before, it does provide some useful informa-
tion. Each element in this new list of tacos includes a property named _links that
contains hyperlinks for the client to navigate the API. In this example, both tacos and
ingredients each have self links to reference those resources, and the entire list has a
recents link that references itself.

 Should a client application need to perform an HTTP request against a taco in the
list, it doesn’t need to be developed with any knowledge of what the taco resource’s
URL would look like. Instead, it knows to ask for the self link, which maps to http://
localhost:8080/design/4. If the client wants to deal with a particular ingredient, it
only needs to follow the self link for that ingredient.

http://stateless.co/hal_specification.html
http://localhost:8080/design/4
http://localhost:8080/design/4
http://localhost:8080/design/4

152 CHAPTER 6 Creating REST services
 The Spring HATEOAS project brings hyperlink support to Spring. It offers a set of
classes and resource assemblers that can be used to add links to resources before
returning them from a Spring MVC controller.

 To enable hypermedia in the Taco Cloud API, you’ll need to add the Spring
HATEOAS starter dependency to the build:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-hateoas</artifactId>
</dependency>

This starter not only adds Spring HATEOAS to the project’s classpath, but also pro-
vides for autoconfiguration to enable Spring HATEOAS. All you need to do is rework
your controllers to return resource types instead of domain types.

 You’ll start by adding hypermedia links to the list of recent tacos returned by a GET
request to /design/recent.

6.2.1 Adding hyperlinks

Spring HATEOAS provides two primary types that represent hyperlinked resources:
Resource and Resources. The Resource type represents a single resource, whereas
Resources is a collection of resources. Both types are capable of carrying links to
other resources. When returned from a Spring MVC REST controller method, the
links they carry will be included in the JSON (or XML) received by the client.

 To add hyperlinks to the list of recently created tacos, you’ll need to revisit the
recentTacos() method shown in listing 6.2. The original implementation returned a
List<Taco>, which was fine at the time, but you’re going to need it to return a
Resources object instead. The following listing shows a new implementation of
recentTacos() that includes the first steps toward enabling hyperlinks in the recent
tacos list.

@GetMapping("/recent")
public Resources<Resource<Taco>> recentTacos() {
 PageRequest page = PageRequest.of(
 0, 12, Sort.by("createdAt").descending());

 List<Taco> tacos = tacoRepo.findAll(page).getContent();
 Resources<Resource<Taco>> recentResources = Resources.wrap(tacos);

 recentResources.add(
 new Link("http://localhost:8080/design/recent", "recents"));
 return recentResources;
}

In this new version of recentTacos(), you no longer return the list of tacos directly.
Instead, you use Resources.wrap() to wrap the list of tacos as an instance of

Listing 6.4 Adding hyperlinks to resources

153Enabling hypermedia
Resources<Resource<Taco>>, which is ultimately returned from the method. But before
returning the Resources object, you add a link whose relationship name is recents
and whose URL is http://localhost:8080/design/recent. As a consequence, the fol-
lowing snippet of JSON is included in the resource returned from the API request:

"_links": {
 "recents": {
 "href": "http://localhost:8080/design/recent"
 }
}

This is a good start, but you’ve still got some work to do. At this point, the only link
you’ve added is to the entire list; no links are added to the taco resources themselves
or to the ingredients of each taco. You’ll add those soon. But first, let’s address the
hardcoded URL that you’ve given for the recents link.

 Hardcoding a URL like this is a really bad idea. Unless your Taco Cloud ambitions
are limited to only ever running the application on your own development machines,
you need a way to not hardcode a URL with localhost:8080 in it. Fortunately, Spring
HATEOAS provides help in the form of link builders.

 The most useful of the Spring HATEOAS link builders is ControllerLinkBuilder.
This link builder is smart enough to know what the hostname is without you having to
hardcode it. And it provides a handy fluent API to help you build links relative to the
base URL of any controller.

 Using ControllerLinkBuilder, you can rewrite the hardcoded Link creation in
recentTacos() with the following lines:

Resources<Resource<Taco>> recentResources = Resources.wrap(tacos);
recentResources.add(
 ControllerLinkBuilder.linkTo(DesignTacoController.class)
 .slash("recent")
 .withRel("recents"));

Not only do you no longer need to hardcode the hostname, you also don’t have to
specify the /design path. Instead, you ask for a link to DesignTacoController, whose
base path is /design. ControllerLinkBuilder uses the controller’s base path as the
foundation of the Link object you’re creating.

 What’s next is a call to one of my favorite methods in any Spring project: slash().
I love this method because it so succinctly describes exactly what it’s going to do. It
quite literally appends a slash (/) and the given value to the URL. As a result, the
URL’s path is /design/recent.

 Finally, you specify a relation name for the Link. In this example, the relation is
named recents.

 Although I’m a big fan of the slash() method, ControllerLinkBuilder has
another method that can help eliminate any hardcoding associated with link URLs.
Instead of calling slash(), you can call linkTo() by giving it a method on the control-
ler to have ControllerLinkBuilder derive the base URL from both the controller’s

http://localhost:8080/design/recent

154 CHAPTER 6 Creating REST services
base path and the method’s mapped path. The following code uses the linkTo()
method this way:

Resources<Resource<Taco>> recentResources = Resources.wrap(tacos);
recentResources.add(
 linkTo(methodOn(DesignTacoController.class).recentTacos())
 .withRel("recents"));

Here I’ve decided to statically include the linkTo() and methodOn() methods (both
from ControllerLinkBuilder) to keep the code easier to read. The methodOn()
method takes the controller class and lets you make a call to the recentTacos()
method, which is intercepted by ControllerLinkBuilder and used to determine not
only the controller’s base path, but also the path mapped to recentTacos(). Now the
entire URL is derived from the controller’s mappings, and absolutely no portion is
hardcoded. Sweet!

6.2.2 Creating resource assemblers

Now you need to add links to the taco resource contained within the list. One option
is to loop through each of the Resource<Taco> elements carried in the Resources
object, adding a Link to each individually. But that’s a bit tedious and you’d need to
repeat that looping code in the API wherever you return a list of taco resources.

 We need a different tactic.
 Rather than let Resources.wrap() create a Resource object for each taco in the

list, you’re going to define a utility class that converts Taco objects to a new Taco-
Resource object. The TacoResource object will look a lot like a Taco, but it will also be
able to carry links. The next listing shows what a TacoResource might look like.

package tacos.web.api;
import java.util.Date;
import java.util.List;
import org.springframework.hateoas.ResourceSupport;
import lombok.Getter;
import tacos.Ingredient;
import tacos.Taco;

public class TacoResource extends ResourceSupport {

 @Getter
 private final String name;

 @Getter
 private final Date createdAt;

 @Getter
 private final List<Ingredient> ingredients;

 public TacoResource(Taco taco) {
 this.name = taco.getName();

Listing 6.5 A taco resource carriying domain data and a list of hyperlinks

155Enabling hypermedia
 this.createdAt = taco.getCreatedAt();
 this.ingredients = taco.getIngredients();
 }

}

In a lot of ways, TacoResource isn’t that different from the Taco domain type. They
both have name, createdAt, and ingredients properties. But TacoResource extends
ResourceSupport to inherit a list of Link object and methods to manage the list of
links.

 What’s more, TacoResource doesn’t include the id property from Taco. That’s
because there’s no need to expose any database-specific IDs in the API. The
resource’s self link will serve as the identifier for the resource from the perspective
of an API client.

NOTE Domains and resources: separate or the same? Some Spring developers
may choose to combine their domain and resource types into a single type by
having their domain types extend ResourceSupport. There’s no right or
wrong answer as to which is the correct way. I chose to create a separate
resource type so that Taco isn’t unnecessarily cluttered with resource links for
use cases where links aren’t needed. Also, by creating a separate resource
type, I was able to easily leave the id property out so that it won’t be exposed
in the API.

TacoResource has a single constructor that accepts a Taco and copies the pertinent
properties from the Taco to its own properties. This makes it easy to convert a single
Taco object to a TacoResource. But if you stop there, you’d still need looping to con-
vert a list of Taco objects to a Resources<TacoResource>.

 To aid in converting Taco objects to TacoResource objects, you’re also going to
create a resource assembler. The following listing is what you’ll need.

package tacos.web.api;

import org.springframework.hateoas.mvc.ResourceAssemblerSupport;

import tacos.Taco;

public class TacoResourceAssembler
 extends ResourceAssemblerSupport<Taco, TacoResource> {

 public TacoResourceAssembler() {
 super(DesignTacoController.class, TacoResource.class);
 }

 @Override
 protected TacoResource instantiateResource(Taco taco) {
 return new TacoResource(taco);
 }

Listing 6.6 A resource assembler that assembles taco resources

156 CHAPTER 6 Creating REST services
 @Override
 public TacoResource toResource(Taco taco) {
 return createResourceWithId(taco.getId(), taco);
 }

}

TacoResourceAssembler has a default constructor that informs the superclass (Resource-
AssemblerSupport) that it will be using DesignTacoController to determine the base
path for any URLs in links it creates when creating a TacoResource.

 The instantiateResource() method is overridden to instantiate a TacoResource
given a Taco. This method would be optional if TacoResource had a default construc-
tor. In this case, however, TacoResource requires construction with a Taco, so you’re
required to override it.

 Finally, the toResource() method is the only method that’s strictly mandatory
when extending ResourceAssemblerSupport. Here you’re telling it to create a Taco-
Resource object from a Taco, and to automatically give it a self link with the URL
being derived from the Taco object’s id property.

 On the surface, toResource() appears to have a similar purpose to instantiate-
Resource(), but they serve slightly different purposes. Whereas instantiateResource()
is intended to only instantiate a Resource object, toResource() is intended not only
to create the Resource object, but also to populate it with links. Under the covers,
toResource() will call instantiateResource().

 Now tweak the recentTacos() method to make use of TacoResourceAssembler:

@GetMapping("/recent")
public Resources<TacoResource> recentTacos() {
 PageRequest page = PageRequest.of(
 0, 12, Sort.by("createdAt").descending());
 List<Taco> tacos = tacoRepo.findAll(page).getContent();

 List<TacoResource> tacoResources =
 new TacoResourceAssembler().toResources(tacos);
 Resources<TacoResource> recentResources =
 new Resources<TacoResource>(tacoResources);
 recentResources.add(
 linkTo(methodOn(DesignTacoController.class).recentTacos())
 .withRel("recents"));
 return recentResources;
}

Rather than return a Resources<Resource<Taco>>, recentTacos() now returns a
Resources<TacoResource> to take advantage of your new TacoResource type. After
fetching the tacos from the repository, you pass the list of Taco objects to the
toResources() method on a TacoResourceAssembler. This handy method cycles
through all of the Taco objects, calling the toResource() method that you overrode
in TacoResourceAssembler to create a list of TacoResource objects.

 With that TacoResource list, you next create a Resources<TacoResource> object
and then populate it with the recents links as in the prior version of recentTacos().

157Enabling hypermedia
 At this point, a GET request to /design/recent will produce a list of tacos, each with
a self link and a recents link on the list itself. But the ingredients will still be without
a link. To address that, you’ll create a new resource assembler for ingredients:

package tacos.web.api;
import org.springframework.hateoas.mvc.ResourceAssemblerSupport;
import tacos.Ingredient;

class IngredientResourceAssembler extends
 ResourceAssemblerSupport<Ingredient, IngredientResource> {

 public IngredientResourceAssembler() {
 super(IngredientController2.class, IngredientResource.class);
 }

 @Override
 public IngredientResource toResource(Ingredient ingredient) {
 return createResourceWithId(ingredient.getId(), ingredient);
 }

 @Override
 protected IngredientResource instantiateResource(
 Ingredient ingredient) {
 return new IngredientResource(ingredient);
 }

}

As you can see, IngredientResourceAssembler is much like TacoResourceAssembler,
but it works with Ingredient and IngredientResource objects instead of Taco and
TacoResource objects.

 Speaking of IngredientResource, it looks like this:

package tacos.web.api;
import org.springframework.hateoas.ResourceSupport;
import lombok.Getter;
import tacos.Ingredient;
import tacos.Ingredient.Type;

public class IngredientResource extends ResourceSupport {

 @Getter
 private String name;

 @Getter
 private Type type;

 public IngredientResource(Ingredient ingredient) {
 this.name = ingredient.getName();
 this.type = ingredient.getType();
 }

}

158 CHAPTER 6 Creating REST services
As with TacoResource, IngredientResource extends ResourceSupport and copies
pertinent properties from the domain type into its own set of properties (leaving out
the id property).

 All that’s left is to make a slight change to TacoResource so that it carries Ingredient-
Resource objects instead of Ingredient objects:

package tacos.web.api;
import java.util.Date;
import java.util.List;
import org.springframework.hateoas.ResourceSupport;
import lombok.Getter;
import tacos.Taco;

public class TacoResource extends ResourceSupport {

 private static final IngredientResourceAssembler
 ingredientAssembler = new IngredientResourceAssembler();

 @Getter
 private final String name;

 @Getter
 private final Date createdAt;

 @Getter
 private final List<IngredientResource> ingredients;

 public TacoResource(Taco taco) {
 this.name = taco.getName();
 this.createdAt = taco.getCreatedAt();
 this.ingredients =
 ingredientAssembler.toResources(taco.getIngredients());
 }

}

This new version of TacoResource creates a static final instance of Ingredient-
ResourceAssembler and uses its toResource() method to convert a given Taco object’s
list of Ingredient into a list of IngredientResource.

 Your recent tacos list is now completely outfitted with hyperlinks, not only for itself
(the recents link), but also for all of its taco entries and the ingredients of those
tacos. The response should look a lot like the JSON in listing 6.3.

 You could stop here and move on to the next subject. But first I’ll address some-
thing that’s been bugging me about listing 6.3.

159Enabling hypermedia
6.2.3 Naming embedded relationships

If you take a closer look at listing 6.3, you’ll notice that the top-level elements look
like this:

{
 "_embedded": {
 "tacoResourceList": [
 ...
]
 }
}

Most notably, let me draw your attention to the name tacoResourceList under
embedded. That name was derived from the fact that the Resources object was cre-
ated from a List<TacoResource>. Not that it’s likely, but if you were to refactor the
name of the TacoResource class to something else, the field name in the resulting
JSON would change to match it. This would likely break any clients coded to count
on that name.

 The @Relation annotation can help break the coupling between the JSON field
name and the resource type class names as defined in Java. By annotating Taco-
Resource with @Relation, you can specify how Spring HATEOAS should name the
field in the resulting JSON:

@Relation(value="taco", collectionRelation="tacos")
public class TacoResource extends ResourceSupport {
 ...
}

Here you’ve specified that when a list of TacoResource objects is used in a Resources
object, it should be named tacos. And although you’re not making use of it in our
API, a single TacoResource object should be referred to in JSON as taco.

 As a result, the JSON returned from /design/recent will now look like this (no
matter what refactoring you may or may not perform on TacoResource):

{
 "_embedded": {
 "tacos": [
 ...
]
 }
}

Spring HATEOAS makes adding links to your API rather straightforward and simple.
Nonetheless, it did add several lines of code that you wouldn’t otherwise need.
Because of that, some developers may choose to not bother with HATEOAS in their
APIs, even if it means that the client code is subject to breakage if the API’s URL
scheme changes. I encourage you to take HATEOAS seriously and not to take the lazy
way out by not adding hyperlinks in your resources.

160 CHAPTER 6 Creating REST services
 But if you insist on being lazy, then maybe there’s a win-win scenario for you if
you’re using Spring Data for your repositories. Let’s see how Spring Data REST can
help you automatically create APIs based on the data repositories you created with
Spring Data in chapter 3.

6.3 Enabling data-backed services
As you saw in chapter 3, Spring Data performs a special kind of magic by automatically
creating repository implementations based on interfaces you define in your code. But
Spring Data has another trick up its sleeve that can help you define APIs for your
application.

 Spring Data REST is another member of the Spring Data family that automatically
creates REST APIs for repositories created by Spring Data. By doing little more than
adding Spring Data REST to your build, you get an API with operations for each
repository interface you’ve defined.

 To start using Spring Data REST, you add the following dependency to your build:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>

Believe it or not, that’s all that’s required to expose a REST API in a project that’s
already using Spring Data for automatic repositories. By simply having the Spring
Data REST starter in the build, the application gets auto-configuration that enables
automatic creation of a REST API for any repositories that were created by Spring
Data (including Spring Data JPA, Spring Data Mongo, and so on).

 The REST endpoints that Spring Data REST creates are at least as good as (and
possibly even better than) the ones you’ve created yourself. So at this point, feel free
to do a little demolition work and remove any @RestController-annotated classes
you’ve created up to this point before moving on.

 To try out the endpoints provided by Spring Data REST, you can fire up the appli-
cation and start poking at some of the URLs. Based on the set of repositories you’ve
already defined for Taco Cloud, you should be able to perform GET requests for tacos,
ingredients, orders, and users.

 For example, you can get a list of all ingredients by making a GET request for
/ingredients. Using curl, you might get something that looks like this (abridged to
only show the first ingredient):

$ curl localhost:8080/ingredients
{
 "_embedded" : {
 "ingredients" : [{
 "name" : "Flour Tortilla",
 "type" : "WRAP",
 "_links" : {
 "self" : {

161Enabling data-backed services
 "href" : "http://localhost:8080/ingredients/FLTO"
 },
 "ingredient" : {
 "href" : "http://localhost:8080/ingredients/FLTO"
 }
 }
 },
 ...
]
 },
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/ingredients"
 },
 "profile" : {
 "href" : "http://localhost:8080/profile/ingredients"
 }
 }
}

Wow! By doing nothing more than adding a dependency to your build, you’re not
only getting an endpoint for ingredients, but the resources that come back also con-
tain hyperlinks! Pretending to be a client of this API, you can also use curl to follow
the self link for the flour tortilla entry:

$ curl http://localhost:8080/ingredients/FLTO
{
 "name" : "Flour Tortilla",
 "type" : "WRAP",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/ingredients/FLTO"
 },
 "ingredient" : {
 "href" : "http://localhost:8080/ingredients/FLTO"
 }
 }
}

To avoid getting too distracted, we won’t waste much more time in this book digging
into each and every endpoint and option that Spring Data REST has created. But you
should know that it also supports POST, PUT, and DELETE methods for the endpoints it
creates. That’s right: you can POST to /ingredients to create a new ingredient and
DELETE /ingredients/FLTO to remove flour tortillas from the menu.

 One thing you might want to do is set a base path for the API so that its endpoints
are distinct and don’t collide with any controllers you write. (In fact, if you don’t
remove the IngredientsController you created earlier, it will interfere with the
/ingredients endpoint provided by Spring Data REST.) To adjust the base path for
the API, set the spring.data.rest.base-path property:

162 CHAPTER 6 Creating REST services
spring:
 data:
 rest:
 base-path: /api

This sets the base path for Spring Data REST endpoints to /api. Consequently, the
ingredients endpoint is now /api/ingredients. Now give this new base path a spin by
requesting a list of tacos:

$ curl http://localhost:8080/api/tacos
{
 "timestamp": "2018-02-11T16:22:12.381+0000",
 "status": 404,
 "error": "Not Found",
 "message": "No message available",
 "path": "/api/tacos"
}

Oh dear! That didn’t work quite as expected. You have an Ingredient entity and an
IngredientRepository interface, which Spring Data REST exposed with an /api/
ingredients endpoint. So if you have a Taco entity and a TacoRepository interface,
why doesn’t Spring Data REST give you an /api/tacos endpoint?

6.3.1 Adjusting resource paths and relation names

Actually, Spring Data REST does give you an endpoint for working with tacos. But as
clever as Spring Data REST can be, it shows itself to be a tiny bit less awesome in how it
exposes the tacos endpoint.

 When creating endpoints for Spring Data repositories, Spring Data REST tries to
pluralize the associated entity class. For the Ingredient entity, the endpoint is /ingre-
dients. For the Order and User entities it’s /orders and /users. So far, so good.

 But sometimes, such as with “taco”, it trips up on a word and the pluralized version
isn’t quite right. As it turns out, Spring Data REST pluralized “taco” as “tacoes”, so to
make a request for tacos, you must play along and request /api/tacoes:

% curl localhost:8080/api/tacoes
{
 "_embedded" : {
 "tacoes" : [{
 "name" : "Carnivore",
 "createdAt" : "2018-02-11T17:01:32.999+0000",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/api/tacoes/2"
 },
 "taco" : {
 "href" : "http://localhost:8080/api/tacoes/2"
 },
 "ingredients" : {
 "href" : "http://localhost:8080/api/tacoes/2/ingredients"
 }

163Enabling data-backed services
 }
 }]
 },
 "page" : {
 "size" : 20,
 "totalElements" : 3,
 "totalPages" : 1,
 "number" : 0
 }
}

You may be wondering how I knew that “taco” would be mispluralized as “tacoes”. As it
turns out, Spring Data REST also exposes a home resource that has links for all
exposed endpoints. Just make a GET request to the API base path to get the goods:

$ curl localhost:8080/api
{
 "_links" : {
 "orders" : {
 "href" : "http://localhost:8080/api/orders"
 },
 "ingredients" : {
 "href" : "http://localhost:8080/api/ingredients"
 },
 "tacoes" : {
 "href" : "http://localhost:8080/api/tacoes{?page,size,sort}",
 "templated" : true
 },
 "users" : {
 "href" : "http://localhost:8080/api/users"
 },
 "profile" : {
 "href" : "http://localhost:8080/api/profile"
 }
 }
}

As you can see, the home resource shows the links for all of your entities. Everything
looks good, except for the tacoes link, where both the relation name and the URL
have the odd pluralization of “taco”.

 The good news is that you don’t have to accept this little quirk of Spring Data
REST. By adding a simple annotation to the Taco class, you can tweak both the rela-
tion name and that path:

@Data
@Entity
@RestResource(rel="tacos", path="tacos")
public class Taco {
 ...
}

164 CHAPTER 6 Creating REST services
The @RestResource annotation lets you give the entity any relation name and path
you want. In this case, you’re setting them both to “tacos”. Now when you request the
home resource, you see the tacos link with correct pluralization:

"tacos" : {
 "href" : "http://localhost:8080/api/tacos{?page,size,sort}",
 "templated" : true
},

This also sorts out the path for the endpoint so that you can issue requests against
/api/tacos to work with taco resources.

 Speaking of sorting things out, let’s look at how you can sort the results from
Spring Data REST endpoints.

6.3.2 Paging and sorting

You may have noticed that the links in the home resource all offer optional page,
size, and sort parameters. By default, requests to a collection resource such as
/api/tacos will return up to 20 items per page from the first page. But you can adjust
the page size and the page displayed by specifying the page and size parameters in
your request.

 For example, to request the first page of tacos where the page size is 5, you can
issue the following GET request (using curl):

$ curl "localhost:8080/api/tacos?size=5"

Assuming that there are more than five tacos to be seen, you can request the second
page of tacos by adding the page parameter:

$ curl "localhost:8080/api/tacos?size=5&page=1"

Notice that the page parameter is zero-based, which means that asking for page 1 is
actually asking for the second page. (You’ll also note that many command-line shells
trip up over the ampersand in the request, which is why I quoted the whole URL in
the preceding curl command.)

 You could use string manipulation to add those parameters to the URL, but
HATEOAS comes to the rescue by offering links for the first, last, next, and previous
pages in the response:

"_links" : {
 "first" : {
 "href" : "http://localhost:8080/api/tacos?page=0&size=5"
 },
 "self" : {
 "href" : "http://localhost:8080/api/tacos"
 },
 "next" : {
 "href" : "http://localhost:8080/api/tacos?page=1&size=5"
 },

165Enabling data-backed services
 "last" : {
 "href" : "http://localhost:8080/api/tacos?page=2&size=5"
 },
 "profile" : {
 "href" : "http://localhost:8080/api/profile/tacos"
 },
 "recents" : {
 "href" : "http://localhost:8080/api/tacos/recent"
 }
}

With these links, a client of the API need not keep track of what page it’s on and con-
catenate the parameters to the URL. Instead, it must simply know to look for one of
these page navigation links by its name and follow it.

 The sort parameter lets you sort the resulting list by any property of the entity.
For example, you need a way to fetch the 12 most recently created tacos for the UI
to display. You can do that by specifying the following mix of paging and sorting
parameters:

$ curl "localhost:8080/api/tacos?sort=createdAt,desc&page=0&size=12"

Here the sort parameter specifies that you should sort by the createdDate prop-
erty and that it should be sorted in descending order (so that the newest tacos are
first). The page and size parameters specify that you should see the first page of
12 tacos.

 This is precisely what the UI needs in order to show the most recently created
tacos. It’s approximately the same as the /design/recent endpoint you defined in
DesignTacoController earlier in this chapter.

 There’s a small problem, though. The UI code will need to be hardcoded to
request the list of tacos with those parameters. Sure, it will work. But you’re adding
some brittleness to the client by making it too knowledgeable regarding how to con-
struct an API request. It would be great if the client could look up the URL from a list
of links. And it would be even more awesome if the URL were more succinct, like the
/design/recent endpoint you had before.

6.3.3 Adding custom endpoints

Spring Data REST is great at creating endpoints for performing CRUD operations
against Spring Data repositories. But sometimes you need to break away from the
default CRUD API and create an endpoint that gets to the core of the problem.

 There’s absolutely nothing stopping you from implementing any endpoint you
want in a @RestController-annotated bean to supplement what Spring Data REST
automatically generates. In fact, you could resurrect the DesignTacoController from
earlier in the chapter, and it would still work alongside the endpoints provided by
Spring Data REST.

166 CHAPTER 6 Creating REST services
 But when you write your own API controllers, their endpoints seem somewhat
detached from the Spring Data REST endpoints in a couple of ways:

 Your own controller endpoints aren’t mapped under Spring Data REST’s base
path. You could force their mappings to be prefixed with whatever base path
you want, including the Spring Data REST base path, but if the base path were
to change, you’d need to edit the controller’s mappings to match.

 Any endpoints you define in your own controllers won’t be automatically
included as hyperlinks in the resources returned by Spring Data REST end-
points. This means that clients won’t be able to discover your custom endpoints
with a relation name.

Let’s address the concern about the base path first. Spring Data REST includes
@RepositoryRestController, a new annotation for annotating controller classes whose
mappings should assume a base path that’s the same as the one configured for Spring
Data REST endpoints. Put simply, all mappings in a @RepositoryRestController-
annotated controller will have their path prefixed with the value of the spring.data
.rest.base-path property (which you’ve configured as /api).

 Rather than resurrect the DesignTacoController, which had several handler
methods you won’t need, you’ll create a new controller that only contains the recent-
Tacos() method. RecentTacosController in the next listing is annotated with
@RepositoryRestController to adopt Spring Data REST’s base path for its request
mappings.

package tacos.web.api;
import static org.springframework.hateoas.mvc.ControllerLinkBuilder.*;
import java.util.List;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Sort;
import org.springframework.data.rest.webmvc.RepositoryRestController;
import org.springframework.hateoas.Resources;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.GetMapping;
import tacos.Taco;
import tacos.data.TacoRepository;

@RepositoryRestController
public class RecentTacosController {

 private TacoRepository tacoRepo;

 public RecentTacosController(TacoRepository tacoRepo) {
 this.tacoRepo = tacoRepo;
 }

 @GetMapping(path="/tacos/recent", produces="application/hal+json")
 public ResponseEntity<Resources<TacoResource>> recentTacos() {

Listing 6.7 Applying Spring Data REST’s base path to a controller

167Enabling data-backed services
 PageRequest page = PageRequest.of(
 0, 12, Sort.by("createdAt").descending());
 List<Taco> tacos = tacoRepo.findAll(page).getContent();

 List<TacoResource> tacoResources =
 new TacoResourceAssembler().toResources(tacos);
 Resources<TacoResource> recentResources =
 new Resources<TacoResource>(tacoResources);
 recentResources.add(
 linkTo(methodOn(RecentTacosController.class).recentTacos())
 .withRel("recents"));
 return new ResponseEntity<>(recentResources, HttpStatus.OK);
 }

}

Even though @GetMapping is mapped to the path /tacos/recent, the @Repository-
RestController annotation at the class level will ensure that it will be prefixed with
Spring Data REST’s base path. As you’ve configured it, the recentTacos() method
will handle GET requests for /api/tacos/recent.

 One important thing to notice is that although @RepositoryRestController is
named similarly to @RestController, it doesn’t carry the same semantics as @Rest-
Controller. Specifically, it doesn’t ensure that values returned from handler methods
are automatically written to the body of the response. Therefore you need to either
annotate the method with @ResponseBody or return a ResponseEntity that wraps the
response data. Here you chose to return a ResponseEntity.

 With RecentTacosController in play, requests for /api/tacos/recent will return
up to 15 of the most recently created tacos, without the need for paging and sorting
parameters in the URL. But it still doesn’t appear in the hyperlinks list when request-
ing /api/tacos. Let’s fix that.

6.3.4 Adding custom hyperlinks to Spring Data endpoints

If the recent tacos endpoint isn’t among the hyperlinks returned from /api/tacos,
how will a client know how to fetch the most recent tacos? It’ll either have to guess or
use the paging and sorting parameters. Either way, it’ll be hardcoded in the client
code, which isn’t ideal.

 By declaring a resource processor bean, however, you can add links to the list of
links that Spring Data REST automatically includes. Spring Data HATEOAS offers
ResourceProcessor, an interface for manipulating resources before they’re returned
through the API. For your purposes, you need an implementation of Resource-
Processor that adds a recents link to any resource of type PagedResources<Resource
<Taco>> (the type returned for the /api/tacos endpoint). The next listing shows a
bean declaration method that defines such a ResourceProcessor.

168 CHAPTER 6 Creating REST services
@Bean
public ResourceProcessor<PagedResources<Resource<Taco>>>
 tacoProcessor(EntityLinks links) {

 return new ResourceProcessor<PagedResources<Resource<Taco>>>() {
 @Override
 public PagedResources<Resource<Taco>> process(
 PagedResources<Resource<Taco>> resource) {
 resource.add(
 links.linkFor(Taco.class)
 .slash("recent")
 .withRel("recents"));
 return resource;
 }
 };
}

The ResourceProcessor shown in listing 6.8 is defined as an anonymous inner class
and declared as a bean to be created in the Spring application context. Spring
HATEOAS will discover this bean (as well as any other beans of type Resource-
Processor) automatically and will apply them to the appropriate resources. In this case,
if a PagedResources<Resource<Taco>> is returned from a controller, it will receive a
link for the most recently created tacos. This includes the response for requests for
/api/tacos.

Summary
 REST endpoints can be created with Spring MVC, with controllers that follow

the same programming model as browser-targeted controllers.
 Controller handler methods can either be annotated with @ResponseBody or

return ResponseEntity objects to bypass the model and view and write data
directly to the response body.

 The @RestController annotation simplifies REST controllers, eliminating the
need to use @ResponseBody on handler methods.

 Spring HATEOAS enables hyperlinking of resources returned from Spring MVC
controllers.

 Spring Data repositories can automatically be exposed as REST APIs using Spring
Data REST.

Listing 6.8 Adding custom links to a Spring Data REST endpoint

Consuming REST services
Have you ever gone to a movie and, as the movie starts, discovered that you were the
only person in the theater? It certainly is a wonderful experience to have what is
essentially a private viewing of a movie. You can pick whatever seat you want, talk back
to the characters onscreen, and maybe even open your phone and tweet about it
without anyone getting angry for disrupting their movie-watching experience. And
the best part is that nobody else is there ruining the movie for you, either!

 This hasn’t happened to me often. But when it has, I have wondered what
would have happened if I hadn’t shown up. Would they still have shown the film?
Would the hero still have saved the day? Would the theater staff still have cleaned
the theater after the movie was over?

 A movie without an audience is kind of like an API without a client. It’s ready to
accept and provide data, but if the API is never invoked, is it really an API? Like
Schrödinger’s cat, we can’t know if the API is active or returning HTTP 404 responses
until we issue a request to it.

 In the previous chapter, we focused on defining REST endpoints that can be
consumed by some client external to your application. Although the driving force

This chapter covers
 Using RestTemplate to consume REST APIs

 Navigating hypermedia APIs with Traverson
169

170 CHAPTER 7 Consuming REST services
for developing such an API was a single-page Angular application that served as the
Taco Cloud website, the reality is that the client could be any application, in any lan-
guage—even another Java application.

 It’s not uncommon for Spring applications to both provide an API and make
requests to another application’s API. In fact, this is becoming prevalent in the world
of microservices. Therefore, it’s worthwhile to spend a moment looking at how to use
Spring to interact with REST APIs.

 A Spring application can consume a REST API with

 RestTemplate—A straightforward, synchronous REST client provided by the
core Spring Framework.

 Traverson—A hyperlink-aware, synchronous REST client provided by Spring
HATEOAS. Inspired from a JavaScript library of the same name.

 WebClient—A reactive, asynchronous REST client introduced in Spring 5.

I’ll defer discussion of WebClient until we cover Spring’s reactive web framework in
chapter 11. For now, we’ll focus on the other two REST clients, starting with Rest-
Template.

7.1 Consuming REST endpoints with RestTemplate
There’s a lot that goes into interacting with a REST resource from the client’s perspec-
tive—mostly tedium and boilerplate. Working with low-level HTTP libraries, the client
needs to create a client instance and a request object, execute the request, interpret
the response, map the response to domain objects, and handle any exceptions that
may be thrown along the way. And all of this boilerplate is repeated, regardless of what
HTTP request is sent.

 To avoid such boilerplate code, Spring provides RestTemplate. Just as JDBC-
Template handles the ugly parts of working with JDBC, RestTemplate frees you from
dealing with the tedium of consuming REST resources.

 RestTemplate provides 41 methods for interacting with REST resources. Rather
than examine all of the methods that it offers, it’s easier to consider only a dozen
unique operations, each overloaded to equal the complete set of 41 methods. The 12
operations are described in table 7.1.

Table 7.1 RestTemplate defines 12 unique operations, each of which is overloaded, providing a total
of 41 methods.

Method Description

delete(…) Performs an HTTP DELETE request on a resource at a specified URL

exchange(…) Executes a specified HTTP method against a URL, returning a
ResponseEntity containing an object mapped from the response body

execute(…) Executes a specified HTTP method against a URL, returning an object
mapped from the response body

171Consuming REST endpoints with RestTemplate
With the exception of TRACE, RestTemplate has at least one method for each of the
standard HTTP methods. In addition, execute() and exchange() provide lower-level,
general-purpose methods for sending requests with any HTTP method.

 Most of the methods in table 7.1 are overloaded into three method forms:

 One accepts a String URL specification with URL parameters specified in a
variable argument list.

 One accepts a String URL specification with URL parameters specified in a
Map<String,String>.

 One accepts a java.net.URI as the URL specification, with no support for
parameterized URLs.

Once you get to know the 12 operations provided by RestTemplate and how each of
the variant forms works, you’ll be well on your way to writing resource-consuming
REST clients.

 To use RestTemplate, you’ll either need to create an instance at the point you need it

RestTemplate rest = new RestTemplate();

or you can declare it as a bean and inject it where you need it:

@Bean
public RestTemplate restTemplate() {
 return new RestTemplate();
}

getForEntity(…) Sends an HTTP GET request, returning a ResponseEntity containing
an object mapped from the response body

getForObject(…) Sends an HTTP GET request, returning an object mapped from a
response body

headForHeaders(…) Sends an HTTP HEAD request, returning the HTTP headers for the speci-
fied resource URL

optionsForAllow(…) Sends an HTTP OPTIONS request, returning the Allow header for the
specified URL

patchForObject(…) Sends an HTTP PATCH request, returning the resulting object mapped
from the response body

postForEntity(…) POSTs data to a URL, returning a ResponseEntity containing an
object mapped from the response body

postForLocation(…) POSTs data to a URL, returning the URL of the newly created resource

postForObject(…) POSTs data to a URL, returning an object mapped from the response body

put(…) PUTs resource data to the specified URL

Table 7.1 RestTemplate defines 12 unique operations, each of which is overloaded, providing a total
of 41 methods. (continued)

Method Description

172 CHAPTER 7 Consuming REST services
Let’s survey RestTemplate’s operations by looking at those that support the four pri-
mary HTTP methods: GET, PUT, DELETE, and POST. We’ll start with getForObject() and
getForEntity()—the GET methods.

7.1.1 GETting resources

Suppose that you want to fetch an ingredient from the Taco Cloud API. Assuming that
the API isn’t HATEOAS-enabled, you can use getForObject() to fetch the ingredient.
For example, the following code uses RestTemplate to fetch an Ingredient object by
its ID:

public Ingredient getIngredientById(String ingredientId) {
 return rest.getForObject("http://localhost:8080/ingredients/{id}",
 Ingredient.class, ingredientId);
}

Here you’re using the getForObject() variant that accepts a String URL and uses a
variable list for URL variables. The ingredientId parameter passed into getFor-
Object() is used to fill in the {id} placeholder in the given URL. Although there’s
only one URL variable in this example, it’s important to know that the variable param-
eters are assigned to the placeholders in the order that they’re given.

 The second parameter to getForObject() is the type that the response should be
bound to. In this case, the response data (that’s likely in JSON format) should be dese-
rialized into an Ingredient object that will be returned.

 Alternatively, you can use a Map to specify the URL variables:

public Ingredient getIngredientById(String ingredientId) {
 Map<String,String> urlVariables = new HashMap<>();
 urlVariables.put("id", ingredientId);
 return rest.getForObject("http://localhost:8080/ingredients/{id}",
 Ingredient.class, urlVariables);
}

In this case, the value of ingredientId is mapped to a key of id. When the request is
made, the {id} placeholder is replaced by the map entry whose key is id.

 Using a URI parameter is a bit more involved, requiring that you construct a URI
object before calling getForObject(). Otherwise, it’s similar to both of the other
variants:

public Ingredient getIngredientById(String ingredientId) {
 Map<String,String> urlVariables = new HashMap<>();
 urlVariables.put("id", ingredientId);
 URI url = UriComponentsBuilder
 .fromHttpUrl("http://localhost:8080/ingredients/{id}")
 .build(urlVariables);

 return rest.getForObject(url, Ingredient.class);
}

173Consuming REST endpoints with RestTemplate
Here the URI object is defined from a String specification, and its placeholders filled
in from entries in a Map, much like the previous variant of getForObject(). The get-
ForObject() method is a no-nonsense way of fetching a resource. But if the client
needs more than the payload body, you may want to consider using getForEntity().

 getForEntity() works in much the same way as getForObject(), but instead of
returning a domain object that represents the response’s payload, it returns a Response-
Entity object that wraps that domain object. The ResponseEntity gives access to
additional response details, such as the response headers.

 For example, suppose that in addition to the ingredient data, you want to inspect the
Date header from the response. With getForEntity() that becomes straightforward:

public Ingredient getIngredientById(String ingredientId) {
 ResponseEntity<Ingredient> responseEntity =
 rest.getForEntity("http://localhost:8080/ingredients/{id}",
 Ingredient.class, ingredientId);

 log.info("Fetched time: " +
 responseEntity.getHeaders().getDate());

 return responseEntity.getBody();
}

The getForEntity() method is overloaded with the same parameters as getFor-
Object(), so you can provide the URL variables as a variable list parameter or call
getForEntity() with a URI object.

7.1.2 PUTting resources

For sending HTTP PUT requests, RestTemplate offers the put() method. All three
overloaded variants of put() accept an Object that is to be serialized and sent to the
given URL. As for the URL itself, it can be specified as a URI object or as a String. And
like getForObject() and getForEntity(), the URL variables can be provided as
either a variable argument list or as a Map.

 Suppose that you want to replace an ingredient resource with the data from a new
Ingredient object. The following code should do the trick:

public void updateIngredient(Ingredient ingredient) {
 rest.put("http://localhost:8080/ingredients/{id}",
 ingredient,
 ingredient.getId());
}

Here the URL is given as a String and has a placeholder that’s substituted by the
given Ingredient object’s id property. The data to be sent is the Ingredient object
itself. The put() method returns void, so there’s nothing you need to do to handle a
return value.

174 CHAPTER 7 Consuming REST services
7.1.3 DELETEing resources

Suppose that Taco Cloud no longer offers an ingredient and wants it completely
removed as an option. To make that happen, you can call the delete() method from
RestTemplate:

public void deleteIngredient(Ingredient ingredient) {
 rest.delete("http://localhost:8080/ingredients/{id}",
 ingredient.getId());
}

In this example, only the URL (specified as a String) and a URL variable value are
given to delete(). But as with the other RestTemplate methods, the URL could be
specified as a URI object or the URL parameters given as a Map.

7.1.4 POSTing resource data

Now let’s say that you add a new ingredient to the Taco Cloud menu. An HTTP POST
request to the …/ingredients endpoint with ingredient data in the request body will
make that happen. RestTemplate has three ways of sending a POST request, each of
which has the same overloaded variants for specifying the URL. If you wanted to
receive the newly created Ingredient resource after the POST request, you’d use post-
ForObject() like this:

public Ingredient createIngredient(Ingredient ingredient) {
 return rest.postForObject("http://localhost:8080/ingredients",
 ingredient,
 Ingredient.class);
}

This variant of the postForObject() method takes a String URL specification, the
object to be posted to the server, and the domain type that the response body should
be bound to. Although you aren’t taking advantage of it in this case, a fourth parame-
ter could be a Map of the URL variable value or a variable list of parameters to substi-
tute into the URL.

 If your client has more need for the location of the newly created resource, then
you can call postForLocation()instead:

public URI createIngredient(Ingredient ingredient) {
 return rest.postForLocation("http://localhost:8080/ingredients",
 ingredient);
}

Notice that postForLocation() works much like postForObject() with the excep-
tion that it returns a URI of the newly created resource instead of the resource object
itself. The URI returned is derived from the response’s Location header. In the off
chance that you need both the location and response payload, you can call post-
ForEntity():

175Navigating REST APIs with Traverson
public Ingredient createIngredient(Ingredient ingredient) {
 ResponseEntity<Ingredient> responseEntity =
 rest.postForEntity("http://localhost:8080/ingredients",
 ingredient,
 Ingredient.class);

 log.info("New resource created at " +
 responseEntity.getHeaders().getLocation());

 return responseEntity.getBody();
}

Although the methods of RestTemplate differ in their purpose, they’re quite similar
in how they’re used. This makes it easy to become proficient with RestTemplate and
use it in your client code.

 On the other hand, if the API you’re consuming includes hyperlinks in its response,
RestTemplate isn’t as helpful. It’s certainly possible to fetch the more detailed resource
data with RestTemplate and work with the content and links contained therein, but
it’s not trivial to do so. Rather than struggle while consuming hypermedia APIs with
RestTemplate, let’s turn our attention to a client library that’s made for such things—
Traverson.

7.2 Navigating REST APIs with Traverson
Traverson comes with Spring Data HATEOAS as the out-of-the-box solution for consum-
ing hypermedia APIs in Spring applications. This Java-based library is inspired by a simi-
lar JavaScript library of the same name (https://github.com/traverson/traverson).

 You might have noticed that Traverson’s name kind of sounds like “traverse on”,
which is a good way to describe how it’s used. In this section, you’ll consume an API by
traversing the API on relation names.

 Working with Traverson starts with instantiating a Traverson object with an API’s
base URI:

Traverson traverson = new Traverson(
 URI.create("http://localhost:8080/api"), MediaTypes.HAL_JSON);

Here I’ve pointed Traverson to the Taco Cloud’s base URL (running locally). This is the
only URL you’ll need to give to Traverson. From here on out, you’ll navigate the API by
link relation names. You’ll also specify that the API will produce JSON responses with
HAL-style hyperlinks so that Traverson knows how to parse the incoming resource
data. Like RestTemplate, you can choose to instantiate a Traverson object prior to its
use or declare it as a bean to be injected wherever it’s needed.

 With a Traverson object in hand, you can start consuming an API by following
links. For example, suppose that you’re interested in retrieving a list of all ingredients.
You know from section 6.3.1 that the ingredients link has an href property that links
to the ingredients resource. You’ll need to follow that link:

https://github.com/traverson/traverson

176 CHAPTER 7 Consuming REST services
ParameterizedTypeReference<Resources<Ingredient>> ingredientType =
 new ParameterizedTypeReference<Resources<Ingredient>>() {};

Resources<Ingredient> ingredientRes =
 traverson
 .follow("ingredients")
 .toObject(ingredientType);

Collection<Ingredient> ingredients = ingredientRes.getContent();

By calling the follow() method on the Traverson object, you can navigate to the
resource whose link’s relation name is ingredients. Now that the client has navigated
to ingredients, you need to ingest the contents of that resource by calling toObject().

 The toObject() method requires that you tell it what kind of object to read the
data into. This can get a little tricky, considering that you need to read it in as a
Resources<Ingredient> object, and Java type erasure makes it difficult to provide
type information for a generic type. But creating a ParameterizedTypeReference
helps with that.

 As an analogy, imagine that instead of a REST API, this were a homepage on a web-
site. And instead of REST client code, imagine that it’s you viewing that homepage in
a browser. You see a link on the page that says Ingredients and you follow that link by
clicking it. Upon arriving at the next page, you read the page, which is analogous to
Traverson ingesting the content as a Resources<Ingredient> object.

 Now let’s consider a slightly more interesting use case. Let’s say that you want to
fetch the most recently created tacos. Starting at the home resource, you can navigate
to the recent tacos resource like this:

ParameterizedTypeReference<Resources<Taco>> tacoType =
 new ParameterizedTypeReference<Resources<Taco>>() {};

Resources<Taco> tacoRes =
 traverson
 .follow("tacos")
 .follow("recents")
 .toObject(tacoType);

Collection<Taco> tacos = tacoRes.getContent();

Here you follow the Tacos link and then, from there, follow the Recents link. That
brings you to the resource you’re interested in, so a call to toObject() with an appro-
priate ParameterizedTypeReference gets you what you want. The .follow() method
can be simplified by listing a trail of relation names to follow:

Resources<Taco> tacoRes =
 traverson
 .follow("tacos", "recents")
 .toObject(tacoType);

177Summary
As you can see, Traverson makes easy work of navigating a HATEOAS-enabled API
and consuming its resources. But one thing it doesn’t do is offer any methods for writ-
ing to or deleting from those APIs. In contrast, RestTemplate can write and delete
resources, but doesn’t make it easy to navigate an API.

 When you need to both navigate an API and update or delete resources, you’ll
need to use RestTemplate and Traverson together. Traverson can still be used to navi-
gate to the link where a new resource will be created. Then RestTemplate can be
given that link to do a POST, PUT, DELETE, or any other HTTP request you need.

 For example, suppose you want to add a new Ingredient to the Taco Cloud menu.
The following addIngredient() method teams up Traverson and RestTemplate to
post a new Ingredient to the API:

private Ingredient addIngredient(Ingredient ingredient) {
 String ingredientsUrl = traverson
 .follow("ingredients")
 .asLink()
 .getHref();

 return rest.postForObject(ingredientsUrl,
 ingredient,
 Ingredient.class);
}

After following the Ingredients link, you ask for the link itself by calling asLink().
From that link, you ask for the link’s URL by calling getHref(). With a URL in hand,
you have everything you need to call postForObject() on the RestTemplate instance
and save the new ingredient.

Summary
 Clients can use RestTemplate to make HTTP requests against REST APIs.
 Traverson enables clients to navigate an API using hyperlinks embedded in the

responses.

Sending messages
asynchronously
It’s 4:55 p.m. on Friday. You’re minutes away from starting a much-anticipated vaca-
tion. You have just enough time to drive to the airport and catch your flight. But
before you pack up and head out, you need to be sure your boss and colleagues
know the status of the work you’ve been doing so that on Monday they can pick up
where you left off. Unfortunately, some of your colleagues have already skipped out
for the weekend, and your boss is tied up in a meeting. What do you do?

 The most practical way to communicate your status and still catch your plane is
to send a quick email to your boss and your colleagues, detailing your progress and
promising to send a postcard. You don’t know where they are or when they’ll read
the email, but you do know they’ll eventually return to their desks and read it.
Meanwhile, you’re on your way to the airport.

This chapter covers
 Asynchronous messaging

 Sending messages with JMS, RabbitMQ, and
Kafka

 Pulling messages from a broker

 Listening for messages
178

179Sending messages with JMS
 Synchronous communication, which is what we’ve seen with REST, has its place. But
it’s not the only style of inter-application communication available to developers. Asyn-
chronous messaging is a way of indirectly sending messages from one application to
another without waiting for a response. This indirection affords looser coupling and
greater scalability between the communicating applications.

 In this chapter, you’re going to use asynchronous messaging to send orders from
the Taco Cloud website to a separate application in the Taco Cloud kitchens where
the tacos will be prepared. We’ll consider three options that Spring offers for asyn-
chronous messaging: the Java Message Service (JMS), RabbitMQ and Advanced Mes-
sage Queueing Protocol (AMQP), and Apache Kafka. In addition to the basic sending
and receiving of messages, we’ll look at Spring’s support for message-driven POJOs: a
way to receive messages that resembles EJB’s message-driven beans (MDBs).

8.1 Sending messages with JMS
JMS is a Java standard that defines a common API for working with message brokers.
First introduced in 2001, JMS has been the go-to approach for asynchronous mes-
saging in Java for a very long time. Before JMS, each message broker had a propri-
etary API, making an application’s messaging code less portable between brokers.
But with JMS, all compliant implementations can be worked with via a common
interface in much the same way that JDBC has given relational database operations
a common interface.

 Spring supports JMS through a template-based abstraction known as JmsTemplate.
Using JmsTemplate, it’s easy to send messages across queues and topics from the pro-
ducer side and to receive those messages on the consumer side. Spring also supports
the notion of message-driven POJOs: simple Java objects that react to messages arriv-
ing on a queue or topic in an asynchronous fashion.

 We’re going to explore Spring’s JMS support, including JmsTemplate and message-
driven POJOs. But before you can send and receive messages, you need a message
broker that’s ready to relay those messages between producers and consumers. Let’s
kick off our exploration of Spring JMS by setting up a message broker in Spring.

8.1.1 Setting up JMS

Before you can use JMS, you must add a JMS client to your project’s build. With
Spring Boot, that couldn’t be any easier. All you need to do is add a starter depen-
dency to the build. First, though, you must decide whether you’re going to use
Apache ActiveMQ, or the newer Apache ActiveMQ Artemis broker.

 If you’re using ActiveMQ, you’ll need to add the following dependency to your
project’s pom.xml file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-activemq</artifactId>
</dependency>

180 CHAPTER 8 Sending messages asynchronously
If ActiveMQ Artemis is the choice, the starter dependency should look like this:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-artemis</artifactId>
</dependency>

Artemis is a next-generation reimplementation of ActiveMQ, effectively making
ActiveMQ a legacy option. Therefore, for Taco Cloud you’re going to choose Artemis.
But the choice ultimately has little impact on how you’ll write the code that sends and
receives messages. The only significant differences will be in how you configure
Spring to create connections to the broker.

 By default, Spring assumes that your Artemis broker is listening on localhost at
port 61616. That’s fine for development purposes, but once you’re ready to send your
application into production, you’ll need to set a few properties that tell Spring how to
access the broker. The properties you’ll find most useful are listed in table 8.1.

For example, consider the following entry from an application.yml file that might be
used in a non-development setting:

spring:
 artemis:
 host: artemis.tacocloud.com
 port: 61617
 user: tacoweb
 password: l3tm31n

This sets up Spring to create broker connections to an Artemis broker listening at
artemis.tacocloud.com, port 61617. It also sets the credentials for the application that
will be interacting with that broker. The credentials are optional, but they’re recom-
mended for production deployments.

 If you were to use ActiveMQ instead of Artemis, you’d need to use the ActiveMQ-
specific properties listed in table 8.2.

Table 8.1 Properties for configuring the location and credentials of an Artemis broker

Property Description

spring.artemis.host The broker’s host

spring.artemis.port The broker’s port

spring.artemis.user The user to use to access the broker (optional)

spring.artemis.password The password to use to access the broker (optional)

181Sending messages with JMS
Notice that instead of offering separate properties for the broker’s hostname and
port, an ActiveMQ broker’s address is specified with a single property, spring
.activemq.broker-url. The URL should be a tcp:// URL, as shown in the following
YAML snippet:

spring:
 activemq:
 broker-url: tcp://activemq.tacocloud.com
 user: tacoweb
 password: l3tm31n

Whether you choose Artemis or ActiveMQ, you shouldn’t need to configure these
properties for development when the broker is running locally.

 If you’re using ActiveMQ, you will, however, need to set the spring.activemq
.in-memory property to false to prevent Spring from starting an in-memory broker.
An in-memory broker may seem useful, but it’s only helpful when you’ll be consuming
messages from the same application that publishes them (which has limited usefulness).

 Instead of using an embedded broker, you’ll want to install and start an Artemis
(or ActiveMQ) broker before moving on. Rather than repeat the installation instruc-
tions here, I refer you to the broker documentation for details:

 Artemis—https://activemq.apache.org/artemis/docs/latest/using-server.html
 ActiveMQ—http://activemq.apache.org/getting-started.html#GettingStarted-Pre-

InstallationRequirements

With the JMS starter in your build and a broker waiting to ferry messages from one
application to another, you’re ready to start sending messages.

8.1.2 Sending messages with JmsTemplate

With a JMS starter dependency (either Artemis or ActiveMQ) in your build, Spring
Boot will autoconfigure a JmsTemplate (among other things) that you can inject and
use to send and receive messages.

 JmsTemplate is the centerpiece of Spring’s JMS integration support. Much like
Spring’s other template-oriented components, JmsTemplate eliminates a lot of boiler-
plate code that would otherwise be required to work with JMS. Without JmsTemplate,
you’d need to write code to create a connection and session with the message broker,

Table 8.2 Properties for configuring the location and credentials of an ActiveMQ broker

Property Description

spring.activemq.broker-url The URL of the broker

spring.activemq.user The user to use to access the broker (optional)

spring.activemq.password The password to use to access the broker (optional)

spring.activemq.in-memory Whether or not to start an in-memory broker (default: true)

https://activemq.apache.org/artemis/docs/latest/using-server.html
http://activemq.apache.org/getting-started.html#GettingStarted-Pre-InstallationRequirements
http://activemq.apache.org/getting-started.html#GettingStarted-Pre-InstallationRequirements

182 CHAPTER 8 Sending messages asynchronously
and more code to deal with any exceptions that might be thrown in the course of send-
ing a message. JmsTemplate focuses on what you really want to do: send a message.

 JmsTemplate has several methods that are useful for sending messages, including
the following:

// Send raw messages
void send(MessageCreator messageCreator) throws JmsException;
void send(Destination destination, MessageCreator messageCreator)
 throws JmsException;
void send(String destinationName, MessageCreator messageCreator)
 throws JmsException;
// Send messages converted from objects
void convertAndSend(Object message) throws JmsException;
void convertAndSend(Destination destination, Object message)
 throws JmsException;
void convertAndSend(String destinationName, Object message)
 throws JmsException;

// Send messages converted from objects with post-processing
void convertAndSend(Object message,
 MessagePostProcessor postProcessor) throws JmsException;
void convertAndSend(Destination destination, Object message,
 MessagePostProcessor postProcessor) throws JmsException;
void convertAndSend(String destinationName, Object message,
 MessagePostProcessor postProcessor) throws JmsException;

As you can see, there are really only two methods, send() and convertAndSend(),
each overridden to support different parameters. And if you look closer, you’ll notice
that the various forms of convertAndSend() can be broken into two subcategories. In
trying to understand what all of these methods do, consider the following breakdown:

 Three send() methods require a MessageCreator to manufacture a Message
object.

 Three convertAndSend() methods accept an Object and automatically convert
that Object into a Message behind the scenes.

 Three convertAndSend() methods automatically convert an Object to a Mes-
sage, but also accept a MessagePostProcessor to allow for customization of the
Message before it’s sent.

Moreover, each of these three method categories is composed of three overriding
methods that are distinguished by how the JMS destination (queue or topic) is
specified:

 One method accepts no destination parameter and sends the message to a
default destination.

 One method accepts a Destination object that specifies the destination for
the message.

 One method accepts a String that specifies the destination for the message
by name.

183Sending messages with JMS
Putting these methods to work, consider JmsOrderMessagingService in the next list-
ing, which uses the most basic form of the send() method.

package tacos.messaging;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.core.MessageCreator;
import org.springframework.stereotype.Service;

@Service
public class JmsOrderMessagingService implements OrderMessagingService {
 private JmsTemplate jms;

 @Autowired
 public JmsOrderMessagingService(JmsTemplate jms) {
 this.jms = jms;
 }

 @Override
 public void sendOrder(Order order) {
 jms.send(new MessageCreator() {
 @Override
 public Message createMessage(Session session)
 throws JMSException {
 return session.createObjectMessage(order);
 }
 }
);
 }
}

The sendOrder() method calls jms.send(), passing in an anonymous inner-class imple-
mentation of MessageCreator. That implementation overrides createMessage() to cre-
ate a new object message from the given Order object.

 I’m not sure about you, but I think the code in listing 8.1, although straightfor-
ward, is a bit clumsy. The ceremony involved in declaring an anonymous inner class
complicates an otherwise simple method call. Recognizing that MessageCreator is a
functional interface, you can tidy up the sendOrder() method a bit with a lambda:

@Override
public void sendOrder(Order order) {
 jms.send(session -> session.createObjectMessage(order));
}

But notice that the call to jms.send() doesn’t specify a destination. In order for this to
work, you must also specify a default destination name with the spring.jms.template

Listing 8.1 Sending an order with .send() to a default destination

184 CHAPTER 8 Sending messages asynchronously
.default-destination property. For example, you could set the property in your
application.yml file like this:

spring:
 jms:
 template:
 default-destination: tacocloud.order.queue

In many cases, using a default destination is the easiest choice. It lets you specify the
destination name once, allowing the code to only be concerned with sending mes-
sages, without regard for where they’re being sent. But if you ever need to send a
message to a destination other than the default destination, you’ll need to specify that
destination as a parameter to send().

 One way of doing that is by passing a Destination object as the first parameter to
send(). The easiest way to do this is to declare a Destination bean and then inject it
into the bean that performs messaging. For example, the following bean declares the
Taco Cloud order queue Destination:

@Bean
public Destination orderQueue() {
 return new ActiveMQQueue("tacocloud.order.queue");
}

It’s important to note that the ActiveMQQueue used here is actually from Artemis
(from the org.apache.activemq.artemis.jms.client package). If you’re using ActiveMQ
(not Artemis), there’s also a class named ActiveMQQueue (from the org.apache.activemq
.command package).

 If this Destination bean is injected into JmsOrderMessagingService, you can use
it to specify the destination when calling send():

private Destination orderQueue;

@Autowired
public JmsOrderMessagingService(JmsTemplate jms,
 Destination orderQueue) {
 this.jms = jms;
 this.orderQueue = orderQueue;
}

...

@Override
public void sendOrder(Order order) {
 jms.send(
 orderQueue,
 session -> session.createObjectMessage(order));
}

Specifying the destination with a Destination object like this affords you the opportu-
nity to configure the Destination with more than just the destination name. But in

185Sending messages with JMS
practice, you’ll almost never specify anything more than the destination name. It’s
often easier to just send the name as the first parameter to send():

@Override
public void sendOrder(Order order) {
 jms.send(
 "tacocloud.order.queue",
 session -> session.createObjectMessage(order));
}

Although the send() method isn’t particularly difficult to use (especially when the
MessageCreator is given as a lambda), a sliver of complexity is added by requiring
that you provide a MessageCreator. Wouldn’t it be simpler if you only needed to spec-
ify the object that’s to be sent (and optionally the destination)? That describes suc-
cinctly how convertAndSend() works. Let’s take a look.

CONVERTING MESSAGES BEFORE SENDING

JmsTemplates’s convertAndSend() method simplifies message publication by elimi-
nating the need to provide a MessageCreator. Instead, you pass the object that’s to be
sent directly to convertAndSend(), and the object will be converted into a Message
before being sent.

 For example, the following reimplementation of sendOrder() uses convertAnd-
Send() to send an Order to a named destination:

@Override
public void sendOrder(Order order) {
 jms.convertAndSend("tacocloud.order.queue", order);
}

Just like the send() method, convertAndSend() will accept either a Destination or
String value to specify the destination, or you can leave out the destination altogether
to send the message to the default destination.

 Whichever form of convertAndSend() you choose, the Order passed into convert-
AndSend() is converted into a Message before it’s sent. Under the covers, this is
achieved with an implementation of MessageConverter that does the dirty work of
converting objects to Messages.

CONFIGURING A MESSAGE CONVERTER

MessageConverter is a Spring-defined interface that has only two methods to be
implemented:

public interface MessageConverter {
 Message toMessage(Object object, Session session)
 throws JMSException, MessageConversionException;
 Object fromMessage(Message message)
}

186 CHAPTER 8 Sending messages asynchronously
Although this interface is simple enough to implement, you often won’t need to cre-
ate a custom implementation. Spring already offers a handful of implementations,
such as those described in table 8.3.

SimpleMessageConverter is the default, but it requires that the object being sent
implement Serializable. This may be a good idea, but you may prefer to use one of
the other message converters, such as MappingJackson2MessageConverter, to avoid
that restriction.

 To apply a different message converter, all you must do is declare an instance of
the chosen converter as a bean. For example, the following bean declaration will
enable MappingJackson2MessageConverter to be used instead of SimpleMessage-
Converter:

@Bean
public MappingJackson2MessageConverter messageConverter() {
 MappingJackson2MessageConverter messageConverter =
 new MappingJackson2MessageConverter();
 messageConverter.setTypeIdPropertyName("_typeId");
 return messageConverter;
}

Notice that you called setTypeIdPropertyName() on the MappingJackson2Message-
Converter before returning it. This is very important, as it enables the receiver to know
what type to convert an incoming message to. By default, it will contain the fully quali-
fied classname of the type being converted. But that’s somewhat inflexible, requiring
that the receiver also have the same type, with the same fully qualified classname.

 To allow for more flexibility, you can map a synthetic type name to the actual
type by calling setTypeIdMappings() on the message converter. For example, the

Table 8.3 Spring message converters for common conversion tasks (all in the
org.springframework.jms.support.converter package)

Message converter What it does

MappingJackson2MessageConverter Uses the Jackson 2 JSON library to convert messages to
and from JSON

MarshallingMessageConverter Uses JAXB to convert messages to and from XML

MessagingMessageConverter Converts a Message from the messaging abstraction to
and from a Message using an underlying Message-
Converter for the payload and a JmsHeaderMapper
to map the JMS headers to and from standard message
headers

SimpleMessageConverter Converts Strings to and from TextMessage, byte
arrays to and from BytesMessage, Maps to and from
MapMessage, and Serializable objects to and from
ObjectMessage

187Sending messages with JMS
following change to the message converter bean method maps a synthetic order type
ID to the Order class:

@Bean
public MappingJackson2MessageConverter messageConverter() {
 MappingJackson2MessageConverter messageConverter =
 new MappingJackson2MessageConverter();
 messageConverter.setTypeIdPropertyName("_typeId");

 Map<String, Class<?>> typeIdMappings = new HashMap<String, Class<?>>();
 typeIdMappings.put("order", Order.class);
 messageConverter.setTypeIdMappings(typeIdMappings);

 return messageConverter;
}

Instead of the fully qualified classname being sent in the message’s _typeId property,
the value order will be sent. At the receiving application, a similar message converter
will have been configured, mapping order to its own understanding of what an order
is. That implementation of an order may be in a different package, have a different
name, and even have a subset of the sender’s Order properties.

POST-PROCESSING MESSAGES

Let’s suppose that in addition to its lucrative web business, Taco Cloud has decided to
open a few brick and mortar taco joints. Given that any of their restaurants could also
be a fulfillment center for the web business, they need a way to communicate the
source of an order to the kitchens at the restaurants. This will enable the kitchen staff
to employ a different process for store orders than for web orders.

 It would be reasonable to add a new source property to the Order object to carry
this information, populating it with WEB for orders placed online and with STORE for
orders placed in the stores. But that would require a change to both the website’s
Order class and the kitchen application’s Order class when, in reality, it’s information
that’s only required for the taco preparers.

 An easier solution would be to add a custom header to the message to carry the
order’s source. If you were using the send() method to send the taco orders, this
could easily be accomplished by calling setStringProperty() on the Message object:

jms.send("tacocloud.order.queue",
 session -> {
 Message message = session.createObjectMessage(order);
 message.setStringProperty("X_ORDER_SOURCE", "WEB");
 });

The problem here is that you aren’t using send(). By choosing to use convertAnd-
Send(), the Message object is created under the covers, and you don’t have access to it.

 Fortunately, there’s a way to tweak a Message created under the covers before it’s
sent. By passing in a MessagePostProcessor as the final parameter to convertAnd-
Send(), you can do whatever you want with the Message after it has been created. The

188 CHAPTER 8 Sending messages asynchronously
following code still uses convertAndSend(), but it also uses a MessagePostProcessor
to add the X_ORDER_SOURCE header before the message is sent:

jms.convertAndSend("tacocloud.order.queue", order, new MessagePostProcessor() {
 @Override
 public Message postProcessMessage(Message message) throws JMSException {
 message.setStringProperty("X_ORDER_SOURCE", "WEB");
 return message;
 }
});

You may have noticed that MessagePostProcessor is a functional interface. This means
that you can simplify it a bit by replacing the anonymous inner class with a lambda:

jms.convertAndSend("tacocloud.order.queue", order,
 message -> {
 message.setStringProperty("X_ORDER_SOURCE", "WEB");
 return message;
 });

Although you only need this particular MessagePostProcessor for this one call to
convertAndSend(), you may find yourself using the same MessagePostProcessor for
several different calls to convertAndSend(). In those cases, perhaps a method refer-
ence is a better choice than a lambda, avoiding unnecessary code duplication:

@GetMapping("/convertAndSend/order")
public String convertAndSendOrder() {
 Order order = buildOrder();
 jms.convertAndSend("tacocloud.order.queue", order,
 this::addOrderSource);
 return "Convert and sent order";
}

private Message addOrderSource(Message message) throws JMSException {
 message.setStringProperty("X_ORDER_SOURCE", "WEB");
 return message;
}

You’ve now seen several ways of sending messages. But it does no good to send a mes-
sage if nobody ever receives it. Let’s look at how you can receive messages with Spring
and JMS.

8.1.3 Receiving JMS messages

When it comes to consuming messages, you have the choice of a pull model, where your
code requests a message and waits until one arrives, or a push model, in which messages
are handed to your code as they become available.

 JmsTemplate offers several methods for receiving messages, but all of them use a
pull model. You call one of those methods to request a message, and the thread blocks
until a message is available (which could be immediately or it might take a while).

189Sending messages with JMS
 On the other hand, you also have the option of using a push model, wherein you
define a message listener that’s invoked any time a message is available.

 Both options are suitable for a variety of use cases. It’s generally accepted that the
push model is the best choice, as it doesn’t block a thread. But in some use cases, a lis-
tener could be overburdened if messages arrive too quickly. The pull model enables a
consumer to declare that they’re ready to process a new message.

 Let’s look at both ways of receiving messages. We’ll start with the pull model
offered by JmsTemplate.

RECEIVING WITH JMSTEMPLATE

JmsTemplate offers several methods for pulling methods from the broker, including
the following:

Message receive() throws JmsException;
Message receive(Destination destination) throws JmsException;
Message receive(String destinationName) throws JmsException;

Object receiveAndConvert() throws JmsException;
Object receiveAndConvert(Destination destination) throws JmsException;
Object receiveAndConvert(String destinationName) throws JmsException;

As you can see, these six methods mirror the send() and convertAndSend() methods
from JmsTemplate. The receive() methods receive a raw Message, whereas the
receiveAndConvert() methods use a configured message converter to convert mes-
sages into domain types. And for each of these, you can specify either a Destination
or a String containing the destination name, or you can pull a message from the
default destination.

 To see these in action, you’ll write some code that pulls an Order from the taco-
cloud.order.queue destination. The following listing shows OrderReceiver, a service
component that receives order data using JmsTemplate.receive().

package tacos.kitchen.messaging.jms;
import javax.jms.Message;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.support.converter.MessageConverter;
import org.springframework.stereotype.Component;

@Component
public class JmsOrderReceiver implements OrderReceiver {
 private JmsTemplate jms;
 private MessageConverter converter;

 @Autowired
 public JmsOrderReceiver(JmsTemplate jms, MessageConverter converter) {
 this.jms = jms;
 this.converter = converter;
 }

Listing 8.2 Pulling orders from a queue

190 CHAPTER 8 Sending messages asynchronously
 public Order receiveOrder() {
 Message message = jms.receive("tacocloud.order.queue");
 return (Order) converter.fromMessage(message);
 }
}

Here you’ve used a String to specify the destination to pull an order from. The
receive() method returns an unconverted Message. But what you really need is the
Order that’s inside of the Message, so the very next thing that happens is that you use
an injected message converter to convert the message. The type ID property in the
message will guide the converter in converting it to an Order, but it’s returned as an
Object that requires casting before you can return it.

 Receiving a raw Message object might be useful in some cases where you need to
inspect the message’s properties and headers. But often you only need the payload.
Converting that payload to a domain type is a two-step process and requires that the
message converter be injected into the component. When you only care about the
message’s payload, receiveAndConvert() is a lot simpler. The next listing shows
how JmsOrderReceiver could be reworked to use receiveAndConvert() instead of
receive().

package tacos.kitchen.messaging.jms;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.stereotype.Component;

@Component
public class JmsOrderReceiver implements OrderReceiver {
 private JmsTemplate jms;

 @Autowired
 public JmsOrderReceiver(JmsTemplate jms) {
 this.jms = jms;
 }

 public Order receiveOrder() {
 return (Order) jms.receiveAndConvert("tacocloud.order.queue");
 }
}

This new version of JmsOrderReceiver has a receieveOrder() method that has been
reduced to only one line. And you no longer need to inject a MessageConverter,
because all of the message conversion will be done behind the scenes in receiveAnd-
Convert().

 Before moving on, let’s consider how receiveOrder() might be used in the Taco
Cloud kitchen application. A food preparer at one of Taco Cloud’s kitchens might
push a button or take some action to indicate that they’re ready to start building tacos.

Listing 8.3 Receiving an already-converted Order object

191Sending messages with JMS
At that point, receiveOrder() would be invoked and the call to receive() or receive-
AndConvert() would block. Nothing else would happen until an order message is ready.
Once an order arrives, it will be returned from receiveOrder() and its information
used to display the details of the order for the food preparer to get to work. This
seems like a natural choice for a pull model.

 Now let’s see how a push model works by declaring a JMS listener.

DECLARING MESSAGE LISTENERS

Unlike the pull model, where an explicit call to receive() or receiveAndConvert()
was required to receive a message, a message listener is a passive component that’s
idle until a message arrives.

 To create a message listener that reacts to JMS messages, you simply must annotate
a method in a component with @JmsListener. The next listing shows a new Order-
Listener component that listens passively for messages, rather than actively request-
ing them.

package tacos.kitchen.messaging.jms.listener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.annotation.JmsListener;
import org.springframework.stereotype.Component;

@Component
public class OrderListener {
 private KitchenUI ui;

 @Autowired
 public OrderListener(KitchenUI ui) {
 this.ui = ui;
 }

 @JmsListener(destination = "tacocloud.order.queue")
 public void receiveOrder(Order order) {
 ui.displayOrder(order);
 }
}

The receiveOrder() method is annotated with JmsListener to “listen” for messages
on the tacocloud.order.queue destination. It doesn’t deal with JmsTemplate, nor is it
explicitly invoked by your application code. Instead, framework code within Spring
waits for messages to arrive on the specified destination, and when they arrive, the
receiveOrder() method is invoked automatically with the message’s Order payload as
a parameter.

 In many ways, the @JmsListener annotation is like one of Spring MVC’s request
mapping annotations, such as @GetMapping or @PostMapping. In Spring MVC, meth-
ods annotated with one of the request mapping methods react to requests to a speci-
fied path. Similarly, methods that are annotated with @JmsListener react to messages
that arrive in a destination.

Listing 8.4 An OrderListener component that listens for orders

192 CHAPTER 8 Sending messages asynchronously
 Message listeners are often touted as the best choice because they don’t block and
are able to handle multiple messages quickly. In the context of the Taco Cloud appli-
cation, however, perhaps they aren’t the best choice. The food preparers are a signifi-
cant bottleneck in the system and may not be able to prepare tacos as quickly as orders
come in. A food preparer may have half-fulfilled an order when a new order is dis-
played on the screen. The kitchen user interface would need to buffer the orders as
they arrive to avoid overburdening the kitchen staff.

 That’s not to say that message listeners are bad. On the contrary, they’re a perfect
fit when messages can be handled quickly. But when the message handlers need to be
able to ask for more messages on their own timing, the pull model offered by Jms-
Template seems more fitting.

