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F o r e w o r d

I met Dave at the Microsoft MVP Summit in Redmond 
in 2013. We witnessed something unexpected: F# 
caught fire. The language hadn’t changed drastically, 
but the attitudes of the developers at the Summit 
had. During the past year, MVPs had been learning 
about functional programming, and there was a new 
excitement around the language. Over the week, I learned of several C# 
MVPs who were jumping ship to F#. Dave and I talked about the transfor-
mation. We also talked about ethics in the context of object-oriented (OO) 
and functional programming (FP). Here is my story about that . . . 

During college in the early 90s, I was immersed in operations manage-
ment where the focus was quality, continuous improvement, just-in-time 
strategy, and waste elimination. W. Edwards Deming was a hero to my pro-
fessors, and we studied Deming’s huge impact on Japanese manufacturing 
from the 1950s onward. Finding the root cause of defects and fixing them 
at the source was “the good.” Shipping defective product or tacking inspec-
tion at the end of the line was “the bad.” These ideas resonated with me 
deeply.
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Continuous improvement seemed more than just a way to make wid-
gets; it felt like a way to live life. It echoed Socrates’s concept of virtue; it 
evoked the story of Siddhartha, who sought truth over comfort. These are 
ideas about “what should be,” about merit, about substance over rhetoric, 
about correctness.

After graduation I rolled into a software development career. Depend
ing on the company, it was either clown cars and cowboys, or rigid waterfall. 
Both were exciting, but no one in either environment was talking about 
quality or continuous improvement. When I would bring it up, I would get 
sad smiles from grizzled developers. Their eyes said, “Son, don’t you realize 
this is war?” The operating systems were crashy, the dev tools were buggy, 
and everything was closed source and proprietary. Thucydides said war is 
“a rough master that brings most men’s characters to a level with their for-
tune.” Likewise, when the development environment is bad, most developers 
will write bad code.

In 2001, a group of conscientious software developers got together 
in Snowbird, Utah and signed the Agile Manifesto. About a year later I 
discovered it. From my perspective, it seemed like a retelling of Deming, 
operations management, and Lean manufacturing. It was the first time 
in my career that I’d heard developers discussing quality and continuous 
improvement. There was hope!

After five years of test-driven development, pair programming, the 
SOLID principles (single responsibility, open/closed, Liskov substitution, 
interface segregation, and dependency inversion), and Scrum, my hope had 
mostly worn away. I continued to fight my tools, and it remained difficult to 
build quality software. Without discipline it was a train wreck. With disci-
pline, process, and diligence, it was a hard slog.

Through pure good luck I encountered Erlang in 2007, and in 2009 I 
began working with F#. Functional programming consumed me. I learned 
about immutability, recursion, pattern matching, higher-order functions, 
referential transparency, code as data, and separation of behavior from 
data. As I learned and practiced I began to see the huge cost of OO. So 
much of what made my day-to-day coding life miserable was solvable with 
Erlang and F#. As I told people about FP, I again received those sad smiles 
that asked, “Don’t you know we are at war?” I took it differently this time. I 
decided, “OK, sure. Let’s call it war. I’ll be on the side that’s looking at the 
root cause of defects. I’ll be on the side that wants to fix the problem at the 
source.”

The next stage for Agile must be to fully unravel itself from OO.
Object-oriented programming had boldly promised “to model the 

world.” Well, the world is a scary place where bad things happen for no 
apparent reason, and in this narrow sense I concede that OO does model 
the world. OO as we have it mingles data and behavior; the result is low 
cohesion and tight coupling. In OO, there is shared mutable state, which 
makes concurrency impossibly difficult. In OO, logic is nondeterministic. 
In OO, the result of a function doesn’t simply depend on the arguments 
we pass in. The result may vary depending on arguments passed on previ-
ous calls to the function. How about mutations from other functions? How 
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about data passed to the constructor? How about properties and fields? 
How about access from other threads? With every method call, we worry 
about the whole environment. Joe Armstrong describes the problem with 
OO languages like this: “They’ve got all this implicit environment that they 
carry around with them. You wanted a banana, but what you got was a gorilla 
holding the banana and the entire jungle.” OO is a dangerous place.

Alan Kay once said, “I invented the term object-oriented and I can tell you 
I did not have C++ in mind.” What Alan Kay described was message pass-
ing, isolation between objects, and polymorphism. That describes the func-
tional programming language Erlang better than it describes Java! So what 
the devil happened? Were C++, Java, and C# billion-dollar mondegreens 
(misheard lyrics)? Just imagine Alan Kay as Jimi Hendrix with a whole 
industry in an OO haze, mouthing, “’Scuse me while I kiss this guy.” Who 
sold us this mess?

I’ll wind down with a lie that OO people who are learning FP tell one 
another: “Learning FP will make you a better OO programmer.” It rings 
true, and in the short run it may even be true, but as you internalize immu-
tability, recursion, pattern matching, higher-order functions, code as data, 
separation of behavior from data, and referential transparency, you will 
begin to despise OO. Personally, I went from being a Microsoft C# MVP to 
feeling guilt every time I created a new class file. Once you understand the 
defects that can be avoided, it stops being a technical choice and becomes 
an ethical one.

The good news is F# is a great language, and this is a fantastic book. 
They both create an easy pathway from the OO world to a cleaner, safer 
functional world. I’m delighted you’re about to walk this path.

Bryan Hunter
CTO, Firefly Logic





P r e f a c e

Ever since I started touting the benefits of F#, people 
have asked me why I chose to learn F# over other 
functional languages like Scala, Erlang, or Haskell. 
This line of questioning presupposes that I intention-
ally set out to learn a functional language. In reality, 
adopting F# was an organic progression from C#.

My F# story begins late in the summer of 2010. I was burning out and 
my career was stagnating. My employer at the time was fairly risk-averse and 
had proprietary frameworks for nearly every facet of the application. After 
an extended amount of time in this environment, I lost sight of what I loved 
about developing software and did the worst thing anyone in this industry 
can do: I stopped learning.

It was around this time that the company hired a new architect who 
brought with him not only a wealth of technical knowledge but also some-
thing I’d lost: passion for the craft. His excitement reminded me of what I’d 
forgotten and gave me the kick I needed to get back in the game.
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With renewed interest, I started looking at some of the technologies I 
missed while I was in that rut. Of everything I looked at, the one that really 
caught my attention was LINQ, a domain-specific language built upon func-
tional principles to provide a unified mechanism for data access across dis-
parate formats. It has been said that LINQ is a gateway drug for functional 
programming, and in my case, this was definitely true. I’d never really done 
any “true” functional programming before LINQ, so it was an exciting new 
world for me. Like many developers learning LINQ, I was introduced to it 
through the query syntax, but as my comfort level increased, I gradually 
started exploring how it worked.

Not long into my studies, I learned that query expressions were added 
only after some usability studies revealed that developers were confused by 
the lambda expressions and method chaining syntax. What struck me about 
this was how natural the method syntax felt. I even found myself favoring 
it over the query syntax in most cases. (Confession: To this day I can’t seem 
to remember the method syntax for an outer join.) As I continued to work 
with LINQ, I began to realize that the method syntax felt natural because 
it matched the way I think. I didn’t have terms for them at the time, but the 
functional concepts of delegation, higher-order functions, and composabil-
ity really matched up with my mental model of how the world works.

It didn’t take long for me to start carrying over the functional concepts 
I learned from LINQ into other areas of our application. In doing so, I 
found that the quality of my work was improving and my code was getting 
more predictable. Despite this newfound power, I found myself getting 
increasingly frustrated with C#, but I couldn’t pinpoint exactly what was 
bothering me.

I was mowing the lawn on a hot, summer afternoon when I had my 
epiphany. On a whim, I’d included Hanselminutes #311 in that day’s yard-
work podcast selection. The guests, Richard Minerich and Phillip Trelford, 
were discussing F#, a functional language built upon the .NET platform. I 
was already intrigued, but then Phillip made a quip that perfectly summa-
rized one of my gripes about C#’s repetitive nature: Writing C# feels like 
filling out government forms in triplicate. As the conversation continued, 
Richard and Phillip touched on several other points, like improved predict-
ability of code and streamlined type creation, that really struck a chord 
with me. By the end of the podcast, I was hooked and determined to take 
advantage of this powerful language called F#.

Since that day—despite its reputation as a niche language—F# has 
become one of the primary tools in my developer toolbox. It has played 
an important role in each of my recent projects, as my go-to language for 
business logic, unit testing, and prototyping. I even used F# to successfully 
orchestrate queue-based communication between services in a distributed 
application. As you read this book, it is my hope that you’ll recognize how 
F# can make you more productive and improve the quality of your code, 
regardless of the type of project you’re working on.
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I n t r o d u ct  i o n

From the beginning, one of the promises 
of the .NET Framework has been language 

interoperability; that is, developers targeting 
the platform could write code in one language 

and interact with code written in another language 
through the Common Language Infrastructure (CLI).
Early examples often included a library written in C# utilizing a library 
written in Visual Basic, or vice versa. Ideally, this would allow developers 
to solve different problems using the best language for the job. In practice, 
things didn’t really work out that way, as developers tended to adopt either 
C# or Visual Basic and build entire solutions with that language. This is 
hardly surprising given that, with few exceptions, the differences between 
the languages have historically been purely syntactic (and the languages 
have only grown closer as the platform has matured).

Now, after more than a decade, F# has emerged as the third major lan-
guage in the .NET ecosystem. But what does F# offer that the traditional 
.NET languages do not, and why should you care?
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F# brings functional programming to .NET development. While both 
C# and Visual Basic have some functional aspects, they are, first and fore-
most, object-oriented languages; they’re concerned primarily with behavior 
and managing an ever-changing system state. In contrast, F# is a functional-
first language, concerned with the application of functions to data. This dif-
ference has a dramatic impact not only on how you write code, but also on 
how you think about it.

As you read through this book, you’ll learn how F#’s functional nature 
enforces a variety of constraints that may seem limiting at first, but once 
you embrace them you’ll likely find that your code is smaller, more correct, 
and more predictable. Furthermore, you’ll discover how F#’s many unique 
constructs simplify common development tasks, thus allowing you to focus 
on the problem you’re trying to solve rather than the plumbing required by 
the compiler. These aspects make F# a perfect complement to C# and Visual 
Basic, often paving the way toward realizing .NET’s goal of mixed-language 
solutions.

Whom Is This Book For?
I have been developing software professionally with C# on the .NET plat-
form since its earliest public releases back in 2002 and 2003. Thus, I wrote 
this book for people like me: experienced .NET developers looking to 
break into functional programming while retaining the safety net of the 
tools and libraries they’re already using.

While this book is written with an emphasis on .NET development, 
experienced developers approaching F# from other backgrounds should 
still find plenty of value within these pages, as the principles covered aren’t 
typically platform specific.

How Is This Book Organized?
The Book of F# is divided into 12 chapters intended to introduce you to each 
of the major language features. I recommend that you read this book from 
beginning to end rather than skipping around, as each chapter builds upon 
the concepts introduced by its predecessors.

Chapter 1: “Meet F#”  Provides your first glimpse of F# and describes 
its place within the .NET ecosystem. In this chapter, you’ll learn what 
you need to begin coding in F#, how projects are structured, and some 
of the nuances that can catch newcomers to the language off guard.

Chapter 2: “F# Interactive”  Covers the F# Interactive environment, 
an indispensable read-evaluate-print loop (REPL) tool that ships with 
F#. Here you’ll see how F# Interactive can help you explore a problem 
domain and even let you use F# as a scripting language backed by the 
full power of the .NET Framework.
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Chapter 3: “Fundamentals”  Teaches you about the fundamentals 
of F#. Topics covered in this chapter include default immutability, 
bindings, core data types, type inference, imperative flow control, 
and generics. Even though many of the concepts addressed in this 
chapter will be familiar to experienced developers, I encourage you 
to read through it because F# often allows you to use them in unex-
pected ways.

Chapter 4: “Staying Objective”  Provides an in-depth look at F#’s 
object-oriented capabilities. In this chapter, you’ll see how to develop 
rich object models every bit as robust as those developed in more estab-
lished object-oriented languages like C# or Visual Basic.

Chapter 5: “Let’s Get Functional”  Takes you on a journey into 
managed functional programming by introducing you to concepts 
like functions as data, currying, partial application, and delegation. 
Additionally, you’ll learn about several of the F# data structures typi-
cally associated with functional programming.

Chapter 6: “Going to Collections”  Explores how the various .NET 
collection types, like arrays and sequences, are represented in F#. You’ll 
also be introduced to several new collection types, including F#’s lists, 
sets, and maps.

Chapter 7: “Patterns, Patterns, Everywhere”  Introduces one of F#’s 
most powerful constructs: the match expression. Here you’ll uncover 
the various ways you can decompose complex types and branch your 
code, all within a single expression.

Chapter 8: “Measuring Up”  Shows you how to add another degree of 
safety to your code by enforcing units of measure (such as inches, feet, 
meters, and so on) on your numeric types.

Chapter 9: “Can I Quote You on That?”  Explains quoted expressions—
F#’s version of LINQ’s expression trees. Here you’ll see how to compose, 
decompose, and apply quoted expressions.

Chapter 10: “Show Me the Data”  Explores some F#-specific ways to 
access data, including query expressions and one of F#’s most exciting 
features: type providers.

Chapter 11: “Asynchronous and Parallel Programming”  Provides a 
brief introduction to asynchronous and parallel programming with 
F#. Topics include consuming the Task Parallel Library from F#, 
asynchronous workflows, and agent-based programming using 
MailboxProcessor<'T>.

Chapter 12: “Computation Expressions”  Discusses how to create 
computation expressions (often called monads in other functional lan-
guages) to control how data flows from expression to expression.
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Additional Resources
As an open source language managed by the F# Software Foundation, F# is 
backed by a welcoming community of developers around the world, cover-
ing a wide range of disciplines. Although I’ve tried to provide comprehen-
sive explanations and examples throughout the book, if you would like to 
explore a topic in more detail, you may find these resources helpful.

The Book of F# companion page (http://nostarch.com/f_sharp)  This is 
your source for content updates and the code examples used within 
this book.

The F# Software Foundation (http://fsharp.org/)  This should be your 
first stop. Here you’ll find links to all of the language documentation, 
including the language reference, the language specification, compo-
nent design guidelines, and more.

F# for Fun and Profit (http://fsharpforfunandprofit.com/)  Here you’ll 
find a plethora of examples covering virtually every aspect of the 
language.

Try F# (http://www.tryfsharp.org/)   This browser-based tool lets you 
experiment with the language and learn it through guided tutorials.



1
M e e t  F #

Originally developed at Microsoft Research, 
Cambridge, F# is a functional-first, multi-

paradigm language. In plain terms, that 
means that while F#’s syntax and constructs 

emphasize writing code that applies functions to data, 
it’s also a full-featured, object-oriented language with a 
few imperative constructs tossed in for good measure. 

F# dates back to 2002, but the first major release didn’t appear until 
Microsoft made version 1.0 available in 2005. F# is descended from the 
ML language and was heavily inspired by OCaml in particular. Early in its 
development, the F# team strived to maintain syntactic compatibility with 
ML, but over time the language has diverged a bit. Gradually, F# has found 
its place as a first-class citizen of Visual Studio, with project templates avail-
able out-of-the-box in every version starting with Visual Studio 2010. F#’s 
latest release accompanies Visual Studio 2013 and has been designated as 
version 3.1.
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Despite its inclusion in Visual Studio, F# has developed an undeserved 
reputation as a niche language useful only in academia or highly specialized 
financial software. As a result, it has failed to secure widespread adoption, 
particularly in enterprise software, but that seems to be changing as develop-
ers are starting to understand the virtues of functional languages. The fact 
that F# is an open source language licensed under the Apache 2.0 license 
and there are compilers available on every major platform is also helping the 
language gain traction. Microsoft continues to contribute heavily to F#, but 
the language itself is managed by the independent F# Software Foundation.

The goal of this chapter is to give you an idea of how F# programs are 
organized at both the Visual Studio project and code levels. As you learn 
the language, you’ll find that F# truly is a general-purpose language capable 
of meeting the demands of most modern software development tasks.

Unless otherwise noted, the examples in this book were developed 
with F# 3.1 in Visual Studio 2013 (Professional and Ultimate editions). If, 
for any reason, you’re not using Visual Studio, don’t fret; the majority of the 
examples within this book are applicable no matter which platform you’re 
using.

N o t e 	 Although I don’t specifically cover them, if you intend to follow along with a develop-
ment environment other than Visual Studio, the F# Software Foundation has plenty 
of resources to help you get started on its website at http://fsharp.org/. You can also 
try F# in your browser at http://www.tryfsharp.org/.

F# in Visual Studio
Because this book is primarily intended for experienced .NET developers, 
I’ll assume you already know how to create projects in Visual Studio. I’ll go 
right into introducing the different F# project templates that are available 
to you and follow that with a brief discussion about file organization within 
an F# project.

Project Templates
Each of the Visual F# project templates is listed under the Visual F# cat-
egory in the New Project dialog, but the category’s location within the list 
will vary according to your IDE settings. If the Visual F# category isn’t listed 
immediately under Installed Templates, check under the Other Languages 
node. If you still don’t see it, make sure the F# components are installed. 
Figure 1-1 shows each template as it would appear with the IDE configured 
for F# development and targeting .NET 4.0.

As you can see, there are five templates available. The template names 
are pretty intuitive, but here’s a rundown:

Console Application  Creates a new command-line application.

Library  Creates a new library you can reference from other applica-
tions or libraries.
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Figure 1-1: F# project templates in Visual Studio 2013

Tutorial  Is a quick way to peek into what F# has to offer, but it’s not 
very useful for starting new projects.

Portable Library  Creates a portable class library that can be used by 
both .NET 4.5 and Windows Store applications.

Portable Library (Legacy)  Creates a portable class library that can be 
used by both .NET 4.0 and Silverlight applications.

Silverlight Library  Creates a new library you can reference in a 
Silverlight application.

Once you’ve created a project with any of these templates, you should see 
the familiar Visual Studio interface with the text editor, Solution Explorer, 
and any other windows you may normally have open. Depending on whether 
you’ve previously experimented with F#, you may also see the F# Interactive 
window.

Among the templates that are conspicuously missing are those for 
Windows Forms applications, WPF applications, and ASP.NET applica-
tions. A key reason for the omission is that many of the designer tools 
haven’t been updated to support generating or understanding F# code. 
Despite the lack of built-in templates, you can still construct applications 
with F# using these technologies, but typically you have to do more man-
ual work.
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N o t e 	 The F# Community Templates repository on GitHub hosts a number of additional 
templates. At the time of this writing, the repository contains only a handful of tem-
plates for Visual Studio, but over time it’s likely that templates for other editors, such 
as Xamarin Studio, will be added to the mix. You can find the repository at https://
github.com/fsharp/FSharpCommunityTemplates/.

Project Organization
When you first see Visual Studio’s project workspace after creating a project 
from one of the aforementioned templates, you may be tempted to think 
that an F# project is just like a C# or Visual Basic project. In some regards, 
it is. For instance, you can start executable projects by pressing F5, the 
Visual Studio debugger can step through F# code, and files are managed 
with Solution Explorer. However, project organization in F# is very different 
from that of the traditional .NET languages. In fact, you’ll probably find 
that F#’s code structure is almost as foreign as the language itself.

Traditional .NET projects generally follow the convention of one type 
per file; that is, individual data types are almost always stored in sepa-
rate files and organized into a folder hierarchy that mirrors the project’s 
namespaces. Aside from avoiding circular assembly references, there are 
very few steadfast rules on how or when something can appear within a 
project. Barring any accessibility modifiers (public, private, and so on), 
types and members are free to reference each other and their members 
regardless of where they are defined in the project.

Some rules are meant to be broken, but in this case F# shredded the 
project organization rulebook and then burned the remains. It is incred-
ibly prescriptive about how projects are organized, and for good reason: F# 
code is evaluated from top to bottom. This means that not only is the order 
of declarations within an individual code file significant, but the order of 
the files within your project is significant as well!

It’s common for new F# programmers to add a new file to the project, 
fill in some definitions, and then get compiler errors stating that the new 
definitions are missing. This is usually because the programmer forgot 
to move the newly created file above the files that will use the definitions. 
Fortunately, changing file order within an F# project is relatively painless 
because there are context menu items and hotkeys to move files up and 
down, as shown in Figure 1-2.

The other major implication of F#’s top-down evaluation order is that 
folders are not allowed. Folders wouldn’t necessarily break the evaluation 
order, but they certainly do complicate it, so there’s no option within the 
IDE to add them.

You might be wondering what advantage such an evaluation structure 
could possibly offer. The primary benefit is that the compiler can make 
more assumptions about your code and, as a result, give you type inference 
capabilities unrivaled by any other .NET language. Furthermore, this evalu-
ation structure avoids inadvertent recursive definitions (when two or more 

https://github.com/fsharp/FSharpCommunityTemplates
https://github.com/fsharp/FSharpCommunityTemplates
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types depend on each other). This makes you think a bit more about how 
and where your types are used, and it forces you to be explicit about recur-
sive definitions where they’re appropriate.

Figure 1-2: Move and Add options in Solution Explorer’s  
context menu

Significance of Whitespace
Newcomers to F# are usually quick to notice the absence of braces or BEGIN 
and END delimiters. Rather than relying on syntactic tokens to denote code 
blocks, the designers of F# decided to make whitespace significant.

Code that is inside a block must be indented farther than the line that 
opens the block. For example, when you define a function, the lines belong-
ing to the function’s body must begin to the right of the first character 
of the function declaration. It doesn’t really matter how far the lines are 
indented, only that they are indented and that the indentation level is con-
sistent for each line in a block.

With most programming languages, this is the point where the age-old 
debate of tabs versus spaces would flare up, but this is not the case in F#. 
The F# compiler rules with an iron fist on this matter and expressly forbids 
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tabs because the number of spaces that a given tab character represents is 
unknown. When you begin writing F#, you’ll probably want to configure 
the options for Visual Studio’s text editor to insert spaces in place of tabs.

Grouping Constructs
There are two primary ways to group code in F#: namespaces and modules. 
In single-file projects, declaring a namespace or module is optional, as the 
contents of the file will implicitly become a module with the same name as 
the file—for example, if your file is named Program.fs, the module will auto-
matically be named Program. In all other cases, though, each file must begin 
with a namespace or module declaration.

Namespaces
F# namespaces are the same as in C# and Visual Basic in that they allow 
you to group related code by a name to reduce the likelihood of a naming 
conflict. Namespaces can include modules and type definitions but cannot 
directly include any values or functions.

You declare namespaces with the namespace keyword followed by an identi-
fier. For example, a namespace for the code in this book might look like this:

namespace TheBookOfFSharp

You can also declare more granular namespaces by nesting them. Nested 
namespaces are declared with fully qualified names, with each level sepa-
rated by a dot (.). For instance, we could group all the code for this chapter 
in a nested namespace like this:

namespace TheBookOfFSharp.Chapter1

One Sy n ta x to Rul e T he m A l l

To say that F# requires consistent indentation or that it expressly forbids tabs 
isn’t completely accurate. F# actually has two syntax formats: verbose and 
lightweight. The verbose format requires you to be more explicit with your 
code but isn’t as sensitive to indentation. Under verbose syntax you denote the 
end of a code block not by decreasing the indentation level, but by using addi-
tional keywords like end and done. 

In F#’s infancy, verbose format was the norm, but as the language has 
matured, the lightweight syntax has gained favor and is now the default. Of 
course, there are other differences between verbose and lightweight syntax, 
but they are beyond the scope of this book. None of the examples in this book 
use verbose syntax, but should you yearn to write more code, you can revert to 
verbose syntax by opening a code file with the #light off directive. 



Meet F#   7

Just as in the other .NET languages, you can split namespaces across 
files and assemblies. You can also declare multiple namespaces within a 
single file, but you cannot nest them inline; each namespace declaration 
must be a top-level block.

In the event that you want to place code in .NET’s global namespace, 
you can declare the namespace with the global keyword as follows:

namespace global

Whenever you declare a namespace, other code already loaded into 
that namespace is immediately made available to your code. For all other 
cases, though, you must either fully qualify the type or module names or 
import them using the open keyword, as you would with a using directive 
in C# or an Imports statement in Visual Basic. The following snippet shows 
both approaches:

// Fully qualified name
let now = System.DateTime.Now

// Imported namespace
open System
let today = DateTime.Now.Date

Modules
Modules are similar to namespaces in that they allow you to logically group 
code. Unlike namespaces, however, they can directly contain values and 
functions. In practice, modules are more closely related to classes contain-
ing only static members in other .NET languages; in fact, that’s how they’re 
represented in the compiled assembly.

Modules fall into one of two categories: top-level and local. Top-level 
modules contain all the code in a single implementation file. By contrast, 
local modules are used when multiple modules or types not belonging to 
a module are defined in the same file.

You declare modules with the module keyword followed by an identifier, 
like this:

module TheBookOfFSharp

Unlike namespaces, module definitions cannot span multiple files, but 
you can define multiple modules within a single file. You can also nest mod-
ules directly within a parent module like this:

module OuterModule
  module NestedModule =
    do ()
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When you want to use both a namespace and a top-level module, F# 
provides a convenient syntactic shortcut that combines them into a single 
declaration. To take advantage of this, simply include the fully qualified 
name before the module name, as shown here:

module TheBookOfFSharp.Chapter1.QualifiedModule

In the preceding snippet, we declare a module named QualifiedModule 
within the TheBookOfFSharp.Chapter1 namespace.

As a final note, you can import module members through the open key-
word as though they belong to a namespace. For instance, to import any 
types defined in QualifiedModule, we could write:

open TheBookOfFSharp.Chapter1.QualifiedModule

To simplify this process for commonly used modules, you can decorate 
the module with the AutoOpen attribute like this:

[<AutoOpen>]
module TheBookOfFSharp.Chapter1.QualifiedModule

By applying this attribute to a module, whenever you explicitly open the 
namespace containing the module, the module will also be opened.

Expressions Are Everywhere
One of F#’s distinguishing characteristics is that it is an expression-based 
language; that is, nearly everything that’s evaluated returns a result. As 
you learn F#, you’ll quickly discover that writing applications and libraries 
is an exercise in combining expressions to produce results. This is a stark 
contrast to languages like C#, where typically only methods (and operators) 
return a result. In F#, seemingly familiar constructs like if...else gain new 
life because, like all expressions, the if...else expression returns a result. 
Consider the following snippet, which uses C#’s if...else statement to print 
a string indicating whether a number is even or odd:

// C#
var testNumber = 10;
string evenOrOdd;

if (testNumber % 2 == 0)
      evenOrOdd = "even";
else
      evenOrOdd = "odd";

Console.WriteLine(evenOrOdd);
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Now, compare that with this functionally equivalent code in F#, which 
uses the if...else expression instead:

// F#
let testNumber = 10
let evenOrOdd = if testNumber % 2 = 0 then "even" else "odd"
Console.WriteLine evenOrOdd

The first thing you probably noticed is that the F# version is more con-
cise. What might not be immediately apparent, though, is that the F# ver-
sion eliminates the mutable state that’s present in the C# version (evenOrOdd 
is uninitialized before it is assigned a value). This isn’t necessarily an issue 
in this simple example because the mutable state is isolated, but in larger 
applications, mutable state contributes to a fragile and often unpredictable 
code base.

You might argue (correctly) that we could write the C# code using C#’s 
conditional operator instead of the if...else statement to achieve the same 
effect as the F# code. But the main point of this example is that even seem-
ingly familiar constructs return values in F#.

Application Entry Point
In an F# application, the initializations defined in the last file of the project 
are used as the application’s entry point by default. For more control over 
how your application starts, you can define a let bound function as the 
application’s entry point by decorating it with the EntryPoint attribute. This 
allows you to use an arbitrary function for what would be the Main method 
or procedure in a C# or Visual Basic application, respectively. Accordingly, 
the decorated function must accept a string array and return an integer to 
be valid. Such a function would typically follow this pattern:

[<EntryPoint>]
let main argv =
  // initialization code
  0

Implicit Return Values
Because F# is a language steeped in expressions, the F# compiler can make 
more assumptions about your code. Because all expressions return a value 
and all functions are expressions, it is implied that all functions will return 
a value. Therefore, the compiler can assume that the last expression evalu-
ated within a function is the function’s return value; you don’t need to 
explicitly state it as such with a keyword like return.
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As an example, consider the main function from the previous section. 
In that function, 0 is implicitly returned because it’s the final expression 
evaluated in the function. Similarly, consider this function, which simply 
adds two integers:

let add x y = x + y

Here, the add function accepts two parameters, x and y, and contains only 
a single expression: an addition operation. Because the addition operation 
is the last expression evaluated when add is invoked, add implicitly returns 
the result of that operation.

Your First F# Program
Now that you’ve learned how to structure an F# project, it’s time to see 
some “real” F# code that goes beyond basic syntax. Although the instant 
gratification of a traditional “Hello world”–type application is a nice confi-
dence booster when you’re starting out with a new language, I’ve decided 
to forego that approach in favor of an example that both is useful and pro-
vides a nice sampling of many of F#’s capabilities: a Reverse Polish Notation 
(RPN) calculator.

RPN is a postfix notation for mathematical expressions; that is, it’s a 
manner of expressing computations where each operator immediately fol-
lows its operands. For example, to express computing the sum of 1 and 2, 
we’d normally write 1 + 2; when using RPN, however, we’d write 1 2 +.

You typically implement RPN calculators by iterating over a sequence 
of numbers and operators. Each item is inspected and numbers are pushed 
onto a stack, whereas operators pop the appropriate number of operands 
from the stack, evaluate, and push the result back onto the stack. At the end 
of the process, the sole item remaining in the stack should be the expres-
sion’s result. Figure 1-3 roughly illustrates how this process looks when 
applied to the expression 4 2 5 * +.

4 2 5
* +

5 * 2 = 10 10 + 4 = 14

5

2 2 2 10

4 4 4 4 4 4 4 14

Figure 1-3: Application of Reverse Polish Notation

Working from left to right, you can see how items are added to and 
removed from the stack, ultimately producing 14 as the result. As you’re 
about to see, though, implementing a basic RPN calculator in F# takes only 
a few lines of code and doesn’t even require managing a mutable stack!
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If you’d like to follow along with this example in Visual Studio, create a 
new project using the F# Application template. When you’re ready, replace 
the text editor’s contents with the following code (note that F# is case 
sensitive):

module TheBookOfFSharp.RpnCalculator

open System

let evalRpnExpr (s : string) =
  let solve items current =
    match (current, items) with
    | "+", y::x::t -> (x + y)::t
    | "-", y::x::t -> (x - y)::t
    | "*", y::x::t -> (x * y)::t
    | "/", y::x::t -> (x / y)::t
    | _ -> (float current)::items
  (s.Split(' ') |> Seq.fold solve []).Head

[<EntryPoint>]
let main argv = 
  [ "4 2 5 * + 1 3 2 * + /"
    "5 4 6 + /"
    "10 4 3 + 2 * -"
    "2 3 +"
    "90 34 12 33 55 66 + * - + -"
    "90 3 -" ]
  |> List.map (fun expr -> expr, evalRpnExpr expr)
  |> List.iter (fun (expr, result) -> printfn "(%s) = %A" expr result)
  Console.ReadLine() |> ignore
  0

When you’ve finished entering the RPN calculator code, press F5 and 
observe the output. You should see the results depicted in Figure 1-4.

Figure 1-4: Reverse Polish Notation calculator results

Don’t be discouraged if the RPN calculator code doesn’t make much 
sense right now; that’s the point! For now it’s enough to recognize that the 
entire RPN calculation is contained within the evalRpnExpr function. I like 
starting with this example because it not only shows some idiomatic F# code, 
but it also demonstrates a number of important concepts, such as default 
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immutability, functions as data, pattern matching, recursion, library func-
tions, partial application, F# lists, and pipelining. These concepts work 
together to create highly expressive and predictable code. Throughout this 
book, you’ll explore each of these concepts and many more in detail. As you 
progress through the book, I encourage you to revisit this example periodi-
cally to see just how much functionality is contained within such a small 
program.

Summary
Despite a reputation as a niche language, F# is an expressive, functional-
first, multiparadigm language rooted in ML and useful for most modern 
software development activities. As you’ll see in the coming chapters, writ-
ing F# effectively is about learning how to combine the types, functions, 
and values you’ll define in namespaces and modules into expressions. That 
said, traditional .NET developers will have to adjust to some of the language’s 
nuances like top-down evaluation, whitespace significance, and implicit 
returns. Once you get over the initial learning curve, however, you’ll see how 
F#’s simple yet expressive syntax will enable you to solve complex problems 
while producing code that is more stable and predictable.



2
F #  I n t e r a ct  i v e

If the prospect of doing true functional 
programming against the .NET Framework 

isn’t compelling enough, the productivity 
gains available through F# Interactive (FSI) 

should be. FSI is a read-evaluate-print loop (REPL) 
utility you can use to explore problem domains and 
test code as you write. It also doubles as a script host that allows you to lever-
age the elegance of F# and the power of the .NET Framework to automate 
common tasks. How can a compiled language like F# be used interactively? 
Because behind the scenes FSI compiles its input to dynamically generate 
assemblies.

Running F# Interactive
There are two ways to work in FSI: via the F# Interactive window in Visual 
Studio or the fsi.exe console application. The choice is usually one of con-
venience. I typically prefer to work in the F# Interactive window because it 
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easily integrates into my Visual Studio development workflow. I generally 
use the window for exploratory tasks and reserve the console for script 
execution. 

To open the F# Interactive window in Visual Studio, press ctrl-alt-F; 
you should see a prompt like that shown in Figure 2-1. By default, fsi.exe 
is available only through the Visual Studio command prompt shortcuts 
and not through the basic Windows command prompt. If you want to 
make fsi.exe available from another prompt, you’ll need to add its loca-
tion to your path environment variable. By default, F# is installed 
to %PROGRAMFILES(x86)%\Microsoft SDKs\F#\3.0\Framework\v4.0\ 
(%PROGRAMFILES% on 32-bit systems).

Figure 2-1: The F# Interactive window in Visual Studio 2013

In addition to just opening the Interactive window, you can send code 
to the window with alt-enter, in which case the results from executing 
that code will also be shown. This makes it very easy to test new concepts: 
If you’re not sure how well something will work, you can typically try it 
immediately by writing a bit of code, sending it to FSI, and inspecting the 
result.

Sending code from the text editor isn’t the only way to evaluate expres-
sions in FSI; you can also run code directly from its prompt. This flexibility 
is great for productivity because you can work on a block of code in the text 
editor, send it to FSI, and then experiment with it interactively in the FSI 
window itself. 

There is an important difference between entering code directly in 
the Interactive window versus sending code from the text editor. When 
you send code from the editor, it’s compiled and executed automatically, 
whereas code entered directly won’t execute until you terminate it with a 
double semicolon pattern (;;). For example, to perform simple addition 
you could either enter 1 + 1 into the text editor and send it to FSI, or enter 
1 + 1;; directly at the FSI prompt. Both approaches yield the same result, 
but because double semicolons must be used to denote the end of the code 
input, FSI lets you enter and execute multiple lines of code directly at the 
prompt.

N o t e 	 Even though multiple-line entry at the prompt is possible, it’s often more trouble than 
it’s worth because if you make a silly typing mistake you must start over. I tend to use 
single-line statements at the prompt as much as possible. (Fortunately, recovering from 
such mistakes is usually just a matter of correcting the mistake and trying again.)
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F# Interactive Output
One thing that makes FSI so useful is that it reports back everything that it 
does. Whenever you execute code in FSI, it displays val followed by the iden-
tifier name, data type, and value for each binding it creates. For example, 
when you define and invoke a function, FSI will create two bindings: one 
for the function itself and one for the result, as shown here.

> let add a b = a + b
let sum = add 1 2;;

val add : a:int -> b:int -> int
val sum : int = 3

The it Identifier
You don’t always have to explicitly define bindings in FSI; in most interactive 
sessions you can simply evaluate an expression. For example, you can call 
the add function without defining the sum identifier like this.

> add 1 2;;
val it : int = 3

When you don’t explicitly name something (as when performing a 
simple calculation or checking the output of a function), FSI automatically 
binds the result to the it identifier. You can refer to it in subsequent evalu-
ations but be aware that, as in Highlander, there can be only one; whenever 
FSI implicitly binds something, the value is replaced. You can see this behav-
ior by evaluating multiple expressions without explicitly binding the results 
to an identifier, as shown here.

> it;;
val it : int = 3

> add 3 4;;
val it : int = 7

> it;;
val it : int = 7

The bottom line when it comes to the it identifier is love it, use it, but 
don’t rely on it.

Playing in the Sandbox
Even when running within Visual Studio, FSI is a sandbox that’s isolated 
from and completely unaware of any code you haven’t explicitly told it 
about. This isolation provides a layer of protection between “work” and 
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“play,” but it also means that in order for it to be useful you’ll need ways 
to interact with the outside world. For this we turn to directives.

FSI provides several directives that you can invoke in an interactive 
session or a script. Among these are directives for refreshing your memory 
about which directives are available, loading code from other F# source 
files, referencing assemblies, and even providing some performance 
statistics.

#help
If you forget any of the directives, you can invoke the #help directive at the FSI 
prompt for a listing of available directives and a brief description of each.

#quit
If you need to get out of FSI from the command prompt, use the #quit 
directive to end the session. Although you can use #quit within the FSI 
window in Visual Studio, I suggest using the Reset Interactive Session con-
text menu item shown in Figure 2-2 because it clears previous output and 
begins a new session automatically.

Figure 2-2: Reset Interactive Session context menu item

#load
One way to load existing code into an FSI session is with the #load directive 
as shown next. The #load directive accepts one or more string parameters 
containing the absolute or relative paths to external source files. FSI should 
load, compile, and execute the listed files (in order) and make their con-
tents available in the current session. 

> #load @"D:\Dev\FSharp\Samples\Chapter2\MySourceFile.fs";;
[Loading D:\Dev\FSharp\Samples\Chapter2\MySourceFile.fs]
-- snip --
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Although you can include multiple source files in a single #load direc-
tive, it’s often easier to include each with a separate directive. The reason is 
that if you’re actively working on one of the files and you break something, 
the compiler highlights the entire directive as a problem. By using mul-
tiple directives, you can more quickly isolate the troublesome file.

#r
The #r directive is to assemblies what the #load directive is to source files. 
You can use #r to reference any .NET assembly (with the usual restrictions 
around target framework and platform). If the assembly you need is already 
located in one of the folders included in the assembly search path, identify 
it by name or you’ll need to include the full path. For example, if you need 
to load System.Configuration, you can use:

> #r "System.Configuration";;
--> Referenced 'C:\Program Files (x86)\Reference Assemblies\Microsoft\
Framework\.NETFramework\v4.5\System.Configuration.dll'

FSI responds with the full path of each assembly it loads in this manner.

#I
When you need to reference multiple assemblies from a folder that is not 
already included in the search path, you can add the folder to the assembly 
search path in FSI with the #I directive.

> #I @"D:\Dev\FSharp\Samples\Chapter2\Bin\Debug";;
--> Added 'D:\Dev\FSharp\Samples\Chapter2\Bin\Debug' to library include path

Once the folder is added to the search path, you should be able to refer-
ence assemblies in it by name instead of by their full path.

#time
The #time directive provides extra visibility into what your code is doing by 
printing some statistics along with its output. You can enable timing infor-
mation by using the #time directive with the on string argument.

Loa ding M a de E a sy

The F# project templates in Visual Studio encourage you to load multiple files 
by including a script that you can update to include any new files. By keeping 
this script synchronized with your project structure, you can easily load code 
from your project into FSI and experiment away.
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> #time "on";;
--> Timing now on

With timing enabled, the statistics will be computed each time code 
is executed in FSI. These statistics include real time, CPU time, and the 
number of garbage collection operations over all three generations. For 
example, to help optimize a slow function you could invoke it with timing 
enabled and see something like this:

> DoSomethingSlow();;
Real: 00:00:01.095, CPU: 00:00:01.107, GC gen0: 25, gen1: 23, gen2: 23
val it : unit = ()

When you’re done with the statistics and no longer want to see them 
in the FSI output, disable them with the #time directive and the off string 
argument.

> #time "off";;
--> Timing now off

Scripting
As F# is a .NET language, most of your F# code will be placed in .fs files and 
compiled into assemblies to be used by larger applications. When coupled 
with FSI, though, F# can serve as a scripting language so you can leverage its 
power to automate common tasks with full support from the .NET Framework.

For example, say you want to concatenate several PDF files into one 
document. You could write a console application for this, but it’s trivial to 
write it as a script using the open source PDFsharp library to manipulate 
the individual PDFs. That script would take about 30 lines of code, includ-
ing blank lines. By providing terse syntax and exposing the power of the 
.NET Framework, F# is ideal for such a task.

Creating scripts as .fsx files offers a few benefits. For one, the directives 
described in “Playing in the Sandbox” on page 15 are FSI features, so they 
aren’t allowed in standard source files. Also, because .fsx files are associ-
ated with fsi.exe, you can execute them directly from a shell context menu 
as shown in Figure 2-3. This makes it easy to run scripts like the PDF con-
catenation as needed.

Figure 2-3: Run with F# Interactive context menu item

To add scripts to a project, select the project in Solution Explorer, press 
ctrl-shift-A to open the Add New Item dialog, and select F# Script File as 
shown in Figure 2-4. 
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Figure 2-4: Adding an F# script file to a project

To quickly create a standalone .fsx file in Visual Studio 2013, press 
ctrl-N to open the New File dialog, select Script from the menu on the 
left, and locate the F# Script File option as shown in Figure 2-5.

Figure 2-5: Creating a standalone F# script file
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F# Interactive Options
In addition to the directives discussed in “Playing in the Sandbox” on 
page 15, FSI provides several command-line options that allow you to 
control it. Some of these options offer alternatives to the functionality of 
the FSI directives, while others control compiler behavior. I won’t cover all 
of the available options here, but I will highlight the ones you’re most likely 
to use. (For a complete listing of FSI options, run fsi.exe –help.) These 
options apply regardless of whether you’re running FSI through the com-
mand prompt or the F# Interactive window. To set the options in Visual 
Studio, go to Tools4Options, find F# Tools in the list on the left, and 
type the new options into the F# Interactive options text box as shown 
in Figure 2-6.

Figure 2-6: Setting F# Interactive options

N o t e 	 The F# Interactive options setting in Visual Studio is a global setting. Changing it 
will affect all instances of the window.

--load
The --load option is the command-line equivalent of the #load directive. It 
allows you to specify external source files for FSI to compile and load into 
the session at startup, like this:

fsi --load:MyFirstScript.fsx
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The --load option doesn’t process any directives in the specified file, so 
if any directives must be evaluated use the --use option instead.

--use
Like --load, the --use option loads external source files, but it also processes 
directives such as #load or #I upon loading the file.

fsi --use:MyFirstScript.fsx

--reference
Just as you can use --load or --use to import a source file, you can use the 
--reference option (or its short form, -r) to reference an external assembly. 
This has the same effect as the #r directive.

fsi --reference:System.Configuration

As with the #r directive, be sure to include the full path to the assembly 
if it’s not in a location already included in the search path.

--lib
The --lib option serves the same role as the #I directive by adding the spec-
ified folder to the assembly search path. Its short form is -I.

fsi --lib:D:\Dev\FSharp\Samples\Chapter2\Bin\Debug

--define
As with other .NET languages, F# allows you to define conditional com-
pilation symbols (like the predefined DEBUG and RELEASE symbols in Visual 
Studio) that can affect how code is compiled. To define symbols for use 
within an FSI session, use the --define option.

fsi --define:DEBUG

FSI and the F# compiler automatically define certain symbols for you, 
depending on how your code is compiled. For example, when you are run-
ning code compiled in an FSI session, whether by entering it at a prompt, 
sending it from the text editor, or importing another file, FSI defines the 
INTERACTIVE symbol. Directly compiled F# code gets the COMPILED symbol 
instead. These symbols become important when code must behave differ-
ently under an FSI session than in a compiled assembly due to environmen-
tal differences.
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--exec
By default the FSI process doesn’t terminate when it finishes evaluating a 
script. To force it to quit rather than return you to the FSI prompt, specify 
the --exec option.

fsi --load:MyFirstScript.fsx --exec

Now, when the script completes you’ll automatically be returned to the 
command prompt.

--
If your code expects command-line arguments, you can send them to FSI 
with the -- option; this is essentially a delimiter that tells FSI to treat all 
remaining arguments as arguments to the code rather than to FSI itself.

fsi --load:MyFirstScript.fsx --exec -- Dave

When code that’s dependent on command-line arguments might be 
executed from either an FSI session or a compiled assembly, you should 
use the INTERACTIVE and COMPILED symbols to ensure that the parameters 
are read correctly. For example, in a typical .NET application you’d use 
System.Environment.GetCommandLineArgs() to resolve the arguments. The same 
holds true for COMPILED code, but in INTERACTIVE code the execution process 
is actually FSI rather than your assembly. Therefore, the GetCommandLineArgs 
method returns all arguments passed to the FSI process rather than only 
the ones intended for your script! To account for this difference, interactive 
code should typically call fsi.CommandLineArgs instead. You can easily change 
this behavior with conditional compilation, like this.

let getCommandLineArgs() =
#if INTERACTIVE
  fsi.CommandLineArgs
#else
  System.Environment.GetCommandLineArgs()
#endif

getCommandLineArgs() |> printfn "%A"

Fortunately, both functions return the same result: a string array that 
includes the script/executable name as the first item. This greatly simplifies 
any argument-parsing code you have, because the end result is the same.

--quiet
Depending on what your script is doing, FSI can be pretty chatty and some-
times results can get lost in the noise. To tell FSI to be quiet, use the --quiet 
option.

fsi --quiet
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The --quiet option suppresses virtually everything FSI would normally 
output, including bindings, file loads, and assembly references (but not 
statistics when timing is enabled). FSI will still display error messages and 
anything your code sends to the console.

--optimize
The --optimize option controls whether compiler optimizations will be 
applied to the code. It’s enabled by default in Visual Studio.

--tailcalls
We’ll look at tail recursion in detail in Chapter 5, but for now just know that 
the --tailcalls option controls whether the compiler will optimize for tail-
recursive functions. This option is enabled by default in FSI.

Summary
In this chapter you’ve learned how F#’s REPL tool, F# Interactive, can 
help you explore a problem and find a path to the solution. You’ve also 
learned how you can customize the behavior of FSI through directives 
and command-line options. In the next chapter, we’ll begin exploring the 
F# language itself by learning about a variety of key features that apply 
regardless of whether you’re programming in a functional, object-oriented, 
or imperative style.





3
F u n d a m e n t a l s

In the previous chapter, you learned how 
F# Interactive can enhance your workflow 

through rapid feedback and task automa-
tion. Now we’ll put that knowledge to work as 

we explore some basic language features. The con-
cepts introduced in this chapter apply regardless of 
whether you’re programming primarily in an impera-
tive, object-oriented, or functional style.

Most of this chapter focuses on how F# handles concepts central to 
the .NET Framework, like the core data types, enumerations, flow control, 
generics, and exception handling. You’ll also learn how F# can help you 
write more predictable code through controlling side effects, default immu-
tability, type inference, and option types. Regardless of the subject, though, 
you should start seeing how F# distinguishes itself as a compelling alterna-
tive to C# and Visual Basic.
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Immutability and Side Effects
If you’re coming to F# from a primarily object-oriented background, the 
feature you may find the most challenging to adjust to is default immutability. 
This is a radical departure from traditional .NET languages that place few 
restrictions on what can change and when. Programs written in languages 
without default immutability can be unpredictable because system state 
(program data) can change at almost any time. We refer to these changes 
as side effects.

Some side effects, like writing to the console, are relatively benign, but 
what about when they affect shared resources? What if invoking a function 
changes a value that’s used elsewhere? Will a function always yield the same 
result regardless of when it’s called? Consider this C# example that refer-
ences a public field for some multiplication:

//C#
using System;
using System.Linq;

class Example
{
  public static int multiplier = 1;

  private static void uMultiply(int value)
  {
    var result = value * multiplier;
    Console.WriteLine("{0} x {1} = {2}", value, vmultiplier++, result);
  }

  static void Main()
  {
    var range = Enumerable.Range(1, 100);
    foreach(var i in range)
    {
      Multiply(i);
    }
  }
}

// First 10 results
// 1 x 1 = 1
// 2 x 2 = 4
// 3 x 3 = 9
// 4 x 4 = 16
// 5 x 5 = 25
// 6 x 6 = 36
// 7 x 7 = 49
// 8 x 8 = 64
// 9 x 9 = 81
// 10 x 10 = 100

In this example, the Multiply method u has a side effect where the 
multiplier is incremented v. As long as nothing changes anywhere else 
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in the program it’s somewhat predictable, but as soon as you change the 
order of calls to the Multiply method, introduce another call to the Multiply 
method, or change the multiplier field through some other mechanism, all 
future results are brought into question. 

To further complicate the issue, consider what happens when multiple 
calls to Multiply are made in parallel, in this revision of the Main method:

//C#
static void Main()
{
  var range = Enumerable.Range(1, 100);
  System.Threading.Tasks.Parallel.ForEach(range, i => Multiply(i));
}

// First 10 results
// 1 x 1 = 1
// 6 x 3 = 18
// 7 x 4 = 28
// 5 x 2 = 10
// 10 x 6 = 60
// 11 x 7 = 77
// 12 x 8 = 96
// 13 x 9 = 117
// 14 x 10 = 140
// 15 x 11 = 165

There’s no guarantee as to which operation will execute first when 
running in parallel, so running this 10 times is likely to give you 10 differ-
ent results. The unpredictability that comes from using mutable values is 
why global state (values accessible from anywhere within your application) is 
generally considered harmful. Properly managing global state requires disci-
pline that can be increasingly difficult to enforce as teams and projects grow.

Functional Purity
Functional languages like F# are often described in terms of their mathemat-
ical purity. In purely functional languages like Haskell, programs are com-
posed entirely of deterministic expressions that always return a value, and side 
effects are expressly forbidden except in certain specific circumstances. In 
contrast, F# is an impure functional language. As such, it takes an important 
step toward improving predictability by making values immutable by default.

That’s not to say that F# can’t use variables in the traditional sense; it 
just means that in order to change a value, you must explicitly allow it and 
should restrict the value’s scope as much as possible. By keeping the scope 
narrow, you can code in a primarily functional style but switch to a more 
imperative or object-oriented style in isolated fragments as appropriate.

By managing side effects through default immutability, F# code is 
more naturally suited for execution in parallel and concurrent environ-
ments. In many cases, carefully controlling what can change reduces, if not 
eliminates, the need to lock shared resources and ensures that multiple 
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processes don’t attempt to make potentially conflicting or behavior-altering 
changes to the overall system state. This added safety is increasingly impor-
tant as software development evolves to take advantage of the multiprocessor 
or multicore systems that are so ubiquitous in modern computing.

Bindings
Bindings are F#’s primary way of identifying values or executable code. 
There are three types of bindings—let, use, and do—and each has a spe-
cific purpose.

let Bindings
let bindings simply associate names with values. They are the most common 
and versatile binding type. (I briefly introduced let bindings in Chapter 2.) 
You create a let binding with the let keyword. For example, to bind an inte-
ger value you would use something like this:

let intValue = 1

Similarly, to bind a string you could use:

let strValue = "hello"

But let bindings aren’t restricted to simple assignments. You can also 
use them to identify functions or other expressions:

let add a b = a + b
let sum = add 1 2

Literals

Although the let bindings we’ve seen so far are immutable, they can’t be con-
sidered constant values in the traditional .NET sense. Bindings are more like 
readonly variables in C# (ReadOnly in Visual Basic) than they are constants, in 
that their values are resolved at run time rather than replaced inline at com-
pile time. You can define a true .NET constant value, called a literal in F#, by 
decorating a binding with the Literal attribute. (F# follows the same conven-
tion as other .NET languages by making the Attribute suffix optional, so in 
this example both Literal and LiteralAttribute are acceptable.)

[<Literal>]
let FahrenheitBoilingPoint = 212

This causes the compiler to treat the definition the same as a const in 
C# (Const in Visual Basic), meaning that the value will be compiled inline 
wherever it is used. As such, bindings decorated as Literal must be a full 
constructed value type, string, or null.
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Mutable Bindings

If you try to change the value of a default binding with the assignment 
operator (<-), the compiler will tell you that you can’t.

let name = "Dave"

name <- "Nadia"
// Error – immutable binding

To make a binding mutable, simply include the mutable keyword in its 
definition. Once a mutable binding is defined, you can change its value at will.

let mutable name = "Dave"

name <- "Nadia"
// OK – mutable binding

There is, of course, a caveat: Mutable bindings don’t play nicely with 
closures (inline functions that can access bindings visible within the scope 
where they’re defined).

// Horrible, invalid code
let addSomeNumbers nums =
  let umutable sum = 0
  let add = v(fun num -> sum <- sum + num)
  Array.iter (fun num -> add num) [| 1..10 |]

In this example, the mutable binding, sum u, is captured by the add clo-
sure v. If you try to compile this code, the compiler politely informs you of 
the error and instructs you to either eliminate the mutation or use another 
mutable construct, a reference cell, instead.

Reference Cells

Reference cells are like mutable bindings in that their values can be changed 
at run time, but they work much differently. A reasonable way to think of 
reference cells is that they are to pointers what mutable bindings are to 
traditional variables. That said, reference cells aren’t really pointers either 
because they’re concrete types that encapsulate a mutable value rather than 
pointing to a particular resource or memory address. 

You create a new reference cell like a typical let binding except that you 
include the ref operator before the bound value.

let cell = ref 0

Accessing and changing a reference cell’s value requires a different 
syntax than a standard binding because we need to affect the encapsulated 
value rather than the reference cell itself.
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u cell := 100
printf "%i" v!cell

As you can see at u, the := operator is used to change the reference 
cell’s value, and at v the ! operator is used to return the cell’s value.

use Bindings
F# provides a binding mechanism for types that implement the IDisposable 
interface in a way that’s similar to C#’s using statement. In F#, when you 
want the compiler to insert a call to an IDisposable object’s Dispose method, 
you can create a use binding with the use keyword.

Like the using statement, which delimits the block where the IDisposable 
object is in scope, objects created through use bindings are disposed of 
when their enclosing block terminates; that is, if a use binding is created 
at the top level of a function, the object will be disposed of immediately 
after the function returns. Similarly, if a use binding is created within a 
nested construct, like a loop, the object will be disposed of when the itera-
tion completes. 

The following example shows this principle in action:

open System

let ucreateDisposable name =
  printfn "creating: %s" name
  v{ new IDisposable with
    member x.Dispose() =
      printfn "disposing: %s" name
  }

let wtestDisposable() =
  use root = createDisposable "outer"
  for i in [1..2] do
    use nested = createDisposable (sprintf "inner %i" i)
    printfn "completing iteration %i" i
  printfn "leaving function"

In this example, the createDisposable function u writes a message to the 
console telling you that a disposable object is being created. It then returns 
an object that prints a message when it’s disposed of v. The testDisposable 
function w repeatedly invokes the createDisposable function both inside and 
outside of a simple for loop and writes out messages telling you when each 
block is terminating. 

Invoking the testDisposable function produces the following output that 
shows when each object is created and disposed of in relation to its contain-
ing block. 

creating: outer
creating: inner 1
completing iteration 1
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disposing: inner 1
creating: inner 2
completing iteration 2
disposing: inner 2
leaving function
disposing: outer

A simple and more practical example of a use binding is writing some 
text to a file, like this:

open System.IO
u let writeToFile filename buffer =

  vuse fs = wnew FileStream(filename, FileMode.CreateNew, FileAccess.Write)
  fs.Write(buffer, 0, buffer.Length)

Notice at u that a let binding is used for the writeToFile function (func-
tions are data in F#) and that at v a use binding is used in conjunction with 
the new keyword w to create the FileStream. (The new keyword is optional in 
F#, but by convention it’s included whenever an IDisposable object is created 
to indicate that the object should be disposed of. If you create a use binding 
without the new keyword, the compiler will issue a warning.)

use bindings can’t be used directly within a module, primarily because 
modules are essentially static classes that never go out of scope. If you try 
to define a use binding directly within a module, you’ll receive a compiler 
warning along with a note that the binding will be treated as a let binding 
instead, like this:

warning FS0524: 'use' bindings are not permitted in modules and are
treated as 'let' bindings

using Function

For more control over an IDisposable, turn to the using function. Although 
not a binding in its own right, using offers functionality that’s a bit more 
like C#’s using statement: Give it an IDisposable and a function that accepts 
the instance, and using automatically calls Dispose when it completes, as 
shown here:

open System.Drawing
using (Image.FromFile(@"C:\Windows\Web\Screen\img100.jpg"))
      (fun img -> printfn "%i x %i" img.Width img.Height)

In some ways using is more powerful than its C# counterpart because, 
like every expression in F#, it returns a value. Consider this revision of the 
previous example:

open System.Drawing
u let w, h = using (Image.FromFile(@"C:\Windows\Web\Screen\img100.jpg"))

                 (fun img -> v(img.Width, img.Height))
w printfn "Dimensions: %i x %i" w h
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Instead of writing the dimensions to the console within the function 
passed to the using function at v, we return them as a tuple (a simple type 
containing multiple data items) and bind each component value to mean-
ingful names as shown at u, before writing them to the console at w. Even in 
this simple example you can begin to see how F#’s composable, expressive 
syntax leads to more understandable solutions by eliminating most of the 
plumbing code (code you have to write to satisfy the compiler), allowing you 
to focus on the problem itself.

Replicating the using Function in C#

I like F#’s using function so much that I’ve created a couple of static helper 
methods for use in my C# projects.

// C#
public static class IDisposableHelper
{
  public static TResult Using<TResource, TResult>
    (TResource resource, Func<TResource, TResult> action)
      where TResource : IDisposable
  {
    using(resource) return action(resource);
  }

  public static void Using<TResource>
    (TResource resource, Action<TResource> action)
      where TResource : IDisposable
  {
    using(resource) action(resource);
  }
}

They’re not exactly pretty, but they get the job done.
Now here’s the C# version of the preceding examples using my helper 

functions.

// C#
// using System.Drawing
IDisposableHelper.Using(
  Image.FromFile(@"C:\Windows\Web\Screen\img100.jpg"),
  img => Console.WriteLine("Dimensions: {0} x {1}", img.Width, img.Height)
);

var dims =
  IDisposableHelper.Using(
    Image.FromFile(@"C:\Windows\Web\Screen\img100.jpg"),
    img => Tuple.Create(img.Width, img.Height)
  );
  
Console.WriteLine("Dimensions: {0} x {1}", dims.Item1, dims.Item2);
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Although the code looks and behaves like the F# version, I find the F# 
version much cleaner, especially with its syntactic support for tuples.

do Bindings
The final type of binding is the do binding, defined with the do keyword. 
Unlike the other binding types, do bindings don’t attach values to a name; 
they’re used whenever you need to execute some code outside the context 
of a function or value definition.

do bindings are commonly used within looping constructs, sequence 
expressions, class constructors, and module initialization. We’ll look at 
each scenario in turn as we encounter them in later chapters.

Identifier Naming
We’ve seen quite a few identifiers already, but we haven’t really looked at 
what makes something a valid identifier. Like any programming language, 
F# has naming rules.

Identifiers in F# are pretty typical of most programming languages. In 
general, F# identifiers must start with an underscore (_), an uppercase let-
ter, or a lowercase letter, followed by any combination thereof. Numbers are 
also valid characters in identifiers so long as they are not the first character.
For example, the following are valid identifiers.

let myIdentifier = ""
let _myIdentifier1 = ""

The most interesting thing about identifiers in F# is that there’s an 
alternative quoted identifier format with fewer restrictions. By enclosing an 
identifier in double backtick characters (``), you can use virtually any string 
as a valid F# identifier, like so.

let ``This is a valid F# identifier`` = ""

It’s usually best to use quoted identifiers sparingly, but they can be 
incredibly useful in certain situations. For example, they’re often used for 
naming unit tests. By using quoted identifiers for test names, you can focus 
on describing the test rather than arguing over naming conventions. If 
you’re using a test framework (like NUnit), the full quoted name in the test 
list clarifies what is being tested.

Core Data Types
As a .NET language, F# supports the full range of Common Language 
Infrastructure (CLI) types. Each of the core primitives and even some 
more complex types, like System.String, are exposed as type abbreviations 
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(convenient aliases for existing types). Many of these even have additional 
syntax support to enhance type inference (the compiler’s ability to automati-
cally determine data types) or otherwise simplify working with them.

Boolean Values and Operators
The bool type abbreviation exposes the standard System.Boolean structure. 
Just as in other languages, bool can have one of two values: true and false.

The F# language includes a few operators for comparing Boolean values, 
as listed in Table 3-1.

Table 3-1: Boolean Operators

Operator Description
not Negation
|| OR
&& AND

The OR and AND operators are short-circuited so they immediately 
return when the expression on the left satisfies the overall condition. In 
the case of the OR operator, if the expression on the left is true, there is no 
need to evaluate the expression on the right. Similarly, the AND operator 
will evaluate the expression on the right only when the expression on the 
left is true.

Numeric Types
F# offers the same selection of numeric types as in other .NET languages. 
Table 3-2 lists commonly used numeric types along with their correspond-
ing .NET type, value range, and suffix.

Table 3-2: Common Numeric Types

Type Abbreviation .NET Type Range Suffix

byte System.Byte 0 to 255 uy

sbyte, int8 System.SByte –128 to 127 y

int16 System.Int16 –32,768 to 32,767 s

uint16 System.UInt16 0 to 65,535 us

int, int32 System.Int32 –231 to 231–1

uint, uint32 System.UInt32 0 to 232–1 u, ul
int64 System.Int64 –263 to 263–1 L

uint64 System.UInt64 0 to 264–1 UL

decimal System.Decimal –296–1 to 296–1 M

float, double System.Double 64-bit double precision 
number precise to approxi-
mately 15 digits
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Type Abbreviation .NET Type Range Suffix

float32, single System.Single 32-bit single precision 
number precise to approxi-
mately 7 digits

F, f

bigint System.Numerics 
.BigInteger

No defined upper or lower 
bounds

I

nativeint System.IntPtr 32-bit platform-specific 
integer

n

unativeint System.UIntPtr 32-bit unsigned platform-
specific integer

un

In general, the suffixes are used more frequently in F# than in other 
.NET languages because they provide the compiler with all of the informa-
tion it needs to correctly infer the type.

Numeric Operators

As you might expect, F# includes a number of built-in operators for working 
with the numeric types. Table 3-3 lists commonly used arithmetic, compari-
son, and bitwise operations.

Table 3-3: Numeric Operators

Operator Description
+ Unary positive (does not change the sign of the expression)

Unchecked addition
- Unary negation (changes the sign of the expression)