 Because JMS is defined by a standard Java specification and supported by many
message broker implementations, it’s a common choice for messaging in Java. But
JMS has a few shortcomings, not the least of which is that as a Java specification its use
is limited to Java applications. Newer messaging options such as RabbitMQ and Kafka
address these shortcomings and are available for other languages and platforms
beyond the JVM. Let’s set JMS aside and see how you could have implemented your
taco order messaging with RabbitMQ.

8.2 Working with RabbitMQ and AMQP
As arguably the most prominent implementation of AMQP, RabbitMQ offers a more
advanced message-routing strategy than JMS. Whereas JMS messages are addressed
with the name of a destination from which the receiver will retrieve them, AMQP mes-
sages are addressed with the name of an exchange and a routing key, which are decou-
pled from the queue that the receiver is listening to. This relationship between an
exchange and queues is illustrated in figure 8.1.

When a message arrives at the RabbitMQ broker, it goes to the exchange for which it
was addressed. The exchange is responsible for routing it to one or more queues,

RabbitMQ broker

ExchangeSender

Binding

Queue

Queue Receiver

Receiver

Binding

Figure 8.1 Messages sent to a RabbitMQ exchange are routed to one or more
queues, based on routing keys and bindings.

193Working with RabbitMQ and AMQP
depending on the type of exchange, the binding between the exchange and queues,
and the value of the message’s routing key.

 There are several different kinds of exchanges, including the following:

 Default—A special exchange that’s automatically created by the broker. It routes
messages to queues whose name is the same as the message’s routing key. All
queues will automatically be bound to the default exchange.

 Direct—Routes messages to a queue whose binding key is the same as the mes-
sage’s routing key.

 Topic—Routes a message to one or more queues where the binding key (which
may contain wildcards) matches the message’s routing key.

 Fanout—Routes messages to all bound queues without regard for binding keys
or routing keys.

 Headers—Similar to a topic exchange, except that routing is based on message
header values rather than routing keys.

 Dead letter—A catch-all for any messages that are undeliverable (meaning they
don’t match any defined exchange-to-queue binding).

The simplest forms of exchanges are default and fanout, as these roughly correspond
to a JMS queue and topic. But the other exchanges allow you to define more flexible
routing schemes.

 The most important thing to understand is that messages are sent to exchanges with
routing keys and they’re consumed from queues. How they get from an exchange to a
queue depends on the binding definitions and what best suits your use cases.

 Which exchange type you use and how you define the bindings from exchanges to
queues has little bearing on how messages are sent and received in your Spring appli-
cations. Therefore we’ll focus on how to write code that sends and receives messages
with Rabbit.

NOTE For a more detailed discussion on how best to bind queues to
exchanges, see RabbitMQ in Action by Alvaro Videla and Jason J.W. Williams
(Manning, 2012).

8.2.1 Adding RabbitMQ to Spring

Before you can start sending and receiving RabbitMQ messages with Spring, you’ll
need to add Spring Boot’s AMQP starter dependency to your build in place of the
Artemis or ActiveMQ starter you added in the previous section:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

Adding the AMQP starter to your build will trigger autoconfiguration that will create a
AMQP connection factory and RabbitTemplate beans, as well as other supporting

194 CHAPTER 8 Sending messages asynchronously
components. Simply adding this dependency is all you need to do to start sending and
receiving messages from a RabbitMQ broker with Spring. But there are a handful of
useful properties you’ll want to know about, listed in table 8.4.

For development purposes, you’ll probably have a RabbitMQ broker that doesn’t
require authentication running on your local machine, listening on port 5672. These
properties likely won’t get much use while you’re still in development, but they’ll no
doubt prove useful when your applications move into production.

 For example, suppose that as you move into production, your RabbitMQ broker is
on a server named rabbit.tacocloud.com, listening on port 5673, and requiring cre-
dentials. In that case, the following configuration in your application.yml file will set
those properties when the prod profile is active:

spring:
 profiles: prod
 rabbitmq:
 host: rabbit.tacocloud.com
 port: 5673
 username: tacoweb
 password: l3tm31n

Now that RabbitMQ is configured in your application, it’s time to start sending mes-
sages with RabbitTemplate.

8.2.2 Sending messages with RabbitTemplate

At the core of Spring’s support for RabbitMQ messaging is RabbitTemplate. Rabbit-
Template is similar to JmsTemplate, offering a similar set of methods. As you’ll see,
however, there are some subtle differences that align with the unique way that Rab-
bitMQ works.

 With regard to sending messages with RabbitTemplate, the send() and convert-
AndSend() methods parallel the same-named methods from JmsTemplate. But unlike
the JmsTemplate methods, which only routed messages to a given queue or topic,

Table 8.4 Properties for configuring the location and credentials of a RabbitMQ broker

Property Description

spring.rabbitmq.addresses A comma-separated list of RabbitMQ broker addresses

spring.rabbitmq.host The broker’s host (defaults to localhost)

spring.rabbitmq.port The broker’s port (defaults to 5672)

spring.rabbitmq.username The username to use to access the broker (optional)

spring.rabbitmq.password The password to use to access the broker (optional)

195Working with RabbitMQ and AMQP
RabbitTemplate methods send messages in terms of exchanges and routing keys. Here
are a few of the most relevant methods for sending messages with RabbitTemplate:1

// Send raw messages
void send(Message message) throws AmqpException;
void send(String routingKey, Message message) throws AmqpException;
void send(String exchange, String routingKey, Message message)
 throws AmqpException;

// Send messages converted from objects
void convertAndSend(Object message) throws AmqpException;
void convertAndSend(String routingKey, Object message)
 throws AmqpException;
void convertAndSend(String exchange, String routingKey,
 Object message) throws AmqpException;

// Send messages converted from objects with post-processing
void convertAndSend(Object message, MessagePostProcessor mPP)
 throws AmqpException;
void convertAndSend(String routingKey, Object message,
 MessagePostProcessor messagePostProcessor)
 throws AmqpException;
void convertAndSend(String exchange, String routingKey,
 Object message,
 MessagePostProcessor messagePostProcessor)
 throws AmqpException;

As you can see, these methods follow a similar pattern to their twins in JmsTemplate.
The first three send() methods all send a raw Message object. The next three
convertAndSend() methods accept an object that will be converted to a Message
behind the scenes before being sent. The final three convertAndSend() methods are
like the previous three, but they accept a MessagePostProcessor that can be used to
manipulate the Message object before it’s sent to the broker.

 These methods differ from their JmsTemplate counterparts in that they accept
String values to specify an exchange and routing key, rather than a destination name
(or Destination object). The methods that don’t take an exchange will have their
messages sent to the default exchange. Likewise, the methods that don’t take a rout-
ing key will have their messages routed with a default routing key.

 Let’s put RabbitTemplate to work sending taco orders. One way you can do that is
by using the send() method, as shown in listing 8.5. But before you can call send(),
you’ll need to convert an Order object to a Message. That could be a tedious job, if not
for the fact that RabbitTemplate makes its message converter readily available with a
getMessageConverter() method.

1 These methods are defined by AmqpTemplate, an interface implemented by RabbitTemplate.

196 CHAPTER 8 Sending messages asynchronously
package tacos.messaging;
import org.springframework.amqp.core.Message;
import org.springframework.amqp.core.MessageProperties;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import
 org.springframework.amqp.support.converter.MessageConverter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import tacos.Order;

@Service
public class RabbitOrderMessagingService
 implements OrderMessagingService {
 private RabbitTemplate rabbit;

 @Autowired
 public RabbitOrderMessagingService(RabbitTemplate rabbit) {
 this.rabbit = rabbit;
 }

 public void sendOrder(Order order) {
 MessageConverter converter = rabbit.getMessageConverter();
 MessageProperties props = new MessageProperties();
 Message message = converter.toMessage(order, props);
 rabbit.send("tacocloud.order", message);
 }
}

Once you have a MessageConverter in hand, it’s simple work to convert an Order to a
Message. You must supply any message properties with a MessageProperties, but if
you don’t need to set any such properties, a default instance of MessageProperties is
fine. Then, all that’s left is to call send(), passing in the exchange and routing key
(both of which are optional) along with the message. In this example, you’re specify-
ing only the routing key—tacocloud.order—along with the message, so the default
exchange will be used.

 Speaking of default exchanges, the default exchange name is "" (an empty
String), which corresponds to the default exchange that’s automatically created by
the RabbitMQ broker. Likewise, the default routing key is "" (whose routing is depen-
dent upon the exchange and bindings in question). You can override these defaults by
setting the spring.rabbitmq.template.exchange and spring.rabbitmq.template
.routing-key properties:

spring:
 rabbitmq:
 template:
 exchange: tacocloud.orders
 routing-key: kitchens.central

Listing 8.5 Sending a message with RabbitTemplate.send()

197Working with RabbitMQ and AMQP
In this case, all messages sent without specifying an exchange will automatically be
sent to the exchange whose name is tacocloud.orders. If the routing key is also
unspecified in the call to send() or convertAndSend(), the messages will have a rout-
ing key of kitchens.central.

 Creating a Message object from the message converter is easy enough, but it’s even
easier to use convertAndSend() to let RabbitTemplate handle all of the conversion
work for you:

public void sendOrder(Order order) {
 rabbit.convertAndSend("tacocloud.order", order);
}

CONFIGURING A MESSAGE CONVERTER

By default, message conversion is performed with SimpleMessageConverter, which is
able to convert simple types (like String) and Serializable objects to Message
objects. But Spring offers several message converters for RabbitTemplate, including
the following:

 Jackson2JsonMessageConverter—Converts objects to and from JSON using
the Jackson 2 JSON processor

 MarshallingMessageConverter—Converts using a Spring Marshaller and
Unmarshaller

 SerializerMessageConverter—Converts String and native objects of any
kind using Spring’s Serializer and Deserializer abstractions

 SimpleMessageConverter—Converts String, byte arrays, and Serializable types
 ContentTypeDelegatingMessageConverter—Delegates to another Message-

Converter based on the contentType header
 MessagingMessageConverter—Delegates to an underlying MessageConverter

for the message conversion and to an AmqpHeaderConverter for the headers

If you need to change the message converter, all you need to do is configure a bean of
type MessageConverter. For example, for JSON-based message conversion, you can
configure a Jackson2JsonMessageConverter like this:

@Bean
public MessageConverter messageConverter() {
 return new Jackson2JsonMessageConverter();
}

Spring Boot autoconfiguration will discover this bean and inject it into RabbitTem-
plate in place of the default message converter.

SETTING MESSAGE PROPERTIES

As with JMS, you may need to set some headers in the messages you send. For exam-
ple, let’s say you need to send an X_ORDER_SOURCE for all orders submitted through
the Taco Cloud website. When creating your own Message objects, you can set the
header through the MessageProperties instance you give to the message converter.

198 CHAPTER 8 Sending messages asynchronously
Revisiting the sendOrder() method from listing 8.5, you only need one additional line
of code to set the header:

public void sendOrder(Order order) {
 MessageConverter converter = rabbit.getMessageConverter();
 MessageProperties props = new MessageProperties();
 props.setHeader("X_ORDER_SOURCE", "WEB");
 Message message = converter.toMessage(order, props);
 rabbit.send("tacocloud.order", message);
}

When using convertAndSend(), however, you don’t have quick access to the Message-
Properties object. A MessagePostProcessor can help you with that, though:

@Override
public void sendOrder(Order order) {
 rabbit.convertAndSend("tacocloud.order.queue", order,
 new MessagePostProcessor() {
 @Override
 public Message postProcessMessage(Message message)
 throws AmqpException {
 MessageProperties props = message.getMessageProperties();
 props.setHeader("X_ORDER_SOURCE", "WEB");
 return message;
 }
 });
}

Here you supply convertAndSend() with an anonymous inner-class implementation
of MessagePostProcessor. In the postProcessMessage() method, you pull the
MessageProperties from the Message and then call setHeader() to set the X_ORDER
_SOURCE header.

 Now that you’ve seen how to send messages with RabbitTemplate, let’s switch our
focus over to the code that receives messages from a RabbitMQ queue.

8.2.3 Receiving message from RabbitMQ

You’ve seen that sending messages with RabbitTemplate doesn’t differ much from
sending messages with JmsTemplate. And as it turns out, receiving messages from a
RabbitMQ queue isn’t very different than from JMS.

 As with JMS, you have two choices:

 Pulling messages from a queue with RabbitTemplate
 Having messages pushed to a @RabbitListener-annotated method

Let’s start by looking at the pull-based RabbitTemplate.receive() method.

RECEIVING MESSAGES WITH RABBITTEMPLATE

RabbitTemplate comes with several methods for pulling messages from a queue. A
few of the most useful ones are listed here:

199Working with RabbitMQ and AMQP
// Receive messages
Message receive() throws AmqpException;
Message receive(String queueName) throws AmqpException;
Message receive(long timeoutMillis) throws AmqpException;
Message receive(String queueName, long timeoutMillis) throws AmqpException;

// Receive objects converted from messages
Object receiveAndConvert() throws AmqpException;
Object receiveAndConvert(String queueName) throws AmqpException;
Object receiveAndConvert(long timeoutMillis) throws AmqpException;
Object receiveAndConvert(String queueName, long timeoutMillis) throws

AmqpException;

// Receive type-safe objects converted from messages
<T> T receiveAndConvert(ParameterizedTypeReference<T> type) throws

AmqpException;
<T> T receiveAndConvert(String queueName, ParameterizedTypeReference<T> type)

throws AmqpException;
<T> T receiveAndConvert(long timeoutMillis, ParameterizedTypeReference<T>

type) throws AmqpException;
<T> T receiveAndConvert(String queueName, long timeoutMillis,

ParameterizedTypeReference<T> type)
 throws AmqpException;

These methods are the mirror images of the send() and convertAndSend() methods
described earlier. Whereas send() is used to send raw Message objects, receive()
receives raw Message objects from a queue. Likewise, receiveAndConvert() receives
messages and uses a message converter to convert them into domain objects before
returning them.

 But there are a few obvious differences in the method signatures. First, none of
these methods take an exchange or routing key as a parameter. That’s because
exchanges and routing keys are used to route messages to queues, but once the mes-
sages are in the queue, their next destination is the consumer who pulls them off the
queue. Consuming applications needn’t concern themselves with exchanges or rout-
ing keys. A queue is the only thing the consuming applications need to know about.

 You’ll also notice that many of the methods accept a long parameter to indicate a
timeout for receiving the messages. By default, the receive timeout is 0 milliseconds.
That is, a call to receive() will return immediately, potentially with a null value if no
messages are available. This is a marked difference from how the receive() methods
behave in JmsTemplate. By passing in a timeout value, you can have the receive()
and receiveAndConvert() methods block until a message arrives or until the timeout
expires. But even with a non-zero timeout, your code will need to be ready to deal with
a null return.

 Let’s see how you can put this in action. The next listing shows a new Rabbit-based
implementation of OrderReceiver that uses RabbitTemplate to receive orders.

200 CHAPTER 8 Sending messages asynchronously
package tacos.kitchen.messaging.rabbit;
import org.springframework.amqp.core.Message;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.support.converter.MessageConverter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class RabbitOrderReceiver {
 private RabbitTemplate rabbit;
 private MessageConverter converter;

 @Autowired
 public RabbitOrderReceiver(RabbitTemplate rabbit) {
 this.rabbit = rabbit;
 this.converter = rabbit.getMessageConverter();
 }

 public Order receiveOrder() {
 Message message = rabbit.receive("tacocloud.orders");
 return message != null
 ? (Order) converter.fromMessage(message)
 : null;
 }
}

The receiveOrder() method is where all of the action takes place. It makes a call to
the receive() method on the injected RabbitTemplate to pull an order from the
tacocloud.orders queue. It provides no timeout value, so you can only assume that
the call returns immediately with either a Message or null. If a Message is returned,
you use the MessageConverter from the RabbitTemplate to convert the Message to
an Order. On the other hand, if receive() returns null, you’ll return a null.

 Depending on the use case, you may be able to tolerate a small delay. In the Taco
Cloud kitchen’s overhead display, for example, you can possibly wait a while if no
orders are available. Let’s say you decide to wait up to 30 seconds before giving up.
Then the receiveOrder() method can be changed to pass a 30,000 millisecond delay
to receive():

public Order receiveOrder() {
 Message message = rabbit.receive("tacocloud.order.queue", 30000);
 return message != null
 ? (Order) converter.fromMessage(message)
 : null;
}

If you’re like me, seeing a hardcoded number like that gives you a bit of discomfort. You
might be thinking that it’d be a good idea to create an @ConfigurationProperties-
annotated class so you could configure that timeout with a Spring Boot configuration

Listing 8.6 Pulling orders from RabbitMQ with RabbitTemplate

201Working with RabbitMQ and AMQP
property. I’d agree with you, if it weren’t for the fact that Spring Boot already offers
such a configuration property. If you want to set the timeout via configuration, simply
remove the timeout value in the call to receive() and set it in your configuration with
the spring.rabbitmq.template.receive-timeout property:

spring:
 rabbitmq:
 template:
 receive-timeout: 30000

Back in the receiveOrder() method, notice that you had to use the message con-
verter from RabbitTemplate to convert the incoming Message object to an Order
object. But if the RabbitTemplate is carrying a message converter around, why can’t it
do the conversion for you? That’s precisely what the receiveAndConvert() method is
for. Using receiveAndConvert(), you can rewrite receiveOrder() like this:

public Order receiveOrder() {
 return (Order) rabbit.receiveAndConvert("tacocloud.order.queue");
}

That’s a lot simpler, isn’t it? The only troubling thing I see is the cast from Object to
Order. There’s an alternative to casting, though. Instead, you can pass a Parameterized-
TypeReference to receiveAndConvert() to receive an Order object directly:

public Order receiveOrder() {
 return rabbit.receiveAndConvert("tacocloud.order.queue",
 new ParameterizedTypeReference<Order>() {});
}

It’s debatable whether that’s better than casting, but it is a more type-safe approach
than casting. The only requirement to using a ParameterizedTypeReference with
receiveAndConvert() is that the message converter must be an implementation of
SmartMessageConverter; Jackson2JsonMessageConverter is the only out-of-the-box
implementation to choose from.

 The pull model offered by JmsTemplate fits a lot of use cases, but often it’s better
to have code that listens for messages and that’s invoked when messages arrive. Let’s
see how you can write message-driven beans that respond to RabbitMQ messages.

HANDLING RABBITMQ MESSAGES WITH LISTENERS

For message-driven RabbitMQ beans, Spring offers RabbitListener, the RabbitMQ
counterpart to JmsListener. To specify that a method should be invoked when a mes-
sage arrives in a RabbitMQ queue, annotate a bean’s method with @RabbitTemplate.

 For example, the following listing shows a RabbitMQ implementation of Order-
Receiver that’s annotated to listen for order messages rather than to poll for them
with RabbitTemplate.

202 CHAPTER 8 Sending messages asynchronously
package tacos.kitchen.messaging.rabbit.listener;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class OrderListener {
 private KitchenUI ui;

 @Autowired
 public OrderListener(KitchenUI ui) {
 this.ui = ui;
 }

 @RabbitListener(queues = "tacocloud.order.queue")
 public void receiveOrder(Order order) {
 ui.displayOrder(order);
 }
}

You’ll no doubt notice that this looks remarkably like the code from listing 8.4.
Indeed, the only thing that changed was the listener annotation—from @JmsListener
to @RabbitListener. As wonderful as @RabbitListener is, this near-duplication of
code leaves me with little to say about @RabbitListener that I haven’t already said
about @JmsListener. They’re both great for writing code that responds to messages
that are pushed to them from their respective brokers—a JMS broker for @Jms-
Listener and a RabbitMQ broker for @RabbitListener.

 Although you may sense a lack of enthusiasm about @RabbitListener in that
previous paragraph, be certain that isn’t my intent. In truth, the fact that @Rabbit-
Listener works much like @JmsListener is actually quite exciting! It means you don’t
need to learn a completely different programming model when working with RabbitMQ
vs. Artemis or ActiveMQ. The same excitement holds true for the similarities between
RabbitTemplate and JmsTemplate.

 Let’s hold on to that excitement as we wrap up this chapter by looking at one more
messaging option supported by Spring: Apache Kafka.

8.3 Messaging with Kafka
Apache Kafka is the newest messaging option we’re examining in this chapter. At a
glance, Kafka is a message broker just like ActiveMQ, Artemis, or Rabbit. But Kafka
has a few unique tricks up its sleeves.

 Kafka is designed to run in a cluster, affording great scalability. And by partition-
ing its topics across all instances in the cluster, it’s very resilient. Whereas RabbitMQ
deals primarily with queues in exchanges, Kafka utilizes topics only to offer pub/sub
messaging.

Listing 8.7 Declaring a method as a RabbitMQ message listener

203Messaging with Kafka
 Kafka topics are replicated across all brokers in the cluster. Each node in the clus-
ter acts as a leader for one or more topics, being responsible for that topic’s data and
replicating it to the other nodes in the cluster.

 Going a step further, each topic can be split into multiple partitions. In that case,
each node in the cluster is the leader for one or more partitions of a topic, but not for
the entire topic. Responsibility for the topic is split across all nodes. Figure 8.2 illus-
trates how this works.

Due to Kafka’s unique architecture, I encourage you to read more about it in Kafka in
Action by Dylan Scott (Manning, 2017). For our purposes, we’ll focus on how to send
messages to and receive them from Kafka with Spring.

8.3.1 Setting up Spring for Kafka messaging

To start using Kafka for messaging, you’ll need to add the appropriate dependencies
to your build. Unlike the JMS and RabbitMQ options, however, there isn’t a Spring
Boot starter for Kafka. Have no fear, though; you’ll only need one dependency:

<dependency>
 <groupId>org.springframework.kafka</groupId>
 <artifactId>spring-kafka</artifactId>
</dependency>

This one dependency brings everything you need for Kafka to the project. What’s
more, its presence will trigger Spring Boot autoconfiguration for Kafka that will,
among other things, arrange for a KafkaTemplate in the Spring application context.
All you need to do is inject the KafkaTemplate and go to work sending and receiving
messages.

 Before you start sending and receiving messages, however, you should be aware
of a few properties that will come in handy when working with Kafka. Specifically,

Producer

Producer

Producer

Consumer

Consumer

Consumer

Kafka cluster

Partition

0

Partition

1

Partition

2B
ro

k
e

r

Partition

0

Partition

1

Partition

2B
ro

k
e

r
B

ro
k
e

r

Partition

0

Partition

1

Partition

2

Figure 8.2 A Kafka cluster is composed of multiple brokers, each acting as a leader for
partitions of the topics.

204 CHAPTER 8 Sending messages asynchronously
KafkaTemplate defaults to work with a Kafka broker on localhost, listening on port
9092. It’s fine to start up a Kafka broker locally while developing an application, but
when it’s time to go to production, you’ll need to configure a different host and port.

 The spring.kafka.bootstrap-servers property sets the location of one or more
Kafka servers used to establish an initial connection to the Kafka cluster. For example,
if one of the Kafka servers in the cluster is running at kafka.tacocloud.com and listen-
ing on port 9092, you can configure its location in YAML like this:

spring:
 kafka:
 bootstrap-servers:
 - kafka.tacocloud.com:9092

But notice that spring.kafka.bootstrap-servers is plural and accepts a list. As such,
you can provide it with multiple Kafka servers in the cluster:

spring:
 kafka:
 bootstrap-servers:
 - kafka.tacocloud.com:9092
 - kafka.tacocloud.com:9093
 - kafka.tacocloud.com:9094

With Kafka set up in your project, you’re ready to send and receive messages. You’ll
start by sending Order objects to Kafka using KafkaTemplate.

8.3.2 Sending messages with KafkaTemplate

In many ways, KafkaTemplate is similar to its JMS and RabbitMQ counterparts. At the
same time, it’s very different. This becomes apparent as we consider its methods for
sending messages:

ListenableFuture<SendResult<K, V>> send(String topic, V data);
ListenableFuture<SendResult<K, V>> send(String topic, K key, V data);
ListenableFuture<SendResult<K, V>> send(String topic,
 Integer partition, K key, V data);
ListenableFuture<SendResult<K, V>> send(String topic,
 Integer partition, Long timestamp, K key, V data);
ListenableFuture<SendResult<K, V>> send(ProducerRecord<K, V> record);
ListenableFuture<SendResult<K, V>> send(Message<?> message);

ListenableFuture<SendResult<K, V>> sendDefault(V data);
ListenableFuture<SendResult<K, V>> sendDefault(K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(Integer partition,
 K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(Integer partition,
 Long timestamp, K key, V data);

The first thing you may have noticed is that there are no convertAndSend() methods.
That’s because KafkaTemplate is typed with generics and is able to deal with domain

205Messaging with Kafka
types directly when sending messages. In a way, all of the send() methods are doing
the job of convertAndSend().

 You may also have noticed that there are several parameters to send() and send-
Default() that are quite different from what you used with JMS and Rabbit. When
sending messages in Kafka, you can specify the following parameters to guide how the
message is sent:

 The topic to send the message to (required for send())
 A partition to write the topic to (optional)
 A key to send on the record (optional)
 A timestamp (optional; defaults to System.currentTimeMillis())
 The payload (required)

The topic and payload are the two most important parameters. Partitions and keys
have little effect on how you use KafkaTemplate, aside from being extra information
provided as parameters to send() and sendDefault(). For our purposes, we’re going
to focus on sending the message payload to a given topic and not worry ourselves with
partitions and keys.

 For the send() method, you can also choose to send a ProducerRecord, which is
little more than a type that captures all of the preceding parameters in a single object.
You can also send a Message object, but doing so would require you to convert your
domain objects into a Message. Generally, it’s easier to use one of the other methods
rather than to create and send a ProducerRecord or Message object.

 Using the KafkaTemplate and its send() method, you can write a Kafka-based
implementation of OrderMessagingService. The following listing shows what such an
implementation might look like.

package tacos.messaging;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;

@Service
public class KafkaOrderMessagingService
 implements OrderMessagingService {

 private KafkaTemplate<String, Order> kafkaTemplate;

 @Autowired
 public KafkaOrderMessagingService(
 KafkaTemplate<String, Order> kafkaTemplate) {
 this.kafkaTemplate = kafkaTemplate;
 }

 @Override
 public void sendOrder(Order order) {

Listing 8.8 Sending orders with KafkaTemplate

206 CHAPTER 8 Sending messages asynchronously
 kafkaTemplate.send("tacocloud.orders.topic", order);
 }

}

In this new implementation of OrderMessagingService, the sendOrder() method
uses the send() method of the injected KafkaTemplate to send an Order to the topic
named tacocloud.orders.topic. Except for the word “Kafka” scattered through the
code, this isn’t much different than the code you wrote for JMS and Rabbit.

 If you set a default topic, you can simplify the sendOrder() method slightly. First,
set your default topic to tacocloud.orders.topic by setting the spring.kafka.template
.default-topic property:

spring:
 kafka:
 template:
 default-topic: tacocloud.orders.topic

Then, in the sendOrder() method, you can call sendDefault() instead of send() and
not specify the topic name:

@Override
public void sendOrder(Order order) {
 kafkaTemplate.sendDefault(order);
}

Now that your message-sending code has been written, let’s turn our attention to writ-
ing code that will receive those messages from Kafka.

8.3.3 Writing Kafka listeners

Aside from the unique method signatures for send() and sendDefault(), Kafka-
Template differs from JmsTemplate and RabbitTemplate in that it doesn’t offer any
methods for receiving messages. That means the only way to consume messages from
a Kafka topic using Spring is to write a message listener.

 For Kafka, message listeners are defined as methods that are annotated with @Kafka-
Listener. The @KafkaListener annotation is roughly analogous to @JmsListener and
@RabbitListener and is used in much the same way. The next listing shows what your
listener-based order receiver might look like if written for Kafka.

package tacos.kitchen.messaging.kafka.listener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import tacos.Order;
import tacos.kitchen.KitchenUI;

Listing 8.9 Receiving orders with @KafkaListener

207Messaging with Kafka
@Component
public class OrderListener {

 private KitchenUI ui;

 @Autowired
 public OrderListener(KitchenUI ui) {
 this.ui = ui;
 }

 @KafkaListener(topics="tacocloud.orders.topic")
 public void handle(Order order) {
 ui.displayOrder(order);
 }

}

The handle() method is annotated with @KafkaListener to indicate that it should
be invoked when a message arrives in the topic named tacocloud.orders.topic. As it’s
written in listing 8.9, only an Order (the payload) is given to handle(). But if you
need additional metadata from the message, it can also accept a ConsumerRecord or
Message object.

 For example, the following implementation of handle() accepts a Consumer-
Record so that you can log the partition and timestamp of the message:

@KafkaListener(topics="tacocloud.orders.topic")
public void handle(Order order, ConsumerRecord<Order> record) {
 log.info("Received from partition {} with timestamp {}",
 record.partition(), record.timestamp());
 ui.displayOrder(order);
}

Similarly, you could ask for a Message instead of a ConsumerRecord and achieve the
same thing:

@KafkaListener(topics="tacocloud.orders.topic")
public void handle(Order order, Message<Order> message) {
MessageHeaders headers = message.getHeaders();
 log.info("Received from partition {} with timestamp {}",
 headers.get(KafkaHeaders.RECEIVED_PARTITION_ID)
 headers.get(KafkaHeaders.RECEIVED_TIMESTAMP));
 ui.displayOrder(order);
}

It’s worth noting that the message payload is also available via ConsumerRecord
.value() or Message.getPayload(). This means that you could ask for the Order
through those objects instead of asking for it directly as a parameter to handle().

208 CHAPTER 8 Sending messages asynchronously
Summary
 Asynchronous messaging provides a layer of indirection between communicat-

ing applications, which allows for looser coupling and greater scalability.
 Spring supports asynchronous messaging with JMS, RabbitMQ, or Apache Kafka.
 Applications can use template-based clients (JmsTemplate, RabbitTemplate, or

KafkaTemplate) to send messages via a message broker.
 Receiving applications can consume messages in a pull-based model using the

same template-based clients.
 Messages can also be pushed to consumers by applying message listener annota-

tions (@JmsListener, @RabbitListener, or @KafkaListener) to bean methods.

Integrating Spring
One of the most frustrating things I encounter as I travel is being on a long flight
and having a poor or nonexistent in-flight internet connection. I like to use my air
time to get some work done, including writing many of the pages of this book. If
there’s no network connection, I’m at a disadvantage if I need to fetch a library or
look up a Java Doc, and I’m not able to get much work done. I’ve learned to pack a
book to read for those occasions.

 Just as we need to connect to the internet to be productive, many applications
must connect to external systems to perform their work. An application may need
to read or send emails, interact with an external API, or react to data being written
to a database. And, as data is ingested from or written to these external systems, the
application may need to process data in some way to translate it to or from the
application’s own domain.

This chapter covers
 Processing data in real time

 Defining integration flows

 Using Spring Integration’s Java DSL definition

 Integrating with emails, filesystems, and other
external systems
209

210 CHAPTER 9 Integrating Spring
 In this chapter, you’ll see how to employ common integration patterns with Spring
Integration. Spring Integration is a ready-to-use implementation of many of the inte-
gration patterns that are catalogued in Enterprise Integration Patterns by Gregor Hohpe
and Bobby Woolf (Addison-Wesley, 2003). Each pattern is implemented as a compo-
nent through which messages ferry data in a pipeline. Using Spring configuration,
you can assemble these components into a pipeline through which data flows. Let’s
get started by defining a simple integration flow that introduces many of the features
and characteristics of working with Spring Integration.

9.1 Declaring a simple integration flow
Generally speaking, Spring Integration enables the creation of integration flows
through which an application can receive or send data to some resource external to
the application itself. One such resource that an application may integrate with is the
filesystem. Therefore, among Spring Integration’s many components are channel
adapters for reading and writing files.

 To get your feet wet with Spring Integration, you’re going to create an integration
flow that writes data to the filesystem. To get started, you need to add Spring Integra-
tion to your project build. For Maven, the necessary dependencies are as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-integration</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-file</artifactId>
</dependency>

The first dependency is the Spring Boot starter for Spring Integration. This depen-
dency is essential to developing a Spring Integration flow, regardless of what the flow
may integrate with. Like all Spring Boot starter dependencies, it’s available as a check
box in the Initializr form.

 The second dependency is for Spring Integration’s file endpoint module. This
module is one of over two dozen endpoint modules used to integrate with external
systems. We’ll talk more about the endpoint modules in section 9.2.9. But, for now,
know that the file endpoint module offers the ability to ingest files from the filesystem
into an integration flow and/or to write data from a flow to the filesystem.

 Next you need to create a way for the application to send data into an integration
flow so that it can be written to a file. To do that, you’ll create a gateway interface,
such as the one shown next.

package sia5;
import org.springframework.integration.annotation.MessagingGateway;

Listing 9.1 Message gateway interface to transform method invocations into messages

211Declaring a simple integration flow
import org.springframework.integration.file.FileHeaders;
import org.springframework.messaging.handler.annotation.Header;

@MessagingGateway(defaultRequestChannel="textInChannel")
public interface FileWriterGateway {

 void writeToFile(
 @Header(FileHeaders.FILENAME) String filename,
 String data);

}

Although it’s a simple Java interface, there’s a lot to be said about FileWriterGateway.
The first thing you’ll notice is that it’s annotated with @MessagingGateway. This
annotation tells Spring Integration to generate an implementation of this interface
at runtime—similar to how Spring Data automatically generates implementations of
repository interfaces. Other parts of the code will use this interface when they need to
write a file.

 The defaultRequestChannel attribute of @MessagingGateway indicates that any
messages resulting from a call to the interface methods should be sent to the given
message channel. In this case, you state that any messages that result from a call to
writeToFile() should be sent to the channel whose name is textInChannel.

 As for the writeToFile() method, it accepts a filename as a String and another
String that is to contain the text that should be written to a file. What’s notable about
this method signature is that the filename parameter is annotated with @Header. In
this case, the @Header annotation indicates that the value passed to filename should
be placed in a message header (specified as FileHeaders.FILENAME, which resolves
to file_name) rather than in the message payload. The data parameter value, on the
other hand, is carried in the message payload.

 Now that you’ve a message gateway, you need to configure the integration flow.
Although the Spring Integration starter dependency that you added to your build
enables essential autoconfiguration for Spring Integration, it’s still up to you to write
additional configurations to define flows that meet the needs of the application.
Three configuration options for declaring integration flows include these:

 XML configuration
 Java configuration
 Java configuration with a DSL

We’ll take a look at all three of these configuration styles for Spring Integration, start-
ing with the old-timer, XML configuration.

9.1.1 Defining integration flows with XML

Although I’ve avoided using XML configuration in this book, Spring Integration has a
long history of integration flows defined in XML. Therefore, I think it worthwhile for

Declares a
message gateway

Writes to a file

212 CHAPTER 9 Integrating Spring
me to show at least one example of an XML-defined integration flow. The following
listing shows how to configure your sample flow in XML.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-file="http://www.springframework.org/schema/integration/file"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/file
 http://www.springframework.org/schema/integration/file/spring-

integration-file.xsd">

 <int:channel id="textInChannel" />

 <int:transformer id="upperCase"
 input-channel="textInChannel"
 output-channel="fileWriterChannel"
 expression="payload.toUpperCase()" />

 <int:channel id="fileWriterChannel" />

 <int-file:outbound-channel-adapter id="writer"
 channel="fileWriterChannel"
 directory="/tmp/sia5/files"
 mode="APPEND"
 append-new-line="true" />

</beans>

Breaking down the XML in listing 9.2:

 You configured a channel named textInChannel. You’ll recognize this as the
same channel that’s set as the request channel for FileWriterGateway. When
the writeToFile() method is called on FileWriterGateway, the resulting mes-
sage is published to this channel.

 You configured a transformer that receives messages from textInChannel. It
uses a Spring Expression Language (SpEL) expression to call toUpperCase()
on the message payload. The result of the uppercase operation is then pub-
lished to fileWriterChannel.

 You configured the channel named fileWriterChannel. This channel serves as
the conduit that connects the transformer with the outbound channel adapter.

 Finally, you configured an outbound channel adapter using the int-file name-
space. This XML namespace is provided by Spring Integration’s file module to
write files. As you configured it, it receives messages from fileWriterChannel

Listing 9.2 Defining an integration flow with Spring XML configuration

Declares
textInChannel

Transforms the text

Declares
fileWriterChannel

Writes the
text to a file

213Declaring a simple integration flow
and writes the message payload to a file whose name is specified in the message’s
file_name header in the directory specified in the directory attribute. If the file
already exists, the file will be appended with a newline rather than overwritten.

This flow is illustrated in figure 9.1 using graphical elements styled after those in Enter-
prise Integration Patterns.

If you want to use XML configuration in a Spring Boot application, you’ll need to
import the XML as a resource into the Spring application. The easiest way to do this is
to use Spring’s @ImportResource annotation on one of your application’s Java config-
uration classes:

@Configuration
@ImportResource("classpath:/filewriter-config.xml")
public class FileWriterIntegrationConfig { ... }

Although XML-based configuration has served Spring Integration well, most develop-
ers have grown wary of using XML. (And, as I said, I’m avoiding XML configuration in
this book.) Let’s set aside those angle brackets and turn our attention to Spring Inte-
gration’s Java configuration style.

9.1.2 Configuring integration flows in Java

Most modern Spring applications have eschewed XML configuration in favor of Java
configuration. In fact, in Spring Boot applications, Java configuration is a natural style
to complement autoconfiguration. Therefore, if you’re adding an integration flow to
a Spring Boot application, it makes perfect sense to define the flow in Java.

 As a sample of how to write an integration flow with Java configuration, take a look
at the next listing. This shows the same file-writing integration flow as before, but this
time it’s written in Java.

package sia5;
import java.io.File;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.integration.annotation.Transformer;
import org.springframework.integration.file.FileWritingMessageHandler;

Listing 9.3 Using Java configuration to define an integration flow

File writer

gateway

Text in

channel

Uppercase

transformer

File writer

channel

File outbound

channel adapter

Figure 9.1 The file writer integration flow

214 CHAPTER 9 Integrating Spring
import org.springframework.integration.file.support.FileExistsMode;
import org.springframework.integration.transformer.GenericTransformer;

@Configuration
public class FileWriterIntegrationConfig {

 @Bean
 @Transformer(inputChannel="textInChannel",
 outputChannel="fileWriterChannel")
 public GenericTransformer<String, String> upperCaseTransformer() {
 return text -> text.toUpperCase();
 }

 @Bean
 @ServiceActivator(inputChannel="fileWriterChannel")
 public FileWritingMessageHandler fileWriter() {
 FileWritingMessageHandler handler =
 new FileWritingMessageHandler(new File("/tmp/sia5/files"));
 handler.setExpectReply(false);
 handler.setFileExistsMode(FileExistsMode.APPEND);
 handler.setAppendNewLine(true);
 return handler;
 }

}

With Java configuration, you declare two beans: a transformer and a file-writing mes-
sage handler. The transformer is a GenericTransformer. Because GenericTransformer
is a functional interface, you’re able to provide its implementation as a lambda that
calls toUpperCase() on the message text. The transformer bean is annotated with
@Transformer designating it as a transformer in the integration flow that receives mes-
sages on a channel named textInChannel and writes messages to the channel named
fileWriterChannel.

 As for the file-writing bean, it’s annotated with @ServiceActivator to indicate that
it’ll accept messages from fileWriterChannel and hand those messages over to the
service defined by an instance of FileWritingMessageHandler. FileWritingMessage-
Handler is a message handler that writes a message payload to a file in a specified
directory using a filename specified in the message’s file_name header. As with the
XML example, FileWritingMessageHandler is configured to append to the file with
a newline.

 One thing unique about the configuration of the FileWritingMessageHandler
bean is that there’s a call to setExpectReply(false) to indicate that the service activa-
tor shouldn’t expect a reply channel (a channel through which a value may be returned
to upstream components in the flow). If you don’t call setExpectReply(), the file-
writing bean defaults to true and, although the pipeline still functions as expected,
you’ll see a few errors logged stating that no reply channel was configured.

 You’ll also notice that you didn’t need to explicitly declare the channels. The text-
InChannel and fileWriterChannel channels will be created automatically if no beans

Declares a
transformer

Declares a
file writer

215Declaring a simple integration flow
with those names exist. But if you want more control over how the channels are con-
figured, you can explicitly construct them as beans like this:

@Bean
public MessageChannel textInChannel() {
 return new DirectChannel();
}

...

@Bean
public MessageChannel fileWriterChannel() {
 return new DirectChannel();
}

The Java configuration option is arguably easier to read and slightly briefer, and is
certainly consistent with the Java-only configuration I’m shooting for in this book. But
it can be made even more streamlined with Spring Integration’s Java DSL (domain-
specific language) configuration style.

9.1.3 Using Spring Integration’s DSL configuration

Let’s take one more stab at defining the file-writing integration flow. This time, you’ll
still define it in Java, but you’ll use Spring Integration’s Java DSL. Rather than declare
an individual bean for each component in the flow, you’ll declare a single bean that
defines the entire flow.

package sia5;
import java.io.File;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.channel.MessageChannels;
import org.springframework.integration.file.dsl.Files;
import org.springframework.integration.file.support.FileExistsMode;

@Configuration
public class FileWriterIntegrationConfig {

 @Bean
 public IntegrationFlow fileWriterFlow() {
 return IntegrationFlows
 .from(MessageChannels.direct("textInChannel"))
 .<String, String>transform(t -> t.toUpperCase())
 .handle(Files
 .outboundAdapter(new File("/tmp/sia5/files"))
 .fileExistsMode(FileExistsMode.APPEND)
 .appendNewLine(true))
 .get();
 }

}

Listing 9.4 Providing a fluent API for designing integration flows

Inbound channel

Declares a
transformer

Handles writing
to a file

216 CHAPTER 9 Integrating Spring
This new configuration is as terse as it can possibly be, capturing the entire flow in a
single bean method. The IntegrationFlows class initiates the builder API, from
which you can declare the flow.

 In listing 9.4, you start by receiving messages from the channel named textIn-
Channel, which then go to a transformer that uppercases the message payload. After
the transformer, messages are handled by an outbound channel adapter created from
the Files type provided in Spring Integration’s file module. Finally, a call to get()
builds the IntegrationFlow to be returned. In short, this one bean method defines
the same integration flow as the XML and Java configuration examples.

 You’ll notice that, as with the Java configuration example, you don’t need to explic-
itly declare channel beans. Although you reference textInChannel, it’s automatically
created by Spring Integration because there’s no existing channel bean with that
name. But you can explicitly declare the channel bean if you want.

 As for the channel that connects the transformer to the outbound channel adapter,
you don’t even reference it by name. If there’s a need to explicitly configure the chan-
nel, you can reference it by name in the flow definition with a call to channel():

@Bean
public IntegrationFlow fileWriterFlow() {
 return IntegrationFlows
 .from(MessageChannels.direct("textInChannel"))
 .<String, String>transform(t -> t.toUpperCase())
 .channel(MessageChannels.direct("fileWriterChannel"))
 .handle(Files
 .outboundAdapter(new File("/tmp/sia5/files"))
 .fileExistsMode(FileExistsMode.APPEND)
 .appendNewLine(true))
 .get();
}

One thing to keep in mind when working with Spring Integration’s Java DSL (as with
any fluent API) is that you must employ whitespace shrewdly to maintain readability.
In the example given here, I’ve been careful to indent lines to indicate blocks of
related code. For even longer, more complex flows, you may even consider extracting
portions of the flow into separate methods or subflows for better readability.

 Now that you’ve seen a simple flow defined using three different configuration
styles, let’s step back and take a look at Spring Integration’s big picture.

9.2 Surveying the Spring Integration landscape
Spring Integration covers a lot of ground with a multitude of integration scenarios.
Trying to include all of it in a single chapter would be like trying to fit an elephant in
an envelope. Instead of a comprehensive treatment of Spring Integration, I’ll present
a photograph of the Spring Integration elephant to give you some idea of how it
works. Then you’ll create one more integration flow that adds functionality to the
Taco Cloud application.

217Surveying the Spring Integration landscape
 An integration flow is composed of one or more of the following components.
Before you write any more code, we’ll take a brief look at the role each of these com-
ponents plays in an integration flow:

 Channels—Pass messages from one element to another.
 Filters—Conditionally allow messages to pass through the flow based on some

criteria.
 Transformers—Change message values and/or convert message payloads from

one type to another.
 Routers—Direct messages to one of several channels, typically based on mes-

sage headers.
 Splitters—Split incoming messages into two or more messages, each sent to dif-

ferent channels.
 Aggregators—The opposite of splitters, combining multiple messages coming in

from separate channels into a single message.
 Service activators—Hand a message off to some Java method for processing, and

then publish the return value on an output channel.
 Channel adapters—Connect a channel to some external system or transport. Can

either accept input or write to the external system.
 Gateways—Pass data into an integration flow via an interface.

You’ve already seen a few of these components in play when you defined the file-
writing integration flow. The FileWriterGateway interface was the gateway through
which an application submitted text to be written to a file. You also defined a trans-
former to convert the given text to uppercase; then you declared a service gateway
that performed the task of writing the text to a file. And the flow had two channels,
textInChannel and fileWriterChannel, that connected the other components with
each other. Now, a quick tour of the integration flow components, as promised.

9.2.1 Message channels

Message channels are the means by which messages move through an integration
pipeline (figure 9.2). They’re the pipes that connect all the other parts of Spring Inte-
gration plumbing together.

Spring Integration provides several channel implementations, including these:

 PublishSubscribeChannel—Messages published into a PublishSubscribe-
Channel are passed on to one or more consumers. If there are multiple con-
sumers, all of them receive the message.

Channel

Figure 9.2 Message channels are conduits
through which data flows between other
components in an integration flow.

218 CHAPTER 9 Integrating Spring
 QueueChannel—Messages published into a QueueChannel are stored in a queue
until pulled by a consumer in a first in, first out (FIFO) fashion. If there are
multiple consumers, only one of them receives the message.

 PriorityChannel—Like QueueChannel but, rather than FIFO behavior, mes-
sages are pulled by consumers based on the message priority header.

 RendezvousChannel—Like QueueChannel except that the sender blocks the
channel until a consumer receives the message, effectively synchronizing the
sender with the consumer.

 DirectChannel—Like PublishSubscribeChannel but sends a message to a sin-
gle consumer by invoking the consumer in the same thread as the sender. This
allows for transactions to span across the channel.

 ExecutorChannel—Similar to DirectChannel but the message dispatch occurs
via a TaskExecutor, taking place in a separate thread from the sender. This
channel type doesn’t support transactions that span the channel.

 FluxMessageChannel—A Reactive Streams Publisher message channel based on
Project Reactor’s Flux. (We’ll talk more about Reactive Streams, Reactor, and
Flux in chapter 10.)

In both the Java configuration and Java DSL styles, input channels are automatically
created, with DirectChannel as the default. But if you want to use a different channel
implementation, you’ll need to explicitly declare the channel as a bean and reference
it in the integration flow. For example, to declare a PublishSubscribeChannel, you’d
declare the following @Bean method:

@Bean
public MessageChannel orderChannel() {
 return new PublishSubscribeChannel();
}

Then you’d reference this channel by name in the integration flow definition. For
example, if the channel were being consumed by a service activator bean, you’d refer-
ence it in the inputChannel attribute of @ServiceActivator:

@ServiceActivator(inputChannel="orderChannel")

Or, if you’re using the Java DSL configuration style, you’d reference it with a call to
channel():

@Bean
public IntegrationFlow orderFlow() {
 return IntegrationFlows
 ...
 .channel("orderChannel")
 ...
 .get();
}

219Surveying the Spring Integration landscape
It’s important to note that if you’re using QueueChannel, the consumers must be con-
figured with a poller. For instance, suppose that you’ve declared a QueueChannel bean
like this:

@Bean
public MessageChannel orderChannel() {
 return new QueueChannel();
}

You’d need to make sure that the consumer is configured to poll the channel for mes-
sages. In the case of a service activator, the @ServiceActivator annotation might look
like this:

@ServiceActivator(inputChannel="orderChannel",
 poller=@Poller(fixedRate="1000"))

In this example, the service activator polls from the channel named orderChannel
every 1 second (or 1,000 ms).

9.2.2 Filters

Filters can be placed in the midst of an integration pipeline to allow or disallow mes-
sages from proceeding to the next step in the flow (figure 9.3).

For example, suppose that messages containing integer values are published through
a channel named numberChannel, but you only want even numbers to pass on to the
channel named evenNumberChannel. In that case, you could declare a filter with the
@Filter annotation like this:

@Filter(inputChannel="numberChannel",
 outputChannel="evenNumberChannel")
public boolean evenNumberFilter(Integer number) {
 return number % 2 == 0;
}

Alternatively, if you’re using the Java DSL configuration style to define your integra-
tion flow, you could make a call to filter() like this:

@Bean
public IntegrationFlow evenNumberFlow(AtomicInteger integerSource) {
 return IntegrationFlows
 ...
 .<Integer>filter((p) -> p % 2 == 0)
 ...

Filter

Figure 9.3 Filters based on some criteria
allow or disallow messages from proceeding
in the pipeline.

220 CHAPTER 9 Integrating Spring
 .get();
}

In this case, you use a lambda to implement the filter. But, in truth, the filter()
method accepts a GenericSelector as an argument. This means that you can imple-
ment the GenericSelector interface instead, should your filtering needs be too
involved for a simple lambda.

9.2.3 Transformers

Transformers perform some operation on messages, typically resulting in a different
message and, possibly, with a different payload type (see figure 9.4). The transforma-
tion can be something simple, such as performing mathematic operations on a num-
ber or manipulating a String value. Or the transformation can be more complex,
such as using a String value representing an ISBN to look up and return details of the
corresponding book.

For example, suppose that integer values are being published on a channel named
numberChannel and you want to convert those numbers to a String containing the
Roman numeral equivalent. In that case, you can declare a bean of type Generic-
Transformer and annotate it with @Transformer as follows:

@Bean
@Transformer(inputChannel="numberChannel",
 outputChannel="romanNumberChannel")
public GenericTransformer<Integer, String> romanNumTransformer() {
 return RomanNumbers::toRoman;
}

The @Transformer annotation designates this bean as a transformer bean that receives
Integer values from the channel named numberChannel and uses a static method
named toRoman() to do the conversion. (The toRoman() method is statically defined
in a class named RomanNumbers and referenced here with a method reference.) The
result is published to the channel named romanNumberChannel.

 In the Java DSL configuration style, it’s even easier with a call to transform(), pass-
ing in the method reference to the toRoman() method:

@Bean
public IntegrationFlow transformerFlow() {
 return IntegrationFlows
 ...
 .transform(RomanNumbers::toRoman)

Filter

Figure 9.4 Transformers morph messages as
they flow through an integration flow.

221Surveying the Spring Integration landscape
 ...
 .get();
}

Although you’ve used a method reference in both of the transformer code samples,
know that the transformer can also be specified as a lambda. Or, if the transformer is
complex enough to warrant a separate Java class, you can inject it as a bean into the
flow configuration and pass the reference to the transform() method:

@Bean
public RomanNumberTransformer romanNumberTransformer() {
 return new RomanNumberTransformer();
}

@Bean
public IntegrationFlow transformerFlow(
 RomanNumberTransformer romanNumberTransformer) {
 return IntegrationFlows
 ...
 .transform(romanNumberTransformer)
 ...
 .get();
}

Here, you declare a bean of type RomanNumberTransformer, which itself is an imple-
mentation of Spring Integration’s Transformer or GenericTransformer interfaces. The
bean is injected into the transformerFlow() method and passed to the transform()
method when defining the integration flow.

9.2.4 Routers

Routers, based on some routing criteria, allow for branching in an integration flow,
directing messages to different channels (see figure 9.5).

For example, suppose that you have a channel named numberChannel through which
integer values flow. And let’s say that you want to direct all messages with even num-
bers to a channel named evenChannel, while messages with odd numbers are routed
to a channel named oddChannel. To create such a routing in your integration flow,
you can declare a bean of type AbstractMessageRouter and annotate the bean with
@Router:

@Bean
@Router(inputChannel="numberChannel")
public AbstractMessageRouter evenOddRouter() {

Router

Figure 9.5 Routers direct messages to
different channels, based on some criteria
applied to the messages.

222 CHAPTER 9 Integrating Spring
 return new AbstractMessageRouter() {
 @Override
 protected Collection<MessageChannel>
 determineTargetChannels(Message<?> message) {
 Integer number = (Integer) message.getPayload();
 if (number % 2 == 0) {
 return Collections.singleton(evenChannel());
 }
 return Collections.singleton(oddChannel());
 }
 };
}

@Bean
public MessageChannel evenChannel() {
 return new DirectChannel();
}

@Bean
public MessageChannel oddChannel() {
 return new DirectChannel();
}

The AbstractMessageRouter bean declared here accepts messages from an input
channel named numberChannel. The implementation, defined as an anonymous
inner class, examines the message payload and, if it’s an even number, returns the
channel named evenChannel (declared as a bean after the router bean). Otherwise,
the number in the channel payload must be odd; in which case, the channel named
oddChannel is returned (also declared in a bean declaration method).

 In Java DSL form, routers are declared by calling route() in the course of a flow
definition, as shown here:

@Bean
public IntegrationFlow numberRoutingFlow(AtomicInteger source) {
 return IntegrationFlows
 ...
 .<Integer, String>route(n -> n%2==0 ? "EVEN":"ODD", mapping -> mapping
 .subFlowMapping("EVEN", sf -> sf
 .<Integer, Integer>transform(n -> n * 10)
 .handle((i,h) -> { ... })
)
 .subFlowMapping("ODD", sf -> sf
 .transform(RomanNumbers::toRoman)
 .handle((i,h) -> { ... })
)
)
 .get();
}

Although it’s still possible to declare an AbstractMessageRouter and pass it into
route(), this example uses a lambda to determine if a message payload is odd or even.

223Surveying the Spring Integration landscape
If it’s even, then a String value of EVEN is returned. If it’s odd, then ODD is returned.
These values are then used to determine which submapping will handle the message.

9.2.5 Splitters

At times, in an integration flow it can be useful to split a message into multiple mes-
sages to be handled independently. Splitters, as illustrated in figure 9.6, will split and
handle those messages for you.

Splitters are useful in many circumstances, but there are two essential use cases for
which you might use a splitter:

 A message payload contains a collection of items of the same type that you’d like to process
as individual message payloads. For example, a message carrying a list of prod-
ucts might be split into multiple messages with payloads of one product each.

 A message payload carries information that, although related, can be split into two or
more messages of different types. For example, a purchase order might carry deliv-
ery, billing, and line-item information. The delivery details might be processed
by one subflow, billing by another, and line items in yet another. In this use
case, the splitter is typically followed by a router that routes messages by payload
type to ensure that the data gets handled by the right subflow.

When splitting a message payload into two or more messages of different types, it’s
usually sufficient to define a POJO that extracts the individual pieces of the incoming
payload and returns them as elements of a collection.

 For example, suppose that you want to split a message carrying a purchase order
into two messages: one carrying the billing information and another carrying a list of
line items. The following OrderSplitter will do the job:

public class OrderSplitter {
 public Collection<Object> splitOrderIntoParts(PurchaseOrder po) {
 ArrayList<Object> parts = new ArrayList<>();
 parts.add(po.getBillingInfo());
 parts.add(po.getLineItems());
 return parts;
 }
}

You can then declare an OrderSplitter bean as part of the integration flow by anno-
tating it with @Splitter like this:

Splitter

Figure 9.6 Splitters break down messages
into two or more separate messages that can
be handled by separate subflows.

224 CHAPTER 9 Integrating Spring
@Bean
@Splitter(inputChannel="poChannel",
 outputChannel="splitOrderChannel")
public OrderSplitter orderSplitter() {
 return new OrderSplitter();
}

Here, purchase orders arrive on the channel named poChannel and are split by
OrderSplitter. Then, each item in the returned collection is published as a separate
message in the integration flow to a channel named splitOrderChannel. At this point
in the flow, you can declare a PayloadTypeRouter to route the billing information and
the line items to their own subflow:

@Bean
@Router(inputChannel="splitOrderChannel")
public MessageRouter splitOrderRouter() {
 PayloadTypeRouter router = new PayloadTypeRouter();
 router.setChannelMapping(
 BillingInfo.class.getName(), "billingInfoChannel");
 router.setChannelMapping(
 List.class.getName(), "lineItemsChannel");
 return router;
}

As its name implies, PayloadTypeRouter routes messages to different channels
based on their payload type. As configured here, messages whose payload is of type
BillingInfo are routed to a channel named billingInfoChannel for further pro-
cessing. As for the line items, they’re in a java.util.List collection; therefore, you
mapped payloads of type List to be routed to a channel named lineItemsChannel.

 As things stand, the flow splits into two subflows: one through which BillingInfo
objects flow and another through which a List<LineItem> flows. But what if you
want to break it down further such that instead of dealing with a List of LineItems,
you process each LineItem separately? All you need to do to split the line-item list
into multiple messages, one for each line item, is write a method (not a bean) that’s
annotated with @Splitter and returns a collection of LineItems, perhaps some-
thing like this:

@Splitter(inputChannel="lineItemsChannel", outputChannel="lineItemChannel")
public List<LineItem> lineItemSplitter(List<LineItem> lineItems) {
 return lineItems;
}

When a message carrying a payload of List<LineItem> arrives in the channel named
lineItemsChannel, it passes into the lineItemSplitter() method. Per the rules of a
splitter, the method must return a collection of the items to be split. In this case, you
already have a collection of LineItems, so you just return the collection directly. As a
result, each LineItem in the collection is published in a message of its own to the
channel named lineItemChannel.

225Surveying the Spring Integration landscape
 If you’d rather use the Java DSL to declare the same splitter/router configuration,
you can do so with calls to split() and route():

return IntegrationFlows
 ...
 .split(orderSplitter())
 .<Object, String> route(
 p -> {
 if (p.getClass().isAssignableFrom(BillingInfo.class)) {
 return "BILLING_INFO";
 } else {
 return "LINE_ITEMS";
 }
 }, mapping -> mapping
 .subFlowMapping("BILLING_INFO", sf -> sf
 .<BillingInfo> handle((billingInfo, h) -> {
 ...
 }))
 .subFlowMapping("LINE_ITEMS", sf -> sf
 .split()
 .<LineItem> handle((lineItem, h) -> {
 ...
 }))

)
 .get();

The DSL form of the flow definition is certainly terser, if not arguably a bit more diffi-
cult to follow. It uses the same OrderSplitter to split the order as the Java configura-
tion example. After the order is split, it’s routed by its type to two separate subflows.

9.2.6 Service activators

Service activators receive messages from an input channel and send those messages to
an implementation of MessageHandler, as shown in figure 9.7.

Spring Integration offers several MessageHandler implementations out of the box
(even PayloadTypeRouter is an implementation of MessageHandler), but you’ll often
need to provide some custom implementation to act as a service activator. As an exam-
ple, the following code shows how to declare a MessageHandler bean, configured to
be a service activator:

Service

activator

Invoke a

service

Figure 9.7 Service activators invoke some service by way
of a MessageHandler on receipt of a message.

226 CHAPTER 9 Integrating Spring
@Bean
@ServiceActivator(inputChannel="someChannel")
public MessageHandler sysoutHandler() {
 return message -> {
 System.out.println("Message payload: " + message.getPayload());
 };
}

The bean is annotated with @ServiceActivator to designate it as a service activator that
handles messages from the channel named someChannel. As for the MessageHandler
itself, it’s implemented via a lambda. Although it’s a simple MessageHandler, when
given a Message, it emits its payload to the standard output stream.

 Alternatively, you could declare a service activator that processes the data in the
incoming message before returning a new payload. In that case, the bean should be a
GenericHandler rather than a MessageHandler:

@Bean
@ServiceActivator(inputChannel="orderChannel",
 outputChannel="completeOrder")
public GenericHandler<Order> orderHandler(
 OrderRepository orderRepo) {
 return (payload, headers) -> {
 return orderRepo.save(payload);
 };
}

In this case, the service activator is a GenericHandler that expects messages with
a payload of type Order. When the order arrives, it’s saved via a repository; the
resulting saved Order is returned to be sent to the output channel whose name is
completeChannel.

 You may notice that a GenericHandler is given not only the payload, but also the
message headers (even if the example doesn’t use those headers in any way). If you
prefer, you can also use service activators in the Java DSL configuration style by pass-
ing a MessageHandler or GenericHandler to handle() in the flow definition:

public IntegrationFlow someFlow() {
 return IntegrationFlows
 ...
 .handle(msg -> {
 System.out.println("Message payload: " + msg.getPayload());
 })
 .get();
}

In this case, the MessageHandler is given as a lambda, but you could also provide it as
a method reference or even as an instance of a class that implements the Message-
Handler interface. If you give it a lambda or method reference, be aware that it
accepts a message as a parameter.

227Surveying the Spring Integration landscape
 Similarly, handle() can be written to accept a GenericHandler if the service activa-
tor isn’t intended to be the end of the flow. Applying the order-saving service activator
from before, you could configure the flow with the Java DSL like this:

public IntegrationFlow orderFlow(OrderRepository orderRepo) {
 return IntegrationFlows
 ...
 .<Order>handle((payload, headers) -> {
 return orderRepo.save(payload);
 })
 ...
 .get();
}

When working with a GenericHandler, the lambda or method reference accepts the
message payload and headers as parameters. Also, if you choose to use Generic-
Handler at the end of a flow, you’ll need to return null, or else you’ll get errors indi-
cating that there’s no output channel specified.

9.2.7 Gateways

Gateways are the means by which an application can submit data into an integration
flow and, optionally, receive a response that’s the result of the flow. Implemented by
Spring Integration, gateways are realized as interfaces that the application can call to
send messages to the integration flow (figure 9.8).

You’ve already seen an example of a message gateway with FileWriterGateway. File-
WriterGateway was a one-way gateway with a method accepting a String to write to a
file, returning void. It’s just about as easy to write a two-way gateway. When writing the
gateway interface, be sure that the method returns some value to publish into the inte-
gration flow.

 As an example, imagine a gateway that fronts a simple integration flow that accepts
a String and translates the given String to all uppercase. The gateway interface
might look something like this:

package com.example.demo;
import org.springframework.integration.annotation.MessagingGateway;
import org.springframework.stereotype.Component;

Gateway

A
p

p
lic

a
ti
o

n

Channel

…

Integration owfl

Figure 9.8 Service gateways
are interfaces through which an
application can submit messages
to an integration flow.

228 CHAPTER 9 Integrating Spring
@Component
@MessagingGateway(defaultRequestChannel="inChannel",
 defaultReplyChannel="outChannel")
public interface UpperCaseGateway {
 String uppercase(String in);
}

What’s amazing about this interface is that it’s not necessary to implement it. Spring
Integration automatically provides an implementation at runtime that sends and
receives data through the specified channels.

 When uppercase() is called, the given String is published to the integration flow
into the channel named inChannel. And, regardless of how the flow is defined or
what it does, when data arrives in the channel named outChannel, it’s returned from
the uppercase() method.

 As for the uppercase integration flow, it’s a simplistic integration flow with only a
single step to transform the String to uppercase. Here, it’s expressed in the Java
DSL configuration:

@Bean
public IntegrationFlow uppercaseFlow() {
 return IntegrationFlows
 .from("inChannel")
 .<String, String> transform(s -> s.toUpperCase())
 .channel("outChannel")
 .get();
}

As defined here, the flow starts with data coming into the channel named inChannel.
The message payload is then transformed by the transformer, which is defined here as
a lambda expression, to perform an uppercase operation. The resulting message is
then published to the channel named outChannel, which is what you’ve declared as
the reply channel for the UpperCaseGateway interface.

9.2.8 Channel adapters

Channel adapters represent the entry and exit points of an integration flow. Data
enters an integration flow by way of an inbound channel adapter and exits an integra-
tion flow by way of an outbound channel adapter. This is illustrated in figure 9.9.

Inbound channel adapters can take many forms, depending on the source of the data
they introduce into the flow. For example, you might declare an inbound channel

Inbound

channel adapter

…

Outbound

channel adapter
Integration

flow

Figure 9.9 Channel adapters
are the entry and exit points of
an integration flow.

229Surveying the Spring Integration landscape
adapter that introduces incrementing numbers from an AtomicInteger into the flow.
Using Java configuration, it might look like this:

@Bean
@InboundChannelAdapter(
 poller=@Poller(fixedRate="1000"), channel="numberChannel")
public MessageSource<Integer> numberSource(AtomicInteger source) {
 return () -> {
 return new GenericMessage<>(source.getAndIncrement());
 };
}

This @Bean method declares an inbound channel adapter bean which, per the @Inbound-
ChannelAdapter annotation, submits a number from the injected AtomicInteger to
the channel named numberChannel every 1 second (or 1,000 ms).

 Whereas @InboundChannelAdapter indicates an inbound channel adapter when
using Java configuration, the from() method is how it’s done when using the Java DSL
to define the integration flow. The following snippet of a flow definition shows a simi-
lar inbound channel adapter as defined in the Java DSL:

@Bean
public IntegrationFlow someFlow(AtomicInteger integerSource) {
 return IntegrationFlows
 .from(integerSource, "getAndIncrement",
 c -> c.poller(Pollers.fixedRate(1000)))
 ...
 .get();
}

Often, channel adapters are provided by one of Spring Integration’s many endpoint
modules. Suppose, for example, that you need an inbound channel adapter that
monitors a specified directory and submits any files that are written to that directory
as messages to a channel named file-channel. The following Java configuration
uses FileReadingMessageSource from Spring Integration’s file endpoint module to
achieve that:

@Bean
@InboundChannelAdapter(channel="file-channel",
 poller=@Poller(fixedDelay="1000"))
public MessageSource<File> fileReadingMessageSource() {
 FileReadingMessageSource sourceReader = new FileReadingMessageSource();
 sourceReader.setDirectory(new File(INPUT_DIR));
 sourceReader.setFilter(new SimplePatternFileListFilter(FILE_PATTERN));
 return sourceReader;
}

When writing the equivalent file-reading inbound channel adapter in the Java DSL,
the inboundAdapter() method from the Files class achieves the same thing. An out-
bound channel adapter is the end of the line for the integration flow, handing off the
final message to the application or to some other system:

230 CHAPTER 9 Integrating Spring
@Bean
public IntegrationFlow fileReaderFlow() {
 return IntegrationFlows
 .from(Files.inboundAdapter(new File(INPUT_DIR))
 .patternFilter(FILE_PATTERN))
 .get();
}

Service activators, implemented as message handlers, often serve the purpose of an
outbound channel adapter, especially when data needs to be handed off to the appli-
cation itself. We’ve already discussed service activators, so there’s no point in repeat-
ing that discussion.

 It’s worth noting, however, that Spring Integration endpoint modules provide use-
ful message handlers for several common use cases. You saw an example of such an
outbound channel adapter, FileWritingMessageHandler, in listing 9.3. Speaking of
Spring Integration endpoint modules, let’s take a quick look at what ready-to-use inte-
gration endpoint modules are available.

9.2.9 Endpoint modules

It’s great that Spring Integration lets you create your own channel adapters. But
what’s even better is that Spring Integration provides over two dozen endpoint mod-
ules containing channel adapters—both inbound and outbound—for integration
with a variety of common external systems, including those listed in table 9.1.

Table 9.1 Spring Integration provides over two dozen endpoint models for integration with external
systems.

Module
Dependency artifact ID

(Group ID: org.springframework.integration)

AMQP spring-integration-amqp

Spring application events spring-integration-event

RSS and Atom spring-integration-feed

Filesystem spring-integration-file

FTP/FTPS spring-integration-ftp

GemFire spring-integration-gemfire

HTTP spring-integration-http

JDBC spring-integration-jdbc

JPA spring-integration-jpa

JMS spring-integration-jms

Email spring-integration-mail

MongoDB spring-integration-mongodb

231Creating an email integration flow
One thing that’s clear from looking at table 9.1 is that Spring Integration provides an
extensive set of components to meet many integration needs. Most applications will
never need even a fraction of what Spring Integration offers. But it’s good to know
that Spring Integration has you covered if you need them.

 What’s more, it would be impossible to cover all the channel adapters afforded by
the modules listed in table 9.1 in the space of this chapter. You’ve already seen exam-
ples that use the filesystem module to write to the filesystem. And you’re soon going to
use the email module to read emails.

 Each of the endpoint modules offers channel adapters that can be either declared
as beans when using Java configuration or referenced via static methods when using
Java DSL configuration. I encourage you to explore any of the other endpoint mod-
ules that interest you most. You’ll find that they’re fairly consistent in how they’re
used. But for now, let’s turn our attention to the email endpoint module to see how
you might use it in the Taco Cloud application.

9.3 Creating an email integration flow
You’ve decided that Taco Cloud should enable its customers to submit their taco
designs and place orders by email. You send out flyers and place take-out ads in news-
papers inviting everyone to send in their taco orders by email. It’s a tremendous

MQTT spring-integration-mqtt

Redis spring-integration-redis

RMI spring-integration-rmi

SFTP spring-integration-sftp

STOMP spring-integration-stomp

Stream spring-integration-stream

Syslog spring-integration-syslog

TCP/UDP spring-integration-ip

Twitter spring-integration-twitter

Web Services spring-integration-ws

WebFlux spring-integration-webflux

WebSocket spring-integration-websocket

XMPP spring-integration-xmpp

ZooKeeper spring-integration-zookeeper

Table 9.1 Spring Integration provides over two dozen endpoint models for integration with external
systems. (continued)

Module
Dependency artifact ID

(Group ID: org.springframework.integration)

232 CHAPTER 9 Integrating Spring
success! Unfortunately, it’s a bit too successful. There are so many emails coming in
that you have to hire temporary help to do nothing more than read all the emails and
submit order details into the ordering system.

 In this section, you’ll implement an integration flow that polls the Taco Cloud
inbox for taco order emails, parses the emails for order details, and submits the orders
to Taco Cloud for handling. In short, the integration flow you’re going to need will
use an inbound channel adapter from the email endpoint module to ingest emails
from the Taco Cloud inbox into the integration flow.

 The next step in the integration flow will parse the emails into order objects that
are handed off to another handler to submit orders to Taco Cloud’s REST API, where
they’ll be processed the same as any order. To start with, let’s define a simple configu-
ration properties class to capture the specifics of how to handle Taco Cloud emails:

@Data
@ConfigurationProperties(prefix="tacocloud.email")
@Component
public class EmailProperties {

 private String username;
 private String password;
 private String host;
 private String mailbox;
 private long pollRate = 30000;

 public String getImapUrl() {
 return String.format("imaps://%s:%s@%s/%s",
 this.username, this.password, this.host, this.mailbox);
 }

}

As you can see, EmailProperties captures properties that are used to produce an
IMAP URL. The flow uses this URL to connect to the Taco Cloud email server and poll
for emails. Among the properties captured are the email user’s username and pass-
word, as well as the hostname of the IMAP server, the mailbox to poll, and the rate at
which the mailbox is polled (which defaults to every 30 seconds).

 The EmailProperties class is annotated at the class level with @Configuration-
Properties with a prefix attribute set to tacocloud.email. This means that you can
configure the details of consuming an email in the application.yml file like this:

tacocloud:
 email:
 host: imap.tacocloud.com
 mailbox: INBOX
 username: taco-in-flow
 password: 1L0v3T4c0s
 poll-rate: 10000

Now let’s use EmailProperties to configure the integration flow. The flow you’re aim-
ing to create will look a little like figure 9.10.

233Creating an email integration flow
You have two options when defining this flow:

 Define it within the Taco Cloud application itself—At the end of the flow, a service
activator will call into the repositories you’ve defined to create the taco order.

 Define it as a separate application—At the end of the flow, a service activator will
send a POST request to the Taco Cloud API to submit the taco order.

Whichever you choose has little bearing on the flow itself, aside from how the service
activator is implemented. But because you’re going to need some types that represent
tacos, orders, and ingredients, which are subtly different than those you’ve already
defined in the main Taco Cloud application, you’ll proceed by defining the integration
flow in a separate application to avoid any confusion with the existing domain types.