Unchecked subtraction
* Unchecked multiplication
/ Unchecked division
% Unchecked modulus
** Unchecked exponent (valid only for floating-point types)
= Equality
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
<> Not equal
&&& Bitwise AND
||| Bitwise OR
^^^ Bitwise exclusive OR
~~~ Bitwise negation
<<< Bitwise left shift
>>> Bitwise right shift
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It’s important to note that although most of the operators in Table 3-3 
work with any numeric type, the bitwise operators work only against the 
integral types. Also, because of the way floating-point numbers are repre-
sented in memory you should avoid using the equality operators with them 
directly or you may see incorrect results, as shown here:

> let x = 0.33333
let y = 1.0 / 3.0
x = y;;

val x : float = 0.33333
val y : float = 0.3333333333
val it : bool = false

Instead of using the equality operator (=), you can calculate the differ-
ence between the two floating-point values and verify that the difference is 
within a threshold. I generally prefer to define this type of operation as a 
function for reusability.

> open System
let approximatelyEqual (x : float) (y : float) (threshold : float) =
  Math.Abs(x - y) <= Math.Abs(threshold)
approximatelyEqual 0.33333 (1.0 / 3.0) 0.001;;

val approximatelyEqual : x:float -> y:float -> threshold:float -> bool
val it : bool = true

Numeric Conversion Functions

When you’re working with numeric data types in F#, there are no implicit 
type conversions. This is largely because type conversions are considered 
side effects, and computation problems arising from implicit type conver-
sions are often difficult to locate. 

To work with different numeric types in the same expression, you’ll 
need to explicitly convert them using the appropriate built-in conversion 
functions. Each conversion function has the same name as the target type 
abbreviation, which makes them really easy to remember. For instance, to 
convert an integer value to a float you’d call the float function, as shown in 
this example.

let marchHighTemps = [ 33.0; 30.0; 33.0; 38.0; 36.0; 31.0; 35.0;
                       42.0; 53.0; 65.0; 59.0; 42.0; 31.0; 41.0;
                       49.0; 45.0; 37.0; 42.0; 40.0; 32.0; 33.0;
                       42.0; 48.0; 36.0; 34.0; 38.0; 41.0; 46.0;
                       54.0; 57.0; 59.0 ]
let totalMarchHighTemps = List.sum marchHighTemps
let average = totalMarchHighTemps / float marchHighTemps.Length
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Characters
As a .NET language, F# carries on the tradition of using 16-bit Unicode for 
character data. Individual characters are represented by System.Char and 
exposed to F# via the char type abbreviation. You can bind most individual 
Unicode characters to an identifier by wrapping them in single quotes, 
while the remaining characters are represented with escaped character 
codes, as shown here.

> let letterA = 'a'
let copyrightSign = '\u00A9';;

val letterA : char = 'a'
val copyrightSign : char = '©'

In addition to the Unicode character escape code, F# has a few other 
escape sequences for some common characters, as listed in Table 3-4.

Table 3-4: Common Escape Sequences

Character Sequence

Backspace \b

Newline \n

Carriage return \r

Tab \t

Backslash \\

Quotation mark \"

Apostrophe \'

Strings
Strings are sequential collections of char and are represented by the string 
type abbreviation. There are three types of strings in F#: string literals, ver-
batim strings, and triple-quoted strings.

String Literals

The most common string definition is the string literal, which is enclosed in 
quotation marks as follows.

> let myString = "hello world!";;
val myString : string = "hello world!"

String literals can contain the same characters and escape sequences 
described in Table 3-4. Newlines within the string literal are retained unless 
they’re preceded by a backslash (\) character. If a backslash is present, the 
newline character will be removed.
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Verbatim Strings

Verbatim strings are much like string literals except that they are preceded 
by the @ character and ignore escape sequences. You can embed quotation 
marks within the string, but they must be written as "", like this:

> let verbatimString = @"Hello, my name is ""Dave""";;
val verbatimString : string = "Hello, my name is "Dave""

Not parsing escape sequences makes verbatim strings a good choice for 
representing system paths containing backslashes, provided that you don’t 
have them stored in a configuration setting somewhere. (You’re not hard-
coding your paths, right?)

Triple-Quoted Strings

As the name implies, triple-quoted strings are enclosed in triple quotation 
marks like """Klaatu barada nikto!""". Triple-quoted strings are like verbatim 
strings in that they ignore all escape sequences, but they also ignore double 
quotes. This type of string is most useful when you’re working with format-
ted character data that naturally contains embedded quotes, like XML 
documents. For example:

> let tripleQuoted = """<person name="Dave" age="33" />""";;
val tripleQuoted : string = "<person name="Dave" age="33" />"

String Concatenation

When you want to combine multiple strings, you can concatenate them 
in a variety of ways. First, there’s the traditional Concat method on the 
System.String class. This method is exactly what you’d expect from other 
.NET languages.

> System.String.Concat("abc", "123");;
val it : string = "abc123"

w a r n i n g 	 Be careful when using String.Concat to not accidentally use the concat extension 
method defined in FSharp.Core. The concat extension method has more in common 
with the String.Join method than it does with String.Concat.

You can also use the operators + and ^ to make the code a bit cleaner. 
For example:

> "abc" + "123";;
val it : string = "abc123"

The + operator is preferred, particularly in cross-language scenarios, 
because it’s defined on System.String. The ^ operator is provided for ML com-
patibility, and the compiler will issue a warning if you use it in your code.
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Type Inference
I’ve been very careful not to explicitly state any data types in examples so 
far in order to illustrate one of F#’s most interesting features: type infer-
ence. Type inference means that the compiler can often deduce data types 
based on individual values and usage. In fact, F#’s type inference capabili-
ties are so powerful that they often give newcomers to F# the impression 
that the language is dynamically typed when it’s actually statically typed.

F# certainly isn’t the first .NET language to include type inference. C# 
supports type inference through the var keyword, as does Visual Basic when 
Option Infer is enabled. However, while the type inference in C# and Visual 
Basic helps avoid some explicit type declarations, it works only in very 
limited situations. Furthermore, while both C# and Visual Basic can infer 
data types for individual values, they still generally require you to explicitly 
specify types in multiple places. In contrast, F#’s top-down evaluation takes 
type inference to levels never before seen in .NET.

F#’s type inference capabilities permeate the entire language. You’ve 
seen examples of type inference previously, ranging from simple values to 
function parameters and return types, but this feature even enters into F#’s 
object-oriented features.

At the risk of jumping too far ahead, let’s examine how much F#’s type 
inference helps with a simple class definition, beginning with an example 
in C#.

// C#
using System;

public class Person
{
  public Person(Guid id, string name, int age)
  {
    Id = id;
    Name = name;
    Age = age;
  }

  public Guid Id { get; private set; }
  public string Name { get; private set; }
  public int Age { get; private set; }
}

Even in this simple example, C# requires no fewer than six explicit 
type declarations. If you wanted to take it a step further and define readonly 
backing variables rather than using auto-implemented properties with pri-
vate setters, you’d take the number of type declarations up to nine!

Now let’s look at an equivalent class in F#.

type Person (id : System.Guid, name : string, age : int) =
  member x.Id = id
  member x.Name = name
  member x.Age = age
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Yes, those two definitions are indeed the same class! Not convinced? 
Figure 3-1 shows how each class looks in the compiled assemblies according 
to the decompiler, ILSpy.

Figure 3-1: Comparison of compiled F# and C# classes

N o t e 	 There is a subtle difference between the two classes that isn’t pictured. The C# class 
sets the property values via the private setters, whereas the F# class foregoes the pri-
vate setters and relies exclusively on the backing variables.

As you can see in the decompiled code, the classes are virtually identi-
cal. Ignoring the other syntactic differences between the two languages 
(object-oriented programming is covered in Chapter 4), you can see F#’s 
type inference in action throughout this example. In F# we needed to 
specify the data types for each member only once in the constructor, and 
in many cases the compiler can infer it there, too. Even each property’s 
data type is automatically inferred from that one definition!

In cases where the compiler can’t infer the type, you can add a type 
annotation to tell it what the type should be. You can use type annotations 
anywhere you introduce a new value. For example, you can include a type 
annotation in a let binding like this:

let i : int = 42;;

You can also annotate each part of a function definition. A function 
that adds two integers might be annotated like this:

let add (a : int) (b : int) : int = a + b

In this example, no type inference is performed because the definitions 
explicitly specify the type.
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Nullability
If project structure differences and immutability aren’t enough to make your 
head spin, F# has yet another trick for you: null is almost never used! You 
can’t create null values directly with F# without resorting to a library function, 
and types defined in F# allow null as a valid value only if they’re decorated 
with the AllowNullLiteral attribute. If not for the need to interoperate with 
.NET assemblies written in languages that lack the same restrictions, null 
probably wouldn’t be included in the language at all.

By placing such tight restrictions around nulls, the F# language designers 
have greatly reduced the possibility of encountering stray null references, par-
ticularly when you’re working entirely within F#. This means that you get to 
spend less time checking to see if every reference type instance is null before 
doing anything with it.

That said, null is still a valid keyword in F#, and you will find that you 
do need to use it from time to time, particularly as you work with assemblies 
written in other .NET languages. Usually, you’ll pass null as a parameter to a 
library function or verify that the return value of a library function isn’t null.

Options
Although F# strives to eradicate nulls from your software, there are times 
when something legitimately doesn’t have a value. Without nulls this could 
seem like a problem, but the language has you covered.

Rather than simply allowing null to be valid for every reference type, 
F# takes an opt-in approach via the Option<'T> type. This type is a generic 
discriminated union with two values: Some('T) and None. In some ways options 
are like nullable types, but their explicit nature makes it obvious that a 
meaningful value might not be present. (We’ll cover discriminated unions 
in Chapter 5. Generics are covered later in this chapter.)

Options are so important in F# that they have syntactic support in type 
annotations through the option keyword, as shown here:

> let middleName : string option = None;;
val middleName : string option = None

> let middleName = Some("William");;
val middleName : string option = Some "William"

Options are also how the compiler represents optional parameters for 
constructors or methods. You make a parameter optional by prefixing it 
with a question mark (?). Optional parameters are allowed only at the end 
of the parameter list, as shown here:

type Container() =
  member x.Fill u?stopAtPercent =
    printfn "%s" <| match (vdefaultArg stopAtPercent 0.5) with
                    | 1.0 -> "Filled it up"
                    | stopAt -> sprintf "Filled to %s" (stopAt.ToString("P2"))
let bottle = Container()
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In the preceding example, u is the optional stopAtPercent param-
eter. The function needs to account for the cases when stopAtPercent is 
None. One common way to provide a default value in these cases is with 
the defaultArg function v. This function is kind of like C#’s null coalesc-
ing operator (??) except that it works with options instead of nulls. The 
defaultArg function accepts an option as its first argument and returns its 
value when it is Some<_>; otherwise, it returns the second argument.

Unit Type
Expressions must always evaluate to a value, but sometimes they’re evalu-
ated solely for a side effect, such as writing to a log or updating a data-
base. In these cases, turn to the unit type. The unit type, represented by () 
(an empty pair of parentheses), is a concrete type with a single value that 
signifies that no particular value is present, so the result of any expression 
that returns unit can safely be ignored. (In some ways, unit is like a manifes-
tation of the void return type in C# in that it should be returned whenever 
a function doesn’t really return anything, but it’s also used syntactically to 
signify parameterless functions.)

Whenever an expression returns a value other than unit, F# expects you 
to do something with it. The compiler doesn’t care whether you bind the 
value to an identifier or pass it as an argument to a function; it just wants 
you to use it. When you don’t do something with the return value, the com-
piler warns that the expression should have type unit because it may actu-
ally indicate a program error (the warning is displayed only in compiled 
code and doesn’t appear in FSI). For example:

let add a b = a + b
// Compiler warning
add 2 3

If you don’t want to do anything with the return value, you can pass the 
result to the ignore function, which accepts a single, unconstrained generic 
argument and returns unit.

let add a b = a + b
// No warning
add 2 3 |> ignore

In this example, the add function’s result is sent to the ignore function 
via the forward pipelining operator (|>). This operator evaluates the expres-
sion on the left and sends the result as the last argument to the expression 
on the right. We’ll look at the forward pipelining operator in detail on 
page 107.
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Enumerations
Enumerations help you write more readable code by letting you assign 
descriptive labels to integral values. F# enumerations compile to the same 
CLI type as in other .NET languages, so all of the capabilities and restric-
tions that apply in C# or Visual Basic apply in F# too.

The basic syntax of an enumeration in F# is:

type enum-name =
   | value1 = integer-literal1
   | value2 = integer-literal2
   -- snip --

However, unlike in C# and Visual Basic, F# doesn’t automatically gener-
ate a value for each label in an enumeration, so you need to explicitly provide 
one. For example, if your program represents each day of the week as an 
integer, you might define a DayOfWeek enumeration like this:

type DayOfWeek =
| Sunday = 0
| Monday = 1
| Tuesday = 2
| Wednesday = 3
| Thursday = 4
| Friday = 5
| Saturday = 6

Should you want to base your enumerations on an integral type other 
than int, simply include the appropriate suffix for the data type in the label 
definition. For example, you could easily change the preceding DayOfWeek 
sample to use sbyte as its underlying type by changing the suffix on each 
value:

type DayOfWeekByte =
| Sunday = 0y
| Monday = 1y
| Tuesday = 2y
-- snip --

Flags Enumerations
The enumerations we’ve seen so far represent only single values. However, 
it’s common for each label to represent a value by position in a bit mask so 
that multiple items can be combined.
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For example, consider the case of the RegexOptions enumeration from 
the System.Text.RegularExpressions namespace. This enumeration allows you 
to control how the regular expression engine processes the pattern by com-
bining multiple values with the logical or operator, like this:

open System.Text.RegularExpressions
let re = new Regex("^(Didactic Code)$",
                   RegexOptions.Compiled ||| RegexOptions.IgnoreCase)

To achieve this same result in your own enumerations, include the Flags 
attribute and use values that are powers of two.

open System

[<Flags>]
type DayOfWeek =
| None = 0
| Sunday = 1
| Monday = 2
| Tuesday = 4
| Wednesday = 8
| Thursday = 16
| Friday = 32
| Saturday = 64

N o t e 	 The Flags attribute isn’t required, but it’s good practice to include it to show other 
developers how the enumeration should be used.

You can now represent the days in a weekend by combining the Saturday 
and Sunday values as we did previously.

let weekend = DayOfWeek.Saturday ||| DayOfWeek.Sunday

If you know that several values will be commonly combined, consider 
including those combinations in your enumeration definition. F# doesn’t 
allow referencing the other values in the definition by name, but you can 
still provide the appropriate corresponding integral value. In the case of 
DayOfWeek you could provide Weekdays and WeekendDays with the values 62 and 65, 
respectively.

open System

[<Flags>]
type DayOfWeek =
-- snip --
| Weekdays = 62
| WeekendDays = 65

It’s easy to determine whether a particular enumeration value has a 
particular flag set with the HasFlag method of System.Enum.
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> DayOfWeek.Weekdays.HasFlag DayOfWeek.Monday;;
val it : bool = true
> DayOfWeek.Weekdays.HasFlag DayOfWeek.Thursday;;
val it : bool = true
> DayOfWeek.Weekdays.HasFlag DayOfWeek.Sunday;;
val it : bool = false

Reconstructing Enumeration Values
Using named labels for integral values is a great way to avoid magic numbers 
(numbers without any apparent meaning) in your code, but what if you save 
off the underlying value (say, to a database) and later want to reconstruct 
the original enumeration value from it? The built-in enum function allows 
you to do just that for integer (int32) values.

> enum<DayOfWeek> 16;;
val it : DayOfWeek = Thursday

When the enumeration’s underlying type is something other than int32, 
use the EnumOfValue function from the Microsoft.FSharp.Core.LanguagePrimitives 
module namespace instead.

> open Microsoft.FSharp.Core.LanguagePrimitives
EnumOfValue<sbyte, DayOfWeek> 16y;;
val it : DayOfWeek = Thursday

N o t e 	 Enumeration types aren’t constrained to the values identified by labels, so when using 
these functions be sure to create only enumeration values that you’ve accounted for in 
your code.

Flow Control
Despite its emphasis on functional programming, F# fully supports several 
imperative constructs for looping and branching. These are particularly 
useful in combination with other constructs like sequence expressions (partic-
ularly the looping constructs), but they’re certainly useful in other contexts 
as well.

Looping
Recursion is the preferred looping mechanism in functional programming, 
but F# also includes a few approaches typically found in imperative lan-
guages. These looping structures are similar to those of other languages.

N o t e 	 F# doesn’t provide mechanisms (like break or continue) for premature termination, so 
take extra care when using loops.
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while Loops

The simplest iterative structure is the while...do loop. As you might expect, 
this construct evaluates a Boolean expression and iterates as long as that con-
dition is true. while loops are useful when you need to iterate an unknown 
number of times, but because they inherently rely on a state change, they 
can’t be used in pure functional programming. The body of the loop can 
be any expression that returns unit.

One scenario in which while loops are helpful is responding to user 
input. In the following example, the echoUserInput function uses a while 
loop to echo whatever the user enters at the console until it encounters 
the word quit.

let echoUserInput (getInput : unit -> string) =
  let mutable input = getInput()
  while not (input.ToUpper().Equals("QUIT")) do
    printfn "You entered: %s" input
    input <- getInput()

echoUserInput (fun () -> printfn "Type something and press enter"
                         System.Console.ReadLine())

for Loops

When you know how many iterations you need to perform, you can turn to 
one of the for loop variations: simple or enumerable. Simple for loops are 
pretty restrictive in that they can iterate only over a range of integers and 
always return unit. Attempting to return something other than unit will 
result in a compilation error.

Simple for loops are useful when you know how many times you need 
to iterate. Here, the numbers 0 through 100 are printed in the body of a 
simple for loop:

for i = 0 to 100 do printfn "%i" i

By replacing the to keyword with the downto keyword, you can make a 
simple for loop count down instead.

for i = 100 downto 0 do printfn "%A" i

The more powerful variation of the for loop is the enumerable for 
loop. In some ways, the enumerable for loop is similar to C#’s foreach 
loop in that it operates over any sequence (collection types implementing 
IEnumerable<'T>). For instance, the enumerable for loop makes it easy to iter-
ate over a range of integers, like this:

for i in [0..10] do
  printfn "%A" i
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In reality, though, the enumerable for loop is a fancy syntactic shortcut 
for applying F#’s powerful pattern-matching capabilities over a sequence. 
With pattern matching, you can extract values from more complex types 
and even perform some rudimentary filtering right in the loop definition! 
No LINQ required!

u type MpaaRating =
| G
| PG
| PG13
| R
| NC17

v type Movie = { Title : string; Year : int; Rating : MpaaRating option }

w let movies = [ { Title = "The Last Witch Hunter"; Year = 2014; Rating = None }
               { Title = "Riddick"; Year = 2013; Rating = Some(R) }
               { Title = "Fast Five"; Year = 2011; Rating = Some(PG13) }
               { Title = "Babylon A.D."; Year = 2008; Rating = Some(PG13) } ]

x for { Title = t; Year = y; Rating = Some(r) } in movies do
  printfn "%s (%i) - %A" t y r

At u we see a discriminated union representing the rating scale, at v 
a record type representing a movie with an optional rating, at w an F# list, 
and finally at x the for...in loop with a pattern match to find all movies 
that have been rated. The compiler will highlight the pattern match and 
warn you about not having a covering case, but that’s okay because we’re 
using it as a filter.

N o t e 	 Don’t worry about all this discussion of pattern matching, discriminated unions, 
record types, and other functional concepts yet. We’ll explore each in detail in 
Chapters 5 and 7.

Branching
F# offers only a single imperative construct for branching: the if...then...else 
expression, as shown next. This expression evaluates a Boolean expression 
in the if part. When that expression evaluates to true, the then branch is 
executed; otherwise, the else branch is executed (if one is present).

let isEven number =
  if number % 2 = 0 then
    printfn "%i is even" number
  else
    printfn "%i is odd" number

You can chain multiple if...then...else expressions together with the 
elif keyword (a shortcut for else if), as shown next. This has the same 
effect as nesting them, though the result is much more readable.
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let isEven number =
  if number = 0 then
    printfn "zero"
  elif number % 2 = 0 then
    printfn "%i is even" number
  else
    printfn "%i is odd" number

Because the if...then...else expression returns a value, constructs like 
C#’s conditional operator (?:) aren’t necessary. You should know, though, 
that because the expression returns a value it behaves a bit differently 
depending on how it’s being used. When only the if branch is specified, 
its expression must evaluate to unit, but when both the if and else branches 
are specified, their expressions must both evaluate to the same type. 

In each example so far, the result of the if...then...else expression 
has been unit, but what happens if you change the function to use sprintf 
instead of printfn like this?

let isEven number =
  if number = 0 then
    sprintf "zero"
  elif number % 2 = 0 then
    sprintf "%i is even" number
  else
    sprintf "%i is odd" number

Instead of printing the message to the console, the isEven function actu-
ally returns the message as a string. You can see this by invoking the func-
tion in FSI like so:

> isEven 0;;
val it : string = "zero"
> isEven 1;;
val it : string = "1 is odd"
> isEven 2;;
val it : string = "2 is even"

Generics
Don Syme, the designer and architect of F#, was heavily involved in the 
research and development of what eventually became generics in the .NET 
Framework. With a heritage like that, it’s no surprise that generics in F# 
are incredibly robust, in some ways even more powerful than in other .NET 
languages.

Generics allow you to define functions, classes, methods, interfaces, 
and structures that can work directly with any data type. Without generics, 
the only way to write type-safe code that works with multiple data types is 
to write a separate implementation for each type. However, this approach 
is limiting, because any new type that relies on that code will need its own 
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implementation. Generics abstract away this complexity by generating these 
implementations for you based on the type parameters you’ve supplied in 
your code. 

To show how useful generics really are, consider how one of the original 
.NET collection types, the ArrayList, compares to its cousin, the generic list. 
The ArrayList class is a collection type that has been around since the earli-
est days of .NET and well before generics were available in the framework. 
In order for it to hold data of any type, it needed to treat every element as 
System.Object. As a result, code written with ArrayList almost always involved 
excessive type conversions of elements in the list. Worse, there was no way 
to enforce consistency between elements, so although a developer might 
believe that every element in the list was a string, it could very well also con-
tain integers, floats, or instances of any other data type. This type of code 
was highly error prone and often had a negative impact on performance.

The generic List<'T> class, on the other hand, can be instantiated to 
work with any specific data type. It removes all ambiguity about what its 
elements are and typically eliminates the type conversions (subclassing not-
withstanding), which leads to more reliable and efficient code.

Since their beginning, generics have played a starring role in virtu-
ally every innovation in .NET development, including LINQ and the Task 
Parallel Library. In some ways, they play an even greater part in F# devel-
opment than in traditional .NET development because of their role in the 
type inference process and concepts like statically resolved type parameters 
(discussed in “Statically Resolved Type Parameters” on page 52).

In F#, most generic type parameters are named with a leading apos-
trophe. For example, 'a, 'A, and 'TInput are all valid type parameter names. 
By convention, F# uses sequential lowercase identifiers for inferred type 
parameters, whereas user-defined type parameters begin with an uppercase 
character.

Automatic Generalization
F#’s type inference feature favors generic types whenever possible through 
a process called automatic generalization. Here it is in action:

> let toTriple a b c = (a, b, c);;
val toTriple : a:'a -> b:'b -> c:'c -> 'a * 'b * 'c

In this example the toTriple function converts its three parameters into 
a three-item tuple (sometimes called a triple). We’ll explore the arrows and 
tuples in detail in Chapter 5; for now just recognize that the compiler auto-
matically generalized each of the three parameters to the types 'a, 'b, and 
'c, respectively.

Whether the compiler can automatically generalize a parameter 
depends largely on how and where it’s used. Automatic generalization is 
attempted only with immutable values on complete function definitions 
with explicit parameters.
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Explicit Generalization
If the compiler can’t automatically generalize a parameter, or you want 
more control over it, you can explicitly generalize a parameter with a type 
annotation. This is especially useful when you want to constrain the types 
allowed. You could rewrite the previous toTriple example with explicit type 
parameters as follows:

> let toTriple (a : 'A) (b : 'B) (c : 'C) = (a, b, c);;
val toTriple : a:'A -> b:'B -> c:'C -> 'A * 'B * 'C

When type parameters are unconstrained, you’re fairly limited in what 
you can do with them. Generally, you can use them only with other uncon-
strained generic types or functions, and good luck invoking any methods 
beyond those defined on System.Object. To do something that depends on 
some aspect of the type, such as calling an interface method, you’ll need 
to add a constraint.

If you’re familiar with generic constraints in C# or Visual Basic, you 
may have been frustrated by the lack of things you can actually constrain. 
In those languages you can constrain type parameters only to reference 
types, value types, types with a default constructor, types that derive from 
a particular class, and types that derive from a particular interface. F# sup-
ports each of these but also adds a few other constraints.

N o t e 	 Most constraint types apply to standard type parameters, but a few apply only to an 
F#-specific form of type parameters called statically resolved type parameters. In 
the following examples, you’ll see these constraints defined in inline functions with a 
type parameter that uses a caret ( )̂ instead of an apostrophe. Statically resolved type 
parameters are described later in this section.

You apply constraints by following the generic type annotation with when 
and the constraint. You can specify multiple constraints by combining them 
with and.

Subtype constraints  A subtype constraint limits the acceptable types 
to the constraint type itself or any type that derives from that type. 
When the constraint type is an interface, the provided type needs to 
implement that interface.

let myFunc (stream : 'T when 'T :> System.IO.Stream) = ()

Nullness constraints  A nullness constraint limits the acceptable types 
to those where null is a valid value.

let inline myFunc (a : ^T when ^T : null) = ()
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Member constraints  A member constraint ensures that the supplied 
type includes a member with a specific signature. You can constrain the 
types based on either instance or static members.

// instance member
let inline myFunc
  (a : ^T when ^T : (member ReadLine : unit -> string)) = ()

// static member
let inline myFunc
  (a : ^T when ^T : (static member Parse : string -> ^T)) = ()

Default constructor constraints  A default constructor constraint 
ensures that the supplied type has a default constructor.

let myFunc (stream : 'T when 'T : (new : unit -> 'T)) = ()

Value type constraints  A value type constraint restricts the supplied 
type to any .NET value types except System.Nullable<_>.

let myFunc (stream : 'T when 'T : struct) = ()

Reference type constraints  A reference type constraint ensures that 
the supplied type is a .NET reference type.

let myFunc (stream : 'T when 'T : not struct) = ()

Enumeration constraints  An enumeration constraint limits the sup-
plied types to enumerations with a specific underlying type.

let myFunc (stream : 'T when 'T : enum<int32>) = ()

Delegate constraints  A delegate constraint restricts the provided 
types to delegate types with a particular set of arguments and return 
type. Delegate constraints are intended primarily for use with tradi-
tional .NET event handlers.

open System
let myFunc (stream : 'T when 'T : delegate<obj * EventArgs, unit>) = ()

Unmanaged constraints  Unmanaged constraints restrict the provided 
type to unmanaged types like some of the numeric primitives and enu-
meration types.

let myFunc (stream : 'T when 'T : unmanaged) = ()
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Equality constraints  An equality constraint restricts the provided 
type to types that support equality. This constraint is considered weak 
because it’s satisfied by nearly every CLI type.

let myFunc (stream : 'T when 'T : equality) = ()

Comparison constraints  Comparison constraints are satisfied only by 
types that implement System.IComparable, arrays, nativeint, and unativeint 
unless the type has the NoEquality attribute.

let myFunc (stream : 'T when 'T : comparison) = ()

Flexible Types
Although not strictly generic constructs, flexible types are a syntactic shortcut 
for subtype constraints. They’re particularly useful with the function argu-
ments of a higher-order function where automatic type conversion normally 
doesn’t automatically occur.

You can specify a flexible type by prefixing a type name with a # charac-
ter within a type annotation.

let myFunc (stream : #System.IO.Stream) = ()

Wildcard Pattern
When you want to use a generic type as a parameter but want the compiler 
to infer the type, you can use the Wildcard pattern in place of a named type 
parameter. The Wildcard pattern is represented with an underscore.

let printList (l : List<_>) = l |> List.iter (fun i -> printfn "%O" i)

The preceding function will print each element in an F# list with its 
ToString function regardless of what type is contained in the list.

Statically Resolved Type Parameters
F# has two classifications of generics. The first (which we’ve focused on 
almost exclusively so far) is standard generics, the same generics as in other 
.NET languages. The second, called statically resolved type parameters, is spe-
cific to F# and identified by a caret (^) instead of an apostrophe. Statically 
resolved type parameters force the compiler to resolve the types at compile 
time rather than run time. The implication is that the compiler generates a 
version of the generic type for each resolved type rather than a single version.

Statically resolved type parameters are primarily intended for use with 
inline functions and are especially well suited for custom operators, as 
shown here.

let inline (!**) x = x ** 2.0
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When this operator is compiled, it uses static resolution with a con-
straint to ensure that any types that use it include the Pow function in their 
definition based on the use of the ** operator.

val inline ( !** ) :
  x: ^a ->  ^a when  ^a : (static member Pow :  ^a * float ->  ^a)

When Things Go Wrong
Despite your best efforts and the extra safety that F# provides, things can 
and will go wrong. Proper error handling is a critical piece of any program. 
F# builds upon the standard .NET exception mechanisms with additional 
syntactic support that allows you to throw (or raise in F# parlance) and 
handle exceptions with ease. (For convenience, the standard exception 
type, System.Exception, is abbreviated as exn.)

Handling Exceptions
Error conditions are always a possibility, so it’s important to know how to 
handle them properly when they arise. F# provides two constructs for error 
handling: try...with and try...finally. These constructs are strictly inde-
pendent of each other; that is, there is no try...with...finally construct in 
F#. If you need both a with and a finally block, you’ll generally nest a try...
with block within a try...finally block, although the nesting order doesn’t 
really matter.

try. . .with Expressions

In a try...with construct, the expressions contained within the try block 
are evaluated and if any raise an exception, F# pattern matching is used 
to locate an appropriate handler in the with block.

Input/output-related operations, like reading from a file, are great 
examples of where you’d use the exception-handling constructs because 
you’re at the mercy of external factors like network availability issues or file 
permissions. In this example, we attempt to read a text file and write its con-
tents to the console but do so in a try block.

open System.IO

try
  use file = File.OpenText "somefile.txt"
  file.ReadToEnd() |> printfn "%s"
with
| u:? FileNotFoundException -> printfn "File not found"
| v_ -> printfn "Error loading file"

If an exception is raised, execution passes to the with block, where the 
system attempts to find a handler first using u, a Type-Test pattern (a pattern 
that matches a specific data type). In this case, the Wildcard pattern v 
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(a general-purpose pattern that matches everything) is used as a general 
exception handler. If a suitable match isn’t found, the exception bubbles 
up the call stack until a handler is found or the application fails.

Without delving too much into the specifics of pattern matching, we 
can look at a few ways to unlock the potential of the with block. As it stands 
now, the handler for FileNotFoundException isn’t very helpful because it doesn’t 
give any information about which file wasn’t found. You can capture the 
exception for use in the handler by including an identifier with the as key-
word in the pattern.

try
-- snip --
with
| :? FileNotFoundException as uex ->
 vprintfn "% was not found" ex.FileName
| _ -> printfn "Error loading file"

Now that the ex identifier is defined u, you can include the filename in 
the printed message v.

You can even combine cases when two or more exception types should 
use the same handler.

try
-- snip --
with
| :? FileNotFoundException as ex ->
  printfn "%s was not found" ex.FileName
| :? PathTooLongException
| :? ArgumentNullException
| :? ArgumentException ->
  printfn "Invalid filename"
| _ -> printfn "Error loading file"

Sometimes you may want to partially handle an exception at one level 
but still allow it to traverse up the call stack to another handler. You could 
raise the exception normally with the raise function, but in doing so you’d 
lose the call stack information embedded in the exception and later han-
dlers would recognize your handler as the source of the error. To preserve 
the stack trace, reraise the exception with a function that’s valid only within 
a with block: reraise.

try
-- snip --
with
| :? FileNotFoundException as ex ->
  printfn "%s was not found" ex.FileName
| _ ->
  printfn "Error loading file"
  reraise()
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Unlike in C# and Visual Basic, F#’s try...with construct is an expres-
sion, so it returns a value. All of the examples so far have returned unit. 
This opens up more possibilities as to how you can use the construct, but it 
also means that each exception case must have the same return type as the 
try block.

A common practice is to have the try...with return an option type 
where the try block returns Some<_> and each exception case returns None. 
You can follow this pattern to return the contents of a text file.

open System
open System.Diagnostics
open System.IO

let fileContents = 
  try
    use file = File.OpenText "somefile.txt"
  uSome <| file.ReadToEnd()
  with
  | :? FileNotFoundException as ex ->
    printfn "%s was not found" ex.FileName
  vNone
  | _ ->
    printfn "Error loading file"
    reraise()

In this example, you can see at u where an option is created with 
the contents of the text file and returned. Returning None from the 
FileNotFoundException handler is shown at v.

try. . .finally Expressions

The try...finally construct is used to execute code that must run regardless 
of whether the code in the try block raises an exception. 

Usually, try...finally is used to clean up any resources that might have 
been left open by the try block, as shown here:

try
  use file = File.OpenText "somefile.txt"
  Some <| file.ReadToEnd()
finally
  printfn "cleaning up"

Raising Exceptions
An exception-handling mechanism isn’t much use if you’re stuck handling 
exceptions from library functions but can’t raise your own. You can raise 
an exception of any type with the raise function.

let filename = "x"
if not (File.Exists filename) then
  raise <| FileNotFoundException("filename was null or empty")
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In addition to raise, F# includes a sprinkling of additional functions 
for raising some of the more commonly used exceptions. The failwith 
and failwithf functions are convenient for general exceptions. Both raise 
a Microsoft.FSharp.Core.FailureException, but the failwithf function allows 
you to use the F# format strings (discussed in “String Formatting” on page 
58), as shown here.

// failwith
if not (File.Exists filename) then
  failwith "File not found"

// failwithf
if not (String.IsNullOrEmpty filename) then
  failwithf "%s could not be found" filename

Another common exception type that’s easily raised through a built- 
in function is System.ArgumentException. To conveniently raise it, use the 
invalidArg function.

if not (String.IsNullOrEmpty filename) then
  invalidArg "filename" (sprintf "%s is not a valid file name" filename)

Custom Exceptions
It’s usually best to use predefined exception types like ArgumentException, 
FormatException, or even NullReferenceException, but if you must define 
your own exception types, you can define a new class that extends 
System.Exception. For example:

type MyException(message, category) =
  inherit exn(message)
  member x.Category = category
  override x.ToString() = sprintf "[%s] %s" category message

You can raise your custom exception with the raise function and 
handle it in a try...with or try...finally block as with any other exception 
type. Here you can see the custom MyException exception raised and caught.

try
  raise <| MyException("blah", "debug")
with
  | :? MyException as ex -> printfn "My Exception: %s" <| ex.ToString()
  | _ as ex -> printfn "General Exception: %s" <| ex.ToString()

There’s also a lightweight alternative to creating exception classes. 
In F# you can define a custom exception type and its associated data with 
the exception keyword. Exceptions created this way are still standard .NET 
exceptions that derive from System.Exception, but the syntax borrows from 
a few functional concepts (syntactic tuples and discriminated unions, in 
particular) to accomplish its magic.
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exception RetryAttemptFailed of string * int
exception RetryCountExceeded of string

You raise these exceptions as you would any exception. However, han-
dling them is streamlined because you can use the same pattern-matching 
syntax as discriminated unions (more on pattern matching in Chapter 7) 
to not only determine which handler to use but also to bind the associated 
data to useful identifiers.

A generalized retry function might raise different exception types that 
indicate whether it should keep trying or give up depending on how many 
times it has tried to execute some action.

let uretry maxTries action =
  let vrec retryInternal attempt =
    try
      if not (action()) then
        raise <| if attempt > maxTries then
                    wRetryCountExceeded("Maximum attempts exceeded.")
                 else
                    xRetryAttemptFailed(sprintf "Attempt %i failed." attempt, attempt)
    with
    | yRetryAttemptFailed(msg, count) as ex -> Console.WriteLine(msg)
                                              retryInternal (count + 1)
    | zRetryCountExceeded(msg) -> Console.WriteLine(msg)
                                 reraise()
  {retryInternal 1

retry 5 (fun() -> false)

In this example, the retry function u accepts two parameters. The 
first indicates the maximum number of attempts and the second is a 
Boolean-returning function to invoke. All of the work is performed within 
retryInternal v, a nested recursive function that calls itself and that invokes 
the supplied function. If the supplied function returns false, it raises either 
a RetryCountExceeded exception w or a RetryAttemptFailed exception x. When 
RetryAttemptFailed is raised, the handler y writes the exception message to 
the console before calling the retryInternal function again with an incre-
mented counter. If a RetryCountExceeded exception is raised, the handler z 
writes the exception message to the console and then reraises the exception 
for another handler to process. Of course, this process has to start some-
where, so we make the initial call to retryInternal { with 1 to indicate the 
first attempt.

This syntactic simplicity does come at a cost. Despite RetryAttemptFailed 