 You also have the choice of defining the flow using either XML configuration, Java
configuration, or the Java DSL. I rather like the elegance of the Java DSL, so that’s
what you’ll use. Feel free to write the flow using one of the other configuration styles if
you’re interested in a little extra challenge. For now, let’s take a look at the Java DSL
configuration for the taco order email flow as shown next.

package tacos.email;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.Pollers;

@Configuration
public class TacoOrderEmailIntegrationConfig {

 @Bean
 public IntegrationFlow tacoOrderEmailFlow(
 EmailProperties emailProps,
 EmailToOrderTransformer emailToOrderTransformer,
 OrderSubmitMessageHandler orderSubmitHandler) {

 return IntegrationFlows
 .from(Mail.imapInboundAdapter(emailProps.getImapUrl()),
 e -> e.poller(
 Pollers.fixedDelay(emailProps.getPollRate())))

Listing 9.5 Defining an integration flow to accept emails and submit them as orders

Email (IMAP)

inbound channel

adapter

Mail-to-order

transformer

Submit order

outbound channel

adapter

Figure 9.10 An integration flow to accept taco orders by email

234 CHAPTER 9 Integrating Spring
 .transform(emailToOrderTransformer)
 .handle(orderSubmitHandler)
 .get();
 }

}

The taco order email flow, as defined in the tacoOrderEmailFlow() method, is com-
posed of three distinct components:

 An IMAP email inbound channel adapter—This channel adapter is created with
the IMP URL generated from the getImapUrl() method of EmailProperties
and polls on a delay set in the pollRate property of EmailProperties. The
emails coming in are handed off to a channel connecting it to the transformer.

 A transformer that transforms an email into an order object—The transformer is imple-
mented in EmailToOrderTransformer, which is injected into the tacoOrder-
EmailFlow() method. The orders resulting from the transformation are handed
off to the final component through another channel.

 A handler (acting as an outbound channel adapter)—The handler accepts an order
object and submits it to Taco Cloud’s REST API.

The call to Mail.imapInboundAdapter() is made possible by including the Email end-
point module as a dependency in your project build. The Maven dependency looks
like this:

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-file</artifactId>
</dependency>

The EmailToOrderTransformer class is an implementation of Spring Integration’s
Transformer interface, by way of extending AbstractMailMessageTransformer (shown
in the following listing).

@Component
public class EmailToOrderTransformer
 extends AbstractMailMessageTransformer<Order> {

 @Override
 protected AbstractIntegrationMessageBuilder<Order>
 doTransform(Message mailMessage) throws Exception {
 Order tacoOrder = processPayload(mailMessage);
 return MessageBuilder.withPayload(tacoOrder);
 }

 ...

}

Listing 9.6 Converting incoming emails to taco orders using an integration transformer

235Creating an email integration flow
AbstractMailMessageTransformer is a convenient base class for handling messages
whose payload is an email. It takes care of extracting the email information from the
incoming message into a Message object that’s passed into the doTransform() method.

 In the doTransform() method, you pass the Message to a private method named
processPayload() to parse the email into an Order object. Although similar, the
Order object in question isn’t the same as the Order object used in the main Taco
Cloud application; it’s slightly simpler:

package tacos.email;
import java.util.ArrayList;
import java.util.List;
import lombok.Data;

@Data
public class Order {
 private final String email;
 private List<Taco> tacos = new ArrayList<>();

 public void addTaco(Taco taco) {
 this.tacos.add(taco);
 }
}

Rather than carry the customer’s entire delivery and billing information, this Order
class only carries the customer’s email, obtained from the incoming email.

 Parsing emails into taco orders is a non-trivial task. In fact, even a naive implemen-
tation involves several dozen lines of code. And those several dozen lines of code do
nothing to further the discussion of Spring Integration and how to implement a trans-
former. Therefore, to save space, I’m leaving out the details of the processPayload()
method.

 The last thing that EmailToOrderTransformer does is return a MessageBuilder
with a payload containing the Order object. The message that’s produced by the
MessageBuilder is sent to the final component in the integration flow: a message han-
dler that posts the order to Taco Cloud’s API. The OrderSubmitMessageHandler, as
shown in the next listing, implements Spring Integration’s GenericHandler to handle
messages with an Order payload.

package tacos.email;
import java.util.Map;
import org.springframework.integration.handler.GenericHandler;
import org.springframework.stereotype.Component;
import org.springframework.web.client.RestTemplate;

@Component
public class OrderSubmitMessageHandler
 implements GenericHandler<Order> {

Listing 9.7 Posting orders to the Taco Cloud API via a message handler

236 CHAPTER 9 Integrating Spring
 private RestTemplate rest;
 private ApiProperties apiProps;

 public OrderSubmitMessageHandler(
 ApiProperties apiProps, RestTemplate rest) {
 this.apiProps = apiProps;
 this.rest = rest;
 }

 @Override
 public Object handle(Order order, Map<String, Object> headers) {
 rest.postForObject(apiProps.getUrl(), order, String.class);
 return null;
 }

}

To satisfy the requirements of the GenericHandler interface, OrderSubmitMessage-
Handler overrides the handle() method. This method receives the incoming Order
object and uses an injected RestTemplate to submit the Order via a POST request to
the URL captured in an injected ApiProperties object. Finally, the handle() method
returns null to indicate that this handler marks the end of the flow.

 ApiProperties is used to avoid hardcoding the URL in the call to postFor-
Object(). It’s a configuration properties file that looks like this:

@Data
@ConfigurationProperties(prefix="tacocloud.api")
@Component
public class ApiProperties {
 private String url;
}

And in application.yml, the URL for the Taco Cloud API might be configured like this:

tacocloud:
 api:
 url: http://api.tacocloud.com

In order to make RestTemplate available in the project so that it can be injected into
OrderSubmitMessageHandler, you need to add the Spring Boot web starter to the
project build:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

Whereas this makes RestTemplate available in the classpath, it also triggers auto-
configuration for Spring MVC. As a standalone Spring Integration flow, the applica-
tion doesn’t need Spring MVC or even the embedded Tomcat that autoconfiguration

237Summary
provides. Therefore, you should disable Spring MVC autoconfiguration with the fol-
lowing entry in application.yml:

spring:
 main:
 web-application-type: none

The spring.main.web-application-type property can be set to either servlet,
reactive, or none. When Spring MVC is in the classpath, autoconfiguration sets its
value to servlet. But here you override it to none so that Spring MVC and Tomcat
won’t be autoconfigured. (We’ll talk more about what it means for an application to
be a reactive web application in chapter 11.)

Summary
 Spring Integration enables the definition of flows through which data can be

processed as it enters or leaves an application.
 Integration flows can be defined in XML, Java, or using a succinct Java DSL con-

figuration style.
 Message gateways and channel adapters act as entry and exit points of an inte-

gration flow.
 Messages can be transformed, split, aggregated, routed, and processed by ser-

vice activators in the course of a flow.
 Message channels connect the components of an integration flow.

Part 3

Reactive Spring

In part 3, we’ll explore the exciting new support for reactive programming in
Spring. Chapter 10 discusses the essentials of reactive programming with Project
Reactor, the reactive programming library that underpins Spring 5’s reactive fea-
tures. We’ll then look at some of Reactor’s most useful reactive operations. In
chapter 11, we'll revisit REST API development, introducing Spring WebFlux, a
new web framework that borrows much from Spring MVC while offering a new
reactive model for web development. Chapter 12 rounds out part 3 with a look
at writing reactive data persistence with Spring Data to read and write data to
Cassandra and Mongo databases.

Introducing Reactor
Have you ever held a subscription for a newspaper or a magazine? The internet has
certainly taken a bite out of the subscriber base of traditional publications, but
there was a time when a newspaper subscription was one of the best ways to keep up
with the events of the day. You could count on a fresh delivery of current events
every morning, to read during breakfast or on the way to work.

 Now suppose that if, after paying for your subscription, several days go by and
no papers have been delivered. A few more days go by, and you call the newspa-
per sales office to ask why you haven’t yet received your daily paper. Imagine your
surprise if they explain, “You paid for a full year of newspapers. The year hasn’t
completed yet. You’ll certainly receive them all once the full year of newspapers
is ready.”

 Thankfully, that’s not at all how subscriptions work. Newspapers have a certain
timeliness to them. They’re delivered as quickly as possible after publication so that
they can be read while their content is still fresh. Moreover, as you’re reading the

This chapter covers
 Understanding reactive programming

 Project Reactor

 Operating on data reactively
241

242 CHAPTER 10 Introducing Reactor
latest issue, newspaper reporters are writing new stories for future editions, and the
presses are fired up producing the next edition—all in parallel.

 As we develop application code, there are two styles of code we can write: impera-
tive and reactive:

 Imperative code is a lot like that absurd hypothetical newspaper subscription. It’s
a serial set of tasks, each running one at a time, each after the previous task.
Data is processed in bulk and can’t be handed over to the next task until the
previous task has completed its work on the bulk of data.

 Reactive code is a lot like a real newspaper subscription. A set of tasks is defined
to process data, but those tasks can run in parallel. Each task can process sub-
sets of the data, handing it off to the next task in line while it continues to work
on another subset of the data.

In this chapter, we’re going to step away from the Taco Cloud application temporar-
ily to explore Project Reactor. Reactor is a library for reactive programming that’s
part of the Spring family of projects. And because it serves as the foundation of
Spring 5’s support for reactive programming, it’s important that you understand
Reactor before we look at building reactive controllers and repositories with Spring.
Before we start working with Reactor, though, let’s quickly examine the essentials of
reactive programming.

10.1 Understanding reactive programming
Reactive programming is a paradigm that’s an alternative to imperative programming.
This alternative exists because reactive programming addresses a limitation in impera-
tive programming. By understanding these limitations, you can better grasp the bene-
fits of the reactive model.

NOTE Reactive programming isn't a silver bullet. In no way should you infer
from this chapter or any other discussion of reactive programming that
imperative programming is evil and that reactive programming is your savior.
Like anything you learn as a developer, reactive programming is a perfect fit
in some use cases, and it’s ill fitted in others. An ounce of pragmatism is
advised.

If you’re like me and many developers, you cut your programming teeth with impera-
tive programming. There’s a good chance that most (or all) of the code you write
today is still imperative in nature. Imperative programming is intuitive enough that
young students are learning it with ease in their school’s STEM programs, and it’s
powerful enough that it makes up the bulk of code that drives the largest enterprises.

 The idea is simple: you write code as a list of instructions to be followed, one at a
time, in the order that they’re encountered. A task is performed and the program
waits for it to complete before moving on to the next task. At each step along the
way, the data that’s to be processed must be fully available so that it can be processed
as a whole.

243Understanding reactive programming
 This is fine ... until it isn’t. While a task is being performed, and especially if it’s an
I/O task such as writing data to a database or fetching data from a remote server, the
thread that invoked that task is blocked, unable to do anything else until the task com-
pletes. To put it bluntly, blocked threads are wasteful.

 Most programming languages, including Java, support concurrent programming.
It’s fairly easy to fire up another thread in Java and send it on its way to perform some
work while the invoking thread carries on with something else. But although it’s easy
to create threads, those threads are likely to end up blocked themselves. Managing
concurrency in multiple threads is challenging. More threads mean more complexity.

 In contrast, reactive programming is functional and declarative in nature. Rather
than describe a set of steps that are to be performed sequentially, reactive program-
ming involves describing a pipeline or stream through which data flows. Rather than
requiring the data be available to be processed as a whole, a reactive stream processes
data as it becomes available. In fact, the incoming data may be endless (a constant
stream of a location’s real-time temperature data, for instance).

 To apply a real-world analogy, consider imperative programming as a water bal-
loon and reactive programming as a garden hose. Both are suitable ways to surprise
and soak an unsuspecting friend on a hot summer day. But they differ in their execu-
tion style:

 A water balloon carries its payload all at once, soaking its intended target at the
moment of impact. The water balloon has a finite capacity, however, and if you
wish to soak more people (or the same person to a greater extent), your only
choice is to scale up by increasing the number of water balloons.

 A garden hose carries its payload as a stream of water that flows from the spigot
to the nozzle. The garden hose’s capacity may be finite at any given point in
time, but it’s unlimited over the course of a water battle. As long as water is
entering the hose from the spigot, it will continue to flow through the hose and
spray out of the nozzle. The same garden hose is easily scalable to soak as many
friends as you wish.

There’s nothing inherently wrong with water balloons (or imperative programming),
but the person holding the garden hose (or applying reactive programming) has an
advantage in regard to scalability and performance.

10.1.1 Defining Reactive Streams

Reactive Streams is an initiative started in late 2013 by engineers from Netflix, Light-
bend, and Pivotal (the company behind Spring). Reactive Streams aims to provide a
standard for asynchronous stream processing with non-blocking backpressure.

 We’ve already touched on the asynchronous trait of reactive programming; it’s
what enables us to perform tasks in parallel to achieve greater scalability. Backpressure
is a means by which consumers of data can avoid being overwhelmed by an overly fast
data source, by establishing limits on how much they’re willing to handle.

244 CHAPTER 10 Introducing Reactor
The Reactive Streams specification can be summed up by four interface definitions:
Publisher, Subscriber, Subscription, and Processor. A Publisher produces data that
it sends to a Subscriber per a Subscription. The Publisher interface declares a single
method, subscribe(), through which a Subscriber can subscribe to the Publisher:

public interface Publisher<T> {
 void subscribe(Subscriber<? super T> subscriber);
}

Once a Subscriber has subscribed, it can receive events from the Publisher. Those
events are sent via methods on the Subscriber interface:

public interface Subscriber<T> {
 void onSubscribe(Subscription sub);
 void onNext(T item);
 void onError(Throwable ex);
 void onComplete();
}

The first event that the Subscriber will receive is through a call to onSubscribe(). When
the Publisher calls onSubscribe(), it passes a Subscription object to the Subscriber.
It’s through the Subscription that the Subscriber can manage its subscription:

public interface Subscription {
 void request(long n);
 void cancel();
}

The Subscriber can call request() to request that data be sent, or it can call cancel()
to indicate that it’s no longer interested in receiving data and is canceling the sub-
scription. When calling request(), the Subscriber passes in a long value to indi-
cate how many data items it’s willing to accept. This is where backpressure comes in,
preventing the Publisher from sending more data than the Subscriber is able to han-
dle. After the Publisher has sent as many items as were requested, the Subscriber can
call request() again to request more.

Java Streams vs. Reactive Streams
There’s a lot of similarity between Java Streams and Reactive Streams. To start with,
they both have the word Streams in their names. They also both provide a functional
API for working with data. In fact, as you’ll see later when we look at Reactor, they
even share many of the same operations.

Java Streams, however, are typically synchronous and work with a finite set of data.
They’re essentially a means of iterating over a collection with functions.

Reactive Streams support asynchronous processing of datasets of any size, including
infinite datasets. They process data in real time, as it becomes available, with back-
pressure to avoid overwhelming their consumers.

245Getting started with Reactor
 Once the Subscriber has requested data, the data starts flowing through the
stream. For every item that’s published by the Publisher, the onNext() method will
be called to deliver the data to the Subscriber. If there are any errors, onError() is
called. If the Publisher has no more data to send and isn’t going to produce any
more data, it will call onComplete() to tell the Subscriber that it’s out of business.

 As for the Processor interface, it’s a combination of Subscriber and Publisher,
as shown here:

public interface Processor<T, R>
 extends Subscriber<T>, Publisher<R> {}

As a Subscriber, a Processor will receive data and process it in some way. Then it will
switch hats and act as a Publisher to publish the results to its Subscribers.

 As you can see, the Reactive Streams specification is rather straightforward. It’s
fairly easy to see how you could build up a data-processing pipeline that starts with a
Publisher, pumps data through zero or more Processors, and then drops the final
results off to a Subscriber.

 What the Reactive Streams interfaces don’t lend themselves to, however, is com-
posing such a stream in a functional way. Project Reactor is an implementation of the
Reactive Streams specification that provides a functional API for composing Reactive
Streams. As you’ll see in the following chapters, Reactor is the foundation for Spring
5’s reactive programming model. In the remainder of this chapter, we’re going to
explore (and, dare I say, have a lot of fun with) Project Reactor.

10.2 Getting started with Reactor
Reactive programming requires us to think in a very different way from imperative
programming. Rather than describe a set of steps to be taken, reactive programming
means building a pipeline through which data will flow. As data passes through the
pipeline, it can be altered or used in some way.

 For example, suppose you want to take a person’s name, change all of its letters to
uppercase, use it to create a greeting message, and then finally print it. In an impera-
tive programming model, the code would look something like this:

String name = "Craig";
String capitalName = name.toUpperCase();
String greeting = "Hello, " + capitalName + "!";
System.out.println(greeting);

In the imperative model, each line of code performs a step, one right after the other,
and definitely in the same thread. Each step blocks the executing thread from moving
to the next step until complete.

 In contrast, functional, reactive code could achieve the same thing like this:

Mono.just("Craig")
 .map(n -> n.toUpperCase())
 .map(cn -> "Hello, " + cn + "!")
 .subscribe(System.out::println);

246 CHAPTER 10 Introducing Reactor
Don’t worry too much about the details of this example; we’ll talk all about the just(),
map(), and subscribe() operations soon enough. For now, it’s important to under-
stand that although the reactive example still seems to follow a step-by-step model, it’s
really a pipeline that data flows through. At each phase of the pipeline, the data is
tweaked somehow, but no assumption can be made about which thread any of the
operations are performed on. They may be the same thread ... or they may not be.

 The Mono in the example is one of Reactor’s two core types. Flux is the other.
Both are implementations of Reactive Streams’ Publisher. A Flux represents a pipe-
line of zero, one, or many (potentially infinite) data items. A Mono is a specialized
reactive type that’s optimized for when the dataset is known to have no more than
one data item.

There are actually three Monos in the previous example. The just() operation creates
the first one. When the Mono emits a value, that value is given to the map() operation
to be capitalized and used to create another Mono. When the second Mono publishes its
data, it’s given to the second map() operation to do some String concatenation, the
results of which are used to create the third Mono. Finally, the call to subscribe() sub-
scribes to the Mono, receives the data, and prints it.

10.2.1 Diagramming reactive flows

Reactive flows are often illustrated with marble diagrams. Marble diagrams, in their
simplest form, depict a timeline of data as it flows through a Flux or Mono at the top,
an operation in the middle, and the timeline of the resulting Flux or Mono at the bot-
tom. Figure 10.1 shows a marble diagram template for a Flux. As you can see, as data
flows through the original Flux, it’s processed through some operation, resulting in a
new Flux through which the processed data flows.

 Figure 10.2 shows a similar marble diagram, but for a Mono. As you can see, the key
difference is that a Mono will have either zero or one data item, or an error.

 In section 10.3, we’ll explore many operations supported by Flux and Mono, and
we’ll use marble diagrams to visualize how they work.

Reactor vs. RxJava (ReactiveX)
If you’re already familiar with RxJava or ReactiveX, you may be thinking that Mono and
Flux sound a lot like Observable and Single. In fact, they’re approximately equiv-
alent semantically. They even offer many of the same operations.

Although we focus on Reactor in this book, you may be happy to know that it’s pos-
sible to covert between Reactor and RxJava types. Moreover, as you’ll see in the fol-
lowing chapters, Spring can also work with RxJava types.

247Getting started with Reactor
10.2.2 Adding Reactor dependencies

To get started with Reactor, add the following dependency to the project build:

<dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-core</artifactId>
</dependency>

Reactor also provides some great testing support. You’re going to write a lot of tests
around your Reactor code, so you’ll definitely want to add this dependency to your build:

<dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-test</artifactId>

Values emitted

by the flux

The flux’s

timeline

Some operation to

perform on the flux

Values on the new flux

after the operation has

been performed

Indicates an error

or abnormal termination

of the flux

Indicates completion

Operation

of the flux

A new flux resulting

from operating on the

value emitted by the

original flux

1 2 3 4 5 6

1' 2' 3'

Figure 10.1 Marble diagram illustrating the basic flow of a Flux

A value emitted

by the mono

The mono’s

timeline

Some operation to

perform on the mono

A value on the new mono

after the operation has

been performed

Indicates an error

or abnormal termination

of the mono

Indicates completion

Operation

of the mono

A new mono resulting

from operating on the

value emitted by the

original mono

1

1'

Figure 10.2 Marble diagram illustrating the basic flow of a Mono

248 CHAPTER 10 Introducing Reactor
 <scope>test</scope>
</dependency>

I’m assuming that you’re adding these dependencies to a Spring Boot project, which
handles dependency management for you, so there’s no need to specify the <version>
element for the dependencies. But if you want to use Reactor in a non-Spring Boot
project, you’ll need to set up Reactor’s BOM (bill of materials) in the build. The fol-
lowing dependency management entry adds Reactor’s Bismuth release to the build:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-bom</artifactId>
 <version>Bismuth-RELEASE</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Now that Reactor is in your project build, you can start creating reactive pipelines with
Mono and Flux. For the remainder of this chapter, we’ll walk through several opera-
tions offered by Mono and Flux.

10.3 Applying common reactive operations
Flux and Mono are the most essential building blocks provided by Reactor, and the
operations those two reactive types offer are the mortar that binds them together to
create pipelines through which data can flow. Between Flux and Mono, there are over
500 operations, each of which can be loosely categorized as

 Creation operations
 Combination operations
 Transformation operations
 Logic operations

As much fun as it would be to poke at each of the 500 operations to see how they tick,
there’s simply not enough room in this chapter. I’ve selected a few of the most useful
operations to experiment with in this section. We’ll start with creation operations.

NOTE Where are the Mono examples? Mono and Flux share many of the same
operations, so it’s mostly unnecessary to show the same operation twice, once
for Mono and again for Flux. Moreover, although the Mono operations are use-
ful, they’re slightly less interesting to look at than the same operations when
given a Flux. Most of the examples we’ll work with will involve Flux. Just know
that Mono often has equivalent operations.

249Applying common reactive operations
10.3.1 Creating reactive types

Often when working with reactive types in Spring, you’ll be given a Flux or a Mono
from a repository or a service, so you won’t need to create one yourself. But occasion-
ally you’ll need to create a new reactive publisher.

 Reactor provides several operations for creating Fluxes and Monos. In this section,
we’ll look at a few of the most useful creation operations.

CREATING FROM OBJECTS

If you have one or more objects that you’d like to create a Flux or Mono from, you can
use the static just() method on Flux or Mono to create a reactive type whose data is
driven by those objects. For example, the following test method creates a Flux from
five String objects:

@Test
public void createAFlux_just() {
 Flux<String> fruitFlux = Flux
 .just("Apple", "Orange", "Grape", "Banana", "Strawberry");
}

At this point, the Flux has been created, but it has no subscribers. Without any sub-
scribers, data won’t flow. Thinking of the garden hose analogy, you’ve attached the
garden hose to the spigot, and there’s water from the utility company on the other
side—but until you turn on the spigot, water won’t flow. Subscribing to a reactive type
is how you turn on the flow of data.

 To add a subscriber, you can call the subscribe() method on the Flux:

fruitFlux.subscribe(
 f -> System.out.println("Here's some fruit: " + f)
);

The lambda given to subscribe() here is actually a java.util.Consumer that’s used
to create a Reactive Streams Subscriber. Upon calling subscribe(), the data starts
flowing. In this example, there are no intermediate operations, so the data flows
directly from the Flux to the Subscriber.

 Printing the entries from a Flux or Mono to the console is a good way to see the
reactive type in action. But a better way to actually test a Flux or a Mono is to use Reac-
tor’s StepVerifier. Given a Flux or Mono, StepVerifier subscribes to the reactive
type and then applies assertions against the data as it flows through the stream, finally
verifying that the stream completes as expected.

 For example, to verify that the prescribed data flows through the fruitFlux, you
can write a test that looks like this:

StepVerifier.create(fruitFlux)
 .expectNext("Apple")
 .expectNext("Orange")
 .expectNext("Grape")

250 CHAPTER 10 Introducing Reactor
 .expectNext("Banana")
 .expectNext("Strawberry")
 .verifyComplete();

In this case, StepVerifier subscribes to the Flux and then asserts that each item
matches the expected fruit name. Finally, it verifies that after Strawberry is produced
by the Flux, the Flux is complete.

 For the remainder of the examples in this chapter, you’ll use StepVerifier to
write learning tests—tests that verify behavior and help you understand how some-
thing works—to get to know some of Reactor’s most useful operations.

CREATING FROM COLLECTIONS

A Flux can also be created from an array, Iterable, or Java Stream. Figure 10.3 illus-
trates how this works with a marble diagram.

To create a Flux from an array, call the static fromArray() method, passing in the
source array:

@Test
public void createAFlux_fromArray() {
 String[] fruits = new String[] {
 "Apple", "Orange", "Grape", "Banana", "Strawberry" };

 Flux<String> fruitFlux = Flux.fromArray(fruits);

 StepVerifier.create(fruitFlux)
 .expectNext("Apple")
 .expectNext("Orange")
 .expectNext("Grape")
 .expectNext("Banana")
 .expectNext("Strawberry")
 .verifyComplete();
}

Because the source array contains the same fruit names you used when creating a
Flux from a list of objects, the data emitted by the Flux will have the same values.
Thus, you can use the same StepVerifier as before to verify this Flux.

1 2 3 4 5 6

1 2 3 4 5 6

, , , , ,

fromArray, fromIterable, fromStream

Figure 10.3 A Flux can be created from
an array, Iterable, or Stream.

251Applying common reactive operations
 If you need to create a Flux from a java.util.List, java.util.Set, or any other
implementation of java.lang.Iterable, you can pass it into the static fromIterable()
method:

@Test
public void createAFlux_fromIterable() {
 List<String> fruitList = new ArrayList<>();
 fruitList.add("Apple");
 fruitList.add("Orange");
 fruitList.add("Grape");
 fruitList.add("Banana");
 fruitList.add("Strawberry");

 Flux<String> fruitFlux = Flux.fromIterable(fruitList);

 // ... verify steps
}

Or, if you happen to have a Java Stream that you’d like to use as the source for a Flux,
fromStream() is the method you’ll use:

@Test
public void createAFlux_fromStream() {
 Stream<String> fruitStream =
 Stream.of("Apple", "Orange", "Grape", "Banana", "Strawberry");

 Flux<String> fruitFlux = Flux.fromStream(fruitStream);

 // ... verify steps
}

Again, the same StepVerifier as before can be used to verify the data published by
the Flux.

GENERATING FLUX DATA

Sometimes you don’t have any data to work with and just need Flux to act as a counter,
emitting a number that increments with each new value. To create a counter Flux,
you can use the static range() method. The diagram in figure 10.4 illustrates how
range() works.

The following test method demonstrates how to create a range Flux:

@Test
public void createAFlux_range() {
 Flux<Integer> intervalFlux =
 Flux.range(1, 5);

n n+1 n+1 n+1 n+m–1

range(n, m)

… Figure 10.4 Creating a Flux from a range results
in a counter-style publishing of messages.

252 CHAPTER 10 Introducing Reactor
 StepVerifier.create(intervalFlux)
 .expectNext(1)
 .expectNext(2)
 .expectNext(3)
 .expectNext(4)
 .expectNext(5)
 .verifyComplete();
}

In this example, the range Flux is created with a starting value of 1 and an ending
value of 5. The StepVerifier proves that it will publish five items, which are the inte-
gers 1 through 5.

 Another Flux-creation method that’s similar to range() is interval(). Like the
range() method, interval() creates a Flux that emits an incrementing value. But
what makes interval() special is that instead of you giving it a starting and ending
value, you specify a duration or how often a value should be emitted. Figure 10.5 shows
a marble diagram for the interval() creation method.

For example, to create an interval Flux that emits a value every second, you can use
the static interval() method as follows:

@Test
public void createAFlux_interval() {
 Flux<Long> intervalFlux =
 Flux.interval(Duration.ofSeconds(1))
 .take(5);

 StepVerifier.create(intervalFlux)
 .expectNext(0L)
 .expectNext(1L)
 .expectNext(2L)
 .expectNext(3L)
 .expectNext(4L)
 .verifyComplete();
}

Notice that the value emitted by an interval Flux starts with 0 and increments on each
successive item. Also, because interval() isn’t given a maximum value, it will poten-
tially run forever. Therefore, you also use the take() operation to limit the results to
the first five entries. We’ll talk more about the take() operation in the next section.

0 1 2 3 4 5

interval()

Figure 10.5 A Flux created from an interval
has a periodic entry published to it.

253Applying common reactive operations
10.3.2 Combining reactive types

You may find yourself with two reactive types that you need to somehow merge together.
Or, in other cases, you may need to split a Flux into more than one reactive type. In this
section, we’ll examine operations that combine and split Reactor’s Flux and Mono.

MERGING REACTIVE TYPES

Suppose you have two Flux streams and need to create a single resulting Flux that will
produce data as it becomes available from either of the upstream Flux streams. To
merge one Flux with another, you can use the mergeWith() operation, as illustrated
with the marble diagram in figure 10.6.

For example, suppose you have a Flux whose values are the names of TV and movie
characters, and you have a second Flux whose values are the names of foods that
those characters enjoy eating. The following test method shows how you could merge
the two Flux objects with the mergeWith() method:

@Test
public void mergeFluxes() {

 Flux<String> characterFlux = Flux
 .just("Garfield", "Kojak", "Barbossa")
 .delayElements(Duration.ofMillis(500));
 Flux<String> foodFlux = Flux
 .just("Lasagna", "Lollipops", "Apples")
 .delaySubscription(Duration.ofMillis(250))
 .delayElements(Duration.ofMillis(500));

 Flux<String> mergedFlux = characterFlux.mergeWith(foodFlux);

 StepVerifier.create(mergedFlux)
 .expectNext("Garfield")
 .expectNext("Lasagna")
 .expectNext("Kojak")
 .expectNext("Lollipops")
 .expectNext("Barbossa")
 .expectNext("Apples")
 .verifyComplete();
}

1 2 3 4 5

2 4

1 3 5

merge

Figure 10.6 Merging two Flux
streams interleaves their messages
into a new Flux.

254 CHAPTER 10 Introducing Reactor
Normally, a Flux will publish data as quickly as it possibly can. Therefore, you use a
delayElements() operation on both of the created Flux streams to slow them down
a little—only emitting an entry every 500 ms. Furthermore, so that the food Flux
starts streaming after the character Flux, you apply a delaySubscription() opera-
tion to the food Flux so that it won’t emit any data until 250 ms have passed follow-
ing a subscription.

 After merging the two Flux objects, a new merged Flux is created. When Step-
Verifier subscribes to the merged Flux, it will, in turn, subscribe to the two source
Flux streams, starting the flow of data.

 The order of items emitted from the merged Flux aligns with the timing of how
they’re emitted from the sources. Because both Flux objects are set to emit at regular
rates, the values will be interleaved through the merged Flux, resulting in a character,
followed by a food, followed by a character, and so forth. If the timing of either Flux
were to change, it’s possible that you might see two character items or two food items
published one after the other.

 Because mergeWith() can’t guarantee a perfect back and forth between its sources,
you may want to consider the zip() operation instead. When two Flux objects are
zipped together, it results in a new Flux that produces a tuple of items, where the
tuple contains one item from each source Flux. Figure 10.7 illustrates how two Flux
objects can be zipped together.

To see the zip() operation in action, consider the following test method, which zips
the character Flux and the food Flux together:

@Test
public void zipFluxes() {
 Flux<String> characterFlux = Flux
 .just("Garfield", "Kojak", "Barbossa");
 Flux<String> foodFlux = Flux
 .just("Lasagna", "Lollipops", "Apples");

 Flux<Tuple2<String, String>> zippedFlux =
 Flux.zip(characterFlux, foodFlux);

1 3

zip

2

1 2

4

3 4

Figure 10.7 Zipping two Flux streams
results in a Flux containing tuples of one
element from each Flux.

255Applying common reactive operations
 StepVerifier.create(zippedFlux)
 .expectNextMatches(p ->
 p.getT1().equals("Garfield") &&
 p.getT2().equals("Lasagna"))
 .expectNextMatches(p ->
 p.getT1().equals("Kojak") &&
 p.getT2().equals("Lollipops"))
 .expectNextMatches(p ->
 p.getT1().equals("Barbossa") &&
 p.getT2().equals("Apples"))
 .verifyComplete();
}

Notice that unlike mergeWith(), the zip() operation is a static creation operation. The
created Flux has a perfect alignment between characters and their favorite foods. Each
item emitted from the zipped Flux is a Tuple2 (a container object that carries two other
objects) containing items from each source Flux, in the order that they’re published.

 If you’d rather not work with a Tuple2 and would rather work with some other
type, you can provide a Function to zip() that produces any object you’d like, given
the two items (as shown in the marble diagram in figure 10.8).

For example, the following test method shows how to zip the character Flux with the
food Flux so that it results in a Flux of String objects:

@Test
public void zipFluxesToObject() {
 Flux<String> characterFlux = Flux
 .just("Garfield", "Kojak", "Barbossa");
 Flux<String> foodFlux = Flux
 .just("Lasagna", "Lollipops", "Apples");

 Flux<String> zippedFlux =
 Flux.zip(characterFlux, foodFlux, (c, f) -> c + " eats " + f);

 StepVerifier.create(zippedFlux)
 .expectNext("Garfield eats Lasagna")
 .expectNext("Kojak eats Lollipops")
 .expectNext("Barbossa eats Apples")
 .verifyComplete();
}

zip(()),

Figure 10.8 An alternative form of the zip
operation results in a Flux of messages created
from one element of each incoming Flux.

256 CHAPTER 10 Introducing Reactor
The Function given to zip() (given here as a lambda) simply concatenates the two
items into a sentence to be emitted by the zipped Flux.

SELECTING THE FIRST REACTIVE TYPE TO PUBLISH

Suppose you have two Flux objects, and rather than merge them together, you merely
want to create a new Flux that emits the values from the first Flux that produces a
value. As shown in figure 10.9, the first() operation picks the first of two Flux
objects and echoes the values it publishes.

The following test method creates a fast Flux and a slow Flux (where “slow” means
that it will not publish an item until 100 ms after subscription). Using first(), it
creates a new Flux that will only publish values from the first source Flux to publish
a value:

@Test
public void firstFlux() {
 Flux<String> slowFlux = Flux.just("tortoise", "snail", "sloth")
 .delaySubscription(Duration.ofMillis(100));
 Flux<String> fastFlux = Flux.just("hare", "cheetah", "squirrel");

 Flux<String> firstFlux = Flux.first(slowFlux, fastFlux);

 StepVerifier.create(firstFlux)
 .expectNext("hare")
 .expectNext("cheetah")
 .expectNext("squirrel")
 .verifyComplete();
}

In this case, because the slow Flux won’t publish any values until 100 ms after the fast
Flux has started publishing, the newly created Flux will simply ignore the slow Flux
and only publish values from the fast Flux.

1 3 5

1 3 5

first

2 4

Figure 10.9 The first operation chooses the
first Flux to emit a message and thereafter
only produces messages from that Flux.

257Applying common reactive operations
10.3.3 Transforming and filtering reactive streams

As data flows through a stream, you’ll likely need to filter out some values and modify
other values. In this section, we’ll look at operations that transform and filter the data
flowing through a reactive stream.

FILTERING DATA FROM REACTIVE TYPES

One of the most basic ways of filtering data as it flows from a Flux is to simply disre-
gard the first so many entries. The skip() operation, illustrated in figure 10.10, does
exactly that.

Given a Flux with several entries, the skip() operation will create a new Flux that
skips over a specified number of items before emitting the remaining items from the
source Flux. The following test method shows how to use skip():

@Test
public void skipAFew() {
 Flux<String> skipFlux = Flux.just(
 "one", "two", "skip a few", "ninety nine", "one hundred")
 .skip(3);

 StepVerifier.create(skipFlux)
 .expectNext("ninety nine", "one hundred")
 .verifyComplete();
}

In this case, you have a Flux of five String items. Calling skip(3) on that Flux produces
a new Flux that skips over the first three items, and only publishes the last two items.

 But maybe you don’t want to skip a specific number of items, but instead need to
skip the first so many items until some duration has passed. An alternate form of the
skip() operation, illustrated in figure 10.11, produces a Flux that waits until some
specified time has passed before emitting items from the source Flux.

1 2 3 4 5

4 5

skip(3)

Figure 10.10 The skip operation skips a specified
number of messages before passing the remaining
messages on to the resulting Flux.

1 2 3 4 5

4 5

skip()

Figure 10.11 An alternative form of the skip
operation waits until some duration has passed
before passing messages on to the resulting Flux.

258 CHAPTER 10 Introducing Reactor
The test method that follows uses skip() to create a Flux that waits four seconds
before emitting any values. Because that Flux was created from a Flux that has a
one-second delay between items (using delayElements()), only the last two items
will be emitted:

@Test
public void skipAFewSeconds() {
 Flux<String> skipFlux = Flux.just(
 "one", "two", "skip a few", "ninety nine", "one hundred")
 .delayElements(Duration.ofSeconds(1))
 .skip(Duration.ofSeconds(4));

 StepVerifier.create(skipFlux)
 .expectNext("ninety nine", "one hundred")
 .verifyComplete();
}

You’ve already seen an example of the take() operation, but in light of the skip()
operation, take() can be thought of as the opposite of skip(). Whereas skip() skips
the first few items, take() only emits the first so many items (as illustrated by the mar-
ble diagram in figure 10.12):

@Test
public void take() {
 Flux<String> nationalParkFlux = Flux.just(
 "Yellowstone", "Yosemite", "Grand Canyon",
 "Zion", "Grand Teton")
 .take(3);

 StepVerifier.create(nationalParkFlux)
 .expectNext("Yellowstone", "Yosemite", "Grand Canyon")
 .verifyComplete();
}

Like skip(), take() also has an alternative form that’s based on a duration rather
than an item count. It will take and emit as many items as pass through the source
Flux until some period of time has passed, after which the Flux completes. This is
illustrated in figure 10.13.

1 2 3

1 2 3

take(3)

c
a

n
c
e

l(
)

Figure 10.12 The take operation passes only
the first so many messages from the incoming
Flux and then cancels the subscription.

259Applying common reactive operations
The following test method uses the alternative form of take() to emit as many items
as it can in the first 3.5 seconds after subscription:

@Test
public void take() {
 Flux<String> nationalParkFlux = Flux.just(
 "Yellowstone", "Yosemite", "Grand Canyon",
 "Zion", "Grand Teton")
 .delayElements(Duration.ofSeconds(1))
 .take(Duration.ofMillis(3500));

 StepVerifier.create(nationalParkFlux)
 .expectNext("Yellowstone", "Yosemite", "Grand Canyon")
 .verifyComplete();
}

The skip() and take() operations can be thought of as filter operations where the
filter criteria are based on a count or a duration. For more general-purpose filtering
of Flux values, you’ll find the filter() operation quite useful.

 Given a Predicate that decides whether an item will pass through the Flux or not,
the filter() operation lets you selectively publish based on whatever criteria you
want. The marble diagram in figure 10.14 shows how filter() works.

To see filter() in action, consider the following test method:

@Test
public void filter() {
 Flux<String> nationalParkFlux = Flux.just(
 "Yellowstone", "Yosemite", "Grand Canyon",
 "Zion", "Grand Teton")
 .filter(np -> !np.contains(" "));

1 2 3

1 2 3

c
a

n
c
e

l(
)

take()

Figure 10.13 An alternative form of the take
operation passes messages on to the resulting
Flux until some duration has passed.

1 5

1 5

2 3 4

filter()

Figure 10.14 An incoming Flux can be filtered so
that the resulting Flux only receives messages
that match a given predicate.

260 CHAPTER 10 Introducing Reactor
 StepVerifier.create(nationalParkFlux)
 .expectNext("Yellowstone", "Yosemite", "Zion")
 .verifyComplete();
}

Here, filter() is given a Predicate as a lambda that only accepts String values that
don’t have any spaces. Consequently, "Grand Canyon" and "Grand Teton" are filtered
out of the resulting Flux.

 Perhaps the filtering you need is to filter out any items that you’ve already received.
The distinct() operation, as illustrated in figure 10.15, results in a Flux that only
publishes items from the source Flux that haven’t already been published.

In the following test, only unique String values will be emitted from the distinct Flux:

@Test
public void distinct() {
 Flux<String> animalFlux = Flux.just(
 "dog", "cat", "bird", "dog", "bird", "anteater")
 .distinct();

 StepVerifier.create(animalFlux)
 .expectNext("dog", "cat", "bird", "anteater")
 .verifyComplete();
}

Although "dog" and "bird" are each published twice from the source Flux, the dis-
tinct Flux only publishes them once.

MAPPING REACTIVE DATA

One of the most common operations you’ll use on either a Flux or a Mono is to trans-
form published items to some other form or type. Reactor’s types offer map() and
flatMap() operations for that purpose.

 The map() operation creates a Flux that simply performs a transformation as
prescribed by a given Function on each object it receives before republishing it. Fig-
ure 10.16 illustrates how the map() operation works.

distinct

Figure 10.15 The distinct operation filters
out any duplicate messages.

261Applying common reactive operations
In the following test method, a Flux of String values representing basketball players
is mapped to a new Flux of Player objects:

@Test
public void map() {
 Flux<Player> playerFlux = Flux
 .just("Michael Jordan", "Scottie Pippen", "Steve Kerr")
 .map(n -> {
 String[] split = n.split("\\s");
 return new Player(split[0], split[1]);
 });

 StepVerifier.create(playerFlux)
 .expectNext(new Player("Michael", "Jordan"))
 .expectNext(new Player("Scottie", "Pippen"))
 .expectNext(new Player("Steve", "Kerr"))
 .verifyComplete();
}

The Function given to map() (as a lambda) splits the incoming String at a space and
uses the resulting String array to create a Player object. Although the Flux created
with just() carried String objects, the Flux resulting from map() carries Player
objects.

 What’s important to understand about map() is that the mapping is performed syn-
chronously, as each item is published by the source Flux. If you want to perform the
mapping asynchronously, you should consider the flatMap() operation.

 The flatMap() operation requires some thought and practice to acquire full profi-
ciency. As shown in figure 10.17, instead of simply mapping one object to another, as
in the case of map(), flatMap() maps each object to a new Mono or Flux. The results
of the Mono or Flux are flattened into a new resulting Flux. When used along with
subscribeOn(), flatMap() can unleash the asynchronous power of Reactor’s types.

1 2 3 4

1 2 3 4

map()

Figure 10.16 The map operation performs a
transformation of incoming messages into
new messages on the resulting stream.

1 2 3

flatMap()

1 1 2 3 2 3

Figure 10.17 The flat map operation uses an
intermediate Flux to perform a transformation,
consequently allowing for asynchronous
transformations.

262 CHAPTER 10 Introducing Reactor
The following test method demonstrates the use of flatMap() and subscribeOn():

@Test
public void flatMap() {
 Flux<Player> playerFlux = Flux
 .just("Michael Jordan", "Scottie Pippen", "Steve Kerr")
 .flatMap(n -> Mono.just(n)
 .map(p -> {
 String[] split = p.split("\\s");
 return new Player(split[0], split[1]);
 })
 .subscribeOn(Schedulers.parallel())
);

 List<Player> playerList = Arrays.asList(
 new Player("Michael", "Jordan"),
 new Player("Scottie", "Pippen"),
 new Player("Steve", "Kerr"));

 StepVerifier.create(playerFlux)
 .expectNextMatches(p -> playerList.contains(p))
 .expectNextMatches(p -> playerList.contains(p))
 .expectNextMatches(p -> playerList.contains(p))
 .verifyComplete();
}

Notice that flatMap() is given a lambda Function that transforms the incoming
String into a Mono of type String. A map() operation is then applied to the Mono to
transform the String to a Player.

 If you stopped right there, the resulting Flux would carry Player objects, pro-
duced synchronously in the same order as with the map() example. But the last thing
you do with the Mono is call subscribeOn() to indicate that each subscription should
take place in a parallel thread. Consequently, the mapping operations for multiple
incoming String objects can be performed asynchronously and in parallel.

 Although subscribeOn() is named similarly to subscribe(), they’re quite different.
Whereas subscribe() is a verb, subscribing to a reactive flow and effectively kicking it
off, subscribeOn() is more descriptive, specifying how a subscription should be handled
concurrently. Reactor doesn’t force any particular concurrency model; it’s through sub-
scribeOn() that you can specify the concurrency model, using one of the static meth-
ods from Schedulers, that you want to use. In this example, you used parallel(),
which uses worker threads from a fixed pool (sized to the number of CPU cores). But
Schedulers supports several concurrency models, such as those described in table 10.1.

Table 10.1 Concurrency models for Schedulers

Schedulers method Description

.immediate() Executes the subscription in the current thread.

.single() Executes the subscription in a single, reusable thread. Reuses the same
thread for all callers.

263Applying common reactive operations
The upside to using flatMap() and subscribeOn() is that you can increase the through-
put of the stream by splitting the work across multiple parallel threads. But because the
work is being done in parallel, with no guarantees on which will finish first, there’s no
way to know the order of items emitted in the resulting Flux. Therefore, StepVerifier
is only able to verify that each item emitted exists in the expected list of Player objects
and that there will be three such items before the Flux completes.

BUFFERING DATA ON A REACTIVE STREAM

In the course of processing the data flowing through a Flux, you might find it helpful
to break the stream of data into bite-size chunks. The buffer() operation, shown in
figure 10.18, can help with that.

Given a Flux of String values, each containing the name of a fruit, you can create a
new Flux of List collections, where each List has no more than a specified number
of elements:

@Test
public void buffer() {
 Flux<String> fruitFlux = Flux.just(
 "apple", "orange", "banana", "kiwi", "strawberry");

 Flux<List<String>> bufferedFlux = fruitFlux.buffer(3);

 StepVerifier
 .create(bufferedFlux)
 .expectNext(Arrays.asList("apple", "orange", "banana"))
 .expectNext(Arrays.asList("kiwi", "strawberry"))
 .verifyComplete();
}

.newSingle() Executes the subscription in a per-call dedicated thread.

.elastic() Executes the subscription in a worker pulled from an unbounded, elastic
pool. New worker threads are created as needed, and idle workers are dis-
posed of (by default, after 60 seconds).

.parallel() Executes the subscription in a worker pulled from a fixed-size pool, sized to
the number of CPU cores.

Table 10.1 Concurrency models for Schedulers (continued)

Schedulers method Description

1 2 3 4 5

1 2 3 4 5

buffer(maxSize=3)

Figure 10.18 The buffer operation results
in a Flux of lists of a given maximum size
that are collected from the incoming Flux.

264 CHAPTER 10 Introducing Reactor
In this case, the Flux of String elements is buffered into a new Flux of List collec-
tions containing no more than three items each. Consequently, the original Flux that
emits five String values will be converted to a Flux that emits two List collections,
one containing three fruits and the other with two fruits.

 So what? Buffering values from a reactive Flux into non-reactive List collections
seems counterproductive. But when you combine buffer() with flatMap(), it enables
each of the List collections to be processed in parallel:

Flux.just(
 "apple", "orange", "banana", "kiwi", "strawberry")
 .buffer(3)
 .flatMap(x ->
 Flux.fromIterable(x)
 .map(y -> y.toUpperCase())
 .subscribeOn(Schedulers.parallel())
 .log()
).subscribe();

In this new example, you still buffer a Flux of five String values into a new Flux of
List collections. But then you apply flatMap() to that Flux of List collections. This
takes each List buffer and creates a new Flux from its elements, and then applies a
map() operation on it. Consequently, each buffered List is further processed in paral-
lel in individual threads.

 To prove that it works, I’ve also included a log() operation to be applied to each
sub-Flux. The log() operation simply logs all Reactive Streams events, so that you can
see what’s really happening. As a result, the following entries are written to the log
(with the time component removed for brevity’s sake):

[main] INFO reactor.Flux.SubscribeOn.1 -
 onSubscribe(FluxSubscribeOn.SubscribeOnSubscriber)
[main] INFO reactor.Flux.SubscribeOn.1 - request(32)
[main] INFO reactor.Flux.SubscribeOn.2 -
 onSubscribe(FluxSubscribeOn.SubscribeOnSubscriber)
[main] INFO reactor.Flux.SubscribeOn.2 - request(32)
[parallel-1] INFO reactor.Flux.SubscribeOn.1 - onNext(APPLE)
[parallel-2] INFO reactor.Flux.SubscribeOn.2 - onNext(KIWI)
[parallel-1] INFO reactor.Flux.SubscribeOn.1 - onNext(ORANGE)
[parallel-2] INFO reactor.Flux.SubscribeOn.2 - onNext(STRAWBERRY)
[parallel-1] INFO reactor.Flux.SubscribeOn.1 - onNext(BANANA)
[parallel-1] INFO reactor.Flux.SubscribeOn.1 - onComplete()
[parallel-2] INFO reactor.Flux.SubscribeOn.2 - onComplete()

As the log entries clearly show, the fruits in the first buffer (apple, orange, and
banana) are handled in the parallel-1 thread. Meanwhile, the fruits in the second
buffer (kiwi and strawberry) are processed in the parallel-2 thread. As is apparent
by the fact that the log entries from each buffer are woven together, the two buffers
are processed in parallel.

265Applying common reactive operations
 If, for some reason, you need to collect everything that a Flux emits into a List,
you can call buffer() with no arguments:

Flux<List<String>> bufferedFlux = fruitFlux.buffer();

This results in a new Flux that emits a List that contains all the items published by
the source Flux. You can achieve the same thing with the collectList() operation,
illustrated by the marble diagram in figure 10.19.

Rather than produce a Flux that publishes a List, collectList() produces a Mono
that publishes a List. The following test method shows how it might be used:

@Test
public void collectList() {
 Flux<String> fruitFlux = Flux.just(
 "apple", "orange", "banana", "kiwi", "strawberry");

 Mono<List<String>> fruitListMono = fruitFlux.collectList();

 StepVerifier
 .create(fruitListMono)
 .expectNext(Arrays.asList(
 "apple", "orange", "banana", "kiwi", "strawberry"))
 .verifyComplete();
}

An even more interesting way of collecting items emitted by a Flux is to collect them
into a Map. As shown in figure 10.20, the collectMap() operation results in a Mono
that publishes a Map that’s populated with entries whose key is calculated by a given
Function.

collectList

1 2 3 4

1 2 3 4

Figure 10.19 The collect-list operation results
in a Mono containing a list of all messages
emitted by the incoming Flux.

1 2 3 4 5

collectMap(k())

4 5 3k(): , k() : , k ():

Figure 10.20 The collect-map operation results in
a Mono containing a Map of messages emitted by
the incoming Flux, where the key is derived from
some characteristic of the incoming messages.

266 CHAPTER 10 Introducing Reactor
To see collectMap() in action, have a look at the following test method:

@Test
public void collectMap() {
 Flux<String> animalFlux = Flux.just(
 "aardvark", "elephant", "koala", "eagle", "kangaroo");

 Mono<Map<Character, String>> animalMapMono =
 animalFlux.collectMap(a -> a.charAt(0));

 StepVerifier
 .create(animalMapMono)
 .expectNextMatches(map -> {
 return
 map.size() == 3 &&
 map.get('a').equals("aardvark") &&
 map.get('e').equals("eagle") &&
 map.get('k').equals("kangaroo");
 })
 .verifyComplete();
}

The source Flux emits the names of a handful of animals. From that Flux, you use
collectMap() to create a new Mono that emits a Map, where the key value is determined
by the first letter of the animal name and the value is the animal name itself. In the
event that two animal names start with the same letter (as with elephant and eagle or koala
and kangaroo), the last entry flowing through the stream overrides any earlier entries.

10.3.4 Performing logic operations on reactive types

Sometimes you just need to know if the entries published by a Mono or Flux match
some criteria. The all() and any() operations perform such logic. Figures 10.21 and
10.22 illustrate how all() and any() work.

all()

True

Figure 10.21 A flux can be tested to ensure that
all messages meet some condition with the all
operation.

any()

False True
Figure 10.22 A flux can be tested to ensure
that at least one message meets some
condition with the any operation.

267Applying common reactive operations
Suppose you want to know that every String published by a Flux contains the letter a
or the letter k. The following test shows how to use all() to check for that condition:

@Test
public void all() {
 Flux<String> animalFlux = Flux.just(
 "aardvark", "elephant", "koala", "eagle", "kangaroo");

 Mono<Boolean> hasAMono = animalFlux.all(a -> a.contains("a"));
 StepVerifier.create(hasAMono)
 .expectNext(true)
 .verifyComplete();

 Mono<Boolean> hasKMono = animalFlux.all(a -> a.contains("k"));
 StepVerifier.create(hasKMono)
 .expectNext(false)
 .verifyComplete();
}

In the first StepVerifier, you check for the letter a. The all operation is applied to
the source Flux, resulting in a Mono of type Boolean. In this case, all of the animal
names contain the letter a, so true is emitted from the resulting Mono. But in the sec-
ond StepVerifier, the resulting Mono will emit false because not all of the animal
names contain a k.

 Rather than perform an all-or-nothing check, maybe you’re satisfied if at least one
entry matches. In that case, the any() operation is what you want. This new test case
uses any() to check for the letters t and z:

@Test
public void any() {
 Flux<String> animalFlux = Flux.just(
 "aardvark", "elephant", "koala", "eagle", "kangaroo");

 Mono<Boolean> hasAMono = animalFlux.any(a -> a.contains("t"));

 StepVerifier.create(hasAMono)
 .expectNext(true)
 .verifyComplete();

 Mono<Boolean> hasZMono = animalFlux.any(a -> a.contains("z"));
 StepVerifier.create(hasZMono)
 .expectNext(false)
 .verifyComplete();
}

In the first StepVerifier, you see that the resulting Mono emits true, because at least
one animal name has the letter t (specifically, elephant). In the second case, the result-
ing Mono emits false, because none of the animal names contain z.

268 CHAPTER 10 Introducing Reactor
Summary
 Reactive programming involves creating pipelines through which data flows.
 The Reactive Streams specification defines four types: Publisher, Subscriber,

Subscription, and Transformer (which is a combination of Publisher and
Subscriber).

 Project Reactor implements Reactive Streams and abstracts stream definitions
into two primary types, Flux and Mono, each of which offers several hundred
operations.

 Spring 5 leverages Reactor to create reactive controllers, repositories, REST cli-
ents, and other reactive framework support.

Developing reactive APIs
Now that you’ve a good introduction to reactive programming and Project Reactor,
you’re ready to start applying those techniques in your Spring applications. In this
chapter, we’re going to revisit some of the controllers you wrote in chapter 6 to take
advantage of Spring 5’s reactive programming model.

 More specifically, we’re going to take a look at Spring 5’s new reactive web
framework—Spring WebFlux. As you’ll quickly discover, Spring WebFlux is remark-
ably similar to Spring MVC, making it easy to apply, along with what you already
know about building REST APIs in Spring.

11.1 Working with Spring WebFlux
Typical Servlet-based web frameworks, such as Spring MVC, are blocking and multi-
threaded in nature, using a single thread per connection. As requests are handled,

This chapter covers
 Using Spring WebFlux

 Writing and testing reactive controllers and
clients

 Consuming REST APIs

 Securing reactive web applications
269

270 CHAPTER 11 Developing reactive APIs
a worker thread is pulled from a thread pool to process the request. Meanwhile, the
request thread is blocked until it’s notified by the worker thread that it’s finished.

 Consequently, blocking web frameworks won’t scale effectively under heavy
request volume. Latency in slow worker threads makes things even worse because it’ll
take longer for the worker thread to be returned to the pool, ready to handle another
request. In some use cases, this arrangement is perfectly acceptable. In fact, this is
largely how most web applications have been developed for well over a decade. But
times are changing.

 The clients of those web applications have grown from people occasionally viewing
websites to people frequently consuming content and using applications that coordi-
nate with HTTP APIs. And these days, the so-called Internet of Things (where humans
aren’t even involved) yields cars, jet engines, and other non-traditional clients constantly
exchanging data with web APIs. With an increasing number of clients consuming web
applications, scalability is more important than ever.

 Asynchronous web frameworks, in contrast, achieve higher scalability with fewer
threads—generally one per CPU core. By applying a technique known as event looping
(as illustrated in figure 11.1), these frameworks are able to handle many requests per
thread, making the per-connection cost more economical.

In an event loop, everything is handled as an event, including requests and callbacks
from intensive operations like database and network operations. When a costly opera-
tion is needed, the event loop registers a callback for that operation to be performed
in parallel, while it moves on to handle other events.

 When the operation is complete, it’s treated as an event by the event loop, the
same as requests. As a result, asynchronous web frameworks are able to scale better
under heavy request volume with fewer threads, resulting in reduced overhead for
thread management.

Figure 11.1 Asynchronous web frameworks apply event looping to handle more requests with
fewer threads.

CPU core

Thread

Event loop

Push request

event

Trigger

callback

Register

callback

Push operation

complete event

Client

Request

handler

Request

Request

Request
Intensive

operation

Network,

database,

file system,

calculation,

etc

Client

Client

271Working with Spring WebFlux
 Spring 5 has introduced a non-blocking, asynchronous web framework based
largely on its Project Reactor to address the need for greater scalability in web
applications and APIs. Let’s take a look at Spring WebFlux—a reactive web frame-
work for Spring.

11.1.1 Introducing Spring WebFlux

As the Spring team was considering how to add a reactive programming model to
the web layer, it quickly became apparent that it would be difficult to do so without a
great deal of work in Spring MVC. That would involve branching code to decide
whether to handle requests reactively or not. In essence, the result would be two web
frameworks packaged as one, with if statements to separate the reactive from the
non-reactive.

 Instead of trying to shoehorn a reactive programming model into Spring MVC, it
was decided to create a separate reactive web framework, borrowing as much from
Spring MVC as possible. Spring WebFlux is the result. Figure 11.2 illustrates the com-
plete web development stack defined by Spring 5.

On the left side of figure 11.2, you see the Spring MVC stack that was introduced in
version 2.5 of the Spring Framework. Spring MVC (covered in chapters 2 and 6) sits
atop the Java Servlet API, which requires a servlet container (such as Tomcat) to exe-
cute on.

 By contrast, Spring WebFlux (on the right side) doesn’t have ties to the Servlet
API, so it builds on top of a Reactive HTTP API, which is a reactive approximation of
the same functionality provided by the Servlet API. And because Spring WebFlux isn’t
coupled to the Servlet API, it doesn’t require a servlet container to run on. Instead, it
can run on any non-blocking web container including Netty, Undertow, Tomcat, Jetty,
or any Servlet 3.1 or higher container.

 What’s most noteworthy about figure 11.2 is the top left box, which represents the
components that are common between Spring MVC and Spring WebFlux, primarily
the annotations used to define controllers. Because Spring MVC and Spring WebFlux
share the same annotations, Spring WebFlux is, in many ways, indistinguishable from
Spring MVC.

Figure 11.2 Spring 5 supports reactive web
applications with a new web framework called
WebFlux, which is a sibling to Spring MVC and
shares many of its core components.

@Controller, @RequestMapping, etc

Spring MVC

Servlet Container

Spring WebFlux

Tomcat, Jetty, Servlet 3.1+,

Netty, Undertow

Reactive HTTPServlet API

Router functions

272 CHAPTER 11 Developing reactive APIs
 The box in the top right corner represents an alternative programming model
that defines controllers with a functional programming paradigm instead of using
annotations. We’ll talk more about Spring’s functional web programming model in
section 11.2.

 The most significant difference between Spring MVC and Spring WebFlux boils
down to which dependency you add to your build. When working with Spring Web-
Flux, you’ll need to add the Spring Boot WebFlux starter dependency instead of the stan-
dard web starter (for example, spring-boot-starter-web). In the project’s pom.xml
file, it looks like this:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

NOTE As with most of Spring Boot’s starter dependencies, this starter can also
be added to a project by checking the Reactive Web checkbox in the Initializr.

An interesting side-effect of using WebFlux instead of Spring MVC is that the default
embedded server for WebFlux is Netty instead of Tomcat. Netty is one of a handful of
asynchronous, event-driven servers and is a natural fit for a reactive web framework
like Spring WebFlux.

 Aside from using a different starter dependency, Spring WebFlux controller meth-
ods usually accept and return reactive types, like Mono and Flux, instead of domain
types and collections. Spring WebFlux controllers can also deal with RxJava types like
Observable, Single, and Completable.

REACTIVE SPRING MVC?
Although Spring WebFlux controllers typically return Mono and Flux, that doesn’t
mean that Spring MVC doesn’t get to have some fun with reactive types. Spring MVC
controller methods can also return a Mono or Flux, if you’d like.

 The difference is in how those types are used. Whereas Spring WebFlux is a truly
reactive web framework, allowing for requests to be handled in an event loop, Spring
MVC is Servlet-based, relying on multithreading to handle multiple requests.

 Let’s put Spring WebFlux to work by rewriting some of Taco Cloud’s API control-
lers to take advantage of Spring WebFlux.

11.1.2 Writing reactive controllers

You may recall that in chapter 6, you created a few controllers for Taco Cloud’s REST
API. Those controllers had request-handling methods that dealt with input and out-
put in terms of domain types (such as Order and Taco) or collections of those domain
types. As a reminder, consider the following snippet from DesignTacoController that
you wrote back in chapter 6:

@RestController
@RequestMapping(path="/design",
 produces="application/json")

273Working with Spring WebFlux
@CrossOrigin(origins="*")
public class DesignTacoController {

...

 @GetMapping("/recent")
 public Iterable<Taco> recentTacos() {
 PageRequest page = PageRequest.of(
 0, 12, Sort.by("createdAt").descending());
 return tacoRepo.findAll(page).getContent();
 }

...

}

As written, the recentTacos() controller handles HTTP GET requests for /design/
recent to return a list of recently created tacos. More specifically, it returns an Iterable
of type Taco. That’s primarily because that’s what’s returned from the repository’s
findAll() method, or, more accurately, from the getContent() method on the Page
object returned from findAll().

 That works fine, but Iterable isn’t a reactive type. You won’t be able to apply any
reactive operations on it, nor can you let the framework take advantage of it as a reac-
tive type to split any work over multiple threads. What you’d like is for recentTacos()
to return a Flux<Taco>.

 A simple, but somewhat limited option here is to rewrite recentTacos() to convert
the Iterable to a Flux. And, while you’re at it, you can do away with the paging code
and replace it with a call to take() on the Flux:

@GetMapping("/recent")
public Flux<Taco> recentTacos() {
 return Flux.fromIterable(tacoRepo.findAll()).take(12);
}

Using Flux.fromIterable(), you convert the Iterable<Taco> to a Flux<Taco>. And
now that you’re working with a Flux, you can use the take() operation to limit the
returned Flux to 12 Taco objects at most. Not only is the code simpler, it also deals
with a reactive Flux rather than a plain Iterable.

 Writing reactive code has been a winning move so far. But it would be even bet-
ter if the repository gave you a Flux to start with so that you wouldn’t need to do
the conversion. If that were the case, then recentTacos() could be written to look
like this:

@GetMapping("/recent")
public Flux<Taco> recentTacos() {
 return tacoRepo.findAll().take(12);
}

274 CHAPTER 11 Developing reactive APIs
That’s even better! Ideally, a reactive controller will be the tip of a stack that’s reactive
end to end, including controllers, repositories, the database, and any services that may
sit in between. Such an end-to-end reactive stack is illustrated in figure 11.3.

Such an end-to-end stack requires that the repository be written to return a Flux
instead of an Iterable. We’ll look into writing reactive repositories in the next chap-
ter, but here’s a sneak peek at what a reactive TacoRepository might look like:

public interface TacoRepository
 extends ReactiveCrudRepository<Taco, Long> {
}

What’s most important to note at this point, however, is that aside from working with a
Flux instead of an Iterable, as well as how you obtain that Flux, the programming
model for defining a reactive WebFlux controller is no different than for a non-reactive
Spring MVC controller. Both are annotated with @RestController and a high-level
@RequestMapping at the class level. And both have request-handling functions that are
annotated with @GetMapping at the method level. It’s truly a matter of what type the
handler methods return.

 Another important observation to make is that although you’re getting a Flux<Taco>
back from the repository, you can return it without calling subscribe(). Indeed, the
framework will call subscribe() for you. This means that when a request for /design/
recent is handled, the recentTacos() method will be called and will return before the
data is even fetched from the database!

RETURNING SINGLE VALUES

As another example, consider the tacoById() method from the DesignTacoController
as it was written in chapter 6:

@GetMapping("/{id}")
public Taco tacoById(@PathVariable("id") Long id) {

Figure 11.3 To maximize the
benefit of a reactive web framework,
it should be part of a full end-to-end
reactive stack.

Client

WebFlux

Controller
Repository

Flux/Mono

Request/

Response

Flux/Mono

Data

stream

Service

(optional)

Database

275Working with Spring WebFlux
 Optional<Taco> optTaco = tacoRepo.findById(id);
 if (optTaco.isPresent()) {
 return optTaco.get();
 }
 return null;
}

Here, this method handles GET requests for /design/{id} and returns a single Taco
object. Because the repository’s findById() returns an Optional, you also had to
write some clunky code to deal with that. But suppose for a minute that the find-
ById() returns a Mono<Taco> instead of an Optional<Taco>. In that case, you can
rewrite the controller’s tacoById() to look like this:

@GetMapping("/{id}")
public Mono<Taco> tacoById(@PathVariable("id") Long id) {
 return tacoRepo.findById(id);
}

Wow! That’s a lot simpler. What’s more important, however, is that by returning a
Mono<Taco> instead of a Taco, you’re enabling Spring WebFlux to handle the
response in a reactive manner. Consequently, your API will scale better in response
to heavy loads.

WORKING WITH RXJAVA TYPES

It’s worth pointing out that although Reactor types like Flux and Mono are a natural
choice when working with Spring WebFlux, you can also choose to work with RxJava
types like Observable and Single. For example, suppose that there’s a service sitting
between DesignTacoController and the backend repository that deals in terms of
RxJava types. In that case, the recentTacos() method might be written like this:

@GetMapping("/recent")
public Observable<Taco> recentTacos() {
 return tacoService.getRecentTacos();
}

Similarly, the tacoById() method could be written to deal with an RxJava Single
rather than a Mono:

@GetMapping("/{id}")
public Single<Taco> tacoById(@PathVariable("id") Long id) {
 return tacoService.lookupTaco(id);
}

In addition, Spring WebFlux controller methods can also return RxJava’s Completable,
which is equivalent to a Mono<Void> in Reactor. WebFlux can also return a Flowable as
an alternative to Observable or Reactor’s Flux.

HANDLING INPUT REACTIVELY

So far, we’ve only concerned ourselves with what reactive types the controller methods
return. But with Spring WebFlux, you can also accept a Mono or a Flux as input to a

276 CHAPTER 11 Developing reactive APIs
handler method. To demonstrate, consider the original implementation of postTaco()
from DesignTacoController:

@PostMapping(consumes="application/json")
@ResponseStatus(HttpStatus.CREATED)
public Taco postTaco(@RequestBody Taco taco) {
 return tacoRepo.save(taco);
}

As originally written, postTaco() not only returns a simple Taco object, but also
accepts a Taco object that’s bound to the content in the body of the request. This
means that postTaco() can’t be invoked until the request payload has been fully
resolved and used to instantiate a Taco object. It also means postTaco() can’t return
until the blocking call to the repository’s save() method returns. In short, the request
is blocked twice: as it enters postTaco() and again, inside of postTaco(). But by
applying a little reactive coding to postTaco(), you can make it a fully non-blocking,
request-handling method:

@PostMapping(consumes="application/json")
@ResponseStatus(HttpStatus.CREATED)
public Mono<Taco> postTaco(@RequestBody Mono<Taco> tacoMono) {
 return tacoRepo.saveAll(tacoMono).next();
}

Here, postTaco() accepts a Mono<Taco> and calls the repository’s saveAll() method,
which, as you’ll see in the next chapter, accepts any implementation of Reactive Streams’
Publisher, including Mono or Flux. The saveAll() method returns a Flux<Taco>, but
because you started with a Mono, you know there’s at most one Taco that will be pub-
lished by the Flux. You can therefore call next() to obtain a Mono<Taco> that will
return from postTaco().

 By accepting a Mono<Taco> as input, the method is invoked immediately without
waiting for the Taco to be resolved from the request body. And because the reposi-
tory is also reactive, it’ll accept a Mono and immediately return a Flux<Taco>, from
which you call next() and return the resulting Mono<Taco> … all before the request
is even processed!

 Spring WebFlux is a fantastic alternative to Spring MVC, offering the option of
writing reactive web applications using the same development model as Spring MVC.
But Spring 5 has another new trick up its sleeve. Let’s take a look at how to create
reactive APIs using Spring 5’s new functional programming style.

11.2 Defining functional request handlers
Spring MVC’s annotation-based programming model has been around since Spring 2.5
and is widely popular. It comes with a few downsides, however.

 First, any annotation-based programming involves a split in the definition of what the
annotation is supposed to do and how it’s supposed to do it. Annotations themselves

277Defining functional request handlers
define the what; the how is defined elsewhere in the framework code. This compli-
cates the programming model when it comes to any sort of customization or exten-
sion because such changes require working in code that’s external to the annotation.
Moreover, debugging such code is tricky because you can’t set a breakpoint on an
annotation.

 Also, as Spring continues to grow in popularity, developers new to Spring from
other languages and frameworks may find annotation-based Spring MVC (and Web-
Flux) quite unlike what they already know. As an alternative to WebFlux, Spring 5 has
introduced a new functional programming model for defining reactive APIs.

 This new programming model is used more like a library and less like a frame-
work, letting you map requests to handler code without annotations. Writing an API
using Spring’s functional programming model involves four primary types:

 RequestPredicate—Declares the kind(s) of requests that will be handled
 RouterFunction—Declares how a matching request should be routed to han-

dler code
 ServerRequest—Represents an HTTP request, including access to header and

body information
 ServerResponse—Represents an HTTP response, including header and body

information

As a simple example that pulls all of these types together, consider the following Hello
World example:

package demo;
import static org.springframework.web.
 reactive.function.server.RequestPredicates.GET;
import static org.springframework.web.
 reactive.function.server.RouterFunctions.route;
import static org.springframework.web.
 reactive.function.server.ServerResponse.ok;
import static reactor.core.publisher.Mono.just;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.reactive.function.server.RouterFunction;

@Configuration
public class RouterFunctionConfig {

 @Bean
 public RouterFunction<?> helloRouterFunction() {
 return route(GET("/hello"),
 request -> ok().body(just("Hello World!"), String.class));
 }

}

278 CHAPTER 11 Developing reactive APIs
The first thing to notice is that you’ve chosen to statically import a few helper classes
that you can use to create the aforementioned functional types. You’ve also statically
imported Mono to keep the rest of the code easier to read and understand.

 In this @Configuration class, you have a single @Bean method of type Router-
Function<?>. As mentioned, a RouterFunction declares mappings between one or more
RequestPredicate objects and the functions that will handle the matching request(s).

 The route() method from RouterFunctions accepts two parameters: a Request-
Predicate and a function to handle matching requests. In this case, the GET()
method from RequestPredicates declares a RequestPredicate that matches HTTP
GET requests for the /hello path.

 As for the handler function, it’s written as a lambda, although it can also be a
method reference. Although it isn’t explicitly declared, the handler lambda accepts a
ServerRequest as a parameter. It returns a ServerResponse using ok() from Server-
Response and body() from BodyBuilder, which was returned from ok(). This was
done to create a response with an HTTP 200 (OK) status code and a body payload
that says Hello World!

 As written, the helloRouterFunction() method declares a RouterFunction that
only handles a single kind of request. But if you need to handle a different kind of
request, you don’t have to write another @Bean method, although you can. You only
need to call andRoute() to declare another RequestPredicate-to-function mapping.
For example, here’s how you might add another handler for GET requests for /bye:

@Bean
public RouterFunction<?> helloRouterFunction() {
 return route(GET("/hello"),
 request -> ok().body(just("Hello World!"), String.class))
 .andRoute(GET("/bye"),
 request -> ok().body(just("See ya!"), String.class));
}

Hello World samples are fine for dipping your toes into something new. But let’s amp
it up a bit and see how to use Spring’s functional web programming model to handle
requests that resemble real-world scenarios.

 To demonstrate how the functional programming model might be used in a real-
world application, let’s reinvent the functionality of DesignTacoController in the
functional style. The following configuration class is a functional analog to Design-
TacoController:

@Configuration
public class RouterFunctionConfig {

 @Autowired
 private TacoRepository tacoRepo;

 @Bean
 public RouterFunction<?> routerFunction() {
 return route(GET("/design/taco"), this::recents)

279Testing reactive controllers
 .andRoute(POST("/design"), this::postTaco);
 }

 public Mono<ServerResponse> recents(ServerRequest request) {
 return ServerResponse.ok()
 .body(tacoRepo.findAll().take(12), Taco.class);
 }

 public Mono<ServerResponse> postTaco(ServerRequest request) {
 Mono<Taco> taco = request.bodyToMono(Taco.class);
 Mono<Taco> savedTaco = tacoRepo.save(taco);
 return ServerResponse
 .created(URI.create(
 "http://localhost:8080/design/taco/" +
 savedTaco.getId()))
 .body(savedTaco, Taco.class);
 }
}

As you can see, the routerFunction() method declares a RouterFunction<?> bean,
like the Hello World example. But it differs in what types of requests are handled and
how they’re handled. In this case, the RouterFunction is created to handle GET
requests for /design/taco and POST requests for /design.

 What stands out even more is that the routes are handled by method references.
Lambdas are great when the behavior behind a RouterFunction is relatively simple and
brief. In many cases, however, it’s better to extract that functionality into a separate
method (or even into a separate method in a separate class) to maintain code readability.

 For your needs, GET requests for /design/taco will be handled by the recents()
method. It uses the injected TacoRepository to fetch a Mono<Taco> from which it
takes 12 items. And POST requests for /design are handled by the postTaco()
method, which extracts a Mono<Taco> from the incoming ServerRequest. The post-
Taco() method then uses the TacoRepository to save it before responding with the
Mono<Taco> that’s returned from the save() method.

11.3 Testing reactive controllers
When it comes to testing reactive controllers, Spring 5 hasn’t left us in the lurch.
Indeed, Spring 5 has introduced WebTestClient, a new test utility that makes it easy to
write tests for reactive controllers written with Spring WebFlux. To see how to write
tests with WebTestClient, let’s start by using it to test the recentTacos() method from
DesignTacoController that you wrote in section 11.1.2.

11.3.1 Testing GET requests

One thing we’d like to assert about the recentTacos() method is that if an HTTP GET
request is issued for the path /design/recent, then the response will contain a JSON pay-
load with no more than 12 tacos. The test class in the next listing is a good start.

280 CHAPTER 11 Developing reactive APIs

y

package tacos;

import static org.mockito.Mockito.*;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import org.mockito.Mockito;
import org.springframework.http.MediaType;
import org.springframework.test.web.reactive.server.WebTestClient;
import reactor.core.publisher.Flux;
import tacos.Ingredient.Type;
import tacos.data.TacoRepository;
import tacos.web.api.DesignTacoController;

public class DesignTacoControllerTest {

 @Test
 public void shouldReturnRecentTacos() {
 Taco[] tacos = {
 testTaco(1L), testTaco(2L),
 testTaco(3L), testTaco(4L),
 testTaco(5L), testTaco(6L),
 testTaco(7L), testTaco(8L),
 testTaco(9L), testTaco(10L),
 testTaco(11L), testTaco(12L),
 testTaco(13L), testTaco(14L),
 testTaco(15L), testTaco(16L)};
 Flux<Taco> tacoFlux = Flux.just(tacos);

 TacoRepository tacoRepo = Mockito.mock(TacoRepository.class);
 when(tacoRepo.findAll()).thenReturn(tacoFlux);

 WebTestClient testClient = WebTestClient.bindToController(
 new DesignTacoController(tacoRepo))
 .build();

 testClient.get().uri("/design/recent")
 .exchange()
 .expectStatus().isOk()
 .expectBody()
 .jsonPath("$").isArray()
 .jsonPath("$").isNotEmpty()
 .jsonPath("$[0].id").isEqualTo(tacos[0].getId().toString())
 .jsonPath("$[0].name").isEqualTo("Taco 1").jsonPath("$[1].id")
 .isEqualTo(tacos[1].getId().toString()).jsonPath("$[1].name")
 .isEqualTo("Taco 2").jsonPath("$[11].id")
 .isEqualTo(tacos[11].getId().toString())

...

Listing 11.1 Using WebTestClient to test DesignTacoController

Creates some
test data

Mocks
TacoRepositor

Creates a
WebTestClient

Requests
recent tacos

Verifies expected response

281Testing reactive controllers
 .jsonPath("$[11].name").isEqualTo("Taco 12").jsonPath("$[12]")
.doesNotExist();

 .jsonPath("$[12]").doesNotExist();
 }

 ...

}

The first thing that the shouldReturnRecentTacos() method does is set up test data
in the form of a Flux<Taco>. This Flux is then provided as the return value from the
findAll() method of a mock TacoRepository.

 With regard to the Taco objects that will be published by Flux, they’re created with
a utility method named testTaco() that, when given a number, produces a Taco
object whose ID and name are based on that number. The testTaco() method is
implemented as follows:

private Taco testTaco(Long number) {
 Taco taco = new Taco();
 taco.setId(UUID.randomUUID());
 taco.setName("Taco " + number);
 List<IngredientUDT> ingredients = new ArrayList<>();
 ingredients.add(
 new IngredientUDT("INGA", "Ingredient A", Type.WRAP));
 ingredients.add(
 new IngredientUDT("INGB", "Ingredient B", Type.PROTEIN));
 taco.setIngredients(ingredients);
 return taco;
 }

For the sake of simplicity, all test tacos will have the same two ingredients. But their ID
and name will be determined by the given number.

 Meanwhile, back in the shouldReturnRecentTacos() method, you instantiated a
DesignTacoController, injecting the mock TacoRepository into the constructor.
The controller is given to WebTestClient.bindToController() to create an instance
of WebTestClient.

 With all of the setup complete, you’re now ready to use WebTestClient to submit a
GET request to /design/recent and verify that the response meets your expectations.
Calling get().uri("/design/recent") describes the request you want to issue. Then
a call to exchange() submits the request, which will be handled by the controller that
WebTestClient is bound to—the DesignTacoController.

 Finally, you can affirm that the response is as expected. By calling expectStatus(),
you assert that the response has an HTTP 200 (OK) status code. After that you see sev-
eral calls to jsonPath() that assert that the JSON in the response body has the values
it should have. The final assertion checks that the 12th element (in a zero-based
array) is nonexistent, as the result should never have more than 12 elements.

 If the JSON returns are complex, with a lot of data or highly nested data, it can
be tedious to use jsonPath(). In fact, I left out many of the calls to jsonPath() in

282 CHAPTER 11 Developing reactive APIs
listing 11.1 to conserve space. For those cases where it may be clumsy to use jsonPath(),
WebTestClient offers json(), which accepts a String parameter containing the
JSON to compare the response against.

 For example, suppose that you’ve created the complete response JSON in a file
named recent-tacos.json and placed it in the classpath under the path /tacos. Then
you can rewrite the WebTestClient assertions to look like this:

ClassPathResource recentsResource =
 new ClassPathResource("/tacos/recent-tacos.json");
String recentsJson = StreamUtils.copyToString(
 recentsResource.getInputStream(), Charset.defaultCharset());

testClient.get().uri("/design/recent")
 .accept(MediaType.APPLICATION_JSON)
 .exchange()
 .expectStatus().isOk()
 .expectBody()
 .json(recentsJson);

Because json() accepts a String, you must first load the classpath resource into a
String. Thankfully, Spring’s StreamUtils makes this easy with copyToString(). The
String that’s returned from copyToString() will contain the entire JSON you expect
in the response to your request. Giving it to the json() method ensures that the con-
troller is producing the correct output.

 Another option offered by WebTestClient allows you to compare the response
body with a list of values. The expectBodyList() method accepts either a Class or a
ParameterizedTypeReference indicating the type of elements in the list and returns a
ListBodySpec object to make assertions against. Using expectBodyList(), you can
rewrite the test to use a subset of the same test data you used to create the mock
TacoRepository:

testClient.get().uri("/design/recent")
 .accept(MediaType.APPLICATION_JSON)
 .exchange()
 .expectStatus().isOk()
 .expectBodyList(Taco.class)
 .contains(Arrays.copyOf(tacos, 12));

Here you assert that the response body contains a list that has the same elements as
the first 12 elements of the original Taco array you created at the beginning of the
test method.

11.3.2 Testing POST requests

WebTestClient can do more than just test GET requests against controllers. It can
also be used to test any kind of HTTP method, including GET, POST, PUT, PATCH,
DELETE, and HEAD requests. Table 11.1 maps HTTP methods to WebTestClient
methods.

283Testing reactive controllers
As an example of testing another HTTP method request against a Spring WebFlux con-
troller, let’s look at another test against DesignTacoController. This time, you’ll write a
test of your API’s taco creation endpoint by submitting a POST request to /design:

@Test
public void shouldSaveATaco() {
 TacoRepository tacoRepo = Mockito.mock(
 TacoRepository.class);
 Mono<Taco> unsavedTacoMono = Mono.just(testTaco(null));
 Taco savedTaco = testTaco(null);
 savedTaco.setId(1L);
 Mono<Taco> savedTacoMono = Mono.just(savedTaco);

 when(tacoRepo.save(any())).thenReturn(savedTacoMono);

 WebTestClient testClient = WebTestClient.bindToController(
 new DesignTacoController(tacoRepo)).build();

 testClient.post()
 .uri("/design")
 .contentType(MediaType.APPLICATION_JSON)
 .body(unsavedTacoMono, Taco.class)
 .exchange()
 .expectStatus().isCreated()
 .expectBody(Taco.class)
 .isEqualTo(savedTaco);
}

As with the previous test method, shouldSaveATaco() starts by setting up some test
data, mocking TacoRepository, and building a WebTestClient that’s bound to the
controller. Then, it uses the WebTestClient to submit a POST request to /design,
with a body of type application/json and a payload that’s a JSON-serialized form of
the Taco in the unsaved Mono. After performing exchange(), the test asserts that the
response has an HTTP 201 (CREATED) status and a payload in the body equal to
the saved Taco object.

Table 11.1 WebTestClient tests any kind of request against Spring WebFlux controllers.

HTTP Method WebTestClient method

GET .get()

POST .post()

PUT .put()

PATCH .patch()

DELETE .delete()

HEAD .head()

Sets up test data

Mocks
TacoRepository

Creates
WebTestClient

POSTs a taco

Verifies response

284 CHAPTER 11 Developing reactive APIs
11.3.3 Testing with a live server

The tests you’ve written so far have relied on a mock implementation of the Spring
WebFlux framework so that a real server wouldn’t be necessary. But you may need to
test a WebFlux controller in the context of a server like Netty or Tomcat and maybe
with a repository or other dependencies. That is to say, you may want to write an inte-
gration test.

 To write a WebTestClient integration test, you start by annotating the test class
with @RunWith and @SpringBootTest like any other Spring Boot integration test:

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)
public class DesignTacoControllerWebTest {

 @Autowired
 private WebTestClient testClient;

}

By setting the webEnvironment attribute to WebEnvironment.RANDOM_PORT, you’re ask-
ing Spring to start a running server listening on a randomly chosen port.1

 You’ll notice that you’ve also autowired a WebTestClient into the test class. This
not only means that you’ll no longer have to create one in your test methods, but also
that you won’t need to specify a full URL when making requests. That’s because the
WebTestClient will be rigged to know which port the test server is running on. Now
you can rewrite shouldReturnRecentTacos() as an integration test that uses the
autowired WebTestClient:

@Test
public void shouldReturnRecentTacos() throws IOException {
 testClient.get().uri("/design/recent")
 .accept(MediaType.APPLICATION_JSON).exchange()
 .expectStatus().isOk()
 .expectBody()
 .jsonPath("$[?(@.id == 'TACO1')].name")
 .isEqualTo("Carnivore")
 .jsonPath("$[?(@.id == 'TACO2')].name")
 .isEqualTo("Bovine Bounty")
 .jsonPath("$[?(@.id == 'TACO3')].name")
 .isEqualTo("Veg-Out");
}

You’ve no doubt noticed that this new version of shouldReturnRecentTacos() has
much less code. There’s no longer any need to create a WebTestClient because you’ll
be making use of the autowired instance. And there’s no need to mock TacoRepository
because Spring will create an instance of DesignTacoController and inject it with a

1 You could have also set webEnvironment to WebEnvironment.DEFINED_PORT and specified a port with the
properties attribute, but that’s generally inadvisable. Doing so opens the risk of a port clash with a concur-
rently running server.

285Consuming REST APIs reactively
real TacoRepository. In this new version of the test method, you use JSONPath expres-
sions to verify values served from the database.

 WebTestClient is useful when, in the course of a test, you need to consume the
API exposed by a WebFlux controller. But what about when your application itself
consumes some other API? Let’s turn our attention to the client side of Spring’s reac-
tive web story and see how WebClient provides a REST client that deals in reactive
types such as Mono and Flux.

11.4 Consuming REST APIs reactively
In chapter 7, you used RestTemplate to make client requests to the Taco Cloud API.
RestTemplate is an old-timer, having been introduced in Spring version 3.0. In its
time, it has been used to make countless requests on behalf of the applications that
employ it.

 But all of the methods provided by RestTemplate deal in non-reactive domain
types and collections. This means that if you want to work with a response’s data in a
reactive way, you’ll need to wrap it with a Flux or Mono. And if you already have a Flux
or Mono and you want to send it in a POST or PUT request, then you’ll need to extract
the data into a non-reactive type before making the request.

 It would be nice if there was a way to use RestTemplate natively with reactive
types. Fear not. Spring 5 offers WebClient as a reactive alternative to RestTemplate.
WebClient lets you both send and receive reactive types when making requests to exter-
nal APIs.

 Using WebClient is quite different from using RestTemplate. Rather than have
several methods to handle different kinds of requests, WebClient has a fluent builder-
style interface that lets you describe and send requests. The general usage pattern for
working with WebClient is

 Create an instance of WebClient (or inject a WebClient bean)
 Specify the HTTP method of the request to send
 Specify the URI and any headers that should be in the request
 Submit the request
 Consume the response

Let’s look at several examples of WebClient in action, starting with how to use Web-
Client to send HTTP GET requests.

11.4.1 GETting resources

As an example of WebClient usage, suppose that you need to fetch an Ingredient
object by its ID from the Taco Cloud API. Using RestTemplate, you might use the
getForObject() method. But with WebClient, you build the request, retrieve a
response, and then extract a Mono that publishes the Ingredient object:

Mono<Ingredient> ingredient = WebClient.create()
 .get()

286 CHAPTER 11 Developing reactive APIs
 .uri("http://localhost:8080/ingredients/{id}", ingredientId)
 .retrieve()
 .bodyToMono(Ingredient.class);

ingredient.subscribe(i -> { ... })

Here you create a new WebClient instance with create(). Then you use get() and
uri() to define a GET request to http://localhost:8080/ingredients/{id}, where the
{id} placeholder will be replaced by the value in ingredientId. The retrieve()
method executes the request. Finally, a call to bodyToMono() extracts the response’s
body payload into a Mono<Ingredient> on which you can continue applying addition
Mono operations.

 To apply additional operations on the Mono returned from bodyToMono(), it’s
important to subscribe to it before the request will even be sent. Making requests that
can return a collection of values is as easy. For example, the following snippet of code
fetches all ingredients:

Flux<Ingredient> ingredients = WebClient.create()
 .get()
 .uri("http://localhost:8080/ingredients")
 .retrieve()
 .bodyToFlux(Ingredient.class);

ingredients.subscribe(i -> { ... })

For the most part, fetching multiple items is the same as making a request for a single
item. The big difference is that instead of using bodyToMono() to extract the response’s
body into a Mono, you use bodyToFlux() to extract it into a Flux.

 As with bodyToMono(), the Flux returned from bodyToFlux() hasn’t yet been sub-
scribed to. This allows additional operations (filters, maps, and so forth) to be applied
to the Flux before the data starts flowing through it. Therefore, it’s important to sub-
scribe to the resulting Flux or else the request will never even be sent.

MAKING REQUESTS WITH A BASE URI
You may find yourself using a common base URI for many different requests. In that
case, it can be useful to create a WebClient bean with a base URI and inject it any-
where it’s needed. Such a bean could be declared like this:

@Bean
public WebClient webClient() {
 return WebClient.create("http://localhost:8080");
}

Then, anywhere you need to make requests using that base URI, the WebClient bean
can be injected and used like this:

@Autowired
WebClient webClient;

http://localhost:8080/ingredients/{id}

287Consuming REST APIs reactively
public Mono<Ingredient> getIngredientById(String ingredientId) {
 Mono<Ingredient> ingredient = webClient
 .get()
 .uri("/ingredients/{id}", ingredientId)
 .retrieve()
 .bodyToMono(Ingredient.class);

 ingredient.subscribe(i -> { ... })
}

Because the WebClient had already been created, you’re able to get right to work by
calling get(). As for the URI, you need to specify only the path relative to the base
URI when calling uri().

TIMING OUT ON LONG-RUNNING REQUESTS

One thing that you can count on is that networks aren’t always reliable or as fast as
you’d expect them to be. Or maybe a remote server is sluggish in handling a
request. Ideally, a request to a remote service will return in a reasonable amount of
time. But if not, it would be great if the client didn’t get stuck waiting on a response
for too long.

 To avoid having your client requests held up by a sluggish network or service, you
can use the timeout() method from Flux or Mono to put a limit on how long you’ll
wait for data to be published. As an example, consider how you might use timeout()
when fetching ingredient data:

Flux<Ingredient> ingredients = WebClient.create()
 .get()
 .uri("http://localhost:8080/ingredients")
 .retrieve()
 .bodyToFlux(Ingredient.class);

ingredients
 .timeout(Duration.ofSeconds(1))
 .subscribe(
 i -> { ... },
 e -> {
 // handle timeout error
 })

As you can see, before subscribing to the Flux, you called timeout(), specifying a
duration of 1 s. If the request can be fulfilled in less than 1 s, then there’s no problem.
But if the request is taking longer than 1 s, it’ll timeout and the error handler given as
the second parameter to subscribe() is invoked.

11.4.2 Sending resources

Sending data with WebClient isn’t much different from receiving data. As an example,
let’s say that you’ve a Mono<Ingredient> and want to send a POST request with the
Ingredient that’s published by the Mono to the URI with a relative path of /ingredients.

288 CHAPTER 11 Developing reactive APIs
All you must do is use the post() method instead of get() and specify that the Mono is
to be used to populate the request body by calling body():

Mono<Ingredient> ingredientMono = ...;

Mono<Ingredient> result = webClient
 .post()
 .uri("/ingredients")
 .body(ingredientMono, Ingredient.class)
 .retrieve()
 .bodyToMono(Ingredient.class);

result.subscribe(i -> { ... })

If you don’t have a Mono or Flux to send, but instead have the raw domain object on
hand, you can use syncBody(). For example, suppose that instead of a Mono<Ingre-
dient>, you have an Ingredient that you want to send in the request body:

Ingedient ingredient = ...;

Mono<Ingredient> result = webClient
 .post()
 .uri("/ingredients")
 .syncBody(ingredient)
 .retrieve()
 .bodyToMono(Ingredient.class);

result.subscribe(i -> { ... })

If instead of a POST request you want to update an Ingredient with a PUT request,
you call put() instead of post() and adjust the URI path accordingly:

Mono<Void> result = webClient
 .put()
 .uri("/ingredients/{id}", ingredient.getId())
 .syncBody(ingredient)
 .retrieve()
 .bodyToMono(Void.class)
 .subscribe();

PUT requests typically have empty response payloads, so you must ask bodyToMono()
to return a Mono of type Void. On subscribing to that Mono, the request will be sent.

11.4.3 Deleting resources

WebClient also allows the removal of resources by way of its delete() method. For
example, the following code deletes an ingredient for a given ID:

Mono<Void> result = webClient
 .delete()
 .uri("/ingredients/{id}", ingredientId)
 .retrieve()
 .bodyToMono(Void.class)
 .subscribe();

289Consuming REST APIs reactively
As with PUT requests, DELETE requests don’t typically have a payload. Once again,
you return and subscribe to a Mono<Void> to send the request.

11.4.4 Handling errors

All of the WebClient examples thus far have assumed a happy ending; there were no
responses with 400-level or 500-level status codes. Should either kind of error statuses
be returned, WebClient will log the failure; otherwise, it’ll silently ignore it.

 If you need to handle such errors, then a call to onStatus() can be used to specify
how various HTTP status codes should be dealt with. onStatus() accepts two func-
tions: a predicate function, which is used to match the HTTP status, and a function
that, given a ClientResponse object, returns a Mono<Throwable>.

 To demonstrate how onStatus() can be used to create a custom error handler,
consider the following use of WebClient that aims to fetch an ingredient given its ID:

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http://localhost:8080/ingredients/{id}", ingredientId)
 .retrieve()
 .bodyToMono(Ingredient.class);

As long as the value in ingredientId matches a known ingredient resource, then the
resulting Mono will publish the Ingredient object when it’s subscribed to. But what
would happen if there were no matching ingredient?

 When subscribing to a Mono or Flux that might end in error, it’s important to regis-
ter an error consumer as well as a data consumer in the call to subscribe():

ingredientMono.subscribe(
 ingredient -> {
 // handle the ingredient data
 ...
 },
 error-> {
 // deal with the error
 ...
 });

If the ingredient resource is found, then the first lambda (the data consumer) given
to subscribe() is invoked with the matching Ingredient object. But if it isn’t found,
then the request responds with a status code of HTTP 404 (NOT FOUND), which
results in the second lambda (the error consumer) being given by default a Web-
ClientResponseException.

 The biggest problem with WebClientResponseException is that it’s rather non-
specific as to what may have gone wrong to cause the Mono to fail. Its name suggests
that there was an error in the response from a request made by WebClient, but you’ll
need to dig into WebClientResponseException to know what went wrong. And in any
event, it would be nice if the exception given to the error consumer were more
domain-specific instead of WebClient-specific.

290 CHAPTER 11 Developing reactive APIs
 By adding a custom error handler, you can provide code that translates a status
code to a Throwable of your own choosing. Let’s say that you want a failed request for
an ingredient resource to result in the Mono completing in error with a Unknown-
IngredientException. You can add a call to onStatus() after the call to retrieve()
to achieve that:

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http://localhost:8080/ingredients/{id}", ingredientId)
 .retrieve()
 .onStatus(HttpStatus::is4xxClientError,
 response -> Mono.just(new UnknownIngredientException()))
 .bodyToMono(Ingredient.class);

The first argument in the onStatus() call is a predicate that’s given an HttpStatus
and returns true if the status code is one you want to handle. And if the status code
matches, then the response will be returned to the function in the second argument
to handle as it sees fit, ultimately returning a Mono of type Throwable.

 In the example, if the status code is a 400-level status code (for example, a client
error), then a Mono will be returned with an UnknownIngredientException. This
causes the ingredientMono to fail with that exception.

 Note that HttpStatus::is4xxClientError is a method reference to the is4xx-
ClientError method of HttpStatus. It’s this method that will be invoked on the
given HttpStatus object. If you want, you can use another method on HttpStatus as a
method reference; or you can provide your own function in the form of a lambda or
method reference that returns a boolean.

 For example, you can get even more precise in your error handling by checking
specifically for an HTTP 404 (NOT FOUND) status by changing the call to onSta-
tus() to look like this:

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http://localhost:8080/ingredients/{id}", ingredientId)
 .retrieve()
 .onStatus(status -> status == HttpStatus.NOT_FOUND,
 response -> Mono.just(new UnknownIngredientException()))
 .bodyToMono(Ingredient.class);

It’s also worth noting that you can have as many calls to onStatus() as you need to
handle any variety of HTTP status codes that might come back in the response.

11.4.5 Exchanging requests

Up to this point, you’ve used the retrieve() method to signify sending a request
when working with WebClient. In those cases, the retrieve() method returned an
object of type ResponseSpec, through which you were able to handle the response
with calls to methods such as onStatus(), bodyToFlux(), and bodyToMono(). Working
with ResponseSpec is fine for simple cases, but it’s limited in a few ways. If you need

291Consuming REST APIs reactively
access to the response’s headers or cookie values, for example, then ResponseSpec
isn’t going to work for you.

 When ResponseSpec comes up short, you can try calling exchange() instead of
retrieve(). The exchange() method returns a Mono of type ClientResponse, on
which you can apply reactive operations to inspect and use data from the entire
response, including the payload, headers, and cookies.

 Before we look at what makes exchange() different from retrieve(), let’s start by
looking at how similar they are. The following snippet of code uses a WebClient and
exchange() to fetch a single ingredient by the ingredient’s ID:

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http://localhost:8080/ingredients/{id}", ingredientId)
 .exchange()
 .flatMap(cr -> cr.bodyToMono(Ingredient.class));

This is roughly equivalent to the following example that uses retrieve():

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http://localhost:8080/ingredients/{id}", ingredientId)
 .retrieve()
 .bodyToMono(Ingredient.class);

In the exchange() example, rather than use the ResponseSpec object’s bodyToMono()
to get a Mono<Ingredient>, you get a Mono<ClientResponse> on which you can apply
a flat-mapping function to map the ClientResponse to a Mono<Ingredient>, which is
flattened into the resulting Mono.

 Now let’s see what makes exchange() different. Let’s suppose that the response
from the request might include a header named X_UNAVAILABLE with a value of
true to indicate that (for some reason) the ingredient in question is unavailable. And
for the sake of discussion, suppose that if that header exists, you want the resulting
Mono to be empty—to not return anything. You can achieve this scenario by adding
another call to flatMap() such that the entire WebClient call looks like this:

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http://localhost:8080/ingredients/{id}", ingredientId)
 .exchange()
 .flatMap(cr -> {
 if (cr.headers().header("X_UNAVAILABLE").contains("true")) {
 return Mono.empty();
 }
 return Mono.just(cr);
 })
 .flatMap(cr -> cr.bodyToMono(Ingredient.class));

The new flatMap() call inspects the given ClientRequest object’s headers, looking
for a header named X_UNAVAILABLE with a value of true. If found, it returns an

292 CHAPTER 11 Developing reactive APIs
empty Mono. Otherwise, it returns a new Mono that contains the ClientResponse. In
either event, the Mono returned will be flattened into the Mono that the next flatMap()
call will operate on.

11.5 Securing reactive web APIs
For as long as there has been Spring Security (and even before that when it was known
as Acegi Security), its web security model has been built around servlet filters. After
all, it just makes sense. If you need to intercept a request bound for a servlet-based
web framework to ensure that the requester has proper authority, a servlet filter is an
obvious choice. But Spring WebFlux puts a kink into that approach.

 When writing a web application with Spring WebFlux, there’s no guarantee that
servlets are even involved. In fact, a reactive web application is debatably more likely
to be built on Netty or some other non-servlet server. Does this mean that the servlet
filter-based Spring Security can’t be used to secure Spring WebFlux applications?

 It’s true that using servlet filters isn’t an option when securing a Spring WebFlux
application. But Spring Security is still up to the task. Starting with version 5.0.0,
Spring Security can be used to secure both servlet-based Spring MVC and reactive
Spring WebFlux applications. It does this using Spring’s WebFilter, a Spring-specific
analog to servlet filters that doesn’t demand dependence on the servlet API.

 What’s even more remarkable, though, is that the configuration model for reactive
Spring Security isn’t much different from what you saw in chapter 4. In fact, unlike
Spring WebFlux, which has a separate dependency from Spring MVC, Spring Security
comes as the same Spring Boot security starter, regardless of whether you intend to
use it to secure a Spring MVC web application or one written with Spring WebFlux. As
a reminder, here’s what the security starter looks like:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

That said, there are a few small differences between Spring Security’s reactive and
non-reactive configuration models. It’s worth taking a quick look at how the two con-
figuration models compare.

11.5.1 Configuring reactive web security

As a reminder, configuring Spring Security to secure a Spring MVC web application
typically involves creating a new configuration class that extends WebSecurity-
ConfigurerAdapter and is annotated with @EnableWebSecurity. Such a configuration
class would override a configuration() method to specify web security specifics such
as what authorizations are required for certain request paths. The following simple
Spring Security configuration class serves as a reminder of how to configure security
for a non-reactive Spring MVC application:

293Securing reactive web APIs
@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/design", "/orders").hasAuthority("USER")
 .antMatchers("/**").permitAll();
 }

}

Now let’s see what this same configuration might look like for a reactive Spring Web-
Flux application. The following listing shows a reactive security configuration class
that’s roughly equivalent to the simple security configuration from before.

@Configuration
@EnableWebFluxSecurity
public class SecurityConfig {

 @Bean
 public SecurityWebFilterChain securityWebFilterChain(
 ServerHttpSecurity http) {
 return http
 .authorizeExchange()
 .pathMatchers("/design", "/orders").hasAuthority("USER")
 .anyExchange().permitAll()
 .and()
 .build();
 }

}

As you can see, there’s a lot that’s familiar, while at the same time different. Rather
than @EnableWebSecurity, this new configuration class is annotated with @Enable-
WebFluxSecurity. What’s more, the configuration class doesn’t extend WebSecurity-
ConfigurerAdapter or any other base class whatsoever. Therefore, it also doesn’t
override any configure() methods.

 In place of a configure() method, you declare a bean of type SecurityWebFilter-
Chain with the securityWebFilterChain() method. The body of securityWebFilter-
Chain() isn’t much different from the previous configuration’s configure() method,
but there are some subtle changes.

 Primarily, the configuration is declared using a given ServerHttpSecurity object
instead of a HttpSecurity object. Using the given ServerHttpSecurity, you can call
authorizeExchange(), which is roughly equivalent to authorizeRequests(), to
declare request-level security.

Listing 11.2 Configuring Spring Security for a Spring WebFlux application

294 CHAPTER 11 Developing reactive APIs
NOTE ServerHttpSecurity is new to Spring Security 5 and is the reactive
analog to HttpSecurity.

When matching paths, you can still use Ant-style wildcard paths, but do so with the
pathMatchers() method instead of antMatchers(). And as a convenience, you no
longer need to specify a catch-all Ant-style path of /** because the anyExchange()
returns the catch-all you need.

 Finally, because you’re declaring the SecurityWebFilterChain as a bean instead
of overriding a framework method, you must call the build() method to assemble all
of the security rules into the SecurityWebFilterChain to be returned.

 Aside from those small differences, configuring web security isn’t that different for
Spring WebFlux than for Spring MVC. But what about user details?

11.5.2 Configuring a reactive user details service

When extending WebSecurityConfigurerAdapter, you override one configure()
method to declare web security rules and another configure() method to configure
authentication logic, typically by defining a UserDetails object. As a reminder of
what this looks like, consider the following overridden configure() method that uses
an injected UserRepository object in an anonymous implementation of UserDetails-
Service to look up a user by username:

@Autowired
UserRepository userRepo;

@Override
protected void
 configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .userDetailsService(new UserDetailsService() {
 @Override
 public UserDetails loadUserByUsername(String username)
 throws UsernameNotFoundException {
 User user = userRepo.findByUsername(username)
 if (user == null) {
 throw new UsernameNotFoundException(
 username " + not found")
 }
 return user.toUserDetails();
 }
 });
}

In this non-reactive configuration, you override the only method required by User-
DetailsService, loadUserByUsername(). Inside of that method, you use the given
UserRepository to look up the user by the given username. If the name isn’t found,
you throw a UsernameNotFoundException. But if it’s found, then you call a helper
method toUserDetails() to return the resulting UserDetails object.

295Summary
 In a reactive security configuration, you don’t override a configure() method.
Instead, you declare a ReactiveUserDetailsService bean. ReactiveUserDetails-
Service is the reactive equivalent to UserDetailsService. Like UserDetailsService,
ReactiveUserDetailsService requires implementation of only a single method. Spe-
cifically, the findByUsername() method returns a Mono<userDetails> instead of a raw
UserDetails object.

 In the following example, the ReactiveUserDetailsService bean is declared to
use a given UserRepository, which is presumed to be a reactive Spring Data reposi-
tory (which we’ll talk more about in the next chapter):

@Service
public ReactiveUserDetailsService userDetailsService(
 UserRepository userRepo) {
 return new ReactiveUserDetailsService() {
 @Override
 public Mono<UserDetails> findByUsername(String username) {
 return userRepo.findByUsername(username)
 .map(user -> {
 return user.toUserDetails();
 });
 }
 };
}

Here, a Mono<UserDetails> is returned as required, but the UserRepository.findBy-
Username() method returns a Mono<User>. Because it’s a Mono, you can chain opera-
tions on it, such as a map() operation to map the Mono<User> to a Mono<UserDetails>.

 In this case, the map() operation is applied with a lambda that calls the helper
toUserDetails() method on the User object published by the Mono. This converts the
User to a UserDetails. As a consequence, the .map() operation returns a Mono<User-
Details>, which is precisely what the ReactiveUserDetailsService.findByUsername()
requires.

Summary
 Spring WebFlux offers a reactive web framework whose programming model

mirrors that of Spring MVC, even sharing many of the same annotations.
 Spring 5 also offers a functional programming model as an alternative to Spring

WebFlux.
 Reactive controllers can be tested with WebTestClient.
 On the client-side, Spring 5 offers WebClient, a reactive analog to Spring’s

RestTemplate.
 Although WebFlux has some significant implications for the underlying mecha-

nisms for securing a web application, Spring Security 5 supports reactive secu-
rity with a programming model that isn’t dramatically different from non-
reactive Spring MVC applications.

Persisting data reactively
As I think about non-blocking reactive code and blocking imperative code, I start
to think about rush hour. Rush hour is strangely named. Everybody seems to be in a
rush to get where they’re going, but usually they’re all sitting near-motionless in
traffic. If it weren’t for everyone else on the road, I’d have no trouble getting to
my destination.

 Even though I’m eager to get somewhere (I’m non-blocking), that doesn’t
mean that someone else on the road isn’t blocking me somehow. There may be
other motorists ahead who have had a fender bender and are literally blocking the
road for other commuters. So even though my efforts to get home are essentially
non-blocking, I’m still blocked until the accident scene is cleared up.

 In the previous chapter, you saw how to create reactive, non-blocking controllers
with Spring WebFlux. This helps to improve scalability in the web layer. But those

This chapter covers
 Spring Data’s reactive repositories

 Writing reactive repositories for Cassandra and
MongoDB

 Adapting non-reactive repositories for reactive use

 Data modeling with Cassandra
296

297Understanding Spring Data’s reactive story
controllers are only truly non-blocking if other components that they work with are also
non-blocking. If we write Spring WebFlux controllers that still depend on blocking
repositories, our reactive controllers will be blocked waiting for them to produce data.

 Therefore, it’s important that the entire flow of data, all the way from the control-
lers to the database, be reactive and non-blocking. In this chapter, you’ll see how to
write reactive repositories using Spring Data that follow a similar programming model
as those you created in chapter 3. We’ll start by taking a high-level survey of Spring
Data’s reactive support.

12.1 Understanding Spring Data’s reactive story
Beginning with the Spring Data Kay release train, Spring Data offered its first support
for working with reactive repositories. This includes support for a reactive program-
ming model when persisting data with Cassandra, MongoDB, Couchbase, or Redis.

You may have noticed that I failed to mention relational databases or JPA. Unfortu-
nately, there’s no support for reactive JPA. Although relational databases are certainly
the most prolific databases in the industry, supporting a reactive programming model
with Spring Data JPA would require that the databases and JDBC drivers involved also
support non-blocking reactive models. It’s unfortunate that, at least for now, there’s
no support for working with relational databases reactively. Hopefully, this situation
will be resolved in the near future.

 In the meantime, this chapter focuses on using Spring Data to develop repositories
that deal in reactive types for those databases that do support a reactive model. Let’s
see how Spring Data’s reactive model compares to its non-reactive model.

12.1.1 Spring Data reactive distilled

The essence of Spring Data’s reactive story can be summed up by saying that reactive
repositories have methods that accept and return Mono and Flux instead of domain
entities and collections. A repository method that fetches Ingredient objects by
ingredient type from the backing database might be declared as follows in the reposi-
tory interface:

Flux<Ingredient> findByType(Ingredient.Type type);

What’s in a name?
Although Spring Data projects are versioned at their own pace, they’re collectively
published in a release train, where each version of the release train is named for a
significant figure in computer science.

These names are alphabetical in nature and include names such as Babbage, Codd,
Dijkstra, Evans, Fowler, Gosling, Hopper, and Ingalls. At the time this is being written,
the most recent release train version is Spring Data Kay, named after Alan Kay, one
of the designers of the Smalltalk programming language.

298 CHAPTER 12 Persisting data reactively
As you can see, this findByType() method returns a Flux<Ingredient> instead of a
List<Ingredient> or an Iterable<Ingredient> as its non-reactive analog would.

 Likewise, when saving a Taco, the repository would have a saveAll() method with
the following signature:

<Taco> Flux<Taco> saveAll(Publisher<Taco> tacoPublisher);

In this case, the saveAll() method accepts a Publisher of type Taco (either a
Mono<Taco> or a Flux<Taco>) and returns a Flux<Taco>. This is in contrast to a non-
reactive repository, which would have a save() method that deals with the domain
type directly, accepting a Taco object and returning the saved Taco object.

 Put simply, Spring Data’s reactive repositories share a near-identical programming
model with Spring Data’s non-reactive repositories, like those in chapter 3. The only
material difference is that reactive repositories have methods that take and return
Flux and Mono instead of raw domain types and collections.

12.1.2 Converting between reactive and non-reactive types

Before we look any further at how to write reactive repositories with Spring Data, let’s
take a moment to address the elephant in the room. You may have an existing rela-
tional database and it may not be practical to migrate your data to one of the four
databases that Spring Data supports with its reactive programming model. Does that
mean you can’t apply reactive programming in your application at all?

 Although the full benefit of reactive programming comes when you have a reactive
model from end to end, including at the database level, there’s still some benefit to be
had by using reactive flows on top of a non-reactive database. Even though your cho-
sen database doesn’t support non-blocking reactive queries, you can still fetch data in
a blocking fashion and then translate it into a reactive type as soon as possible for the
benefit of upstream components.

 Suppose, for example, that you’re working with a relational database and using
Spring Data JPA for persistence. Your OrderRepository may have a method with the
following signature:

List<Order> findByUser(User user);

This method will return a non-reactive List<Order> containing all of the Order enti-
ties for a given User. When findByUser() is called, it will block while the query is exe-
cuted and the results are collected into List. Because List isn’t a reactive type, you
won’t be able to perform any of the operations afforded by Flux on it. Moreover, if the
caller is a controller, it won’t be able to work with the results reactively to achieve
improved scalability.

 You can’t do anything about the blocking nature of invoking a method on a JPA
repository. What you can do, however, is convert the non-reactive List into a Flux as

299Understanding Spring Data’s reactive story
soon as you receive it, so that you can deal with the results reactively from there on. To
do so, you simply use Flux.fromIterable():

List<Order> orders = repo.findByUser(someUser);
Flux<Order> orderFlux = Flux.fromIterable(orders);

Likewise, if you were to fetch a single Order by its ID, you could immediately convert it
to a Mono:

Order order repo.findById(Long id);
Mono<Order> orderMono = Mono.just(order);

By using Mono.just() and the fromIterable(), fromArray(), and fromStream()
methods of Flux, you can isolate the non-reactive blocking code in your repositories
and deal with reactive types elsewhere in your application.

 What about going the other way? What if you have a Mono or Flux given to you
and you need to call save() on a non-reactive JPA repository? Fortunately, Mono and
Flux both have operations to extract the data that they publish into domain types or
an Iterable.

 For example, suppose a WebFlux controller accepts a Mono<Taco>, and you need to
save it using the save() method in a Spring Data JPA repository. No problem—just
call the block() method on the Mono to extract the Taco object:

Taco taco = tacoMono.block();
tacoRepo.save(taco);

As its name implies, the block() method will perform a blocking operation to per-
form the extractions.

 As for extracting data from a Flux, you’ll likely want to use toIterable(). Let’s say
you’re given a Flux<Taco> and need to call saveAll() on a Spring Data JPA reposi-
tory. The following snippet of code shows how to extract an Iterable<Taco> from a
Flux<Taco> to do precisely that:

Iterable<Taco> tacos = tacoFlux.toIterable();
tacoRepo.saveAll(tacos);

As with Mono.block(), Flux.toIterable() blocks as it collects all the objects pub-
lished by the Flux into an Iterable. Because of their blocking nature, Mono.block()
and Flux.toIterable() should be used sparingly and with the clear understanding
that using them breaks out of the reactive programming model.

 Another more reactive approach that avoids a blocking extraction operation is to
subscribe to the Mono or Flux and perform the desired operation on each element as
it’s published. For example, to save all Taco objects published by a Flux<Taco> when
the repository is non-reactive, you might do something like this:

tacoFlux.subscribe(taco -> {
 tacoRepo.save(taco);
});

300 CHAPTER 12 Persisting data reactively
Even though the call to the repository’s save() method is still a non-reactive blocking
operation, using subscribe() is a more natural, reactive approach to consuming and
processing the data published by a Flux or Mono.

 But that’s enough talk about how to work with non-reactive repositories. Let’s start
using the real power of Spring Data’s reactive support to create reactive repositories
for the Taco Cloud application.

12.1.3 Developing reactive repositories

As you saw in chapter 3, one of the most amazing features of Spring Data is the ability
to declare repository interfaces and have Spring Data automatically implement them
at runtime. In that chapter, we focused primarily on Spring Data JPA, but the same
programming model is applicable for nonrelational databases, including Cassandra
and MongoDB.

 Built on top of their non-reactive repository support, Spring Data Cassandra and
Spring Data MongoDB both support a reactive model. With these databases in the
backend providing data persistence, Spring applications can truly offer end-to-end
reactive flows that span from the web layer to the database. Let’s start by looking at
how to persist data to Cassandra using reactive Spring Data repositories.

12.2 Working with reactive Cassandra repositories
Cassandra is a distributed, high-performance, always available, eventually consistent,
partitioned-row-store, NoSQL database.

 That’s a mouthful of adjectives to describe a database, but each one accurately
speaks to the power of working with Cassandra. To put it in simpler terms, Cassandra
deals in rows of data, which are written to tables, which are partitioned across one-to-
many distributed nodes. No single node carries all the data, but any given row may be
replicated across multiple nodes, thus eliminating any single point of failure.

 Spring Data Cassandra provides automatic repository support for the Cassandra
database that’s quite similar to—and yet quite different from—what’s offered by Spring
Data JPA for relational databases. In addition, Spring Data Cassandra offers mapping
annotations to map application domain types to the backing database structures.

 Before we explore Cassandra any further, it’s important to understand that
although Cassandra shares many similar concepts with relational databases like Ora-
cle and SQL Server, Cassandra isn’t a relational database and is in many ways quite a
different beast. I’ll try to explain the idiosyncrasies of Cassandra as they pertain to
working with Spring Data. But I encourage you to read Cassandra’s own documenta-
tion (http://cassandra.apache.org/doc/latest/) for a thorough understanding of what
makes Cassandra tick.

 Let’s get started by enabling Spring Data Cassandra in the Taco Cloud project.

http://cassandra.apache.org/doc/latest/

301Working with reactive Cassandra repositories
12.2.1 Enabling Spring Data Cassandra

To get started using Spring Data Cassandra’s reactive repository support, you’ll need
to add the Spring Boot starter dependency for reactive Spring Data Cassandra. There
are actually two separate Spring Data Cassandra starter dependencies to choose from.

 If you aren’t planning to write reactive repositories for Cassandra, you can use the
following dependency in your build:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-cassandra</artifactId>
</dependency>

This dependency is also available from the Initializr by checking the Cassandra
check box.

 In this chapter, however, we focus on writing reactive repositories, so you’ll want to
use the other starter dependency that enables reactive Cassandra repositories:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>
 spring-boot-starter-data-cassandra-reactive
 </artifactId>
</dependency>

If you’re using the Spring Initializr to create your project, you can get this depen-
dency in your build by checking the Reactive Cassandra check box.

 It’s important to understand that this dependency is in lieu of the Spring Data
JPA starter dependency. Instead of persisting Taco Cloud data to a relational data-
base with JPA, you’ll be using Spring Data to persist data to a Cassandra database.
Therefore, you’ll probably want to remove the Spring Data JPA starter dependency
and any relational database dependencies (such as JDBC drivers or the H2 depen-
dency) from the build.

 The Spring Data Reactive Cassandra starter dependency brings a handful of
dependencies to the project, among which are the Spring Data Cassandra library and
Reactor. As a result of those libraries being in the runtime classpath, autoconfigura-
tion for creating reactive Cassandra libraries is triggered. This means you’re able to
begin writing reactive Cassandra repositories with little explicit configuration.

 You’ll need to provide a small amount of configuration, though. At the very least,
you’ll need to configure the name of a key space within which your repositories will
operate. To do that, you’ll first need to create such a key space.

NOTE In Cassandra, a keyspace is a grouping of tables in a Cassandra node.
It’s roughly analogous to how tables, views, and constraints are grouped in a
relational database.

302 CHAPTER 12 Persisting data reactively
Although it’s possible to configure Spring Data Cassandra to create the key space
automatically, it’s typically much easier to manually create it yourself (or to use an
existing key space). Using the Cassandra CQL (Cassandra Query Language) shell, you
can create a key space for the Taco Cloud application with the following create key-
space command:

cqlsh> create keyspace tacocloud
 ... with replication={'class':'SimpleStrategy', 'replication_factor':1}
 ... and durable_writes=true;

Put simply, this will create a key space named tacocloud with simple replication and
durable writes. By setting the replication factor to 2, you ask Cassandra to keep one
copy of each row. The replication strategy determines how replication is handled. The
SimpleStrategy replication strategy is fine for single data center use (and for demo
code), but you might consider the NetworkTopologyStrategy if you have your Cas-
sandra cluster spread across multiple data centers. I refer you to the Cassandra docu-
mentation for more details of how replication strategies work and alternative ways of
creating key spaces.

 Now that you’ve created a key space, you need to configure the spring.data
.cassandra.keyspace-name property to tell Spring Data Cassandra to use that key space:

spring:
 data:
 cassandra:
 keyspace-name: tacocloud
 schema-action: recreate-drop-unused

Here, you also set the spring.data.cassandra.schema-action to recreate-drop-
unused. This setting is very useful for development purposes because it ensures that
any tables and user-defined types will be dropped and recreated every time the appli-
cation starts. The default value, none, takes no action against the schema and is useful
in production settings where you’d rather not drop all tables whenever an application
starts up.

 These are the only properties you’ll need for working with a locally running Cas-
sandra database. In addition to these two properties, however, you may wish to set oth-
ers, depending on how you’ve configured your Cassandra cluster.

 By default, Spring Data Cassandra assumes that Cassandra is running locally and
listening on port 9092. If that’s not the case, as in a production setting, you may want to
set the spring.data.cassandra.contact-points and spring.data.cassandra.port
properties:

spring:
 data:
 cassandra:
 keyspace-name: tacocloud
 contact-points:
 - casshost-1.tacocloud.com

303Working with reactive Cassandra repositories
 - casshost-2.tacocloud.com
 - casshost-3.tacocloud.com
 port: 9043

Notice that the spring.data.cassandra.contact-points property is where you iden-
tify the hostname(s) of Cassandra. A contact point is the host where a Cassandra node
is running. By default, it’s set to localhost, but you can set it to a list of hostnames. It
will try each contact point until it’s able to connect to one. This is to ensure that
there’s no single point of failure in the Cassandra cluster and that the application will
be able to connect with the cluster through one of the given contact points.

 You may also need to specify a username and password for your Cassandra cluster.
This can be done by setting the spring.data.cassandra.username and spring.data
.cassandra.password properties:

spring:
 data:
 cassandra:
 ...
 username: tacocloud
 password: s3cr3tP455w0rd

Now that Spring Data Cassandra is enabled and configured in your project, you’re
almost ready to map your domain types to Cassandra tables and write repositories. But
first, let’s step back and consider a few basic points of Cassandra data modeling.

12.2.2 Understanding Cassandra data modeling

As I mentioned, Cassandra is quite different from a relational database. Before you
can start mapping your domain types to Cassandra tables, it’s important to understand
a few of the ways that Cassandra data modeling is different from how you might model
your data for persistence in a relational database.

 These are a few of the most important things to understand about Cassandra
data modeling:

 Cassandra tables may have any number of columns, but not all rows will neces-
sarily use all of those columns.

 Cassandra databases are split across multiple partitions. Any row in a given table
may be managed by one or more partitions, but it’s unlikely that all partitions
will have all rows.

 A Cassandra table has two kinds of keys: partition keys and clustering keys. Hash
operations are performed on each row’s partition key to determine which parti-
tion(s) that row will be managed by. Clustering keys determine the order in
which the rows are maintained within a partition (not necessarily the order that
they may appear in the results of a query).

 Cassandra is highly optimized for read operations. As such, it’s common and desir-
able for tables to be highly denormalized and for data to be duplicated across

304 CHAPTER 12 Persisting data reactively
multiple tables. (For example, customer information may be kept in a customer
table as well as duplicated in a table containing orders placed by customers.)

Suffice it to say that adapting the Taco Cloud domain types to work with Cassandra
won’t be a matter of simply swapping out a few JPA annotations for Cassandra annota-
tions. You’ll have to rethink how you model the data.

12.2.3 Mapping domain types for Cassandra persistence

In chapter 3, you marked up your domain types (Taco, Ingredient, Order, and so on)
with annotations provided by the JPA specification. These annotations mapped your
domain types as entities to be persisted to a relational database. Although those anno-
tations won’t work for Cassandra persistence, Spring Data Cassandra provides its own
set of mapping annotations for a similar purpose.

 Let’s start with the Ingredient class, as it’s the simplest to map for Cassandra. The
new Cassandra-ready Ingredient class looks like this:

package tacos;
import org.springframework.data.cassandra.core.mapping.PrimaryKey;
import org.springframework.data.cassandra.core.mapping.Table;
import lombok.AccessLevel;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.RequiredArgsConstructor;

@Data
@RequiredArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@Table("ingredients")
public class Ingredient {

 @PrimaryKey
 private final String id;
 private final String name;
 private final Type type;

 public static enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

The Ingredient class seems to contradict everything I said about just swapping out a
few annotations. Rather than annotating the class with @Entity as you did for JPA per-
sistence, it’s annotated with @Table to indicate that ingredients should be persisted to
a table named ingredients. And rather than annotate the id property with @Id, this
time it’s annotated with @PrimaryKey. So far, it seems that you’re only swapping out a
few annotations.

 But don’t let the Ingredient mapping fool you. The Ingredient class is one of
your simplest domain types. Things get more interesting when you map the Taco class
for Cassandra persistence.

305Working with reactive Cassandra repositories
package tacos;
import java.util.Date;
import java.util.List;
import java.util.UUID;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import org.springframework.data.cassandra.core.cql.Ordering;
import org.springframework.data.cassandra.core.cql.PrimaryKeyType;
import org.springframework.data.cassandra.core.mapping.Column;
import org.springframework.data.cassandra.core.mapping.PrimaryKeyColumn;
import org.springframework.data.cassandra.core.mapping.Table;
import org.springframework.data.rest.core.annotation.RestResource;
import com.datastax.driver.core.utils.UUIDs;
import lombok.Data;

@Data
@RestResource(rel="tacos", path="tacos")
@Table("tacos")
public class Taco {

 @PrimaryKeyColumn(type=PrimaryKeyType.PARTITIONED)
 private UUID id = UUIDs.timeBased();

 @NotNull
 @Size(min=5, message="Name must be at least 5 characters long")
 private String name;

 @PrimaryKeyColumn(type=PrimaryKeyType.CLUSTERED,
 ordering=Ordering.DESCENDING)
 private Date createdAt = new Date();

 @Size(min=1, message="You must choose at least 1 ingredient")
 @Column("ingredients")
 private List<IngredientUDT> ingredients;

}

As you can see, mapping the Taco class is a bit more involved. As with Ingredient, the
@Table annotation is used to identify tacos as the name of the table that tacos should
be written to. But that’s the only thing similar to Ingredient.

 The id property is still your primary key, but it’s only one of two primary key col-
umns. More specifically, the id property is annotated with @PrimaryKeyColumn with a
type of PrimaryKeyType.PARTITIONED. This specifies that the id property serves as
the partition key, used to determine which Cassandra partition(s) each row of taco
data will be written to.

 You’ll also notice that the id property is now a UUID instead of a Long. Although it’s
not required, properties that hold a generated ID value are commonly of type UUID.
Moreover, the UUID is initialized with a time-based UUID value for new Taco objects
(but which may be overridden when reading an existing Taco from the database).

Listing 12.1 Annotating the Taco class for Cassandra persistence

Persists to
tacos table

Defines the
partition key

Defines the
clustering key

Maps list to
ingredients
column

306 CHAPTER 12 Persisting data reactively
 A little further down, you see the createdAt property that’s mapped as another
primary key column. But in this case, the type attribute of @PrimaryKeyColumn is set
to PrimaryKeyType.CLUSTERED, which designates the createdAt property as a cluster-
ing key. As mentioned earlier, clustering keys are used to determine the ordering of
rows within a partition. More specifically, the ordering is set to descending order—
therefore, within a given partition, newer rows appear first in the tacos table.

 Finally, the ingredients property is now a List of IngredientUDT objects instead
of a List of Ingredient objects. As you’ll recall, Cassandra tables are highly denor-
malized and may contain data that’s duplicated from other tables. Although the
ingredient table will serve as the table of record for all available ingredients, the
ingredients chosen for a taco will be duplicated in the ingredients column. Rather
than simply reference one or more rows in the ingredients table, the ingredients
property will contain full data for each chosen ingredient.

 But why do you need to introduce a new IngredientUDT class? Why can’t you just
reuse the Ingredient class? Put simply, columns that contain collections of data, such
as the ingredients column, must be collections of native types (integers, strings, and
so on) or must be collections of user-defined types.

 In Cassandra, user-defined types enable you to declare table columns that are
richer than simple native types. Often they’re used as a denormalized analog for
relational foreign keys. In contrast to foreign keys, which only hold a reference to a
row in another table, columns with user-defined types actually carry data that may
be copied from a row in another table. In the case of the ingredients column in
the tacos table, it will contain a collection of data structures that define the ingredi-
ents themselves.

 You can’t use the Ingredient class as a user-defined type, because the @Table
annotation has already mapped it as an entity for persistence in Cassandra. There-
fore, you must create a new class to define how ingredients will be stored in the
ingredients column of the taco table. IngredientUDT (where “UDT” means user-
defined type) is the class for the job:

package tacos;

import org.springframework.data.cassandra.core.mapping.UserDefinedType;

import lombok.AccessLevel;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.RequiredArgsConstructor;

@Data
@RequiredArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@UserDefinedType("ingredient")
public class IngredientUDT {

 private final String name;
 private final Ingredient.Type type;

}

307Working with reactive Cassandra repositories
Although IngredientUDT looks a lot like Ingredient, its mapping requirements are
much simpler. It’s annotated with @UserDefinedType to identify it as a user-defined
type in Cassandra. But otherwise, it’s a simple class with a few properties.

 You’ll also note that the IngredientUDT class doesn’t include an id property.
Although it could include a copy of the id property from the source Ingredient,
that’s not necessary. In fact, the user-defined type may include any properties you
wish—it doesn’t need to be a one-to-one mapping with any table definition.

 I realize that it might be difficult to visualize how data in a user-defined type relates
to data that’s persisted to a table. Figure 12.1 shows the data model for the entire Taco
Cloud database, including user-defined types.

Specific to the user-defined type that you just created, notice how Taco has a list of
IngredientUDT, which holds data copied from Ingredient objects. When a Taco is per-
sisted, it’s the Taco object and the list of IngredientUDT that’s persisted to the tacos
table. The list of IngredientUDT is persisted entirely within the ingredients column.

 Another way of looking at this that might help you understand how user-defined
types are used is to query the database for rows from the tacos table. Using CQL and
the cqlsh tool that comes with Cassandra, you see the following results:

cqlsh:tacocloud> select id, name, createdAt, ingredients from tacos;

 id | name | createdat | ingredients
----------+-----------+-----------+--
 827390...| Carnivore | 2018-04...| [{name: 'Flour Tortilla', type: 'WRAP'},
 {name: 'Carnitas', type: 'PROTEIN'},
 {name: 'Sour Cream', type: 'SAUCE'},

Figure 12.1 Instead of using foreign keys and joins, Cassandra tables are denormalized, with user-
defined types containing data copied from related tables.

has a

h
a

s
 lis

t o
f

h
a

s
 l
is

t
o

f

has
list of

has list of

UserUDT

TacoUDT

Order User

Taco

IngredientIngredientUDT Ingredient

copied from

copied from

Stored in “tacoorders” table

Stored in “tacos” table

Stored in “users” table

Stored in “ingredients” table
copied

from

308 CHAPTER 12 Persisting data reactively
 {name: 'Salsa', type: 'SAUCE'},
 {name: 'Cheddar', type: 'CHEESE'}]

(1 rows)

As you can see, the id, name, and createdat columns contain simple values. In that
regard, they aren’t much different than what you’d expect from a similar query
against a relational database. But the ingredients column is a little different. Because
it’s defined as containing a collection of the user-defined ingredient type (defined by
IngredientUDT), its value appears as a JSON array filled with JSON objects.

 You likely noticed other user-defined types in figure 12.1. You’ll certainly be creat-
ing some more as you continue mapping your domain to Cassandra tables, including
some that will be used by the Order class. The next listing shows the Order class, mod-
ified for Cassandra persistence.

@Data
@Table("tacoorders")
public class Order implements Serializable {

 private static final long serialVersionUID = 1L;

 @PrimaryKey
 private UUID id = UUIDs.timeBased();

 private Date placedAt = new Date();

 @Column("user")
 private UserUDT user;

 // delivery and credit card properties omitted for brevity's sake

 @Column("tacos")
 private List<TacoUDT> tacos = new ArrayList<>();

 public void addDesign(TacoUTD design) {
 this.tacos.add(design);
 }

}

Listing 12.2 purposefully omits many of the properties of Order that don’t lend them-
selves to a discussion of Cassandra data modeling. What’s left are a few properties
and mappings, similar to how Taco was defined. @Table is used to map Order to the
tacoorders table, much as @Table has been used before. In this case, you’re uncon-
cerned with ordering, so the id property is simply annotated with @PrimaryKey, desig-
nating it as both a partition key and a clustering key with default ordering.

Listing 12.2 Mapping the Order class to a Cassandra tacoorders table

Maps to
tacoorders table

Declares the
primary key

Maps to the
user column

Maps a list to the
tacos column

309Working with reactive Cassandra repositories
 The tacos property is of some interest in that it’s a List<TacoUDT> instead of a list
of Taco objects. The relationship between Order and Taco/TacoUDT here is similar to
the relationship between Taco and Ingredient/IngredientUDT. That is, rather than
joining data from several rows in a separate table through foreign keys, the Order
table will contain all of the pertinent taco data, optimizing the table for quick reads.

 Similarly, the user property references a UserUDT property to be persisted within
the user column. Again, this is in contrast to the relational database strategy of join-
ing in another table.

 As for the TacoUDT class, it’s quite similar to the IngredientUDT class, although it
does include a collection that references another user-defined type:

@Data
@UserDefinedType("taco")
public class TacoUDT {

 private final String name;
 private final List<IngredientUDT> ingredients;

}

The UserUDT class is only marginally more interesting in that it has three properties
instead of two:

@UserDefinedType("user")
@Data
public class UserUDT {

 private final String username;
 private final String fullname;
 private final String phoneNumber;

}

Although it would have been nice to reuse the same domain classes you created in
chapter 3, or at most to swap out some JPA annotations for Cassandra annotations, the
nature of Cassandra persistence is such that it requires you to rethink how your data is
modeled. But now that you’ve mapped your domain, you’re ready to write repositories.

12.2.4 Writing reactive Cassandra repositories

As you saw in chapter 3, writing a repository with Spring Data involves simply declar-
ing an interface that extends one of Spring Data’s base repository interfaces and
optionally declaring additional query methods for custom queries. As it turns out,
writing reactive repositories isn’t much different. The primary difference is that you’ll
extend a different base repository interface, and your methods will deal with reactive
publishers such as Mono and Flux, instead of domain types and collections.

 When it comes to writing reactive Cassandra repositories, you have the choice of two
base interfaces: ReactiveCassandraRepository and ReactiveCrudRepository. Which

310 CHAPTER 12 Persisting data reactively
we choose largely depends on how the repository will be used. ReactiveCassandra-
Repository extends ReactiveCrudRepository to offer a few variations of an insert()
method, which is optimized when the object to be saved is new. Otherwise, Reactive-
CassandraRepository offers the same operations as ReactiveCrudRepository. If you’ll
be inserting a lot of data, you might choose ReactiveCassandraRepository. Otherwise,
it’s better to stick with ReactiveCrudRepository, which is more portable across other
database types.

Revisiting some of the repositories you’ve already written for the Taco Cloud application,
the first thing you should do to make them reactive is to have them extend Reactive-
CrudRepository or ReactiveCassandraRepository instead of CrudRepository. For
example, consider IngredientRepository. Aside from initializing the database with
ingredient data, you won’t be inserting many new ingredients. Therefore, Ingredient-
Repository can extend ReactiveCrudRepository as shown here:

public interface IngredientRepository
 extends ReactiveCrudRepository<Ingredient, String> {
}

You never defined any custom query methods in IngredientRepository, so there’s not
much else you need to do to make IngredientRepository a reactive repository. But
because it now extends ReactiveCrudRepository, its methods will deal in terms of
Flux and Mono. For example, the findAll() method now returns Flux<Ingredient>
instead of an Iterable<Ingredient>. Consequently, you’ll need to be sure that it’s being
used properly wherever it is being used. The allIngredients() method in Ingredient-
Controller, for instance, will need to be rewritten to return a Flux<Ingredient>:

@GetMapping
public Flux<Ingredient> allIngredients() {
 return repo.findAll();
}

Do my Cassandra repositories have to be reactive?
Although this chapter is about writing reactive repositories with Spring Data, you
may be interested to know that you can write non-reactive repositories for Cassan-
dra as well. Rather than extend ReactiveCrudRepository or ReactiveCassandra-
Repository, your repository interfaces can extend the non-reactive CrudRepository
or CassandraRepository interfaces. Then your repository methods can simply return
Cassandra-annotated domain types and collections of those domain types instead of
Flux and Mono.

If you decide to work with non-reactive repositories, you can also change the starter
dependency to spring-boot-starter-data-cassandra instead of spring-boot-
starter-data-cassandra-reactive, although it’s not strictly required that you
do so.

311Working with reactive Cassandra repositories
The changes to TacoRepository are only subtly more complicated. Instead of extending
PagingAndSortingRepository, it will need to extend ReactiveCassandraRepository.
And instead of being parameterized for Taco objects with Long ID properties, it will
need to work with Taco objects with UUID properties for their IDs:

public interface TacoRepository
 extends ReactiveCrudRepository<Taco, UUID> {
}

Because this new TacoRepository will return Flux<Ingredient> from its findAll()
method, you no longer need to worry about it extending PagingAndSortingRepository
or working with a page of results. Instead, the recentTacos() method of Design-
TacoController will just need to call take() on the returned Flux to limit the number
of Taco objects consumed. (In fact, you already made this change to DesignTaco-
Controller and its recentTacos() method in section 11.1.2.)

 The changes required for OrderRepository are similarly straightforward. Rather
than extend CrudRepository, it will now extend ReactiveCassandraRepository:

public interface OrderRepository
 extends ReactiveCassandraRepository<Order, UUID> {
}

Finally, let’s look at UserRepository. As you’ll recall, UserRepository has a custom
query method, findByUsername(). This method adds a little twist to how you must
define the repository for Cassandra persistence. Here’s what a Cassandra-ready User-
Repository interface looks like:

public interface UserRepository
 extends ReactiveCassandraRepository<User, UUID> {

 @AllowFiltering
 Mono<User> findByUsername(String username);

}

Following suit with all of the other repository interfaces (except Ingredient-
Repository), UserRepository extends ReactiveCassandraRepository. No surprises so
far. But its findByUsername() method demands a little bit of extra attention.

 First, because this is intended to be a reactive repository, a findByUsername()
method that simply returns a User object won’t do. You redefine it to return a
Mono<User>. Generally speaking, any custom query methods you write in a reactive
repository should return either a Mono (if there will be no more than one value
returned) or a Flux (if there could be many values returned).

 Also, the nature of Cassandra is such that you can’t simply query a table with a
where clause, like you might do in SQL against a relational database. Cassandra is
optimized for reading. But filtering results with a where clause could potentially
slow down an otherwise fast query. Even so, querying a table where the results are

312 CHAPTER 12 Persisting data reactively
filtered by one or more columns is very useful. Therefore, the @AllowFiltering
annotation makes it possible to filter the results, acting as an opt-in for those cases
where it’s needed.

 In the case of findByUsername(), you’d expect a CQL query that looks like this:

select * from users where username='some username';

Again, that isn’t allowed by Cassandra. But when the @AllowFiltering annotation is
placed on findByUsername(), the resulting CQL query looks like this:

select * from users where username='some username' allow filtering;

The allow filtering clause at the end of the query alerts Cassandra that you’re aware
of the potential impacts to the query’s performance and that you need it anyway. In that
case, Cassandra will allow the where clause and filter the results accordingly.

 There’s a lot of power in Cassandra, and when it’s teamed up with Spring Data and
Reactor, you can wield that power in your Spring applications. But let’s shift our atten-
tion to another database for which reactive repository support is available: MongoDB.

12.3 Writing reactive MongoDB repositories
MongoDB is a another well-known NoSQL database. Whereas Cassandra is a row-
store database, MongoDB is considered a document database. More specifically,
MongoDB stores documents in BSON (Binary JSON) format, which can be queried
for and retrieved in a way that’s roughly similar to how you might query for data in
any other database.

 As with Cassandra, it’s important to understand that MongoDB isn’t a relational
database. The way you manage your MongoDB server cluster, as well as how you
model your data, requires a different mindset than when working with other kinds
of databases.

 That said, working with MongoDB and Spring Data isn’t dramatically different
from how you might use Spring Data for working with JPA or Cassandra. You’ll anno-
tate your domain classes with annotations that map the domain type to a document
structure. And you’ll write repository interfaces that very much follow the same pro-
gramming model as those you’ve seen for JPA and Cassandra. Before you can do any
of that, though, you must enable Spring Data MongoDB in your project.

12.3.1 Enabling Spring Data MongoDB

To get started with Spring Data MongoDB, you’ll need to add the Spring Data Mon-
goDB starter to the project build. Spring Data MongoDB has two separate starters to
choose from.

 If you’re working with non-reactive MongoDB, you’ll add the following depen-
dency to the build:

313Writing reactive MongoDB repositories
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>
 spring-boot-starter-data-mongodb
 </artifactId>
</dependency>

This dependency is also available from the Spring Initializr by checking the MongoDB
check box. But this chapter is all about writing reactive repositories, so you’ll choose
the reactive Spring Data MongoDB starter dependency instead:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>
 spring-boot-starter-data-mongodb-reactive
 </artifactId>
</dependency>

The reactive Spring Data MongoDB starter can also be added to the build by checking
the Reactive MongoDB check box from the Initializr. By adding the starter to the
build, autoconfiguration will be triggered to enable Spring Data support for writing
automatic repository interfaces, such as those you wrote for JPA in chapter 3 or for
Cassandra earlier in this chapter.

 By default, Spring Data MongoDB assumes that you have a MongoDB server run-
ning locally and listening on port 27017. But for convenience in testing or developing,
you can choose to work with an embedded Mongo database instead. To do that, add
the Flapdoodle Embedded MongoDB dependency to your build:

<dependency>
 <groupId>de.flapdoodle.embed</groupId>
 <artifactId>de.flapdoodle.embed.mongo</artifactId>
</dependency>

The Flapdoodle embedded database affords you all of the same convenience of working
with an in-memory Mongo database as you’d get with H2 when working with rela-
tional data. That is, you won’t need to have a separate database running, but all data
will be wiped clean when you restart the application.

 Embedded databases are fine for development and testing, but once you take
your application to production, you’ll want to be sure you set a few properties to let
Spring Data MongoDB know where and how your production Mongo database can
be accessed:

spring:
 data:
 mongodb:
 host: mongodb.tacocloud.com
 port: 27018
 username: tacocloud
 password: s3cr3tp455w0rd
 database: tacoclouddb

314 CHAPTER 12 Persisting data reactively
Not all of these properties are required, but they’re available to help point Spring
Data MongoDB in the right direction in the event that your Mongo database isn’t run-
ning locally. Breaking it down, here’s what each property configures:

 spring.data.mongodb.host—The hostname where Mongo is running (default:
localhost)

 spring.data.mongodb.port—The port that the Mongo server is listening on
(default: 27017)

 spring.data.mongodb.username—The username to use to access a secured
Mongo database

 spring.data.mongodb.password—The password to use to access a secured
Mongo database

 spring.data.mongodb.database—The database name (default: test)

Now that you have Spring Data MongoDB enabled in your project, you need to anno-
tate your domain objects for persistence as documents in MongoDB.

12.3.2 Mapping domain types to documents

Spring Data MongoDB offers a handful of annotations that are useful for mapping
domain types to document structures to be persisted in MongoDB. Although Spring
Data MongoDB provides a half dozen annotations for mapping, only three of them
are useful for most common use cases:

 @Id—Designates a property as the document ID (from Spring Data Commons)
 @Document—Declares a domain type as a document to be persisted to MongoDB
 @Field—Specifies the field name (and optionally the order) for storing a prop-

erty in the persisted document

Of those three annotations, only the @Id and @Document annotations are strictly
required. Unless you specify otherwise, properties that aren’t annotated with @Field
will assume a field name equal to the property name.

 Applying these annotations to the Ingredient class, you get the following:

package tacos;
import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;
import lombok.AccessLevel;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.RequiredArgsConstructor;

@Data
@RequiredArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@Document
public class Ingredient {

 @Id
 private final String id;

315Writing reactive MongoDB repositories
 private final String name;
 private final Type type;

 public static enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

As you can see, you place the @Document annotation at the class level to indicate that
Ingredient is a document entity that can be written to and read from a Mongo data-
base. By default, the collection name (the Mongo analog to a relational database
table) is based on the class name, with the first letter lowercased. Because you haven’t
specified otherwise, Ingredient objects will be persisted to a collection named ingre-
dient. But you can change that by setting the collection attribute of @Document:

@Data
@RequiredArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@Document(collection="ingredients")
public class Ingredient {
...
}

You’ll also notice that the id property has been annotated with @Id. This designates
the property as being the ID of the persisted document. You can use @Id on any prop-
erty whose type is Serializable, including String and Long. In this case, you’re
already using the String-defined id property as a natural identifier, so there’s no
need to change it to any other type.

 So far, so good. But you’ll recall from earlier in this chapter that Ingredient was
the easy domain type to map for Cassandra. The other domain types, such as Taco,
were a bit more challenging. Let’s look at how you can map the Taco class to see what
surprises it might hold.

 As with any domain-to-document mapping for MongoDB, you’ll certainly need to
annotate Taco with @Document. And you’ll also need to designate an ID property with
@Id. Doing so yields the following Taco class annotated for MongoDB persistence:

@Data
@RestResource(rel="tacos", path="tacos")
@Document
public class Taco {

 @Id
 private String id;

 @NotNull
 @Size(min=5, message="Name must be at least 5 characters long")
 private String name;

 private Date createdAt = new Date();

316 CHAPTER 12 Persisting data reactively
 @Size(min=1, message="You must choose at least 1 ingredient")
 private List<Ingredient> ingredients;

}

Believe it or not, that’s it! The challenges of dealing with two different primary key
fields and referencing user-defined types were specific to Cassandra. For MongoDB,
the Taco mapping is much simpler.

 Even so, there are a few interesting things to point out in Taco. First, notice that
the id property has been changed to be a String (as opposed to a Long in the JPA ver-
sion or a UUID in the Cassandra version). As I said earlier, @Id can be applied to any
Serializable type. But if you choose to use a String property as the ID, you get the
benefit of Mongo automatically assigning a value to it when it’s saved (assuming that
it’s null). By choosing String, you get a database-managed ID assignment and
needn’t worry about setting that property manually.

 Also, take a look at the ingredients property. Notice that it’s a List<Ingredient>,
just like it was in the JPA version from chapter 3. But unlike the JPA version, the list
isn’t stored in a separate MongoDB collection. Much like its Cassandra counterpart,
the list of ingredients is stored directly, denormalized, in the taco document. But
unlike the Cassandra implementation, you don’t need to make up a user-defined
type—MongoDB is happy to use any type here, whether it’s another @Document-
annotated type or just a POJO.

 It certainly is a relief to see that mapping Taco for document persistence is easy.
Will that ease of mapping carry over to the Order domain class? Take a look at the fol-
lowing MongoDB-annotated Order class to see for yourself:

@Data
@Document
public class Order implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 private String id;

 private Date placedAt = new Date();

 @Field("customer")
 private User user;

 // other properties omitted for brevity's sake

 private List<Taco> tacos = new ArrayList<>();

 public void addDesign(Taco design) {
 this.tacos.add(design);
 }

}

317Writing reactive MongoDB repositories
For brevity’s sake, I’ve snipped out the various delivery and credit card fields. But from
what’s left, it’s clear that all you need is @Document and @Id, as with the other domain
types. Even so, you annotate the user property with @Field to specify that it be stored
as customer in the persisted document.