and RetryCountExceeded being standard exceptions, you’ll really want to keep 
them isolated to your F# assemblies because consuming them in other 
languages can be cumbersome. The associated data is defined as a syntac-
tic tuple, so the individual values don’t get descriptive names in the com-
piled code; instead, the values are assigned “useful” generated names like 
Data0 and Data1. To confuse matters even more, the compiler has no way of 
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knowing which, if any, of the associated data items should be treated as the 
exception’s Message property, so the default message (from the base exception 
class) is used.

String Formatting
You probably guessed that the tried and tested Console.Write, Console 
.WriteLine, and String.Format methods are perfectly acceptable in F#. When 
you need absolute control over formatting, you’ll have to use them. As capa-
ble as they are, though, they don’t take advantage of all that F# has to offer.

F# has its own string formatting capabilities that you can use with the 
printf, printfn, and sprintf functions, among others. Why did the language 
designers choose to build another formatting mechanism when .NET’s 
built-in mechanism is already so capable? Because F#’s native formatting 
capabilities tie into the compiler better than the traditional ones. For one, 
the tokens used within the F# format strings are generally easier to remem-
ber than the format strings in the core methods, but that’s not the primary 
advantage. What really distinguishes the F# formatting system is that it ties 
in to the F# type inference system! The compiler will verify that each token 
has a matching value and that each supplied value is the correct type for 
the corresponding token!

To simply format a string, you could use the sprintf function. For 
example, here’s how to quickly format a basic integer value.

> sprintf "%d" 123;;
val it : string = "123"

Of course, integers aren’t the only data type you can format in this 
manner. Table 3-5 shows a list of common format string tokens.

Table 3-5: Common Format Tokens

Token Description

%A Prints any value with F#’s default layout settings

%b Formats a Boolean value as true or false

%c Formats a character

%d, %i Formats any integer

%e, %E Formats a floating-point number with scientific notation

%f Formats a floating-point number

%g, %G Shortcut for %e or %f; the more concise one will be selected automatically.

%M Formats a decimal value

%o Octal

%O Prints any value by calling its ToString method

%s Formats a string

%x Lowercase hexadecimal

%X Uppercase hexadecimal



Fundamentals   59

To ensure that the formatted text is at least a certain number of charac-
ters wide, you can include an optional width value after the %. (The default 
formatter won’t truncate your data unless the format token explicitly allows 
it.) For example:

> printfn "%5s" "ABC";;
ABC

> printfn "%5s" "ABCDEFGHI";;
ABCDEFGHI

You can combine several modifiers with the tokens for a little extra flex-
ibility in formatting, as listed in Table 3-6.

Table 3-6: Numeric Format String Modifiers

Modifier Effect Example Result

0 When used in conjunction with a width, 
pads any extra space with zeros

"%010d" "0000000123" 

- Left-justifies the text within the available 
space

"%-10d" "123       " 

+ Prepends a positive sign if the number is 
positive

"%+d" "+123" 

(space) Prepends a space if the number is positive "% d" " 123" 

You can also combine several modifiers within a single token. For 
example, you could use the token %+010d to print a number front-padded 
with zeros and the plus (+) sign. 

Type Abbreviations
Type abbreviations allow you to define a new name for an existing type just 
like the core data types are exposed to F#. It’s possible to do something 
similar in C# with the using directive, but F#’s type abbreviations allow you 
to use the name throughout your library (after its definition, of course) 
instead of only within a single file.

You define type abbreviations with the type keyword, an identifier, and 
the type. If you wanted to refer to System.IO.FileStream as fs, you’d use the 
following:

type fs = System.IO.FileStream

Comments
When you want to describe what a particular piece of code is doing, use 
comments. There are three ways to comment your code in F#: end-of-line 
comments, block comments, and XML documentation.
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End-of-Line Comments
End-of-line (or single-line)comments begin with two slash characters (//). As 
their name implies, they include everything until the end of the line. These 
comments frequently appear on a line of their own but can also appear at 
the end of a line.

// This is an end-of-line comment
let x = 42 // Answer to the Ultimate Question of Life, The Universe, and Everything

Block Comments
Block comments are delimited with (* and *) and are typically used for com-
ments that need to span multiple lines.

(* This is a block comment *)

(*
  So is this
*)

You can also use block comments in the middle of a line of otherwise 
uncommented code.

let x (* : int *) = 42

Be careful with what you include in block comments because the com-
piler treats their content as strings, verbatim strings, and triple-quoted 
strings. If you happen to include a quotation mark (or three consecutive 
quotation marks), the compiler will insist that you’re beginning a string 
and will produce a syntax error if it doesn’t find the corresponding closing 
token.

(* "This is ok" *)
(* """This is not *)

XML Documentation
Like the other .NET languages, F# allows XML documentation comments with 
triple slashes (///). These comments are technically just a special case of 
end-of-line comments where the compiler retains the contents to build an 
XML document that can eventually serve as documentation.

A complete discussion of XML documentation comments is beyond the 
scope of this book, but keep in mind that comments are useful for docu-
menting your API. At a minimum I recommend using them on all of your 
application’s public and internal types and members.
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Your XML documentation comments will usually include a few elements 
like summary, param, and returns. summary elements briefly describe the docu-
mented code, param elements identify and describe individual function or con-
structor parameters, and returns elements describe a function’s return value.

You might document a function that calculates some circle measure-
ments based on its radius like this:

/// <summary>
/// Given a radius, calculate the diameter, area, and circumference
/// of a circle
/// </summary>
/// <param name="radius">The circle's radius</param>
/// <returns>
/// A triple containing the diameter, area, and circumference
/// </returns>
let measureCircle radius =
    let diameter = radius * 2.0
    let area = Math.PI * (radius ** 2.0)
    let circumference = 2.0 * Math.PI * radius
    (diameter, area, circumference)

Even if you don’t intend to distribute the resulting XML file, XML docu-
mentation comments can help you by surfacing information about the docu-
mented types and members through IntelliSense. In Figure 3-2 you can see 
the summary from the preceding example included in the tool tip displayed 
when you hover the mouse over the measureCircle function in Visual Studio.

Figure 3-2: XML documentation in IntelliSense

There’s a shortcut for XML documentation comments. When you’re writ-
ing only a summary, you can simply use the triple slashes and omit the tags. 
Here’s the summary in the previous example written using the shortcut:

/// Given a radius, calculate the diameter, area, and circumference
/// of a circle
let measureCircle radius =
-- snip --

As you can see, when your comment is too long for a single line, you can 
write it on multiple lines as long as each line begins with triple slashes.
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Summary
In this chapter, we’ve explored some of the fundamental concepts of the 
F# language. You’ve seen the problems that can arise from mutable data 
and how F#’s default immutability, type inference capabilities, and explicit 
opt-in approach for valueless data can help you write more robust, fault-
tolerant code. You’ve also learned how F# supports the core CLI types and 
other base capabilities of the .NET Framework like enumerations, generics, 
exception handling, and string formatting.

What really makes F# stand out as a viable language for your projects, 
though, is how it expands upon so many concepts even at this fundamental 
level. Constructs like use bindings that dispose of objects without requiring 
additional nesting levels, exception handlers that return values, and string-
formatting functions that tie into the compiler can have an immediate, 
positive impact on your productivity.

In the next chapter, we’ll build upon these concepts with a look into 
F#’s object-oriented capabilities. We’ll see how the concepts introduced 
here can help you quickly develop complex libraries while keeping you 
focused on the problem rather than the compiler.



4
St  a y i n g  Ob  j e ct  i v e

For years, object-oriented (OO) development 
has been the de facto standard for devel-

oping business software, particularly within 
the enterprise, so you’re probably familiar 

with many of its core principles. It should come as 
no surprise that as a .NET language, F# supports the 
full cast of constructs—including classes, structs, and interfaces—available 
in the other .NET languages. Despite its reputation as a niche language 
useful only for academic exercises or highly specialized software, F#’s general-
purpose, multiparadigm nature makes it suitable for most development 
situations. With C# and Visual Basic already well established, though, why 
choose F# as an OO language?

A large part of the decision rests on F#’s terse syntax, but features 
like type inference, object expressions, and the ability to combine object-
oriented and functional styles make a strong argument, too. Let’s face it, 
though: Even if you’re developing in a primarily functional manner, when 
you’re developing software on the .NET Framework you’re going to have to 
work with objects at some point; that’s just the nature of the platform.
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In this chapter, you’ll learn how to create OO constructs in F# with less 
code, yet still build robust frameworks that can hold their own against simi-
lar frameworks built with more dedicated OO languages.

Classes
Conceptually, classes in F# are identical to classes in other OO languages in 
that they encapsulate related data and behavior as fields, properties, meth-
ods, and events (collectively called members) to model real-world objects or 
concepts. Like classes in C# and Visual Basic, F# classes are reference types 
that support single inheritance and multiple interface implementation, and 
can control access to their members. As with all user-defined data types in 
F#, you declare classes with the type keyword. (Rather than requiring dif-
ferent keywords for every data type you can create, the compiler infers the 
construct based on its structure.)

To illustrate, let’s take another look at the class definition introduced in 
the type inference discussion in Chapter 3.

type Person (id : Guid, name : string, age : int) =
  member x.Id = id
  member x.Name = name
  member x.Age = age

There’s a lot of definition packed into this example. In just four lines, 
there’s a class with a primary constructor with three arguments and three 
implicit, read-only properties! While quite a departure from the other 
.NET languages, this terseness is just one of the ways that F# distinguishes 
itself.

Constructors
Constructors are the means by which new class instances are created and 
initialized. They’re really specialized functions that return fully initialized 
class instances. Classes in F# do not require a constructor, as shown here:

type ConstructorlessClass = class end

The empty class in this example is valid F# but, unlike in C#, if you 
don’t define a constructor, the compiler won’t automatically generate a 
default constructor (a constructor with no parameters). Since a memberless 
class that you can’t instantiate is pretty useless, your classes will typically 
have at least one constructor and one member.

N o t e 	 One reason you might choose to omit the constructor is that each of the type’s members 
is static; that is, it applies to the type rather than an individual instance. We’ll exam-
ine static members in detail a bit later in this chapter.
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As with other OO languages, you create new class instances by invoking 
a constructor. In the case of our Person class there’s only one constructor, so 
the choice is clear.

let me = Person(Guid.NewGuid(), "Dave", 33)

Using the new keyword to create a new class instance is optional. By con-
vention, you use the new keyword only when creating an instance of a class 
that implements the IDisposable interface.

F# constructors come in two flavors: primary constructors and addi-
tional constructors.

Primary Constructors

F# classes can have a primary constructor whose arguments are embedded 
within the type definition itself. The primary constructor’s body contains a 
series of let and do bindings that represent the class’s field definitions and 
initialization code.

type Person u(name : string, dob : System.DateTime) =
vlet age = (System.DateTime.Now - dob).TotalDays / 365.25
wdo printfn "Creating person: %s (Age: %f)" name age
  member x.Name = name
  member x.DateOfBirth = dob
  member x.Age = age

In this example, the primary constructor includes the parameter list 
with type annotations u, a single field definition for the calculated age v, 
and a do binding w that prints the person’s name and age when the object 
is constructed. All of the primary constructor’s parameters are automati-
cally available as fields throughout your class, so there’s no need to explic-
itly map them.

The compiler can frequently infer the types for each constructor param-
eter, so there’s often no need to include explicit type annotations. In the 
preceding example, a type annotation (or one on an intermediate bind-
ing with a type annotation) would still be needed for the dob parameter so 
the compiler can resolve the correct subtract operator overload. However, 
that’s more the exception than the rule, as shown in the next example, 
where the compiler can infer the types for both the name and age param-
eters as string and int, respectively.

type Person (name, age) =
  do printfn "Creating person: %s (Age: %i)" name age
  member x.Name = name
  member x.Age = age

let me = Person ("Dave", 33)
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By default, the primary constructor is public, but you can change that 
by including an access modifier before the parameter list. You might con-
sider changing the primary constructor’s accessibility if you were imple-
menting the Singleton pattern, which specifies that only a single instance of 
the type can exist, as shown here:

type Greeter private () = 
  static let _instance = lazy (Greeter())
  static member Instance with get() = _instance.Force()
  member x.SayHello() = printfn "hello"

Greeter.Instance.SayHello()

Mor e Ab ou t Acce ssibil i t y in F#

Access modifiers limit the scope of bindings, types, and members throughout 
your program. F# differs from C# and Visual Basic in that it directly supports 
only the public, private, and internal modifiers. You can’t define protected 
class members in F# due in part to how they complicate the functional nature 
of the language. F# does still honor protected members defined in other lan-
guages, so they won’t be publicly accessible and you can still override them 
in derived classes without breaking the abstraction. 

Additional Constructors

Constructors that you define beyond the primary constructor are called 
additional constructors. Additional constructors are defined with the new 
keyword followed by a parameter list and constructor body, as shown next. 
While additional constructors must always invoke the primary constructor, 
they may do so indirectly through another constructor, thereby allowing 
you to chain constructor calls.

type Person (name, age) =
  do printfn "Creating person: %s (Age: %i)" name age
  new (name) = Person(name, 0)
  new () = Person("")
  member x.Name = name
  member x.Age = age

Additional constructors can contain their own let bindings and other 
expressions, but unlike those in the primary constructor, any such elements 
will be local to the constructor where they’re defined rather than exposed 
as fields.
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Additional constructors can invoke additional code like a primary con-
structor, but instead of using a do binding they use the then keyword. In this 
example, each additional constructor includes the then keyword in order to 
print a message indicating which constructor is being invoked.

type Person (name, age) =
  do printfn "Creating person: %s (Age: %i)" name age
  new (name) = Person(name, 0)
               then printfn "Creating person with default age"
  new () = Person("")
           then printfn "Creating person with default name and age"
  member x.Name = name
  member x.Age = age

Classes without a primary constructor behave a bit differently at ini-
tialization. When you use them, you must explicitly define fields with the 
val keyword, and any additional constructors must initialize any fields not 
decorated with the DefaultValue attribute, as shown here:

type Person =
  val _name : string
  val _age : int
  new (name, age) = { _name = name; _age = age }
  new (name) = Person(name, 0)
  new () = Person("")
  member x.Name = x._name
  member x.Age = x._age

Self-Identifiers

Sometimes you’ll want to reference a class member within a constructor. 
By default, class members aren’t accessible because they require a recursive 
reference to the type, but you can enable self-referencing with the as keyword 
and a self-identifier like this:

type Person (name, age) as this =
  do printfn "Creating person: %s (Age: %i)" this.Name this.Age
  member x.Name = name
  member x.Age = age

You can choose any name for your self-identifiers as long as you follow 
the normal rules for identifiers. You could even use a quoted identifier 
like the following ones if you really want to irritate your future self or any-
one else who’s maintaining your code.

type Person (name, age) as ``This is a bad identifier`` =
  do
    printfn "Creating person: %s (Age: %i)"
      ``This is a bad identifier``.Name
      ``This is a bad identifier``.Age
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  member x.Name = name
  member x.Age = age

It’s generally best to stick with short names. Common conventions are 
to use either x or this. But whatever you choose, be consistent!

w a r n i n g 	 The compiler will generate a warning if you define a self-identifier but don’t use it in 
your constructor. The reason is that using the as keyword makes the class definition 
recursive, which results in additional run time validation that can negatively impact 
initializing types in your class hierarchy. Use self-identifiers in primary constructors 
only when you actually need them. 

Fields
Fields define the data elements associated with an object. In the previous 
section, we took a brief look at both ways to create fields. In this section, 
we’ll examine field creation in more detail.

let Bindings

The first way to create fields is with let bindings in the primary constructor. 
These fields, which must be initialized in the primary constructor, are always 
private to the class. Although they must be initialized when they’re created, 
you can make the value mutable as in any let binding, as shown here:

type Person () =
  let mutable name : string = ""
  member x.Name
    with get() = name
    and set(v) = name <- v

Here, a mutable let binding is used to define the backing store for the 
Name property. 

Explicit Fields

When you want a little more control over a field or your class doesn’t have a 
primary constructor, create an explicit field with the val keyword. Explicit 
fields don’t need to be initialized immediately, but in classes with a primary 
constructor you’ll need to decorate them with the DefaultValue attribute to 
ensure that the value is initialized to its appropriate “zero” value, like this:

type Person () =
  [<DefaultValue>] val mutable n : string
  member x.Name
    with get() = x.n
    and set(v) = x.n <- v
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In this example, n is an explicit field. Because n is of type string, it’s ini-
tialized to null, as you can see here:

> let p = Person()
p.Name;;

val p : Person
val it : string = null

Explicit fields are public by default, but you can make them private by 
including the private access modifier in the definition like this:

type Person () =
  [<DefaultValue>] val mutable private n : string
  -- snip -- 

Properties
Like fields, properties represent data associated with an object. Unlike fields, 
though, properties offer more control over how that data is accessed or 
modified by exposing the actions through some combination of get and/or 
set functions (collectively called accessors).

You can define properties either implicitly or explicitly. One guideline 
is to favor implicit properties when you’re exposing a simple value; when 
you need custom logic when getting or setting a property value, use explicit 
properties instead.

Explicit Properties

Explicit properties are those where you define and control the backing 
store (typically with a let binding) and implement the get and set function 
bodies yourself. You define an explicit property with the member keyword fol-
lowed by a self-identifier, the property name, a type annotation (if the com-
piler can’t infer it), and the function bodies, as shown here:

type Person() =
  let mutable name = ""
  member x.Name
    with get() = name 
    and set(value) = name <- value

In this example, the name field is the private backing store for the read/
write Name property. Once you’ve created an instance of this Person class, you 
can assign a value to the Name property with the assignment operator, like so:

let me = Person()
me.Name <- "Dave"
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Instead of using the and keyword, you can use an alternative syntax 
where the get and set accessors are defined as separate properties.

type Person() =
  let mutable name = ""
  member x.Name with get() = name 
  member x.Name with set(value) = name <- value

Whichever syntax you choose, properties are public by default, but you 
can control their accessibility by inserting the access modifier (public, private, 
or internal) after the with (or and) keyword, like this:

type Person() =
  let mutable name = ""
  member x.Name
    with public get() = name 
    and internal set(value) = name <- value

If you wanted the Name property to be read-only, you could revise the 
class to include the value as an argument to the primary constructor and 
remove the and set... line in this way:

type Person(name) =
  member x.Name with get() = name

Of course, this is F#, so although defining a read-only property is 
already easy, there’s an even easier way with the explicit syntax.

type Person(name) =
  member x.Name = name

When you’re creating a read-only property, the compiler automatically 
generates the get accessor function for you. 

Implicit Properties

Implicit, or automatic, properties were added to F# in version 3.0 (if you’re 
using 2.0, you’ll need to use explicit properties). They’re very much like 
auto-implemented properties in C# in that they allow the compiler to gen-
erate the proper backing store and corresponding get/set accessor bodies. 
Implicit properties are a lot like their explicit counterparts, but there are a 
few differences.

First, implicit properties are considered part of the type’s initialization, 
so they must appear before other member definitions, typically along with 
the primary constructor. Next, they are defined via the member val keyword 
pair and must be initialized to a default value, as shown next. (They must 
not include a self-identifier.) And finally, their accessibility can be changed 
only at the property level, not the accessor level.
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type Person() =
  member val Name = "" with get, set

If your implicit property is read-only, you can omit the with expression 
like this:

type Person(name) =
  member val Name = name

Indexed Properties

F# classes can also have indexed properties, which are useful for defining an 
array-like interface for working with sequential data. Indexed properties 
are defined like ordinary properties except that the get accessor includes 
an argument.

When you are creating indexed properties, naming one Item makes it 
a default indexed property and enables convenient syntactic support through 
the dot operator and a pair of brackets enclosing the index value (.[...]). 
For example, consider a class that accepts a string and exposes each word 
through a default indexer like this:

type Sentence(initial : string) =
  let mutable words = initial.Split ' '
  let mutable text = initial
  member x.Item
    with get i = words.[i]
    and set i v =
      words.[i] <- v
      text <- System.String.Join(" ", words)

Notice that the Item property is defined like a normal property with the 
get, and even a set, accessor. Because this indexer is just a wrapper around 
the words array (String.Split returns an array), it accepts an integer value 
and returns the corresponding word. 

F# arrays are zero-based, so you can get the second word from a sen-
tence like this:

> let s = Sentence "Don't forget to drink your Ovaltine"
s.[1];;

val s1 : Sentence
val it : string = "forget"

To change the second word, you’d reference the index in the same way 
and use the assignment operator (<-) like so:

> s.[1] <- "remember";;
val it : unit = ()
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> s.[1];;
val it : string = "remember"

Furthermore, default indexed properties can be multidimensional. For 
instance, you can define one to return a specific character from a word by 
including two parameters.

type Sentence(initial : string) =
  -- snip --
  member x.Item with get(w, i) = words.[w].[i]

Now you can easily get the first character of the second word like this:

> s.[1, 0];;
val it : char = 'f'

But what if you want to define another indexed property to get a char-
acter out of the original string? You’ve already defined a default indexed 
property that accepts an integer, so you can’t do it that way. In C#, you’d 
have to create this as a method, but in F# any property can be an indexed 
property. For example:

type Sentence(initial : string) =
  -- snip --
  member x.Chars with get(i) = text.[i]

The only caveat is that you can’t use the dot/bracket syntax that you’d 
use with a default indexed property; you have to access the property as if it’s 
a method (as described in “Instance Methods” on page 73) by including 
the index value in parentheses after the property name in this way:

> s.Chars(0);;
val it : char = 'D'

Though it looks like a method call, if the Chars indexed property included 
a set accessor, you’d use the assignment operator just like you would with 
any other property to change the underlying value. 

Setting at Initialization

An alternative object initialization syntax lets you set individual property 
values as part of the constructor call. To use the object initialization syn-
tax, you need only include each property name and value (separated by an 
equal sign) immediately following the normal constructor arguments. Let’s 
reconsider one of the previous Person class examples to illustrate.

type Person() =
  member val Name = "" with get, set
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Because the Person class has only the single, parameterless constructor, 
you could create an instance and then assign a value to the Name property in 
a second operation. But it would be much more concise to do it all at once, 
like this:

let p = Person(Name = "Dave")

There is one catch to using this syntax: Any properties you initialize 
this way must be writable.

Methods
Methods are functions that are associated with a class and that represent 
the type’s behavior.

Instance Methods

There are two ways to define instance methods. The first form uses the 
member keyword to define a public method in much the same way as a prop-
erty, as demonstrated by the GetArea method that follows.

open System

type Circle(diameter : float) =
  member x.Diameter = diameter
  member x.GetArea() =
    let r = diameter / 2.0
    System.Math.PI * (r ** 2.0)

Here, the Circle class is initialized with a diameter value and contains 
a parameterless, public method named GetArea that calculates the area of 
the circle. Because GetArea is an instance method, you’ll need to create an 
instance of the Circle class to invoke it as follows:

> let c = Circle 5.0
c.GetArea();;

val c : Circle
val it : float = 19.63495408

Method Accessibility

As with properties, you can control access to methods with accessibility mod-
ifiers. For example, to make a method private you would simply include the 
private keyword in the method’s signature, as in the GetRadius method here:

type Circle(diameter : float) =
  member private x.GetRadius() = diameter / 2.0
  member x.Diameter = diameter
  member x.GetArea() = System.Math.PI * (x.GetRadius() ** 2.0)
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Alternatively, you can use a let binding to define a private function, as 
shown here:

type Circle(diameter : float) =
  let getRadius() = diameter / 2.0
  member x.Diameter = diameter
  member x.GetArea() = System.Math.PI * (getRadius() ** 2.0)

Named Arguments

When you call a method, you’ll usually provide the arguments as a comma-
delimited list with each argument corresponding to the parameter at the 
same position. For a bit of extra flexibility, though, F# allows named arguments 
for both methods and constructors. With named arguments, each argu-
ment is explicitly associated with a particular parameter by name. In some 
cases, named arguments can help clarify your code, but they also allow you 
to specify the arguments in any order.

The following example contains a method that calculates the Euclidean 
distance between two points in a three-dimensional space (RGB colors, to 
be exact).

open System
open System.Drawing

type ColorDistance() =
  member x.GetEuclideanDistance(c1 : Color, c2 : Color) =
    let getPointDistance p1 p2 = (float p1 - float p2) ** 2.0
    [ getPointDistance c1.R c2.R
      getPointDistance c1.G c2.G
      getPointDistance c1.B c2.B ] |> List.sum |> Math.Sqrt  

You can call the GetEuclideanDistance method normally by specifying two 
colors, or by specifying the parameter names in the argument list like this:

> let d = ColorDistance()
d.GetEuclideanDistance(Color.White, Color.Black);;

val d : ColorDistance
val it : float = 441.6729559

> d.GetEuclideanDistance(c2 = Color.White, c1 = Color.Snow);;
val it : float = 7.071067812

You can specify named arguments in any order. You can also use named 
arguments with unnamed arguments, but if you do, the unnamed arguments 
must appear first in the argument list. Finally, because named arguments are 
permissible only for methods defined with the member syntax, they can’t be 
used with functions created through let bindings.
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Overloaded Methods

An overloaded method shares its name with one or more other methods in the 
same class but has a different set of parameters. Overloaded methods often 
define subsets of parameters, with each overload calling a more specific 
form with its supplied arguments and providing default values for others.

For example, if you were building a utility to tie in to your favorite ver-
sion control system, you might define a Commit method that accepts a list of 
files, the description, and the target branch. To make the target branch 
optional, you could overload the Commit function as shown here:

open System.IO

type Repository() =
  member ux.Commit(files, desc, branch) =
    printfn "Committed %i files (%s) to \"%s\"" (List.length files) desc branch
  member vx.Commit(files, desc) =
    x.Commit(files, desc, w"default")

In this example, the overload at u is responsible for committing 
changes to the repository, while the overload at v makes the branch 
parameter optional when you supply the default value shown at w.

Optional Parameters

Even though F# supports method overloading, you probably won’t use it 
very often because F# also supports optional parameters, which are generally 
more convenient. If you prefix a parameter name with a question mark (?), 
the compiler treats it as an optional parameter.

Optional parameters are a bit different in F# than they are in C# and 
Visual Basic. In other languages, optional parameters are defined with a 
default value that’s used when the corresponding argument is omitted. In 
F#, though, the parameters are actually compiled to option<_> and default to 
None. (Optional parameter values behave like any other option type value, so 
you’ll still use defaultArg or pattern matching in your method to get a mean-
ingful value, as appropriate.)

Let’s rewrite the Repository example from the previous section to use an 
optional parameter instead of an overloaded method.

open System.IO

type Repository() =
  static member Commit(files, desc, ?branch) =
    let targetBranch = defaultArg branch "default"
    printfn "Committed %i files (%s) to \"%s\"" (List.length files) desc targetBranch

Although you need to manage the optional parameter within the 
method, you now need to maintain only the one method instead of multiple, 
overloaded versions. As you can see, optional parameters can reduce the like-
lihood of defects that come from using inconsistent defaults across overloads, 
and they simplify refactoring because only one method needs to change. 
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Slice Expressions

Indexed properties, introduced in “Indexed Properties” on page 71, are 
great for working with a single value in an encapsulated sequence, but 
you’ll sometimes want to work with a range of values in that sequence. 
Traditionally you’d have to get each item manually through the indexer, or 
implement IEnumerable<'T> and get the values through some combination of 
LINQ’s Skip and Take extension methods. Slice expressions resemble indexed 
properties, except that they use range expressions to identify which items 
should be included in the resulting sequence. 

To use slice expressions with your class, you need to implement a 
GetSlice method. There’s really nothing special about the GetSlice method; 
it’s just the method that the compiler looks for when it encounters the slice 
expression syntax. To illustrate a slice expression, let’s revisit the Sentence 
class from the indexed properties section.

type Sentence(initial : string) =
  let words = initial.Split ' '
  let text = initial
  member x.GetSlice(lower, upper) =
    match defaultArg lower 0 with
    | l when l >= words.Length -> Array.empty<string>
    | l -> match defaultArg upper (words.Length - 1) with
           | u when u >= words.Length -> words.[l..]
           | u -> words.[l..u]

The basic class definition is the same as before, except this time we 
have a GetSlice() method that accepts the lower and upper bounds. (Don’t 
dwell on the match expressions here; a full discussion is waiting for you in 
Chapter 7. For now it’s enough to know that they’re just doing some bound-
ary checks.)

You could call this method directly in your code, but the expression 
form is much more convenient. For example, to retrieve the second, third, 
and fourth words in a sentence, you could write:

> let s = Sentence "Don't forget to drink your Ovaltine"
s.[1..3];;

val s : Sentence
val it : string [] = [|"forget"; "to"; "drink"|]

One of the nice things about slice expressions is that the bounds 
parameters are optional, so you can use open-ended ranges. To specify a 
range without a lower bound, just omit the first value (the 1) in the slice 
expression, which in this case is equivalent to [0..3].

> s.[..3];;
val it : string [] = [|"Don't"; "forget"; "to"; "drink"|]

Similarly, you can leave out the second parameter and get the items up 
to the end of the collection.
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> s.[3..];;
val it : string [] = [|"drink"; "your"; "Ovaltine"|]

Like indexed properties, slice expressions can work on two dimensions, 
but you need to overload the GetSlice method to accept four parameters 
that define both pairs of lower and upper bounds. Continuing with the 
Sentence example, we can add a multidimensional slice overload to get a 
range of characters from a range of words like this:

type Sentence(initial : string) =
  -- snip --
  member x.GetSlice(lower1, upper1, lower2, upper2) =
    x.GetSlice(lower1, upper1)
    |> Array.map
        (fun w -> match defaultArg lower2 0 with
                  | l when l >= w.Length -> ""
                  | l -> match defaultArg upper2 (w.Length - 1) with
                         | u when u >= w.Length -> w.[l..]
                         | u -> w.[l..u])

To use this overload, just separate the range pairs in the slice expres-
sion with a comma.

> s.[1..4, ..1];;
val it : string [] = [|"fo"; "to"; "dr"; "yo"|]

Events
The final member type is events. Events are used throughout the .NET 
Framework with some notable examples found in the user interface compo-
nents and ADO.NET. As in other .NET languages, at their core F# events 
are collections of functions invoked in response to some action like a button 
click or an asynchronous process completion.

In many ways F# events serve the same purpose as traditional .NET 
events, but they’re a completely different mechanism. However, for cross-
language compatibility, they can tie in to the .NET event system. (We’ll see 
how your custom events can harness this capability with the CLIEvent attribute 
a bit later in this section.)

Basic Event Handling

Events in F# are instances of the Event<'T> class (found in FSharp.Core.Control). 
One of the primary features that the Event<'T> class enables is a more explicit 
publish/subscribe model than you might be used to. In this model you can 
subscribe to published events by adding event handlers to the event via a 
call to the Add function.

For example, the System.Timers.Timer class publishes an Elapsed event 
that you can subscribe to.
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let ticks = ref 0
let t = unew System.Timers.Timer(500.0)
t.Elapsed.Add v(fun ea -> printfn "tick"; ticks := ticks.Value + 1)

w t.Start()
while ticks.Value < 5 do ()
t.Dispose()

Here we create a new instance of the Timer class at u. At v, we subscribe 
to the Elapsed function using a lambda expression (an anonymous function) 
as the event handler. Once the timer is started at w, the event handler 
prints tick and increments a reference cell’s value (remember, closures like 
the one created by the lambda expression can’t use mutable let bindings) 
every half-second, per the timer definition. When the tick counter reaches 
five, the loop will terminate and the timer will be stopped and disposed of.

Observing Events

The other primary benefit of F# events is that they enable you to treat events 
as sequences that you can intelligently partition, filter, aggregate, or other-
wise act upon as they’re triggered. The Event module defines a number of 
functions—such as add, filter, partition, and pairwise—that accept pub-
lished events.

To see this principle in action, let’s turn to an example in ADO.NET. 
The DataTable class triggers a variety of events in response to certain actions 
like changed or deleted rows. If you wanted to handle the RowChanged event, 
you could add a single event handler (just as in the previous section) and 
include logic to filter out the events you don’t care about, or you could use 
the filter function from the Event module and invoke your handler only 
when it’s needed, as follows:

open System
open System.Data

let dt = new DataTable("person")
dt.Columns.AddRange
  [| new DataColumn("person_id", typedefof<int>)
     new DataColumn("first_name", typedefof<string>)
     new DataColumn("last_name", typedefof<string>) |]
dt.Constraints.Add("pk_person", dt.Columns.[0], true)

let uh1, h2 =
v dt.RowChanged

  |> wEvent.partition
      x(fun ea -> 
          let ln = ea.Row.["last_name"] :?> string
          ln.Equals("Pond", StringComparison.InvariantCultureIgnoreCase))

y h1.Add (fun _ -> printfn "Come along, Pond")
z h2.Add (fun _ -> printfn "Row changed")
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We’ll forego a discussion of the first half of this example; for our pur-
poses, all that’s important there is that it sets up a DataTable with three 
columns and a primary key. What’s really important here is the partition 
function.

In this example, we invoke the partition function at w by supplying 
both a delegate (in the form of a lambda expression) at x and the Event 
object published by the DataTable’s RowChanged event at v. The partition func-
tion then returns two new events that we bind to h1 and h2 at u. Finally, we 
subscribe to both of the new events by calling their Add method at y and z.

Now that the table structure and event handlers are in place, we can 
add some rows and see how the events are triggered.

> dt.Rows.Add(1, "Rory", "Williams") |> ignore;;
Row changed
val it : unit = ()
> dt.Rows.Add(2, "Amelia", "Pond") |> ignore;;
Come along, Pond
val it : unit = ()

As you can see, when the first row is added, the last name doesn’t match 
the criteria specified in the filter, so h2 is triggered. However, the second 
row does match the criteria, so h1 is triggered instead.

If the syntax for calling the partition function looks backward, that’s 
because it is; the forward pipelining operator (|>) applies its left operand as the 
final argument to the function specified by its right operand. (The forward 
pipelining operator is used frequently in F#, and we’ll explore it in much 
more detail in Chapter 5.)

Custom Events

You can define your own custom events in your types. However, doing so is 
a bit different than in other .NET languages because events exist only as 
objects in F# and they lack keyword support.

The first thing you need to do, aside from defining the type, is create 
a field (with a let binding) for your event object. This is the object used to 
coordinate publishing and triggering the event. Once the field is defined, 
you can expose the event’s Publish property to the outside world with a 
property of your own. Finally, you’ll need to trigger the event somewhere 
by calling the Trigger function.

type Toggle() =
  let toggleChangedEvent = Event<_>()
  let mutable isOn = false

  member x.ToggleChanged = toggleChangedEvent.Publish

  member x.Toggle() =
    isOn <- not isOn
    toggleChangedEvent.Trigger (x, isOn)
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With the type defined, you can create a new instance and subscribe 
to the ToggleChanged event as with any built-in type. For example, next we 
use a partition to create two new event handlers, one to handle when the 
toggle is turned on and another to handle when it is turned off. The call 
to Event.map simply rephrases the event by throwing away the first parameter 
(the source, or sender, per .NET conventions) before calling the partition 
function.

let myToggle = Toggle()
let onHandler, offHandler =
  myToggle.ToggleChanged
  |> Event.map (fun (_, isOn) -> isOn)
  |> Event.partition (fun isOn -> isOn)

onHandler |> Event.add (fun _ -> printfn "Turned on!")
offHandler |> Event.add (fun _ -> printfn "Turned off!")

Now every call to the Toggle method will trigger the ToggleChanged event 
and cause one of the two handlers to execute.

> myToggle.Toggle();;
Turned on!
val it : unit = ()
> myToggle.Toggle();;
Turned off!
val it : unit = ()

As you’ve just seen, the ToggleChanged event is fully enabled within F#. If 
your class won’t be consumed outside F# assemblies, you could stop here. 
However, if you need to use it in assemblies written in different languages, 
you’ll have to do one more thing: decorate the ToggleChanged property with 
the CLIEvent attribute.

[<CLIEvent>]
member x.ToggleChanged = toggleChangedEvent.Publish

The CLIEvent attribute instructs the compiler to include the appropriate 
metadata that makes the event consumable from other .NET languages.

Structures
Structures, or structs, are similar to classes in that they can have fields, prop-
erties, methods, and events. Structs are defined just like classes except that 
the type must be decorated with the Struct attribute.

[<Struct>]
type Circle(diameter : float) =
  member x.getRadius() = diameter / 2.0
  member x.Diameter = diameter
  member x.GetArea() = System.Math.PI * (x.getRadius() ** 2.0)
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However, despite their similarities, behind the scenes, classes and structs 
are very different animals. The primary difference between them is that 
structs are value types. 

This difference is significant because it affects not only how you interact 
with the data but also how value types are represented in the computer’s 
memory. With both types, the runtime allocates space in memory to store 
the value. Value types always result in a new allocation with the data copied 
into that space. With reference types, the memory is allocated once and 
accessed via a reference that identifies its location.

When you pass a reference type to a function, the runtime creates a 
new reference to that location in memory rather than a copy of the data. 
Therefore, reference types can more easily wreak havoc through side 
effects, because when you pass a reference type to a function any changes 
that you make to that object are immediately reflected wherever that object 
is referenced. In contrast, passing a value type to a function creates a copy 
of the value so any changes to it are isolated to that one instance.

Structs are also initialized differently than classes. Unlike classes, the 
compiler generates a default (parameterless) constructor for structs that 
initializes all fields to their appropriate zero value (zero, null, and so on). 
This means that you can’t use let bindings to create private instance fields 
or methods within a struct unless they’re static; instead, you must use val 
to define struct instance fields. Also, you can’t define your own default con-
structor, so any additional constructors you define must accept at least one 
parameter. (Your fields can still be mutable as long as you don’t include a 
primary constructor.) 

Because of differences in how memory is allocated for reference and 
value types, structs cannot contain fields of their own type. Without this 
restriction, the memory requirement for a struct instance would be infi-
nitely large because each instance would recursively require enough space 
for another instance of the same type.

Finally, structs can implement interfaces but cannot otherwise partici-
pate in inheritance. Regardless, structs still derive from System.Object, so 
you can override methods (like ToString).

Inheritance
In OO programming, inheritance describes an identity relationship between 
two types in the way that an apple is a fruit. F# classes support single inheri-
tance, meaning that any given class can directly inherit from only one other 
in order to establish a class hierarchy. Through inheritance, public (and 
sometimes internal) members exposed by the base type are automatically 
available in the derived type. You can see this principle in action in the fol-
lowing snippet.

type BaseType() =
  member x.SayHello name = printfn "Hello, %s" name
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type DerivedType() =
  inherit BaseType()

The DerivedType defined here doesn’t define any functionality of its 
own, but because it derives from BaseType, the SayHello method is accessible 
through DerivedType.

F# inheritance requires a primary constructor. To specify a base class, 
include the inherit keyword followed by the base type name and its con-
structor arguments in the primary constructor before any bindings or 
member definitions. For instance, a task management system might have a 
WorkItem class that represents all work items in the system, as well as special-
ized classes such as Defect and Enhancement that derive from the WorkItem class, 
as shown next in bold.

type WorkItem(summary : string, desc : string) =
  member val Summary = summary
  member val Description = desc

type Defect(summary, desc, severity : int) =
  inherit WorkItem(summary, desc)
  member val Severity = severity

type Enhancement(summary, desc, requestedBy : string) =
  inherit WorkItem(summary, desc)
  member val RequestedBy = requestedBy

Every .NET class, including the primitive types, ultimately participates 
in inheritance. Also, when you define a class without explicitly specifying a 
base class, the defined class implicitly inherits from System.Object.

Casting
In Chapter 3 you learned how to convert between numeric types. Types can 
also be converted within their type hierarchy through the upcast and down-
cast operators.

Upcasting

Until now I’ve maintained that there are no implicit conversions in F#, 
but that’s not entirely true. The only time that types are implicitly upcast 
(converted to a type higher in their inheritance structure) is when they’re 
passed to a method or a let-bound function where the corresponding 
parameter is a flexible type. In all other cases, you must explicitly cast the 
type with the static cast operator (:>).

To see the static cast operator in action, let’s continue with the WorkItem 
example by creating a Defect and immediately casting it to a WorkItem. 

> let w = Defect("Incompatibility detected", "Delete", 1) :> WorkItem;;
val w : WorkItem
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The static cast operator resolves valid casts at compile time. If the code 
compiles, the conversion will always succeed.

Downcasting

The opposite of an upcast is a downcast. Downcasts are used to convert a 
type to something lower in its hierarchy, that is, to convert a base type to a 
derived type. To perform a downcast, you use the dynamic cast operator (:?>)

Because the WorkItem instance we created in the previous example is still a 
Defect, we can use the dynamic cast operator to convert it back to a WorkItem.

> let d = w :?> Defect;;
val d : Defect

Unlike the static cast operator, the dynamic cast operator isn’t resolved 
until run time, so you may see an InvalidCastException if the target type 
isn’t valid for the source object. For instance, if you try to downcast w to 
Enhancement, the cast will fail.

> let e = w :?> Enhancement;;
System.InvalidCastException: Unable to cast object of type 'Defect' to type 'Enhancement'.
   at Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicFunctions.UnboxGeneric[T](Object source)
   at <StartupCode$FSI_0007>.$FSI_0007.main@()
Stopped due to error

Overriding Members
Aside from reusing code, you might use inheritance to change the function-
ality offered by a base class by overriding its members.

For example, the ToString method defined on System.Object is a great 
(and often overlooked) debugging tool whose default implementation isn’t 
particularly informative because it just returns the type name. To make it 
more useful, your classes can override the default functionality and return 
a string that actually describes the object.

To illustrate, consider the WorkItem class from earlier. If you were to call 
its ToString method, you would see something like this:

> let w = WorkItem("Take out the trash", "It's overflowing!")
w.ToString();;

val w : WorkItem
val it : string = "FSI_0002+WorkItem"

N o t e 	 In the preceding example, FSI_0002+ is an artifact of invoking the code in FSI. Your 
type name will probably differ.

To override the default behavior and make ToString return something 
more useful, define a new method with the override keyword.
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type WorkItem(summary : string, desc : string) =
  -- snip --
  override x.ToString() = sprintf "%s" x.Summary

If you call ToString now, the result will be the summary text instead of 
the type name.

> let w = WorkItem("Take out the trash", "It's overflowing!")
w.ToString();;

val w : WorkItem = Take out the trash
val it : string = "Take out the trash"

You can override a given function only once per type, but you can 
override it at multiple levels in the hierarchy. For instance, here’s how you 
could override ToString again in the Defect class to display the severity of the 
defect:

type Defect(summary, desc, severity : int) =
  inherit WorkItem(summary, desc)
  member val Severity = severity
  override x.ToString() = sprintf "%s (%i)" x.Summary x.Severity

When overriding a virtual member (an abstract member with a default 
implementation), you can call into the base functionality through the base 
keyword. The base keyword behaves like a self-identifier except that it repre-
sents the base class.

Continuing with our ToString override theme, to augment the default 
behavior your override could call base.ToString() like this:

type Defect(summary, desc, severity : int) =
  -- snip --
  override x.ToString() =
    sprintf "%s (%i)" (base.ToString()) x.Severity

Note that the base keyword is available only in classes that explicitly 
inherit from another type. To use the base keyword in a class that inherits 
from System.Object, you would need to explicitly inherit from it as follows:

type WorkItem(summary : string, desc : string) =
  inherit System.Object()
  -- snip --
  override x.ToString() =
    sprintf "[%s] %s" (base.ToString()) x.Summary

Abstract Classes
An abstract class is one that can’t be directly instantiated; it’s accessible 
only through derived classes. Abstract classes typically define a common 
interface and optional implementation for a group of related classes that 
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fulfill similar needs in different ways. Abstract classes are used through-
out the .NET Framework; one great example is the TextWriter class in the 
System.IO namespace.

The TextWriter class defines a common mechanism for writing charac-
ters to something. It doesn’t care where or how the characters are written, but 
it orchestrates some of the process, with the implementation details left to 
individual derived classes such as StreamWriter, StringWriter, and HttpWriter.

You can define your own abstract classes by decorating the type defini-
tion with the AbstractClass attribute. For example, to create a simple tree 
structure you could use an abstract class as follows:

[<AbstractClass>]
type Node(name : string, ?content : Node list) =
  member x.Name = name
  member x.Content = content

Abstract Members
One reason to define an abstract class is to define abstract members, that is, 
members without an implementation. Abstract members are allowed only 
in abstract classes (or interfaces, described in “Interfaces” on page 91) 
and must be implemented in a derived class. They’re handy when you want 
to define what a class does but not how it does it.

Abstract Properties

When you want to define the data associated with a particular type but not 
how that data is stored or what happens when it is accessed, you can define 
an abstract property with the abstract keyword.

For example, this abstract class contains one abstract property:

[<AbstractClass>]
type AbstractBaseClass() =
  abstract member SomeData : string with get, set

AbstractBaseClass requires only that its subtypes implement the SomeData 
property, but they’re free to implement their own storage mechanism. For 
instance, one derived class may use a traditional backing store, whereas 
another may opt to use a .NET generic dictionary as follows:

type BindingBackedClass() =
  inherit AbstractBaseClass()
  let mutable someData = ""
  override x.SomeData
    with get() = someData
    and set(v) = someData <- v

type DictionaryBackedClass() =
  inherit AbstractBaseClass()
  let dict = System.Collections.Generic.Dictionary<string, string>()
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  [<Literal>]
  let SomeDataKey = "SomeData"
  override x.SomeData
    with get() =
      match dict.TryGetValue(SomeDataKey) with
      | true, v -> v
      | _, _ -> ""
    and set(v) =
      match System.String.IsNullOrEmpty(v) with
      | true when dict.ContainsKey(SomeDataKey) ->
          dict.Remove(SomeDataKey) |> ignore
      | _ -> dict.[SomeDataKey] <- v

As you can see, both BindingBackedClass and DictionaryBackedClass derive 
from AbstractBaseClass, but they implement the SomeData property in very dif-
ferent ways. 

Abstract Methods

Even though you can define abstract properties, you’re much more likely to 
use abstract methods. Like abstract properties, abstract methods allow you to 
define a capability that derived classes must implement without specifying 
any of the implementation details. For example, when calculating the area 
of a shape, you might define an abstract Shape class that includes an abstract 
GetArea method.

[<AbstractClass>]
type Shape() =
  abstract member GetArea : unit -> float

Because the method doesn’t have an implementation, you must explicitly 
define the entire signature. In this case, the GetArea method accepts unit 
and returns a float.

Overriding a method is also similar to overriding a property, as you can 
see in the following Circle and Rectangle classes:

open System

type Circle(r : float) =
  inherit Shape()
  member val Radius = r
  override x.GetArea() =
    Math.Pow(Math.PI * r, 2.0)

type Rectangle(w : float, h : float) =
  inherit Shape()
  member val Width = w
  member val Height = h
  override x.GetArea() = w * h
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Virtual Members
Like C# and Visual Basic, F# allows virtual members—that is, properties or 
methods that can be overridden in a derived class. But unlike other .NET lan-
guages, F# takes a more literal approach to virtual members. For instance, 
in C# you include the virtual modifier in a nonprivate instance member 
definition, and in Visual Basic you use the Overridable modifier to achieve 
the same effect.

Virtual members in F# are closely related to abstract members. In fact, 
in order to create a virtual member you first define an abstract member 
and then provide a default implementation with the default keyword. For 
example, in the following listing the Node class is the basis for a simple tree 
structure. It provides two virtual methods, AddChild and RemoveChild, which 
help control the tree structure.

open System
open System.Collections.Generic

type Node(name : string) =
  let children = List<Node>()
  member x.Children with get() = children.AsReadOnly()
  abstract member AddChild : Node -> unit
  abstract member RemoveChild : Node -> unit
  default x.AddChild(n) = children.Add n
  default x.RemoveChild(n) = children.Remove n |> ignore

With this definition, all Node class instances (including any derived 
types) will allow children. To create a specialized Node that doesn’t allow 
children, you could define a TerminalNode class and override both virtual 
methods to prevent children from being added or removed.

type TerminalNode(name : string) =
  inherit Node(name)
  [<Literal>]
  let notSupportedMsg = "Cannot add or remove children"
  override x.AddChild(n) =
    raise (NotSupportedException(notSupportedMsg))
  override x.RemoveChild(n) =
    raise (NotSupportedException(notSupportedMsg))

Sealed Classes
A sealed class is a class that cannot serve as the base class for another 
class. One of the most notable sealed classes in the .NET Framework is 
System.String.

You can create your own sealed classes by decorating them with the 
Sealed attribute, as shown in the following snippet:

[<Sealed>]
type NotInheritable() = class end
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If you tried to create another class that inherits from the NotInheritable 
class, the compiler would raise an error like this:

> type InvalidClass() =
  inherit NotInheritable();;

    inherit NotInheritable();;
  --^^^^^^^^^^^^^^^^^^^^^^^^

stdin(4,3): error FS0945: Cannot inherit a sealed type

Static Members
Fields, properties, and methods are instance members by default. You can 
make each static so that it applies to the type rather than a specific instance 
by including the static keyword before the member definition.

A Wor d Ab ou t St at ic Cl a sse s

In C# a static class is an implicitly sealed class that cannot be instantiated and in 
which all members are static. Most of the time in F#, when you want static class–
like functionality, you’ll place it in a module. However, modules have certain 
limitations. For example, they don’t allow you to overload functions. 

Although F# doesn’t directly support static classes the way that C# does, 
you can do a little syntactic dance to achieve a similar effect. To do so, omit 
the primary constructor (or make it private if you need a static initializer) to 
ensure that no instances can be created, and then verify that every member is 
static (the F# compiler won’t enforce this for you). For completeness, decorate 
the class with SealedAttribute so that nothing inherits from it.

Static Initializers
Static initializers, or static constructors, execute only once per class and ensure 
that certain code is executed before a class is used for the first time. You 
create static initializers in F# through a series of static let and do bindings, 
just as you would when defining a primary constructor. In fact, if your class 
needs a static initializer, you must include a primary constructor to contain 
the static bindings as shown here:

type ClassWithStaticCtor() =
  static let mutable staticField = 0
  static do printfn "Invoking static initializer"
            staticField <- 10
  do printfn "Static Field Value: %i" staticField
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Static initializers can access only the static members of their containing 
class. If you try to access an instance member from within a static initializer, 
you’ll get a compiler error.

Static Fields
Static fields are often useful as a single reference for something you need to 
use repeatedly. For example, to associate certain data with the class itself, 
define a static field by including the static keyword before a let binding, 
as shown here:

module Logger =
  let private log l c m = printfn "%-5s [%s] %s" l c m
  let LogInfo = log "INFO"
  let LogError = log "ERROR"

type MyService() = 
  static let logCategory = "MyService"
  member x.DoSomething() =
    Logger.LogInfo logCategory "Doing something"
  member x.DoSomethingElse() =
    Logger.LogError logCategory "Doing something else"

When the DoSomething and DoSomethingElse methods are called, each calls 
a function in the Logger module to write a log message in the same category 
but without the duplication of data.

> let svc = MyService()
svc.DoSomething()
svc.DoSomethingElse();;
INFO  [MyService] Doing something
ERROR [MyService] Doing something else

Static Properties
Properties can also be static. Here, a read-only static property is used to 
expose the number of times a particular method has been called across 
all instances of your class.

type Processor() =
  static let mutable itemsProcessed = 0
  static member ItemsProcessed = itemsProcessed
  member x.Process() =
    itemsProcessed <- itemsProcessed + 1
    printfn "Processing..."

Every time the Process method is called, it increments the itemsProcessed 
field and prints a message. To see how many times the Process method has 
been called across all instances, inspect the ItemsProcessed property on the 
Processor class itself.
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> while Processor.ItemsProcessed < 5 do (Processor()).Process();;
Processing...
Processing...
Processing...
Processing...
Processing...
val it : unit = ()

This example iterates as long as the Process method has been invoked 
fewer than five times. Each iteration creates a new instance of the Processor 
class and invokes its Process method (which illustrates how the static prop-
erty is instance agnostic). 

Static Methods
Like other static members, static methods apply to a type rather than an 
instance. For example, static methods are commonly used in the Factory 
pattern (a common approach to creating instances of similar classes with-
out relying on a specific implementation). In some variations of the Factory 
pattern, a static method returns new instances of objects that conform to a 
specific interface. To illustrate this concept, consider an application where 
you need to handle different image formats. You may have an abstract 
ImageReader class that other types derive from in order to handle specific 
formats like JPEG, GIF, and PNG.

[<AbstractClass>]
type ImageReader() =
  abstract member Dimensions : int * int with get
  abstract member Resolution : int * int with get
  abstract member Content : byte array with get

type JpgImageReader(fileName : string) =
  inherit ImageReader()
  -- snip --

type GifImageReader(fileName : string) =
  inherit ImageReader()
  -- snip --

type PngImageReader(fileName : string) =
  inherit ImageReader()
  -- snip --

A Factory method for creating instances of these classes might look 
something like this:

open System.IO

[<Sealed>]
type ImageReaderFactory private() =
  static member CreateReader(fileName) =
    let fi = FileInfo(fileName)
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    match fi.Extension.ToUpper() with
    | ".JPG" -> JpgImageReader(fileName) :> ImageReader
    | ".GIF" -> GifImageReader(fileName) :> ImageReader
    | ".PNG" -> PngImageReader(fileName) :> ImageReader
    | ext -> failwith (sprintf "Unsupported extension: %s" ext)

The static CreateReader method in the preceeding snippet uses F# pat-
tern matching to create the appropriate ImageReader implementation based 
on the provided filename. When the file extension isn’t recognized, it 
raises an exception indicating that the format isn’t supported. Because 
the method is static, you can call it without creating an instance of the 
ImageReaderFactory class, as shown here:

ImageReaderFactory.CreateReader "MyPicture.jpg"
ImageReaderFactory.CreateReader "MyPicture.gif"
ImageReaderFactory.CreateReader "MyPicture.png"
ImageReaderFactory.CreateReader "MyPicture.targa"

Mutually Recursive Types
When two or more types depend on each other such that one cannot be 
used without the other, the types are said to be mutually recursive.

To illustrate, think of a book and its pages. The book can contain a col-
lection of pages, but each page might also refer back to the book. Remember, 
F# is evaluated top-down, so which type would you define first? The book or 
the page? Because the book depends on its pages and the page refers back 
to the book, there is mutual recursion here. This means that you must define 
the types together using the and keyword, as shown here:

type Book() =
  let pages = List<Page>()
  member x.Pages with get() = pages.AsReadOnly()
  member x.AddPage(pageNumber : int, page : Page) =
    if page.Owner = Some(x) then failwith "Page is already part of a book"
    pages.Insert(pageNumber - 1, page)
and Page(content : string) =
  let mutable owner : Book option = None
  member x.Content = content
  member x.Owner with get() = owner
  member internal x.Owner with set(v) = owner <- v
  override x.ToString() = content

Interfaces
In OO programming, interfaces specify the properties, methods, and some-
times even events that a type must support. In some ways interfaces are 
like abstract classes, with certain important differences. For one, unlike 
abstract classes, interfaces cannot contain any implementations of their 
members; their members must be abstract. Also, because interfaces define 
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functionality that implementers must support, all interface members are 
implicitly public. Finally, interfaces aren’t subject to the same inheritance 
restrictions as classes: A class can implement any number of interfaces (and 
structs can, too).

Implementing Interfaces
F# approaches interface implementation a bit differently than its .NET lan-
guage counterparts. C# and Visual Basic allow both implicit and explicit 
implementations. With implicit implementations, interface members are acces-
sible directly through the implementing class, whereas with explicit implemen-
tations, interface members are accessible only when the implementing type 
is treated as the interface.

Consider this C# example with two classes that both implement the 
IDisposable interface:

// C#

class ImplicitExample : IDisposable
{
upublic void Dispose()
  {
    Console.WriteLine("Disposing");
  }
}

class ExplicitExample : IDisposable
{
vvoid IDisposable.Dispose()
  {
    Console.WriteLine("Disposing");
  }
}

Both classes implement IDisposable, but ImplicitExample u does so implic-
itly and ExplicitExample v does it explicitly. This difference has a dramatic 
effect on how you call the Dispose method in each class, as shown here:

// C#

var ex1 = unew ImplicitExample();
v ex1.Dispose();

var ex2 = wnew ExplicitExample();
x ((IDisposable)ex2).Dispose();

Here we instantiate ImplicitExample at u and ExplicitExample at w. For 
both classes we call the Dispose method, but because Dispose is implicitly 
implemented in the ImplicitExample class we can call it directly through ex1, 
as we do at v. The compiler would produce an error if we tried the same 



Staying Objective   93

approach with ex2 because Dispose is explicitly implemented in ExplicitExample. 
Instead, we need to cast ex2 to IDisposable, as shown at x, in order to call its 
Dispose method.

N o t e 	 All interface implementations in F# are explicit. Though F# honors implicit interface 
implementations on types defined in other languages, any implementations that you 
define in F# will be explicit.

Implementing an interface in F# is similar to inheriting from another 
class except that it uses the interface keyword. For example, to implement 
IDisposable in one of your types, you could do this:

open System

type MyDisposable() =
  interface IDisposable with
    member x.Dispose() = printfn "Disposing"

To manually invoke the Dispose method on the MyDisposable class, you’ll 
need to cast an instance to IDisposable, as shown here with the static cast 
operator:

let d = new MyDisposable()
(d :> IDisposable).Dispose()

Defining Interfaces
When you define a type without any constructors and only abstract mem-
bers, the F# compiler infers that the type is an interface. For example, an 
interface for working with image data might look something like this:

open System.Drawing
open System.IO

type IImageAdapter =
  abstract member PixelDimensions : SizeF with get
  abstract member VerticalResolution : int with get
  abstract member HorizontalResolution : int with get
  abstract member GetRawData : unit -> Stream

As you can see, the IImageAdapter type contains no constructors and all 
of its four members are abstract. To define an empty, or marker, interface 
you can end the definition with the interface end keyword pair:

type IMarker = interface end

N o t e 	 It’s standard practice in .NET development to begin interface names with a capital 
letter I. You should do so for the sake of consistency.
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Like classes, interfaces can inherit from each other to define more spe-
cialized contracts. Also like classes, interface inheritance is accomplished 
with the inherit keyword.

Let’s continue our imaging example. The IImageAdapter interface 
is helpful for working with any image format, but some formats include 
capabilities not available in others. To handle these, you could define 
additional interfaces that represent these capabilities. For example, when 
working with a format that supports transparency you might create an 
ITransparentImageAdapter that derives from IImageAdapter, as shown here:

type ITransparentImageAdapter =
  inherit IImageAdapter
  abstract member TransparentColor : Color with get, set

Now, any types that implement the ITransparentImageAdapter must imple-
ment all members defined by both IImageAdapter and ITransparentImageAdapter.

Custom Operators
In Chapter 3 you saw numerous predefined operators for working with the 
built-in data types. You can use operator overloading to extend many of these 
to your types as well. By overloading operators, you can make your custom 
types interact a bit more naturally.

Operators in F# come in two forms: prefix and infix. Prefix operators 
are placed before their operand, whereas infix operators are placed between 
their operands. F# operators can also be unary or binary, meaning that they 
operate against one or two arguments, respectively. Custom operators are 
defined as static methods except that the name is the operator wrapped in 
parentheses.

Prefix Operators
When defining a prefix operator, you must begin its name with a tilde (~) 
to distinguish it from infix operators with the same name. The tilde is not 
otherwise part of the operator. To demonstrate operator overloading, we’ll 
define a type that represents basic RGB colors. Consider this class definition:

type RgbColor(r, g, b) =
  member x.Red = r
  member x.Green = g
  member x.Blue = b
  override x.ToString() = sprintf "(%i, %i, %i)" r g b

To calculate the negative color you could define a GetNegative function, 
but wouldn’t it be more intuitive to prefix an instance with the negative sign 
(-) instead? 
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type RgbColor(r, g, b) =
  -- snip --
  /// Negate a color
  static member (~-) (r : RgbColor) =
    RgbColor(
      r.Red ^^^ 0xFF,
      r.Green ^^^ 0xFF,
      r.Blue ^^^ 0xFF
    )

With the custom operator defined, you can now create a color instance 
and find its negative with a convenient syntax like this:

> let yellow = RgbColor(255, 255, 0)
let blue = -yellow;;

val yellow : RgbColor = (255, 255, 0)
val blue : RgbColor = (0, 0, 255)

Infix Operators
Creating infix operators is almost like creating prefix operators except that 
you omit the tilde character from the name.

Continuing with the RgbColor example, it would be nice to add and sub-
tract two colors using the familiar and natural + and - operators.

open System

type RgbColor(r, g, b) =
  -- snip --
  /// Add two colors
  static member (+) (l : RgbColor, r : RgbColor) =
    RgbColor(
      Math.Min(255, l.Red + r.Red),
      Math.Min(255, l.Green + r.Green),
      Math.Min(255, l.Blue + r.Blue)
    )
  /// Subtract two colors
  static member (-) (l : RgbColor, r : RgbColor) =
    RgbColor(
      Math.Max(0, l.Red - r.Red),
      Math.Max(0, l.Green - r.Green),
      Math.Max(0, l.Blue - r.Blue)
    )

Now we can add and subtract colors just as we would add and subtract 
numbers.
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> let red = RgbColor(255, 0, 0)
let green = RgbColor(0, 255, 0)
let yellow = red + green;;

val red : RgbColor = (255, 0, 0)
val green : RgbColor = (0, 255, 0)
val yellow : RgbColor = (255, 255, 0)

> let magenta = RgbColor(255, 0, 255)
let blue = magenta - red;;

val magenta : RgbColor = (255, 0, 255)
val blue : RgbColor = (0, 0, 255) 

New Operators
You’re not limited to overloading only existing operators. You can define 
custom operators using various combinations of the characters !, %, &, *, 
+, -, ., /, <, =, >, ?, @, ^, |, and ~. Creating custom operators can be com-
plicated because the combination you select determines the precedence 
(priority) and associativity (right to left or left to right) of the operation. 
Furthermore, creating custom operators can hinder the comprehensibil-
ity of your code if you choose something that’s not intuitive. That said, if 
you still want to define a new operator, the definition looks the same as an 
overload.

For example, in the previous section we overloaded the + operator to 
add two colors, but how about blending colors? The + operator would have 
been a nice choice for a blending operation, but because it’s already being 
used for adding colors we can define the += operator instead.

type RgbColor(r, g, b) =
  -- snip --
  /// Blend two colors
  static member (+=) (l : RgbColor, r : RgbColor) =
    RgbColor(
      (l.Red + r.Red) / 2,
      (l.Green + r.Green) / 2,
      (l.Blue + r.Blue) / 2
    )

Now blending two colors is as easy as adding them:

> let grey = yellow += blue;;

val grey : RgbColor = (127, 127, 127) 

Global Operators
Not only does F# allow you to overload operators on types, but you can also 
define operators globally. This lets you create new operators even for types 
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you don’t control! For example, to define any of the custom operators on 
the standard System.Drawing.Color struct, you could define a new operator 
at the global level using a let binding as follows:

open System
open System.Drawing

let (+) (l : Color) (r : Color) =
    Color.FromArgb(
      255, // Alpha channel
      Math.Min(255, int <| l.R + r.R),
      Math.Min(255, int <| l.G + r.G),
      Math.Min(255, int <| l.B + r.B)
    )

w a r n i n g 	 Be careful when defining global operators. Any operator you define that conflicts 
with the built-in one will take priority, meaning you can inadvertently replace core 
functionality. 

Object Expressions
As an alternative to formal inheritance, F# provides object expressions, a handy 
construct for creating ad hoc (anonymous) types based on an existing class 
or interface. Object expressions are useful when you need a one-off type but 
don’t want to create a formal type. (Although the analogy isn’t perfect, you 
might find it helpful to think of object expressions as lambda expressions for 
types, because the result of an object expression is an instance of a new type 
that implements the interface or inherits from a base class.)

For example, consider a simplified game scenario where a character 
can equip a weapon. You might see a weapon interface and character class 
like this:

type IWeapon =
  abstract Description : string with get
  abstract Power : int with get

type Character(name : string, maxHP : int) =
  member x.Name = name
  member val HP = maxHP with get, set
  member val Weapon : IWeapon option = None with get, set
  member x.Attack(o : Character) =
    let power = match x.Weapon with
                | Some(w) -> w.Power
                | None -> 1 // fists
    o.HP <- System.Math.Max(0, o.HP - power)
  override x.ToString() =
    sprintf "%s: %i/%i" name x.HP maxHP
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You can use these definitions to create a few characters:

let witchKing = Character("Witch-king", 100)
let frodo = Character("Frodo", 50)

As currently written, if either character attacked the other he wouldn’t 
do much damage since he has only his fists. It would be nice to give each 
character a weapon, but all we have right now is the IWeapon interface. We 
could define types for every weapon we can think of, but it’s much more 
convenient to write a function that creates weapons for us via an object 
expression.

Object expressions, like the one in the following forgeWeapon function, 
are defined with the new keyword followed by the type name, the with key-
word, and the member definitions all wrapped in braces. 

let forgeWeapon desc power =
  { new IWeapon with
      member x.Description with get() = desc
      member x.Power with get() = power }

With the forgeWeapon function in place, we can create some weapons for 
our characters.

> let morgulBlade = forgeWeapon "Morgul-blade" 25
let sting = forgeWeapon "Sting" 10;;

val morgulBlade : IWeapon
val sting : IWeapon

As you can see, both calls to forgeWeapon result in new instances of 
IWeapon. They can be used as if they had been formally defined through 
type definitions, as you can see by assigning each to a character and invok-
ing the Attack function:

witchKing.Weapon <- Some(morgulBlade)
frodo.Weapon <- Some(sting)

witchKing.Attack frodo

Despite their convenience, object expressions aren’t suitable for every 
situation. One of their primary drawbacks is that they must implement 
every abstract member from the underlying type. If the underlying inter-
face or base class has many abstract members, an object expression can 
become cumbersome very quickly, so you would probably want to consider 
using a different construct. 

Object expressions aren’t limited to a single base type. To implement 
multiple base types with an object expression, you use an inheritance-like 
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syntax. For instance, if you wanted weapons created through the forgeWeapon 
function to also implement IDisposable, you could use the following:

let forgeWeapon desc power =
  { new IWeapon with
      member x.Description with get() = desc
      member x.Power with get() = power
    interface System.IDisposable with
      member x.Dispose() = printfn "Disposing" }

Creating a new weapon is the same as earlier:

let narsil = forgeWeapon "Narsil" 25

Objects created through object expressions that include multiple base 
types are always treated as the type listed immediately after the new key-
word, unless they’re explicitly cast to one of the other types. For example, 
in the case of the forgeWeapon function, the returned object will be IWeapon 
unless you cast it to IDisposable.

(narsil :?> System.IDisposable).Dispose()

Type Extensions
When LINQ was added to the .NET Framework, one exciting feature that 
it introduced to C# and Visual Basic was extension methods. Extension 
methods allow you to add new methods to an existing type without relying 
on inheritance or other design patterns such as the Decorator pattern. F# 
provides similar capabilities except that it doesn’t stop with methods. In 
F#, you can create extension methods, properties, events, and even static 
members!

You extend existing types in F# through type extensions, or type augmenta-
tions. Type extensions come in two flavors: intrinsic and optional.

Intrinsic extensions must be defined in the same namespace or module, 
and in the same source file as the type being extended. The new extensions 
become part of the extended type when the code is compiled and are visible 
through reflection. Intrinsic extensions are useful when you want to build 
up a type incrementally by grouping related pieces or as an alternative to 
building mutually recursive type definitions.

Optional extensions must be defined in a module. Like their C# and 
Visual Basic counterparts, they are accessible only when their contain-
ing namespace or module is open but are not visible through reflection. 
Optional extensions are most useful for adding custom functionality to 
types you don’t control or that are defined in other assemblies.
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Regardless of whether you’re defining intrinsic or optional extensions, 
the syntax is the same. You begin with a new type definition. The difference 
is that instead of using a primary constructor and an equal sign, you use the 
with keyword followed by your extension definitions. For example, here we 
extend the Color struct (in System.Drawing) with both a static and an instance 
method.

module ColorExtensions =
  open System
  open System.Drawing
  open System.Text.RegularExpressions

  // Regular expression to parse the ARGB components from a hex string
ulet private hexPattern =
    Regex("^#(?<color>[\dA-F]{8})$", RegexOptions.IgnoreCase ||| RegexOptions.Compiled)

  // Type extension
vtype Color with
  wstatic member FromHex(hex) =
      match hexPattern.Match hex with
      | matches when matches.Success ->
        Color.FromArgb <| Convert.ToInt32(matches.Groups.["color"].Value, 16)
      | _ -> Color.Empty
  xmember x.ToHex() = sprintf "#%02X%02X%02X%02X" x.A x.R x.G x.B

This optional type extension enhances the Color struct’s usability by 
allowing you to create new instances from known hexadecimal color strings 
or translate the color into a hexadecimal color string. The type extension 
itself is at v. The static extension method w relies on the regular expres-
sion (a domain-specific language for parsing strings) at u to match and 
extract the hexadecimal value to convert it into the ARGB value passed to 
Color’s constructor. The instance extension method x simply returns the 
ARGB value formatted as a hexadecimal string.

Cross -L a nguage Conside r at ions

Despite serving a similar purpose, extension methods in F# are implemented 
differently than in the rest of the .NET Framework. Therefore, optional extension 
methods defined in F# aren’t accessible as extension methods in C# or Visual 
Basic unless you include the Extension attribute in both the type definition and 
extension methods.
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Summary
Despite F#’s perception as a niche functional language on the .NET 
Framework, you’ve seen in this chapter that F# is also a full-featured OO 
language. Numerous examples demonstrated how F#’s concise syntax aids 
you in developing robust OO frameworks complete with classes, structures, 
and interfaces. You’ve even seen how to implement some common design 
patterns like Singleton and Factory.

Although F# supports the same common OO concepts as its more 
established counterpart languages, you’ve learned how it takes familiar 
concepts like operator overloading, events, and extension methods and 
expands them into something much more powerful through observation 
and type augmentation. Finally, you’ve seen how entirely new constructs 
like object expressions can improve code quality by allowing you to create 
ad hoc types when and where you need them.





5
L e t ’ s  G e t  F u n ct  i o n a l

I’ve mentioned several times that F# is a 
functional language, but as you’ve learned 

from previous chapters you can build rich 
applications in F# without using any functional 

techniques. Does that mean that F# isn’t really a 
functional language? No. F# is a general-purpose, 
multiparadigm language that allows you to program
in the style most suited to your task. It is considered a functional-first lan-
guage, meaning that its constructs encourage a functional style. In other 
words, when developing in F# you should favor functional approaches 
whenever possible and switch to other styles as appropriate.

In this chapter, we’ll see what functional programming really is and 
how functions in F# differ from those in other languages. Once we’ve estab-
lished that foundation, we’ll explore several data types commonly used with 
functional programming and take a brief side trip into lazy evaluation.
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What Is Functional Programming?
Functional programming takes a fundamentally different approach toward 
developing software than object-oriented programming. While object-oriented 
programming is primarily concerned with managing an ever-changing 
system state, functional programming emphasizes immutability and the 
application of deterministic functions. This difference drastically changes 
the way you build software, because in object-oriented programming you’re 
mostly concerned with defining classes (or structs), whereas in functional 
programming your focus is on defining functions with particular emphasis on 
their input and output.

F# is an impure functional language where data is immutable by default, 
though you can still define mutable data or cause other side effects in your 
functions. Immutability is part of the functional concept called referential 
transparency, which means that an expression can be replaced with its result 
without affecting the program’s behavior. For example, if you can replace 
let sum = add 5 10 with let sum = 15 without otherwise affecting the pro-
gram’s behavior, then add is said to be referentially transparent. But immu-
tability and referential transparency are only two aspects of functional 
programming, and they certainly don’t make a language functional on 
their own.

Programming with Functions
If you’ve never done any “real” functional programming, F# will forever 
change the way you think about functions because its functions closely 
resemble mathematical functions in both structure and behavior. For 
example, Chapter 3 introduced the unit type, but I avoided discussing 
its importance in functional programming. Unlike C# and Visual Basic, 
F# makes no distinction between functions that return values and those 
that don’t. In fact, every function in F# accepts exactly one input value 
and returns exactly one output value. The unit type enables this behavior. 
When a function doesn’t have any specific input (no parameters), it actually 
accepts unit. Similarly, when a function doesn’t have any specific output, it 
returns unit.

The fact that every F# function returns a value allows the compiler to 
make certain assumptions about your code. One important assumption is 
that the result of the last evaluated expression in a function is the function’s 
return value. This means that although return is a keyword in F#, you don’t 
need to explicitly identify return values.

Functions as Data
A defining (and arguably the most important) characteristic of any func-
tional language is that it treats functions like any other data type. The .NET 
Framework has always supported this concept to some degree with delega-
tion, but until relatively recently delegation was too cumbersome to be 
viable in all but a few limited scenarios. Only when LINQ was introduced 
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with the goodness of lambda expressions and the built-in generic delegate 
types (Action and Func) did delegation reach its full potential. F# uses delega-
tion behind the scenes, but unlike C# and Visual Basic, its syntax abstracts 
away the delegation with the -> token. The -> token, generally read as “goes 
to” or “returns,” identifies a value as a function value where the data type 
specified on the left is the function’s input type and the data type on the 
right is its return type. For example, the signature for a function that both 
accepts and returns a string is string -> string. Similarly, a parameterless 