 By now, it shouldn’t be surprising that mapping the User domain class for MongoDB
persistence should be just as easy:

@Data
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@RequiredArgsConstructor
@Document
public class User implements UserDetails {

 private static final long serialVersionUID = 1L;

 @Id
 private String id;

 private final String username;

 private final String password;
 private final String fullname;
 private final String street;
 private final String city;
 private final String state;
 private final String zip;
 private final String phoneNumber;

 // UserDetails method omitted for brevity's sake

}

Although there are some more-advanced and unusual use cases that require addi-
tional mapping, you’ll find that for most cases, @Document and @Id, along with an
occasional @Field, are sufficient for MongoDB mapping. They certainly do the job for
the Taco Cloud domain types.

 All that’s left is to write the repository interfaces.

12.3.3 Writing reactive MongoDB repository interfaces

Spring Data MongoDB offers automatic repository support similar to what’s provided
by Spring Data JPA and Spring Data Cassandra. When it comes to writing reactive
repositories for MongoDB, you have a choice between ReactiveCrudRepository and
ReactiveMongoRepository. The key difference is that ReactiveMongoRepository pro-
vides a handful of special insert() methods that are optimized for persisting new
documents, whereas ReactiveCrudRepository relies on save() methods for new and
existing documents.

318 CHAPTER 12 Persisting data reactively
You’ll start by defining a repository for persisting Ingredient objects as docu-
ments. You won’t be creating ingredient documents frequently, or at all, after the
database is initialized. Therefore, the optimizations offered by ReactiveMongo-
Repository won’t be as helpful. You can write IngredientRepository to extend
ReactiveCrudRepository:

package tacos.data;
import org.springframework.data.repository.reactive.ReactiveCrudRepository;
import org.springframework.web.bind.annotation.CrossOrigin;
import tacos.Ingredient;

@CrossOrigin(origins="*")
public interface IngredientRepository
 extends ReactiveCrudRepository<Ingredient, String> {
}

Wait a minute! That looks identical to the IngredientRepository interface you
wrote in section 12.2.4 for Cassandra! Indeed, it’s the same interface, with no changes.
This highlights one of the benefits of extending ReactiveCrudRepository—it’s
more portable across various database types and works equally well for MongoDB as
for Cassandra.

 Because it’s a reactive repository, its methods deal in terms of Flux and Mono rather
than raw domain types and collections of those domain types. The findAll() method,
for instance, will return Flux<Ingredient> instead of Iterable<Ingredient>. Likewise,
findById() will return Mono<Ingredient> instead of Optional<Ingredient>. As a
result, this reactive repository could be part of an end-to-end reactive flow.

 Now let’s try defining a repository for persisting Taco objects as documents in
MongoDB. Unlike ingredient documents, you’ll be creating taco documents rather
frequently. Thus, the optimized insert() methods from ReactiveMongoRepository
might prove valuable. Here’s your new MongoDB-ready TacoRepository interface:

package tacos.data;
import org.springframework.data.mongodb.repository.ReactiveMongoRepository;
import reactor.core.publisher.Flux;
import tacos.Taco;

What about non-reactive MongoDB repositories?
The focus of this chapter is on writing reactive repositories with Spring Data. But if
for some reason you wish to work with non-reactive repositories, you can do so by
simply having your repository interfaces extend CrudRepository or Mongo-
Repository instead of ReactiveCrudRepository or ReactiveMongoRepository.
Then you can have the repository methods return Mongo-annotated domain types and
collections of those domain types.

It’s not strictly required that you do so, but you can also choose to change the spring-
boot-starter-data-mongodb-reactive dependency to spring-boot-starter-
data-mongodb.

319Writing reactive MongoDB repositories
public interface TacoRepository
 extends ReactiveMongoRepository<Taco, String> {

 Flux<Taco> findByOrderByCreatedAtDesc();

}

The only drawback of using ReactiveMongoRepository as opposed to Reactive-
CrudRepository is that it’s very specific to MongoDB and not portable to other data-
bases. In your projects, you’ll need to decide if that trade-off is worth it or not. If you
don’t anticipate switching to a different database at some point, it’s safe enough to
choose ReactiveMongoRepository and benefit from the insertion optimizations.

 Notice that you introduce a new method in TacoRepository. This method is to
support the use case of presenting a list of recently created tacos. In the JPA version of
this repository, you achieved that by extending PagingAndSortingRepository. But
PagingAndSortingRepository doesn’t make much sense (especially the paging part
of it) in a reactive repository. In the Cassandra version, sorting was determined by the
clustering key in the table definition, so you didn’t have anything special in the repos-
itory to support fetching recent taco creations.

 But for MongoDB, you’d like to be able to fetch the most recently created tacos.
Despite its odd name, the findByOrderByCreatedAtDesc() method follows the cus-
tom query method-naming convention. It says that you’re finding a Taco object by,
well, by nothing. You don’t specify any properties that must match. Then you tell it to
order the results by the createdAt property in descending order.

 The reason to name it with an empty By clause is to avoid a misinterpretation of
the method name, given that there’s another By in the method name. Had you named
it findAllOrderByCreatedAtDesc(), the AllOrder portion of the name would’ve been
ignored, and Spring Data would try to find tacos by matching against a createdAt-
Desc property. Because no such property exists, the application would fail to start,
with an error.

 Because findByOrderByCreatedAtDesc() returns a Flux<Taco>, you needn’t
worry about paging. Instead, you can simply apply the take() operation to take only
the first dozen Taco objects published in the Flux returned. For example, your con-
troller that displays the recently created tacos could make a call to findByOrderBy-
CreatedAtDesc() like this:

Flux<Taco> recents = repo.findByOrderByCreatedAtDesc()
 .take(12);

The resulting Flux would only ever have, at most, 12 Taco items published.
 Moving on to the OrderRepository interface, you can see that it’s straightforward:

package tacos.data;
import org.springframework.data.mongodb.repository.ReactiveMongoRepository;
import reactor.core.publisher.Flux;
import tacos.Order;

320 CHAPTER 12 Persisting data reactively
public interface OrderRepository
 extends ReactiveMongoRepository<Order, String> {

}

You’ll be frequently creating Order documents, so OrderRepository extends Reactive-
MongoRepository to gain the optimizations afforded in its insert() methods. Other-
wise, there’s nothing terribly special about this repository, compared to some of the
other repositories you’ve defined thus far.

 Finally, let’s take a look at the repository that will persist User objects as documents:

package tacos.data;
import org.springframework.data.mongodb.repository.ReactiveMongoRepository;
import reactor.core.publisher.Mono;
import tacos.User;

public interface UserRepository
 extends ReactiveMongoRepository<User, String> {

 Mono<User> findByUsername(String username);

}

By now, there should be nothing terribly surprising about this repository interface.
Like the others, it extends ReactiveMongoRepository (although it could have also
extended ReactiveCrudRepository). The only thing unique is the addition of a
findByUsername() method, which you added in chapter 4 to support authentication
against this repository. Here, it’s been tweaked to return a Mono<User> instead of a raw
User object.

Summary
 Spring Data supports reactive repositories for Cassandra, MongoDB, Couch-

base, and Redis databases.
 Spring Data’s reactive repositories follow the same programming model as non-

reactive repositories, except that they deal in terms of reactive publishers such
as Flux and Mono.

 Non-reactive repositories (such as JPA repositories) can be adapted to work with
Mono and Flux, but they ultimately still block while data is saved and fetched.

 Working with nonrelational databases demands an understanding of how to
model data appropriately for how the database ultimately stores the data.

Part 4

Cloud-native Spring

Part 4 breaks down the monolithic application model, introducing you to
Spring Cloud and microservice development. In chapter 13, after a brief introduc-
tion to microservices, we’ll dive into service discovery, using Spring with Netflix’s
Eureka service registry to both register and discover Spring-based microservices.
Chapter 14 explores centralized configuration using Spring Cloud’s Config
Server, a service that provides centralized configuration for all services in a given
application. In chapter 15, you’ll see how to apply the circuit breaker pattern to
make services more resilient to failure with Netflix Hystrix.

Discovering services
Have you ever watched Finding Nemo? In that movie, Marlin (a clown fish) and
Dory (a blue tang fish) are trying to get to Sydney, Australia to find Marlin’s
missing son, Nemo. Along the way, they encounter a school of moonfish. For
fun, the moonfish arrange themselves into several shapes—a swordfish, an octo-
pus, and they even mock Marlin by arranging themselves to look like him. When
Dory asks them if they know how to get to Sydney, they form the shape of the
Sydney Opera House and then change into an arrow pointing toward the east
Australian current.

 Although the movie doesn’t delve into the lives of any particular moonfish, it
can be assumed that each of them is an individual, independent of the other moon-
fish. Each has its own scales, fins, gills, eyes, internal organs, and (as far as we know)
their own hopes and dreams. Even so, they still work together to form those fun
shapes and help Marlin and Dory make their way to Australia.

This chapter covers
 Thinking in microservices

 Creating a service registry

 Registering and discovering services
323

324 CHAPTER 13 Discovering services
 This chapter is the first of a handful of chapters that discuss how to develop appli-
cations that are composed of moonfish. That is, you’ll see how to develop with micro-
services—small, independent applications that work together to provide the functionality
of a complete application.

 More specifically, you’re going to see how to use a few of the most useful compo-
nents in the Spring Cloud portfolio, including configuration management, failure
tolerance, and the subject of this chapter—service discovery. But before we get started,
let’s take a quick, high-level look at what it means to develop with microservices and
the benefits they offer.

13.1 Thinking in microservices
Up to this point, you’ve developed the Taco Cloud application as a single application
that builds into a single, deployable JAR or WAR file. A single, deployable file seemed
like a natural move. After all, that’s exactly how most applications have been built for
decades. Even when the application is broken down into a multi-module build, you
still end up with a single JAR or WAR file that you push into production.

 This is certainly the most obvious way to build small, simple applications. But the
funny thing about small applications is that they tend to grow. It’s easy enough to drop
more code into the project when a new feature is needed. Before you know it, you
have a complex, monolithic application that has a mind of its own. Like the Mogwai in
the movie Gremlins, if you keep feeding it, it’ll eventually become a monster that turns
against you.1

 Monolithic applications are deceptively simple, but they present a few challenges:

 Monoliths are difficult to reason about—The bigger the codebase gets, the harder it
is to comprehend each component’s role in the whole application.

 Monoliths are more difficult to test—As the application grows, comprehensive inte-
gration and acceptance testing gets more complicated.

 Monoliths are more prone to library conflicts—One feature may require a depen-
dency that’s incompatible with the dependency required by another.

 Monoliths scale inefficiently—If you need to deploy the application to more
hardware for scaling purposes, you must deploy the entire application to
more servers—even if it’s only a small fraction of the application that
requires scaling.

 Technology decisions for a monolith are made for the entire monolith—When you
choose a language, runtime platform, framework, or library for your applica-
tion, you choose it for the entire application, even if the choice is made to only
support a single use case.

 Monoliths require a great deal of ceremony to get to production—It would seem that
when an application has only a single deployment unit, it would be easier to get

1 Yes, I realize that the timing of when you feed Mogwai—after midnight—was the real issue in the movie. No
analogy is perfect.

325Thinking in microservices
into production. In reality, however, the size and complexity of monolithic
applications generally require a more rigid development process and a more
thorough testing cycle to ensure that what’s deployed is of high quality and
doesn’t introduce bugs.

In the past few years, microservice architecture has risen to address these challenges.
In simple terms, microservice architecture is a way of factoring an application into small-
scale, miniature applications that are independently developed and deployed. These
microservices coordinate with each other to provide the functionality of a greater
application. In contrast to monolithic application architecture, microservice architec-
ture has these traits:

 Microservices can be easily understood—Each microservice has a small, finite con-
tract with other microservices in the greater application. As a result, microser-
vices are more focused in purpose and, therefore, easier to understand as a unit.

 Microservices are easier to test—The smaller something is, the easier it is to test.
This is certainly evident when you consider unit testing versus integration test-
ing versus acceptance testing. That also applies when testing microservices ver-
sus monolithic applications.

 Microservices are unlikely to suffer from library incompatibilities—Because each
microservice has its own set of build dependencies that isn’t shared with other
microservices, it’s less likely that there’ll be library conflicts.

 Microservices scale independently—If any given microservice needs more horse-
power, then the memory allotment and/or the number of instances can be
scaled up without impacting the memory or instance count of other microser-
vices in the greater application.

 Technology choices can be made differently for each microservice—Entirely different
decisions can be made with regard to the language, platform, framework,
and library choices for each microservice. In fact, it’s entirely reasonable for
one microservice written in Java to coordinate with another microservice
written in C#.2

 Microservices can be published to production more frequently—Even though a micros-
ervice-architected application is made up of many microservices, each one can
be deployed without requiring that any of the other microservices also be
deployed. And because they’re smaller, more focused, and easier to test, there’s
less ceremony in taking a microservice into production. The time between hav-
ing an idea and seeing it in production can potentially be measured in minutes
and hours, instead of weeks and months.

Microservices certainly seem to make things a lot easier. But to be fair, microservice
architecture isn’t exactly a free lunch. Microservice architecture is a distributed

2 We’ll focus on microservices written with Java and Spring. But if you’re interested in how to write micro-
services in .NET that work with Spring Cloud Services, have a look at Steeltoe (http://steeltoe.io/).

http://steeltoe.io/

326 CHAPTER 13 Discovering services
architecture that brings its own challenges to the table, including network latency. As
you make the move to microservice architecture, you should keep this in mind as
many remote calls can add up and slow down an application.

 You should also consider whether it even makes sense to architect your application
in microservices. Not all applications require or benefit from such an architecture. If
the application is relatively small or simple, perhaps it’s best to leave it as a monolith
… for now. As it grows, you can begin to consider breaking it into microservices.

 There’s a lot of thought that goes into developing cloud-native, microservice-archi-
tected applications. This chapter and the next few chapters will focus primarily on the
technology afforded by Spring Cloud to develop applications that are made up of
microservices. But if you’re interested in digging deeper into the design and thought
process around cloud-native applications, may I suggest that you read Cloud Native by
Cornelia Davis (Manning, 2019, www.manning.com/books/cloud-native).

 Another common challenge faced by microservice architecture is how each service
even knows about the other services it coordinates with. That’s precisely the topic of this
chapter. Without further delay, let’s see how to set up a service registry with Spring Cloud.

13.2 Setting up a service registry
Spring Cloud is a rather large umbrella project, made up of several separate sub-
projects that each enables microservice development in some way. One of those
subprojects is Spring Cloud Netflix, which offers several components from the Net-
flix open source portfolio with a Spring twist. Among those components is Eureka,
the Netflix service registry.

THE NAKED TRUTH CONCERNING EUREKA

The word Eureka is an exclamation of joy when one finds or discovers something. This
makes it a fitting name for the service registries that will be used by microservices to
discover each other.

 Legend says that Eureka was first uttered by Greek physicist Archimedes when, on
discovering the principal of buoyant force while sitting in a bath, he leapt out of the
bath and ran home naked shouting “Eureka!”

 There’s some debate whether or not Archimedes actually ran home in the buff
shouting “Eureka!” But the story is amusing, nonetheless. Regardless, we’re able to
work with the Eureka service registry fully-clothed.

 Eureka acts as a central registry for all services in a microservice application.
Eureka itself can be thought of as a microservice—one whose purpose in the greater
application is to help the other services discover each other.

 Because of its role in a microservice application, it’s probably best to set up a
Eureka service registry before creating any of the services that register with it. To
understand how Eureka works, consider the flow as described in figure 13.1.

 When a service instance starts, it’ll register itself by name with Eureka. In figure 13.1,
the service name is some-service. There may be multiple equivalent instances of some-
service, but all of them register with Eureka with the same name.

https://www.manning.com/books/cloud-native

327Setting up a service registry
At some point, another service (named other-service in figure 13.1) needs to consume
endpoints on some-service. Rather than hard coding other-service with specific host
and port information for some-service, other-service only knows to look up some-service
from Eureka by its name. Eureka replies with information for all instances of some-
service that it knows about.

 Now other-service needs to make a decision. Which instance of some-service will it
use? If they’re all equivalent, then it doesn’t matter much. But to avoid any given
instance being chosen every time, it’s best to apply some client-side, load-balancing
algorithm to spread the requests around. That’s where another Netflix project—Rib-
bon—comes into play.

 Although other-service could be solely responsible for both looking up and choos-
ing an instance of some-service, it relies on Ribbon instead. Ribbon is a client-side
load balancer that makes the choice on behalf of other-service. Once Ribbon has
made its choice, all that’s left is for other-service to make requests to the instance that
Ribbon chooses.

WHY A CLIENT-SIDE LOAD BALANCER?
Often, load balancers are thought of as a single centralized service that handles all
requests and distributes them across many instances of the intended target. In contrast,
Ribbon is a client-side load balancer that’s local to each client making the requests.

 As a client-side load balancer, Ribbon has several benefits over a centralized load
balancer. Because there’s one load balancer local to each client, the load balancer nat-
urally scales proportional to the number of clients. Furthermore, each load balancer
can be configured to employ a load-balancing algorithm best suited for each client,
rather than apply the same configuration for all services.

Figure 13.1 Services register with the Eureka service registry so that other services can
discover and consume them.

R
ib

b
o
n

Select an instance and...

consume endpoints on “some-service”

R
eg

is
te

r
w

ith
 E

ur
ek

a

Look up
“som

e-service”

Spring Cloud

Netflix Eureka

“some-service” “other-service”

328 CHAPTER 13 Discovering services
 If this seems complex, don’t worry. As you’ll soon see, most of this is handled auto-
matically and transparently. But before you can register and consume services, you
need to enable a Eureka server.

 To get started with Spring Cloud and Eureka, you’ll need to create a brand new
project for the Eureka server itself. The easiest way to get started is with the Spring
Initializr. Name the project whatever you want, although I’m inclined to name it ser-
vice-registry. When it comes time to select starter dependencies, there’s only one
dependency you’ll need: the one whose checkbox is labeled Eureka Server. After
creating the new project, Initializr gives you a project whose pom.xml file contains
the following dependency:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>
</dependency>

You’ll also see a property named spring-cloud.version and a <dependency-
Management> section in the pom.xml file that specifies the Spring Cloud release
train version. When I created my service-registry, it referenced the first service
release (SR1) of the Finchley release train:

<properties>
 ...
 <spring-cloud.version>Finchley.SR1</spring-cloud.version>
</properties>

...

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

If you’d like to use a different version of Spring Cloud, you only need to change the
spring-cloud.version property to the desired version.

 With the Eureka starter dependency in the build, there’s only one other thing you
must do to enable the Eureka server. Open the application’s main bootstrap class and
annotate it with @EnableEurekaServer:

@SpringBootApplication
@EnableEurekaServer
public class ServiceRegistryApplication {

329Setting up a service registry
 public static void main(String[] args) {
 SpringApplication.run(ServiceRegistryApplication.class, args);
 }

}

And that’s it! If you start the application, you’ll have a Eureka service registry running
and listening on port 8080. If you point your web browser to http://localhost:8080,
you’ll see the web interface shown in figure 13.2.

 The Eureka dashboard is informative, telling you (among other things) what service
instances are registered with Eureka. You’ll find yourself viewing this UI frequently as

Figure 13.2 The Eureka web dashboard

http://localhost:8080/

330 CHAPTER 13 Discovering services
you register services to ensure that they’re registered as expected. At this point, no
services are registered, thus the message No Instances Available.

 Eureka also exposes a REST API, through which services register themselves and
discover other services. You likely won’t use the REST API directly, but you might find
the /eureka/apps endpoint interesting. It lists in detail all of the service instances in
the registry. At this point, with no service instances registered, the response you’ll
get follows. We’ll revisit this endpoint a little later in the chapter as you start register-
ing services:

<applications>
 <versions__delta>1</versions__delta>
 <apps__hashcode></apps__hashcode>
</applications>

You may have noticed that Eureka logs several exceptions in its log every 30 s or so.
Don’t worry! Eureka is running and will work as expected. But those exceptions are
indicative of the fact that you’ve not fully configured the service registry yet. Let’s add
a few configuration properties to make those exceptions disappear.

13.2.1 Configuring Eureka

Eureka doesn’t like working alone. Eureka believes in the concept of safety in num-
bers and wants to be part of a cluster of Eureka servers. If there’s more than one
Eureka server, then there’s no single point of failure should one of those servers run
into trouble. Therefore, Eureka’s default behavior is to attempt to make friends with
other Eureka servers. It’ll try to fetch the service registry from other Eureka servers
and even register itself as a service with other Eureka servers.

 High availability of Eureka is desirable in a production setting. For development,
however, it’s inconvenient and unnecessary to fire up more than one Eureka server.
A single, lonely Eureka server is sufficient for development purposes. But unless you
configure the Eureka server properly, it’ll whine about its loneliness incessantly,
every 30 s, in the form of exceptions in the log file. That’s because every 30 s, Eureka
is trying to get in touch with another Eureka server to register itself and to share reg-
istry information.

 What you need to do is configure Eureka to accept a solitary existence. To do this,
you’ll need to set a handful of configuration properties as shown in the following snip-
pet from application.yml:

eureka:
 instance:
 hostname: localhost
 client:
 fetch-registry: false
 register-with-eureka: false
 service-url:
 defaultZone: http://${eureka.instance.hostname}:${server.port}/eureka

331Setting up a service registry
First, you set the eureka.instance.hostname property to localhost. This tells Eureka
what host it’s running on. It’s optional, but if you don’t specify it, then Eureka
attempts to determine its host from environment variables. Explicitly setting this prop-
erty gives you more certainty of what its value will be.

 The next two properties, eureka.client.fetch-registry and eureka.client
.register-with-eureka, are properties that you might set on another microservice
to tell them how they should interact with Eureka. But recall that Eureka is also a
microservice, so these properties can be used with a Eureka server to tell it how it
should interact with other Eureka servers.

 The default value for both of these properties is true, indicating that Eureka
should fetch the registry from other Eureka instances, and it should register itself as a
service with the other Eureka servers. Because there aren’t other Eureka servers when
in development mode, you’re setting them to false so that Eureka won’t try to reach
out to other Eureka servers.

 Finally, you set the eureka.client.service-url property. This property contains
a map of zone names to one or more URLs of Eureka servers in that zone. The map
key of defaultZone is a special zone name, which is the zone that should be used if
the client (in this case, Eureka itself) hasn’t specified a desired zone. Because this is
the only Eureka instance, the URL mapped to the default zone is for the Eureka
server itself, using placeholder variables populated from other properties.

SPECIFYING EUREKA’S SERVER PORT

Although it’s optional, you’ll probably want to override the default server port.
Whereas Eureka is perfectly happy to listen on port 8080, you’ll run several applica-
tions (microservices) simultaneously on the local machine as you develop the code,
and the applications can’t all listen on port 8080. Therefore, it’s generally a good idea
to set the server.port property for local development purposes:

server:
 port: 8761

Here you’re setting it to port 8761, which is the default port that the Eureka client
(which we’ll discuss in section 13.3) listens on.

DISABLING SELF-PERSERVATION MODE

One other property that you may consider setting is eureka.server.enable-self-
preservation. If you ever start the Eureka server and let it sit idle for more than a
minute or so, you may see a scary message in the Eureka UI that looks like figure 13.3.

 In spite of the red lettering and all uppercase text, this message isn’t nearly as seri-
ous as it sounds. Eureka expects service instances to register themselves and to continue
to send registration renewal requests every 30 s. Normally, if Eureka doesn’t receive a
renewal from a service for three renewal periods (or 90 s), it deregisters that instance. In
this case, Eureka assumes there’s a network problem, enters self-preservation mode, and
won’t deregister service instances.

332 CHAPTER 13 Discovering services
Self-preservation mode is actually a good thing in a production setting, preventing the
deregistration of active services when some network hiccup has stopped the renewal
request from making its way to Eureka. But it can be quite alarming when you’re first
starting up and haven’t registered any services yet. You can disable self-preservation
mode by setting the eureka.server.enable-self-preservation property to false:

eureka:
 ...
 server:
 enable-self-preservation: false

This property is useful in a development environment where it’s likely that for a num-
ber of reasons, Eureka may not receive renewal requests. In those cases where you may
be bringing service instances up and down frequently, self-preservation mode results
in registry entries for stopped services being retained, creating problems when another
service tries to consume the service that’s long gone. Disabling self-preservation mode
will prevent strange behavior like that. The tradeoff, however, is that you’ve traded
one scary red-letter message for another (figure 13.4).

Even if you decide to disable self-preservation mode for development, you should leave
it enabled when you go into production.

Figure 13.3 When in self-preservation mode, Eureka displays this message in its dashboard.

Figure 13.4 When self-preservation mode is disabled, you’ll get a different message reminding
you that self-preservation mode is disabled.

333Setting up a service registry
13.2.2 Scaling Eureka

Even though a single Eureka instance is more convenient in development, you’ll proba-
bly want to have at least two Eureka instances for high-availability purposes when you
take the application to production.

PRODUCTION-READY SPRING CLOUD SERVICES

There’s a lot to consider when deploying microservices into a production environ-
ment. High availability and security of the Eureka server are a few of the concerns that
aren’t as important at development time, but are critical in production. If you’re a Piv-
otal Cloud Foundry or Pivotal Web Services customer, then you can let someone else
worry about those things.

 Spring Cloud Services offers a production-ready implementation of Eureka, as
well as a configuration server and a circuit breaker dashboard. All you need to do is
provision a p-service-registry service from the marketplace and then bind your
microservices to that service. For the configuration server and the circuit breaker
dashboard (which we’ll discuss in the next couple of chapters), the marketplace
names are p-config-server and p-circuit-breaker-dashboard.

 The easiest, most straightforward way to configure two (or more) Eureka instances
is to use Spring profiles in the application.yml file and then start the Eureka server
twice, once for each profile. For example, the configuration in the next listing shows
how you might configure two Eureka servers that act as peers to each other.

eureka:
 client:
 service-url:
 defaultZone: http://${other.eureka.host}:${other.eureka.port}/eureka

spring:
 profiles: eureka-1
 application:
 name: eureka-1

server:
 port: 8761

eureka:
 instance:
 hostname: eureka1.tacocloud.com

other:
 eureka:
 host: eureka2.tacocloud.com
 port: 8761

spring:

Listing 13.1 Configuring Eureka for two peers using Spring profiles

334 CHAPTER 13 Discovering services
 profiles: eureka-2
 application:
 name: eureka-2

server:
 port: 8762

eureka:
 instance:
 hostname: eureka2.tacocloud.com

other:
 eureka:
 host: eureka1.tacocloud.com
 port: 8762

In the default profile (at the top of listing 13.1), you set eureka.client.service-
url.defaultZone to take advantage of placeholder variables that you set in each of
the profile-specific configurations.

 After the default profile, you configure two profiles, one named eureka-1 and the
other named eureka-2. Each profile specifies its own port and eureka.instance
.hostname for its own configuration needs. But then you set other.eureka.host and
other.eureka.port, two contrived properties, in each profile to reference the other
Eureka instance. There’s nothing about these properties that’s specific to the framework,
but these properties are what get referenced by the placeholders in the default profile.

 Notice that you’re not setting eureka.client.fetch-registry or eureka.client
.register-with-eureka. The default value of true ensures that each Eureka server
registers itself and fetches registry information from the other Eureka server.

 Now you have a Eureka service registry up and running. But at this point, it’s
essentially a phonebook with empty pages that nobody ever looks at. Until services
start registering themselves in the service registry and other services look up those
services and call them, it’s all for naught. Let’s see how to enable some microservices
as Eureka clients.

13.3 Registering and discovering services
A Eureka service registry is useless unless services register themselves. If your services
are going to be discovered and consumed by other services, then you need to enable
them as clients of the service registry. To enable an application (any application, but
presumably a microservice) as a service registry client, the least you must do is add the
Eureka client dependency to the service application’s build:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

As with the Eureka server starter dependency, you’ll also need the Spring Cloud ver-
sion property set for Spring Cloud’s dependency management:

335Registering and discovering services
<properties>
 ...
 <spring-cloud.version>Finchley.SR1</spring-cloud.version>
</properties>

...

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

You can add these entries to your service application’s pom.xml file manually, but the
easier way to get them is to select the Eureka Discovery dependency from the Spring
Initializr’s selection of checkboxes.

 The Eureka client starter dependency adds all you need for discovering services via
Eureka, including Eureka’s client-side library, as well as the Ribbon load balancer. By
doing nothing more than adding this dependency, you’ll enable your application as a
client of the Eureka service registry. When the application starts, it attempts to contact
a Eureka server running locally and listening on port 8761 to register itself under the
name UNKNOWN.

13.3.1 Configuring Eureka client properties

Although the default location of the Eureka server is fine for development purposes,
you’ll most certainly want to override it once your services are deployed outside of
localhost. What’s more, that default service name of UNKNOWN is a horrible choice
… but truthfully, any default choice would be equally bad, as all services would have
the same name.

 Changing the name under which the service is registered in Eureka is as easy as
setting the spring.application.name property. For example, if you’re registering a
service that handles all operations that involve dealing with taco ingredients, you
might register it as ingredient-service. In application.yml that would look like this:

spring:
 application:
 name: ingredient-service

As a result of setting this property, the service can be looked up by the name ingredi-
ent-service. What’s more, if you were to fire up multiple instances of the ingredient
service, they’d all appear under the same name, effectively scaling the service up to

336 CHAPTER 13 Discovering services
multiple, presumably equivalent, instances that a consuming service can choose from.
When you view the Eureka dashboard, this service appears as shown in figure 13.5.

You’ll find as you continue to work with Spring Cloud that the spring.application
.name property is one of the most important properties that you’ll ever set. It deter-
mines the registry name in Eureka. And in the next chapter, you’ll see that it identifies
the application to the configuration service for managing application-specific configu-
rations. Other Spring Cloud projects, such as Spring Cloud Task (ephemeral micro-
services) and Spring Cloud Sleuth (distributed tracing), also rely on the spring
.application.name property to identify the service.

 As you’ve learned from the first chapter, all Spring MVC and Spring WebFlux
applications are listening on port 8080 by default. Because you’ll only be looking up
services through Eureka, it doesn’t matter what port they’re listening on—Eureka
knows what port they’re on. Therefore, to avoid potential port conflicts when running
locally, you can set the port to 0:

server:
 port: 0

NOTE: Setting the port to 0 results in the application starting on a randomly
chosen available port.

Now, regarding the location of the Eureka servers. By default, Eureka clients assume
that Eureka is listening on localhost (port 8761). That’s great for development, but in
production that most certainly isn’t the case. Therefore, you’ll need to specify the
location of your Eureka server(s). That’s accomplished the same way you achieved it
for the Eureka server itself, with the eureka.client.service-url property:

eureka:
 client:
 service-url:
 defaultZone: http://eureka1.tacocloud.com:8761/eureka/

This configures the client to register with the Eureka server listening on host eure-
ka1.tacocloud.com (port 8761). That’s fine, so long as that Eureka server is in work-
ing order. But if that Eureka server is down for any reason, then the service fails to

Figure 13.5 The ingredient service as it appears in Eureka’s dashboard

337Registering and discovering services
register. To avoid registration failure, it’s best to configure your service with two or
more Eureka servers:

eureka:
 client:
 service-url:
 defaultZone: http://eureka1.tacocloud.com:8761/eureka/,
 http://eureka2.tacocloud.com:8762/eureka/

When the service starts, it attempts to register with the first server in the zone. If that
fails for any reason, then it attempts to register with the next one in the list. Eventu-
ally, when the failing Eureka comes back online, it replicates the registry from its peer,
containing a registry entry for the service.

 Registering a service in Eureka is only half of the story. Once services are regis-
tered in Eureka, other services can discover them and start consuming them. Let’s see
how to consume services registered with Eureka.

13.3.2 Consuming services

It would be a mistake to hard code any service instance’s URL in the consumer’s code.
This not only couples the consumer to a specific instance of the service, but also can
cause the consumer to break if the service’s host and/or port were to change.

 On the other hand, the consuming application has a lot of responsibility when it
comes to looking up a service in Eureka. Eureka may reply to the lookup with many
instances for the same service. If the consumer asks for ingredient-service and receives
a half-dozen or so service instances in return, how does it choose the correct service?

 The good news is that consuming applications don’t need to make that choice or
even explicitly look up a service on their own. Spring Cloud’s Eureka client support,
along with the Ribbon client-side load balancer, makes it simple work to look up,
select, and consume a service instance. Two ways to consume a service looked up from
Eureka include:

 A load-balanced RestTemplate
 Feign-generated client interfaces

Which you choose is largely a matter of personal taste. We’ll look at both options, start-
ing with the load-balanced RestTemplate. Then you can choose which you like best.

CONSUMING SERVICES WITH RESTTEMPLATE

You got your first look at Spring’s RestTemplate client in chapter 7. As a quick
reminder of how it works, once a RestTemplate has been created or injected, you can
make an HTTP call and have the responses bound to domain types. For example, to
perform an HTTP GET request to retrieve an ingredient by its ID, you could use the
following RestTemplate code:

public Ingredient getIngredientById(String ingredientId) {
 return rest.getForObject("http://localhost:8080/ingredients/{id}",
 Ingredient.class, ingredientId);
}

338 CHAPTER 13 Discovering services
The only problem with this code is that the URL passed into getForObject() is hard-
coded to a specific host and port. I suppose that you could extract that detail into a
property, but if the request is destined for one of many instances of an ingredient ser-
vice, then any URL you configure would target a specific instance; there’d be no load
balancer in play to spread requests across the service instances.

 Once you’ve enabled an application as being a Eureka client, however, you have the
option of declaring a load-balanced RestTemplate bean. All you need to do is declare a
regular RestTemplate bean, but annotate the @Bean method with @LoadBalanced:

@Bean
@LoadBalanced
public RestTemplate restTemplate() {
 return new RestTemplate();
}

The @LoadBalanced annotation has two purposes: first, and most importantly, it tells
Spring Cloud that this RestTemplate should be instrumented with the ability to look
up services through Ribbon. Secondly, it acts as an injection qualifier, so that if you
have two or more RestTemplate beans, you can specify that you want the load-balanced
RestTemplate at the injection point.

 For example, suppose that you want to use the load-balanced RestTemplate to
look up an ingredient as in the previous code. First, you’d inject the load-balanced
RestTemplate into the bean that needs it:

@Component
public class IngredientServiceClient {

 private RestTemplate rest;

 public IngredientServiceClient(@LoadBalanced RestTemplate rest) {
 this.rest = rest;
 }

 ...

}

Then rewrite the getIngredientById() method slightly so that it uses the service’s
registered name instead of an explicit host and port:

public Ingredient getIngredientById(String ingredientId) {
 return rest.getForObject(
 "http://ingredient-service/ingredients/{id}",
 Ingredient.class, ingredientId);
}

Did you notice the difference? The URL given to getForObject() doesn’t use any
specific hostname or port. In place of the hostname and port, the service name
ingredient-service is used. Internally, RestTemplate asks Ribbon to look up a service

339Registering and discovering services
by that name and to select an instance. Ribbon, happy to oblige, rewrites the URL to
include the host and port information for the chosen service instance and then lets
RestTemplate proceed as usual.

 As you can see, using a load-balanced RestTemplate isn’t that different from using
a standard RestTemplate. The key difference is that the client code only needs to deal
with service names instead of explicit hostnames and ports. But what if you’re using
WebClient instead of RestTemplate? Can WebClient also be used along with Ribbon
to consume services by name?

CONSUMING SERVICES WITH WEBCLIENT

In chapter 11, you saw how WebClient offers an HTTP client similar to RestTemplate,
but that works with reactive types such as Flux and Mono. If you’ve been bit by the reac-
tive programming bug, you might prefer to use WebClient instead of RestTemplate.
The good news is that you can use WebClient as a load-balanced client in much the
same way as you’ve seen RestTemplate used. The first thing to do is declare a
WebClient.Builder bean method that’s annotated with @LoadBalanced:

@Bean
@LoadBalanced
public WebClient.Builder webClientBuilder() {
 return WebClient.builder();
}

With a WebClient.Builder bean declared, you can now inject the load-balanced Web-
Client.Builder into any bean that needs it. For example, you might inject it into the
constructor of IngredientServiceClient:

@Component
public class IngredientServiceClient {

 private WebClient.Builder wcBuilder;

 public IngredientServiceClient(
 @LoadBalanced WebClient.Builder webclientBuilder wcBuilder) {
 this.wcBuilder = wcBuilder;
 }

 ...

}

Finally, when you’re ready to use it, you can use the WebClient.Builder to build a Web-
Client and then make requests using the service’s name as it’s registered in Eureka:

public Mono<Ingredient> getIngredientById(String ingredientId) {
 return wcBuilder.build()
 .get()
 .uri("http://ingredient-service/ingredients/{id}", ingredientId)
 .retrieve().bodyToMono(Ingredient.class);
}

340 CHAPTER 13 Discovering services
As with the load-balanced RestTemplate, there’s no need to explicitly specify a host or
port when making requests. The service name will be extracted from the given URL
and used to look up a service from Eureka. Then Ribbon will select an instance of the
service and the URL will be rewritten with the chosen instance’s host and port before
making the request.

 Although this programming model is easy to grasp, especially if you’re already
familiar with RestTemplate or WebClient, Spring Cloud has another trick up its sleeve.
Next, let’s take a look at how to use Feign to create interface-based service clients.

DEFINING FEIGN CLIENT INTERFACES

Feign is a REST client library that applies a unique, interface-driven approach to
defining REST clients. Put simply, if you enjoy how Spring Data automatically imple-
ments repository interfaces, then you’re going to love Feign.

 Feign was originally a Netflix project, but has since been turned loose as an inde-
pendent open-source project called OpenFeign (https://github.com/OpenFeign).
The word feign means “to pretend,” which you’ll soon see is an appropriate name for a
project that pretends to be a REST client.

 The first step to using Feign is to add the dependency to the project build. In
pom.xml, the following <dependency> does the trick:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

This same starter dependency can be added automatically by checking the Feign
checkbox when using Spring Initializr. Unfortunately, there’s no autoconfiguration to
enable Feign based on the existence of this dependency. Therefore, you’ll need to
add the @EnableFeignClients annotation to one of the configuration classes:

@Configuration
@EnableFeignClients
public RestClientConfiguration {
}

Now comes the fun part. Let’s say that you want to write a client that fetches an Ingre-
dient from the service that’s registered in Eureka as ingredient-service. The following
interface is all you need:

package tacos.ingredientclient.feign;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import tacos.ingredientclient.Ingredient;

@FeignClient("ingredient-service")
public interface IngredientClient {

https://github.com/OpenFeign

341Registering and discovering services
 @GetMapping("/ingredients/{id}")
 Ingredient getIngredient(@PathVariable("id") String id);

}

It’s a simple interface, with no implementations. But at runtime, when Feign gets hold
of it, none of that matters. Feign automatically creates an implementation and exposes
it as a bean in the Spring application context.

 Looking closer, you’ll see that there are a few annotations in play that make this
come together. The @FeignClientannotation at the interface-level specifies that any
methods you declare in this interface will make requests against the service whose
name is ingredient-service. Internally, this service will be looked up via Ribbon, the
same way as it worked for the load-balanced RestTemplate.

 Then there’s the getIngredient() method, annotated with @RequestMapping.
You’ll no doubt recognize @GetMapping from Spring MVC. Indeed, it’s the very same
annotation! But this time, it’s on the client instead of the controller. It says that any
calls to getIngredient() will result in a GET request to the /ingredients/{id} path at
the host and port chosen by Ribbon. The @PathVariable annotation, also from
Spring MVC, maps the method parameter to the placeholder in the given path.

 All that’s left is to inject the Feign-implemented interface wherever it’s needed and
start using it. For instance, to use it in a controller, you might do something like this:

@Controller
@RequestMapping("/ingredients")
public class IngredientController {

 private IngredientClient client;

 @Autowired
 public IngredientController(IngredientClient client) {
 this.client = client;
 }

 @GetMapping("/{id}")
 public String ingredientDetailPage(@PathVariable("id") String id,
 Model model) {
 model.addAttribute("ingredient", client.getIngredient(id));
 return "ingredientDetail";
 }
}

I don’t know about you, but I think that’s mighty slick! It’s hard to decide which I like
best: the load-balanced RestTemplate, WebClient, or this magical Feign client inter-
face. Whichever you choose, you can rest assured that your REST clients (no pun
intended) will be able to consume services registered in Eureka by their name, with-
out being hard-coded with any specific hostname or port.

 For what it’s worth, Feign comes with its own set of annotations. @RequestLine and
@Param are roughly analogous to Spring MVC’s @RequestMapping and @PathVariable,

342 CHAPTER 13 Discovering services
but their use is slightly different. It’s rather nice, though, to be able to use Spring
MVC annotations on clients that are already familiar and, perhaps, identical to the
ones you used when defining the service controllers.

Summary
 Spring Cloud Netflix enables the simple creation of a Netflix Eureka service

registry with autoconfiguration and the @EnableEurekaServer annotation.
 Microservices register themselves by name with Eureka for discovery by other

services.
 On the client-side, Ribbon acts as a client-side load balancer, looking up ser-

vices by name and selecting an instance.
 Client code has the choice of either a RestTemplate that’s instrumented for

Ribbon load balancing or defining its REST client code as interfaces that are
implemented automatically at runtime by Feign.

 In any event, client code is not hard-coded with the location of the services that
it consumes.

Managing configuration
Anyone who has bought a house or a car has probably encountered a thick stack
of paper. The contracts you sign when making major purchases tend to thumb
their nose at the promise of a paperless society. Whenever I sit across the table
from a car dealer or a title agent, I feel as if I should request a stack of bandages
before getting started, in preparation for the paper cuts I’ll almost certainly receive
before we’re done.

 I’ve noticed that although the number of pages I must sign has stayed constant
in recent years, I don’t have to fill out as many fields on the forms as I once did.
Where forms were once manually filled in, modern forms are more often prepopu-
lated with basic data that was gathered before the forms were printed. This has not
only made the process quicker, but has also reduced mistakes resulting from man-
ual duplication of data across multiple forms.

This chapter covers
 Running Spring Cloud Config Server

 Creating Config Server clients

 Storing sensitive configuration

 Automatically refreshing configuration
343

344 CHAPTER 14 Managing configuration
 Likewise, many applications have some form of configuration in play. In chapter 5
we talked about ways you can configure Spring Boot applications by setting configura-
tion properties. Often, properties you might set are unique to the application, and it’s
easy enough to specify those properties in the application.properties or applica-
tion.yml file that’s packaged in your application’s deployment.

 When an application is architected with microservices, however, configuration
properties are often common across multiple services. Just as it once was tedious and
error-prone to manually fill in forms with duplicate data, duplicating configuration
across multiple application services can be problematic.

 In this chapter, we’ll look at Spring Cloud’s Config Server, a service that provides
centralized configuration for all services in a given application. With Config Server, you
can manage all of an application’s configuration in one place, without duplication.

 Before we get started, let’s briefly consider the problems of configuring microser-
vices individually, and how centralized configuration is better.

14.1 Sharing configuration
As you saw in chapter 5, you can configure Spring applications by setting properties in
any of several property sources. If a configuration property is likely to change or be
unique to the runtime environment, Java system properties or operating system envi-
ronment variables are a fitting choice. For properties that are unlikely to change and
are specific to a given application, placing those property specifications in applica-
tion.yml or application.properties to be deployed with the packaged application is a
fine choice.

 These choices are okay for simple applications. But when you’re setting configura-
tion properties in environment variables or Java system properties, you must accept that
changing those properties will require the application to be restarted. And if you choose
to package the properties inside the deployed JAR or WAR file, you must completely
rebuild and redeploy the application should those properties need to change. These
same constraints are in play should you need to roll back changes to configuration.

 Those limitations may be acceptable in some applications. In others, redeploying
and restarting the application just to change a simple property is inconvenient at best
and crippling at worst. Moreover, in microservice-architected applications, property
management is spread across multiple codebases and deployment instances, making it
unreasonable to apply the same change in every single instance of multiple services in
a running application.

 Some properties are sensitive, such as database passwords and other types of secrets.
Although those values can be encrypted when written to an individual application’s
properties, the application must include the ability to decrypt those properties before
they can be used. Even then, some properties may need to be kept from even the
application developers, making it highly undesirable to set them in environment vari-
ables or manage them with the same source code control system as the rest of the
application code.

345Running Config Server
 In contrast, consider how those scenarios play out when configuration manage-
ment is centralized:

 Configuration is no longer packaged and deployed with the application code,
making it possible to change or roll back configuration without rebuilding or
redeploying the application. Configuration can be changed on the fly without
even restarting the application.

 Microservices that share common configuration needn’t manage their own
copy of the property settings and can share the same properties. If changes to
the properties are required, those changes can be made once, in a single place,
and applied to all microservices.

 Sensitive configuration details can be encrypted and maintained separate from
the application code. The unencrypted values can be made available to the
application on demand, rather than requiring the application to carry code
that decrypts the information.

Spring Cloud Config Server provides centralized configuration with a server that all
microservices within an application can rely on for their configuration. Because it’s
centralized, it’s a one-stop shop for configuration that’s common across all services,
but it’s also able to serve configuration that’s specific to a given service.

 The first step in using Config Server is to create and run the server.

14.2 Running Config Server
Spring Cloud Config Server provides a centralized source for configuration data.
Much like Eureka, Config Server can be considered just another microservice whose
role in the greater application is to serve configuration data for other services in the
same application.

 Config Server exposes a REST API through which clients (which are other ser-
vices) can consume configuration properties. The configuration that’s served through
the Config Server is housed external to the Config Server, typically in a source code
control system such as Git. Figure 14.1 illustrates how this works.

 Take note of the fact that the box in figure 14.1 has the Git logo, but not the
GitHub logo. That’s significant—you can use any implementation of Git to store your
configuration, including but not limited to GitHub. GitLab, Microsoft’s Team Founda-
tion Server, or Gogs are all valid choices as a backend for Config Server.

NOTE Although it makes little difference which Git server you use with Con-
fig Server, I’m using Gogs (http://gogs.io), a lightweight, easy-to-set-up Git
server. More specifically, I’m running Gogs on my development machine using
the instructions for running Gogs in Docker at https://github.com/gogits/
gogs/tree/master/docker.

By storing the configuration in a source code control system such as Git, the configu-
ration can be versioned, branched, labeled, reverted, and blamed, just like application

http://gogs.io
https://github.com/gogits/gogs/tree/master/docker
https://github.com/gogits/gogs/tree/master/docker
https://github.com/gogits/gogs/tree/master/docker

346 CHAPTER 14 Managing configuration
source code. But by keeping the configuration separate from the applications that
consume it, it can evolve and be versioned independently of those applications.

 You probably also noticed that HashiCorp Vault is included in figure 14.1. Vault is
especially useful when the configuration properties you wish to serve are to be kept
completely secret and locked away until they’re needed. We’ll talk more about using
Vault with Config Server in section 14.5.

14.2.1 Enabling Config Server

As another microservice within a greater application system, Config Server is devel-
oped and deployed as a distinct application. Therefore, you’ll need to create a brand
new project for Config Server. The easiest way to do this is with the Spring Initializr or
one of its clients (such as the New Spring Starter Project wizard in Spring Tool Suite).

I’m inclined to name the new project “config-server”, but you’re welcome to name it
however you wish. The most important thing to do is to specify the Config Server

Configuration: the overloaded term
When talking about Spring Cloud Config Server, the term “configuration” gets thrown
about a lot, and it isn’t always referring to the same thing. There are configuration
properties that you’ll write to configure the Config Server itself. There are also config-
uration properties that the Config Server will serve to your applications. And the Con-
fig Server itself has the word “Config” in its name, adding slightly to the confusion.

I’ll do my best to make it clear which configuration I’m referring to whenever I use the
word “configuration,” and I’ll always refer to the Config Server with the shortened
word “Config.”

Spring Cloud

Config Server

and/or

Service A

Service B

Service C

Configuration

properties

Configuration

properties

Configuration

properties

Secrets

Configuration

properties

Figure 14.1 Spring Cloud Config Server serves configuration properties from a backing Git
repository or Vault secret store to other services.

347Running Config Server
dependency by checking the Config Server check box. This will result in the following
dependency being added to the produced project’s pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId>
</dependency>

The Config Server version is ultimately determined by the Spring Cloud release train
that’s chosen. It’s the version of the Spring Cloud release train that must be config-
ured in the pom.xml file. At the time I’m writing this, the latest Spring Cloud release
train version is Finchley.SR1. As a result, you’ll also find the following property and
<dependencyManagement> block in the pom.xml file:

<properties>
 ...
 <spring-cloud.version>Finchley.SR1</spring-cloud.version>
</properties>

...

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Although the Config Server dependency adds Spring Cloud to the project’s classpath,
there’s no autoconfiguration to enable it, so you’ll need to annotate a configuration
class with @EnableConfigServer. This annotation, as its name implies, enables a Con-
fig Server when the application is running. I usually just drop @EnableConfigServer
on the main class like so:

@EnableConfigServer
@SpringBootApplication
public class ConfigServerApplication {
 public static void main(String[] args) {
 SpringApplication.run(ConfigServerApplication.class, args);
 }
}

There’s only one more thing that must be done before you can fire up the application
and see the Config Server at work: you must tell it where the configuration properties
that it’s to serve can be found. To start, you’ll use configuration that’s served from a

348 CHAPTER 14 Managing configuration
Git repository, so you’ll need to set the spring.cloud.config.server.git.uri prop-
erty with the URL of the configuration repository:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/tacocloud/tacocloud-config

You’ll see how to populate the Git repository with properties in section 14.2.2.
 First, though, there’s one other property you may wish to set for local development

purposes. When testing your services locally, you’ll end up having several services all
running and listening on different ports on localhost. As a typical Spring Boot web
application, the Config Server will listen on port 8080 by default. To avoid port colli-
sions, you’ll want to specify a unique port number by setting server.port:

server:
 port: 8888

Here you’ve set server.port to 8888 because, as you’ll see in section 14.3, that’s the
default port that the configuration clients will attempt to retrieve configuration from.
You’re welcome to set it to any value you wish, but you’ll need to be sure to configure
the configuration client services to match.

 It’s important to realize that the configuration you’ve written thus far in this sec-
tion is configuration for the Config Server itself. It’s not the same configuration that
will be served by the Config Server. Config Server will serve configuration that it pulls
from Git or Vault.

 At this point, if you start the application, you’ll have a Config Server listening for
requests on port 8888, but it will be serving absolutely no configuration properties.
You don’t have any Config Server clients yet, but you can pretend to be one by using
the curl command-line client (or an equivalent HTTP client of your choosing):

$ curl localhost:8888/application/default
{
 "name": "application",
 "profiles": [
 "default"
],
 "label": null,
 "version": "ca791b15df07ce41d30c24937eece4ec4b208f4d",
 "state": null,
 "propertySources": []
}

The request made here is an HTTP GET request for the path /application/default
on the Config Server. This path is made up of two or three parts, as illustrated in fig-
ure 14.2.

349Running Config Server
The first part of the path, “application”, is the name of the application making the
request. You’ll see later in section 14.4.1 how Config Server can use this part of the
request path to serve application-specific configuration. For now you don’t have any
application-specific configuration, so any value will do.

 The second part in the path is the name of the Spring profile that’s active in the
application making the request. In section 14.4.2 we’ll look at how Config Server can
use this profile in the request path to serve configuration that’s specific to an active
profile. You don’t yet have any profile-specific configuration, so any profile name will
work for now.

 The third part of the path, which is optional, specifies the label or branch in the
backend Git repository from which to pull configuration. If not specified, this defaults
to the “master” branch.

 The response gives us some basic information about what the Config Server is serv-
ing, including the version and label of the Git commit that it’s serving configuration
from. What are clearly missing, however, are any actual configuration properties. Nor-
mally you’d see them in the propertySources property, but it’s empty in this
response. That’s because you still need to populate the Git repository with properties
for the Config Server to serve. Let’s take care of that now.

14.2.2 Populating the configuration repository

There are several ways to set up properties for the Config Server to serve. The most
basic, straightforward option is to commit an application.properties or applica-
tion.yml file to the root path of the Git repository.

 Let’s say you’ve pushed a file named application.yml to the Git repository config-
ured in the previous section. This configuration file isn’t the same as the one you
configured in the previous section; it’s the configuration that will be served by the
Config Server. Suppose that in that application.yml file you’ve configured the fol-
lowing properties:

server:
 port: 0

eureka:
 client:
 service-url:
 defaultZone: http://eureka1:8761/eureka/

http://localhost:8888/application/default/master

Config server

hostname and port

Application name

()spring.application.name
Git label/branch

(optional)

Active Spring profile

Figure 14.2 Config Server exposes a
REST API through which configuration
properties can be consumed.

350 CHAPTER 14 Managing configuration
Although there isn’t much in this application.yml, what it does configure is rather sig-
nificant. It tells every service in the application to choose a randomly available port
and where it can register with Eureka. That means that when you adapt the services
into Config Server clients in section 14.3, you’ll be able to remove explicit Eureka con-
figuration from the services.

 Acting as a client of the Config Server, you can use curl at the command line to see
this new configuration data served from the Config Server:

$ curl localhost:8888/someapp/someconfig
{
 "name": "someapp",
 "profiles": [
 "someconfig"
],
 "label": null,
 "version": "95df0cbc3bca106199bd804b27a1de7c3ef5c35e",
 "state": null,
 "propertySources": [
 {
 "name": "http://localhost:10080/habuma/tacocloud-

config/application.yml",
 "source": {
 "server.port": 0,
 "eureka.client.service-url.defaultZone":

"http://eureka1:8761/eureka/"
 }
 }
]
}

Unlike your earlier request to the Config Server, this response has stuff in the property-
Sources array. Specifically, it contains a property source whose name property refer-
ences the Git repository and whose source contains the properties you’ve pushed into
the Git repository.

SERVING CONFIGURATION FROM GIT SUBPATHS

If it suits your organizational style, you may choose to store configuration in the Git
repository in a subpath instead of at the root. For example, suppose you want to put
the configuration in a subdirectory named “config” relative to the root of the Git
repository. If so, setting spring.cloud.config.server.git.search-paths as fol-
lows will tell the Config Server to serve configuration from /config instead of from
the root:

 spring:
 cloud:
 config:
 server:
 git:
 uri: http://localhost:10080/tacocloud/tacocloud-config
 search-paths: config

351Running Config Server
Notice that the spring.cloud.config.server.git.search-paths property is plural.
That means you can have Config Server serve from multiple paths by listing them, sep-
arated by commas:

 spring:
 cloud:
 config:
 server:
 git:
 uri: http://localhost:10080/tacocloud/tacocloud-config
 search-paths: config,moreConfig

This sets up Config Server to serve configuration from both the /config and /more-
Config paths in the Git repository.

 You may also use wildcards when specifying search paths:

 spring:
 cloud:
 config:
 server:
 git:
 uri: http://localhost:10080/tacocloud/tacocloud-config
 search-paths: config,more*

Here, Config Server will serve configuration from /config as well as any subdirectory
whose name begins with “more.”

SERVING CONFIGURATION FROM A BRANCH OR LABEL

By default, Config Server serves configuration from the master branch in Git. From
the client, a specific branch or label can be specified as a third member of the request
path to Config Server, as you saw in figure 14.2. But you might find it useful to have
Config Server default to a specific label or branch in Git instead of the master branch.
The spring.cloud.config.server.git.default-label property overrides the default
label or branch.

 For instance, consider the following configuration that sets up Config Server to
serve configuration from a branch (or label) named “sidework”:

spring:
 cloud:
 config:
 server:
 git:
 uri: http://localhost:10080/tacocloud/tacocloud-config
 default-label: sidework

As configured here, configuration will be served from the “sidework” branch unless
otherwise specified by the Config Server client requesting configuration.

352 CHAPTER 14 Managing configuration
AUTHENTICATING WITH THE GIT BACKEND

It’s quite likely that the backend Git repository your Config Server retrieves configura-
tion from will be secured behind a username and password. In that case, you’ll defi-
nitely need to provide the Config Server with the credentials for your Git repository.

 The spring.cloud.config.server.username and spring.cloud.config.server
.password properties set the username and password for the backend repository. The
following Config Server configuration shows how you might set these properties:

spring:
 cloud:
 config:
 server:
 git:
 uri: http://localhost:10080/tacocloud/tacocloud-config
 username: tacocloud
 password: s3cr3tP455w0rd

This sets the username and password to tacocloud and s3cr3tP455w0rd, respectively.
 Using curl to pretend to be a Config Server client helps to give you some idea of how

the Config Server works. And there’s a lot more that Config Server can do. But the micro-
services you write won’t be using curl to fetch configuration data. So before we look at
any more ways that Config Server can be used to serve configuration data, let’s shift our
attention to the microservices and see how you can enable them as Config Server clients.

14.3 Consuming shared configuration
In addition to offering a centralized configuration server, Spring Cloud Config Server
also provides a client library that, when included in a Spring Boot application’s build,
enables that application as a client of the Config Server.

 The easiest way to turn any Spring Boot application into a Config Server client is to
add the following dependency to the project’s Maven build:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
</dependency>

This same dependency is also available in the Spring Initializr as the check box labeled
Config Client.

 When the application is run, autoconfiguration will kick in to automatically regis-
ter a property source that draws its properties from a Config Server. By default, it
assumes that the Config Server is running on localhost and listening on port 8888.
But if that’s not the case, you can configure the location of the Config Server by set-
ting the spring.cloud.config.uri property:

spring:
 cloud:
 config:
 uri: http://config.tacocloud.com:8888

353Serving application- and profile-specific properties
Just to be clear, this property must be set local to the application that’s to become a cli-
ent of the Config Server, such as in the application.yml or application.properties file
that’s packaged and deployed with each microservice.

 Now that you have a centralized configuration server, almost all configuration will
be served from there, and each microservice won’t need to carry much of its own con-
figuration. Typically, you’ll only need to set spring.cloud.config.uri to specify the
location of the configuration server and spring.application.name to identify the
application to the configuration server.

When the application starts up, the property source provided by the Config Server cli-
ent will make a request to the Config Server. Whatever properties it receives will be
made available in the application’s environment. What’s more, those properties will
be effectively cached; they’ll be available even if the Config Server goes down. (We’ll
look at a few ways to refresh properties when they change in section 14.6.)

 So far you’ve kept the configuration served by Config Server fairly simple, targeting
all applications and any profile. But sometimes you’ll need to enable configuration that’s
unique to a particular application or that should only be available when an application is
running with a specific active profile. Let’s take another look at Config Server and see a
few more ways to use it, including serving application- and profile-specific properties.

14.4 Serving application- and profile-specific properties
As you’ll recall, when a Config Server client starts up, it makes a request to the Config
Server with a request path that contains both the application name as well as the name
of an active profile. When serving configuration data, Config Server will consider these
values and return application-specific and profile-specific configuration to the client.

 From a client perspective, consuming application-specific and profile-specific con-
figuration properties isn’t much different than if you weren’t using Config Server. An
application’s name is specified by setting the spring.application.name property
(the same one used to identify the application to Eureka). And the active profile(s)

Which comes first: the Config Server or the Service Registry?
You’re setting up your microservices to learn about the Eureka service registry from
the Config Server. This is a common approach to avoid propagating service registry
details across every single microservice in an application.

Alternatively, it’s possible to have the Config Server register itself with Eureka and
have each microservice discover the Config Server as it would any other service. If
you prefer this model, you’ll need to configure the Config Server as a discovery client
and set the spring.cloud.config.discovery.enabled property to true. As a
result, the Config Server will register itself in Eureka with the name “configserver.”

The downside of this approach is that each service will need to make two calls at
startup: one to Eureka to discover the Config Server, followed by one to Config Server
to fetch configuration data.

354 CHAPTER 14 Managing configuration
can be specified by setting the spring.profiles.active property (often as an envi-
ronment variable named SPRING_PROFILES_ACTIVE).

 Similarly, there’s not much that needs to be done in the Config Server itself to
serve properties that target a specific application or profile. What does matter, how-
ever, is how those properties are stored in the backing Git repository.

14.4.1 Serving application-specific properties

As we’ve discussed, one of the benefits of using Config Server is that you’re able to
share common configuration properties across all of the microservices in an applica-
tion. That notwithstanding, there are often properties that are unique to one service
and that need not (or should not) be shared across all services.

 Along with shared configuration, Config Server is able to manage configuration
properties that are targeted to a specific application. The trick is to name the configu-
ration file the same as the application’s spring.application.name property.

 In the previous chapter, you used spring.application.name to give your micros-
ervices names that would be registered to Eureka. That same property is also used by a
configuration client to identify itself to the Config Server, so that the Config Server
can serve configuration specific to that application.

 For example, in the Taco Cloud application where you’ve broken your application
down into a handful of microservices named ingredient-service, order-service, taco-
service, and user-service, you would have specified those names in each of the service
applications’ spring.application.name properties. Then you could create individual
configuration YAML files in the Config Server’s Git backend with filenames such as
ingredient-service.yml, order-service.yml, taco-service.yml, and user-service.yml. The
screenshot in figure 14.3 shows the files in the configuration repository as displayed in
the Gogs web application.

Application-specific
configuration

Common configuration
(all applications)

Figure 14.3 Application-specific configuration files have names based on each application’s
spring.application.name property.

355Serving application- and profile-specific properties
No matter what an application is named, all applications will receive configuration
properties from the application.yml file. But each service application’s spring
.application.name property will be sent in the request to Config Server (in the first
part of the request path), and if there’s a matching configuration file, those proper-
ties will also be returned. In the event of duplicate property definitions between the
common properties in application.yml and those in an application-specific configura-
tion file, the application-specific properties will take precedence.

 It’s worth noting that although figure 14.3 shows YAML configuration files, the
same behavior holds true if properties files are checked into the Git repository.

14.4.2 Serving properties from profiles

You saw in chapter 5 how to take advantage of Spring profiles when writing configura-
tion properties so that certain properties will only be applicable when a given profile
is active. Spring Cloud Config Server supports profile-specific properties in exactly the
same way that you’d use them in an individual Spring Boot application. This includes

 Providing profile-specific .properties or YAML files, such as configuration files
named application-production.yml

 Including multiple profile configuration groups within a single YAML file, sepa-
rated with --- and spring.profiles

For example, consider the Eureka configuration that you’re now sharing through the
Config Server to all of your application’s microservices. As it stands, it only references
a single Eureka development instance. That’s perfect for development environments.
But if your services are running in production, you may want them to be configured
with references to multiple Eureka nodes.

 What’s more, although you’ve set the server.port property to 0 in your develop-
ment configuration, once the services go into production, they may each run in indi-
vidual containers that map port 8080 to an external port, thus requiring that the
applications all listen on port 8080.

 With profiles, you can declare multiple configurations. In addition to the default
application.yml file that you pushed into the Config Server’s Git backend, you can
push another YAML file named application-production.yml that looks like this:

server:
 port: 8080

eureka:
 client:
 service-url:
 defaultZone: http://eureka1:8761/eureka/,http://eureka2:8761/eureka/

When the application fetches configuration from the Config Server, it will identify
which profile is active (in the second part of the request path). If the active profile is
production, both sets of properties—application.yml and application-production.yml—
will be returned, with those properties in application-production.yml taking precedence

356 CHAPTER 14 Managing configuration
over the default properties in application.yml. Figure 14.4 shows what this might look
like in the backend Git repository.

You can also specify properties that are specific to both a profile and an application
using the same naming convention. That is, name the configuration file with the
application name, hyphen, profile name.

 For example, suppose you need to set properties for the application named ingre-
dient-service that should only be applicable if the production profile is active. In that
case, a configuration file named ingredient-service-production.yml could contain
those application-specific and profile-specific properties, as illustrated in figure 14.5.

Application-specific
configuration
(all profiles)

Common configuration
(all applications/all profiles)

Profile-specific
configuration

(all applications if
“production”

profile is active)

Figure 14.4 Profile-specific configuration files can be named with a suffix equal to the name of the
active profile.

Application-specific
configuration
(all profiles)

Application- and
profile-specific configuration

(“ingredient-service”
application/

“production” profile)

Common configuration
(all applications/all profiles)

Profile-specific configuration
(all applications if

“production” profile is active)

Figure 14.5 Configuration files can be both application-specific and profile-specific.

357Keeping configuration properties secret
You can also use property files instead of YAML files in the backend Git repository
using this same naming convention for profile-specific properties. But with YAML
files, you can also include profile-specific properties in the same file as default profile
properties by using a triple-hyphen separator and spring.profiles, as you learned in
chapter 5.

14.5 Keeping configuration properties secret
Most configuration served by Config Server may not be all that secret. But you might
need Config Server to serve properties containing sensitive information such as pass-
words or security tokens that are best kept secret in the backend repository.

 Config Server offers two options for working with secret configuration properties:

 Writing encrypted values in configuration files stored in Git
 Using HashiCorp’s Vault as a backend store for Config Server in addition to (or

in place of) Git

Let’s take a look at how each of these options can be used with Config Server to keep
configuration properties secret. We’ll start with writing encrypted properties to the
Git backend.

14.5.1 Encrypting properties in Git

In addition to serving unencrypted values, Config Server can also serve encrypted val-
ues written in configuration files stored in Git. The key to working with encrypted
data stored in Git is literally a key—an encryption key.

 To enable encrypted properties, you need to configure the Config Server with an
encryption key that it will use to decrypt values before serving them to its client appli-
cations. Config Server supports both symmetric and asymmetric keys. To set a symmet-
ric key, set the encrypt.key property in the Config Server’s own configuration to
some value that will act as the encryption and decryption key:

encrypt:
 key: s3cr3t

It’s important that this property be set in bootstrap configuration (for example, boot-
strap.properties or bootstrap.yml) so that it’s loaded and available before autoconfigu-
ration enables the Config Server.

 For a bit tighter security, you can opt to configure Config Server with an asymmet-
ric RSA key pair or a reference to a keystore. To create such a key, you can use the
keytool command-line tool:

keytool -genkeypair -alias tacokey -keyalg RSA \
-dname "CN=Web Server,OU=Unit,O=Organization,L=City,S=State,C=US" \
-keypass s3cr3t -keystore keystore.jks -storepass l3tm31n

The resulting keystore will be written to a file named keystore.jks. You can keep the
keystore file on the filesystem or place it in the application itself. In either event, you’ll

358 CHAPTER 14 Managing configuration
need to configure the location and credentials for the keystore in the Config Server’s
bootstrap.yml file.

NOTE In order to use encryption in Config Server, you must have installed
the Java Cryptography Extensions Unlimited Strength policy files. See Oracle’s
Java SE page for details: http://www.oracle.com/technetwork/java/javase/
downloads/index.html.

For example, suppose you choose to package the keystore in the application itself, at
the root of the classpath. Then you can configure the Config Server to use that key-
store with the following properties:

encrypt:
 key-store:
 alias: tacokey
 location: classpath:/keystore.jks
 password: l3tm31n
 secret: s3cr3t

With a key or a keystore in place, you now must encrypt some data. Config Server
exposes an /encrypt endpoint to help. All you must do is submit a POST request to the
/encrypt endpoint with some data to be encrypted. For example, suppose you’d like
to encrypt a password to the MongoDB database. Using curl, you can encrypt the pass-
word like this:

$ curl localhost:8888/encrypt -d "s3cr3tP455w0rd"
93912a660a7f3c04e811b5df9a3cf6e1f63850cdcd4aa092cf5a3f7e1662fab7

After submitting the POST request, you’ll receive an encrypted value as the response.
All that’s left is to copy that value and paste it into the configuration that’s hosted in
the Git repository.

 To set the MongoDB password, add the spring.data.mongodb.password property
to the application.yml file stored in the Git repository:

spring:
 data:
 mongodb:
 password: '{cipher}93912a660a7f3c04e811b5df9a3cf6e1f63850...'

Notice that the value given to spring.data.mongodb.password is wrapped in single
quotes (') and is prefixed with {cipher}. This is a clue to Config Server that the value
is an encrypted value and not a plain, unencrypted value.

 After committing and pushing the changes in application.yml file to the Git repos-
itory, Config Server is ready to serve encrypted properties. To see it in action, use curl
to pretend to be a Config Server client:

$ curl localhost:8888/application/default | jq
{
 "name": "app",

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

359Keeping configuration properties secret
 "profiles": [
 "prof"
],
 "label": null,
 "version": "464adfd43485182e4e0af08c2aaaa64d2f78c4cf",
 "state": null,
 "propertySources": [
 {
 "name": "http://localhost:10080/tacocloud/tacocloud-

config/application.yml",
 "source": {
 "spring.data.mongodb.password": "s3cr3tP455w0rd"
 }
 }
]
}

As you can see, the value served for spring.data.mongodb.password is served in a
decrypted form. By default, any encrypted values served by Config Server are only
encrypted while at rest in the backend Git repository; they’ll be decrypted before being
served. This means the client application that consumes the configuration doesn’t
require any special code or configuration to receive properties that are encrypted in Git.

 If you’d prefer that Config Server serve encrypted properties in their still-
encrypted form, you can set the spring.cloud.config.server.encrypt.enabled
property to false:

spring:
 cloud:
 config:
 server:
 git:
 uri: http://localhost:10080/tacocloud/tacocloud-config
 encrypt:
 enabled: false

This results in Config Server serving all property values, including encrypted property
values, exactly as they’re set in the Git repository. Pretending once more to be a client,
the curl command reveals the effect of disabling decryption:

$ curl localhost:8888/application/default | jq
{
 ...
 "propertySources": [
 {
 "name": "http://localhost:10080/tacocloud/tacocloud-

config/application.yml",
 "source": {
 "spring.data.mongodb.password": "{cipher}AQA4JeVhf2cRXW..."
 }
 }
]
}

360 CHAPTER 14 Managing configuration
Of course, if the client is receiving encrypted property values, the client is now respon-
sible for decrypting them on its own.

 Although it’s possible to store encrypted secrets in Git to be served by Config
Server, we’ve seen that encryption is not native to Git. It requires effort on your part to
encrypt any data written to the backing Git repository. Moreover, unless you push the
burden of decryption to the Config Server client applications, the secret information
is served decrypted through the Config Server API for anyone who may ask. Let’s take
a look at another Config Server backend option that only serves secrets to those who
are authorized to see them.

14.5.2 Storing secrets in Vault

HashiCorp Vault is a secret-management tool. This means that in contrast to Git,
Vault’s core feature is handling secret information natively. For sensitive configuration
data, this makes Vault a much more attractive option as a backend to Config Server.

 To get started with Vault, download and install the vault command-line tool by fol-
lowing the installation instructions on the Vault website: https://www.vaultproject.io/
intro/getting-started/install.html. In this section, you’ll use the vault command both
for managing secrets as well as starting a Vault server.

STARTING A VAULT SERVER

Before you can write secrets and serve them with Config Server, you’ll need to start a
Vault server. For your purposes, the easiest way to do so is to start the server in devel-
opment mode with the following commands:

$ vault server -dev -dev-root-token-id=roottoken
$ export VAULT_ADDR='http://127.0.0.1:8200'
$ vault status

The first command starts a Vault server in development mode with a root token whose
ID is roottoken. Development mode, as its name suggests, is a simpler, yet not entirely
secure, runtime of Vault. It shouldn’t be used in a production setting, but it’s quite
convenient when working with Vault during your development workflow.

NOTE The Vault server is a feature-filled and robust secret-management
server. There’s nowhere near enough space in this chapter to talk about run-
ning the Vault server beyond its simple use in development mode. I strongly
recommend you get to know Vault in greater detail by reading the Vault doc-
umentation at https://www.vaultproject.io/docs/index.html before attempt-
ing to use Vault in a production setting.

All access to a Vault server requires that a token be presented to the server. The root
token is an administrative token that, among other things, allows you to create more
tokens. It can also be used to read and write secrets. If you don’t specify a root token
when starting the server in development mode, one will be generated for you and
written to the logs at startup time. For ease of use, I recommend setting the root token
to an easy-to-remember value, such as roottoken.

https://www.vaultproject.io/intro/getting-started/install.html
https://www.vaultproject.io/intro/getting-started/install.html
https://www.vaultproject.io/intro/getting-started/install.html
https://www.vaultproject.io/docs/index.html

361Keeping configuration properties secret
 Once the development-mode server is started, it will be listening on port 8200 on
the local machine. So that the vault command line knows where the Vault server is at,
it’s important to set the VAULT_ADDR environment variable, as in the second command
in the previous code snippet.

 Finally, the vault status command verifies that the previous two commands
worked as expected. You should receive a list of about a half-dozen properties describ-
ing the configuration of the Vault server, including whether the Vault is sealed or not.
(It shouldn’t be sealed in development mode.)

 If you’re working with Vault 0.10.0 or later, there are a couple of other commands
you’ll need to perform to get Vault ready for working with Config Server. Some
changes to how Vault works result in one of the standard secret backends being
incompatible with Config Server. The following two commands recreate the backend
whose name is secret to be compatible with Config Server:

$ vault secrets disable secret
$ vault secrets enable -path=secret kv

These steps aren’t required if you’re working with an older version of Vault.