function that returns a string is represented as unit -> string.

Signatures become increasingly complex when you begin working 
with higher-order functions—functions that accept or return other functions. 
Higher-order functions are used extensively in F# (and functional program-
ming in general) because they allow you to isolate common parts of func-
tions and substitute the parts that change. 

In some ways, higher-order functions are to functional programming 
what interfaces are to object-oriented programming. For example, consider 
a function that applies a transformation to a string and prints the result. 
Its signature might look something like (string -> string) -> string -> unit. 
This simple notation goes a long way toward making your code more com-
prehensible than when you’re dealing with the delegates directly.

N o t e 	 You can use the function signatures in type annotations whenever you’re expecting a func-
tion. As with other data types, though, the compiler can often infer the function type.

Interoperability Considerations
Despite the fact that F# functions are ultimately based on delegation, be care-
ful when working with libraries written in other .NET languages, because 
the delegate types aren’t interchangeable. F# functions rely on the over-
loaded FSharpFunc delegate types, whereas traditional .NET delegates are 
often based on the Func and Action types. If you need to pass Func and Action 
delegates into an F# assembly, you can use the following class to simplify 
the conversion.

open System.Runtime.CompilerServices

[<Extension>]
type public FSharpFuncUtil =
  [<Extension>]
  static member ToFSharpFunc<'a, 'b> (func : System.Func<'a, 'b>) =
    fun x -> func.Invoke(x)

  [<Extension>]
  static member ToFSharpFunc<'a> (act : System.Action<'a>) =
    fun x -> act.Invoke(x)

The FSharpFuncUtil class defines the overloaded ToFSharpFunc method as 
traditional .NET extension methods (via the ExtensionAttribute on both the 
class and methods) so you can easily call them from another language. The 
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first overload handles converting single-parameter Func instances, while the 
second handles single-parameter Action instances. These extension methods 
don’t cover every use case, but they’re certainly a good starting point.

Currying
Functions in F# work a bit differently than you’re probably accustomed to. 
For example, consider the simple add function, introduced in Chapter 2.

let add a b = a + b

You might think that add accepts two parameters, but that’s not how F# 
functions work. Remember, in F# every function accepts exactly one input 
and returns exactly one output. If you create the preceding binding in FSI 
or hover over the name in Visual Studio, you’ll see that its signature is:

val add : a:int -> b:int -> int

Here, the name add is bound to a function that accepts an integer (a) 
and returns a function. The returned function accepts an integer (b) and 
returns an integer. Understanding this automatic function chaining—
called currying—is critical to using F# effectively because it enables several 
other features that affect how you design functions.

To better illustrate how currying actually works, let’s rewrite add to more 
closely resemble the compiled code.

> let add a = fun b -> (+) a b;;

val add : a:int -> b:int -> int

The most significant thing here is that both this and the previous ver-
sion have exactly the same signature. Here, though, add accepts only a single 
parameter (a) and returns a separate function as defined by a lambda 
expression. The returned function accepts the second parameter (b) and 
invokes the multiplication operator as another function call.

Partial Application
One of the capabilities unlocked by curried functions is partial application. 
Partial application allows you to create new functions from existing ones 
simply by supplying some of the arguments. For example, in the case of add, 
you could use partial application to create a new addTen function that always 
adds 10 to a number.

> let addTen = add 10;;

val addTen : u(int -> int)
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> addTen 10;;
val it : int = 20

Notice at u how addTen’s definition and signature are listed. Although 
we didn’t explicitly include any parameters in the definition, the signature 
is still a function that both accepts and returns an integer. The compiler 
evaluated the curried add function as far as it could with the provided argu-
ments (just 10, in this case) and bound the resulting function to the name, 
addTen. 

Currying applies arguments one at a time, from left to right, so partially 
applied arguments must correspond to the function’s first parameters.

w a r n i n g 	 Once you’re comfortable with currying and partial application, you may start think-
ing that you could simulate them in C# or Visual Basic by returning Func or Action 
instances. Don’t. Neither language is designed to support this type of functional 
programming, so simulating these concepts is inelegant at best and immensely error 
prone at worst.

Pipelining
Another feature often associated with currying (and used extensively in F#) 
is pipelining. Pipelining allows you to create your own function chains by 
evaluating one expression and sending the result to another function as the 
final argument.

Forward Pipelining

Usually you’ll send values forward to the next function using the forward 
pipelining operator (|>). If you don’t want to do anything with a function’s 
result when it returns something other than unit, you can pipe the result 
forward to the ignore function like this:

add 2 3 |> ignore

Pipelining isn’t restricted to simple scenarios like ignoring a result. As 
long as the last argument of the receiving function is compatible with the 
source function’s return type, you can create complex function chains. 
For example, suppose you have a list of daily temperatures in degrees 
Fahrenheit and want to find the average temperature, convert it to Celsius, 
and print the result. You could do it the old-fashioned, procedural way by 
defining a binding for each step, or you could use pipelining to chain the 
steps like this:

let fahrenheitToCelsius degreesF = (degreesF - 32.0) * (5.0 / 9.0)

let marchHighTemps = [ 33.0; 30.0; 33.0; 38.0; 36.0; 31.0; 35.0;
                       42.0; 53.0; 65.0; 59.0; 42.0; 31.0; 41.0;
                       49.0; 45.0; 37.0; 42.0; 40.0; 32.0; 33.0;
                       42.0; 48.0; 36.0; 34.0; 38.0; 41.0; 46.0;
                       54.0; 57.0; 59.0 ]
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marchHighTemps
|> List.average
|> fahrenheitToCelsius
|> printfn "March Average (C): %f"

Here the marchHighTemps list is piped to the List module’s average func-
tion. The average function is then evaluated and its result passed on to the 
fahrenheitToCelsius function. Finally, the average temperature in Celsius is 
passed along to printfn.

Backward Pipelining

Like its forward counterpart, the backward pipelining operator (<|) sends the 
result of an expression to another function as the final argument, but does it 
from right to left instead. Because it changes precedence within an expres-
sion, the backward pipelining operator is sometimes used as a replacement 
for parentheses.

The backward pipelining operator can change the semantics of your 
code. For instance, in the fahrenheitToCelsius example in the previous sec-
tion, the emphasis is on the list of temperatures because that’s what’s listed 
first. To change the semantics to emphasize the output, you could place the 
printfn function call ahead of the backward pipelining operator.

printfn "March Average (F): %f" <| List.average marchHighTemps

Noncurried Functions

Although pipelining is typically associated with curried functions, it also 
works with noncurried functions (like methods) that accept only a single 
argument. For instance, to force a delay in execution you could pipe a value 
into the TimeSpan class’s static FromSeconds method and then send the result-
ing TimeSpan object to Thread.Sleep, as shown here.

5.0
|> System.TimeSpan.FromSeconds
|> System.Threading.Thread.Sleep

Because neither the TimeSpan class nor the Thread class is defined in F#, 
the functions aren’t curried, but you can see how we can chain these func-
tions together with the forward pipelining operator.

Function Composition
Like pipelining, function composition allows you to create function chains. 
It comes in two forms: forward (>>) and backward (<<).

Function composition is subject to the same rules as pipelining regard-
ing inputs and outputs. Where function composition differs is that instead of 
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defining a one-time operation, the composition operators actually generate 
new functions. Continuing with our average temperature example, you could 
easily create a new function from the List.average and fahrenheitToCelsius 
functions with the forward composition operator.

> let averageInCelsius = List.average >> fahrenheitToCelsius;;

val averageInCelsius : (float list -> float)

The composition operator results in a new function that accepts a list 
of floats and returns a float. Now, instead of calling the two functions inde-
pendently, you can simply call averageInCelsius instead.

printfn "March average (C): %f" <| averageInCelsius marchHighTemps

As with pipelining, you can compose functions from noncurried func-
tions. For instance, you could compose the forced delay example from 
“Noncurried Functions” on page 108 as well.

> let delay = System.TimeSpan.FromSeconds >> System.Threading.Thread.Sleep;;

val delay : (float -> unit)

As you might expect, you can now call the delay function to temporarily 
pause execution.

> delay 5.0;;
val it : unit = ()

Recursive Functions
There are typically three looping constructs associated with imperative 
code: while loops, simple for loops, and enumerable for loops. Because each 
relies on a state change to determine when the exit criteria have been met, 
you’ll need to take a different approach to looping when writing purely 
functional code. In functional programming, the preferred looping mecha-
nism is recursion. A recursive function is one that calls itself either directly or 
indirectly through another function. 

Although methods within a type are implicitly recursive, let-bound 
functions, such as those defined within a module, are not. To make a let-
bound function recursive, you must include the rec keyword in its definition, 
as this factorial function illustrates.

let rec factorial v =
  match v with | 1L -> 1L
               | _ -> v * factorial (v - 1L)
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The rec keyword instructs the compiler to make the function name 
available within the function but does not otherwise change the function’s 
signature (int64 -> int64).

Tail-Call Recursion
The preceding factorial example is simple, but it suffers from a major flaw. 
For example, consider what happens when you call factorial 5. On each 
recursive iteration (other than when the value is 1), the function calculates 
the product of v and the factorial of v - 1. In other words, calculating the 
factorial for a given value inherently requires each subsequent factorial call 
to complete. At run time, it looks a bit like this:

5L * (factorial 4L)
5L * (4L * (factorial 3L))
5L * (4L * (3L * (factorial 2L)))
-- snip --

The preceding snippet shows that each call is added to the stack. It’s 
unlikely that this would be a problem with a factorial function, since the 
calculation can quickly overflow the data type, but more complex recursion 
scenarios could result in running out of stack space. To address this prob-
lem, you can revise the function to use a tail call by removing the depen-
dency on subsequent iterations, as shown here:

u let factorial v =
  let vrec fact c p =
    match c with | 0L -> p
                 | _ -> wfact <| c - 1L <| c * p
  xfact v 1L

The revised factorial function u creates and then calls a nested 
recursive function, fact v, to isolate the implementation details. The fact 
function accepts both the current iteration value (c) and the product 
calculated by the previous iteration (p). At w (the nonzero case), the fact 
function makes the recursive call. (Notice how only the arguments to 
the recursive call are calculated here.) Finally, to initiate recursion, the 
factorial function x invokes the first fact iteration, passing the supplied 
value and 1L.

Although the recursive call is still present in the code, when the F# 
compiler detects that no iteration is dependent on subsequent iterations, 
it optimizes the compiled form by replacing the recursion with an impera-
tive loop. This allows the system to iterate as long as necessary. You can 
observe this optimization by examining the stack traces for each version by 
inserting a breakpoint and looking at the call stack window (if you’re run-
ning this as a console application) or by printing out the stack information 
returned from System.Diagnostics.StackTrace, as shown here. (Note that your 
namespaces will likely vary.)
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Standard recursion
   at FSI_0024.printTrace()
   at FSI_0028.factorial(Int64 v)
   at FSI_0028.factorial(Int64 v)
   at FSI_0028.factorial(Int64 v)
   at FSI_0028.factorial(Int64 v)
   at FSI_0028.factorial(Int64 v)
   at <StartupCode$FSI_0029>.$FSI_0029.main@()
   -- snip --

Tail recursion
   at FSI_0024.printTrace()
   at FSI_0030.fact@75-8(Int64 c, Int64 p)
   at <StartupCode$FSI_0031>.$FSI_0031.main@()
   -- snip --

Mutually Recursive Functions
When two or more functions call each other recursively, they are said to be 
mutually recursive. Like mutually recursive types (described in Chapter 4), 
mutually recursive functions must be defined together with the and keyword. 
For example, a Fibonacci number calculation is easily expressed through 
mutual recursion.

let fibonacci n =
  let rec f = function
              | 1 -> 1
              | n -> g (n - 1)
  and g = function
          | 1 -> 0
          | n -> g (n - 1) + f (n - 1)
  f n + g n

The preceding fibonacci function defines two mutually recursive func-
tions, f and g. (The function keyword inside each is a shortcut for pattern 
matching.) For all values other than 1, f calls g. Similarly, g recursively calls 
itself and f. 

Because the mutual recursion is hidden inside fibonacci, consumers of 
this code can simply call fibonacci directly. For example, to compute the 
sixth number in the Fibonacci sequence you’d write:

> fibonacci 6;;
val it : int = 8

Mutual recursion can be useful, but this example is really only good for 
illustrating the concept. For performance reasons, a more realistic Fibonacci 
example would likely forego mutual recursion in favor of a technique called 
memoization, where expensive computations are performed once and the 
results are cached to avoid calculating the same values multiple times.
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Lambda Expressions
If you’ve ever used LINQ or done any other functional programming, you’re 
probably already familiar with lambda expressions (or function expressions, as 
they’re sometimes called). Lambda expressions are used extensively in func-
tional programming. In brief, they provide a convenient way to define simple, 
single-use, anonymous (unnamed) functions. Lambda expressions are typi-
cally favored over let-bound functions when the function is significant only 
within its context (such as when filtering a collection).

Lambda expression syntax is similar to that of a function value except 
that it begins with the fun keyword, omits the function identifier, and uses 
the arrow token (->) in place of an equal sign. For example, you could 
express the Fahrenheit-to-Celsius conversion function inline as a lambda 
expression and immediately evaluate it like this:

(fun degreesF -> (degreesF - 32.0) * (5.0 / 9.0)) 212.0

Although defining ad hoc functions like this is certainly one use for 
lambda expressions, they’re more commonly created inline with calls to 
higher-order functions, or included in pipeline chains.

Closures
Closures enable functions to access values visible in the scope where a func-
tion is defined regardless of whether that value is part of the function. 
Although closures are typically associated with lambda expressions, nested 
functions created with let bindings can be closures as well, since ultimately 
they both compile to either an FSharpFunc or a formal method. Closures are 
typically used to isolate some state. For instance, consider the quintessential 
closure example—a function that returns a function that manipulates an 
internal counter value, as shown here:

let createCounter() =
  let count = ref 0
  (fun () -> count := !count + 1
             !count)

The createCounter function defines a reference cell that’s captured by the 
returned function. Because the reference cell is in scope when the returned 
function is created, the function has access to it no matter when it’s called. 
This allows you to simulate a stateful object without a formal type definition.

To observe the function modifying the reference cell’s value, we just 
need to invoke the generated function and call it like this:

let increment = createCounter()
for i in [1..10] do printfn "%i" (increment())
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Functional Types
F# includes native support for several additional data types. These types—
tuples, records, and discriminated unions—are typically associated with 
functional programming, but they’re often useful in mixed-paradigm devel-
opment as well. While each of these types has a specific purpose, they’re all 
intended to help you remain focused on the problem your software is trying 
to solve. 

Tuples
The most basic functional type is the tuple. Tuples are a convenient way 
to group a number of values within a single immutable construct with- 
out creating a custom type. Tuples are expressed as comma-delimited 
lists and are sometimes enclosed in parentheses. For example, the follow-
ing two definitions representing geometric points as tuples are equally 
valid.

> let point1 = 10.0, 10.0;;

val point1 : float * float = (10.0, 10.0)

> let point2 = (20.0, 20.0);;

val point2 : float * float = (20.0, 20.0)

The signature for a tuple type includes the type of each value separated 
by an asterisk (*). The asterisk is used as the tuple element delimiter for 
mathematical reasons: Tuples represent the Cartesian product of all values 
their elements contain. Therefore, to express a tuple in a type annotation, 
you write it as an asterisk-delimited list of types like this:

let point : float * float = 0.0, 0.0

Despite some syntactic similarities, particularly when the values 
are enclosed in parentheses, it’s important to recognize that other than 
the fact that they contain multiple values, tuples aren’t collections; they 
simply group a fixed number of values within a single construct. The 
tuple types don’t implement IEnumerable<'T>, so they can’t be enumerated 
or iterated over in an enumerable for loop, and individual tuple values 
are exposed only through properties with nonspecific names like Item1 
and Item2.
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T upl e s in .NE T

Tuples have always been part of F# but were only introduced to the larger 
.NET Framework with .NET 4. Prior to .NET 4, the tuple classes were located 
in the FSharp.Core library, but they have since been moved to mscorlib. This 
difference is only really important if you intend to write cross-language code 
against earlier versions of the .NET Framework, because it affects which 
assembly you reference. 

Extracting Values

Tuples are often useful for returning multiple values from a function or for 
sending multiple values to a function without currying them. For instance, 
to calculate the slope of a line you could pass two points as tuples to a slope 
function. To make the function work, though, you’ll need some way to 
access the individual values. (Fortunately, tupled values are always acces-
sible in the order in which they’re defined, so some of the guesswork is 
eliminated.)

When working with pairs (tuples containing two values like the geo-
metric points we discussed previously), you can use the fst and snd func-
tions to retrieve the first and second values, respectively, as shown here.

let slope p1 p2 =
  let x1 = fst p1
  let y1 = snd p1
  let x2 = fst p2
  let y2 = snd p2
  (y1 - y2) / (x1 - x2)

slope (13.0, 8.0) (1.0, 2.0)

Notice how we define bindings for the various coordinates with the 
fst and snd functions. As you can see, however, extracting each value this 
way can get pretty tedious and these functions work only with pairs; if you 
were to try either against a triple (a tuple with three values), you’d get a type 
mismatch. (The reason is that at their core, tuples compile to one of the 
nine generic overloads of the Tuple class.) Aside from sharing a common 
name, the tuple classes are independent of each other and are otherwise 
incompatible.

A more practical approach to extract tuple values involves introducing 
a Tuple pattern. Tuple patterns allow you to specify an identifier for each 
value in the tuple by separating the identifiers with commas. For example, 
here’s the slope function revised to use Tuple patterns instead of the pair 
functions.
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let slope p1 p2 =
  let x1, y1 = p1
  let x2, y2 = p2
  (y1 - y2) / (x1 - x2)

You can see how Tuple patterns may help, but you need to be careful 
with them. If your pattern doesn’t match the number of values in the tuple, 
you’ll get a type mismatch. 

Fortunately, unlike the pair functions, resolving the problem is simply a 
matter of adding or removing identifiers. If you don’t care about a particu-
lar value in your Tuple pattern, you can ignore it with the Wildcard pattern 
(_). For instance, if you have three-dimensional coordinates but care only 
about the z-coordinate, you could ignore the x- and y-values as follows:

> let _, _, z = (10.0, 10.0, 10.0);;

val z : int = 10

Tuple patterns aren’t limited to let bindings. In fact, we can make a 
further revision to the slope function and include the patterns right in the 
function signature!

let slope (x1, y1) (x2, y2) = (y1 - y2) / (x1 - x2)

Equality Semantics

Despite the fact that they’re formally reference types, each of the built-in 
tuple types implements the IStructuralEquatable interface. This ensures 
that all equality comparisons involve comparing the individual component 
values rather than checking that two tuple instances reference the same 
Tuple object in memory. In other words, two tuple instances are considered 
equal when the corresponding component values in each instance are the 
same, as shown here:

> (1, 2) = (1, 2);;
val it : bool = true
> (2, 1) = (1, 2);;
val it : bool = false

For the same reasons that the fst and snd functions work only with pairs, 
comparing tuples of different lengths will cause an error.

Syntactic Tuples

So far, all of the tuples we’ve looked have been concrete ones, but F# also 
includes syntactic tuples. For the most part, syntactic tuples are how F# works 
around noncurried functions in other languages. Because F# functions 
always accept a single parameter, but functions in C# and Visual Basic can 
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accept more than one, in order to call functions from libraries written in 
other languages you can use a syntactic tuple and let the compiler work out 
the details.

For example, the String class’s Format method accepts both a format string 
and a params array of values. If String.Format were a curried function, you’d 
expect its signature to be something like Format : format:string -> params 
args : obj [] -> string, but it’s not. Instead, if you hover your cursor over 
the function name in Visual Studio, you’ll see that its signature is actually 
Format(format:string, params args : obj []) : string. This distinction is sig-
nificant because it means that the arguments must be applied as a group 
rather than individually as they would with curried functions. If you were to 
try invoking the method as a curried F# function, you’d get an error like this:

> System.String.Format "hello {0}" "Dave";;

  System.String.Format "hello {0}" "Dave";;
  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

stdin(3,1): error FS0003: This value is not a function and cannot be applied

The correct way to call String.Format in F# is with a syntactic tuple, like this:

> System.String.Format ("hello {0}", "Dave");;
val it : string = "hello Dave"

You’ve probably noticed that F# generally doesn’t require parentheses 
around arguments when calling a function; it uses parentheses primarily 
to establish precedence. Because functions are applied from left to right, 
you’ll mainly use parentheses in a function call to pass the result of another 
function as an argument. In this case, the parentheses around the argu-
ments are necessary. Without them, the left-to-right evaluation would cause 
the compiler to essentially treat the expression as ((System.String.Format 
"hello {0}"), "Dave"). In general, it’s good practice to include parentheses 
around syntactic tuples in order to remove any ambiguity.

Out Parameters

F# doesn’t directly support out parameters—parameters passed by refer-
ence with values assigned in the method body so they can be returned to 
the caller. To fully support the .NET Framework, however, F# needs a way to 
access out parameter values. For example, the TryParse methods on the vari-
ous numeric data type classes attempt to convert a string to the correspond-
ing numeric type and return a Boolean value indicating success or failure. 
If the conversion succeeds, the TryParse methods set the out parameter to 
the appropriate converted value. For instance, calling System.Int32.TryParse 
with "10" would return true and set the out parameter to 10. Similarly, calling 
the same function with "abc" would return false and leave the out param-
eter unchanged.
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In C#, calling System.Int32.TryParse would look like this:

// C#
u int v;

var r = System.Int32.TryParse("10", out v);

The problem with out parameters in a functional language is that 
they require a side effect, as shown by the uninitialized variable at u. To 
work around this problem, the F# compiler converts the return value and 
out parameter to a pair. Therefore, when you invoke a method with an out 
parameter in F#, you treat it exactly like any other tuple-returning function.

Calling the same Int32.TryParse method in F# looks like this:

// F#
let r, v = System.Int32.TryParse "10"

For a behind-the-scenes look at the generated class, we can once again 
turn to ILSpy to see how it’s represented in C#.

// C#
using System;
using System.Diagnostics;
using System.Runtime.CompilerServices;
namespace <StartupCode$Samples>
{
  internal static class $Samples
  {
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    internal static readonly Tuple<bool, int> patternInput@3;
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    internal static readonly int v@3;
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    internal static readonly bool r@3;
    [DebuggerBrowsable(DebuggerBrowsableState.Never), DebuggerNonUserCode, CompilerGenerated]
    internal static int init@;
  ustatic $Samples()
    {
      int item = 0;
      $Samples.patternInput@3 = vnew Tuple<bool, int>(wint.TryParse("10", out item), item);
      x$Samples.v@3 = Samples.patternInput@3.Item2;
      y$Samples.r@3 = Samples.patternInput@3.Item1;
    }
  }
}

Here, the F# compiler wrapped the Int32.TryParse call inside a static 
class. The generated class’s static constructor u invokes TryParse at w and 
wraps the results in a tuple at v. Then, the internal v@3 and r@3 fields are 
assigned to the out parameter value and the return value at x and y, 
respectively. In turn, the v and r values defined by the let binding are 
compiled to read-only properties that return the v@3 and r@3 values.
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Record Types
Like tuples, record types allow you to group values in a single immutable 
construct. You might think of them as bridging the functional gap between 
tuples and your own classes. Record types provide many of the same con-
veniences as tuples, like simple syntax and value equality semantics, while 
offering you some control over their internal structure and allowing you to 
add custom functionality.

Defining Record Types

Record type definitions consist of the type keyword, an identifier, and a list 
of labels with type annotations all enclosed in braces. For example, this list-
ing shows a simple record type representing an RGB color.

> type rgbColor = { R : byte; G : byte; B : byte };;

type rgbColor =
  {R: byte;
   G: byte;
   B: byte;}

If you take a peek at what the compiler generates from this definition, 
you’ll see a sealed class with read-only properties, equality semantics, and a 
single constructor to initialize all values.

N o t e 	 When defining record types on a single line, you must separate each label and type 
annotation pair by semicolons. If you place each pair on a separate line, you can 
safely omit the semicolons.

Creating Records

New records are created via record expressions. Record expressions allow you 
to specify a value for each label in the record type. For example, you could 
create a new rgbColor instance using a record expression, as shown next. 
(Note that, as when defining a record type, you must separate each label 
or assignment pair by semicolons or place it on a line of its own.)

> let red = { R = 255uy; G = 0uy; B = 0uy };;

val red : rgbColor = {R = 255uy;
                      G = 0uy;
                      B = 0uy;}

Notice that nowhere in the record expression do we include an explicit 
reference to the rgbColor type. This is another example of F#’s type infer-
ence engine at work. Based on the labels alone, the compiler was able to 
infer that we were creating an instance of rgbColor. Because the compiler 
relies on the labels rather than position to determine the correct type, order 
doesn’t matter. This means that you can place the label and value pairs in any 
order. Here, we create an rgbColor instance with the labels in G, B, R order.
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> let red = { G = 0uy; B = 0uy; R = 255uy };;

val red : rgbColor = {R = 255uy;
                      G = 0uy;
                      B = 0uy;}

Unlike with tuples, we don’t need to use special value extraction func-
tions like fst or snd with record types, because each value can be accessed 
by its label. For instance, a function that converts an rgbColor value to its 
hexadecimal string equivalent might look like this:

let rgbColorToHex (c : rgbColor) =
  sprintf "#%02X%02X%02X" c.R c.G c.B

Avoiding Naming Conflicts

The compiler can usually infer the correct type, but it’s possible to define 
two record types with the same structure. Consider what happens when 
you add a color type with the same structure as rgbColor.

> type rgbColor = { R : byte; G : byte; B : byte }
type color = { R : byte; G : byte; B : byte };;

type rgbColor =
  {R: byte;
   G: byte;
   B: byte;}
type color =
  {R: byte;
   G: byte;
   B: byte;}

> let red = { R = 255uy; G = 0uy; B = 0uy };;

val red : ucolor = {R = 255uy;
                     G = 0uy;
                     B = 0uy;}

Despite having two record types with the same structure, type inference 
still succeeds, but notice at u that the resulting type is color. Due to F#’s 
top-down evaluation, the compiler uses the most recently defined type that 
matches the labels. If your goal was to define red as color you’d be fine, but 
if you wanted rgbColor instead you’d have to be a bit more explicit in your 
record expression and include the type name, as shown here:

> let red = { urgbColor.R = 255uy; G = 0uy; B = 0uy };;

val red : vrgbColor = {R = 255uy;
                        G = 0uy;
                        B = 0uy;}
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By qualifying one of the names with the type name at u, you bypass 
type inference and the correct type is resolved v. (Although you can tech-
nically qualify the type on any name, the convention is to do it on either the 
first one or all of them.)

Copying Records

Not only can you use record expressions to create new record instances from 
scratch, but you can also use them to create new record instances from 
existing ones by copying values forward and setting new values for one or 
more properties. The alternate syntax, called a copy and update record expres-
sion, makes it easy to create yellow from red, as shown here:

> let red = { R = 255uy; G = 0uy; B = 0uy }
let yellow = { red with G = 255uy };;

val red : color = {R = 255uy;
                   G = 0uy;
                   B = 0uy;}
val yellow : color = {R = 255uy;
                      G = 255uy;
                      B = 0uy;}

To specify new values for multiple properties, separate them with 
semicolons.

Mutability

Like virtually everything else in F#, record types are immutable by default. 
However, because their syntax is so convenient, they’re commonly used in 
place of classes. In many cases, though, these scenarios require mutability. 
To make record type properties mutable within F#, use the mutable keyword 
just as with a let binding. For instance, you could make all of rgbColor’s 
members mutable like this:

> type rgbColor = { mutable R : byte
                  mutable G : byte
                  mutable B : byte };;

type rgbColor =
  {mutable R: byte;
   mutable G: byte;
   mutable B: byte;}

When a record type property is mutable, you can change its value with 
the standard assignment operator (<-) like this:

let myColor = { R = 255uy; G = 255uy; B = 255uy }
myColor.G <- 100uy
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CLI Mu ta bl e

Although record types support binary serialization by default, other forms of 
serialization require a default constructor and writable properties. To allow 
for more situations where record types can be used in favor of classes, the F# 
team introduced the CLIMutable attribute in F# 3.0.

Decorating a record type with this attribute instructs the compiler to 
include a default constructor and to make the generated properties read/write, 
but the compiler doesn’t expose those capabilities within F#. Even though the 
generated properties are writable, unless they’re explicitly marked as mutable 
with the mutable keyword in the record type definition, their values can’t be 
changed in F# code. For this reason, be careful when using CLIMutable record 
types across language boundaries to ensure that you don’t inadvertently 
change something. 

Additional Members

Because record types are really just syntactic sugar for classes, you can 
define additional members just as you would on a class. For example, you 
could augment rgbColor with a method that returns its hexadecimal string 
equivalent like this:

type rgbColor = { R : byte; G : byte; B : byte }
                member x.ToHexString() =
                  sprintf "#%02X%02X%02X" x.R x.G x.B

Now you can call the ToHexString method on any rgbColor instance.

> red.ToHexString();;
val it : string = "#FF0000"

Additional members on record types can also be static. For example, 
suppose you wanted to expose a few common colors as static properties on 
a record type. You could do this:

type rgbColor = { R : byte; G : byte; B : byte }
                -- snip --
                static member Red = { R = 255uy; G = 0uy; B = 0uy }
                static member Green = { R = 0uy; G = 255uy; B = 0uy }
                static member Blue = { R = 0uy; G = 0uy; B = 255uy }

The static Red, Green, and Blue properties behave like any other static 
member and can be used anywhere you need an rgbColor instance.

> rgbColor.Red.ToHexString();;
val it : string = "#FF0000"
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You can also create custom operators for your record types as static 
members. Let’s implement the addition operator to add two rgbColor 
instances.

open System
type rgbColor = { R : byte; G : byte; B : byte }
                -- snip --
                static member (+) (l : rgbColor, r : rgbColor) =
                  { R = Math.Min(255uy, l.R + r.R)
                    G = Math.Min(255uy, l.G + r.G)
                    B = Math.Min(255uy, l.B + r.B) }

The operator overload on rgbColor is defined and invoked like any other 
operator:

> let yellow = { R = 255uy; G = 0uy; B = 0uy } +
             { R = 0uy; G = 255uy; B = 0uy };;

val yellow : rgbColor = {R = 255uy;
                         G = 255uy;
                         B = 0uy;}

Discriminated Unions
Discriminated unions are user-defined data types whose values are restricted 
to a known set of values called union cases. There are no equivalent struc-
tures in the other popular .NET languages.

At first glance, you might mistake some simple discriminated unions for 
enumerations because their syntax is so similar, but they’re entirely differ-
ent constructs. For one, enumerations simply define labels for known inte-
gral values, but they aren’t restricted to those values. By contrast, the only 
valid values for discriminated unions are their union cases. Furthermore, 
each union case can either stand on its own or contain associated immu-
table data. 

The built-in Option<'T> type highlights each of these points. We’re really 
only interested in its definition here, so let’s take a look at that.

type Option<'T> =
| None
| Some of 'T

Option<'T> defines two cases, None and Some. None is an empty union case, 
meaning that it doesn’t contain any associated data. On the other hand, 
Some has an associated instance of 'T as indicated by the of keyword.
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To demonstrate how discriminated unions enforce a specific set of val-
ues, let’s define a simple function that accepts a generic option and writes out 
the associated value when the option is Some, or "None" when the option is None:

let showValue (v : _ option) =
  printfn "%s" (match v with
                | Some x -> x.ToString()
                | None -> "None")

When we invoke this function, we simply need to provide one of the 
option cases:

> Some 123 |> showValue;;
123
val it : unit = ()
> Some "abc" |> showValue;;
abc
val it : unit = ()
> None |> showValue;;
None
val it : unit = ()

Notice how in each of the three calls to showValue, we specified only the 
union case names. The compiler resolved both Some and None as Option<'T>. 
(In the event of a naming conflict, you can qualify the case names with the 
discriminated union name just as you would with a record type.) However, 
if you were to call showValue with a value other than Some or None, the com-
piler will raise an error like this:

> showValue "xyz";;

  showValue "xyz";;
  ----------^^^^^

stdin(9,11): error FS0001: This expression was expected to have type
    Option<'a>    
but here has type
    string  

Defining Discriminated Unions
Like other types, discriminated union definitions begin with the type key-
word. Union cases are delimited with bars. The bar before the first union 
case is optional, but omitting it when there’s only one case can be confusing 
because it will make the definition look like a type abbreviation. In fact, if 
you omit the bar in a single-case discriminated union and there is no data 
associated with the case, the compiler will treat the definition as a type 
abbreviation when there is a naming conflict with another type.



124   Chapter 5

The normal rules for identifiers apply when you are defining union cases, 
with one exception: Union case names must begin with an uppercase letter 
to help the compiler differentiate union cases from other identifiers in pat-
tern matching. If a case name does not begin with an uppercase letter, the 
compiler will raise an error.

In practice, discriminated unions typically serve one of three purposes:

•	 Representing simple object hierarchies

•	 Representing tree structures

•	 Replacing type abbreviations

Simple Object Hierarchies

Discriminated unions are commonly used to represent simple object hier-
archies. In fact, they excel at this task so much that they’re often used as a 
substitute for formal classes and inheritance.

Imagine working on a system that needs some basic geometry function-
ality. In an object-oriented environment, such functionality would probably 
consist of an IShape interface and a number of concrete shape classes like 
Circle, Rectangle, and Triangle, with each implementing IShape. A possible 
implementation might look like this:

type IShape = interface end

type Circle(r : float) =
  interface IShape
  member x.Radius = r  
  
type Rectangle(w : float, h : float) =
  interface IShape
  member x.Width = w
  member x.Height = h
  
type Triangle(l1 : float, l2 : float, l3 : float) =
  interface IShape
  member x.Leg1 = l1
  member x.Leg2 = l2
  member x.Leg3 = l3

Discriminated unions offer a cleaner alternative that is less prone to 
side effects. Here’s what that same object hierarchy might look like as a dis-
criminated union:

type Shape =
/// Describes a circle by its radius
| Circle of float
/// Describes a rectangle by its width and height
| Rectangle of ufloat * float
/// Describes a triangle by its three sides
| Triangle of vfloat * float * float
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The Shape type defines three cases: Circle, Rectangle, and Triangle. Each 
case has at least one attached value specific to the shape it represents. Notice 
at u and v how the tuple syntax is used to associate multiple data values 
with a case. But despite using the tuple syntax, cases don’t actually compile 
to tuples. Instead, each associated data item compiles to an individual prop-
erty that follows the tuple naming pattern (that is, Item1, Item2, and so on). 
This distinction is important because there’s no direct conversion from a 
union case to a tuple, meaning that you can’t use them interchangeably. 
The only real exception to this rule is that when the types are wrapped in 
parentheses the compiler will interpret the grouping as a tuple. In other 
words, the compiler treats of string * int and of (string * int) differently; 
the former is tuple-like, while the latter actually is a tuple. Unless you really 
need a true tuple, though, use the default format.

As you’d expect, creating Shape instances is the same as creating 
Option<'T> instances. For example, here’s how to create an instance of 
each case:

let c = Circle(3.0)
let r = Rectangle(10.0, 12.0)
let t = Triangle(25.0, 20.0, 7.0)

One of the major annoyances with the tuple syntax for multiple associ-
ated values is that it’s easy to forget what each position represents. To work 
around the issue, include XML documentation comments—like those pre-
ceding each case in this section’s Shape definition—as a reminder. 

Fortunately, relief is available. One of the language enhancements in 
F# 3.1 is support for named union type fields. The refined syntax resembles 
a hybrid of the current tupled syntax and type-annotated field definitions. 
For example, under the new syntax, Shape could be redefined as follows.

It ’s Bigge r on t he Inside

Discriminated unions are much more complex than their syntax might lead you 
to believe. Each discriminated union compiles to an abstract class responsible 
for handling equality and comparison semantics as well as type checking and 
union case creation. Similarly, each union case compiles to a class that is both 
nested within and inherits from the union class. The union case classes define 
the properties and backing stores for each of their associated values along 
with an internal constructor.

Although it’s possible to replicate some of the discriminated union function-
ality within other languages, doing so is nontrivial. Proving just how complex 
discriminated unions really are, inspecting the compiled Shape type we just 
defined in ILSpy reveals nearly 700 lines of C# code!
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type Shape =
| Circle of Radius : float
| Rectangle of Width : float * Height : float
| Triangle of Leg1 : float * Leg2 : float * Leg3 : float

For discriminated unions defined with the F# 3.1 syntax, creating new 
case instances is significantly more developer friendly—not only because 
the labels appear in IntelliSense, but also because you can use named argu-
ments like this:

let c = Circle(Radius = 3.0) 
let r = Rectangle(Width = 10.0, Height = 12.0)
let t = Triangle(Leg1 = 25.0, Leg2 = 20.0, Leg3 = 7.0)

Tree Structures

Discriminated unions can also be self-referencing, meaning that the data 
associated with a union case can be another case from the same union. 
This is handy for creating simple trees like this one, which represents a 
rudimentary markup structure:

type Markup =
| ContentElement of string * uMarkup list
| EmptyElement of string
| Content of string

Most of this definition should be familiar by now, but notice that the 
ContentElement case has an associated string and list of Markup values.

The nested Markup list u makes it trivial to construct a simple HTML 
document like the following. Here, ContentElement nodes represent elements 
(such as html, head, and body) that contain additional content, while Content 
nodes represent raw text contained within a ContentElement.

let movieList =
  ContentElement("html",
    [ ContentElement("head", [ ContentElement("title", [ Content "Guilty Pleasures" ])])
      ContentElement("body",
        [ ContentElement("article",
            [ ContentElement("h1", [ Content "Some Guilty Pleasures" ])
              ContentElement("p",
                [ Content "These are "
                  ContentElement("strong", [ Content "a few" ])
                  Content " of my guilty pleasures" ])
              ContentElement("ul",
                [ ContentElement("li", [ Content "Crank (2006)" ])
                  ContentElement("li", [ Content "Starship Troopers (1997)" ])
                  ContentElement("li", [ Content "RoboCop (1987)" ])])])])])
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To convert the preceding tree structure to an actual HTML document, 
you could write a simple recursive function with a match expression to 
handle each union case, like this:

let rec toHtml markup =
  match markup with
  | uContentElement (tag, children) ->
        use w = new System.IO.StringWriter()
        children
          |> Seq.map toHtml
          |> Seq.iter (fun (s : string) -> w.Write(s))
        sprintf "<%s>%s</%s>" tag (w.ToString()) tag
  | vEmptyElement (tag) -> sprintf "<%s />" tag
  | wContent (c) -> sprintf "%s" c

The match expression is used here roughly like a switch statement in C# or 
a SELECT CASE statement in Visual Basic. Each match case, denoted by a verti-
cal pipe (|), matches against an Identifier pattern that includes the union 
case name and identifiers for each of its associated values. For instance, the 
match case at u matches ContentElement items and represents the associated 
values with the tag and children identifiers within the case body (the part after 
the arrow). Likewise, the match cases at v and w match the EmptyElement and 
Content cases, respectively. (Note that because match expressions return a value, 
each match case’s return type must be the same.)

Invoking the toHtml function with movieList results in the following 
HTML (formatted for readability). As you look over the resulting HTML, 
try tracing each element back to its node in movieList.

<html>
  <head>
    <title>Guilty Pleasures</title>
  </head>
  <body>
    <article>
        <h1>Some Guilty Pleasures</h1>
        <p>These are <strong>a few</strong> of my guilty pleasures</p>
        <ul>
            <li>Crank (2006)</li>
            <li>Starship Troopers (1997)</li>
            <li>RoboCop (1987)</li>
        </ul>
    </article>
  </body>
</html>

Replacing Type Abbreviations

Single-case discriminated unions can be a useful alternative to type abbre-
viations, which, while nice for aliasing existing types, don’t provide any 
additional type safety. For instance, suppose you’ve defined UserId as an 
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alias for System.Guid and you have a function UserId -> User. Although the 
function accepts UserId, nothing prevents you from sending in an arbitrary 
Guid, no matter what that Guid actually represents. 

Let’s extend the markup examples from the previous section to show 
how single-case discriminated unions can solve this problem. If you wanted 
to display the generated HTML in a browser, you could define a function 
like this:

open System.IO

u type HtmlString = string

let displayHtml (html v: HtmlString) =
  let fn = Path.Combine(Path.GetTempPath(), "HtmlDemo.htm")
  let bytes = System.Text.UTF8Encoding.UTF8.GetBytes html
  using (new FileStream(fn, FileMode.Create, FileAccess.Write))
        (fun fs -> fs.Write(bytes, 0, bytes.Length))
  System.Diagnostics.Process.Start(fn).WaitForExit()
  File.Delete fn

The actual mechanics of the displayHtml function aren’t important 
for this discussion. Instead, focus your attention on u the HtmlString type 
abbreviation and v the type annotation explicitly stating that the html 
parameter is an HtmlString.

It’s clear from the signature that the displayHtml function expects the 
supplied string to contain HTML, but because HtmlString is merely a type 
abbreviation there’s nothing ensuring that it actually is HTML. As written, 
both movieList |> toHtml |> displayHtml and "abc123" |> displayHtml are valid.

To introduce a bit more type safety, we can replace the HtmlString defini-
tion with a single-case discriminated union, like this:

type HtmlString = | HtmlString of string

Now that HtmlString is a discriminated union, we need to change the 
displayHtml function to extract the associated string. We can do this in one 
of two ways. The first option requires us to change the function’s signature 
to include an Identifier pattern. Alternatively, we can leave the signature 
alone and introduce an intermediate binding (also using an Identifier 
pattern) for the associated value. The first option is cleaner, so that’s the 
approach we’ll use.

let displayHtml (HtmlString(html)) =
  let fn = Path.Combine(Path.GetTempPath(), "HtmlDemo.htm")
  let bytes = System.Text.UTF8Encoding.UTF8.GetBytes html
  using (new FileStream(fn, FileMode.Create, FileAccess.Write))
        (fun fs -> fs.Write(bytes, 0, bytes.Length))
  System.Diagnostics.Process.Start(fn).WaitForExit()
  File.Delete fn
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To call the displayHtml function, we only need to wrap the string from 
the toHtml function in an HtmlString instance and pass it to displayHtml as 
follows:

HtmlString(movieList |> toHtml) |> displayHtml

Finally, we can further simplify this code by revising the toHtml func-
tion to return an HtmlString instead of a string. One approach would look 
like this:

let rec toHtml markup =
  match markup with
  | ContentElement (tag, children) ->
        use w = new System.IO.StringWriter()
        children
          |> Seq.map toHtml
          |> Seq.iter (fun u(HtmlString(html)) -> w.Write(html))
        HtmlString (sprintf "<%s>%s</%s>" tag (w.ToString()) tag)
  | EmptyElement (tag) -> HtmlString (sprintf "<%s />" tag)
  | Content (c) -> HtmlString (sprintf "%s" c)

In this revised version, we’ve wrapped each case’s return value in an 
HtmlString instance. Less trivial, though, is u, which now uses an Identifier 
pattern to extract the HTML from the recursive result in order to write the 
raw text to the StringWriter.

With the toHtml function now returning an HtmlString, passing its result 
to displayHtml is simplified to this:

movieList |> toHtml |> displayHtml

Single-case discriminated unions can’t guarantee that any associated 
values are actually correct, but they do offer a little extra safety in that they 
force developers to make conscious decisions about what they’re passing to 
a function. Developers could create an HtmlString instance with an arbitrary 
string, but if they do they’ll be forced to think about whether the data is 
correct.

Additional Members
Like record types, discriminated unions also allow additional members. 
For example, we could redefine the toHtml function as a method on the 
Markup discriminated union as follows:

type Markup =
| ContentElement of string * Markup list
| EmptyElement of string
| Content of string
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  member x.toHtml() =
    match x with
    | ContentElement (tag, children) ->
          use w = new System.IO.StringWriter()
          children
            |> Seq.map (fun m -> m.toHtml())
            |> Seq.iter (fun (HtmlString(html)) -> w.Write(html))
          HtmlString (sprintf "<%s>%s</%s>" tag (w.ToString()) tag)
    | EmptyElement (tag) -> HtmlString (sprintf "<%s />" tag)
    | Content (c) -> HtmlString (sprintf "%s" c)

Calling this method is like calling a method on any other type:

movieList.toHtml() |> displayHtml

Lazy Evaluation
By default, F# uses eager evaluation, which means that expressions are evalu-
ated immediately. Most of the time, eager evaluation will be fine in F#, but 
sometimes you can improve perceived performance by deferring execution 
until the result is actually needed, through lazy evaluation.

F# supports a few mechanisms for enabling lazy evaluation, but one of 
the easiest and most common ways is through the use of the lazy keyword. 
Here, the lazy keyword is used in conjunction with a series of expressions 
that includes a delay to simulate a long-running operation.

> let lazyOperation = lazy (printfn "evaluating lazy expression"
                          System.Threading.Thread.Sleep(1000)
                          42);;

val lazyOperation : Lazy<int> = Value is not created.

You can see the lazy keyword’s impact. If this expression had been 
eagerly evaluated, evaluating lazy expression would have been printed and 
there would have been an immediate one-second delay before it returned 
42. Instead, the expression’s result is an instance of the built-in Lazy<'T> 
type. In this case, the compiler inferred the return type and created an 
instance of Lazy<int>.

N o t e 	 Be careful using the lazy type across language boundaries. Prior to F# 3.0, the 
Lazy<'T> class was located in the FSharp.Core assembly. In .NET 4.0, Lazy<'T> 
was moved to mscorlib.
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The Lazy<'T> instance created by the lazy keyword can be passed around 
like any other type, but the underlying expression won’t be evaluated until 
you force that evaluation by either calling the Force method or accessing 
its Value property, as shown next. Convention generally favors the Force 
method, but it doesn’t really matter whether you use it or the Value property 
to force evaluation. Internally, Force is just an extension method that wraps 
the Value property.

> lazyOperation.Force() |> printfn "Result: %i";;
evaluating lazy expression
Result: 42
val it : unit = ()

Now that we’ve forced evaluation, we see that the underlying expression 
has printed its message, slept, and returned 42. The Lazy<'T> type can also 
improve application performance through memoization. Once the associ-
ated expression is evaluated, its result is cached within the Lazy<'T> instance 
and used for subsequent requests. If the expression involves an expensive or 
time-consuming operation, the result can be dramatic.

To more effectively observe memoization’s impact, we can enable timing 
in FSI and repeatedly force evaluation as follows:

> let lazyOperation = lazy (System.Threading.Thread.Sleep(1000); 42)
#time "on";;

val lazyOperation : Lazy<int> = Value is not created.

--> Timing now on

> lazyOperation.Force() |> printfn "Result: %i";;
Result: 42
Real: u00:00:01.004, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()
> lazyOperation.Force() |> printfn "Result: %i";;
Result: 42
Real: v00:00:00.001, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()
> lazyOperation.Force() |> printfn "Result: %i";;
Result: 42
Real: w00:00:00.001, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()

As you can see at u, the first time Force is called we incur the expense 
of putting the thread to sleep. The subsequent calls at v and w complete 
instantaneously because the memoization mechanism has cached the result.
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Summary
As you’ve seen in this chapter, functional programming requires a different 
mindset than object-oriented programming. While object-oriented pro-
gramming emphasizes managing system state, functional programming is 
more concerned with program correctness and predictability through the 
application of side-effect-free functions to data. Functional languages like 
F# treat functions as data. In doing so, they allow for greater composability 
within systems through concepts like higher-order functions, currying, par-
tial application, pipelining, and function composition. Functional data types 
like tuples, record types, and discriminated unions help you write correct 
code by letting you focus on the problem you’re trying to solve instead of 
attempting to satisfy the compiler.
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G o i n g  t o  C o l l e ct  i o n s

Programming tasks often require work-
ing with collections of data. The .NET 

Framework has always supported this 
scenario with constructs such as arrays and 

the ArrayList class, but it wasn’t until generics were 
introduced in .NET 2.0 that collection support really 
matured.

F# builds upon .NET’s legacy by not only supporting all of the existing 
collection types but also bringing a few of its own to the party. In this chap-
ter, we’ll see the role a few of the classic collection types play in F# and then 
explore the F#-specific types. Along the way, we’ll see how the built-in col-
lection modules add some functional flair and make working with both the 
traditional and F#-specific types a breeze.
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Sequences
In .NET, sequence is an all-encompassing term for a collection of values that 
share a common type. More specifically, a sequence is any type that imple-
ments IEnumerable<'T>.

Nearly all of the major collection types in .NET are sequences. For 
instance, the generic collection types (like Dictionary<'TKey, 'TValue> and 
List<’T>) and even some types (like String) that aren’t typically thought of 
as collections implement IEnumerable<'T>. Conversely, the legacy collection 
types (like ArrayList and Hashtable) predate generics, so they implement 
only the nongeneric IEnumerable interface. Accordingly, they don’t enforce 
a single, common type, and they’re generally regarded as enumerable col-
lections rather than sequences.

In F#, IEnumerable<'T> is often expressed as seq<'T> or 'T seq. Type anno-
tations like values : 'A seq compile to IEnumerable<'A>, and any type that 
implements IEnumerable<'T> can be used wherever a sequence is expected. 
Because IEnumerable<'T> defines only the overloaded GetEnumerator method, 
sequences are inherently immutable. Be careful when using the specific col-
lection types directly, however, because underlying implementations may be 
mutable.

Creating Sequences
Today’s .NET developers take working with sequences for granted, but before 
LINQ’s introduction, programming directly against IEnumerable<'T> was 
relatively rare. Instead, developers typically coded against specific collection 
types. LINQ’s IEnumerable<'T> extension methods brought the abstraction 
to the forefront, though, and taught developers that they didn’t always 
need to know anything about a collection other than that it implements the 
GetEnumerator method. Even with all of the goodness that LINQ gives us, it 
provides only a framework for working with IEnumerable<'T>; creating arbitrary 
sequences in LINQ still requires a method to create an instance of a specific 
sequence type.

F# takes the abstraction even further than LINQ by codifying sequence 
creation into the language through concepts like sequence and range 
expressions. While each sequence is ultimately still an implementation of 
IEnumerable<'T>, the compiler is free to provide its own implementations. 
The Seq module also includes several functions for creating new sequences.

Sequence Expressions

Sequence expressions allow you to create new sequences by iteratively apply-
ing other F# expressions and yielding (returning) the results into a new 
sequence. In some situations, particularly when you are working with 
large or computationally expensive collections, the sequence types used 
internally by sequence expressions are preferable to other collection types 



Going to Collections   135

because they create values only as needed. These sequence types typically 
also hold only one value in memory at a time, making them ideal for large 
data sets.

NO  T E 	 Sequence expressions are technically a built-in workflow called a computation 
expression. We’ll cover these constructs in detail in Chapter 12.

You create a sequence expression by enclosing one or more expressions 
within a sequence builder and using a do binding in conjunction with the 
yield keyword. For example, say you have a file named ArnoldMovies.txt that 
contains the following data:

The Terminator,1984
Predator,1987
Commando,1985
The Running Man,1987
True Lies,1994
Last Action Hero,1993
Total Recall,1990
Conan the Barbarian,1982
Conan the Destroyer,1984
Hercules in New York,1969

You can read each line of the text file into a sequence with a sequence 
expression like this:

let lines = seq { use r = new System.IO.StreamReader("ArnoldMovies.txt")
                  while not r.EndOfStream do yield r.ReadLine() }

Here, a while loop is used to iteratively read lines from a StreamReader, 
yielding a line for each iteration. (In some simpler sequence expressions—
such as those using an enumerable for loop—do yield can be replaced with 
the -> operator, but for consistency I usually stick with do yield.)

If you wanted to write this sequence to the console, you could send it 
to the printfn function and use the default formatter (via the %A token), but 
only the first four values are included in the output, as shown here:

> lines |> printfn "%A";;
seq ["The Terminator,1984"; "Predator,1987"; "Commando,1985"; "The Running Man,1987"; ...]
val it : unit = ()

To print every value in the sequence, you need to force enumeration 
over the entire construct.

Range Expressions

Although range expressions resemble the slice expressions you learned about 
in Chapter 4 in that they use the .. operator, they’re actually specialized 
sequence expressions that allow you to create sequences over a range of 
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values. Range expressions are similar to the Enumerable.Range method 
but are a bit more powerful because they’re not restricted to integers. 
For instance, you can easily create a sequence containing the integers 0 
through 10 like this:

seq { 0..10 }

Or you could create a sequence containing 0 through 10 as floats 
this way:

seq { 0.0..10.0 }

Likewise, you could create a sequence containing the characters a 
through z like this:

seq { 'a'..'z' }

In most cases, you can also include a value that identifies how many 
items to skip between values when generating the sequence. Creating a 
sequence containing the integral multiples of 10 from 0 through 100 is 
easy with the following expression:

seq { 0..10..100 }

This range expression form works only with numeric types, so you can’t 
use it with character data. For example, the following expression results in 
an error.

seq { 'a'..2..'z' }

Finally, you can create sequences with declining values by using a nega-
tive step value like this:

seq { 99..-1..0 }

Empty Sequences

When you need a sequence without any elements, you can turn to the Seq 
module’s generic empty function to create one for you. For instance, to cre-
ate an empty string sequence, you could call Seq.empty like this:

> let emptySequence = Seq.empty<string>;;

val emptySequence : seq<string>
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Alternatively, if you don’t need any particular type, you can let the com-
piler automatically generalize the sequence by omitting the type argument:

> let emptySequence = Seq.empty;;

val emptySequence : seq<'a>

Initializing a Sequence

Another module function, Seq.init, creates a sequence with up to a speci-
fied number of elements. For example, to create a sequence containing 
10 random numbers, you could write:

> let rand = System.Random();;

val rand : System.Random

> Seq.init 10 (fun _ -> rand.Next(100));;
val it : seq<int> = seq [22; 34; 73; 42; ...]

Working with Sequences
The Seq module provides a number of functions for working with any 
sequence. The list of functions covered next is a sampling of the most use-
ful functions in the Seq module, but it is by no means comprehensive.

While each of the functions discussed in the coming sections belongs 
to the Seq module, many have specialized counterparts in the other collec-
tion modules. In the interest of space, I’ll cover the common functions only 
once, but I strongly encourage you to explore the other modules and dis-
cover the right tools for your task.

W he n Is a F unct  ion Not a F unct  ion?

You may have noticed in both of the empty sequence examples that Seq.empty 
was invoked without any arguments. Seq.empty differs from every function we’ve 
encountered so far in that it behaves more like a basic value binding than a 
function. In fact, if you were to call Seq.empty with an argument, you’d get a 
compiler error telling you that the value (Seq.empty) is not a function and cannot 
be applied.

Why is Seq.empty called a function when the compiler claims otherwise? 
Because it, along with some other functions (such as Operators.typeof and 
Operators.typedefof), is a special-case value called a type function. Type func-
tions are generally reserved for pure functions that compute values based on 
their type arguments, and therefore—despite being represented as methods in 
the compiled assemblies—they are treated as values within F# code. 
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Finding Sequence Length

You use Seq.length to determine how many elements a sequence contains 
like this:

seq { 0..99 } |> Seq.length

Be careful with Seq.length, though, because, depending on the under-
lying collection type, it can force enumeration of the entire sequence or 
otherwise impair performance. Consider the following code, which checks 
if a sequence is empty using Seq.length = 0:

seq { for i in 1..10 do
      printfn "Evaluating %i" i
      yield i }
|> Seq.length = 0

To determine the sequence’s length, the system must iterate over the 
sequence by calling the enumerator’s MoveNext method until it returns false. 
Each invocation of MoveNext involves doing whatever work is necessary to 
obtain the next value. In this case, getting the next value involves writing 
a string to the console, as shown here:

Evaluating 1
Evaluating 2
Evaluating 3
-- snip --
Evaluating 10
val it : bool = false

Writing some text to the console is trivial, but even so, it is unnecessary 
work since the result isn’t actually being used for anything. Going beyond 
this simple example, you can easily imagine each call to MoveNext triggering 
an expensive computation or database call. If you just need to determine 
whether the sequence has any elements, you should use the Seq.isEmpty 
function instead.

Seq.isEmpty checks whether a sequence contains any elements without 
forcing enumeration of the entire sequence. Consider the following code, 
which replaces Seq.length = 0 with Seq.isEmpty:

seq { for i in 1..10 do
      printfn "Evaluating %i" i
      yield i }
|> Seq.isEmpty

Because Seq.isEmpty returns false as soon as it finds an element, MoveNext 
is called only once, resulting in:

Evaluating 1
val it : bool = false
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As you can see, although the sequence expression defines 10 elements, 
only the first one was printed because evaluation stopped as soon as the 
function found a value.

Iterating over Sequences

The Seq.iter function is the functional equivalent of the enumerable for 
loop in that it iterates over a sequence, applying a function to each element. 
For example, to print each element of a sequence containing the values 0 
through 99, you could write:

> seq { 0..99 } |> Seq.iter (printfn "%i");;
0
1
2
-- snip --
97
98
99
val it : unit = ()

Transforming Sequences

Seq.map is similar to Seq.iter in that it applies a function to every element in 
a sequence, but unlike Seq.iter, it builds a new sequence with the results. 
For instance, to create a new sequence containing the squares of elements 
from a sequence, you could write:

> seq { 0..99 } |> Seq.map (fun i -> i * i);;
val it : seq<int> = seq [0; 1; 4; 9; ...]

Sorting Sequences

The Seq module defines several functions for sorting sequences. Each sort-
ing function creates a new sequence, leaving the original unchanged.

The simplest sorting function, Seq.sort, orders the elements using a 
default comparison based on the IComparable<'T> interface. For instance, 
you can apply Seq.sort to a sequence of random integer values like this:

> let rand = System.Random();;

val rand : System.Random

> Seq.init 10 (fun _ -> rand.Next 100) |> Seq.sort;;
val it : seq<int> = seq [0; 11; 16; 19; ...]

For more complex sorting needs, you can use the Seq.sortBy function. 
In addition to the sequence to be sorted, it accepts a function that returns 
the value to sort upon for each element in the sequence.
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For example, each movie listed in ArnoldMovies.txt in “Sequence 
Expressions” on page 134 included the release year. If you wanted to sort 
the movies by their release years, you could revise the sequence expression 
to isolate the individual values as follows:

let movies =
  seq { use r = new System.IO.StreamReader("ArnoldMovies.txt")
        while not r.EndOfStream do
          let l = r.ReadLine().Split(',')
          yield ul.[0], int l.[1] }

At u the sequence expression now yields tuples containing each movie 
title and release year. We can send the sequence to Seq.sortBy along with the 
snd function (to get the year) like this:

> movies |> Seq.sortBy snd;;
val it : seq<string * int> =
  seq
    [("Hercules in New York", 1969); ("Conan the Barbarian", 1982);
     ("The Terminator", 1984); ("Conan the Destroyer", 1984); ...]

Alternatively, to sort the movies by title, you can replace snd with fst.

> seq { use r = new System.IO.StreamReader(fileName)
      while not r.EndOfStream do
        let l = r.ReadLine().Split(',')
        yield l.[0], int l.[1] }
|> Seq.sortBy fst;;
val it : seq<string * int> =
  seq
    [("Commando", 1985); ("Conan the Barbarian", 1982);
     ("Conan the Destroyer", 1984); ("Hercules in New York", 1969); ...]

Filtering Sequences

When you want to work only with elements that meet certain criteria, you can 
use the Seq.filter function to create a new sequence containing only those 
elements. For example, continuing with the movie theme, you can get the 
movies released prior to 1984 like this:

> movies |> Seq.filter (fun (_, year) -> year < 1985);;
val it : seq<string * int> =
  seq
    [("The Terminator", 1984); ("Conan the Barbarian", 1982);
     ("Conan the Destroyer", 1984); ("Hercules in New York", 1969)]

Aggregating Sequences

The Seq module provides a number of functions for aggregating the ele-
ments in a sequence. The most flexible (and complex) of the aggregation 
functions is Seq.fold, which iterates over a sequence, applying a function 
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to each element and returning the result as an accumulator value. For 
example, Seq.fold makes it easy to compute the sum of a sequence’s 
elements:

> seq { 1 .. 10 } |> Seq.fold u(fun s c -> s + c) v0;;
val it : int = 55

This example shows just one way to add the values 1 through 10. The 
function that Seq.fold uses for aggregation u accepts two values: an aggre-
gation value (essentially a running total), and the current element. We also 
need to give the fold function an initial aggregation value v, which we do 
with 0. As fold executes, it applies the aggregation function to each element 
in the sequence and returns the new aggregation value for use in the next 
iteration.

Because the addition operator function itself satisfies the require-
ments for the aggregation function, we can simplify the previous expres-
sion like this:

> seq { 1..10 } |> Seq.fold (+) 0;;
val it : int = 55

A slightly more specialized aggregation function is Seq.reduce. The 
reduce function is very much like the fold function except that the aggrega-
tion value that’s passed through the computation is always the same type 
as the sequence’s elements, whereas fold can transform the data to another 
type. The reduce function also differs from fold in that it doesn’t accept an 
initial aggregation value. Instead, reduce initializes the aggregation value 
to the first value in the sequence. To see Seq.reduce in action, we can rewrite 
the previous expression as follows:

> seq { 1 .. 10 } |> Seq.reduce (+);;
val it : int = 55

As expected, the result of adding the items in the sequence is the same 
regardless of whether we use Seq.fold or Seq.reduce.

Seq.fold and Seq.reduce aren’t the only ways to calculate aggregate 
values from a sequence; some common aggregations like summations 
and averages have functions of their own. For example, rather than using 
Seq.reduce to calculate the sum of the elements like we did previously, we 
can use Seq.sum:

> seq { 1..10 } |> Seq.sum;;
val it : int = 55

Similarly, to compute the average, you can use Seq.average like this:

> seq { 1.0..10.0 } |> Seq.average;;
val it : float = 5.5
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One thing to note about Seq.average is that it works only with types that 
support division by an integer. If you try to use it with a sequence of inte-
gers, you’ll receive the following error:

> seq { 1..10 } |> Seq.average;;

  seq { 1..10 } |> Seq.average;;
  -----------------^^^^^^^^^^^

stdin(2,18): error FS0001: The type 'int' does not support the operator 'DivideByInt'

Like Seq.sort, the Seq.sum and Seq.average functions have the Seq.sumBy 
and Seq.averageBy counterparts that accept a function that lets you identify 
which value should be used in the calculation. The syntax for these func-
tions is the same as Seq.sortBy, so I’ll leave it to you to experiment a bit more 
with the Seq module.

Arrays
F# arrays are the same construct as traditional .NET arrays. They contain a 
fixed number of values (each of the same type) and are zero-based. Although 
an array binding itself is immutable, individual array elements are mutable, 
so you need to be careful that you don’t introduce unwanted side effects. 
That said, the mutable nature of arrays makes them more desirable in some 
situations than other collection constructs because no further allocations 
are required to change element values.

Creating Arrays
F# provides a number of ways to create new arrays and control each ele-
ment’s initial value, using both native syntax and module functions.

Array Expressions

One of the most common ways to create an array is with an array expression. 
Array expressions consist of a semicolon-delimited list of values enclosed 
between the [| and |] tokens. For instance, you can create an array of 
strings like this (if you place each value on a separate line, you can omit 
the semicolons):

> let names = [| "Rose"; "Martha"; "Donna"; "Amy"; "Clara" |];;

val names : string [] = [|"Rose"; "Martha"; "Donna"; "Amy"; "Clara"|]
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Finally, you can generate an array by enclosing a sequence expression 
between [| and |]. Unlike with the sequence builder, however, the array 
will be fully constructed when the array expression is evaluated. Compare 
this example with the corresponding one from the sequence expression 
discussion:

> let lines = [| use r = new System.IO.StreamReader("ArnoldMovies.txt")
               while not r.EndOfStream do yield r.ReadLine() |];;

val lines : string [] =
  [|"The Terminator,1984"; "Predator,1987"; "Commando,1985";
    "The Running Man,1987"; "True Lies,1994"; "Last Action Hero,1993";
    "Total Recall,1990"; "Conan the Barbarian,1982";
    "Conan the Destroyer,1984"; "Hercules in New York,1969"|]

As you can see, the default array print formatter prints every element 
(it caps the output at 100 elements) rather than printing only the first four.

Empty Arrays

Should you need to create an empty array, you can use an empty pair of 
square brackets:

let emptyArray = [| |]

The downside of this approach is that, depending on context, you 
may need to include a type annotation to ensure that the compiler doesn’t 
automatically generalize the array. Such a definition would look something 
like this:

let emptyArray : int array = [| |];;

In the preceding example, the type annotation, int array, is an English-
like syntax. If you prefer a more traditional form, you could use int[] instead. 
Without the type annotation, the compiler would define the array as 'a [].

Another way to create an empty array is with the Array.empty function. 
Just like its counterpart in the Seq module, Array.empty is a type function, so 
you invoke it without any arguments to create a zero-length array. To create 
an empty string array with this function, you simply write:

Array.empty<string>

If you prefer to let the compiler infer the underlying type or automati-
cally generalize it, you can omit the type parameter.
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Initializing Arrays

To quickly create an array where all elements are initialized to the underlying 
type’s default value, you can use Array.zeroCreate. Suppose you know that you 
need an array of five strings, but you don’t yet know what values will be stored 
in each element. You could create the array like this:

> let stringArray = Array.zeroCreate<string> 5;;

val stringArray : string [] = [|null; null; null; null; null|]

Because Array.zeroCreate uses the underlying type’s default value, it’s 
possible that the elements will be initialized to null like they were here. If 
null is valid for the type and you’re creating arrays like this, you’ll need to 
code against NullReferenceExceptions.

Alternatively, Array.init lets you initialize each element to a specific value. 
Array.init is the array-specific equivalent of Seq.init. Its syntax is the same, 
but it creates and returns an array instead. For instance, to create a new array 
where the elements are initialized to the empty string, you could write:

> let stringArray = Array.init 5 (fun _ -> "");;

val stringArray : string [] = [|""; ""; ""; ""; ""|]

Here, the supplied function only returns the empty string, but your ini-
tialization function could easily have more complicated logic, allowing you 
to compute a different value for each element.

Working with Arrays
Working with arrays in F# is similar to working with them in other .NET 
languages, but F# extends their usefulness with constructs like slice expres-
sions and the Array module.

Accessing Elements

Individual array elements are accessible through an indexed property. For 
instance, to retrieve the fourth element from the lines array defined previ-
ously, you’d write:

> lines.[3];;
val it : string = "The Running Man,1987"

You can combine the indexer syntax with the assignment operator to 
change individual elements of an array. For instance, to replace Last Action 
Hero, you could write:

lines.[5] <- "Batman & Robin,1997"
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If you prefer a more functional approach to retrieving and mutating 
array elements, the Array module has you covered with the get and set func-
tions. In the following example we’ll create an array, change the second ele-
ment’s value, retrieve the new value, and write it to the console.

> let movies = [| "The Terminator"; "Predator"; "Commando" |];;

val movies : string [] = [|"The Terminator"; "Predator"; "Commando"|]

> Array.set movies 1 "Batman & Robin"
Array.get movies 1 |> printfn "%s";;
Batman & Robin

val it : unit = ()

Finally, arrays also support slice expressions. As noted in Chapter 4, 
slice expressions let you easily retrieve a range of values from a collection 
like this:

> lines.[1..3];;
val it : string [] =
  [|"Predator,1987"; "Commando,1985"; "The Running Man,1987"|]

Copying Arrays

You can easily copy the elements from one array to a new array with 
Array.copy. Here, we create an array containing the numbers 1 through 
10 and immediately copy them to another.

[| 1..10 |] |> Array.copy

Behind the scenes, Array.copy is a wrapper around the CLR’s Array​.Clone 
method, which creates a shallow copy of the source array. Array.copy offers the 
added benefit of automatically downcasting the object instance returned 
by Clone to the appropriate array type; that is, passing an integer array 
directly to Array.Clone will give you an obj instance, whereas passing that 
same array to Array.copy will give you an instance of int array.

Sorting Arrays

Arrays can be sorted like any other sequence, but the Array module provides 
a few specialized sorting functions to take advantage of the fact that indi-
vidual array elements are mutable. Unfortunately, each of these functions 
returns unit instead of the sorted array, so they’re not particularly effective 
in pipelining or composition chains.

The first in-place sorting function, sortInPlace, sorts an array with the 
default comparison mechanism. The following snippet shows how to sort 
an array of random integers.
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> let r = System.Random()
let ints = Array.init 5 (fun _ -> r.Next(-100, 100));;

val r : System.Random
val ints : int [] = [|-94; 20; 13; -99; 0|]

> ints |> Array.sortInPlace;;
val it : unit = ()
> ints;;
val it : int [] = [|-99; -94; 0; 13; 20|]

If you need more control over how sorting is performed, you can turn 
to the sortInPlaceBy or sortInPlaceWith functions. The sortInPlaceBy func-
tion lets you provide a transformation function that’s used in the sorting 
process. The sortInPlaceWith function accepts a comparison function that 
returns an integer where less than zero means the first value is greater than 
the second, greater than zero means that the first value is less than the sec-
ond value, and zero means the first and second values are equal.

To better understand both approaches, consider the following array 
containing some movies and their release years as tuples.

let movies = [| ("The Terminator", "1984")
                ("Predator", "1987")
                ("Commando", "1985")
                ("Total Recall", "1990")
                ("Conan the Destroyer", "1984") |]

The easiest way to sort by year is to just project the year value via 
sortInPlaceBy like this:

> movies |> Array.sortInPlaceBy (fun (_, y) -> y)
movies;;

val it : (string * string) [] =
  [|("The Terminator", "1984"); ("Conan the Destroyer", "1984");
    ("Commando", "1985"); ("Predator", "1987"); ("Total Recall", "1990")|]

Alternatively, we can directly compare two elements with sortInPlaceWith:

> movies |> Array.sortInPlaceWith (fun (_, y1) (_, y2) -> if y1 < y2 then -1
                                                        elif y1 > y2 then 1
                                                        else 0)
movies;;

val it : (string * string) [] =
  [|("The Terminator", "1984"); ("Conan the Destroyer", "1984");
    ("Commando", "1985"); ("Predator", "1987"); ("Total Recall", "1990")|]
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As you can see, sortInPlaceBy allows you to sort according to the default 
equality semantics for a particular element’s underlying type, whereas 
sortInPlaceWith allows you to essentially define your own equality semantics 
for each element in the array.

Multidimensional Arrays
All of the arrays we’ve looked at so far have been one-dimensional. While 
it’s also possible to create multidimensional arrays, it’s a bit more compli-
cated because there’s no direct syntactic support. For two-dimensional 
arrays, you can pass a sequence of sequences (typically either arrays or 
lists) to the array2D operator. To create arrays with more than two dimen-
sions, you need to use either the Array3D.init or Array4D.init functions. 
Multidimensional arrays have modules (like Array2D and Array3D) that con-
tain specialized subsets of those defined in the Array module.

NO  T E 	 The maximum number of dimensions F# supports is four.

Suppose you wanted to represent the movies from the previous sections 
as a two-dimensional array instead of as an array of tuples. You could write 
something like the following, which passes an array of arrays to the array2D 
operator:

let movies = array2D [| [| "The Terminator"; "1984" |]
                        [| "Predator"; "1987" |]
                        [| "Commando"; "1985" |]
                        [| "The Running Man"; "1987" |]
                        [| "True Lies"; "1994" |]
                        [| "Last Action Hero"; "1993" |]
                        [| "Total Recall"; "1990" |]
                        [| "Conan the Barbarian"; "1982" |]
                        [| "Conan the Destroyer"; "1984" |]
                        [| "Hercules in New York"; "1969" |] |]

You can access any value in the two-dimensional array with the familiar 
indexer syntax. For instance, to get Commando’s release year you’d write 
movies.[2, 1], which would return 1985. Much more interesting, though, is 
what you can do with slice expressions.

Slice expressions make it easy to create new arrays containing subsets of 
data from the source. For instance, you can slice the movies array vertically to 
create new arrays containing only the movie titles or release years like this:

> movies.[0..,0..0];;
val it : string [,] = [["The Terminator"]
                       ["Predator"]
                       ["Commando"]
                       ["The Running Man"]
                       -- snip --]
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> movies.[0..,1..1];;
val it : string [,] = [["1984"]
                       ["1987"]
                       ["1985"]
                       ["1987"]
                       -- snip --]

You can also slice arrays horizontally to create new arrays containing 
only a few rows:

> movies.[1..3,0..];;
val it : string [,] = [["Predator"; "1987"]
                       ["Commando"; "1985"]
                       ["The Running Man"; "1987"]]

Multidimensional arrays are useful when the data has a nice, rectangular 
shape, but they don’t work when even a single row has a different number of 
items. Consider what happens if we try to include a director name in the two-
dimensional movies array (for brevity, we’ll just work with three titles here).

> let movies = array2D [| [| "The Terminator"; "1984"; "James Cameron" |]
                        [| "Predator"; "1987"; "John McTiernan" |]
                        [| "Commando"; "1985" |] |];;
System.ArgumentException: The arrays have different lengths.
Parameter name: vals
-- snip --
Stopped due to error

Of course, one possible solution would be to provide an empty string as 
the third element in the row that’s missing the director name. Alternatively, 
you can use a jagged array.

Jagged Arrays
Jagged arrays are arrays of arrays. Unlike multidimensional arrays, jagged 
arrays don’t require a rectangular structure. To convert the preceding fail-
ing example, we just need to remove the call to the array2D function.

> let movies = [| [| "The Terminator"; "1984"; "James Cameron" |]
                [| "Predator"; "1987"; "John McTiernan" |]
                [| "Commando"; "1985" |] |];;

val movies : string [] [] =
  [|[|"The Terminator"; "1984"; "James Cameron"|];
    [|"Predator"; "1987"; "John McTiernan"|]; [|"Commando"; "1985"|]|]

As you might expect, since movies is now a jagged array, you need to use 
a different syntax to access each element. You also need to code a bit more 
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defensively when using jagged arrays because there’s no guarantee that a 
particular index will be valid for any given row. That said, you can get the 
director name from the second row like this:

> movies.[1].[2];;
val it : string = "John McTiernan"

Lists
Lists are used extensively in F# development. When .NET developers discuss 
lists, they typically mean the generic List<'T> class. Although it’s possible 
(and sometimes even desirable) to use the generic list in F#, the language 
defines another immutable construct based on singly linked lists. In F#, lists 
created with the list syntax compile to instances of the FSharpList<'T> class 
found in the Microsoft.FSharp.Collections namespace, and that’s the kind of 
list we’ll be covering in this section.

Aside from both List<'T> and FSharpList<'T> being generic sequence 
types (they both implement IEnumerable<'T>), they have little in common 
and cannot be used interchangeably. You need to be careful to not mix 
list types when working in multilanguage solutions.

NO  T E 	 You can use the generic List<'T> class directly by opening the System.Collections 
.Generic namespace or through the built-in ResizeArray<'T> type abbreviation.

Creating Lists
Creating lists in F# is so similar to creating arrays that I won’t spend much 
time explaining the various forms here. The only notable syntactic differ-
ence between creating arrays and lists is the brace style. To create a new list, 
you enclose semicolon-delimited values, range expressions, or list sequence 
expressions between square brackets ([]) like this:

> let names = [ "Rose"; "Martha"; "Donna"; "Amy"; "Clara" ];;

val names : string list = ["Rose"; "Martha"; "Donna"; "Amy"; "Clara"]

a n y Way You Sl ice It

F# 3.1 features a few extensions to array slicing that aren’t covered here but do 
prove useful. Array slicing in F# 3.0 requires slices to have the same dimensions 
as the source array. Under F# 3.1 this restriction has been removed, so you can 
create a one-dimensional slice from a two-dimensional array, and so on.



150   Chapter 6

> let numbers = [ 1..11 ];;

val numbers : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11]