WRITING SECRETS TO VAULT

The vault command makes it easy to write secrets into Vault. For example, suppose
you want to store the password to MongoDB—the spring.data.mongodb.password
property—in Vault instead of in Git. Using the vault command, you can do this:

$ vault write secret/application spring.data.mongodb.password=s3cr3t

Figure 14.6 breaks down the vault write command, explaining what role each part
of it plays in writing the secret to Vault.

The most significant pieces to pay attention to for now are the secret path, key, and
value. The secret path, much like a filesystem path, allows you to group related secrets
in a given path and other secrets in different paths. The secret/ prefix to the path
identifies the Vault backend—in this case a key-value backend named “secret.”

 The secret key and value are the actual secrets that you’re writing to Vault. When
writing secrets that will be served by Config Server, it’s important to use secret keys
that are equal to the configuration properties they’ll be used for.

$ vault write secret/application spring.data.mongodb.password=s3cr3t

The “secret”

backend

Secret pathPerform a write Secret value

Secret key

Figure 14.6 Writing a secret to Vault with the vault command

362 CHAPTER 14 Managing configuration
 You can verify that the secret was written with the vault read command:

$ vault read secret/application
Key Value
--- -----
refresh_interval 768h
spring.data.mongodb.password s3cr3t

When writing secrets to a given path, be aware that every write to a given path will
overwrite any secrets previously written to that path. For example, suppose you also
wanted to write the MongoDB username to Vault at the same path as in the previous
example. You couldn’t simply write the spring.data.mongodb.username secret by
itself—doing so would result in the spring.data.mongodb.password secret being lost.
Instead, you must write them both at the same time:

% vault write secret/application \
 spring.data.mongodb.password=s3cr3t \
 spring.data.mongodb.username=tacocloud

Now that you’ve written a few secrets to Vault, let’s see how you can enable Vault as a
backend source of properties for Config Server.

ENABLING A VAULT BACKEND IN CONFIG SERVER

To add Vault as a backend for the Config Server, the least you’ll need to do is add
vault as an active profile. In the Config Server’s application.yml file, that will look
like this:

spring:
 profiles:
 active:
 - vault
 - git

As shown here, both the vault and git profiles are active, allowing Config Server to
serve configuration from both Vault and Git. Generally, you’d only write sensitive con-
figuration properties to Vault and continue to use a Git backend for those properties
that don’t require secrecy. But if you wish to write all configuration to Vault or have
no need for a Git backend, you can set spring.profiles.active to vault and have no
Git backend at all.

 By default, Config Server will assume that Vault is running on localhost, listening
on port 8200. But you can change that in the Config Server’s configuration like this:

spring:
 cloud:
 config:
 server:
 git:
 uri: http://localhost:10080/tacocloud/tacocloud-config
 order: 2
 vault:

363Keeping configuration properties secret
 host: vault.tacocloud.com
 port: 8200
 scheme: https
 order: 1

The spring.cloud.config.server.vault.* properties let you override the default
assumptions about Vault made by Config Server. Here you’re telling Config Server
that Vault’s API can be accessed at https://vault.tacocloud.com:8200.

 Notice that you left the Git configuration in place, assuming that Vault and Git will
split responsibility for providing configuration. The order property specifies that
secrets provided by Vault will take precedence over any properties provided by Git.

 Once Config Server is configured to use the Vault backend, you can try it out by
using curl to pretend to be a client:

[habuma:habuma]% curl localhost:8888/application/default | jq
{
 "timestamp": "2018-04-29T23:33:22.275+0000",
 "status": 400,
 "error": "Bad Request",
 "message": "Missing required header: X-Config-Token",
 "path": "/application/default"
}

Oh no! It looks like something went wrong! In fact, this error is an indication that
Config Server is serving secrets from Vault, but that the request hasn’t included the
Vault token.

 It’s important that all requests to Vault include an X-Vault-Token header in the
request. Rather than configure that token in the Config Server itself, each Config
Server client will need to include the token in an X-Config-Token header in all
requests to the Config Server. Config Server will transfer the token it receives in the
X-Config-Token header to the X-Vault-Token header in requests it sends to Vault.

 As you can see, for lack of a token in the request, Config Server will refuse to
serve any properties, even those from Git, because Vault demands a token before
divulging any of its secrets. This is an interesting side effect of using Vault alongside
Git—even Git properties are indirectly hidden by the Config Server unless a valid
token is provided.

 Try it again, this time adding an X-Config-Token header to the request:

$ curl localhost:8888/application/default
 -H"X-Config-Token: roottoken" | jq

The X-Config-Token header in the request should yield better results, including the
secrets you’ve written to Vault. The token given here is the root token you specified
when starting the Vault server in development mode, although it could be any token
created within the Vault server that’s valid, non-expired, and that has been granted
access to the Vault secret backend.

https://vault.tacocloud.com:8200

364 CHAPTER 14 Managing configuration
SETTING THE VAULT TOKEN IN CONFIG SERVER CLIENTS

Obviously, you won’t be able to use curl in each of your microservices to specify the
token when consuming properties from the Config Server. Instead, you’ll need to add
a little bit of configuration to each of your service application’s local configuration:

spring:
 cloud:
 config:
 token: roottoken

The spring.cloud.config.token property tells the Config Server client to include
the given token value in all requests it makes to the Config Server. This property
must be set in the application’s local configuration (not stored in Config Server’s
Git or Vault backend) so that Config Server can pass it along to Vault and be able to
serve properties.

WRITING APPLICATION- AND PROFILE-SPECIFIC SECRETS

When served by Config Server, secrets written to the application path will be served
to all applications, regardless of their name. If you need to write secrets that are spe-
cific to a given application, replace the application portion of the path with the
application name. For example, the following vault write command will write a
secret specific to an application whose name (as identified by its spring.application
.name property) is ingredient-service:

$ vault write secret/ingredient-service \
 spring.data.mongodb.password=s3cr3t

Similarly, if you don’t specify a profile, secrets written to Vault will be served as part of
the default profile. That is, clients will receive those secrets regardless of what their
active profile may be. You may, however, write secrets to a specific profile like this:

% vault write secret/application,production \
 spring.data.mongodb.password=s3cr3t \
 spring.data.mongodb.username=tacocloud

This writes the secrets such that they will only be served to applications whose active
profile is production.

14.6 Refreshing configuration properties on the fly
As I’m writing this chapter, I’m on a plane that was pulled back to the gate for a main-
tenance issue. It was nothing serious, and if you’re reading this, you know that the
mechanics did their job satisfactorily. Even so, the interesting thing about mainte-
nance on an airplane is that it requires the plane to be on the ground. There’s not
much that can be done while in flight.

 In contrast, in the Star Wars movies, if Luke Skywalker’s or Poe Dameron’s X-Wing
Fighter needed maintenance, the onboard mech droid could be deployed to address
the issue, even while the X-Wing was in battle.

365Refreshing configuration properties on the fly
 Traditionally, application maintenance, including configuration changes, has
required that an application be redeployed or at least restarted. The application
would need to be brought back to the gate, so to speak, for lack of a mech droid to
adjust even the smallest configuration property. But that’s unacceptable for cloud-
native applications. We’d like to be able to change configuration properties on the fly,
without even bringing the application down.

 Fortunately, Spring Cloud Config Server supports the ability to refresh configura-
tion properties of running applications with zero downtime. Once the changes have
been pushed to the backing Git repository or Vault secret store, each microservice in
the application can immediately be refreshed with the new configuration in one of
two ways:

 Manual—The Config Server client enables a special Actuator endpoint at
/actuator/refresh. An HTTP POST request to that endpoint on each service will
force the config client to retrieve the latest configuration from its backends.

 Automatic—A commit hook in the Git repository can trigger a refresh on all ser-
vices that are clients of the Config Server. This involves another Spring Cloud
project called Spring Cloud Bus for communicating between the Config Server
and its clients.

Each option has its pros and cons. Manual refresh gives more precise control over
when services are updated with fresh configuration, but it requires an individual
HTTP request to be issued to each instance of each microservice. Automatic refresh
applies updated configuration instantly to all microservices in an application, but it’s
ultimately triggered from a commit to the configuration repository, which may be a
bit too scary for some projects.

 Let’s take a look at each option. Then I’ll let you decide which you’d prefer to
apply in your projects.

14.6.1 Manually refreshing configuration properties

In chapter 16, we’re going to look at the Spring Boot Actuator, one of the founda-
tional elements of Spring Boot that enables runtime insight and some limited manip-
ulation of runtime state, such as logging levels. But for now, we’ll look at a specific
Actuator feature that’s only enabled in applications that are configured as Spring
Cloud Config Server clients.

 Whenever you enable an application to be a client of the Config Server, the auto-
configuration in play also configures a special Actuator endpoint for refreshing con-
figuration properties. To make use of this endpoint, you’ll need to include the
Actuator starter dependency along with the Config Client dependency in your proj-
ect’s build:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

366 CHAPTER 14 Managing configuration
As you may have guessed, this dependency is also available from the Spring Initializr
by checking the Actuator check box.

 With the Actuator in play in the running config client application, you can refresh
the configuration properties from the backend repositories any time you wish by sub-
mitting an HTTP POST request to /actuator/refresh.

 To see this in action, let’s suppose you have a @ConfigurationProperties-anno-
tated class named GreetingProps:

@ConfigurationProperties(prefix="greeting")
@Component
public class GreetingProps {
 private String message;

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

Additionally, you also have a controller class that’s injected with GreetingProps and
that echoes the value of the message property when handling a GET request:

@RestController
public class GreetingController {

 private final GreetingProps props;

 public GreetingController(GreetingProps props) {
 this.props = props;
 }

 @GetMapping("/hello")
 public String message() {
 return props.getMessage();
 }

}

Meanwhile, in your configuration Git repository, you have an application.yml file that
has the following property set:

greeting:
 message: Hello World!

With both the Config Server and this simple hello-world config client running, an
HTTP GET request to /hello will yield the following response:

$ curl localhost:8080/hello
Hello World!

367Refreshing configuration properties on the fly
Now, without restarting either the Config Server or the hello-world application, change
the application.yml file and push it into the backend Git repository such that the
greeting.message property looks like this:

greeting:
 message: Hiya folks!

If you make the same GET request to the hello-world application, you’ll still get the
same "Hello World!" response, even though the configuration has changed in Git. But
you can force a refresh by POSTing to the refresh endpoint:

$ curl localhost:53419/actuator/refresh -X POST
["config.client.version","greeting.message"]

Notice that the response includes a JSON array of property names that have changed.
Included in that array is your greeting.message property. It also includes a change to
the config.client.version property, which contains the hash value of the Git com-
mit that the current configuration comes from. Because the configuration is now
based on a new Git commit, this property will change every time there’s any change in
the backend configuration repository.

 The response from the POST request tells you that greeting.message changed. But
the real proof is when you issue a GET request to the /hello path again:

$ curl localhost:8080/hello
Hiya folks!

Without restarting the application or even restarting the Config Server, the applica-
tion is now serving a brand new value for the greeting.message property!

 The /actuator/refresh endpoint is great when you want full control over when an
update to configuration properties takes place. But if your application is made up of
several microservices (and perhaps several instances of each of those services), it can
be tedious to propagate configuration to all of them. Let’s take a look at how you can
have configuration changes applied automatically, all at once.

14.6.2 Automatically refreshing configuration properties

As an alternative to manually refreshing properties on all Config Server clients in an
application, Config Server can automatically notify all clients of changes to configura-
tion by way of another Spring Cloud project called Spring Cloud Bus. Figure 14.7 illus-
trates how it works.

 The property refresh process shown in figure 14.7 can be summarized like this:

 A webhook is created on the configuration Git repository to notify Config
Server of any changes (such as any pushes) to the Git repository. Webhooks are
supported by many Git implementations, including GitHub, GitLab, Bitbucket,
and Gogs.

 Config Server reacts to webhook POST requests by broadcasting a message
regarding the change by way of a message broker, such as RabbitMQ or Kafka.

368 CHAPTER 14 Managing configuration
 Individual Config Server client applications subscribed to the notifications
react to the notification messages by refreshing their environments with new
property values from the Config Server.

The effect is that all participating Config Server client applications will always have the
latest configuration property values from Config Server almost immediately following
those changes being pushed to the backend Git repository.

 There are several moving parts in play when using automatic property refresh with
Config Server. Let’s review the changes that you’re about to make to get a high-level
understanding of what needs to be done:

 You’ll need a message broker available to handle the messaging between Config
Server and its clients. You may choose either RabbitMQ or Kafka.

 A webhook will need to be created in the backend Git repository to notify Con-
fig Server of any changes.

 Config Server will need to be enabled with the Config Server monitor depen-
dency (which provides the endpoint that will handle webhook requests from
the Git repository) and either the RabbitMQ or Kafka Spring Cloud Stream
dependency (for publishing property change messages to the broker).

 Unless the message broker is running locally with the default settings, you’ll
need to configure the details for connecting to the broker in both the Config
Server and in all of its clients.

 Each Config Server client application will need the Spring Cloud Bus dependency.

I’m going to assume that the prerequisite message broker (RabbitMQ or Kafka … your
choice) is already running and ready to channel property change messages. You’ll start
by applying changes to the Config Server to handle webhook update requests.

CREATING A WEBHOOK

Many Git server implementations support the creation of webhooks to notify applica-
tions of changes, including pushes, to a Git repository. The specifics of setting up

Spring Cloud

Config Server

Service A

Service B

Service C

Kafka

RabbitMQ

or

$ git push … Webhook

“push”

notification

Update

notification

Message

broker
Update

notification

Update

notification

Update

notification

Figure 14.7 Config Server, along with Spring Cloud Bus, can broadcast changes to applications so
that their properties can be refreshed automatically when there are changes.

369Refreshing configuration properties on the fly
webhooks will vary from implementation to implementation, making it difficult to
describe them all here. I will, however, show you how to set up a webhook for a
Gogs repository.

 I choose Gogs because it’s easy to run locally and to have a webhook to POST to
your locally running application (something that’s difficult with GitHub). Also,
because the process for setting up a webhook with Gogs is almost identical to that for
GitHub, describing the Gogs process will indirectly give you the steps needed to set up
a webhook for GitHub.

 First, visit your configuration repository in the web browser and click the Settings
link, as shown in figure 14.8. (The location of the Settings link is slightly different in
GitHub, but it has a similar appearance.)

This will take you to the repository’s settings page, which includes a menu of settings
categories on the left. Choose the Webhooks item from the menu. This will display a
page similar to what’s shown in figure 14.9.

Click Settings

Figure 14.8 Click the Settings button in Gogs or GitHub to get started creating a webhook.

...click add webhook
and choose Gogs

Choose webhooks
and then...

Figure 14.9 The Add Webhook button under the Webhooks menu opens the form for creating a
webhook.

370 CHAPTER 14 Managing configuration
From the webhooks settings page, click the Add Webhook button. In Gogs, this will
produce a dropdown list of options for different types of webhooks. Select the Gogs
option, as shown in figure 14.9. You’ll then be presented with a form to create a new
webhook, as shown in figure 14.10.1

The Add Webhook form has several fields, but the two most significant are Payload
URL and Content Type. Soon you’ll be outfitting Config Server to handle webhook
POST requests. When you do, Config Server will be able to handle webhook requests at
a path of /monitor. Therefore, the Payload URL field should be set with a URL that

1 GitHub doesn’t have a dropdown list of webhook options. Instead, you’ll be taken directly to the webhook
creation form after clicking Add Webhook.

Figure 14.10 To create a webhook, specify the Config Server’s /monitor URL and JSON payload.

371Refreshing configuration properties on the fly
references the /monitor endpoint on your Config Server. Because I’m running
Gogs in a Docker container, the URL I’ve given in figure 14.10 is http://host.docker
.internal:8888/monitor, which has a hostname of host.docker.internal. This hostname
enables the Gog server to see past the boundaries of its container to the Config Server
running on the host machine.2

 I’ve also set the Content Type field to application/json. This is important because
the Config Server’s /monitor endpoint doesn’t support application/x-www-form-
urlencoded, the other option for content type.

 If set, the Secret field will include a header in the webhook POST request named
X-Gogs-Signature (or X-Hub-Signature in the case of GitHub) that contains an
HMAC-SHA256 digest (or HMAC-SHA1 for GitHub) with the given secret. At this
time, Config Server’s /monitor endpoint doesn’t recognize the signature header, so
you can leave this field blank.

 Finally, you only care about push requests to the configuration repository, and you
certainly wish for the webhook to be active, so you make sure that the Just the Push
Event radio button and the Active check box are selected. Click the Add Webhook
button at the end of the form, and the webhook will be created and will start sending
POST requests to the Config Server for every push made to the repository.

 Now you must enable the /monitor endpoint in Config Server to handle those
requests.

HANDLING WEBHOOK UPDATES IN CONFIG SERVER

Enabling the /monitor endpoint in Config Server is a simple matter of adding the
spring-cloud-config-monitor dependency to the Config Server’s build. In a Maven
pom.xml file, the following dependency will do the trick:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-monitor</artifactId>
</dependency>

With that dependency in place, autoconfiguration will kick in to enable the /monitor
endpoint. But it’s no good unless Config Server also has a means of broadcasting the
change notifications. For that, you’ll need to add another dependency for Spring
Cloud Stream.

 Spring Cloud Stream is another one of the Spring Cloud projects; it enables the
creation of services that communicate by way of some underlying binding mechanism,
either RabbitMQ or Kafka. The services are written in such a way that they don’t know
much about how they’re being used, and they accept data from the stream for pro-
cessing, return data to the stream for handling by downstream services, or both.

 The /monitor endpoint uses Spring Cloud Stream to publish notification messages
to participating Config Server clients. To avoid being hardcoded to any particular

2 In a Docker container, "localhost" means the container itself, not the Docker host.

http://host.docker.internal:8888/monitor
http://host.docker.internal:8888/monitor
http://host.docker.internal:8888/monitor

372 CHAPTER 14 Managing configuration
messaging implementation, the monitor acts as a Spring Cloud Stream source, pub-
lishing messages into the stream and letting the underlying binding mechanism deal
with the specifics of sending the messages.

 If you’re using RabbitMQ, you’ll need to include the Spring Cloud Stream Rab-
bitMQ binding dependency in the Config Server’s build:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

On the other hand, if Kafka’s more your style, you’ll need the following Spring Cloud
Stream Kafka dependency instead:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-kafka</artifactId>
</dependency>

With the dependencies in place, the Config Server is almost ready to participate in
automatic property refresh. In fact, if your RabbitMQ or Kafka brokers are running
locally and with default settings, the Config Server is good to go. But if your message
brokers are running somewhere other than localhost, on some nondefault port, or if
you’ve changed the credentials to access the broker, you’ll need to set a few properties
in the Config Server’s own configuration.

 For a RabbitMQ binding, the following entries in application.yml can be used to
override the default values:

spring:
 rabbitmq:
 host: rabbit.tacocloud.com
 port: 5672
 username: tacocloud
 password: s3cr3t

You only need to set the properties that are different for your RabbitMQ broker, even
though you’ve set them all here.

 If you’re using Kafka, a similar set of properties is available:

spring:
 kafka:
 bootstrap-servers:
 - kafka.tacocloud.com:9092
 - kafka.tacocloud.com:9093
 - kafka.tacocloud.com:9094

You may recognize these properties from chapter 8, where we looked at messaging
with Kafka. In fact, configuring RabbitMQ and Kafka backends for automatic refresh
are much the same as for any other use of those brokers in Spring.

373Refreshing configuration properties on the fly
CREATING A GOGS NOTIFICATION EXTRACTOR

Each Git implementation has its own take on what the webhook POST request should
look like. This makes it important for the /monitor endpoint to be able to understand
different data formats when handling webhook POST requests. Under the covers of the
/monitor endpoint is a set of components that examine the POST request, try to deter-
mine what kind of Git server the request came from, and map the request data to a
common notification type that’s sent to each client.

 Out of the box, Config Server comes with support for several popular Git imple-
mentations, such as GitHub, GitLab, and Bitbucket. If you’re using one of those Git
implementations, nothing special is required. But as I write this, Gogs is not yet offi-
cially supported.3 Therefore, you’ll need to include a Gogs-specific notification extractor
in your project if you’re using Gogs as your Git implementation.

 The next listing shows the notification extractor implementation that I used in
Taco Cloud for Gogs integration.

package tacos.gogs;
import java.util.Collection;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import org.springframework.cloud.config.monitor.PropertyPathNotification;
import

org.springframework.cloud.config.monitor.PropertyPathNotificationExtractor;
import org.springframework.core.Ordered;
import org.springframework.core.annotation.Order;
import org.springframework.stereotype.Component;
import org.springframework.util.MultiValueMap;

@Component
@Order(Ordered.LOWEST_PRECEDENCE - 300)
public class GogsPropertyPathNotificationExtractor
 implements PropertyPathNotificationExtractor {

 @Override
 public PropertyPathNotification extract(
 MultiValueMap<String, String> headers,
 Map<String, Object> request) {
 if ("push".equals(headers.getFirst("X-Gogs-Event"))) {
 if (request.get("commits") instanceof Collection) {
 Set<String> paths = new HashSet<>();
 @SuppressWarnings("unchecked")
 Collection<Map<String, Object>> commits =
 (Collection<Map<String, Object>>) request
 .get("commits");

3 I submitted a pull request to the Config Server project to add Gogs support. Once it’s merged, this section of
the book will no longer be relevant. See https://github.com/spring-cloud/spring-cloud-config/pull/1003 for
the status of this pull request.

Listing 14.1 A Gogs notification extractor implementation

https://github.com/spring-cloud/spring-cloud-config/pull/1003

374 CHAPTER 14 Managing configuration
 for (Map<String, Object> commit : commits) {
 addAllPaths(paths, commit, "added");
 addAllPaths(paths, commit, "removed");
 addAllPaths(paths, commit, "modified");
 }
 if (!paths.isEmpty()) {
 return new PropertyPathNotification(
 paths.toArray(new String[0]));
 }
 }
 }
 return null;
 }

 private void addAllPaths(Set<String> paths,
 Map<String, Object> commit,
 String name) {
 @SuppressWarnings("unchecked")
 Collection<String> files =
 (Collection<String>) commit.get(name);
 if (files != null) {
 paths.addAll(files);
 }
 }
}

The details of how GogsPropertyPathNotificationExtractor works is mostly irrele-
vant to our discussion and will become even less relevant once Spring Cloud Config
Server includes Gogs support out of the box. Therefore, I won’t dwell on it much and
only include it here as an artifact of interest if you’re using Gogs.

ENABLING AUTO-REFRESH IN CONFIG SERVER CLIENTS

Enabling automatic property refresh in Config Server clients is even easier than in
Config Server itself. Only a single dependency is required:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-bus-amqp</artifactId>
</dependency>

This adds the AMQP (for example, RabbitMQ) Spring Cloud Bus starter to the build.
If you’re using Kafka, you should use the following dependency instead:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-bus-kafka</artifactId>
</dependency>

With the appropriate Spring Cloud Bus starter in place, autoconfiguration will kick in
as the application starts up and will automatically bind itself to a RabbitMQ broker or
Kafka cluster running locally. If your RabbitMQ or Kafka is running elsewhere, you’ll

375Summary
need to configure its details in each client application just as you did for the Config
Server itself.

 Now that both the Config Server and its clients are configured for automatic
refresh, fire everything up and give it a spin by making a change (any change you
want) to application.yml. When you push to the Git repository, you’ll immediately see
the change take effect in the client applications.

Summary
 Spring Cloud Config Server offers a centralized source of configuration data to

all microservices that make up a larger microservice-architected application.
 The properties served by Config Server are maintained in a backend Git or

Vault repository.
 In addition to global properties, which are exposed to all Config Server clients,

Config Server can also serve profile-specific and application-specific properties.
 Sensitive properties can be kept secret by encrypting them in a backend Git

repository or by storing them as secrets in a Vault backend.
 Config Server clients can be refreshed with new properties either manually via an

Actuator endpoint or automatically with Spring Cloud Bus and Git webhooks.

Handling failure
and latency
15.1 Understanding circuit breakers
The circuit breaker pattern, as made popular in Release It!, 2nd edition, by Michael
Nygard (Pragmatic Bookshelf, 2018) addresses the reality that the code we write
will fail. What’s important is that when it fails, it fails gracefully. This powerful pat-
tern is even more significant in the context of microservices, where it’s important
to avoid letting failures cascade across a distributed call stack.

 The idea of the circuit breaker pattern is relatively simple and is quite similar
to a real-world electrical circuit breaker from which it gets its name. With an elec-
trical circuit breaker, when the switch is in a closed position, the electricity flows
through the circuits in a house, powering lights, televisions, computers, and
appliances. But if there’s any fault in the line, such as a power surge, the circuit
breaker opens, stopping the flow of electricity before it damages electronics or
results in a house fire.

This chapter covers
 Introducing the circuit breaker pattern

 Handling failure and latency with Hystrix

 Monitoring circuit breakers

 Aggregating circuit breaker metrics
376

377Understanding circuit breakers
 Likewise, a software circuit breaker starts in a closed state, allowing invocations of a
method. If, for any reason, that method fails (perhaps exceeding a defined thresh-
old), the circuit opens and invocations are no longer performed against the failing
method. Where a software circuit breaker differs, however, is that it provides fallback
behavior and is self-correcting.

 If the protected method fails within a given threshold of failure, then a fallback
method can be called in its place. Once the circuit opens, that fallback method will be
called almost exclusively. Every so often, though, a circuit that’s open will enter a half-
open state and attempt to invoke the failing method. If it still fails, the circuit resumes
in an open state. If it succeeds, then it’s assumed that the problem has been resolved
and the circuit returns to a closed state. Figure 15.1 illustrates the flow of a software
circuit breaker.

It can be helpful to think of circuit breakers as a more powerful form of try/catch. A
closed circuit is analogous to the try block, whereas the fallback method is akin to the
catch block. Unlike try/catch, however, circuit breakers are intelligent enough to
route calls to bypass the intended method, always calling the fallback method when
the intended method is failing too frequently.

 As I’ve implied, circuit breakers are applied on methods. There could easily be sev-
eral dozen (or more) circuit breakers within a given microservice. Deciding where to
declare circuit breakers in your code is a matter of identifying methods that are sub-
ject to failure. The following categories of methods are certainly candidates for circuit
breakers:

 Methods that make REST calls—These could fail due to the remote service being
unavailable or returning HTTP 500 responses.

Closed

Success Call/fallback

Fail/fallback

(threshold reached)

Fail/fallback

(under threshold)

S
u
c
c
e
s
s

F
a
il/

fa
llb

a
c
k

R
e
s
e
t tim

e
o
u
t

Open

Half-open

Figure 15.1 The circuit breaker pattern
enables graceful failure handling.

378 CHAPTER 15 Handling failure and latency
 Methods that perform database queries—These could fail if, for some reason, the
database becomes unresponsive, or if the schema changes in ways that break
the application.

 Methods that are potentially slow—These won’t necessarily fail, but may be consid-
ered unhealthy if they're taking too long to do their job.

That last item highlights another benefit of circuit breakers beyond handling failure.
Latency is also an important concern in microservices, and it’s crucial that an exces-
sively slow method not drag down the performance of the microservice, resulting in
cascading latency to upstream services.

 As you can see, the circuit breaker pattern is an incredibly powerful means of
gracefully handling failure and latency in code. How can we apply circuit breakers in
our code? Fortunately, Netflix open source projects provide an answer with the Hys-
trix library.

 Netflix Hystrix is a Java implementation of the circuit breaker pattern. Put sim-
ply, a Hystrix circuit breaker is implemented as an aspect applied to a method that
triggers a fallback method should the target method fail. And, to properly imple-
ment the circuit breaker pattern, the aspect also tracks how frequently the target
method fails and then forwards all requests to the fallback if the failure rate exceeds
some threshold.

A POINT TO MAKE ABOUT HYSTRIX'S NAME

When coming up with the name for their circuit breaker implementation, the devel-
opers at Netflix wanted a name that captured the resilience, defense, and fault toler-
ance that would be provided. They settled on Hystrix, which happens to be the genus
of what is known as the Old-World porcupine, an animal characterized by its ability to
defend itself with long quills. Also, as explained in the Hystrix FAQ, it’s a cool-sounding
name. When we look at the Hystrix dashboard in section 15.3.1, you’ll get to see how a
porcupine found a position as the project logo.

 Spring Cloud Netflix includes support for Hystrix, providing a simple program-
ming model that should be familiar to Spring and Spring Boot developers. Declar-
ing a circuit breaker on a method is a simple matter of annotating the method with
@HystrixCommand and providing a fallback method. Let’s see how to handle failure
gracefully with Hystrix by declaring circuit breakers in your Taco Cloud code.

15.2 Declaring circuit breakers
Before you can declare circuit breakers, you’ll need to add the Spring Cloud Netflix
Hystrix starter to the build specification of each of the services. In a Maven pom.xml
file, the dependency looks like this:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>

379Declaring circuit breakers
As part of the Spring Cloud portfolio, you’ll also need to declare dependency manage-
ment for the Spring Cloud release train in your build. As I write this, the latest release
train version is Finchley.SR1. Therefore, the Spring Cloud version should be set as a
property, and the following entry should appear in the pom.xml file <dependency-
Management> block:

<properties>
 ...
 <spring-cloud.version>Finchley.SR1</spring-cloud.version>
</properties>

...

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

NOTE This starter dependency is also available as a check box with the label
Hystrix in the Initializr when creating a project. If you use the Initializr to add
Hystrix to your project build, then the dependency management block is
automatically created for you.

With the Hystrix starter dependency in place, the next thing you’ll need to do is to
enable Hystrix. The way to do that is to annotate each application’s main configura-
tion class with @EnableHystrix. For example, to enable Hystrix in the ingredient ser-
vice, you’d annotate IngredientServiceApplication like this:

@SpringBootApplication
@EnableHystrix
public class IngredientServiceApplication {
 ...
}

At this point, Hystrix is enabled in your application. But that only means that all the
pieces are in place for you to declare circuit breakers. You still haven’t declared any
circuit breakers on any of the methods. That’s where the @HystrixCommand annota-
tion comes into play.

 Any method that's annotated with @HystrixCommand will be declared as having a
circuit breaker aspect applied to it. For example, consider the following method that
uses a load-balanced RestTemplate to fetch a collection of Ingredient objects from
the ingredient service:

380 CHAPTER 15 Handling failure and latency
public Iterable<Ingredient> getAllIngredients() {
 ParameterizedTypeReference<List<Ingredient>> stringList =
 new ParameterizedTypeReference<List<Ingredient>>() {};
 return rest.exchange(
 "http://ingredient-service/ingredients", HttpMethod.GET,
 HttpEntity.EMPTY, stringList).getBody();
}

The call to exchange() is a potential cause for trouble. If there’s no service registered in
Eureka as ingredient-service, or if the request fails for any reason, then a RestClient-
Exception (an unchecked exception) will be thrown. Because the exception isn’t being
handled with a try/catch block, the caller must handle the exception. If the caller
doesn’t handle it, then it’ll continue to be thrown upstream in the call stack. If it isn’t
handled at all, then the error cascades to any upstream microservices or clients.

 Uncaught exceptions are a challenge in any application, but especially so in micro-
services. When it comes to failures, microservices should apply the Vegas Rule—what
happens in a microservice, stays in a microservice. Declaring a circuit breaker on the
getAllIngredients() method satisfies that rule.

 At a minimum, you only need to annotate the method with @HystrixCommand, and
then provide a fallback method. First, let’s add @HystrixCommand to the getAllIngre-
dients() method:

@HystrixCommand(fallbackMethod="getDefaultIngredients")
public Iterable<Ingredient> getAllIngredients() {
 ...
}

With a circuit breaker protecting it from failure, getAllIngredients() is fail safe. If,
for any reason, any uncaught exceptions escape from getAllIngredients(), the cir-
cuit breaker will catch them and redirect the method call to a method named get-
DefaultIngredients().

 Fallback methods can do anything you want them to do, but the intention is that
they offer backup behavior in the event that the originally intended method is unable
to perform its duties. The only rule for the fallback method is that it has the same sig-
nature (aside from the method name) as the method it’s serving as a backup for.

 To meet this requirement, the getAllIngredients() method must accept no
parameters and return List<Ingredient>. The following implementation of getAll-
Ingredients() satisfies that rule and returns a default list of ingredients:

private Iterable<Ingredient> getDefaultIngredients() {
 List<Ingredient> ingredients = new ArrayList<>();
 ingredients.add(new Ingredient(
 "FLTO", "Flour Tortilla", Ingredient.Type.WRAP));
 ingredients.add(new Ingredient(
 "GRBF", "Ground Beef", Ingredient.Type.PROTEIN));
 ingredients.add(new Ingredient(
 "CHED", "Shredded Cheddar", Ingredient.Type.CHEESE));
 return ingredients;
}

381Declaring circuit breakers
Now, if for any reason getAllIngredients() fails, the circuit breaker falls back with a
call to getDefaultIngredients(), and the caller will receive a default (albeit limited)
list of ingredients.

 You might be wondering if a fallback method can itself have a circuit breaker.
Although there’s little that could go wrong with getDefaultIngredients() as you’ve
written it, it’s possible that a more interesting implementation of getDefault-
Ingredients() could be a potential point of failure. In that case, you can annotate
getDefaultIngredients() with @HystrixCommand and provide yet another fallback
method. In fact, you can stack up as many fallback methods as make sense, if neces-
sary. The only restriction is that there must be one method at the bottom of the fall-
back stack that doesn’t fail and doesn’t require a circuit breaker.

15.2.1 Mitigating latency

Circuit breakers can also mitigate latency by timing out if a method is taking too
long to return. By default, all methods annotated with @HystrixCommand time out
after 1 second, falling back to their declared fallback method. That means that if,
for some reason, the ingredient service is sluggish in responding, then the call to
getAllIngredients() times out after 1 second, and getDefaultIngredients() will
be called instead.

 The one-second timeout is a reasonable default and suitable for most use cases.
But you can change it to be more or less restrictive by specifying a Hystrix command
property. Setting Hystrix command properties can be done through the command-
Properties attribute of the @HystrixCommand annotation. The commandProperties
attribute is an array of one or more @HystrixProperty annotations that specify a
name and a value of the property to be set.1

 In order to tweak the timeout of a circuit breaker, you need to set the Hystrix com-
mand property execution.isolation.thread.timeoutInMilliseconds. For exam-
ple, to tighten the timeout period on the getAllIngredients() method to a half
second, you can set the timeout to 500 as follows:

@HystrixCommand(
 fallbackMethod="getDefaultIngredients",
 commandProperties={
 @HystrixProperty(
 name="execution.isolation.thread.timeoutInMilliseconds",
 value="500")
 })
public Iterable<Ingredient> getAllIngredients() {
 ...
}

The value given is in milliseconds. If you want to loosen up the restriction, you can
set it to some higher value. Or, if you don’t think that there should be a timeout

1 If you’re like me, you’ll agree that using annotations to set attributes of an annotation is weird. Weird or not,
that’s still how it’s done.

382 CHAPTER 15 Handling failure and latency
imposed, then you can remove the timeout altogether by setting the command prop-
erty execution.timeout.enabled to false:

@HystrixCommand(
 fallbackMethod="getDefaultIngredients",
 commandProperties={
 @HystrixProperty(
 name="execution.timeout.enabled",
 value="false")
 })
public Iterable<Ingredient> getAllIngredients() {
 ...
}

When the execution.timeout.enabled property is set to false, there’s no latency
protection. In this case, whether the getAllIngredients() method takes 1 second, 10
seconds, or 30 minutes, it won’t time out. This could cause a cascading latency effect,
so care should be taken when disabling execution timeouts.

15.2.2 Managing circuit breaker thresholds

By default, if a circuit breaker protected method is invoked over 20 times, and more
than 50% of those invocations fail over a period of 10 seconds, the circuit will be thrown
into an open state. All subsequent calls will be handled by the fallback method. After
5 seconds, the circuit will enter a half-open state, and the original method will be
attempted again.

 You can tweak the failure and retry thresholds by setting the Hystrix command
properties. The following command properties influence the conditions that result in
a circuit breaker being thrown:

 circuitBreaker.requestVolumeThreshold—The number of times a method
should be called within a given time period

 circuitBreaker.errorThresholdPercentage—A percentage of failed method
invocations within a given time period

 metrics.rollingStats.timeInMilliseconds—A rolling time period for which
the request volume and error percentage are considered

 circuitBreaker.sleepWindowInMilliseconds—How long an open circuit
remains open before entering a half-open state and the original failing method
is attempted again

If both circuitBreaker.requestVolumeThreshold and circuitBreaker.error-
ThresholdPercentage are exceeded within the time specified in metrics.rolling-
State.timeInMilliseconds, then the circuit breaker enters an open state. It remains
open for as long as specified by circuitBreaker.sleepWindowInMilliseconds, at
which point it becomes half open, and the original failing method will be attempted
again.

383Monitoring failures
 For example, suppose that you want to adjust the failure settings such that the
method must be invoked more than 30 times and fail more than 25% of the time within
20 seconds. For that, you’ll need to set the following Hystrix command properties:

@HystrixCommand(
 fallbackMethod="getDefaultIngredients",
 commandProperties={
 @HystrixProperty(
 name="circuitBreaker.requestVolumeThreshold",
 value="30"),
 @HystrixProperty(
 name="circuitBreaker.errorThresholdPercentage",
 value="25"),
 @HystrixProperty(
 name="metrics.rollingStats.timeInMilliseconds",
 value="20000")
 })
public List<Ingredient> getAllIngredients() {
 // ...
}

Additionally, should you decide that, once thrown, the circuit breaker must remain
open for up to 1 full minute before becoming half open, then you can also set the
circuitBreaker.sleepWindowInMilliseconds command property:

@HystrixCommand(
 fallbackMethod="getDefaultIngredients",
 commandProperties={
 ...
 @HystrixProperty(
 name="circuitBreaker.sleepWindowInMilliseconds",
 value="60000")
 })

Aside from gracefully handling method failures and latency, Hystrix also publishes a
stream of metrics for each circuit breaker in an application. Next up, let’s take a
look at how to monitor the health of a Hystrix-enabled application by way of the
Hystrix stream.

15.3 Monitoring failures
Every time a circuit breaker protected method is invoked, several pieces of data are
collected about the invocation and published in an HTTP stream that can be used to
monitor the health of the running application in real time. Among the data collected
for each circuit breaker, the Hystrix stream includes the following:

 How many times the method is called
 How many times it’s called successfully
 How many times the fallback method is called
 How many times the method times out

384 CHAPTER 15 Handling failure and latency
The Hystrix stream is provided by an Actuator endpoint. We’ll talk more about Actua-
tor in chapter 16. But, for now, the Actuator dependency needs to be added to the
build for all the services to enable the Hystrix stream. In a Maven pom.xml file, the fol-
lowing starter dependency adds Actuator to a project:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

The Hystrix stream endpoint is exposed at the path /actuator/hystrix.stream. By
default, most of the Actuator endpoints are disabled. But you can enable the Hystrix
stream endpoint with the following configuration in each application application.yml
file like this:

management:
 endpoints:
 web:
 exposure:
 include: hystrix.stream

Optionally, the management:endpoints:web:exposure:include property can be made
global for all of your services by placing it in the application.yml configuration proper-
ties that are served by the Config Server.

 Application startup exposes the Hystrix stream, which can then be consumed
using any REST client you want. But, before you set out to write a custom Hystrix
stream client, be aware that each entry in the HTTP stream is rich with all kinds of
JSON data, and it’ll require a lot of client-side work to interpret that data. Although
writing your own Hystrix stream presentation client isn’t an impossible task, perhaps
you should consider using the Hystrix dashboard before expending much effort on
your own dashboard.

15.3.1 Introducing the Hystrix dashboard

To use the Hystrix dashboard, you first need to create a new Spring Boot application
with a dependency on the Hystrix dashboard starter. If you’re using the Spring
Boot Initializr to create the project, you’ll select the Hystrix Dashboard check box.
Otherwise, you’ll need to add the following <dependency> to your project’s Maven
pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-hystrix-dashboard</artifactId>
</dependency>

Once the project has been initialized, you’ll also need to enable the Hystrix dash-
board by annotating the main configuration class with @EnableHystrixDashboard:

385Monitoring failures
@SpringBootApplication
@EnableHystrixDashboard
public class HystrixDashboardApplication {
 public static void main(String[] args) {
 SpringApplication.run(HystrixDashboardApplication.class, args);
 }
}

At development time, you’ll be running the Hystrix dashboard alongside all of your
other services, as well as Eureka and Config Server on your local machine. Therefore,
to avoid port conflicts, you’ll need to pick a unique port for the Hystrix dashboard. In
the dashboard application’s application.yml file, set the server.port property to any
unique value you want. I usually set it to 7979, like this:

server:
 port: 7979

Now you’re ready to fire up the Hystrix dashboard and kick the tires on it. Once it’s
running, open your web browser to http://localhost:7979/hystrix. You should see the
Hystrix dashboard homepage, as shown in figure 15.2.

 The first thing you’ll notice about the Hystrix dashboard homepage is the logo,
which is the cartoonish porcupine mascot of the Hystrix project. To start viewing a
Hystrix stream, enter the URL for one of the service application Hystrix streams into

Figure 15.2 The Hystrix dashboard homepage

http://localhost:7979/hystrix

386 CHAPTER 15 Handling failure and latency
the text box. For example, if the ingredient service is running on localhost and listen-
ing on port 59896 (thanks to setting server.port to 0), then you’d enter http://
localhost:59896/actuator/hystrix.stream into the text box.

 You can also set a delay and a title to display on the Hystrix stream monitor. The
delay, which defaults at 2 seconds, is the time between polling cycles, which effectively
slows down the stream. The title is merely displayed as a title on the monitor page. But
for your needs, the defaults are perfectly fine.

 Click the Monitor Stream button to be taken to the Hystrix stream monitor. You
should see a page that looks something like figure 15.3.

Each circuit breaker can be viewed as a graph along with some other useful metrics
data. Figure 15.3 shows a single circuit breaker for getAllIngredients(), because
that’s the only circuit breaker you’ve declared so far.

 If you don’t see any graphs representing each circuit breaker and all you see is the
word Loading, that’s probably because none of the circuit breaker methods has been
called yet. You must make a request to the service that would trigger a circuit breaker
protected method for that method’s circuit breaker metrics to appear in the dash-
board. Figure 15.4 takes a closer look at an individual circuit breaker monitor, provid-
ing a breakdown of the information presented.

 The most noticeable part of the monitor is the graph in the top-left corner. The
line graph represents the traffic for the given method over the past 2 minutes, giving a
brief history of how busy the method has been.

 The background of the graph has a circle whose size and color fluctuate. The size of
the circle indicates the current traffic volume; the bigger the circle grows, the higher
the traffic flow. The circle color indicates its health. Green indicates healthy, yellow indi-
cates an occasionally failing circuit breaker, and red indicates a failing circuit breaker.

Figure 15.3 The Hystrix stream monitor page shows the metrics from each of an application’s circuit breakers.

387Monitoring failures
The top right of the monitor shows various counters presented in three columns.
Going top-down in the leftmost column, the first number (in green—see the elec-
tronic versions of this book for color) shows how many invocations are currently suc-
cessful, the second number (blue) is the number of short-circuited requests, and the
last number (cyan) is the count of bad requests. The middle column shows the num-
ber of requests that have timed out (yellow), the number that the threadpool rejects
(purple), and the number of failing requests (red). The third column shows a per-
centage of errors in the past 10 seconds.

 Below the counters are two numbers representing the number of requests per sec-
ond for the host and for the cluster. Below those two request rates is the status of the
circuit. The bottom of the monitor shows median and mean latency, as well as the
latency for the 90th, 99th, and 99.5th percentiles.

15.3.2 Understanding Hystrix thread pools

Imagine that a method is taking an excessive amount of time to do its job. Perhaps that
method is making an HTTP request to another service, and the service is sluggish in
responding. Until the service responds, Hystrix blocks the thread, waiting for a response.

 If the method is executing in the context of the same thread as the caller of the
method, then the caller doesn’t have an opportunity to walk away from the long-running
method. Moreover, if the blocked thread is one of a limited set of threads, such as a
request-handling thread from Tomcat, and if the problem persists, then scalability can
take a hit when all the threads are saturated and waiting for responses.

 To avoid this situation, Hystrix assigns a thread pool for each dependency (for
example, for each Spring bean with one or more Hystrix command methods). When

Invocation counters
Circle size represents
current traffic volume;
color represents health

Host in cluster

Latency percentiles
for past minute

Circuit breaker
status

Requests per
second

Error percentage
in last 10 seconds

Request rate
charted over

past 2 minutes

Figure 15.4 Each circuit breaker monitor provides useful information regarding the current state of
the circuit breaker.

388 CHAPTER 15 Handling failure and latency
one of the Hystrix command methods is called, it’ll be executed in a thread from the
Hystrix-managed thread pool, isolating it from the calling thread. This allows the call-
ing thread to give up and walk away from the call if it’s taking too long, and isolates
any potential thread saturation to the Hystrix-managed thread pool.

 You may have noticed that in addition to the circuit breaker monitor, figure 15.3 also
showed another monitor near the bottom of the page, under a header titled Thread
Pools. This section includes a monitor for each Hystrix-managed thread pool. Figure 15.5
shows an individual thread pool monitor, annotated to describe the data it presents.

Much like the circuit breaker monitor, each thread pool monitor includes a circle in
its upper-left corner. The size and color of this circle indicate how active the thread
pool is currently, as well as its health. Unlike the circuit breaker monitor, however,
thread pool monitors don’t display a line graph showing thread pool activity over the
past few minutes.

 The thread pool’s name is displayed in the upper-right corner, above the statistics
showing the number of requests per second being handled by the threads in the
thread pool. The lower-left corner of the thread pool monitor displays the following
information:

 Active thread count—The current number of active threads.
 Queued thread count—How many threads are currently queued. By default, queu-

ing is disabled, so this value is always 0.
 Pool size—How many threads are in the thread pool.

Meanwhile, the lower-right corner displays this information about the thread pool:

 Maximum active thread count—The maximum number of active threads over the
current sampling period.

 Execution count—The number of times that threads in the thread pool have
been called on to handle executions of Hystrix commands.

 Queue size—The size of the thread pool queue. Thread queueing is disabled by
default, so this value has little meaning.

Circle size represents
current traffic volume;

color represents health

Active
threads

Queued
threads

Size of the
thread pool

Requests per
second

Maximum active
threads
Execution count
Thread queue size

Figure 15.5 Thread pool monitors show vital statistics about each of the Hystrix-managed thread pools.

389Aggregating multiple Hystrix streams
It’s worth noting that as an alternative to Hystrix thread pooling, you can choose to
use semaphore isolation. Semaphore isolation, however, is a more advanced usage of
Hystrix and thus outside of the scope of this chapter. Refer to the Hystrix documenta-
tion for more information.

 Now that you’ve seen the Hystrix dashboard in action, let’s consider how to deal
with multiple streams of circuit breaker data and how to aggregate them into a single
stream to be viewed in the Hystrix dashboard.

15.4 Aggregating multiple Hystrix streams
The Hystrix dashboard is only capable of monitoring a single stream at a time. Because
each instance of each microservice publishes its own Hystrix stream, it’s almost impos-
sible to get a holistic view of an application’s health.

 Fortunately, another Netflix project, Turbine, offers a way to aggregate all of the
Hystrix streams from all the microservices into a single stream that the Hystrix dash-
board can monitor. Spring Cloud Netflix supports creating a Turbine service using
an approach similar to creating other Spring Cloud services. To create a Turbine ser-
vice, create a new Spring Boot project and include the Turbine starter dependency
in the build:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-turbine</artifactId>
</dependency>

NOTE As a new project, it’s easiest to simply check the Turbine check box in
the Initializr when creating the new Spring Boot project.

Once you create the project, you’ll need to enable Turbine. To do that, add the
@EnableTurbine annotation to the application’s main configuration class:

@SpringBootApplication
@EnableTurbine
public class TurbineServerApplication {
 public static void main(String[] args) {
 SpringApplication.run(TurbineServerApplication.class, args);
 }
}

For development purposes, you’ll run Turbine locally, alongside the other services in
the Taco Cloud application. To avoid port conflicts, you’ll need to select a unique port
for Turbine so that it doesn’t conflict with any of the other services. You can pick any
port you like, but I tend to choose port 8989:

server:
 port: 8989

Turbine works by consuming the streams from multiple microservices and merging
the circuit breaker metrics into a single stream. It acts as a client of Eureka, discovering

390 CHAPTER 15 Handling failure and latency
the services whose streams it’ll aggregate into its own stream. But Turbine doesn’t
assume that it should aggregate the streams of all services registered in Eureka; you
must configure Turbine to tell it which services it should work with.

 The turbine.app-config property accepts a comma-delimited list of service names
to look up in Eureka and for which it should aggregate Hystrix streams. For Taco Cloud,
you’ll need Turbine to aggregate the streams for the four services registered in Eureka
as ingredient-service, taco-service, order-service, and user-service. The follow-
ing entry in application.yml shows how to set turbine.app-config:

turbine:
 app-config: ingredient-service,taco-service,order-service,user-service
 cluster-name-expression: "'default'"

Notice that in addition to turbine.app-config, you also set turbine.cluster-name-
expression to 'default'. This indicates that Turbine should collect all of the aggre-
gated streams under a cluster whose name is default. It’s important to set this cluster
name or else the Turbine stream won’t contain any stream data aggregated from the
specified applications.

 Now you can fire up the Turbine server application and point your Hystrix dash-
board at the stream at http://localhost:8989/turbine.stream. All the circuit breakers
from all of the specified applications will be displayed in the circuit breaker dash-
board. Figure 15.6 shows how this might look.

Now that the Hystrix dashboard is displaying health information for all the circuit
breakers in all of your microservices—thanks to Turbine—you get a one-stop shop for
monitoring the health of the circuit breakers in the Taco Cloud application.

Figure 15.6 The Hystrix dashboard shows all circuit breakers from all services when pointed at an aggregated
Turbine stream.

http://localhost:8989/turbine.stream

391Summary
Summary
 The circuit breaker pattern enables graceful failure handling.
 Hystrix implements the circuit breaker pattern, enabling fallback behavior

when a method fails or is too slow.
 Each circuit breaker provided by Hystrix publishes metrics in a stream of data

for purposes of monitoring the health of an application.
 The Hystrix stream can be consumed by the Hystrix dashboard, a web applica-

tion that visualizes circuit breaker metrics.
 Turbine aggregates multiple Hystrix streams from multiple applications into a

single stream that can be visualized together in the Hystrix dashboard.

Part 5

Deployed Spring

In part 5, you’ll ready an application for production and see how to deploy it.
Chapter 16 introduces the Spring Boot Actuator, an extension to Spring Boot
that exposes the internals of a running Spring application as REST endpoints
and JMX MBeans. In chapter 17 you’ll see how to use the Spring Boot Admin to
put a user-friendly browser-based administrative application on top of the Actua-
tor. You’ll see how to register client applications with and secure the Admin
Server. Chapter 18 discusses how to expose and consume Spring beans as JMX
MBeans. Finally, in chapter 19 you’ll see how to deploy your Spring application
in a variety of production environments. Anyone who has deployed a Java-based
application may think this is obvious, but there are some features of Spring Boot
and related Spring projects that make deploying Spring boot applications unique.

Working with
 Spring Boot Actuator
Have you ever tried to guess what’s inside a wrapped gift? You shake it, weigh it, and
measure it. And you might even have a solid idea as to what’s inside. But until you
open it up, there’s no way of knowing for sure.

 A running application is kind of like a wrapped gift. You can poke at it and
make reasonable guesses as to what’s going on under the covers. But how can you
know for sure? If only there were some way that you could peek inside a running
application, see how it’s behaving, check on its health, and maybe even trigger
operations that influence how it runs!

 In this chapter, we’re going to explore Spring Boot’s Actuator. Actuator offers
production-ready features such as monitoring and metrics to Spring Boot applica-
tions. Actuator’s features are provided by way of several endpoints, which are made
available over HTTP as well as through JMX MBeans. This chapter focuses primar-
ily on HTTP endpoints, saving JMX endpoints for chapter 19.

This chapter covers
 Enabling Actuator in Spring Boot projects

 Exploring Actuator endpoints

 Customizing Actuator

 Securing Actuator
395

396 CHAPTER 16 Working with Spring Boot Actuator
16.1 Introducing Actuator
In a machine, an actuator is a component that’s responsible for controlling and mov-
ing a mechanism. In a Spring Boot application, the Spring Boot Actuator plays that
same role, enabling us to see inside of a running application and, to some degree,
control how the application behaves.

 Using endpoints exposed by Actuator, we can ask things about the internal state of
a running Spring Boot application:

 What configuration properties are available in the application environment?
 What are the logging levels of various packages in the application?
 How much memory is being consumed by the application?
 How many times has a given HTTP endpoint been requested?
 What is the health of the application and any external services it coordinates with?

To enable Actuator in a Spring Boot application, you simply need to add Actuator’s
starter dependency to your build. In any Spring Boot application Maven pom.xml file,
the following <dependency> entry does the trick:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

Once the Actuator starter is part of the project build, the application will be equipped
with several out-of-the-box Actuator endpoints, including those described in table 16.1.

Table 16.1 Actuator endpoints for peeking inside and manipulating the state of a running Spring Boot
application

HTTP
method

Path Description
Enabled by

default?

GET /auditevents Produces a report of any audit events that have
been fired.

No

GET /beans Describes all the beans in the Spring application
context.

No

GET /conditions Produces a report of autoconfiguration conditions
that either passed or failed, leading to the beans
created in the application context.

No

GET /configprops Describes all configuration properties along with
the current values.

No

GET, POST,
DELETE

/env Produces a report of all property sources and their
properties available to the Spring application.

No

GET /env/{toMatch} Describes the value of a single environment property. No

GET /health Returns the aggregate health of the application
and (possibly) the health of external dependent
applications.

Yes

397Introducing Actuator
In addition to HTTP-based endpoints, all of the Actuator endpoints in table 16.1, with
the lone exception of /heapdump, are also exposed as JMX MBeans. We’ll look at the
JMX side of Actuator in chapter 19.

16.1.1 Configuring Actuator’s base path

By default, the paths for all the endpoints shown in table 16.1 are prefixed with /actu-
ator. This mean that, for example, if you wish to retrieve health information about
your application from Actuator, then issuing a GET request for /actuator/health will
return the information you need.

 The Actuator prefix path can be changed by setting the management.endpoint
.web.base-path property. For example, if you’d rather the prefix be /management,
you would set the management.endpoints.web.base-path property like this:

management:
 endpoints:
 web:
 base-path: /management

With this property set as shown, you’d need to make a GET request for /manage-
ment/health to obtain the application’s health information.

GET /heapdump Downloads a heap dump. No

GET /httptrace Produces a trace of the most recent 100 requests. No

GET /info Returns any developer-defined information about
the application.

Yes

GET /loggers Produces a list of packages in the application along
with their configured and effective logging levels.

No

GET, POST /loggers/{name} Returns the configured and effective logging level
of a given logger. The effective logging level can be
set with a POST request.

No

GET /mappings Produces a report of all HTTP mappings and their
corresponding handler methods.

No

GET /metrics Returns a list of all metrics categories. No

GET /metrics/{name} Returns a multidimensional set of values for a
given metric.

No

GET /scheduledtasks Lists all scheduled tasks. No

GET /threaddump Returns a report of all application threads. No

Table 16.1 Actuator endpoints for peeking inside and manipulating the state of a running Spring Boot
application (continued)

HTTP
method

Path Description
Enabled by

default?

398 CHAPTER 16 Working with Spring Boot Actuator
16.1.2 Enabling and disabling Actuator endpoints

You may have noticed that only the /health and /info endpoints are enabled by default.
Most Actuator endpoints carry sensitive information and should be secured. You can
use Spring Security to lock down Actuator, but because Actuator isn’t secured on its
own, most of the endpoints are disabled by default, requiring you to opt in for the
endpoints you wish to expose.

 Two configuration properties, management.endpoints.web.exposure.include and
management.endpoints.web.exposure.exclude, can be used to control which end-
points are exposed. Using management.endpoints.web.exposure.include, you can
specify which endpoints you want to expose. For example, if you wish to expose only
the /health, /info, /beans, and /conditions endpoints, you can specify that with the
following configuration:

management:
 endpoints:
 web:
 exposure:
 include: health,info,beans,conditions

The management.endpoints.web.exposure.include property also accepts an asterisk
(*) as a wildcard to indicate that all Actuator endpoints should be exposed:

management:
 endpoints:
 web:
 exposure:
 include: '*'

If you want to expose all but a few endpoints, it’s typically easier to include them all
with a wildcard and then explicitly exclude a few. For example, to expose all Actua-
tor endpoints except for /threaddump and /heapdump, you could set both the
management.endpoints.web.exposure.include and management.endpoints.web

.exposure.exclude properties like this:

management:
 endpoints:
 web:
 exposure:
 include: '*'
 exclude: threaddump,heapdump

Should you decide to expose more than /health and /info, it’s probably a good idea
to configure Spring Security to restrict access to the other endpoints. We’ll look at
how to secure Actuator endpoints in section 16.4. For now, though, let’s look at how
you can consume the HTTP endpoints exposed by Actuator.

399Consuming Actuator endpoints
16.2 Consuming Actuator endpoints
Actuator can bestow a veritable treasure trove of interesting and useful information
about a running application by way of the HTTP endpoints listed in table 16.1. As
HTTP endpoints, these can be consumed like any REST API, using whatever HTTP
client you wish, including Spring’s RestTemplate and WebClient, from a browser-
based JavaScript application, or simply with the curl command-line client.

 For the sake of exploring Actuator endpoints, you’ll use the curl command-line
client in this chapter. In chapter 17, I’ll introduce you to Spring Boot Admin, which
layers a user-friendly web application on top of an application’s Actuator endpoints.

 To get some idea of what endpoints Actuator has to offer, a GET request to Actua-
tor’s base path will provide HATEOAS links for each of the endpoints. Using curl to
make a request to /actuator, you might get a response something like this (abridged
to save space):

$ curl localhost:8081/actuator
{
 "_links": {
 "self": {
 "href": "http://localhost:8081/actuator",
 "templated": false
 },
 "auditevents": {
 "href": "http://localhost:8081/actuator/auditevents",
 "templated": false
 },
 "beans": {
 "href": "http://localhost:8081/actuator/beans",
 "templated": false
 },
 "health": {
 "href": "http://localhost:8081/actuator/health",
 "templated": false
 },
 ...
 }
}

Because different libraries may contribute additional Actuator endpoints of their own,
and because some endpoints may be not be exported, the actual results may vary from
application to application.

 In any event, the set of links returned from Actuator’s base path serve as a map to
all that Actuator has to offer. Let’s begin our exploration of the Actuator landscape
with the two endpoints that provide essential information about an application: the
/health and /info endpoints.

400 CHAPTER 16 Working with Spring Boot Actuator
16.2.1 Fetching essential application information

At the beginning of a typical visit to the doctor, we’re usually asked two very basic ques-
tions: who are you and how do you feel? Although the words chosen by the doctor or
nurse may be different, they ultimately want to know a little bit about the person
they’re treating and why you’re seeing them.

 Those same essential questions are what Actuator’s /info and /health endpoints
answer for a Spring Boot application. The /info endpoint tells you a little about the
application, and the /health endpoint tells you how healthy the application is.

ASKING FOR INFORMATION ABOUT AN APPLICATION

To learn a little bit of information about a running Spring Boot application, you can
ask the /info endpoint. By default, however, the /info endpoint isn’t very informative.
Here’s what you might see when you make a request for it using curl:

$ curl localhost:8081/actuator/info
{}

While it may seem that the /info endpoint isn’t very useful, it’s best to think of it as a
clean canvas on which you may paint any information you’d like to present.

 There are several ways to supply information for the /info endpoint to return, but
the most straightforward way is to create one or more configuration properties where
the property name is prefixed with info.. For example, suppose that you want the
response from the /info endpoint to include support contact information, including
an email address and phone number. To do that, you can configure the following
properties in the application.yml file:

info:
 contact:
 email: support@tacocloud.com
 phone: 822-625-6831

Neither the info.contact.email property nor the info.contact.phone property
have any special meaning to Spring Boot or any bean that may be in the application
context. However, by virtue of the fact that it’s prefixed with info., the /info endpoint
will now echo the value of the property in its response:

{
 "contact": {
 "email": "support@tacocloud.com",
 "phone": "822-625-6831"
 }
}

In section 16.3.1, we’ll look at a few other ways to populate the /info endpoint with
useful information about an application.

401Consuming Actuator endpoints
INSPECTING APPLICATION HEALTH

Issuing an HTTP GET request for the /health endpoint results in a simple JSON
response with the health status of your application. For example, here’s what you
might see when using curl to fetch the /health endpoint:

$ curl localhost:8080/actuator/health
{"status":"UP"}

You may be wondering how useful it is to have an endpoint that reports that the appli-
cation is UP. What would it report if the application were down?

 As it turns out, the status shown here is an aggregate status of one or more health
indicators. Health indicators report the health of external systems that the application
interacts with, such as databases, message brokers, and even Spring Cloud compo-
nents such as Eureka and the Config Server. The health status of each indicator could
be one of the following:

 UP—The external system is up and is reachable.
 DOWN—The external system is down or unreachable.
 UNKNOWN—The status of the external system is unclear.
 OUT_OF_SERVICE—The external system is reachable but is currently unavailable.

The health statuses of all health indicators are then aggregated into the application’s
overall health status, applying the following rules:

 If all health indicators are UP, then the application health status is UP.
 If one or more health indicators are DOWN, then the application health status

is DOWN.
 If one or more health indicators are OUT_OF_SERVICE, then the application health

status is OUT_OF_SERVICE.
 UNKNOWN health statuses are ignored and aren’t rolled into the application’s

aggregate health.

By default, only the aggregate status is returned in response to a request for /health.
You can configure the management.endpoint.health.show-details property, how-
ever, to show the full details of all health indicators:

management:
 endpoint:
 health:
 show-details: always

The management.endpoint.health.show-details property defaults to never, but it
can also be set to always to always show the full details of all health indicators, or to
when-authorized to only show the full details when the requesting client is fully
authorized.

402 CHAPTER 16 Working with Spring Boot Actuator
 Now when you issue a GET request to the /health endpoint, you get full health
indicator details. Here’s a sample of what that might look like for a service that inte-
grates with the Mongo document database:

{
 "status": "UP",
 "details": {
 "mongo": {
 "status": "UP",
 "details": {
 "version": "3.2.2"
 }
 },
 "diskSpace": {
 "status": "UP",
 "details": {
 "total": 499963170816,
 "free": 177284784128,
 "threshold": 10485760
 }
 }
 }
}

All applications, regardless of any other external dependencies, will have a health
indicator for the filesystem named diskSpace. The diskSpace health indicator indi-
cates the health of the filesystem (hopefully, UP), which is determined by how much
free space is remaining. If the available disk space drops below the threshold, it will
report a status of DOWN.

 In the preceding example, there’s also a mongo health indicator, which reports the
status of the Mongo database. Details shown include the Mongo database version.

 Autoconfiguration ensures that only health indicators that are pertinent to an
application will appear in the response from the /health endpoint. In addition to the
mongo and diskSpace health indicators, Spring Boot also provides health indicators
for several other external databases and systems, including these:

 Cassandra
 Config Server
 Couchbase
 Eureka
 Hystrix
 JDBC data sources
 Elasticsearch
 InfluxDB
 JMS message brokers
 LDAP
 Email servers

403Consuming Actuator endpoints
 Neo4j
 Rabbit message brokers
 Redis
 Solr

Additionally, third-party libraries may contribute their own health indicators. We’ll
look at how to write a custom health indicator in section 16.3.2.

 As you’ve seen, the /health and /info endpoints provide general information
about the running application. Meanwhile, there are other Actuator endpoints that
provide insight into the application configuration. Let’s look at how Actuator can
show how an application is configured.

16.2.2 Viewing configuration details

Beyond receiving general information about an application, it can be enlightening to
understand how an application is configured. What beans are in the application con-
text? What autoconfiguration conditions passed or failed? What environment proper-
ties are available to the application? How are HTTP requests mapped to controllers?
What logging level are one or more packages or classes set to?

 These questions are answered by Actuator’s /beans, /conditions, /env, /config-
props, /mappings, and /loggers endpoints. And in some cases, such as /env and /log-
gers, you can even adjust the configuration of a running application on the fly. We’ll
look at how each of these endpoints gives insight into the configuration of a running
application, starting with the /beans endpoint.

GETTING A BEAN WIRING REPORT

The most essential endpoint for exploring the Spring application context is the /beans
endpoint. This endpoint returns a JSON document describing every single bean in the
application context, its Java type, and any of the other beans it’s injected with.

 A complete response from a GET request to /beans could easily fill this entire
chapter. Instead of examining the complete response from /beans, let’s consider the
following snippet, which focuses on a single bean entry:

{
 "contexts": {
 "application-1": {
 "beans": {
...
 "ingredientsController": {
 "aliases": [],
 "scope": "singleton",
 "type": "tacos.ingredients.IngredientsController",
 "resource": "file [/Users/habuma/Documents/Workspaces/
 TacoCloud/ingredient-service/target/classes/tacos/
 ingredients/IngredientsController.class]",
 "dependencies": [
 "ingredientRepository"

404 CHAPTER 16 Working with Spring Boot Actuator
]
 },
...
 },
 "parentId": null
 }
 }
}

At the root of the response is the contexts element, which includes one sub-element
for each Spring application context in the application. Within each application con-
text is a beans element that holds details for all the beans in the application context.

 In the preceding example, the bean shown is the one whose name is ingredients-
Controller. You can see that it has no aliases, is scoped as a singleton, and is of type
tacos.ingredients.IngredientsController. Moreover, the resource property gives
the path to the class file that defines the bean. And the dependencies property lists all
other beans that are injected into the given bean. In this case, the ingredients-
Controller bean is injected with a bean whose name is ingredientRepository.

EXPLAINING AUTOCONFIGURATION

As you’ve seen, autoconfiguration is one of the most powerful things that Spring
Boot offers. Sometimes, however, you may wonder why something has been auto-
configured. Or you may expect something to have been autoconfigured and are left
wondering why it hasn’t been. In that case, you can make a GET request to /condi-
tions to get an explanation of what took place in autoconfiguration.

 The autoconfiguration report returned from /conditions is divided into three
parts: positive matches (conditional configuration that passed), negative matches
(conditional configuration that failed), and unconditional classes. The following snip-
pet from the response to a request to /conditions shows an example of each section:

{
 "contexts": {
 "application-1": {
 "positiveMatches": {
...
 "MongoDataAutoConfiguration#mongoTemplate": [
 {
 "condition": "OnBeanCondition",
 "message": "@ConditionalOnMissingBean (types:
 org.springframework.data.mongodb.core.MongoTemplate;
 SearchStrategy: all) did not find any beans"
 }
],
...
 },
 "negativeMatches": {
...
 "DispatcherServletAutoConfiguration": {
 "notMatched": [

405Consuming Actuator endpoints
 {
 "condition": "OnClassCondition",
 "message": "@ConditionalOnClass did not find required
 class 'org.springframework.web.servlet.
 DispatcherServlet'"
 }
],
 "matched": []
 },
...
 },
 "unconditionalClasses": [
...
 "org.springframework.boot.autoconfigure.context.
 ConfigurationPropertiesAutoConfiguration",
...
]
 }
 }
}

Under the positiveMatches section, you see that a MongoTemplate bean was config-
ured by autoconfiguration because one didn’t already exist. The autoconfiguration
that caused this includes a @ConditionalOnMissingBean annotation, which passes off
the bean to be configured if it hasn’t already been explicitly configured. But in this
case, no beans of type MongoTemplate were found, so autoconfiguration stepped in
and configured one.

 Under negativeMatches, Spring Boot autoconfiguration considered configuring a
DispatcherServlet. But the @ConditionalOnClass conditional annotation failed
because DispatcherServlet couldn’t be found.

 Finally, a ConfigurationPropertiesAutoConfiguration bean was configured
unconditionally, as seen under the unconditionalClasses section. Configuration prop-
erties are foundational to how Spring Boot operates, so any configuration pertaining
to configuration properties should be autoconfigured without any conditions.

INSPECTING THE ENVIRONMENT AND CONFIGURATION PROPERTIES

In addition to knowing how your application beans are wired together, you might also
be interested in learning what environment properties are available and what configu-
ration properties were injected on the beans.

 When you issue a GET request to the /env endpoint, you’ll receive a rather
lengthy response that includes properties from all property sources in play in the
Spring application. This includes properties from environment variables, JVM system
properties, application.properties and application.yml files, and even the Spring
Cloud Config Server (if the application is a client of the Config Server).

 The following listing shows a greatly abridged example of the kind of response
you might get from the /env endpoint, to give you some idea of the kind of informa-
tion it provides.

406 CHAPTER 16 Working with Spring Boot Actuator
$ curl localhost:8081/actuator/env
{
 "activeProfiles": [
 "development"
],
 "propertySources": [
...
 {
 "name": "systemEnvironment",
 "properties": {
 "PATH": {
 "value": "/usr/bin:/bin:/usr/sbin:/sbin",
 "origin": "System Environment Property \"PATH\""
 },
...
 "HOME": {
 "value": "/Users/habuma",
 "origin": "System Environment Property \"HOME\""
 }
 }
 },
 {
 "name": "applicationConfig: [classpath:/application.yml]",
 "properties": {
 "spring.application.name": {
 "value": "ingredient-service",
 "origin": "class path resource [application.yml]:3:11"
 },
 "server.port": {
 "value": 8081,
 "origin": "class path resource [application.yml]:9:9"
 },
...
 }
 },
...
]
}

Although the full response from /env provides even more information, what’s
shown in listing 16.1 contains a few noteworthy elements. First, notice that near the
top of the response is a field named activeProfiles. In this case, it indicates that
the development profile is active. If any other profiles were active, those would be
listed as well.

 Next, the propertySources field is an array containing an entry for every prop-
erty source in the Spring application environment. In listing 16.1, only the system-
Environment and an applicationConfig property source referencing the application
.yml file are shown.

Listing 16.1 The results from the /env endpoint

407Consuming Actuator endpoints
 Within each property source is a listing of all properties provided by that source,
paired with their values. In the case of the application.yml property source, the origin
field for each property tells exactly where the property is set, including the line and
column within application.yml.

 The /env endpoint can also be used to fetch a specific property when that prop-
erty’s name is given as the second element of the path. For example, to examine the
server.port property, submit a GET request for /env/server.port, as shown here:

$ curl localhost:8081/actuator/env/server.port
{
 "property": {
 "source": "systemEnvironment", "value": "8081"
 },
 "activeProfiles": ["development"],
 "propertySources": [
 { "name": "server.ports" },
 { "name": "mongo.ports" },
 { "name": "systemProperties" },
 { "name": "systemEnvironment",
 "property": {
 "value": "8081",
 "origin": "System Environment Property \"SERVER_PORT\""
 }
 },
 { "name": "random" },
 { "name": "applicationConfig: [classpath:/application.yml]",
 "property": {
 "value": 0,
 "origin": "class path resource [application.yml]:9:9"
 }
 },
 { "name": "springCloudClientHostInfo" },
 { "name": "refresh" },
 { "name": "defaultProperties" },
 { "name": "Management Server" }
]
}

As you can see, all property sources are still represented, but only those that set the spec-
ified property will contain any additional information. In this case, both the system-
Environment property source and the application.yml property source had values for
the server.port property. Because the systemEnvironment property source takes
precedence over any of the property sources listed below it, its value of 8081 wins. The
winning value is reflected near the top under the property field.

 The /env endpoint can be used for more than just reading property values. By sub-
mitting a POST request to the /env endpoint, along with a JSON document with a
name and value field, you can also set properties in the running application. For
example, to set a property named tacocloud.discount.code to TACOS1234, you can
use curl to submit the POST request at the command line like this:

408 CHAPTER 16 Working with Spring Boot Actuator
$ curl localhost:8081/actuator/env \
 -d'{"name":"tacocloud.discount.code","value":"TACOS1234"}' \
 -H "Content-type: application/json"
{"tacocloud.discount.code":"TACOS1234"}

After submitting the property, the newly set property and its value are returned in
the response. Later, should you decide you no longer need that property, you can
submit a DELETE request to the /env endpoint to delete all properties created
through that endpoint:

$ curl localhost:8081/actuator/env -X DELETE
{"tacocloud.discount.code":"TACOS1234"}

As useful as setting properties through Actuator’s API can be, it’s important to be
aware that any properties set with a POST request to the /env endpoint only apply
to the application instance receiving the request, are temporary, and will be lost
when the application restarts.

NAVIGATING HTTP REQUEST MAPPINGS

Although Spring MVC’s (and Spring WebFlux’s) programming model makes it easy to
handle HTTP requests by simply annotating methods with request-mapping annota-
tions, it can sometimes be challenging to get a big-picture understanding of all the
kinds of HTTP requests that an application can handle, and what kinds of compo-
nents handle those requests.

 Actuator’s /mappings endpoint offers a one-stop view of every HTTP request
handler in an application, whether it be from a Spring MVC controller or one of
Actuator’s own endpoints. To get a complete list of all the endpoints in a Spring
Boot application, make a GET request to the /mappings endpoint, and you might
receive something that’s a little bit like the abridged response shown next.

$ curl localhost:8081/actuator/mappings | jq
{
 "contexts": {
 "application-1": {
 "mappings": {
 "dispatcherHandlers": {
 "webHandler": [
...
 {
 "predicate": "{[/ingredients],methods=[GET]}",
 "handler": "public

reactor.core.publisher.Flux<tacos.ingredients.Ingredient>
tacos.ingredients.IngredientsController.allIngredients()",

 "details": {
 "handlerMethod": {
 "className": "tacos.ingredients.IngredientsController",
 "name": "allIngredients",

Listing 16.2 HTTP mappings as shown by the /mappings endpoint

409Consuming Actuator endpoints
 "descriptor": "()Lreactor/core/publisher/Flux;"
 },
 "handlerFunction": null,
 "requestMappingConditions": {
 "consumes": [],
 "headers": [],
 "methods": [
 "GET"
],
 "params": [],
 "patterns": [
 "/ingredients"
],
 "produces": []
 }
 }
 },
...
]
 }
 },
 "parentId": "application-1"
 },
 "bootstrap": {
 "mappings": {
 "dispatcherHandlers": {}
 },
 "parentId": null
 }
 }
}

For the sake of brevity, this response has been abridged to only show a single request
handler. Specifically, it shows that GET requests for /ingredients will be handled by
the allIngredients() method of IngredientsController.

MANAGING LOGGING LEVELS

Logging is an important feature of any application. Logging can provide a means of
auditing as well as a crude means of debugging.

 Setting logging levels can be quite a balancing act. If you set the logging level to be
too verbose, there may be too much noise in the logs, and finding useful information
may be difficult. On the other hand, if you set logging levels to be too slack, the logs
may not be of much value in understanding what an application is doing.

 Logging levels are typically applied on a package-by-package basis. If you’re ever
wondering what logging levels are set in your running Spring Boot application, you
can issue a GET request to the /loggers endpoint. The following JSON shows an
excerpt from a response to /loggers:

{
 "levels": ["OFF", "ERROR", "WARN", "INFO", "DEBUG", "TRACE"],
 "loggers": {
 "ROOT": {

410 CHAPTER 16 Working with Spring Boot Actuator
 "configuredLevel": "INFO", "effectiveLevel": "INFO"
 },
...
 "org.springframework.web": {
 "configuredLevel": null, "effectiveLevel": "INFO"
 },
...
 "tacos": {
 "configuredLevel": null, "effectiveLevel": "INFO"
 },
 "tacos.ingredients": {
 "configuredLevel": null, "effectiveLevel": "INFO"
 },
 "tacos.ingredients.IngredientServiceApplication": {
 "configuredLevel": null, "effectiveLevel": "INFO"
 }
 }
}

The response starts off with a list of all valid logging levels. After that, the loggers
element lists logging-level details for each package in the application. The configured-
Level property shows the logging level that has been explicitly configured (or null
if it hasn’t been explicitly configured). The effectiveLevel property gives the effec-
tive logging level, which may have been inherited from a parent package or from the
root logger.

 Although this excerpt only shows logging levels for the root logger and four pack-
ages, the complete response will include logging-level entries for every single package
in the application, including those for libraries that are in use. If you’d rather focus
your request on a specific package, you can specify the package name as an extra path
component in the request.

 For example, if you just want to know what logging levels are set for the taco-
cloud.ingredients package, you can make a request to /loggers/tacos.ingredients:

{
 "configuredLevel": null,
 "effectiveLevel": "INFO"
}

Aside from returning the logging levels for the application packages, the /loggers
endpoint also allows you to change the configured logging level by issuing a POST
request. For example, suppose you want to set the logging level of the taco-
cloud.ingredients package to DEBUG. The following curl command will achieve that:

$ curl localhost:8081/actuator/loggers/tacos/ingredients \
 -d'{"configuredLevel":"DEBUG"}' \
 -H"Content-type: application/json"

Now that the logging level has been changed, you can issue a GET request to /loggers/
tacos/ingredients to see that it has been changed:

411Consuming Actuator endpoints
{
 "configuredLevel": "DEBUG",
 "effectiveLevel": "DEBUG"
}

Notice that where the configuredLevel was previously null, it’s now DEBUG. That
change carries over to the effectiveLevel as well. But what’s most important is that if
any code in that package logs anything at debug level, the log files will include that
debug-level information.

16.2.3 Viewing application activity

It can be useful to keep an eye on activity in a running application, including the kinds
of HTTP requests that the application is handling and the activity of all of the
threads in the application. For this, Actuator provides the /httptrace, /threaddump,
and /heapdump endpoints.

 The /heapdump endpoint is perhaps the most difficult Actuator endpoint to
describe in any detail. Put succinctly, it downloads a gzip-compressed HPROF heap
dump file that can be used to track down memory or thread issues. For the sake of
space and because use of the heap dump is a rather advanced feature, I’m going to
limit coverage of the /heapdump endpoint to this paragraph.

TRACING HTTP ACTIVITY

The /httptrace endpoint reports details on the most recent 100 requests handled by
an application. Details included are the request method and path, a timestamp indi-
cating when the request was handled, headers from both the request and the
response, and the time taken handling the request.

 The following snippet of JSON shows a single entry from the response of the
/httptrace endpoint:

{
 "traces": [
 {
 "timestamp": "2018-06-03T23:41:24.494Z",
 "principal": null,
 "session": null,
 "request": {
 "method": "GET",
 "uri": "http://localhost:8081/ingredients",
 "headers": {
 "Host": ["localhost:8081"],
 "User-Agent": ["curl/7.54.0"],
 "Accept": ["*/*"]
 },
 "remoteAddress": null
 },
 "response": {
 "status": 200,
 "headers": {
 "Content-Type": ["application/json;charset=UTF-8"]

412 CHAPTER 16 Working with Spring Boot Actuator
 }
 },
 "timeTaken": 4
 },
...
]
}

Although this information may be useful for debugging purposes, it’s even more inter-
esting when the trace data is tracked over time, providing insight into how busy the
application was at any given time as well as how many requests were successful com-
pared to how many failed, based on the value of the response status. In chapter 17,
you’ll see how Spring Boot Admin captures this information into a running graph that
visualizes the HTTP trace information over a period of time.

MONITORING THREADS

In addition to HTTP request tracing, thread activity can also be useful in determining
what’s going on in a running application. The /threaddump endpoint produces a
snapshot of current thread activity. The following snippet from a /threaddump response
gives a taste of what this endpoint provides:

{
 "threadName": "reactor-http-nio-8",
 "threadId": 338,
 "blockedTime": -1,
 "blockedCount": 0,
 "waitedTime": -1,
 "waitedCount": 0,
 "lockName": null,
 "lockOwnerId": -1,
 "lockOwnerName": null,
 "inNative": true,
 "suspended": false,
 "threadState": "RUNNABLE",
 "stackTrace": [
 {
 "methodName": "kevent0",
 "fileName": "KQueueArrayWrapper.java",
 "lineNumber": -2,
 "className": "sun.nio.ch.KQueueArrayWrapper",
 "nativeMethod": true
 },
 {
 "methodName": "poll",
 "fileName": "KQueueArrayWrapper.java",
 "lineNumber": 198,
 "className": "sun.nio.ch.KQueueArrayWrapper",
 "nativeMethod": false
 },
...
],

413Consuming Actuator endpoints
 "lockedMonitors": [
 {
 "className": "io.netty.channel.nio.SelectedSelectionKeySet",
 "identityHashCode": 1039768944,
 "lockedStackDepth": 3,
 "lockedStackFrame": {
 "methodName": "lockAndDoSelect",
 "fileName": "SelectorImpl.java",
 "lineNumber": 86,
 "className": "sun.nio.ch.SelectorImpl",
 "nativeMethod": false
 }
 },
...
],
 "lockedSynchronizers": [],
 "lockInfo": null
}

The complete thread dump report includes every thread in the running application.
To save space, the thread dump here shows an abridged entry for a single thread. As
you can see, it includes details regarding the blocking and locking status of the
thread, among other thread specifics. There’s also a stack trace that gives some insight
into which area of the code the thread is spending time on.

 Since the /threaddump endpoint only provides a snapshot of thread activity at the
time it was requested, it can be difficult to get a full picture of how threads are behav-
ing over time. In chapter 17, you’ll see how Spring Boot Admin can monitor the
/threaddump endpoint in a live view.

16.2.4 Tapping runtime metrics

The /metrics endpoint is capable of reporting all manner of metrics produced by a
running application, including metrics concerning memory, processor, garbage col-
lection, and HTTP requests. There are over two dozen categories of metrics provided
out of the box by Actuator, as evidenced by the list of metrics categories returned
when issuing a GET request to /metrics:

$ curl localhost:8081/actuator/metrics | jq
{
 "names": [
 "jvm.memory.max",
 "process.files.max",
 "jvm.gc.memory.promoted",
 "http.server.requests",
 "system.load.average.1m",
 "jvm.memory.used",
 "jvm.gc.max.data.size",
 "jvm.memory.committed",
 "system.cpu.count",
 "logback.events",
 "jvm.buffer.memory.used",
 "jvm.threads.daemon",

414 CHAPTER 16 Working with Spring Boot Actuator
 "system.cpu.usage",
 "jvm.gc.memory.allocated",
 "jvm.threads.live",
 "jvm.threads.peak",
 "process.uptime",
 "process.cpu.usage",
 "jvm.classes.loaded",
 "jvm.gc.pause",
 "jvm.classes.unloaded",
 "jvm.gc.live.data.size",
 "process.files.open",
 "jvm.buffer.count",
 "jvm.buffer.total.capacity",
 "process.start.time"
]
}

There are so many metrics covered that it would be impossible to discuss them all in
any meaningful way in this chapter. Instead, let’s focus on one category of metrics,
http.server.requests, as an example of how to consume the /metrics endpoint.

 If instead of simply requesting /metrics, you were to issue a GET request for
/metrics/{METRICS CATEGORY}, you’d receive more detail about the metrics for that
category. In the case of http.server.requests, a GET request for /metrics/ http.server
.requests returns data that looks like the following:

$ curl localhost:8081/actuator/metrics/http.server.requests
{
 "name": "http.server.requests",
 "measurements": [
 { "statistic": "COUNT", "value": 2103 },
 { "statistic": "TOTAL_TIME", "value": 18.086334315 },
 { "statistic": "MAX", "value": 0.028926313 }
],
 "availableTags": [
 { "tag": "exception",
 "values": ["ResponseStatusException",
 "IllegalArgumentException", "none"] },
 { "tag": "method", "values": ["GET"] },
 { "tag": "uri",
 "values": [
 "/actuator/metrics/{requiredMetricName}",
 "/actuator/health", "/actuator/info", "/ingredients",
 "/actuator/metrics", "/**"] },
 { "tag": "status", "values": ["404", "500", "200"] }
]
}

The most significant portion of this response is the measurements section, which
includes all the metrics for the requested category. In this case, it reports that there have
been 2,103 HTTP requests. The total time spent handling those requests is 18.086334315
seconds, and the maximum time spent processing any request is 0.028926313 seconds.

415Consuming Actuator endpoints
 Those generic metrics are interesting, but you can narrow down the results further
by using the tags listed under availableTags. For example, you know that there have
been 2,103 requests, but what’s unknown is how many of them resulted in an HTTP
200 versus an HTTP 404 or HTTP 500 response status. Using the status tag, you can
get metrics for all requests resulting in an HTTP 404 status like this:

$ curl localhost:8081/actuator/metrics/http.server.requests? \
 tag=status:404
{
 "name": "http.server.requests",
 "measurements": [
 { "statistic": "COUNT", "value": 31 },
 { "statistic": "TOTAL_TIME", "value": 0.522061212 },
 { "statistic": "MAX", "value": 0 }
],
 "availableTags": [
 { "tag": "exception",
 "values": ["ResponseStatusException", "none"] },
 { "tag": "method", "values": ["GET"] },
 { "tag": "uri",
 "values": [
 "/actuator/metrics/{requiredMetricName}", "/**"] }
]
}

By specifying the tag name and value with the tag request attribute, you now see met-
rics specifically for requests that resulted in an HTTP 404 response. This shows that
there were 31 requests resulting in a 404, and it took 0.522061212 seconds to serve
them all. Moreover, it’s clear that some of the failing requests were GET requests for
/actuator/metrics/{requiredMetricsName} (although it’s unclear what the {required-
MetricsName} path variable resolved to). And some were for some other path, cap-
tured by the /** wildcard path.

 Hmmm ... What if you want to know how many of those HTTP 404 responses were
for the /** path? All you need to do to filter this further is to specify the uri tag in the
request, like this:

% curl "localhost:8081/actuator/metrics/http.server.requests? \
 tag=status:404&tag=uri:/**"
{
 "name": "http.server.requests",
 "measurements": [
 { "statistic": "COUNT", "value": 30 },
 { "statistic": "TOTAL_TIME", "value": 0.519791548 },
 { "statistic": "MAX", "value": 0 }
],
 "availableTags": [
 { "tag": "exception", "values": ["ResponseStatusException"] },
 { "tag": "method", "values": ["GET"] }
]
}

416 CHAPTER 16 Working with Spring Boot Actuator
Now you can see that there were 30 requests for some path that matched /** that
resulted in an HTTP 404 response, and it took a total of 0.519791548 seconds to han-
dle those requests.

 You’ll also notice that as you refine the request, the available tags are more limited.
The tags offered are only those that match the requests captured by the displayed met-
rics. In this case, the exception and method tags each only have a single value; it’s
obvious that all 30 of the requests were GET requests that resulted in a 404 because of
a ResponseStatusException.

 Navigating the /metrics endpoint can be a tricky business, but with a little practice,
it’s not impossible to get the data you’re looking for. In chapter 17, you’ll see how
Spring Boot Admin makes consuming data from the /metrics endpoint much easier.

 Although the information presented by Actuator endpoints offers useful insight
into the inner workings of a running Spring Boot application, they’re not well suited
for human consumption. As REST endpoints, they’re intended for consumption by
some other application, perhaps a UI. With that in mind, let’s see how you can present
Actuator information in a user-friendly web application.

16.3 Customizing Actuator
One of the greatest features of Actuator is that it can be customized to meet the spe-
cific needs of an application. A few of the endpoints themselves allow for customiza-
tion. Meanwhile, Actuator itself allows you to create custom endpoints.

 Let’s look at a few ways that Actuator can be customized, starting with ways to add
information to the /info endpoint.

16.3.1 Contributing information to the /info endpoint

As you saw in section 16.2.1, the /info endpoint starts off empty and uninformative.
But you can easily add data to it by creating properties that are prefixed with info..

 While prefixing properties with info. is a very easy way to get custom data into the
/info endpoint, it’s not the only way. Spring Boot offers an interface named Info-
Contributor that allows you to programmatically add any information you want to the
/info endpoint response. Spring Boot even comes ready with a couple of useful imple-
mentations of InfoContributor that you’ll no doubt find useful.

 Let’s see how you can write your own InfoContributor to add some custom info to
the /info endpoint.

CREATING A CUSTOM INFO CONTRIBUTOR

Suppose you want to add some simple statistics regarding Taco Cloud to the /info
endpoint. For example, let’s say you want to include information about how many
tacos have been created. To do that, you can write a class that implements Info-
Contributor, inject it with TacoRepository, and then publish whatever count that
TacoRepository gives you as information to the /info endpoint. The next listing
shows how you might implement such a contributor.

417Customizing Actuator
package tacos.tacos;
import org.springframework.boot.actuate.info.InfoContributor;
import org.springframework.stereotype.Component;
import java.util.HashMap;
import java.util.Map;
import org.springframework.boot.actuate.info.Info.Builder;

@Component
public class TacoCountInfoContributor implements InfoContributor {
 private TacoRepository tacoRepo;

 public TacoCountInfoContributor(TacoRepository tacoRepo) {
 this.tacoRepo = tacoRepo;
 }

 @Override
 public void contribute(Builder builder) {
 long tacoCount = tacoRepo.count();
 Map<String, Object> tacoMap = new HashMap<String, Object>();
 tacoMap.put("count", tacoCount);
 builder.withDetail("taco-stats", tacoMap);
 }
}

By implementing InfoContributor, TacoCountInfoContributor is required to imple-
ment the contribute() method. This method is given a Builder object on which the
contribute() method makes a call to withDetail() to add info details. In your
implementation, you consult TacoRepository by calling its count() method to find
out how many tacos have been created. Then you put that count into a Map, which you
then give to the builder with the label taco-stats. The results of the /info endpoint
will include that count, as shown here:

{
 "taco-stats": {
 "count": 44
 }
}

As you can see, an implementation of InfoContributor is able to use whatever means
necessary to contribute information. This is in contrast to simply prefixing a property
with info., which, while simple, is limited to static values.

INJECTING BUILD INFORMATION INTO THE /INFO ENDPOINT

Spring Boot comes with a few built-in implementations of InfoContributor that auto-
matically add information to the results of the /info endpoint. Among them is Build-
InfoContributor, which adds information from the project build file into the /info
endpoint results. This includes basic information such as the project version, the time-
stamp of the build, and the host and user who performed the build.

Listing 16.3 A custom implementation of InfoContributor

418 CHAPTER 16 Working with Spring Boot Actuator
 To enable build information to be included in the results of the /info endpoint,
add the build-info goal to the Spring Boot Maven Plugin executions, as follows:

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>build-info</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

If you’re using Gradle to build your project, you can simply add the following lines to
your build.gradle file:

springBoot {
 buildInfo()
}

In either event, the build will produce a file named build-info.properties in the dis-
tributable JAR or WAR file that BuildInfoContributor will consume and contribute
to the /info endpoint. The following snippet from the /info endpoint response shows
the build information that’s contributed:

{
 "build": {
 "version": "0.0.16-SNAPSHOT",
 "artifact": "ingredient-service",
 "name": "ingredient-service",
 "group": "sia5",
 "time": "2018-06-04T00:24:04.373Z"
 }
}

This information is useful for understanding exactly which version of an application is
running and when it was built. By performing a GET request to the /info endpoint,
you’ll know whether or not you’re running the latest and greatest build of the project.

EXPOSING GIT COMMIT INFORMATION

Assuming that your project is kept in Git for source code control, you may want to
include Git commit information in the /info endpoint. To do that, you’ll need to add
the following plugin in the Maven project pom.xml:

419Customizing Actuator
<build>
 <plugins>
...
 <plugin>
 <groupId>pl.project13.maven</groupId>
 <artifactId>git-commit-id-plugin</artifactId>
 </plugin>
 </plugins>
</build>

If you’re a Gradle user, don’t worry. There’s an equivalent plugin for you to add to
your build.gradle file:

plugins {
 id "com.gorylenko.gradle-git-properties" version "1.4.17"
}

Both of these plugins do essentially the same thing: they generate a build-time artifact
named git.properties that contains all of the Git metadata for the project. A special
InfoContributor implementation discovers that file at runtime and exposes its con-
tents as part of the /info endpoint.

 In its simplest form, the Git information presented in the /info endpoint includes
the Git branch, commit hash, and timestamp that the application was built against:

{
 "git": {
 "commit": {
 "time": "2018-06-02T18:10:58Z",
 "id": "b5c104d"
 },
 "branch": "master"
 },
...
}

This information is quite definitive in describing the state of the code when the proj-
ect was built. But by setting the management.info.git.mode property to full

management:
 info:
 git:
 mode: full

you can get extremely detailed information about the Git commit that was in play
when the project was built. The following listing shows a sample of what the full Git
info might look like.

{
 "git": {
 "build": {

Listing 16.4 Full Git commit info exposed through the /info endpoint

420 CHAPTER 16 Working with Spring Boot Actuator
 "host": "DarkSide.local",
 "version": "0.0.16-SNAPSHOT",
 "time": "2018-06-02T18:11:23Z",
 "user": {
 "name": "Craig Walls",
 "email": "craig@habuma.com"
 }
 },
 "branch": "master",
 "commit": {
 "message": {
 "short": "Add Spring Boot Admin and Actuator",
 "full": "Add Spring Boot Admin and Actuator"
 },
 "id": {
 "describe": "b5c104d-dirty",
 "abbrev": "b5c104d",
 "describe-short": "b5c104d-dirty",
 "full": "b5c104d1fcbe6c2b84965ea08a330595100fd44e"
 },
 "time": "2018-06-02T18:10:58Z",
 "user": {
 "email": "craig@habuma.com",
 "name": "Craig Walls"
 }
 },
 "closest": {
 "tag": {
 "name": "",
 "commit": {
 "count": ""
 }
 }
 },
 "dirty": "true",
 "remote": {
 "origin": {
 "url": "Unknown"
 }
 },
 "tags": ""
 },
...
}

In addition to the timestamp and abbreviated Git commit hash, the full version
includes the name and email of the user who committed the code as well as the com-
mit message and other information, allowing you to pinpoint exactly what code was
used to build the project. In fact, notice that the dirty field in listing 16.4 is true,
indicating that there were some uncommitted changes in the build directory when
the project was built. It doesn’t get much more damning definitive than that!

421Customizing Actuator
16.3.2 Defining custom health indicators

Spring Boot comes with several out-of-the-box health indicators that provide health
information for many common external systems that a Spring application may inte-
grate with. But at some point, you may find that you’re interacting with some external
system that Spring Boot never anticipated, nor provided a health indicator for.

 For instance, your application may integrate with a legacy mainframe application,
and the health of your application may be affected by the health of the legacy system.
To create a custom health indicator, all you need to do is create a bean that imple-
ments the HealthIndicator interface.

 As it turns out, the Taco Cloud services have no need for a custom health indicator,
as the ones provided by Spring Boot are more than sufficient. But to demonstrate how
you can develop a custom health indicator, consider the next listing, which shows a
simple implementation of HealthIndicator in which health is determined somewhat
randomly by the time of day.

package tacos.tacos;
import java.util.Calendar;
import org.springframework.boot.actuate.health.Health;
import org.springframework.boot.actuate.health.HealthIndicator;
import org.springframework.stereotype.Component;

@Component
public class WackoHealthIndicator
 implements HealthIndicator {
 @Override
 public Health health() {
 int hour = Calendar.getInstance().get(Calendar.HOUR_OF_DAY);
 if (hour > 12) {
 return Health
 .outOfService()
 .withDetail("reason",
 "I'm out of service after lunchtime")
 .withDetail("hour", hour)
 .build();
 }

 if (Math.random() < 0.1) {
 return Health
 .down()
 .withDetail("reason", "I break 10% of the time")
 .build();
 }

 return Health
 .up()
 .withDetail("reason", "All is good!")
 .build();
 }
}

Listing 16.5 An unusual implementation of HealthIndicator

422 CHAPTER 16 Working with Spring Boot Actuator
This crazy health indicator first checks what the current time is, and if it’s after noon,
returns a health status of OUT_OF_SERVICE, with a few details explaining the reason for
that status.

 Even if it’s before lunch, there’s a 10% chance that the health indicator will report
a DOWN status, because it uses a random number to decide if it’s up or not. If the ran-
dom number is less than 0.1, the status will be reported as DOWN. Otherwise, the status
will be UP.

 Obviously, the health indicator in listing 16.5 isn’t going to be very useful in any
real-world applications. But imagine that instead of consulting the current time or a
random number, it were to make a remote call to some external system and determine
the status based on the response it receives. In that case, it would be a very useful
health indicator.

16.3.3 Registering custom metrics

In section 16.2.4, we looked at how you could navigate the /metrics endpoint to con-
sume various metrics published by Actuator, with a focus on metrics pertaining to
HTTP requests. The metrics provided by Actuator are very useful, but the /metrics
endpoint isn’t limited to only those built-in metrics.

 Ultimately, Actuator metrics are implemented by Micrometer (https://micrometer
.io/), a vendor-neutral metrics facade that makes it possible for applications to publish
any metrics they want and to display them in the third-party monitoring system of their
choice, including support for Prometheus, Datadog, and New Relic, among others.

 The most basic means of publishing metrics with Micrometer is through Microm-
eter’s MeterRegistry. In a Spring Boot application, all you need to do to publish
metrics is to inject a MeterRegistry wherever you may need to publish counters, tim-
ers, or gauges that capture the metrics for your application.

 As an example of publishing custom metrics, suppose you want to keep counters
for the numbers of tacos that have been created with different ingredients. That is,
you want to track how many tacos have been made with lettuce, or ground beef, or
flour tortillas, or any of the available ingredients. The TacoMetrics bean in the next
listing shows how you might use MeterRegistry to gather that information.

package tacos.tacos;
import java.util.List;
import

org.springframework.data.rest.core.event.AbstractRepositoryEventListener
;

import org.springframework.stereotype.Component;
import io.micrometer.core.instrument.MeterRegistry;

@Component
public class TacoMetrics extends AbstractRepositoryEventListener<Taco> {
 private MeterRegistry meterRegistry;

Listing 16.6 TacoMetrics registers metrics around taco ingredients

https://micrometer.io/
https://micrometer.io/
https://micrometer.io/

423Customizing Actuator
 public TacoMetrics(MeterRegistry meterRegistry) {
 this.meterRegistry = meterRegistry;
 }

 @Override
 protected void onAfterCreate(Taco taco) {
 List<Ingredient> ingredients = taco.getIngredients();
 for (Ingredient ingredient : ingredients) {
 meterRegistry.counter("tacocloud",
 "ingredient", ingredient.getId()).increment();
 }
 }
}

As you can see, TacoMetrics is injected through its constructor with a MeterRegistry.
It also extends AbstractRepositoryEventListener, a Spring Data class that enables
the interception of repository events and overrides the onAfterCreate() method so
that it can be notified any time a new Taco object is saved.

 Within onAfterCreate(), a counter is declared for each ingredient where the tag
name is ingredient and the tag value is equal to the ingredient ID. If a counter with
that tag already exists, it will be reused. The counter is incremented, indicating that
another taco has been created for the ingredient.

 After a few tacos have been created, you can start querying the /metrics endpoint
for ingredient counts. A GET request to /metrics/tacocloud yields some unfiltered
metric counts:

$ curl localhost:8087/actuator/metrics/tacocloud
{
 "name": "tacocloud",
 "measurements": [{ "statistic": "COUNT", "value": 84 }
],
 "availableTags": [
 {
 "tag": "ingredient",
 "values": ["FLTO", "CHED", "LETC", "GRBF",
 "COTO", "JACK", "TMTO", "SLSA"]
 }
]
}

The count value under measurements doesn’t mean much here, as it’s a sum of all the
counts for all ingredients. But let’s suppose you want to know how many tacos have
been created with flour tortillas (FLTO). All you need to do is specify the ingredient
tag with a value of FLTO:

$ curl localhost:8087/actuator/metrics/tacocloud?tag=ingredient:FLTO

{
 "name": "tacocloud",
 "measurements": [

424 CHAPTER 16 Working with Spring Boot Actuator
 { "statistic": "COUNT", "value": 39 }
],
 "availableTags": []
}

Now it’s clear that 39 tacos have had flour tortillas as one of their ingredients.

16.3.4 Creating custom endpoints

At first glance, you might think that Actuator’s endpoints are implemented as nothing
more than Spring MVC controllers. But as you’ll see in chapter 18, the endpoints are
also exposed as JMX MBeans as well as through HTTP requests. Therefore, there
must be something more to these endpoints than just a controller class.

 In fact, Actuator endpoints are defined quite differently from controllers. Instead
of a class that’s annotated with @Controller or @RestController, Actuator endpoints
are defined with classes that are annotated with @Endpoint.

 What’s more, instead of using HTTP-named annotations such as @GetMapping,
@PostMapping, or @DeleteMapping, Actuator endpoint operations are defined by
methods annotated with @ReadOperation, @WriteOperation, and @DeleteOperation.
These annotations don’t imply any specific communication mechanism and, in fact,
allow Actuator to communicate by any variety of communication mechanisms, HTTP,
and JMX out of the box.

 To demonstrate how to write a custom Actuator endpoint, consider NotesEndpoint.

package tacos.ingredients;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import org.springframework.boot.actuate.endpoint.annotation.DeleteOperation;
import org.springframework.boot.actuate.endpoint.annotation.Endpoint;
import org.springframework.boot.actuate.endpoint.annotation.ReadOperation;
import org.springframework.boot.actuate.endpoint.annotation.WriteOperation;
import org.springframework.stereotype.Component;
import lombok.Getter;
import lombok.RequiredArgsConstructor;

@Component
@Endpoint(id="notes", enableByDefault=true)
public class NotesEndpoint {

 private List<Note> notes = new ArrayList<>();

 @ReadOperation
 public List<Note> notes() {
 return notes;
 }

Listing 16.7 A custom endpoint for taking notes

425Customizing Actuator
 @WriteOperation
 public List<Note> addNote(String text) {
 notes.add(new Note(text));
 return notes;
 }

 @DeleteOperation
 public List<Note> deleteNote(int index) {
 if (index < notes.size()) {
 notes.remove(index);
 }
 return notes;
 }

 @RequiredArgsConstructor
 private class Note {
 @Getter
 private Date time = new Date();

 @Getter
 private final String text;
 }
}

This endpoint is a simple note-taking endpoint, wherein one can submit a note with
a write operation, read the list of notes with a read operation, and remove a note
with the delete operation. Admittedly, this endpoint isn’t very useful as far as Actua-
tor endpoints go. But when you consider that the out-of-the-box Actuator endpoints
cover so much ground, it’s difficult to come up with a practical example of a custom
Actuator endpoint.

 At any rate, the NotesEndpoint class is annotated with @Component so that it will be
picked up by Spring’s component scanning and instantiated as a bean in the Spring
application context. But more relevant to this discussion, it’s also annotated with
@Endpoint, making it an Actuator endpoint with an ID of notes. And it’s enabled by
default so that you won’t need to explicitly enable it by including it in the management
.web.endpoints.web.exposure.include configuration property.

 As you can see, NotesEndpoint offers one of each kind of operation:

 The notes() method is annotated with @ReadOperation. When invoked, it will
return a list of available notes. In HTTP terms, this means it will handle an
HTTP GET request for /actuator/notes and respond with a JSON list of notes.

 The addNote() method is annotated with @WriteOperation. When invoked, it
will create a new note from the given text and add it to the list. In HTTP terms,
it handles a POST request where the body of the request is a JSON object with a
text property. It finishes by responding with the current state of the notes list.

 The deleteNote() method is annotated with @DeleteOperation. When invoked,
it will delete the note at the given index. In HTTP terms, this endpoint handles
DELETE requests where the index is given as a request parameter.

426 CHAPTER 16 Working with Spring Boot Actuator
To see this in action, you can use curl to poke about with this new endpoint. First, add
a couple of notes, using two separate POST requests:

$ curl localhost:8080/actuator/notes \
 -d'{"text":"Bring home milk"}' \
 -H"Content-type: application/json"
[{"time":"2018-06-08T13:50:45.085+0000","text":"Bring home milk"}]

$ curl localhost:8080/actuator/notes \
 -d'{"text":"Take dry cleaning"}' \
 -H"Content-type: application/json"
[{"time":"2018-06-08T13:50:45.085+0000","text":"Bring home milk"},
 {"time":"2018-06-08T13:50:48.021+0000","text":"Take dry cleaning"}]

As you can see, each time a new note is posted, the endpoint responds with the newly
appended list of notes. But if later you want to view the list of notes, you can do a sim-
ple GET request:

$ curl localhost:8080/actuator/notes
[{"time":"2018-06-08T13:50:45.085+0000","text":"Bring home milk"},
 {"time":"2018-06-08T13:50:48.021+0000","text":"Take dry cleaning"}]

If you decide to remove one of the notes, a DELETE request with an index request
parameter should do the trick:

$ curl localhost:8080/actuator/notes?index=1 -X DELETE
[{"time":"2018-06-08T13:50:45.085+0000","text":"Bring home milk"}]

It’s important to note that although I’ve only shown how to interact with the endpoint
using HTTP, it will also be exposed as an MBean that can be accessed using whatever
JMX client you choose. But if you want to limit it to only exposing an HTTP endpoint,
you can annotate the endpoint class with @WebEndpoint instead of @Endpoint:

@Component
@WebEndpoint(id="notes", enableByDefault=true)
public class NotesEndpoint {
 ...
}

Likewise, if you prefer an MBean-only endpoint, annotate the class with @JmxEndpoint.

16.4 Securing Actuator
The information presented by Actuator is probably not something that you would
want prying eyes to see. Moreover, because Actuator provides a few operations that let
you change environment properties and logging levels, it’s probably a good idea to
secure Actuator so that only clients with proper access will be allowed to consume its
endpoints.

427Securing Actuator
 Even though it’s important to secure Actuator, security is outside of Actuator’s
responsibilities. Instead, you’ll need to use Spring Security to secure Actuator. And
because Actuator endpoints are just paths in the application like any other path in
the application, there’s nothing unique about securing Actuator versus any other
application path. Everything we discussed in chapter 4 applies when securing Actua-
tor endpoints.

 Because all Actuator endpoints are gathered under a common base path of /actu-
ator (or possibly some other base path if the management.endpoints.web.base-path
property is set), it’s easy to apply authorization rules to all Actuator endpoints across
the board. For example, to require that a user have ROLE_ADMIN authority to invoke
Actuator endpoints, you might override the configure() method of WebSecurity-
ConfigurerAdapter like this:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/actuator/**").hasRole("ADMIN")

 .and()

 .httpBasic();
}

This requires that all requests be from an authenticated user with ROLE_ADMIN author-
ity. It also configures HTTP basic authentication so that client applications can submit
encoded authentication information in their request Authorization headers.

 The only real problem with securing Actuator this way is that the path to the end-
points is hardcoded as /actuator/**. If this were to change because of a change to the
management.endpoints.web.base-path property, it would no longer work. To help with
this, Spring Boot also provides EndpointRequest—a request matcher class that makes
this even easier and less dependent on a given String path. Using EndpointRequest,
you can apply the same security requirements for Actuator endpoints without hard-
coding the /actuator/** path:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .requestMatcher(EndpointRequest.toAnyEndpoint())
 .authorizeRequests()
 .anyRequest().hasRole("ADMIN")
 .and()
 .httpBasic();
}

The EndpointRequest.toAnyEndpoint() method returns a request matcher that
matches any Actuator endpoint. If you’d like to exclude some of the endpoints from
the request matcher, you can call excluding(), specifying them by name:

428 CHAPTER 16 Working with Spring Boot Actuator
@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .requestMatcher(
 EndpointRequest.toAnyEndpoint()
 .excluding("health", "info"))
 .authorizeRequests()
 .anyRequest().hasRole("ADMIN")
 .and()
 .httpBasic();
}

On the other hand, should you wish to apply security to only a handful of Actuator
endpoints, you can specify those endpoints by name by calling to() instead of
toAnyEndpoint():

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .requestMatcher(EndpointRequest.to(
 "beans", "threaddump", "loggers"))
 .authorizeRequests()
 .anyRequest().hasRole("ADMIN")
 .and()
 .httpBasic();
}

This limits Actuator security to only the /beans, /threaddump, and /loggers endpoints.
All other Actuator endpoints are left wide open.

Summary
 Spring Boot Actuator provides several endpoints, both as HTTP and as JMX

MBeans, that let you peek into the inner workings of a Spring Boot application.
 Most Actuator endpoints are disabled by default, but can be selectively exposed

by setting management.endpoints.web.exposure.include and management
.endpoints.web.exposure.exclude.

 Some endpoints, such as the /loggers and /env endpoints, allow for write oper-
ations to change a running application’s configuration on the fly.

 Details regarding an application’s build and Git commit can be exposed in the
/info endpoint.

 An application’s health can be influenced by a custom health indicator, track-
ing the health of an externally integrated application.

 Custom application metrics can be registered through Micrometer, which
affords Spring Boot applications instant integration with several popular met-
rics engines such as Datadog, New Relic, and Prometheus.

 Actuator web endpoints can be secured using Spring Security, much like any
other endpoint in a Spring web application.

Administering Spring
A picture is worth a thousand words (or so they say), and for many application
users, a user-friendly web application is worth a thousand API calls. Don’t get me
wrong, I’m a command-line junkie and a big fan of using curl and HTTPie to con-
sume REST APIs. But, sometimes, manually typing the command line to invoke a
REST endpoint and then visually inspecting the results can be less efficient than
simply clicking a link and reading the results in a web browser.

 In the previous chapter, we explored all of the HTTP endpoints exposed by the
Spring Boot Actuator. As HTTP endpoints that return JSON responses, there’s no
limit to how those can be used. In this chapter, we’ll see how to put a front-end user
interface (UI) on top of the Actuator to make it easier to use, as well as capture live
data that would be difficult to consume from Actuator directly.

This chapter covers
 Setting up the Spring Boot Admin

 Registering client applications

 Working with Actuator endpoints

 Securing the Admin server
429

430 CHAPTER 17 Administering Spring
17.1 Using the Spring Boot Admin
I’ve been asked several times if it’d make sense and, if so, how hard it’d be to develop
a web application that consumes Actuator endpoints and serves them up in an easy-to-
view UI. I respond that it’s just a REST API and, therefore, anything is possible. But
why bother creating your own UI for the Actuator when the good folks at codecentric
AG (https://www.codecentric.de/), a software and consulting company based in Ger-
many, have already done the work for you?

 The Spring Boot Admin is an administrative frontend web application that makes
Actuator endpoints more consumable by humans. It’s split into two primary compo-
nents: the Spring Boot Admin server and its clients. The Admin server collects and
displays Actuator data that’s fed to it from one or more Spring Boot applications,
which are identified as Spring Boot Admin clients, as illustrated in figure 17.1.

You’ll need to register each of the applications (the microservices) that make up Taco
Cloud as Spring Boot Admin clients. But first, you’ll set up the Spring Boot Admin
server to receive each client’s Actuator information.

17.1.1 Creating an Admin server

To enable the Admin server, you’ll first need to create a new Spring Boot application
and add the Admin server dependency to the project’s build. The Admin server is gen-
erally used as a standalone application, separate from any other application. Therefore,
the easiest way to get started is to use the Spring Boot Initializr to create a new Spring
Boot project and select the checkbox labeled Spring Boot Admin (Server). This results
in the following dependency being included in the <dependencies> block:

<dependency>
 <groupId>de.codecentric</groupId>
 <artifactId>spring-boot-admin-starter-server</artifactId>
</dependency>

Figure 17.1 The Spring Boot Admin server consumes Actuator endpoints from one or more Spring
Boot applications and presents the data in a web-based UI.

Spring boot

application

(admin client)

Spring boot

application

(admin client)

Spring boot

application

(admin client)

Consumes Actuator endpoints

Present as a web UI Consumes Actuator endpointsSpring boot

admin server
Consumes Actuator endpoints

431Using the Spring Boot Admin
Next, you’ll need to enable the Admin server by annotating the main configuration
class with @EnableAdminServer as shown here:

package tacos.bootadmin;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import de.codecentric.boot.admin.server.config.EnableAdminServer;

@SpringBootApplication
@EnableAdminServer
public class BootAdminServerApplication {
 public static void main(String[] args) {
 SpringApplication.run(BootAdminServerApplication.class, args);
 }
}

Finally, because the Admin server won’t be the only application running locally as it’s
developed, you should set it to listen in on a unique port, but one you can easily access
(not port 0, for example). Here, I’ve chosen port 9090 as the port for the Spring Boot
Admin server:

server:
 port: 9090

NOTE: As with any other service application in a microservice-architected
Spring Boot application, the server.port property can be set differently in
a production profile, where the port may be determined by the underlying
platform.

Now your Admin server is ready. If you were to fire it up at this point and navigate to
http://localhost:9090 in your web browser, you’d see something a little like what’s
shown in figure 17.2.

 As you can see, the Spring Boot Admin shows that zero instances of zero applica-
tions are all up. But that’s meaningless information when you consider the message
below those counts that states No Applications Registered. For the Admin server to be
useful, you’ll need to register some applications with it.

17.1.2 Registering Admin clients

Because the Admin server is an application separate from other Spring Boot applica-
tion(s) for which it presents Actuator data, you must somehow make the Admin server
aware of the applications it should display. Two ways to register Spring Boot Admin cli-
ents with the Admin server follow:

 Each application explicitly registers itself with the Admin server.
 The Admin server discovers services through the Eureka service registry.

Let’s look at each option, starting with how to configure individual Boot applica-
tions as Spring Boot Admin clients so that they can register themselves with the
Admin server.

http://localhost:9090

432 CHAPTER 17 Administering Spring
EXPLICITLY CONFIGURING ADMIN CLIENT APPLICATIONS

In order for a Spring Boot application to register itself as a client of the Admin server,
you must include the Spring Boot Admin client starter in its build. You can easily add
this dependency to your build by selecting the checkbox labeled Spring Boot Admin
(Client) in the Initializr, or you can set the following <dependency> for a Maven-built
Spring Boot application:

<dependency>
 <groupId>de.codecentric</groupId>
 <artifactId>spring-boot-admin-starter-client</artifactId>
</dependency>

With the client-side library in place, you’ll also need to configure the location of the
Admin server so that the client can register itself. To do that, you’ll set the spring
.boot.admin.client.url property to the root URL of the Admin server:

spring:
 application:
 name: ingredient-service
 boot:
 admin:
 client:
 url: http://localhost:9090

Notice that the spring.application.name property is also set (in this case, for the
ingredient service). You’ve already used this property to identify microservices with

Figure 17.2 A newly created server displayed in the Spring Boot Admin UI. No applications are registered yet.

433Using the Spring Boot Admin
the Spring Cloud Config Server and with Eureka. Here it serves a similar purpose: to
identify the application to the Admin server. Once you restart the application, you
should see it appear in the Admin server as shown in figure 17.3.

 Although there isn’t much information about the ingredient service shown in
figure 17.3, it does show the application’s uptime and if the Spring Boot Maven
plugin has the build-info goal configured (as we discussed in section 16.3.1), the build
version. Rest assured that there are plenty of other runtime details to see after you
click the application in the Admin server. We’ll look deeper at what the Admin server
has to offer in section 17.2.

 The same configuration used to register the ingredient service with the Admin
server will need to be replicated across all applications. You may find it easier to only
configure the spring.application.name property and let the Spring Cloud Config
Server serve the spring.boot.admin.client.url to all of its clients. Or, better yet, if
you’re already using Eureka as a service registry, then let the Admin server discover
services on its own. Let’s see how to configure the Admin server as a Eureka client.

DISCOVERING ADMIN CLIENTS

The only thing you must do to enable the Admin server for discovery of services is to
add the Spring Cloud Netflix Eureka Client starter to the Admin server’s build. Here’s
the Maven <dependency> you’ll need:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

Figure 17.3 The Spring Boot Admin UI displays a single registered application.

434 CHAPTER 17 Administering Spring
NOTE: You can also get this dependency by checking the Eureka Discovery
checkbox in the Spring Initializr.

If the Admin server is enabled as a Eureka client, then nothing else is required. You
can skip all of the client configurations described in the previous section because the
Admin server automatically discovers all applications registered in Eureka and makes
their Actuator data available for display. For example, if there are several of the Taco
Cloud services registered in Eureka, then they’ll also be shown in the Admin server
(figure 17.4).

As you can see in figure 17.4, there are four distinct applications listed, as well as a
total of six services: two instances of the order service, two instances of the taco ser-
vice, and one instance of each of the other applications. All applications shown are in
the Up status. But if any service goes offline (the user service, for instance), then it
may appear separately in the Admin server (figure 17.5).

 As a Eureka client, the Admin server also registers itself as a service with Eureka.
To keep this from happening, you can set the eureka.client.register-with-eureka
property to false:

eureka:
 client:
 register-with-eureka: false

Figure 17.4 The Spring Boot Admin UI can show all the services it discovers in Eureka.

435Exploring the Admin server
Like other Eureka clients, you can also configure the location of the Eureka server if
it’s not listening at the default host and port. The following YAML configures the
Eureka location with a host at eureka1.tacocloud.com:

eureka:
 client:
 service-url:
 defaultZone: http://eureka1.tacocloud.com:8761/eureka/

Now that you have a handful of the Taco Cloud services registered with the Admin
server, let’s see what the Admin server has to offer.

17.2 Exploring the Admin server
Once you’ve registered all of the Spring Boot applications as Admin server clients,
there’s a wealth of information that the Admin server makes available for seeing
what’s going on inside each application. This includes

 General health and information
 Any metrics published through Micrometer and the /metrics endpoint
 Environment properties

Figure 17.5 The Spring Boot Admin UI shows offline services separately from those that are online.

436 CHAPTER 17 Administering Spring
 Logging levels for packages and classes
 Thread tracing details
 HTTP traces for requests
 Audit logs

In fact, almost anything that the Actuator exposes can be viewed in the Admin
server, albeit in a much more human-friendly format. This includes graphs and fil-
ters to help distill the information. The amount of information presented in the
Admin server is far richer than the space we’ll have in this chapter to cover it in
detail. But let me use the rest of this section to share a few of the highlights of the
Admin server.

17.2.1 Viewing general application health and information

As discussed in section 16.2.1, some of the most basic information provided by the
Actuator is health and general application information via the /health and /info end-
points. The Admin server displays that information under the Details tab as shown in
figure 17.6.

Figure 17.6 The Details tab of the Spring Boot Admin UI displays general health and information about an
application.

437Exploring the Admin server
If you scroll past the Health and Info sections in the Details tab, you’ll find useful sta-
tistics from the application’s JVM, including graphs displaying memory, thread, and
processor usage (figure 17.7).

The information displayed in the graphs, as well as the metrics under Processes and
Garbage Collection Pauses, can provide useful insights into how your application uti-
lizes JVM resources.

17.2.2 Watching key metrics

The information presented by the /metrics endpoint is perhaps the least human-read-
able of all of the Actuator’s endpoints. But the Admin server makes it easy for us mere
mortals to consume the metrics produced in an application with its UI under the Met-
rics tab.

 Initially, the Metrics tab doesn’t display any metrics whatsoever. But the form at the
top lets you set up one or more watches on any metrics you want to keep an eye on.

 In figure 17.8, I’ve set up two watches on metrics under the http.server.requests
category. The first reports metrics anytime an HTTP GET request is received for the
/ingredients endpoint; the return status is 200 (OK). The second reports metrics for
any request that results in an HTTP 400 (NOT FOUND) response.

Figure 17.7 As you scroll down on the Details tab, you can view additional JVM internal information, including
processor, thread, and memory statistics.

438 CHAPTER 17 Administering Spring
What’s nice about these metrics (and, in fact, almost anything displayed in the Admin
server) is that they show live data—they’ll automatically update without the need to
refresh the page.

17.2.3 Examining environment properties

The Actuator’s /env endpoint returns all environment properties available to a Spring
Boot application from all of its property sources. And although the JSON response
from the endpoint isn’t all that difficult to read, the Admin server presents it in a
much more aesthetically pleasing form under the Environment tab (figure 17.9).

 Because there can be hundreds of properties, you can filter the list of available
properties by either property name or value. Figure 17.9 shows properties filtered by
those whose name and/or values contain the text “spring.”. The Admin server also
allows you to set or override environment properties using the form under the Envi-
ronment Manager header.

Figure 17.8 On the Metrics tab, you can set up watches on any metrics published through the application’s
/metrics endpoint.

439Exploring the Admin server
17.2.4 Viewing and setting logging levels

The Actuator’s /loggers endpoint is helpful in understanding and overriding logging
levels in a running application. The Admin server’s Loggers tab adds an easy-to-use UI
on top of the /loggers endpoint to make simple work of managing logging in an
application. Figure 17.10 shows the list of loggers filtered by the name org.spring-
framework.boot.

 By default, the Admin server displays logging levels for all packages and classes.
Those can be filtered by name (for classes only) and/or logging levels that are explic-
itly configured versus inherited from the root logger.

Figure 17.9 The Environment tab displays environment properties and includes options to override and filter
those values.

440 CHAPTER 17 Administering Spring
17.2.5 Monitoring threads

Many threads can run concurrently in any application. Although the /threaddump
endpoint (described in section 16.2.3) provides a snapshot of the status of an applica-
tion’s running threads, the Threads tab in the Spring Boot Admin UI keeps a live
watch on all of the threads in an application (figure 17.11).

 Unlike the /threaddump endpoint that captures a snapshot in time, the bar
graphs shown in the Threads tab are constantly updated, showing each thread’s status:
green if the thread is runnable, yellow if it’s waiting, or red if the thread is blocked.

 To see more details about an individual thread, click the thread’s row in the list. It
expands to display historical data about the thread, along with the thread’s current
stack trace.

Figure 17.10 The Loggers tab displays logging levels for packages and classes in the application and lets you
override those levels.

441Exploring the Admin server
17.2.6 Tracing HTTP requests

The Spring Boot Admin UI’s HTTP Trace tab (figure 17.12) presents data from the
Actuator’s /httptrace endpoint. But unlike the /httptrace endpoint that returns the 100
most recent HTTP traces at the time of the request, the HTTP Trace tab lists a complete
history of HTTP requests. And it’s updated as long as you remain on the tab. If you leave
the tab and come back, then it initially only shows the 100 most recent requests, but con-
tinues tracing from that point on.

 As you can see, the HTTP Trace tab includes a stacked graph at the top that tracks
HTTP traffic over time. The graph uses color to indicate successful versus unsuccessful
requests. Green indicates success, yellow indicates client errors (for example, 400-level
HTTP responses), and red indicates server errors (for example, 500-level HTTP

Figure 17.11 You can use the Threads tab in the Admin UI to keep a live watch on an application’s threads.

442 CHAPTER 17 Administering Spring
responses). If you mouse over the graph, a hover-over box (like the one on the far
right of figure 17.12) breaks down the request counts for a given point in time.

 Below the graph is the trace history, including a row for each request received by
the application. If you click any row, the row expands to show additional information
about the request, including any request and response headers (figure 17.13).

17.3 Securing the Admin server
As we discussed in the previous chapter, the information exposed by the Actuator’s
endpoints isn’t intended for general consumption. They contain information that
exposes details about an application that only an application administrator should
see. Moreover, some of the endpoints allow changes that certainly shouldn’t be
exposed to just anyone.

 Just as security is important to the Actuator, it’s also important to the Admin server.
What’s more, if the Actuator endpoints require authentication, then the Admin server
needs to know the credentials to be able to access those endpoints. Let’s see how to
add a little security to the Admin server. We’ll start by requiring authentication.

Figure 17.12 The HTTP Trace tab tracks recent HTTP traffic to an application, including information regarding
requests that resulted in errors.

443Securing the Admin server
17.3.1 Enabling login in the Admin server

It’s probably a good idea to add security to the Admin server as it’s not secured by
default. Because the Admin server is a Spring Boot application, you can secure it
using Spring Security just like you would any other Spring Boot application. And just
as you would with any application secured by Spring Security, you’re free to decide
which security scheme fits your needs best.

 At a minimum, you can add the Spring Boot security starter to the Admin server’s
build by checking the Security checkbox in the Initializr or by adding the following
<dependency> to the project’s pom.xml file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

Figure 17.13 Clicking a request entry on the HTTP Trace tab displays additional details about the request.

444 CHAPTER 17 Administering Spring
Then, so that you don’t have to keep looking at the Admin server’s logs for the ran-
domly generated password, you can configure a simple administrative username and
password in application.yml:

spring:
 security:
 user:
 name: admin
 password: 53cr3t

Now when the Admin server is loaded in the browser, you’ll be prompted for a user-
name and password with Spring Security’s default login form. As in the code snippet,
entering admin and 53cr3t will get you in. Of course, this is an extremely basic secu-
rity configuration. I recommend that you consult chapter 4 for ways of configuring
Spring Security for a richer security scheme around the Admin server.

17.3.2 Authenticating with the Actuator

In section 16.4, we discussed how to secure Actuator endpoints with HTTP Basic
authentication. By doing so, you’ll be able to keep out everyone who doesn’t know
the username and password you assigned to the Actuator endpoints. Unfortunately,
that also means that the Admin server won’t be able to consume Actuator endpoints
unless it provides the username and password. But how will the Admin server get
those credentials?

 An Admin server client application can provide its credentials to the Admin server
by either registering itself directly with the Admin server or by being discovered
through Eureka. If the application registers directly with the Admin server, then it can
send its credentials to the server at registration time. You’ll need to configure a few
properties to enable that.

 The spring.boot.admin.client.instance.metadata.user.name and spring.boot
.admin.client.instance.metadata.user.password properties specify the credentials
that the Admin server can use to access an application’s Actuator endpoints. The
following snippet from application.yml shows how you might set those properties:

spring:
 boot:
 admin:
 client:
 url: http://localhost:9090
 instance:
 metadata:
 user.name: ${spring.security.user.name}
 user.password: ${spring.security.user.password}

The username and password properties must be set in each application that regis-
ters itself with the Admin server. The values given must match the username and
password that’s required in an HTTP Basic authentication header to the Actuator

445Summary
endpoints. In this example, they’re set to admin and password, which are the cre-
dentials configured to access the Actuator endpoints.

 On the other hand, if your application is discovered by the Admin server via
Eureka, then you’ll need to set eureka.instance.metadata-map.user.name and
eureka.instance.metadata-map.user.password instead:

eureka:
 instance:
 metadata-map:
 user.name: admin
 user.password: password

When the application registers with Eureka, the credentials will be included in the
Eureka registration record’s metadata. When the Admin server discovers the application,
it fetches the credentials from Eureka, along with other details about the application.

Summary
 The Spring Boot Admin server consumes the Actuator endpoints from one

or more Spring Boot applications and presents the data in a user-friendly
web application.

 Spring Boot applications can either register themselves as clients to the Admin
server or the Admin server can discover them through Eureka.

 Unlike the Actuator endpoints that capture a snapshot of an application’s
state, the Admin server is able to display a live view into the inner workings of
an application.

 The Admin server makes it easy to filter Actuator results and, in some cases, dis-
play data visually in a graph.

 Because it’s a Spring Boot application, the Admin server can be secured by any
means available through Spring Security.

Monitoring Spring
with JMX
For over a decade and a half, Java Management Extensions (JMX) has been the
standard means of monitoring and managing Java applications. By exposing man-
aged components known as MBeans (managed beans), an external JMX client can
manage an application by invoking operations, inspecting properties, and monitor-
ing events from MBeans.

 JMX is automatically enabled by default in a Spring Boot application. As a
result, all of the Actuator endpoints are exposed as MBeans. And it sets us up
nicely to expose any other bean in the Spring application context as an MBean.
We’ll start exploring Spring and JMX by looking at how Actuator endpoints are
exposed as MBeans.

18.1 Working with Actuator MBeans
Take a look back at table 16.1. All of the Actuator endpoints listed there, except for
/heapdump, are exposed as MBeans. You can use any JMX client you wish to connect

This chapter covers
 Working with Actuator endpoint MBeans

 Exposing Spring beans as MBeans

 Publishing notifications
446

447Working with Actuator MBeans
with Actuator endpoint MBeans. Using JConsole, which comes with the Java Develop-
ment Kit, you’ll find Actuator MBeans listed under the org.springframework.boot
domain, as shown in figure 18.1.

One thing that’s nice about Actuator MBean endpoints is that they’re all exposed by
default. There’s no need to explicitly include any of them, as you had to do with HTTP.
You can, however, choose to narrow down the choices by setting management.endpoints
.jmx.exposure.include and management.endpoints.jmx.exposure.exclude. For
example, to limit Actuator endpoint MBeans to only the /health, /info, /bean, and
/conditions endpoints, set management.endpoints.jmx.exposure.include like this:

management:
 endpoints:
 jmx:
 exposure:
 include: health,info,bean,conditions

Or, if there are only a few you want to exclude, you can set management.endpoints
.jmx.exposure.exclude like this:

Figure 18.1 Actuator endpoints are automatically exposed as JMX MBeans.

Actuator endpoint
MBeans

448 CHAPTER 18 Monitoring Spring with JMX
management:
 endpoints:
 jmx:
 exposure:
 exclude: env,metrics

Here, you use management.endpoints.jmx.exposure.exclude to exclude the /env
and /metrics endpoints. All other Actuator endpoints will still be exposed as MBeans.

 To invoke the managed operations on one of the Actuator MBeans in JConsole,
expand the endpoint MBean in the left-hand tree, and then select the desired opera-
tion under Operations.

 For example, if you’d like to inspect the logging levels for the tacos.ingredients
package, expand the Loggers MBean and click on the operation named loggerLevels,
as shown in figure 18.2. In the form at the top right, fill in the Name field with the
package name (tacos.ingredients), and then click the loggerLevels button.

After you click the loggerLevels button, a dialog box will pop up showing you the
response from the /loggers endpoint MBean. It might look a little like figure 18.3.

 Although the JConsole UI is a bit clumsy to work with, you should be able to get
the hang of it and use it to explore any Actuator endpoint in much the same way.

Figure 18.2 Using JConsole to display logging levels from a Spring Boot application

Then, enter the
package name

and submit

First, select
the operation

Then, enter the
package name

and submit

First, select
the operation

449Creating your own MBeans
If you don’t like JConsole, that’s fine—there are plenty of other JMX clients to
choose from.

18.2 Creating your own MBeans
Spring makes it easy to expose any bean you want as a JMX MBean. All you must do
is annotate the bean class with @ManagedResource and then annotate any methods
or properties with @ManagedOperation or @ManagedAttribute. Spring will take care
of the rest.

 For example, suppose you want to provide an MBean that tracks how many tacos
have been ordered through Taco Cloud. You can define a service bean that keeps a
running count of how many tacos have been created. The following listing shows what
such a service might look like.

package tacos.tacos;
import java.util.concurrent.atomic.AtomicLong;
import

org.springframework.data.rest.core.event.AbstractRepositoryEventListener;
import org.springframework.jmx.export.annotation.ManagedAttribute;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.stereotype.Service;

@Service
@ManagedResource
public class TacoCounter
 extends AbstractRepositoryEventListener<Taco> {

 private AtomicLong counter;

 public TacoCounter(TacoRepository tacoRepo) {
 long initialCount = tacoRepo.count();
 this.counter = new AtomicLong(initialCount);
 }

 @Override
 protected void onAfterCreate(Taco entity) {
 counter.incrementAndGet();
 }

Listing 18.1 An MBean that counts how many tacos have been created

Figure 18.3 Logging levels from the /loggers
endpoint MBean displayed in JConsole

450 CHAPTER 18 Monitoring Spring with JMX
 @ManagedAttribute
 public long getTacoCount() {
 return counter.get();
 }

 @ManagedOperation
 public long increment(long delta) {
 return counter.addAndGet(delta);
 }
}

The TacoCounter class is annotated with @Service so that it will be picked up by
component scanning, and an instance will be registered as a bean in the Spring
application context. But it’s also annotated with @ManagedResource to indicate that
this bean should also be an MBean. As an MBean, it will expose one attribute and
one operation. The getTacoCount() method is annotated with @ManagedAttribute
so that it will be exposed as an MBean attribute, while the increment() method is
annotated with @ManagedOperation, exposing it as an MBean operation.

 Figure 18.4 shows how the TacoCounter MBean appears in JConsole.

TacoCounter has another trick up its sleeve, although it has nothing to do with JMX.
Because it extends AbstractRepositoryEventListener, it will be notified of any

Figure 18.4 TacoCounter’s operations and attributes as seen in JConsole

451Sending notifications
persistence events when a Taco is saved through TacoRepository. In this particular
case, the onAfterCreate() method will be invoked anytime a new Taco object is cre-
ated and saved, and it will increment the counter by one. But AbstractRepository-
EventListener also offers several methods for handling events both before and after
objects are created, saved, or deleted.

 Working with MBean operations and attributes is largely a pull operation. That is,
even if the value of an MBean attribute changes, you won’t know until you view the
attribute through a JMX client. Let’s turn the tables and see how you can push notifi-
cations from an MBean to a JMX client.

18.3 Sending notifications
MBeans can push notifications to interested JMX clients with Spring’s Notification-
Publisher. NotificationPublisher has a single sendNotification() method that,
when given a Notification object, publishes the notification to any JMX clients that
have subscribed to the MBean.

 For an MBean to be able to publish notifications, it must implement the
NotificationPublisherAware interface, which requires that a setNotification-
Publisher() method be implemented. For example, suppose you want to publish a
notification every for every 100 tacos that are created. You can change the TacoCounter
class so that it implements NotificationPublisherAware and uses the injected
NotificationPublisher to send notifications for every 100 tacos that are created. The
following listing shows the changes that must be made to TacoCounter to enable such
notifications.

@Service
@ManagedResource
public class TacoCounter
 extends AbstractRepositoryEventListener<Taco>
 implements NotificationPublisherAware {

 private AtomicLong counter;
 private NotificationPublisher np;

...

 @Override
 public void setNotificationPublisher(NotificationPublisher np) {
 this.np = np;
 }

...

 @ManagedOperation
 public long increment(long delta) {
 long before = counter.get();

Listing 18.2 Sending notifications for every 100 tacos

452 CHAPTER 18 Monitoring Spring with JMX
 long after = counter.addAndGet(delta);
 if ((after / 100) > (before / 100)) {
 Notification notification = new Notification(
 "taco.count", this,
 before, after + "th taco created!");
 np.sendNotification(notification);
 }

 return after;
 }
}

In the JMX client, you’ll need to subscribe to the TacoCounter MBean to receive noti-
fications. Then, as tacos are created, the client will receive notifications for each cen-
tury count. Figure 18.5 shows how the notifications may appear in JConsole.

Notifications are a great way for an application to actively send data and alerts to a
monitoring client without requiring the client to poll managed attributes or invoke
managed operations.

Figure 18.5 JConsole, subscribed to the TacoCounter MBean, receives a notification for every 100 tacos that
are created.

453Summary
Summary
 Most Actuator endpoints are available as MBeans that can be consumed using

any JMX client.
 Spring automatically enables JMX for monitoring beans in the Spring applica-

tion context.
 Spring beans can be exposed as MBeans by annotating them with @Managed-

Resource. Their methods and properties can be exposed as managed opera-
tions and attributes by annotating the bean class with @ManagedOperation and
@ManagedAttribute.

 Spring beans can publish notifications to JMX clients using Notification-
Publisher.

Deploying Spring
Think of your favorite action movie. Now imagine going to see that movie in the
theater and being taken on a thrilling audiovisual ride with high-speed chases,
explosions, and battles, only to have it come to a sudden halt before the good guys
take down the bad guys. Instead of seeing the movie’s conflict resolved, when the
theater lights come on, everyone is ushered out the door. Although the lead-up was
exciting, it’s the climax of the movie that’s important. Without it, it’s action for
action’s sake.

 Now imagine developing applications and putting a lot of effort and creativity
into solving the business problem, but then never deploying the application for
others to use and enjoy. Sure, most applications we write don’t involve car chases or
explosions (at least I hope not), but there’s a certain rush you get along the way.
Not every line of code you write is destined for production, but it’d be a big let-
down if none of it ever was deployed.

This chapter covers
 Building Spring applications as either WAR or

JAR files

 Pushing Spring applications to Cloud Foundry

 Containerizing Spring applications with Docker
454

455Weighing deployment options
 Up to this point, we’ve focused on using the features of Spring Boot that help us
develop an application. There have been some exciting steps along the way. But it’s all
for nothing if you don’t cross the finish line and deploy the application.

 In this chapter, we’re going to step beyond developing applications with Spring
Boot and look at how to deploy those applications. Although this may seem obvious
for anyone who has ever deployed a Java-based application, there are some unique
features of Spring Boot and related Spring projects you can draw on that make
deploying Spring Boot applications unique.

 In fact, unlike most Java web applications, which are typically deployed to an appli-
cation server as WAR files, Spring Boot offers several deployment options. Before we
look at how to deploy a Spring Boot application, let’s consider all the options and
choose a few that suit your needs best.

19.1 Weighing deployment options
You can build and run Spring Boot applications in several ways. The appendix covers
many of them, including these:

 Running the application in the IDE with either Spring Tool Suite or IntelliJ IDEA
 Running the application from the command line using the Maven spring-

boot:run goal or Gradle bootRun task
 Using Maven or Gradle to produce an executable JAR file that can be run at the

command line or deployed in the cloud
 Using Maven or Gradle to produce a WAR file that can be deployed to a tradi-

tional Java application server

Any of these choices is suitable for running the application while you’re still develop-
ing it. But what about when you’re ready to deploy the application into a production
or other non-development environment?

 Although running an application from the IDE or via Maven or Gradle aren’t con-
sidered production-ready options, executable JAR files and traditional Java WAR files
are certainly valid options for deploying applications to a production environment.
Given the options of deploying a WAR file or a JAR file, how do you choose? In gen-
eral, the choice comes down to whether you plan to deploy your application to a
traditional Java application server or to a cloud platform:

 Deploying to Java application servers—If you must deploy your application to Tom-
cat, WebSphere, WebLogic, or any other traditional Java application server, you
really have no choice but to build your application as a WAR file.

 Deploying to the cloud—If you’re planning to deploy your application to the
cloud, whether it be Cloud Foundry, Amazon Web Services (AWS), Azure, Goo-
gle Cloud Platform, or most any other cloud platform, then an executable JAR
file is the best choice. Even if the cloud platform supports WAR deployment,
the JAR file format is much simpler than the WAR format, which is designed for
application server deployment.

456 CHAPTER 19 Deploying Spring
In this chapter, we’ll focus on three deployment scenarios:

 Deploying a Spring Boot application as a WAR file to a Java application server
such as Tomcat

 Pushing a Spring Boot application as an executable JAR file to Cloud Foundry
 Packaging a Spring Boot application into a Docker container for deployment to

any platform that supports Docker deployments

To get started, let’s take a look at how you can build the ingredient service application
into a WAR file that can be deployed to a Java application server such as Tomcat.

19.2 Building and deploying WAR files
Throughout the course of this book, as you’ve developed the applications that make
up the Taco Cloud application, you’ve run them either in the IDE or from the com-
mand line as an executable JAR file. In either case, an embedded Tomcat server (or
Netty, in the case of Spring WebFlux applications) has always been there to serve
requests to the application.

 Thanks in large part to Spring Boot autoconfiguration, you’ve been spared
from having to create a web.xml file or servlet initializer class to declare Spring’s
DispatcherServlet for Spring MVC. But if you’re going to deploy the application
to a Java application server, you’re going to need to build a WAR file. And, so that
the application server will know how to run the application, you’ll also need to
include a servlet initializer in that WAR file to play the part of a web.xml file and
declare DispatcherServlet.

 As it turns out, building a Spring Boot application into a WAR file isn’t all that dif-
ficult. In fact, if you chose the WAR option when creating the application through the
Initializr, then there’s nothing more you need to do.

 The Initializr ensures that the generated project will contain a servlet initializer
class and the build file will be geared to produce a WAR file. If, however, you chose to
build a JAR file from the Initializr (or if you’re curious as to what the pertinent differ-
ences are), then read on.

 First, you’ll need a way to configure Spring’s DispatcherServlet. Whereas this
could be done with a web.xml file, Spring Boot makes this even easier with Spring-
BootServletInitializr. SpringBootServletInitializer is a special Spring Boot-
aware implementation of Spring’s WebApplicationInitializer. Aside from config-
uring Spring’s DispatcherServlet, SpringBootServletInitializer also looks for
any beans in the Spring application context that are of type Filter, Servlet, or
ServletContextInitializer and binds them to the servlet container.

 To use SpringBootServletInitializer, create a subclass and override the
configure() method to specify the Spring configuration class. Listing 19.1 shows
IngredientServiceServletInitializer, a subclass of SpringBootServletInitializer
that you’ll use for the ingredient service application.

457Building and deploying WAR files
package tacos.ingredients;

import org.springframework.boot.builder.SpringApplicationBuilder;
import org.springframework.boot.context.web.SpringBootServletInitializer;

public class IngredientServiceServletInitializer
 extends SpringBootServletInitializer {
 @Override
 protected SpringApplicationBuilder configure(
 SpringApplicationBuilder builder) {
 return builder.sources(IngredientServiceApplication.class);
 }
}

As you can see, the configure() method is given a SpringApplicationBuilder as a
parameter and returns it as a result. In between, it calls the sources() method that
registers Spring configuration classes. In this case, it only registers the Ingredient-
ServiceApplication class, which serves the dual purpose of a bootstrap class (for exe-
cutable JARs) and a Spring configuration class.

 Even though the ingredient service application has other Spring configuration
classes, it’s not necessary to register them all with the sources() method. The
IngredientServiceApplication class, annotated with @SpringBootApplication,
implicitly enables component scanning. Component scanning discovers and pulls in
any other configuration classes that it finds.

 For the most part, SpringBootServletInitializer’s subclass is boilerplate. It ref-
erences the application main configuration class. But aside from that, it’ll be the same
for every application where you’ll be building a WAR file. And you’ll almost never
need to make any changes to it.

 Now that you’ve written a servlet initializer class, you must make a few small
changes to the project build. If you’re building with Maven, the change required is as
simple as ensuring that the <packaging> element in pom.xml is set to war:

<packaging>war</packaging>

The changes required for a Gradle build are similarly straightforward. You must apply
the war plugin in the build.gradle file:

apply plugin: 'war'

Now you’re ready to build the application. With Maven, you’ll use the Maven wrapper
script that the Initializr used to execute the package goal:

$ mvnw package

Listing 19.1 Enabling Spring web applications via Java

458 CHAPTER 19 Deploying Spring
If the build is successful, then the WAR file can be found in the target directory. On
the other hand, if you were using Gradle to build the project, you’d use the Gradle
wrapper to execute the build task:

$ gradlew build

Once the build completes, the WAR file will be in the build/libs directory. All that’s
left is to deploy the application. The deployment procedure varies across application
servers, so consult the documentation for your application server’s specific deploy-
ment procedure.

 It may be interesting to note that although you’ve built a WAR file suitable for
deployment to any Servlet 3.0 (or higher) servlet container, the WAR file can still be
executed at the command line as if it were an executable JAR file:

$ java -jar target/ingredient-service-0.0.19-SNAPSHOT.war

In effect, you get two deployment options out of a single deployment artifact!

MICROSERVICES IN APPLICATION SERVERS?
The ingredient service application is intended to be one of several applications that
are microservice constituents of the larger Taco Cloud application. But here, we’re
talking about deploying the ingredient service as a standalone application to an appli-
cation server. Does that even make sense?

 Microservices are generally like any other application and should be deployable on
their own. Although the ingredient service may not be useful outside the context of
the rest of the Taco Cloud application, there’s no reason you can’t deploy it to Tomcat
or another application server. But don’t expect the same ability to scale the applica-
tion individually as you would get if deploying it to the cloud.

 Although WAR files have been the workhorses of Java deployment for over 20
years, they were truly designed for deploying applications to a traditional Java applica-
tion server. Depending on the platform you choose, modern cloud deployment
doesn’t require WAR files and some may not even support them. As we move into a
new era of cloud deployment, perhaps JAR files are a better choice.

19.3 Pushing JAR files to Cloud Foundry
Server hardware can be expensive to purchase and maintain. Properly scaling servers
to handle heavy loads can be tricky and even prohibitive for some organizations.
These days, deploying applications to the cloud is a compelling and cost-effective
alternative to running your own data center.

 Several cloud choices are available, but those that offer a platform as a service
(PaaS) are among the most compelling. PaaS offers a ready-made application deploy-
ment platform with several add-on services (such as databases and message brokers)
to bind to your applications. In addition, as your application requires additional

459Pushing JAR files to Cloud Foundry
horsepower, cloud platforms make it easy to scale up (or down) your application on
the fly by adding and removing instances.

 Cloud Foundry is an open source PaaS platform that originated at Pivotal, the
same company that sponsors the Spring Framework and the other libraries in the
Spring platform. One of the most compelling things about Cloud Foundry is that it
offers both open source and commercial-based distributions, giving you the choice of
how and where you use Cloud Foundry. It can even be run inside the firewall in a cor-
porate data center, offering a private cloud.

 Whereas Cloud Foundry will be happy to accept WAR files, the WAR file format is
overkill for Cloud Foundry’s needs. A simpler executable JAR file is a more suitable
choice for deploying to Cloud Foundry.

 To demonstrate how to build and deploy an executable JAR file to Cloud Foundry,
you’re going to build the ingredient service application and deploy it to Pivotal Web
Services (PWS), a public Cloud Foundry hosted by Pivotal at http://run.pivotal.io. If
you want to work with PWS, you’ll need to sign up for an account. PWS offers $87 of
free trial credit and doesn’t even require you to give any credit card information
during the trial.

 Once you’ve signed up for PWS, you’ll need to download and install the cf
command-line tool from https://console.run.pivotal.io/tools. You’ll use the cf tool to
push applications to Cloud Foundry. But the first thing you’ll use it for is to log into
your PWS account:

$ cf login -a https://api.run.pivotal.io
API endpoint: https://api.run.pivotal.io

Email> {your email}

Password> {your password}

Authenticating...
OK

Great! Now you’re ready to take the ingredient service to the cloud! As it turns out,
the project is ready to be deployed to Cloud Foundry. All you need to do is build it
and then push it to the cloud.

 To build the project with Maven, you can use the Maven wrapper to execute the
package goal (you’ll find the resulting JAR file in the target directory):

$ mvnw package

With Gradle, you can use the Gradle wrapper to execute the build task (you’ll find the
resulting JAR file in the build/libs directory):

$ gradlew build

Now all that’s left is to push the JAR file to Cloud Foundry using the cf command:

$ cf push ingredient-service -p target/ingredient-service-0.0.19-SNAPSHOT.jar

https://console.run.pivotal.io/tools
http://run.pivotal.io

460 CHAPTER 19 Deploying Spring
The first argument to cf push is the name given to the application in Cloud Foundry.
In this case, the full URL for the application will be http://ingredient-service.cfapps.io.
Among other things, this name will be used as the subdomain where the application is
hosted. Therefore, it’s important that the name you give the application be unique so
that it doesn’t collide with any other applications deployed in Cloud Foundry (includ-
ing those deployed by other Cloud Foundry users).

 Because dreaming up a unique name can be tricky, the cf push command offers a
--random-route option that randomly produces a subdomain for you. Here’s how to
push the ingredient service application to generate a random route:

$ cf push ingredient-service \
 -p target/ingredient-service-0.0.19-SNAPSHOT.jar \
 --random-route

When using --random-route, the application name is still required, but two randomly
chosen words will be appended to it to produce the subdomain.

 Assuming everything goes well, the application should be deployed and ready to
handle requests. Supposing that the subdomain is ingredient-service, you can point
your browser to http://ingredient-service.cfapps.io/ingredients to see it in action.
You should receive, as a response, a list of available ingredients.

 As written, the application will continue to use the embedded Mongo database
(which is only intended for testing purposes) to hold ingredient data. You’ll likely
want to use a real database in production. At the time I’m writing this, there’s a fully
managed MongoDB service available in PWS under the name mlab. You can find this
service (and any other available services) by using the cf marketplace command. To
create an instance of the mlab service, use the cf create-service command:

$ cf create-service mlab sandbox ingredientdb

This creates an mlab service with the sandbox service plan named ingredientdb. Once
the service is created, you can bind it to your application with the cf bind-service
command. For example, to bind the ingredientdb service to the ingredient service
application, use this:

$ cf bind-service ingredient-service ingredientdb

Binding a service to an application merely provides the application with details on
how to connect to the service with an environment variable named VCAP_SERVICES. It
doesn’t change the application in any way to use that service. Once the service is
bound, you’ll need to re-stage the application to have the binding take effect:

$ cf restage ingredient-service

The cf restage command forces Cloud Foundry to redeploy the application and
reevaluate the VCAP_SERVICES value. When it does, it’ll see that there’s a MongoDB

http://ingredient-service.cfapps.io
http://ingredient-service.cfapps.io/ingredients

461Running Spring Boot in a Docker container
service bound to the application. It uses that service as the backing database for the
application.

 There are dozens of available services in PWS that you can bind your application
to, including MySQL databases, PostgreSQL databases, and even ready-to-use Eureka
and Config Server services. I encourage you to read more about what PWS has to offer
at https://console.run.pivotal.io/marketplace and acquaint yourself with how to use
PWS by reading the documentation at https://docs.run.pivotal.io/.

 Cloud Foundry is a great PaaS for Spring Boot application deployment. Its asso-
ciation with the Spring projects affords some synergy between the two. But another
common way to deploy applications in the cloud, especially when pushing to an
Infrastructure-as-a-Service (IAAS) platform like AWS, is to package the application
within a Docker container that’s published to the cloud. Let’s see how to create a
Docker container that carries your Spring Boot application.

19.4 Running Spring Boot in a Docker container
Docker (https://www.docker.com/) has become the de facto standard for distributing
applications of all kinds for deployment in the cloud. Many different cloud environ-
ments, including AWS, Microsoft Azure, Google Cloud Platform, and Pivotal Web Ser-
vices (to name a few) accept Docker containers for deploying applications.

 The idea of containerized applications, such as those created with Docker, draws
analogies from real-world intermodal containers. With regard to shipping items,
intermodal containers all have a standard size and format, regardless of their con-
tents. Because of that, intermodal containers are easily stacked on ships, carried on
trains, or pulled by trucks. In a similar way, containerized applications share a com-
mon container format that can be deployed and run anywhere, regardless of the
application inside.

 Although creating Docker images isn’t terribly difficult, Spotify has created a
Maven plugin that makes creating a Docker container from the result of a Spring Boot
build as easy as whistling your favorite tune. To use the Docker plugin, add it to your
Spring Boot project pom.xml file under the <build>/<plugins> block as follows:

<build>
 <plugins>
...
 <plugin>
 <groupId>com.spotify</groupId>
 <artifactId>dockerfile-maven-plugin</artifactId>
 <version>1.4.3</version>
 <configuration>
 <repository>
 ${docker.image.prefix}/${project.artifactId}
 </repository>
 <buildArgs>
 <JAR_FILE>target/${project.build.finalName}.jar</JAR_FILE>
 </buildArgs>

https://console.run.pivotal.io/marketplace
https://docs.run.pivotal.io/
https://www.docker.com/

462 CHAPTER 19 Deploying Spring
 </configuration>
 </plugin>
 </plugins>
</build>

Under the <configuration> block, you’ll set a few properties to guide the creation of
the Docker image. The <repository> element describes the name of the Docker
image as it’ll appear in a Docker repository. As specified here, the name is based on
the Maven project artifact ID, prefixed with a value resolved from the Maven property
named docker.image.prefix. Although the project artifact ID is something Maven
already knows, you’ll need to specify the prefix property:

<properties>
 ...
 <docker.image.prefix>tacocloud</docker.image.prefix>
</properties>

If this were the Taco Cloud ingredient service, the resulting Docker image would
reside in the Docker repository as tacocloud/ingredient-service.

 Under the <buildArgs> element, you can guide the image to include the JAR file that
the Maven build produces. As shown, it uses the Maven property project.build.final-
Name to determine the name of the JAR file that’s in the target directory.

 Aside from the information you provided in the Maven build specification, all
Docker images are defined from a file named Dockerfile. This file identifies an image
to base the new image on, environment variables that should be set, any volumes that
should be mounted, and (most importantly) the entry point—a command to execute
when a container based on the image starts. For the purposes of most any Spring Boot
application, the following Dockerfile is a great way to begin:

FROM openjdk:8-jdk-alpine
ENV SPRING_PROFILES_ACTIVE docker
VOLUME /tmp
ARG JAR_FILE
COPY ${JAR_FILE} app.jar
ENTRYPOINT ["java",\
 "-Djava.security.egd=file:/dev/./urandom",\
 "-jar",\
 "/app.jar"]

Breaking this Docker file down line by line, you see the following:

 The FROM instruction identifies an image to base the new image on. The new
image extends the base image. In this case, the base image is openjdk:8-jdk-
alpine, a container image based on version 8 of OpenJDK.

 The ENV instruction sets an environment variable. You’re going to override a few of
the Spring Boot application configuration properties based on the active profile,
so in this image, you’ll set the environment variable SPRING_PROFILES_ACTIVE

463Running Spring Boot in a Docker container
to docker to ensure that the Spring Boot application starts with docker as the
active profile.

 The VOLUME instruction creates a mount point in the container. In this case, it
creates a mount point at /tmp so that the container can write data, if necessary,
to the /tmp directory.

 The ARG instruction declares an argument that can be passed in at build time.
In this case, it declares an argument named JAR_FILE, which is the same as the
argument given in the Maven plugin’s <buildArgs> block.

 The COPY instruction copies a file from a given path to another path. In this
case, it copies the JAR file specified in the Maven plugin to a file named app.jar
within the image.

 The ENTRYPOINT instruction describes what should happen when the container
starts. Given as an array, it specifies the command line to execute. In this case, it
uses the java command line to run the executable app.jar.

Draw special attention to the ENV instruction. It’s generally a good idea to set the
SPRING_PROFILES_ACTIVE environment variable in any container image that contains
a Spring Boot application. This makes it possible to configure beans and configura-
tion properties that are unique to applications running in Docker.

 In the case of the ingredient service, you’re going to need a way to link the applica-
tion to a Mongo database running in a separate container. By default, Spring Data
attempts to connect to a Mongo database listening at port 27017 on localhost. But that
was only the case when running everything locally and not in any containers. You’ll
need to configure the spring.data.mongodb.host property to tell Spring Data the
hostname where Mongo will be available.

 Although you may not yet know where the Mongo database will be running, you
can configure Spring Data to connect to Mongo on a host named mongo when the
docker profile is active by adding the following Docker-specific configuration to the
application.yml file:

spring:
 profiles: docker

 data:
 mongodb:
 host: mongo

In a moment, when you fire up the Docker container, you’ll map the mongo host to a
Mongo database running in a different container. But now you’re ready to build the
Docker image. Using the Maven wrapper, execute the package and dockerfile:build
goals to build the JAR file, and then build the Docker image:

$ mvnw package dockerfile:build

464 CHAPTER 19 Deploying Spring
At this point, you can verify that the image is in your local image repository by using
the docker images command (the CREATED and SIZE columns were omitted for eas-
ier readability and to fit within the margins of this page):

$ docker images
REPOSITORY TAG IMAGE ID
tacocloud/ingredient-service latest 7e8ed20e768e

Before you can start the container, you’ll need to start a container for the Mongo data-
base. The following command line runs a new Docker container named tacocloud-
mongo with a Mongo 3.7.9 database:

$ docker run --name tacocloud-mongo -d mongo:3.7.9-xenial

Now, you can finally run the ingredient service container, linking it to the Mongo con-
tainer you just started:

$ docker run -p 8080:8081 \
 --link tacocloud-mongo:mongo \
 tacocloud/ingredient-service

The docker run command shown here has several important components worth noting:

 Because you’ve configured the Spring Boot application in the container to run
on port 8081, the -p parameter maps the internal port to the host’s port 8080.

 The --link parameter links your container to the container named tacocloud-
mongo and assigns it a hostname of mongo so that Spring Data can connect to it with
that hostname.

 Finally, you specify the name of the image (in this case, tacocloud/ingredient-
service) to run in a new container.

Now that you have a Docker image built and have proven it to run as a local container,
you can take it to the next level by pushing the image to Dockerhub or some other
Docker image repository. If you have an account on Dockerhub and are logged in,
then you can push the image using Maven like this:

$ mvnw dockerfile:push

From that point, you can deploy the image to almost any environment that supports
Docker containers, including AWS, Microsoft Azure, and Google Cloud Platform. Pick
your environment and follow the platform-specific instructions for deploying Docker
containers. Here are links to instructions for a few popular cloud platforms:

 AWS—https://aws.amazon.com/getting-started/tutorials/deploy-docker-
containers/

 Microsoft Azure—https://docs.docker.com/docker-for-azure/deploy/
 Google Cloud Platform—https://cloud.google.com/kubernetes-engine/docs/

tutorials/hello-app

https://cloud.google.com/kubernetes-engine/docs/tutorials/hello-app
https://cloud.google.com/kubernetes-engine/docs/tutorials/hello-app
https://docs.docker.com/docker-for-azure/deploy/
https://aws.amazon.com/getting-started/tutorials/deploy-docker-containers/
https://aws.amazon.com/getting-started/tutorials/deploy-docker-containers/

465Summary
 Pivotal Web Services (PWS)—https://docs.run.pivotal.io/devguide/deploy-apps/
push-docker.html

 Pivotal Container Service (PKS)—https://pivotal.io/platform/pivotal-container-service

19.5 The end is where we begin
Over the past few hundred pages, we’ve gone from a simple start—or start.spring.io,
more specifically—to deploying an application in the cloud. I hope that you’ve had as
much fun working through these pages as I’ve had writing them.

 But while this book must come to an end, your Spring adventure is just beginning.
Using what you’ve learned in these pages, go build something amazing with Spring. I
can’t wait to see what you come up with!

Summary
 Spring applications can be deployed in a number of different environments,

including traditional application servers, platform-as-a-service (PaaS) environ-
ments like Cloud Foundry, or as Docker containers.

 When building a WAR file, you should include a class that subclasses Spring-
BootServletInitializr to ensure that Spring’s DispatcherServlet is prop-
erly configured.

 Building as an executable JAR file allows a Spring Boot application to be
deployed to several cloud platforms without the overhead of a WAR file.

 Containerizing Spring applications is as simple as using Spotify’s Dockerfile
plugin for Maven. It wraps an executable JAR file in a Docker container that
can be deployed anywhere Docker containers can be deployed, including
cloud providers such as Amazon Web Services, Microsoft Azure, Google Cloud
Platform, Pivotal Web Services (PWS), and Pivotal Container Service (PKS).

https://docs.run.pivotal.io/devguide/deploy-apps/push-docker.html
https://docs.run.pivotal.io/devguide/deploy-apps/push-docker.html
https://docs.run.pivotal.io/devguide/deploy-apps/push-docker.html
https://pivotal.io/platform/pivotal-container-service

appendix
Bootstrapping

Spring applications

There are a lot of ways to kick-start your Spring projects, and which you choose is
largely a matter of personal taste. Many of the choices will be decided by which is
your favorite IDE.

 All but one of these options are based on the Spring Initializr, which is a REST
API that generates Spring Boot projects for you. The various IDE choices are noth-
ing more than clients for that REST API. Additionally, there are a few ways to use
the Spring Initializr API outside of your IDE.

 This appendix takes a quick look at all of these options.

A.1 Initializing a project with Spring Tool Suite
To initialize a new Spring project with Spring Tool Suite, choose the Spring Starter
Project menu option from the File > New menu, as shown in figure A.1.

NOTE This is an abbreviated description of using Spring Tool Suite to ini-
tialize a Spring project. For a more detailed explanation, see section 1.2.1.

You’ll be shown the first page of the project creation dialog box (figure A.2). On
this page, you’ll define basic project information, such as the project’s name, coor-
dinates (group ID and artifact ID), version, and base package name. You can also
specify whether the project will be built with Maven or Gradle, whether the build

Figure A.1 Starting a new project in Spring Tool Suite
466

467Initializing a project with Spring Tool Suite
will produce a JAR file or a WAR file, which version of Java to build with, and even an
alternate JVM language to use, such as Groovy or Kotlin.

 The first field on this page asks you to specify the location of the Spring Initializr
service. If you’re running or using a custom instance of the Initializr, you’ll want to
specify the base URL of the Initializr service here. Otherwise, you’ll be fine leaving it
with the default that points to http://start.spring.io.

 After you’ve defined the basic project information, click Next to see the project
dependencies page (figure A.3).

Figure A.2 Defining basic project information

http://start.spring.io

468 APPENDIX Bootstrapping Spring applications
On the project dependencies page, you can specify all of the dependencies your proj-
ect will need. Many of these dependencies are Spring Boot Starter dependencies,
although some other dependencies are commonly used in Spring projects.

 The available dependencies are listed on the left side, organized in groups that can
be expanded or collapsed. If you’re having trouble finding a dependency, you can also
search for dependencies to narrow your choices down.

 To add a dependency to the generated project, check the check box next to the
dependency name. Your selections will appear in the list on the right side under

Figure A.3 Specifying project dependencies

469Initializing a project with Spring Tool Suite
the Selected header. You can remove a dependency by clicking the X next to the
selected dependency. Or click Clear Selection to remove all selected dependencies.

 As an added convenience, if you find that you have a certain core set of dependen-
cies that you always (or often) use for your projects, you can click the Make Default
button after selecting those dependencies, and they’ll already be checked the next
time you create a project.

 After making your selections, click Finish to generate the project and add it to your
workspace.

 If, however, you want to use an Initializr other than the one at http://start.spring.io,
click Next to set the Initializr base URL, as shown in figure A.4.

Figure A.4 Optionally specifying the Initializr base URL

http://start.spring.io

470 APPENDIX Bootstrapping Spring applications
The Base Url field specifies the URL where the Initializr API is listening. This is the
only field you can change on this page. The Full Url field shows the complete URL
that will be used to request a new project from the Initializr.

A.2 Initializing a project with IntelliJ IDEA
To get started on a new Spring project in IntelliJ IDEA, choose the Project menu item
from the File > New menu, as shown in figure A.5.

This opens up the first page of a new Spring Initializr project wizard (see figure A.6).
On this page, you can usually just click Next to go to the next page of the wizard. But

Figure A.5 Starting a new Spring project in IntelliJ IDEA

Figure A.6 Selecting the location of the Spring Initializr

471Initializing a project with IntelliJ IDEA
if you want to use a Spring Initializr different from the one at https://start.spring.io,
you’ll need to select the Custom radio button and enter the base URL of the Spring
Initializr you want to use.

 After clicking Next, you’ll be presented with a page that asks for essential project
information, as shown in figure A.7. You may recognize some of the fields on this page
as information that might appear in a Maven pom.xml file—in fact, if you select
Maven Project from the Type field, that’s exactly how it will be used. You’re welcome
to choose Gradle Project instead if Gradle is your preference.

Once you’ve filled in the essential project information, click Next to be shown the
project dependencies page (figure A.8).

Figure A.7 Specifying essential project information in IntelliJ IDEA

https://start.spring.io

472 APPENDIX Bootstrapping Spring applications
The dependencies are organized by category in the far-left list. Selecting a category
will result in that category’s options being presented in the middle list. Your selected
dependencies will be listed (according to category) in the right list.

 After all of your dependencies have been selected, click Next. You’ll be presented
with the final page of the project wizard, as shown in figure A.9, which asks you to
name the project and specify where the project should reside on your disk.

 Click Finish and your project will be created and loaded into the IntelliJ IDEA
workspace.

Figure A.8 Selecting project dependencies

473Initializing a project with NetBeans
A.3 Initializing a project with NetBeans
To create a new Spring project in NetBeans, start by selecting the New Project menu
item under the File menu, as shown in figure A.10.

 You’ll be shown the first page of the new project wizard. As shown in figure A.11,
this page will let you choose what kind of project you want to create.

 For a Spring Boot project, select Maven from the category list on the left, and then
select Spring Boot Initializr Project from the project list on the right. Then click Next
to move to the next page.

 The second page in the new project wizard (figure A.12) lets you set essential proj-
ect information, such as the project name, version, and other information that will
ultimately be used to define the project in a Maven pom.xml file.

 After you’ve specified the basic project information, click Next to navigate to the
dependencies page in the new project wizard, shown in figure A.13.

Figure A.9 Setting the project name and location

474 APPENDIX Bootstrapping Spring applications
Figure A.10 Starting a new
Spring project in NetBeans

Figure A.11 Creating a new Spring Boot Initializr project

475Initializing a project with NetBeans
Figure A.12 Specifying essential project information

Figure A.13 Selecting project dependencies

476 APPENDIX Bootstrapping Spring applications
Dependencies are all listed as check boxes in the same list, organized by category. If
you have trouble finding the specific dependency you need, you can use the Filter text
box at the top to limit the list of options.

 You can also specify which version of Spring Boot you wish to use on this page. It
will be set to the current generally available version of Spring Boot by default.

 Once you’ve selected the dependencies for your project, click Next to navigate to
the last page of the new project wizard, shown in figure A.14.

This page lets you specify some final details about the project, including the project
name and location on the filesystem. (The Project Folder field is read-only and
derived from the other two fields.) It also gives you the option to run and debug your
project through the Maven Spring Boot plugin instead of through NetBeans. You may
also choose to have NetBeans remove the Maven wrapper from the generated project.

 Once you’ve set the final bit of project information, click Finish to generate the
project and have it added to your NetBeans workspace.

Figure A.14 Specifying the project’s name and location

477Initializing a project at start.spring.io
A.4 Initializing a project at start.spring.io
Although one of the IDE-based initialization options described thus far will likely suit
your needs, it’s possible that you may use a completely different IDE, or you might
favor working with a simpler text editor. In that case, you can still take advantage of
the Spring Initializr using the Initializr web-based interface.

 To get started, direct your favorite web browser to https://start.spring.io. You
should see the simple version of the Spring Initializr web user interface, shown in fig-
ure A.15.

In the simple version of the Initializr web application, you’re only asked for some very
basic information, including whether you want to build with Maven or Gradle, which
language you want to develop the project with, which version of Spring Boot to build
against, and the group and artifact IDs of the project.

 You’ll also have the option of specifying dependencies by typing search criteria in
the Search for Dependencies box. For example, as shown in figure A.16, you can type
“web” to search for any dependencies where “web” is a keyword.

Figure A.15 The simple version of the Spring Initializr web interface

https://start.spring.io

478 APPENDIX Bootstrapping Spring applications
When you see the dependency you want, press Return on your keyboard to select it,
and it will be added to the list of selected dependencies. The boxes beneath Selected
Dependencies in figure A.17 show that the Web, Thymeleaf, DevTools, and Lombok
dependencies have been selected.

 If you decide you don’t need a selected dependency, you can click the X to the
right of the dependency entry to remove it.

 When you’re finished, you can click the Generate Project button (or use the key-
board shortcut displayed on the button, which will vary by operating system) to have
the Initializr generate the project and download it as a zip file. Then you can unzip
the project and load it in whatever IDE or editor you choose.

Figure A.16 Searching for dependencies

479Initializing a project at start.spring.io
If you prefer a little more control, you can click the Switch to the Full Version link
under Generate Project to expand the user interface with more fields and a complete
listing of check boxes for all available dependencies. Figure A.18 shows a little bit of
what the full version of the web interface looks like.

 Most of the fields in the full version are derived from the Group and Artifact fields
or have default values when you’re using the simple version. The full version gives you
the opportunity to override those derived/default values if you wish.

 Figure A.18 only shows a small sample of the set of dependency check boxes that
are available in the full version, so you might scroll a lot to find what you’re looking
for. Fortunately, the search box still works in the full version of the user interface.

Figure A.17 Selecting dependencies

480 APPENDIX Bootstrapping Spring applications
A.5 Initializing a project from the command line
The IDE and browser-based user interfaces for the Spring Initializr are probably the
most common way that you’ll bootstrap your projects. They’re all just clients of a
REST service offered by the Initializr application. In some special cases (for example,
in a scripted scenario), you might find it useful to consume the Initializr service
directly from the command line.

Figure A.18 The full version of the Initializr user interface

481Initializing a project from the command line
 There are two ways to consume the API:

■ Using the curl command (or some similar command-line REST client command)
■ Using the Spring Boot Command Line Interface (aka, Spring Boot CLI)

Let’s look at these options, starting with the curl command.

A.5.1 curl and the Initializr API

The simplest way to bootstrap a Spring project with curl is to consume the API like this:

% curl https://start.spring.io/starter.zip -o demo.zip

In this case, you’re requesting the /starter.zip endpoint from the Initializr, which
will generate a Spring project and download it as a zip file. The generated project
will be Maven-built and will have no dependencies other than the base Spring Boot
starter dependency. All project information in the project’s pom.xml file will be set
to default values.

 If you don’t specify otherwise, the name of the file will be starter.zip. But in this
case, the -o option specifies that the downloaded file should be named demo.zip.

 The publicly available Spring Initializr server is hosted at https://start.spring.io,
but if you’re using a custom Initializr, you’ll need to adapt the given URL accordingly.

 You’ll probably want to specify a few more details and dependencies beyond the
given defaults. Table A.1 lists all of the parameters (and their defaults) when consum-
ing the Spring Initializr REST service.

Table A.1 Request parameters supported by the Initializr API

Parameter Description Default value

groupId The project’s group ID, for the sake of organization
in a Maven repository.

com.example

artifactId The project’s artifact ID, as it would appear in a
Maven repository.

demo

version The project version. 0.0.1-SNAPSHOT

name The project name. Also used to determine the
name of the application’s main class (with an
Application suffix).

demo

description The project description. Demo project for
Spring Boot

packageName The project’s base package name. com.example.demo

dependencies Dependencies to include in the project’s build
specification.

The base Spring Boot
starter

type The kind of project to generate. Either maven-
project or gradle-project.

maven-project

https://start.spring.io

482 APPENDIX Bootstrapping Spring applications
You can also get this list of parameters, as well as a list of available dependencies, by
making a simple request to the base Initializr URL:

% curl https://start.spring.io

The dependencies parameter is the one you’ll probably find the most useful. For
example, suppose that you want to create a simple web project with Spring. The fol-
lowing command-line use of curl will produce a project zip with the web starter as a
dependency:

% curl https://start.spring.io/starter.zip \
 -d dependencies=web \
 -o demo.zip

As a more complex example, suppose you wanted to develop a web application that
uses Spring Data JPA for data persistence. You also want to build it with Gradle and
the project should be under a directory named my-dir within the zip file. And let’s
suppose that rather than just download a zip file, you want the project unpacked
into your filesystem upon download. In that case, the following command should do
the trick:

% curl https://start.spring.io/starter.tgz \
 -d dependencies=web,data-jpa \
 -d type=gradle-project
 -d baseDir=my-dir | tar -xzvf -

Here, the downloaded zip file is piped to the tar command for unpacking.

javaVersion The version of Java to build with. 1.8

bootVersion The version of Boot to build against. The current GA version of
Spring Boot

language The programming language to use. Either java,
groovy, or kotlin.

java

packaging How the project should be packaged. Either jar
or war.

jar

applicationName The name of the application. The value of the name
parameter

baseDir The name of the base directory in the generated
archive.

The root directory

Table A.1 Request parameters supported by the Initializr API (continued)

Parameter Description Default value

483Initializing a project from the command line
A.5.2 Spring Boot command-line interface

The Spring Boot CLI is another option for initializing Spring applications. You can
install the Spring Boot CLI in many ways, but probably the easiest way (and my favor-
ite) is to use SDKMAN (http://sdkman.io/):

% sdk install springboot

Once the Spring Boot CLI is installed, you can start using it to generate projects,
much like with curl. The command you’ll use is spring init. In fact, the simplest way
to use the Spring Boot CLI to generate a project is like this:

% spring init

This will result in a barebones Spring Boot project being downloaded in a zip file
named demo.zip.

 However, you’ll probably want to specify more details and dependencies. Table A.2
lists all of the parameters available to the spring init command.

Table A.2 Request parameters supported by the spring init command

Parameter Description Default value

group-id The project’s group ID, for the sake of organization
in a Maven repository.

com.example

artifact-id The project’s artifact ID, as it would appear in a
Maven repository.

demo

version The project version. 0.0.1-SNAPSHOT

name The project name. Also used to determine the name
of the application’s main class (with an
Application suffix).

demo

description The project description. Demo project for
Spring Boot

package-name The project’s base package name. com.example.demo

dependencies Dependencies to include in the project’s build speci-
fication.

The base Spring Boot
starter

type The kind of project to generate. Either maven-
project or gradle-project.

maven-project

java-version The version of Java to build with. 1.8

boot-version The version of Boot to build against. The current GA version of
Spring Boot

language The programming language to use. Either java,
groovy, or kotlin.

java

packaging How the project should be packaged. Either jar or
war.

jar

http://sdkman.io/

484 APPENDIX Bootstrapping Spring applications
You can also get this list of parameters, as well as a list of available dependencies, by
using the --list parameter:

% spring init --list

Suppose you wish to create a web application that builds against Java 1.7. The follow-
ing command uses the --dependencies and --java parameters to make those
choices:

% spring init --dependencies=web --java-version=1.7

Or suppose you want to create a web application with Spring Data JPA for persistence,
and you’d like to use Gradle to perform the build instead of Maven. You’d use the fol-
lowing command:

% spring init --dependencies=web,jpa --type=gradle-project

You may also notice that many of the spring init parameters are the same as or simi-
lar to the parameters for the curl option. That said, the spring init command doesn’t
support all of the same parameters as the curl option (baseDir, for example) and the
parameters are hyphen-delimited instead of camel-cased (for example, package-name
versus packageName).

A.6 Creating Spring applications with a meta-framework
It’s also worth noting that there are a couple of frameworks that are built on top of
Spring and Spring Boot:

■ Grails—https://grails.org/
■ JHipster—https://jhipster.github.io/

These meta-frameworks offer higher-level rapid development of Spring applications,
while still offering everything that Spring and Spring Boot offer.

 These meta-frameworks each offer their own unique development model and are,
in fact, frameworks in their own right, so it wouldn’t do them justice to simply present
them as project initialization mechanisms in this appendix. Indeed, they each could
have entire books written about them.

 I won’t delve into how to use these meta-frameworks to initialize a Spring project.
Nevertheless, I include them here to make you aware that they are other ways to ini-
tialize and develop Spring applications.

A.7 Building and running projects
No matter how you initialize your project, you can always run the application from the
command line with the java -jar command:

% java -jar demo.jar

https://grails.org/
https://jhipster.github.io/

485Building and running projects
This will even work if you decide to create a WAR file distribution instead of a JAR file:

% java -jar demo.war

You can also take advantage of the Spring Boot Maven and Gradle plugins to run your
application. For example, if your project is built with Maven, you can run it like this:

% mvn spring-boot:run

If, on the other hand, you’ve chosen to build your project with Gradle, you can run
your project like this:

% gradle bootRun

In either case, whether using Maven or Gradle, the build tool will first build your proj-
ect (if it hasn’t already been built) and run it.

index
Symbols

@ operator 38
@{} operator 38

A

AbstractMessageRouter 222
AbstractRepositoryEventListener 450–451
access() method 105
ActiveMQQueue 184
Actuator. See Spring Boot Actuator
addNote() method 425
addScript() method 115
addScripts() method 115
addViewControllers() method 52, 107
Advanced Message Queueing Protocol

(AMQP) 179
all() method 266
@AllowFiltering annotation 312
AMQP (Advanced Message Queueing

Protocol) 179
AmqpHeaderConverter 197
and() method 107
antMatchers() method 294
any() method 266
ApiProperties 236
APIs. See reactive APIs
applicationConfig property 406
applicationName parameter 482
applications. See Spring applications
artifactId parameter 481
asLink() method 176
asynchronous messaging 178–208

with JMS 179–192
JmsTemplate 181–188

receiving messages 188–192
setting up JMS 179–181

with Kafka 202–208
sending messages with KafkaTemplate

204–206
setting up 203–204
writing Kafka listeners 206–208

with RabbitMQ 192–202
adding to Spring 193–194
receiving message from 198–202
sending messages with RabbitTemplate

194–198
AtomicInteger 229
authentication. See user authentication,

customizing
@AuthenticationPrincipal annotation 111
autoconfiguration, fine-tuning 115–121

configuring data source 117–118
configuring embedded server 119
configuring logging 120–121
environment abstraction 116–117
using special property values 121

@Autowired annotation 61
autowiring 6
availableTags 415

B

base path, Actuator 397
baseDir parameter 482
@Bean annotation 5
bean wiring 115
bean wiring report 403–404
beans, conditionally creating with profiles

132–133
bill of materials (BOM) 248
487

INDEX488
block() method 299
BOM (bill of materials) 248
bootstrapping applications 466–485

building and running projects 484–485
creating apps with meta-framework 484
example 15–16
initializing projects

at start.spring.io 477–479
from command line 480–484
with IntelliJ IDEA 470–472
with NetBeans 473–476
with Spring Tool Suite 466–470

bootVersion parameter 482
browser refresh 24
buffering data 263–266
build specification 12–15
BuildInfoContributor 418

C

caching templates 54–55
Cassandra 300–312

data modeling 303–304
enabling 301–303
mapping domain types for persistence 304–309
writing 309–312

CassandraRepository interface 310
ccExpiration property 47
ccNumber property 47
cf bind-service command 460
channel adapters 228–230
channel() method 216
circuit breakers 376–383

managing thresholds 382–383
mitigating latency 381–382

circuitBreaker.errorThresholdPercentage
property 382

circuitBreaker.requestVolumeThreshold
property 382

circuitBreaker.sleepWindowInMilliseconds
property 383

CLI (command-line interface) 481
clients, Admin, registering 431–435

discovering Admin client applications 433–435
explicitly configuring Admin client

applications 432–433
Cloud Foundry 132, 454–461
cloud. See Spring Cloud
codecentric AG 430
collections, creating reactive types from 250–251
collectList() method 265
Command Line Interface (CLI) 481
command line, initializing projects from 480–484

curl and Initializr API 481–482
interface 483–484

CommandLineRunner 133
commandProperties attribute 381
component scanning 6
@ComponentScan annotation 15
@ConditionalOnClass annotation 405
@ConditionalOnMissingBean annotation 405
Config Server 346
config.client.version property 367
configuration 343–375

consuming shared configuration 352–353
keeping configuration properties secret

357–364
encrypting properties in Git 357–360
in Vault 360–364

refreshing configuration properties on the
fly 364–375

automatically 367–375
manually 365–367

running configuration server 345–352
enabling Config Server 346–349
populating configuration repository 349–352

serving application-specific properties 354–355
serving properties from profiles 355–357
sharing 344–345
Spring Security 86–103

customizing user authentication 96–103
in-memory user store 88–89
JDBC-based user store 89–92
LDAP-backed user store 92–96

@Configuration annotation 5
configuration properties 114–133

autoconfiguration, fine-tuning 115–121
configuring data source 117–118
configuring embedded server 119
configuring logging 120–121
environment abstraction 116–117
using special property values 121

defining holders 124–126
metadata, declaring 126–129
profiles 129–133

activating 131–132
conditionally creating beans with 132–133
defining profile-specific properties 130–131

configuration() method 292
@ConfigurationProperties annotation 122–123,

200, 232
configure() method 99, 456
configuredLevel property 410
ContentTypeDelegatingMessageConverter 197
contextSource() method 94
contribute() method 417
@Controller annotation 18
controller class, creating 32–35
controller, testing 20–21
ControllerLinkBuilder 153

INDEX 489
convertAndSend() method 182, 185, 195
copyToString() method 282
create keyspace command 302
createdAt property 59
createdDate property 165
createMessage() method 183
@CrossOrigin annotation 143
CrudRepository interface 81, 310, 318
CSRF (cross-site request forgery) 109–110
curl 7, 481–482
custom endpoints 165–167
custom hyperlinks 167–168
custom login page 106–108
customizing user authentication 96–103

creating user-details service 98–100
defining user domain and persistence

96–98
registering users 100–103

D

data 56–83
persisting with Spring Data JPA 75–83

adding Spring Data JPA to project 76
annotating domain as entities 76–80
customizing JPA repositories 81–83
declaring JPA repositories 80–81

reading and writing with JDBC 57–75
adapting domain for persistence 59
defining schema and preloading data

64–66
inserting data 66–75
working with JdbcTemplate 60–64

source of, configuring 117–118
@Data annotation 32
data-backed services, enabling 160–168

adding custom endpoints 165–167
adding custom hyperlinks to Spring Data

endpoints 167–168
adjusting resource paths and relation

names 162–164
paging and sorting 164–165

databases, embedded 313
default user queries, overriding 90–91
defaultRequestChannel attribute 211
defaultSuccessUrl parameter 108
delayElements() method 254, 258
delaySubscription() method 254
delete() method 174
deleteById() method 149
@DeleteMapping annotation 148
deleteNote() method 425
deleteOrder() method 149
dependencies 476
dependency injection (DI) 4

deployment 454–465
building and deploying WAR files 456–458
options, deciding between 455–456
pushing JAR files to Cloud Foundry 458–461
running Spring Boot in Docker container

461–464
description parameter 481
DI (dependency injection) 4
diagramming reactive flows 246
@Digits annotation 48
DirectChannel 218
directory attribute 213
disable() method 110
disabling endpoints, Actuator 398
diskSpace 402
DispatcherServlet 456
displaying information 30–40

creating controller class 32–35
designing view 35–40
establishing domain 31–32

Docker container, running Spring Boot in
461–464

@Document annotation 314
domain, establishing 31–32
doTransform() method 235
DSL, configuring integration flows using 215–216

E

email integration flows 231–237
EmailProperties class 232
embedded databases 313
embedded LDAP server, configuring 94–96
embedded relationships, naming 159–160
embedded server, configuring 119
EmptyResultDataAccessException 149
@EnableAdminServer annotation 431
@EnableAutoConfiguration annotation 15
@EnableConfigServer annotation 347
@EnableEurekaServer annotation 328
@EnableFeignClients annotation 340
@EnableHystrix annotation 379
@EnableHystrixDashboard annotation 384
@EnableWebFluxSecurity annotation 293
@EnableWebSecurity annotation 292
encoded passwords 91–92
encrypt.key property 357
endpoint modules 230–231
endpoints, Actuator

consuming 399–416
fetching essential application

information 400–411
tapping runtime metrics 413–416
viewing application activity 411–413

enabling and disabling 398

INDEX490
endpoints, Spring Data
adding custom hyperlinks to 167–168
custom, adding 165–167

@Entity annotation 304
entry points 462
environment abstraction 116–117
environment properties, Admin server 438
equals() method 31
errors attribute 50
Eureka service registry 326–334

client-side load balancer 327–330
configuring 330–332
overview 326–327
scaling 333–334

eureka.client.fetch-registry property 331
eureka.client.register-with-eureka property 331,

434
eureka.client.service-url property 331, 336
eureka.instance.hostname property 331
eureka.server.enable-self-preservation

property 331–332
evenChannel 221
event looping 270
exchange() method 171, 291
execute() method 73, 171
executeAndReturnKey() method 73
execution.timeout.enabled property 382
ExecutorChannel 218
expectStatus() method 281
ExpressionInterceptUrlRegistry 104

F

failure and latency 376–391
aggregating multiple Hystrix streams 389–391
circuit breakers 376–383

managing circuit breaker thresholds
382–383

mitigating latency 381–382
monitoring failures 383–389

Hystrix dashboard 384–387
Hystrix thread pools 387–389

Feign library 340–342
@FeignClient annotation 341
@Field annotation 314
FIFO (first in, first out) 218
fileWriterChannel 212
FileWriterGateway 211, 227
FileWritingMessageHandler 214, 230
filter() method 220, 259
filtering data from reactive types 257–260
filters 219–220
final property 32
findAll() method 61–62, 143
findByOrderByCreatedAtDesc() method 319

findByUser() method 122
findByUsername() method 98, 295, 311, 320
findByUserOrderByPlacedAtDesc() method

123
findOne() method 61–62
first in, first out (FIFO) 218
flatMap() method 261, 291
Flux data 251–252
FluxMessageChannel 218
follow() method 176
formLogin() method 106
forms

processing submission 40–45
validating input 45–51

declaring validation rules 46–48
displaying validation errors 49–51
performing validation at form binding

48–49
frameworkless framework 25
FreeMarker 53
from() method 229
fromArray() method 250, 299
fromIterable() method 251, 299
fromStream() method 299

G

gateways 227–228
@GeneratedValue annotation 78
GenericHandler 226
GenericTransformer 214
GET requests

handling 34–35
testing 279–282

getAuthorities() method 97
getContent() method 273
getForEntity() method 172–173
getForObject() method 172–173, 285, 338
getHref() method 177
getImapUrl() method 234
@GetMapping annotation 18, 35, 139
getMessageConverter() method 195
getPrincipal() method 112
Git

authenticating with backend 352
encrypting properties in 357–360
serving configuration from subpaths

350–351
Gogs notification extractor 373–374
Grails 484
greeting.message property 367
Groovy Templates 53
groupId parameter 481
groupSearchBase() method 93
groupSearchFilter() method 92

INDEX 491
H

H2 console 25
handle() method 207, 236
hasErrors() method 49
hashCode() method 31
hasRole() method 104
HATEOAS (Hypermedia as the Engine of

Application State) 149, 399
helloRouterFunction() method 278
home() method 18
href property 175
HTTP 404 (Not Found) error 35, 290
HTTP requests

mappings 408–409
tracing 441–442

HTTPie 144
Hypermedia as the Engine of Application State

(HATEOAS) 149, 399
hypermedia, enabling 149–160

adding hyperlinks 152–154
creating resource assemblers 154–158
naming embedded relationships 159–160

Hystrix
dashboard 384–387
streams, aggregating multiple 389–391
thread pools 387–389

@HystrixCommand annotation 378

I

IAAS (Infrastructure-as-a-Service) 461
@Id annotation 77, 314
imperative code 242
@ImportResource annotation 213
inboundAdapter() method 229
@InboundChannelAdapter annotation 229
incognito mode 88
/info endpoint, contributing information to

416–420
InfoContributor interface 416
Infrastructure-as-a-Service (IAAS) 461
initializing applications 6–17
initializing projects

at start.spring.io 477–479
from command line 480–484

curl and Initializr API 481–482
interface 483–484

with IntelliJ IDEA 470–472
with NetBeans 473–476
with Spring Tool Suite 7–11, 466–470

Initializr API 481–482
in-memory user store 88–89
inMemoryAuthentication() method 89
instantiateResource() method 156

integration. See Spring Integration
IntegrationFlows class 216
IntelliJ IDEA, initializing projects with 470–472
interval() method 252
InventoryService bean 5

J

Jackson2JsonMessageConverter 197
JAR files, pushing to Cloud Foundry 458–461
Java Database Connectivity. See JDBC
Java Management Extensions. See JMX
Java Message Service. See JMS
Java Persistence API. See Spring Data JPA
Java Streams 244
Java virtual machine (JVM) 24
Java, configuring integration flows in 213–215
JavaServer Pages (JSP) 35
javaVersion parameter 482
JDBC (Java Database Connectivity) based user

store 89–92
overriding default user queries 90–91
working with encoded passwords 91–92

JDBC (Java Database Connectivity), reading and
writing data with 57–75

adapting domain for persistence 59
defining schema and preloading data 64–66
inserting data 66–75
working with JdbcTemplate 60–64

jdbcAuthentication() method 90
JdbcTemplate class 26, 57
JHipster 484
JMS (Java Message Service) 179–192

JmsTemplate 181–188
configuring message converter 185–187
converting messages before sending 185
post-processing messages 187–188

receiving messages 188–192
declaring message listeners 191–192
with JmsTemplate 189–191

setting up 179–181
@JmsListener annotation 191, 202
JmsOrderMessagingService 183
jms.send() method 183
JmsTemplate 181–188

configuring message converter 185–187
converting messages before sending 185
post-processing messages 187–188
receiving messages with 189–191

JMX (Java Management Extensions) 446–453
Actuator MBeans 446–449
creating MBeans 449–451
sending notifications 451–453

JPA (Java Persistence API). See Spring Data JPA
(Java Persistence API)

INDEX492
jsonPath() method 281
JSP (JavaServer Pages) 35
just() method 246
JVM (Java virtual machine) 24

K

Kafka 202–208
sending messages with KafkaTemplate 204–206
setting up 203–204
writing listeners 206–208

L

latency. See failure and latency
LDAP (Lightweight Directory Access Protocol)

backed user store 92–96
configuring embedded LDAP server 94–96
configuring password comparison 93–94
referring to remote LDAP server 94

LDIF (LDAP Data Interchange Format) 95
links property 151
linkTo() method 154
LiveReload 24
@LoadBalanced annotation 338
loadByUsername() method 99
log() method 264
Logback 120
loggerLevels 448
logging

configuring 120–121
out 109

logging.file property 121
logging.path property 121
loginPage() method 107
Lombok 32, 478

M

Mail.imapInboundAdapter() method 234
main() method 16
@ManagedAttribute annotation 449
@ManagedOperation annotation 449
@ManagedResource annotation 449
management.endpoint.health.show-details

property 401
management.endpoints.web.exposure.exclude

property 398
management.endpoints.web.exposure.include

property 398
management.endpoint.web.base-path

property 397
@ManyToMany annotation 78
map() method 246
mapping reactive data 260–263

MappingJackson2MessageConverter 186
mapRowToIngredient() method 58
MarshallingMessageConverter 197
matches() method 92
@Max annotation 126
MBeans

Actuator MBeans 446–449
creating 449–451

MDBs (message-driven beans) 179
mergeWith() method 253
message channels 217–219
message-driven beans (MDBs) 179
MessagePostProcessor 182, 188, 198
MessageProperties 196
messaging. See asynchronous messaging
@MessagingGateway annotation 211
MessagingMessageConverter 197
metadata, declaring 126–129
MeterRegistry 422
methodOn() method 154
Micrometer 422
microservices 323–342

Eureka service registry 326–334
client-side load balancer 327–330
configuring 330–332
configuring Eureka client properties 335–337
overview 326–327
scaling 333–334

overview 324–326
registering and discovering services 334–342

configuring Eureka client properties
335–337

consuming services 337–342
@Min annotation 126
@ModelAttribute annotation 70
MongoDB. See Spring Data MongoDB
MongoRepository 318
MongoTemplate bean 405
monitoring Spring. See JMX
monitoring threads, Admin server 440
MPA (multipage application) 139
Mustache 53

N

name parameter 481
NetBeans, initializing projects with 473–476
NetworkTopologyStrategy 302
ngOnInit() method 140
@NoArgsConstructor annotation 77
Not Found (HTTP 404) error 35, 290
@NotBlank annotation 47
notes() method 425
NotesEndpoint class 424
NotificationPublisherAware interface 451

INDEX 493
@NotNull annotation 46
numberChannel 220

O

objects, creating reactive types from 249–250
oddChannel 221
onAfterCreate() method 423, 451
onError() method 245
onNext() method 245
onStatus() method 289
onSubmit() method 145
onSubscribe() method 244
OpenFeign 340
OrderController class 43
orderForm() method 42
orderInserter variable 72
ordersForUser() method 122
OrderSplitter 224
overriding default user queries 90–91

P

PaaS (platform-as-a-service) 465
packageName parameter 481
pageSize property 124
paging 164–165
PagingAndSortingRepository 311
ParameterizedTypeReference 176, 201
passwordCompare() method 93
passwordEncoder() method 91, 94
passwords

comparison of, configuring 93–94
encoded 91–92

patchOrder() method 148
pathMatchers() method 294
@PathVariable annotation 144, 341
@Pattern annotation 48
PayloadTypeRouter 224
permitAll() method 104
Pivotal Web Services (PWS) 459
placedAt property 73, 122
platform-as-a-service (PaaS) 465
poChannel 224
POST requests, testing 282–283
postForEntity() method 174
postForLocation() method 174–175
postForObject() method 174–175
@PostMapping annotation 35, 139
PreparedStatementCreator() method 69
@PrePersist annotation 78
PriorityChannel 218
processDesign() method 40, 46, 70
processOrder() method 46
processRegistration() method 102

ProductService bean 5
profiles 129–133

activating 131–132
conditionally creating beans with 132–133
defining profile-specific properties 130–131

projects. See Spring projects
property injection 115
propertySources property 349
PublishSubscribeChannel 217
pull model 188
push model 188
put() method 173
PWS (Pivotal Web Services) 459

Q

query() method 63
queryForObject() method 58, 62–63
QueueChannel 218

R

RabbitMQ 192–202
adding to Spring 193–194
receiving message from 198–202

handling messages with listeners 201–202
with RabbitTemplate 198–201

sending messages with RabbitTemplate
194–198

configuring message converter 197
setting message properties 197–198

RabbitTemplate beans 193
range() method 251
reactive APIs 269–295

consuming REST APIs reactively 285–292
deleting resources 288–289
exchanging requests 290–292
GETting resources 285–287
handling errors 289–290
sending resources 287–288

functional request handlers, defining 276–279
reactive controllers

testing 279–285
writing 272–276

securing reactive web APIs 292–295
configuring reactive user details service

294–295
configuring reactive web security 292–294

Spring WebFlux 269–276
reactive code 242
reactive programming

defining Reactive Streams 243–245
overview 242–245
See also Reactor

reactive repositories. See Spring Data

INDEX494
ReactiveCassandraRepository interface 309
ReactiveCrudRepository interface 309, 318
ReactiveMongoRepository 318
ReactiveUserDetailsService 295
Reactor 241–268

getting started with 245–248
adding dependencies 247–248
diagramming reactive flows 246

reactive streams, transforming and
filtering 257–266

buffering data 263–266
filtering data from reactive types 257–260
mapping reactive data 260–263

reactive types
combining 253–256
performing logic operations on 266–268

reading and writing data, with JDBC 57–75
adapting domain for persistence 59
defining schema and preloading data 64–66
inserting data 66–75

inserting data with SimpleJdbcTemplate
71–75

saving data with JdbcTemplate 67–71
working with JdbcTemplate 60–64

defining JDBC repositories 60–62
inserting row 62–64

receive() method 190, 199
receiveAndConvert() method 190, 199
recents links 151
registerForm() method 101
registering

clients, Admin 431–435
discovering Admin client applications

433–435
explicitly configuring Admin client

applications 432–433
users 100–103

RegistrationController class 100
relation names, adjusting 162–164
release train 297
remote LDAP server, referring to 94
RendezvousChannel 218
replacement operation 146
@Repository annotation 61
@RepositoryRestController annotation 166–167
@RequestBody annotation 146
@RequestMapping annotation 34–35, 143
RequestPredicate 278
@RequiredArgsConstructor annotation 77
resource assemblers, creating 154–158
resource paths, adjusting 162–164
ResourceProcessor 168
ResourceSupport 155
@ResponseStatus annotation 149
ResponseStatusException 416

REST services 137–168
consuming 169–177

navigating REST APIs with Traverson
175–177

REST APIs, reactively 285–292
REST endpoints with RestTemplate

175–177
data-backed services, enabling 160–168

adding custom endpoints 165–167
adding custom hyperlinks to Spring Data

endpoints 167–168
adjusting resource paths and relation

names 162–164
paging and sorting 164–165

hypermedia, enabling 149–160
adding hyperlinks 152–154
creating resource assemblers 154–158
naming embedded relationships 159–160

RESTful controllers, writing 138–149
deleting data from server 148–149
retrieving data from server 140–144
sending data to server 145–146
updating data on server 146–148

restart, automatic 23–24
RestClientException 380
@RestController annotation 142, 160
@RestResource annotation 164
RestTemplate

consuming REST endpoints with 175–177
delete() method 174
getForObject() and getForEntity()

methods 172–173
postForObject() and postForLocation()

methods 174–175
put() method 173

consuming services with 337–339
retrieve() method 290
romanNumberChannel 220
routerFunction() method 278–279
routers 221–223
run() method 16
@RunWith annotation 16, 284
RXJava types 275

S

save() method 67
saveAll() method 276, 298
scanning 6, 15
SDKMAN 483
securing reactive web APIs 292–295

configuring reactive user details service
294–295

configuring reactive web security 292–294
security. See Spring Security

INDEX 495
SecurityConfig class 88
SecurityContextHolder 111
security.user.name property 117
security.user.password property 117, 127
securityWebFilterChain() method 293
self links 151
send() method 182, 195
sendDefault() method 205
sendNotification() method 451
SerializerMessageConverter 197
server, Admin 435–442

creating 430–431
examining environment properties 438
monitoring threads 440
securing 442–445

authenticating with Actuator 444–445
enabling login 443–444

tracing HTTP requests 441–442
viewing and setting logging levels 439
viewing general application health and

information 436–437
watching key metrics 437–438

ServerHttpSecurity object 293
server.port property 119, 355, 385
server.ssl.key-store property 119
service activators 225–227
@ServiceActivator annotation 214, 226
@SessionAttributes annotation 70
SessionStatus parameter 75
setExpectReply() method 214
setHeader() method 198
setNotificationPublisher() method 451
setStringProperty() method 187
setTypeIdMappings() method 186
setTypeIdPropertyName() method 186
setViewName() method 52
showDesignForm() method 34–35
SimpleJdbcInsert class 66
SimpleJdbcTemplate 71–75
SimpleMessageConverter 186, 197
single-page application (SPA) 139
@Size annotation 46
skip() method 257
slash() method 153
@Slf4j annotation 34
sorting 164–165
sources() method 457
SPA (single-page application) 139
special property values 121
SpEL (Spring Expression Language) 212
splitOrderChannel 224
splitters 223–225
Spring applications

automatic restart 23–24
initializing 6–17

testing 16–17
writing 17–26

building and running application 21–23
defining view 19
handling web requests 17–19
Spring Boot DevTools use 23–25
testing controller 20–21

See also bootstrapping applications
Spring Batch 27–28
Spring Boot

overview of 26–27
running in Docker container 461–464

Spring Boot Actuator 395–428
base path, configuring 397
customizing 416–426

contributing information to /info
endpoint 416–420

creating custom endpoints 424–426
defining custom health indicators 421–422
registering custom metrics 422–424

endpoints, consuming 399–416
fetching essential application

information 400–411
tapping runtime metrics 413–416
viewing application activity 411–413

endpoints, enabling and disabling 398
MBeans 446–449
overview 396–397
securing 426–428

Spring Boot Admin 429–445
clients, registering 431–435
overview 430
server 435–442

creating 430–431
examining environment properties 438
monitoring threads 440
securing 442–445
tracing HTTP requests 441–442
viewing and setting logging levels 439
viewing general application health and

information 436–437
watching key metrics 437–438

Spring Boot DevTools 23–25
automatic application restart 23–24
automatic browser refresh 24
built in H2 console 25
template cache disable 24

Spring Cloud 28
Spring Data 27, 296–320

converting between reactive and nonreactive
types 298–300

developing reactive repositories 300
reactive Cassandra repositories 300–312

data modeling 303–304
enabling Cassandra 301–303

INDEX496
Spring Data (continued)
mapping domain types for Cassandra

persistence 304–309
writing 309–312

writing reactive MongoDB repositories
312–320

enabling Spring Data MongoDB 312–314
mapping domain types to documents

314–317
writing reactive MongoDB repository

interfaces 317–320
Spring Data JPA (Java Persistence API) 75–83

adding to project 76
annotating domain as entities 76–80
customizing JPA repositories 81–83
declaring JPA repositories 80–81

Spring Data MongoDB 312–320
enabling 312–314
mapping domain types to documents 314–317
writing reactive repository interfaces 317–320

Spring Expression Language (SpEL) 212
Spring Framework 26
spring init command 483
Spring Integration 27–28, 209–237

channel adapters 228–230
creating email integration flow 231–237
endpoint modules 230–231
filters 219–220
gateways 227–228
integration flows 210–216

configuring in Java 213–215
defining with XML 211–213
using DSL configuration 215–216

message channels 217–219
routers 221–223
service activators 225–227
splitters 223–225
transformers 220–221

Spring overview 4–6
Spring projects

initializing
at start.spring.io 477–479
from command line 480–484
with IntelliJ IDEA 470–472
with NetBeans 473–476
with Spring Tool Suite 7–11, 466–470

structure 11–17
bootstrapping application 15–16
build specification 12–15
SpringRunner 17
testing application 16–17

Spring Security 27, 84–113
configuring 86–103

customizing user authentication 96–103
in-memory user store 88–89

JDBC-based user store 89–92
LDAP-backed user store 92–96

enabling 85–86
knowing user 110–113
securing web requests 103–110

creating custom login page 106–108
CSRF forgery 109–110
logging out 109
securing requests 104–106

Spring Tool Suite
initializing projects with 466–470
initializing Spring projects with 7–11

Spring WebFlux 269–276
overview 271–272
reactive controllers, writing 272–276

handling input reactively 275–276
returning single values 274–275
RXJava types 275

writing reactive controllers 272–276
handling input reactively 275–276
returning single values 274–275
RXJava types 275

spring.activemq.broker-url property 181
spring.activemq.in-memory property 181
spring.active.profiles property 353
SpringApplication class 16
spring.application.name property 335, 353, 433
spring.boot.admin.client.metadata.user.name

property 444
spring.boot.admin.client.metadata.user.password

property 444
spring.boot.admin.client.url property 432
@SpringBootApplication annotation 15
@SpringBootConfiguration annotation 15
SpringBootServletInitializr 456
@SpringBootTest annotation 17, 284
spring.cassandra.contact-points property 302
spring.cassandra.keyspace-name property 302
spring.cassandra.port property 302
spring.cloud.config.discovery.enabled

property 353
spring.cloud.config.server.encrypt.enabled

property 359
spring.cloud.config.server.git.default-label

property 351
spring.cloud.config.server.git.search-paths

property 351
spring.cloud.config.server.git.uri property 348
spring.cloud.config.token property 364
spring.cloud.config.uri property 352
spring-cloud.version property 328
spring.data.mongodb.database property 314
spring.data.mongodb.host property 314
spring.data.mongodb.password property 314,

358

INDEX 497
spring.data.mongodb.port property 314
spring.data.mongodb.username property 314
spring.datasource.data property 118
spring.datasource.driver-class-name property 118
spring.datasource.jndi-name property 118
spring.datasource.schema property 118
spring.jms.template.default-destination

property 184
SpringJUnit4ClassRunner 17
spring.kafka.bootstrap-servers property 204
spring.kafka.template.default-topic property 206
spring.main.web-application-type property 237
spring.profiles property 130
spring.profiles.active property 131
spring.rabbitmq.template.receive-timeout

property 201
SpringRunner 17
SQLException 58
StandardPasswordEncoder 91
start.spring.io, initializing projects at 477–479
StepVerifier 249
StreamUtils 282
subscribe() method 244
System.currentTimeMillis() method 205
systemEnvironment property 407

T

@Table annotation 304
take() method 258
template cache disable 24
testHomePage() method 21
testing

applications 16–17
controller 20–21
reactive controllers 279–285

testing GET requests 279–282
testing POST requests 282–283
testing with live server 284–285

textInChannel 214
threads, monitoring 440
Thymeleaf 14, 18–19, 478
timeout() method 287
toAnyEndpoint() method 428
toIterable() method 299
Tomcat 22
toObject() method 176
toResource() method 156
toRoman() method 220
toString() method 31
toUser() method 103
tracing HTTP requests, Admin server 441–442
@Transformer annotation 220
transformerFlow() method 221
transformers 220–221

Traverson library, navigating REST APIs with
175–177

turbine.app-config property 390

U

UDT (user-defined type) 306
UI (user interface) 429
update() method 63, 66
uppercase() method 228
url() method 94
user authentication, customizing 96–103

creating user-details service 98–100
defining user domain and persistence 96–98
registering users 100–103

user interface (UI) 429
user queries, default 90–91
user-defined type (UDT) 306
@UserDefinedType annotation 307
user-details service, creating 98–100
userDetailsService() method 99, 295
UsernameNotFoundException 98
userPassword attribute 93
UserRepositoryUserDetailsService 99
userSearchBase() method 93
userSearchFilter() method 92

V

@Valid annotation 48
@Validated annotation 126
validating form input 45–51

declaring validation rules 46–48
displaying validation errors 49–51
performing validation at form binding 48–49

Vault 360–364
enabling backend in Config Server 362–363
setting token in Config Server clients 364
starting server 360–361
writing application and profile-specific

secrets 364
writing secrets to 361–362

version parameter 481
view controllers 51–52
view template library, choosing

caching templates 54–55
general discussion 52–55

view, designing 35–40

W

WAR files, building and deploying 456–458
web applications, developing 29–55

displaying information 30–40
creating controller class 32–35

INDEX498
web applications, developing (continued)
designing view 35–40
establishing domain 31–32

processing form submission 40–45
validating form input 45–51

declaring validation rules 46–48
displaying validation errors 49–51
performing validation at form binding

48–49
view controllers 51–52
view template library, choosing 52–55

Web dependency 478
web requests, securing 103–110

creating custom login page 106–108
logging out 109
preventing cross-site request forgery

(CSRF) 109–110
WebApplicationInitialier 456
WebClient, consuming services with 339–340
WebClientResponseException 289
webEnvironment attribute 284
webhooks

creating 368–371
handling webhook updates in Config

Server 371–372
overview of 367

WebMvcConfigurer interface 51
@WebMvcTest annotation 21, 52

WebSecurityConfigurerAdapter class 88, 292, 427
WebTestClient 281
withDetail() method 417
withUser() method 89
wrapper scripts, Maven 11
writeToFile() method 211
writing data. See reading and writing data, with

JDBC
writing Spring applications 17–26

building and running application 21–23
defining view 19
handling web requests 17–19
Spring Boot DevTools use 23–25

automatic application restart 23–24
automatic browser refresh and template cache

disable 24
built in H2 console 25

testing controller 20–21

X

X-Config-Token header 363
XML, defining integration flows using 211–213
X-Vault-Token header 363

Z

zip() method 254

Craig Walls

S
pring Framework makes life easier for Java developers.
New features in Spring 5 bring its productivity-focused
approach to microservices, reactive development, and

other modern application designs. With Spring Boot now
fully integrated, you can start even complex projects with
minimal confi guration code. And the upgraded WebFlux
framework supports reactive apps right out of the box!

Spring in Action, Fifth Edition guides you through Spring’s core
features, explained in Craig Walls’ famously clear style. You’ll
roll up your sleeves and build a secure database-backed web
app step by step. Along the way, you’ll explore reactive pro-
gramming, microservices, service discovery, RESTful APIs,
deployment, and expert best practices. Whether you’re just
discovering Spring or leveling up to Spring 5, this Manning
classic is your ticket!

What’s Inside
● Building reactive applications
● Spring MVC for web apps and RESTful web services
● Securing applications with Spring Security
● Covers Spring 5.0

For intermediate Java developers.

Craig Walls is a principal software engineer at Pivotal, a popu-
lar author, an enthusiastic supporter of Spring Framework,
and a frequent conference speaker.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/spring-in-action-fifth-edition

$49.99 / Can $65.99 [INCLUDING eBOOK]

Spring IN ACTION Fifth Edition

JAVA

M A N N I N G

“This new edition is a
comprehensive update that
strikes the balance between

practical instruction and
comprehensive theory.”

—Daniel Vaughan
European Bioinformatics Institute

“The go-to book for learning
the Spring Framework and an
excellent reference guide.”

—Colin Joyce, Cisco

“Everything you need to
know about Spring and

how to build cloud-native
 applications.”—David Witherspoon, Parsons

“This book is the
Spring developer’s

 Swiss Army knife!”
—Riccardo Noviello

Nuvio Software Solutions

See first page

Over 100,000 copies sold!

	Spring in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	Book forum
	Other online resources
	About the author
	About the cover illustration

	Part 1?Foundational Spring
	1 Getting started with Spring
	1.1 What is Spring?
	1.2 Initializing a Spring application
	1.2.1 Initializing a Spring project with Spring Tool Suite
	1.2.2 Examining the Spring project structure

	1.3 Writing a Spring application
	1.3.1 Handling web requests
	1.3.2 Defining the view
	1.3.3 Testing the controller
	1.3.4 Building and running the application
	1.3.5 Getting to know Spring Boot DevTools
	1.3.6 Let?s review

	1.4 Surveying the Spring landscape
	1.4.1 The core Spring Framework
	1.4.2 Spring Boot
	1.4.3 Spring Data
	1.4.4 Spring Security
	1.4.5 Spring Integration and Spring Batch
	1.4.6 Spring Cloud

	Summary

	2 Developing web applications
	2.1 Displaying information
	2.1.1 Establishing the domain
	2.1.2 Creating a controller class
	2.1.3 Designing the view

	2.2 Processing form submission
	2.3 Validating form input
	2.3.1 Declaring validation rules
	2.3.2 Performing validation at form binding
	2.3.3 Displaying validation errors

	2.4 Working with view controllers
	2.5 Choosing a view template library
	2.5.1 Caching templates

	Summary

	3 Working with data
	3.1 Reading and writing data with JDBC
	3.1.1 Adapting the domain for persistence
	3.1.2 Working with JdbcTemplate
	3.1.3 Defining a schema and preloading data
	3.1.4 Inserting data

	3.2 Persisting data with Spring Data JPA
	3.2.1 Adding Spring Data JPA to the project
	3.2.2 Annotating the domain as entities
	3.2.3 Declaring JPA repositories
	3.2.4 Customizing JPA repositories

	Summary

	4 Securing Spring
	4.1 Enabling Spring Security
	4.2 Configuring Spring Security
	4.2.1 In-memory user store
	4.2.2 JDBC-based user store
	4.2.3 LDAP-backed user store
	4.2.4 Customizing user authentication

	4.3 Securing web requests
	4.3.1 Securing requests
	4.3.2 Creating a custom login page
	4.3.3 Logging out
	4.3.4 Preventing cross-site request forgery

	4.4 Knowing your user
	Summary

	5 Working with configuration properties
	5.1 Fine-tuning autoconfiguration
	5.1.1 Understanding Spring?s environment abstraction
	5.1.2 Configuring a data source
	5.1.3 Configuring the embedded server
	5.1.4 Configuring logging
	5.1.5 Using special property values

	5.2 Creating your own configuration properties
	5.2.1 Defining configuration properties holders
	5.2.2 Declaring configuration property metadata

	5.3 Configuring with profiles
	5.3.1 Defining profile-specific properties
	5.3.2 Activating profiles
	5.3.3 Conditionally creating beans with profiles

	Summary

	Part 2?Integrated Spring
	6 C reating REST services
	6.1 Writing RESTful controllers
	6.1.1 Retrieving data from the server
	6.1.2 Sending data to the server
	6.1.3 Updating data on the server
	6.1.4 Deleting data from the server

	6.2 Enabling hypermedia
	6.2.1 Adding hyperlinks
	6.2.2 Creating resource assemblers
	6.2.3 Naming embedded relationships

	6.3 Enabling data-backed services
	6.3.1 Adjusting resource paths and relation names
	6.3.2 Paging and sorting
	6.3.3 Adding custom endpoints
	6.3.4 Adding custom hyperlinks to Spring Data endpoints

	Summary

	7 Consuming REST services
	7.1 Consuming REST endpoints with RestTemplate
	7.1.1 GETting resources
	7.1.2 PUTting resources
	7.1.3 DELETEing resources
	7.1.4 POSTing resource data

	7.2 Navigating REST APIs with Traverson
	Summary

	8 Sending messages asynchronously
	8.1 Sending messages with JMS
	8.1.1 Setting up JMS
	8.1.2 Sending messages with JmsTemplate
	8.1.3 Receiving JMS messages

	8.2 Working with RabbitMQ and AMQP
	8.2.1 Adding RabbitMQ to Spring
	8.2.2 Sending messages with RabbitTemplate
	8.2.3 Receiving message from RabbitMQ

	8.3 Messaging with Kafka
	8.3.1 Setting up Spring for Kafka messaging
	8.3.2 Sending messages with KafkaTemplate
	8.3.3 Writing Kafka listeners

	Summary

	9 Integrating Spring
	9.1 Declaring a simple integration flow
	9.1.1 Defining integration flows with XML
	9.1.2 Configuring integration flows in Java
	9.1.3 Using Spring Integration?s DSL configuration

	9.2 Surveying the Spring Integration landscape
	9.2.1 Message channels
	9.2.2 Filters
	9.2.3 Transformers
	9.2.4 Routers
	9.2.5 Splitters
	9.2.6 Service activators
	9.2.7 Gateways
	9.2.8 Channel adapters
	9.2.9 Endpoint modules

	9.3 Creating an email integration flow
	Summary

	Part 3?Reactive Spring
	10 Introducing Reactor
	10.1 Understanding reactive programming
	10.1.1 Defining Reactive Streams

	10.2 Getting started with Reactor
	10.2.1 Diagramming reactive flows
	10.2.2 Adding Reactor dependencies

	10.3 Applying common reactive operations
	10.3.1 Creating reactive types
	10.3.2 Combining reactive types
	10.3.3 Transforming and filtering reactive streams
	10.3.4 Performing logic operations on reactive types

	Summary

	11 Developing reactive APIs
	11.1 Working with Spring WebFlux
	11.1.1 Introducing Spring WebFlux
	11.1.2 Writing reactive controllers

	11.2 Defining functional request handlers
	11.3 Testing reactive controllers
	11.3.1 Testing GET requests
	11.3.2 Testing POST requests
	11.3.3 Testing with a live server

	11.4 Consuming REST APIs reactively
	11.4.1 GETting resources
	11.4.2 Sending resources
	11.4.3 Deleting resources
	11.4.4 Handling errors
	11.4.5 Exchanging requests

	11.5 Securing reactive web APIs
	11.5.1 Configuring reactive web security
	11.5.2 Configuring a reactive user details service

	Summary

	12 Persisting data reactively
	12.1 Understanding Spring Data?s reactive story
	12.1.1 Spring Data reactive distilled
	12.1.2 Converting between reactive and non-reactive types
	12.1.3 Developing reactive repositories

	12.2 Working with reactive Cassandra repositories
	12.2.1 Enabling Spring Data Cassandra
	12.2.2 Understanding Cassandra data modeling
	12.2.3 Mapping domain types for Cassandra persistence
	12.2.4 Writing reactive Cassandra repositories

	12.3 Writing reactive MongoDB repositories
	12.3.1 Enabling Spring Data MongoDB
	12.3.2 Mapping domain types to documents
	12.3.3 Writing reactive MongoDB repository interfaces

	Summary

	Part 4?Cloud-native Spring
	13 Discovering services
	13.1 Thinking in microservices
	13.2 Setting up a service registry
	13.2.1 Configuring Eureka
	13.2.2 Scaling Eureka

	13.3 Registering and discovering services
	13.3.1 Configuring Eureka client properties
	13.3.2 Consuming services

	Summary

	14 Managing configuration
	14.1 Sharing configuration
	14.2 Running Config Server
	14.2.1 Enabling Config Server
	14.2.2 Populating the configuration repository

	14.3 Consuming shared configuration
	14.4 Serving application- and profile-specific properties
	14.4.1 Serving application-specific properties
	14.4.2 Serving properties from profiles

	14.5 Keeping configuration properties secret
	14.5.1 Encrypting properties in Git
	14.5.2 Storing secrets in Vault

	14.6 Refreshing configuration properties on the fly
	14.6.1 Manually refreshing configuration properties
	14.6.2 Automatically refreshing configuration properties

	Summary

	15 Handling failure and latency
	15.1 Understanding circuit breakers
	15.2 Declaring circuit breakers
	15.2.1 Mitigating latency
	15.2.2 Managing circuit breaker thresholds

	15.3 Monitoring failures
	15.3.1 Introducing the Hystrix dashboard
	15.3.2 Understanding Hystrix thread pools

	15.4 Aggregating multiple Hystrix streams
	Summary

	Part 5?Deployed Spring
	16 Working with Spring Boot Actuator
	16.1 Introducing Actuator
	16.1.1 Configuring Actuator?s base path
	16.1.2 Enabling and disabling Actuator endpoints

	16.2 Consuming Actuator endpoints
	16.2.1 Fetching essential application information
	16.2.2 Viewing configuration details
	16.2.3 Viewing application activity
	16.2.4 Tapping runtime metrics

	16.3 Customizing Actuator
	16.3.1 Contributing information to the /info endpoint
	16.3.2 Defining custom health indicators
	16.3.3 Registering custom metrics
	16.3.4 Creating custom endpoints

	16.4 Securing Actuator
	Summary

	17 Administering Spring
	17.1 Using the Spring Boot Admin
	17.1.1 Creating an Admin server
	17.1.2 Registering Admin clients

	17.2 Exploring the Admin server
	17.2.1 Viewing general application health and information
	17.2.2 Watching key metrics
	17.2.3 Examining environment properties
	17.2.4 Viewing and setting logging levels
	17.2.5 Monitoring threads
	17.2.6 Tracing HTTP requests

	17.3 Securing the Admin server
	17.3.1 Enabling login in the Admin server
	17.3.2 Authenticating with the Actuator

	Summary

	18 Monitoring Spring with JMX
	18.1 Working with Actuator MBeans
	18.2 Creating your own MBeans
	18.3 Sending notifications
	Summary

	19 Deploying Spring
	19.1 Weighing deployment options
	19.2 Building and deploying WAR files
	19.3 Pushing JAR files to Cloud Foundry
	19.4 Running Spring Boot in a Docker container
	19.5 The end is where we begin
	Summary

	Appendix?Bootstrapping Spring applications
	A.1 Initializing a project with Spring Tool Suite
	A.2 Initializing a project with IntelliJ IDEA
	A.3 Initializing a project with NetBeans
	A.4 Initializing a project at start.spring.io
	A.5 Initializing a project from the command line
	A.5.1 curl and the Initializr API
	A.5.2 Spring Boot command-line interface

	A.6 Creating Spring applications with a meta-framework
	A.7 Building and running projects

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Spring in Action?back cover