To create an empty list, you can use either List.empty or a pair of empty 
brackets.

Working with Lists
Although there are some similarities between working with F# lists and 
List<'T>, they’re mostly syntactic and deal with accessing individual known 
elements. Beyond that, F# lists are quite unique, especially because of their 
head and tail structure, which lends itself well to functional programming 
and to recursive techniques in particular.

Accessing Elements

When you want to get the element at a particular position, you can use the 
familiar indexer syntax just like you would with an array. Alternatively, you 
can use List.nth to get the same result:

> List.nth [ 'A'..'Z' ] 3;;
val it : char = 'D'

What’s more interesting (and often more useful) than accessing a par-
ticular element by index is a list’s head and tail. A list’s head is simply its first 
element, whereas its tail is all elements except the head. You can get a list’s 
head and tail through the Head or Tail properties or the List.head or List.tail 
module functions. Here’s an example using the module functions:

> let names = [ "Rose"; "Martha"; "Donna"; "Amy"; "Clara" ];;

val names : string list = ["Rose"; "Martha"; "Donna"; "Amy"; "Clara"]

> List.head names;;
val it : string = "Rose"
> List.tail names;;
val it : string list = ["Martha"; "Donna"; "Amy"; "Clara"]

NO  T E 	 Pattern matching is another way to get the head and tail, but we’ll save that discus-
sion for Chapter 7.

Why would you want to get only the first element or everything else? 
Recursion. If you had to iterate over a list using indexes, you’d need to track 
both the list and the current position. By separating a list into head and tail 
components, you’re free to operate against the head and then iterate with 
the tail.
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Consider this function, which returns a Boolean value indicating whether 
a list contains a particular value (much like the List.exists module function).

let rec contains fn l =
  if l = [] then false
  else fn(List.head l) || contains fn (List.tail l)

The contains function accepts both a function for testing the elements 
and a list to scan. The first thing contains does is check whether the sup-
plied list is empty. If the list is empty, contains immediately returns false; 
otherwise, it tests the list’s head with the provided function or recursively 
calls contains with both the function and the list’s tail.

Now let’s test for a few values, starting with an empty list:

> [] |> contains (fun n -> n = "Rose");;
val it : bool = false

You can see that contains correctly returns false when the list is empty, 
but what about a populated list?

> let names = [ "Rose"; "Martha"; "Donna"; "Amy"; "Clara" ];;

val names : string list = ["Rose"; "Martha"; "Donna"; "Amy"; "Clara"]

> names |> contains (fun n -> n = "Amy");;
val it : bool = true
> names |> contains (fun n -> n = "Rory");;
val it : bool = false

The contains function recursively walked the list, examining each 
element with the supplied function and passing the tail to contains if 
the element didn’t match.

Combining Lists

Even though F# lists are immutable, we can still construct new lists from 
existing ones. F# provides two primary mechanisms: the cons operator (::) 
and list concatenation with the @ operator.

The cons operator (so named because it constructs a new list) essentially 
prepends an item to an existing list like this:

> let names = [ "Rose"; "Martha"; "Donna"; "Amy"; "Clara" ]
let newNames = "Ace" :: names;;

val names : string list = ["Rose"; "Martha"; "Donna"; "Amy"; "Clara"]
val newNames : string list =
  ["Ace"; "Rose"; "Martha"; "Donna"; "Amy"; "Clara"]
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The cons operator doesn’t make any changes to the existing list. Instead, 
it simply creates a new list with its head set to the new value and tail set to the 
existing list. The cons operator can add only a single item to the list, but since 
it’s at the beginning of the list it’s a quick operation. If you want to combine 
two lists, you’ll need to turn to list concatenation.

To concatenate two lists, you can use either the list concatenation oper-
ator (@) or the List.append module function, as follows:

> let classicNames = [ "Susan"; "Barbara"; "Sarah Jane" ]
let modernNames = [ "Rose"; "Martha"; "Donna"; "Amy"; "Clara" ];;

val classicNames : string list = ["Susan"; "Barbara"; "Sarah Jane"]
val modernNames : string list = ["Rose"; "Martha"; "Donna"; "Amy"; "Clara"]

> classicNames @ modernNames;;
val it : string list =
  ["Susan"; "Barbara"; "Sarah Jane"; "Rose"; "Martha"; "Donna"; "Amy"; "Clara"]
> List.append classicNames modernNames;;
val it : string list =
  ["Susan"; "Barbara"; "Sarah Jane"; "Rose"; "Martha"; "Donna"; "Amy"; "Clara"]

There’s no difference between the list created with the concatenation 
operator and the list created by List.append. Internally, List.append wraps the 
append operator so they’re functionally equivalent.

To combine more than two lists at once, you can pass a sequence of lists 
to List.concat like this:

> List.concat [[ "Susan"; "Sarah Jane" ]
             [ "Rose"; "Martha" ]
             ["Donna"; "Amy"; "Clara"]];;
val it : string list =
  ["Susan"; "Sarah Jane"; "Rose"; "Martha"; "Donna"; "Amy"; "Clara"]

Now, what started as three independent lists was combined into a single 
list containing each item.

Sets
In F#, a set is an immutable collection of unique values whose order is not 
preserved. F# sets closely correlate to mathematical sets (think Venn dia-
grams) and provide a number of operations useful for comparing sets.

Creating Sets
There are no syntactic niceties like special bracket formats for creating sets, 
so if you want to use one, you’ll need to rely on either the type constructor 
or some of the Set module functions (like Set.ofList, which creates a set 
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from an F# list). For instance, to create a set containing the letters of the 
alphabet, you could write:

> let alphabet = [ 'A'..'Z' ] |> Set.ofList;;

val alphabet : Set<char> =
  set ['A'; 'B'; 'C'; 'D'; 'E'; 'F'; 'G'; 'H'; 'I'; ...]

The Set<'T> class defines methods to add and remove values from a set, 
but because F# sets are immutable, both of these methods return new sets 
and leave the original intact. The Add method can be useful for populating 
a new set from an empty one, like so:

> let vowels = Set.empty.Add('A').Add('E').Add('I').Add('O').Add('U');;

val vowels : Set<char> = set ['A'; 'E'; 'I'; 'O'; 'U']

Of course, creating sets in this manner is a more object-oriented 
approach than is typical in F#.

Working with Sets
Because sets are so closely related to mathematical sets, the Set module pro-
vides several functions for performing a variety of set operations like find-
ing unions, intersections, and differences, and even determining if two sets 
are related as subsets or supersets.

Unions

To find the union of two sets—that is, those elements contained within 
either the first or second set—you use the Set.union function as follows:

> let set1 = [ 1..5 ] |> Set.ofList
let set2 = [ 3..7 ] |> Set.ofList
Set.union set1 set2;;

val set1 : Set<int> = set [1; 2; 3; 4; 5]
val set2 : Set<int> = set [3; 4; 5; 6; 7]
val it : Set<int> = set [1; 2; 3; 4; 5; 6; 7]

Here, set1 contains the integers one through five, while set2 contains 
the integers three through seven. Because the union of two sets contains 
each distinct value found in either set, the union of set1 and set2 is the 
range of integers from one through seven.

The Set<'T> class also defines a custom + operator you can use to find 
the union of two sets:

> set1 + set2;;
val it : Set<int> = set [1; 2; 3; 4; 5; 6; 7]
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Intersections

The Set.intersect function returns a new set containing only the elements 
found in both sets. For example, if you have a set containing the values one 
through five, and another set containing the values three through seven, 
you’d find the intersection like this:

> let set1 = [ 1..5 ] |> Set.ofList
let set2 = [ 3..7 ] |> Set.ofList
Set.intersect set1 set2;;

val set1 : Set<int> = set [1; 2; 3; 4; 5]
val set2 : Set<int> = set [3; 4; 5; 6; 7]
val it : Set<int> = set [3; 4; 5]

The resulting intersection set contains only the three values common to 
both set1 and set2—in this case, 3, 4, and 5.

Differences

While the intersection contains all elements common to both sets, the dif-
ference contains those elements found only in the first set. You can find the 
difference between two sets with the Set.difference function.

> let set1 = [ 1..5 ] |> Set.ofList
let set2 = [ 3..7 ] |> Set.ofList
Set.difference set1 set2;;

val set1 : Set<int> = set [1; 2; 3; 4; 5]
val set2 : Set<int> = set [3; 4; 5; 6; 7]
val it : Set<int> = set [1; 2]

Here, the first set contains two elements not found in the second, 1 and 
2; therefore, the difference set contains only those values.

Just as with intersections, the Set<'T> class defines a custom – operator 
that returns a set containing the difference between two sets.

> set1 - set2;;
val it : Set<int> = set [1; 2]

Subsets and Supersets

The Set module makes it easy to determine whether two sets are related 
as subsets or supersets through four functions: isSubset, isProperSubset, 
isSuperset, and isProperSuperset. The difference between basic subset/superset 
and proper subset/supersets is that proper subsets/supersets require at least 
one additional element not present in the opposite set. The following sets 
illustrate:

> let set1 = [ 1..5 ] |> Set.ofList
let set2 = [ 1..5 ] |> Set.ofList;;
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val set1 : Set<int> = set [1; 2; 3; 4; 5]
val set2 : Set<int> = set [1; 2; 3; 4; 5]

Because both set1 and set2 contain the same values, set1 can be consid-
ered a superset of set2. Conversely, set2 can be considered a subset of set1. 
For the same reason, however, set2 cannot be a proper subset of set1, as 
shown in the following snippet.

> Set.isSuperset set1 set2;;
val it : bool = true
> Set.isProperSuperset set1 set2;;
val it : bool = false
> Set.isSubset set2 set1;;
val it : bool = true
> Set.isProperSubset set2 set1;;
val it : bool = false

To make set2 a proper subset of set1, we need to redefine set1 to 
include at least one more value.

> let set1 = [ 0..5 ] |> Set.ofList;;

val set1 : Set<int> = set [0; 1; 2; 3; 4; 5]

Now, if we test for subsets and supersets again, we should see that set2 is 
both a subset and proper subset of set1.

> Set.isSuperset set1 set2;;
val it : bool = true
> Set.isProperSuperset set1 set2;;
val it : bool = true
> Set.isSubset set2 set1;;
val it : bool = true
> Set.isProperSubset set2 set1;;
val it : bool = true

Maps
The Map type represents an unordered, immutable dictionary (a map of 
keys to values) and provides many of the same capabilities as the generic 
Dictionary<'TKey, 'TValue> class.

NO  T E 	 Although the  Map<'Key, 'Value> class and the associated Map module provide methods 
for adding and removing entries, as an immutable construct, maps make sense only 
when the underlying entries won’t change. Adding and removing entries from a map 
requires creating a new map instance and copying the data from the source instance, 
so it is significantly slower than modifying a mutable dictionary.
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Creating Maps
As with sets, F# doesn’t provide any direct syntactic support for creating 
maps, so the type constructor or Map module functions are required to cre-
ate them, too. Regardless of the approach you choose, maps are always 
based on a sequence of tuples consisting of both the key and the mapped 
value. Here, a list of states and their respective capitals is passed to the 
type’s constructor:

> let stateCapitals =
  Map [("Indiana", "Indianapolis")
       ("Michigan", "Lansing")
       ("Ohio", "Columbus")
       ("Kentucky", "Frankfort")
       ("Illinois", "Springfield")];;

val stateCapitals : Map<string,string> =
  map
    [("Illinois", "Springfield"); ("Indiana", "Indianapolis");
     ("Kentucky", "Frankfort"); ("Michigan", "Lansing"); ("Ohio", "Columbus")]

Working with Maps
Because maps are like immutable dictionaries, interacting with them is 
similar to Dictionary<'TKey, 'TValue>.

Finding Values

Like the generic dictionary, the Map type provides an indexed property for 
accessing a value via a known key. For instance, using the stateCapitals map, 
we can find Indiana’s capital like this:

> stateCapitals.["Indiana"];;
val it : string = "Indianapolis"

The Map.find function lets us do the same thing functionally.

> stateCapitals |> Map.find "Indiana";;
val it : string = "Indianapolis"

The biggest problem with both of the preceding approaches is that 
they’ll throw a KeyNotFoundException when the key isn’t present in the map. 
To avoid the exception, you can see if the map contains a particular key 
with the Map.containsKey function. If you wanted to test whether stateCapitals 
included Washington, you could write this:

> stateCapitals |> Map.containsKey "Washington";;
val it : bool = false
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Finally, if you prefer to test for the key and get the mapped value in a 
single operation you can turn to the Map.tryFind function, which returns an 
option indicating whether the key was found and the associated value, as 
shown here:

> stateCapitals |> Map.tryFind "Washington";;
val it : string option = None
> stateCapitals |> Map.tryFind "Indiana";;
val it : string option = Some "Indianapolis"

Finding Keys

Occasionally, you may need to find a key based on its mapped value. The 
Map module provides two functions for this: findKey and tryFindKey. Like their 
value-finding counterparts, the difference between findKey and tryFindKey is 
that findKey throws KeyNotFoundException when it can’t find a value that satis-
fies the criteria, whereas tryFindKey does not.

To look up a key, you pass a function that accepts both the key and its 
mapped value and returns a Boolean indicating whether the value matches 
your criteria. For instance, to find a state by its capital using Map.tryFindKey, 
you could write:

> stateCapitals |> Map.tryFindKey (fun k v -> v = "Indianapolis");;
val it : string option = Some "Indiana"
> stateCapitals |> Map.tryFindKey (fun k v -> v = "Olympia");;
val it : string option = None

As you can see, tryFindKey returns an option, so you’ll need to test for 
Some and None accordingly.

Converting Between Collection Types
Sometimes you’ll have an instance of one collection type but you really 
need a different one. For instance, you might be working with an F# list but 
want to apply a function that works only with arrays. Each of the collection 
modules includes several functions that make converting between many of 
the other collection types easy.

In each module, the conversion functions are named according to the 
conversion direction and target type. For instance, to convert a sequence 
to an array, you could pass the sequence to either Seq.toArray or Array.ofSeq 
like this:

> seq { 1..10 } |> Seq.toArray;;
val it : int [] = [|1; 2; 3; 4; 5; 6; 7; 8; 9; 10|]
> seq { 1..10 } |> Array.ofSeq;;
val it : int [] = [|1; 2; 3; 4; 5; 6; 7; 8; 9; 10|]
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Similarly, to convert from a list to a sequence, you could pass the list to 
either List.toSeq or Seq.ofList. The Set and Map modules let you convert to 
and from sequences, arrays, and maps according to the same conventions.

Although most of the conversion functions create a new collection, some 
of them work by casting. For example, Seq.ofList simply casts the source list 
to seq<'t> (remember, FSharpList<'T> implements IEnumerable<'T>, so it’s a valid 
conversion), whereas List.ofArray creates a new array and populates it with 
the list’s values. If there’s ever a question as to whether the resulting col-
lection is a type conversion or a new object, you can inspect them with the 
static obj.ReferenceEquals method as shown here:

> let l = [ 1..10 ]
obj.ReferenceEquals(l, Seq.ofList l);;

val l : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
val it : bool = utrue

> let a = [| 1..10 |]
obj.ReferenceEquals(a, List.ofArray a);;

val a : int [] = [|1; 2; 3; 4; 5; 6; 7; 8; 9; 10|]
val it : bool = vfalse

The preceding snippet shows the result of calling both Seq.ofList and 
List.ofArray. You can see that u Seq.ofList returns the same object, whereas 
List.ofArray v returns a new object.

Summary
Working with data collections is something virtually every nontrivial appli-
cation must do. F# lets you work with all of the traditional .NET collections 
like arrays and generic lists but also adds several other types like the F# list, 
sets, and maps, which are more suitable for functional programming.

In many regards, working with data collections in F# is more stream-
lined than in traditional .NET development because language features 
like sequence expressions, range expressions, and slice expressions make it 
easier to not only create collections, but also get at individual elements.

Finally, the various collection modules like Seq, Array, and List provide 
an easy mechanism for performing many common tasks with their respec-
tive collection types.
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P a tt  e r n s ,  P a tt  e r n s , 

E v e r y w h e r e

Pattern matching is one of F#’s most power
ful features. Patterns are so ingrained 

within the language that they’re employed 
by many of the constructs you’ve already seen, 

like let bindings, try...with expressions, and lambda 
expressions. In this chapter, you’ll learn about match 
expressions, predefined pattern types, and creating 
your own patterns with active patterns.

Match Expressions
Although F# allows imperative style branching through if expressions, they 
can be difficult to maintain, particularly as the conditional logic’s complex-
ity increases. Match expressions are F#’s primary branching mechanism.
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On the surface, many match expressions resemble C#’s switch or Visual 
Basic’s Select Case statements, but they’re significantly more powerful. For 
instance, while switch and Select Case operate against only constant values, 
match expressions select an expression to evaluate according to which pat-
tern matches the input. At their most basic, match expressions take the fol-
lowing form:

match utest-expression with
  | vpattern1 -> wresult-expression1
  | xpattern2 -> yresult-expression2
  | ...

In the preceding syntax, the expression at u is evaluated and sequen-
tially compared to each pattern in the expression body until a match is 
found. For example, if the result satisfies the pattern at v, the expression 
at w is evaluated. Otherwise, the pattern at x is tested and, if it matches, 
the expression at y is evaluated, and so on. Because match expressions also 
return a value, each result expression must be of the same type.

The fact that patterns are matched sequentially has consequences for 
how you structure your code; you must organize your match expressions 
such that the patterns are listed from most to least specific. If a more gen-
eral pattern is placed ahead of more specific patterns in a way that prevents 
any subsequent patterns from being evaluated, the compiler will issue a 
warning for each affected pattern.

Match expressions can be used with a wide variety of data types includ-
ing (but not limited to) numbers, strings, tuples, and records. For example, 
here’s a function with a simple match expression that works with a discrimi-
nated union:

let testOption opt =
  match opt with
  | Some(v) -> printfn "Some: %i" v
  | None -> printfn "None"

In this snippet, opt is inferred to be of type int option, and the match 
expression includes patterns for both the Some and None cases. When the 
match expression evaluates, it first tests whether opt matches Some. If so, the 
pattern binds the value from Some into v, which is then printed when the 
result expression is evaluated. Likewise, when None matches, the result 
expression simply prints out "None".

Guard Clauses
In addition to matching disparate values against patterns, you can further 
refine each case through guard clauses, which allow you to specify additional 
criteria that must be met to satisfy a case. For instance, you can use guard 
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clauses (by inserting when followed by a condition) to distinguish between 
positive and negative numbers like so:

let testNumber value =
  match value with
  | uv when v < 0 -> printfn "%i is negative" v
  | vv when v > 0 -> printfn "%i is positive" v
  | _ -> printfn "zero"

In this example, we have two cases with identical patterns but different 
guard clauses. Even though any integer will match any of the three patterns, 
the guard clauses on patterns u and v cause matching to fail unless the 
captured value meets their criteria.

You can combine multiple guard clauses with Boolean operators for 
more complex matching logic. For instance, you could construct a case that 
matches only positive, even integers as follows:

let testNumber value =
  match value with
  | v when v > 0 && v % 2 = 0 -> printfn "%i is positive and even" v
  | v -> printfn "%i is zero, negative, or odd" v

Pattern-Matching Functions
There is an alternative match expression syntax called a pattern-matching 
function. With the pattern-matching function syntax, the match...with por-
tion of the match expression is replaced with function like this:

> let testOption =
  function
  | Some(v) -> printfn "Some: %i" v
  | None -> printfn "None";;

val testOption : _arg1:int option -> unit

As you can see from the signature in the output, by using the pattern-
matching function syntax, we bind testOption to a function that accepts 
an int option (with the generated name _arg1) and returns unit. Using the 
function keyword this way is a convenient shortcut for creating a pattern-
matching lambda expression and is functionally equivalent to writing:

fun x ->
  match x with
  | Some(v) -> printfn "Some: %i" v
  | None -> printfn "None";;
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Because pattern-matching functions are just a shortcut for lambda 
expressions, passing match expressions to higher-order functions is trivial. 
Suppose you want to filter out all of the None values from a list of optional 
integers. You might consider passing a pattern-matching function to the 
List.filter function like this:

[ Some 10; None; Some 4; None; Some 0; Some 7 ]
|> List.filter (function | Some(_) -> true
                         | None -> false)

When the filter function is executed, it will invoke the pattern-
matching function against each item in the source list, returning true 
when the item is Some(_), or false when the item is None. As a result, the 
list created by filter will contain only Some 10, Some 4, Some 0, and Some 7.

Exhaustive Matching
When a match expression includes patterns such that every possible result 
of the test expression is accounted for, it is said to be exhaustive, or covering. 
When a value exists that isn’t covered by a pattern, the compiler issues a 
warning. Consider what happens when we match against an integer but 
cover only a few cases.

> let numberToString =
  function
  | 0 -> "zero"
  | 1 -> "one"
  | 2 -> "two"
  | 3 -> "three";;

    function
  --^^^^^^^^

stdin(4,3): warning FS0025: Incomplete pattern matches on this expression. For 
example, the value '4' may indicate a case not covered by the pattern(s).

val numberToString : _arg1:int -> string

Here you can see that if the integer is ever anything other than 0, 1, 2, 
or 3, it will never be matched. The compiler even provides an example of a 
value that might not be covered—four, in this case. If numberToString is called 
with a value that isn’t covered, the call fails with a MatchFailureException:

> numberToString 4;;
Microsoft.FSharp.Core.MatchFailureException: The match cases were incomplete
   at FSI_0025.numberToString(Int32 _arg1)
   at <StartupCode$FSI_0026>.$FSI_0026.main@()
Stopped due to error
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To address this problem, you could add more patterns, trying to match 
every possible value, but many times (such as with integers) matching every 
possible value isn’t feasible. Other times, you may care only about a few cases. 
In either scenario, you can turn to one of the patterns that match any value: 
the Variable pattern or the Wildcard pattern.

Variable Patterns
Variable patterns are represented with an identifier and are used whenever 
you want to match any value and bind that value to a name. Any names 
defined through Variable patterns are then available for use within 
guard clauses and the result expression for that case. For example, to 
make numberToString exhaustive, you could revise the function to include 
a Variable pattern like this:

let numberToString =
  function
  | 0 -> "zero"
  | 1 -> "one"
  | 2 -> "two"
  | 3 -> "three"
u| n -> sprintf "%O" n

When you include a Variable pattern at u, anything other than 0, 1, 2, 
or 3 will be bound to n and simply converted to a string.

The identifier defined in a Variable pattern should begin with a lower
case letter to distinguish it from an Identifier pattern. Now, invoking 
numberToString with 4 will complete without error, as shown here:

> numberToString 4;;
val it : string = "4"

The Wildcard Pattern
The Wildcard pattern, represented as a single underscore character (_), 
works just like a Variable pattern except that it discards the matched value 
rather than binding it to a name.

Here’s the previous numberToString implementation revised with a 
Wildcard pattern. Note that because the matched value is discarded, 
we need to return a general string instead of something based on the 
matched value.

let numberToString =
  function
  | 0 -> "zero"
  | 1 -> "one"
  | 2 -> "two"
  | 3 -> "three"
  | _ -> "unknown"
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Matching Constant Values
Constant patterns consist of hardcoded numbers, characters, strings, and 
enumeration values. You’ve already seen several examples of Constant pat-
terns, but to reiterate, the first four cases in the numberToString function that 
follows are all Constant patterns.

let numberToString =
  function
  | 0 -> "zero"
  | 1 -> "one"
  | 2 -> "two"
  | 3 -> "three"
  | _ -> "..."

Here, the numbers 0 through 3 are explicitly matched and return the 
number as a word. All other values fall into the wildcard case.

Identifier Patterns
When a pattern consists of more than a single character and begins with an 
uppercase character, the compiler attempts to resolve it as a name. This is 
called an Identifier pattern and typically refers to discriminated union cases, 
identifiers decorated with LiteralAttribute, or exception names (as seen in a 
try...with block).

Matching Union Cases
When the identifier is a discriminated union case, the pattern is called a 
Union Case pattern. Union Case patterns must include a wildcard or identi-
fier for each data item associated with that case. If the case doesn’t have any 
associated data, the case label can appear on its own.

Consider the following discriminated union that defines a few shapes:

type Shape =
| Circle of float
| Rectangle of float * float
| Triangle of float * float * float

From this definition, it’s trivial to define a function that uses a match 
expression to calculate the perimeter of any of the included shapes. Here is 
one possible implementation:

let getPerimeter =
  function
  | Circle(r) -> 2.0 * System.Math.PI * r
  | Rectangle(w, h) -> 2.0 * (w + h)
  | Triangle(l1, l2, l3) -> l1 + l2 + l3
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As you can see, each shape defined by the discriminated union is 
covered, and the data items from each case are extracted into meaningful 
names like r for the radius of a circle or w and h for the width and height of 
a rectangle, respectively.

Matching Literals
When the compiler encounters an identifier defined with LiteralAttribute 
used as a case, it is called a Literal pattern but is treated as though it were a 
Constant pattern.

Here is the numberToString function revised to use a few Literal patterns 
instead of Constant patterns:

[<LiteralAttribute>]
let Zero = 0
[<LiteralAttribute>]
let One = 1
[<LiteralAttribute>]
let Two = 2
[<LiteralAttribute>]
let Three = 3

let numberToString =
  function
  | Zero -> "zero"
  | One -> "one"
  | Two -> "two"
  | Three -> "three"
  | _ -> "unknown"

Matching Nulls
When performing pattern matching against types where null is a valid 
value, you’ll typically want to include a Null pattern to keep any nulls as iso-
lated as possible. Null patterns are represented with the null keyword.

Consider this matchString pattern-matching function:

> let matchString =
  function
  | "" -> None
  | v -> Some(v.ToString());;

val matchString : _arg1:string -> string option

The matchString function includes two cases: a Constant pattern for 
the empty string and a Variable pattern for everything else. The compiler 
was happy to create this function for us without warning about incomplete 
pattern matches, but there’s a potentially serious problem: null is a valid 
value for strings, but the Variable pattern matches any value, including null! 
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Should a null string be passed to matchString, a NullReferenceException will be 
thrown when the ToString method is called on v because the Variable pat-
tern matches null and therefore sets v to null, as shown here:

> matchString null;;
System.NullReferenceException: Object reference not set to an instance of an object.
   at FSI_0070.matchString(String _arg1) in C:\Users\Dave\AppData\Local\Temp\~vsE434.fsx:line 68
   at <StartupCode$FSI_0071>.$FSI_0071.main@()
Stopped due to error

Adding a Null pattern before the Variable pattern will ensure that the 
null value doesn’t leak into the rest of the application. By convention, Null 
patterns are typically listed first, so that’s the approach shown here with the 
null and empty string patterns combined with an OR pattern:

let matchString =
  function
  | null 
  | "" -> None
  | v -> Some(v.ToString())

Matching Tuples
You can match and decompose a tuple to its constituent elements with a 
Tuple pattern. For instance, a two-dimensional point represented as a tuple 
can be decomposed to its individual x- and y-coordinates with a Tuple pat-
tern within a let binding like this:

let point = 10, 20
let x, y = point

In this example, the values 10 and 20 are extracted from point and 
bound to the x and y identifiers, respectively.

Similarly, you can use several Tuple patterns within a match expression 
to perform branching based upon the tupled values. In keeping with the 
point theme, to determine whether a particular point is located at the ori-
gin or along an axis, you could write something like this:

let locatePoint p =
  match p with 
  | u(0, 0) -> sprintf "%A is at the origin" p
  | v(_, 0) -> sprintf "%A is on the x-axis" p
  | w(0, _) -> sprintf "%A is on the y-axis" p
  | x(x, y) -> sprintf "Point (%i, %i)" x y
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The locatePoint function not only highlights using multiple Tuple pat-
terns but also shows how multiple pattern types can be combined to form 
more complex branching logic. For instance, u uses two Constant patterns 
within a Tuple pattern, while v and w each use a Constant pattern and a 
Wildcard pattern within a Tuple pattern. Finally, x uses two Variable pat-
terns within a Tuple pattern.

Remember, the number of items in a Tuple pattern must match the 
number of items in the tuple itself. For instance, attempting to match a 
Tuple pattern containing two items with a tuple containing three items will 
result in a compiler error because the underlying types are incompatible.

Matching Records
Record types can participate in pattern matching through Record pat-
terns. With Record patterns, individual record instances can be matched 
and decomposed to their individual values.

Consider the following record type definition based on a typical 
American name:

type Name = { First : string; Middle : string option; Last : string }

In this record type, both the first and last names are required, but the 
middle name is optional. You can use a match expression to format the 
name according to whether a middle name is specified like so:

let formatName =
  function
  | { First = f; Middle = Some(m); Last = l } -> sprintf "%s, %s %s" l f m
  | { First = f; Middle = None; Last = l } -> sprintf "%s, %s" l f

Here, both patterns bind the first and last names to the identifiers f and 
l, respectively. But more interesting is how the patterns match the middle 
name against union cases for Some(m) and None. When the match expression 
is evaluated against a Name that includes a middle name, the middle name is 
bound to m. Otherwise, the match fails and the None case is evaluated.

The patterns in the formatName function extract each value from the 
record, but Record patterns can operate against a subset of the labels, too. 
For instance, if you want to determine only whether a name includes a middle 
name, you could construct a match expression like this:

let hasMiddleName =
  function
  | { Middle = Some(_) } -> true
  | { Middle = None } -> false
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Many times, the compiler can automatically resolve which record type 
the pattern is constructed against, but if it can’t, you can specify the type 
name as follows:

let hasMiddleName =
  function
  | { Name.Middle = Some(_) } -> true
  | { Name.Middle = None } -> false

Qualifying the pattern like this will typically be necessary only when 
there are multiple record types with conflicting definitions.

Matching Collections
Pattern matching isn’t limited to single values or structured data like tuples 
and records. F# includes several patterns for matching one-dimensional 
arrays and lists, too. If you want to match against another collection 
type, you’ll typically need to convert the collection to a list or array with 
List.ofSeq, Array.ofSeq, or a comparable mechanism.

Array Patterns
Array patterns closely resemble array definitions and let you match arrays 
with a specific number of elements. For example, you can use Array pat-
terns to determine the length of an array like this:

let getLength =
  function
  | null -> 0
  | [| |] -> 0
  | [| _ |] -> 1
  | [| _; _; |] -> 2
  | [| _; _; _ |] -> 3
  | a -> a |> Array.length

Ignoring the fact that to get the length of an array you’d probably forego 
this contrived pattern-matching example and inspect the Array.length prop-
erty directly, the getLength function shows how Array patterns can match indi-
vidual array elements from fixed-size arrays.

List Patterns
List patterns are similar to Array patterns except that they look like and work 
against F# lists. Here’s the getLength function revised to work with F# lists 
instead of arrays.

let getLength =
  function
  | [ ] -> 0
  | [ _ ] -> 1
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  | [ _; _; ] -> 2
  | [ _; _; _ ] -> 3
  | lst -> lst |> List.length

Note that there’s no null case because null is not a valid value for an 
F# list.

Cons Patterns
Another way to match F# lists is with the Cons pattern. In pattern matching, 
the cons operator (::) works in reverse; instead of prepending an element 
to a list, it separates a list’s head from its tail. This allows you to recursively 
match against a list with an arbitrary number of elements.

In keeping with our theme, here’s how you could use a Cons pattern to 
find a collection’s length through pattern matching:

let getLength n =
  ulet rec len c l =
    match l with
    | v[] -> c
    | w_ :: t -> len (c + 1) t
  len 0 n

This version of the getLength function is very similar to the F# list’s 
internal length property implementation. It defines len u, an internal func-
tion that recursively matches against either an empty pattern v or a Cons 
pattern w. When the empty list is matched, len returns the supplied count 
value (c); otherwise, it makes a recursive call, incrementing the count and 
passing along the tail. The Cons pattern in getLength uses the Wildcard pat-
tern for the head value because it’s not needed for subsequent operations.

Matching by Type
F# has two ways to match against particular data types: Type-Annotated 
patterns and Dynamic Type-Test patterns.

Type-Annotated Patterns
Type-Annotated patterns let you specify the type of the matched value. They 
are especially useful in pattern-matching functions where the compiler 
needs a little extra help determining the expected type of the function’s 
implicit parameter. For example, the following function is supposed to 
check whether a string begins with an uppercase character:

// Does not compile
let startsWithUpperCase =
  function
  | us when vs.Length > 0 && s.[0] = System.Char.ToUpper s.[0] -> true
  | _ -> false
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As written, though, the startsWithUpperCase function won’t compile. 
Instead, it will fail with the following error:

~vsD607.fsx(83,12): error FS0072: Lookup on object of indeterminate type based 
on information prior to this program point. A type annotation may be needed 
prior to this program point to constrain the type of the object. This may 
allow the lookup to be resolved.

The reason this fails to compile is that the guard conditions at v rely 
on string properties, but those properties aren’t available because the com-
piler has automatically generalized the function’s implicit parameter. To fix 
the problem, we could either revise the function to have an explicit string 
parameter or we can include a type annotation in the pattern at u like this 
(note that the parentheses are required):

let startsWithUpperCase =
  function
  | (s : string) when s.Length > 0 && s.[0] = System.Char.ToUpper s.[0] ->
    true
  | _ -> false

With the type annotation in place, the parameter is no longer auto-
matically generalized, making the string’s properties available within the 
guard condition.

Dynamic Type-Test Patterns
Dynamic Type-Test patterns are, in a sense, the opposite of Type-Annotated pat-
terns. Where Type-Annotated patterns force each case to match against the 
same data type, Dynamic Type-Test patterns are satisfied when the matched 
value is an instance of a particular type; that is, if you annotate a pattern 
to match strings, every case must match against strings. Dynamic Type-Test 
patterns are therefore useful for matching against type hierarchies. For 
instance, you might match against an interface instance but use Dynamic 
Type-Test patterns to provide different logic for specific implementations. 
Dynamic Type-Test patterns resemble the dynamic cast operator (:?>) 
except that the > is omitted.

The following detectColorSpace function shows you how to use Dynamic 
Type-Test patterns by matching against three record types. If none of the 
types are matched, the function raises an exception.

type RgbColor = { R : int; G : int; B : int }
type CmykColor = { C : int; M : int; Y : int; K : int }
type HslColor = { H : int; S : int; L : int }

let detectColorSpace (cs : obj) =
  match cs with
  | :? RgbColor -> printfn "RGB"
  | :? CmykColor -> printfn "CMYK"
  | :? HslColor -> printfn "HSL"
  | _ -> failwith "Unrecognized"
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As Patterns
The As pattern lets you bind a name to the whole matched value and is partic-
ularly useful in let bindings that use pattern matching and pattern-matching 
functions where you don’t have direct named access to the matched value.

Normally, a let binding simply binds a name to a value, but as you’ve 
seen, you can also use patterns in a let binding to decompose a value and 
bind a name to each of its constituent parts like this:

> let x, y = (10, 20);;

val y : int = 20
val x : int = 10

If you want to bind not only the constituent parts but also the whole 
value, you could explicitly use two let bindings like this:

> let point = (10, 20)
let x, y = point;;

val point : int * int = (10, 20)
val y : int = 20
val x : int = 10

Having two separate let bindings certainly works, but it’s more succinct 
to combine them into one with an As pattern like so:

> let x, y as point = (10, 20);;

val point : int * int = (10, 20)
val y : int = 20
val x : int = 10

The As pattern isn’t restricted to use within let bindings; you can also 
use it within match expressions. Here, we include an As pattern in each 
case to bind the matched tuple to a name.

let locatePoint =
  function
  | (0, 0) as p -> sprintf "%A is at the origin" p
  | (_, 0) as p -> sprintf "%A is on the X-Axis" p
  | (0, _) as p -> sprintf "%A is on the Y-Axis" p
  | (x, y) as p -> sprintf "Point (%i, %i)" x y

Combining Patterns with AND
With AND patterns, sometimes called Conjunctive patterns, you match the 
input against multiple, compatible patterns by combining them with an 
ampersand (&). For the case to match, the input must satisfy each pattern.
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Generally speaking, AND patterns aren’t all that useful in basic pat-
tern-matching scenarios because the more expressive guard clauses are 
usually better suited to the task. That said, AND patterns are still useful 
for things like extracting values when another pattern is matched. (AND 
patterns are also used heavily with active patterns, which we’ll look at later.) 
For example, to determine whether a two-dimensional point is located at 
the origin or along an axis, you could write something like this:

let locatePoint =
  function
  | (0, 0) as p -> sprintf "%A is at the origin" p
  | u(x, y) & (_, 0) -> sprintf "(%i, %i) is on the x-axis" x y
  | v(x, y) & (0, _) -> sprintf "(%i, %i) is on the y-axis" x y
  | (x, y) -> sprintf "Point (%i, %i)" x y

The locatePoint function uses AND patterns at u and v to extract the x 
and y values from a tuple when the second or first value is 0, respectively.

Combining Patterns with OR
If a number of patterns should execute the same code when they’re matched, 
you can combine them using an OR, or Disjunctive, pattern. An OR pattern 
combines multiple patterns with a vertical pipe character (|). In many ways, 
OR patterns are similar to fall-through cases in C#’s switch statements.

Here, the locatePoint function has been revised to use an OR pattern so 
the same message can be printed for points on either axis:

let locatePoint =
  function
  | (0, 0) as p -> sprintf "%A is at the origin" p
  | u(_, 0) | v(0, _) as p -> wsprintf "%A is on an axis" p
  | p -> sprintf "Point %A" p

In this version of locatePoint, the expression at w is evaluated when 
either the pattern at u or v is satisfied.

Parentheses in Patterns
When combining patterns, you can establish precedence with parentheses. 
For instance, to extract the x and y values from a point and also match 
whether the point is on either axis, you could write something like this:

let locatePoint =
  function
  | (0, 0) as p -> sprintf "%A is at the origin" p
  | (x, y) & u((_, 0) | (0, _)) -> sprintf "(%i, %i) is on an axis" x y
  | p -> sprintf "Point %A" p
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Here, you match three patterns, establishing associativity at u by wrap-
ping the two axis-checking patterns in parentheses.

Active Patterns
When none of the built-in pattern types do quite what you need, you can 
turn to active patterns. Active patterns are a special type of function defini-
tion, called an active recognizer, where you define one or more case names for 
use in your pattern-matching expressions.

Active patterns have many of the same characteristics of the built-in 
pattern types; they accept an input value and can decompose the value to 
its constituent parts. Unlike basic patterns, though, active patterns not only 
let you define what constitutes a match for each named case, but they can 
also accept other inputs.

Active patterns are defined with the following syntax:

let (|CaseName1|CaseName2|...|CaseNameN|) [parameters] -> expression

As you can see, the case names are enclosed between (| and |) (called 
banana clips) and are pipe-delimited. The active pattern definition must 
always include at least one parameter for the value to match and, because 
active recognizer functions are curried, the matched value must be the 
final parameter in order to work correctly with match expressions. Finally, 
the expression’s return value must be one of the named cases along with 
any associated data.

There are plenty of uses for active patterns, but a good example lies 
in a possible solution to the famed FizzBuzz problem. For the uninitiated, 
FizzBuzz is a puzzle that employers sometimes use during interviews to help 
screen candidates. The task at the heart of the problem is simple and often 
phrased thusly:

Write a program that prints the numbers from 1 to 100. But 
for multiples of three, print "Fizz" instead of the number; for 
the multiples of five, print "Buzz". For numbers that are multiples 
of both three and five, print "FizzBuzz".

To be clear, active patterns certainly aren’t the only (or necessarily even 
the best) way to solve the FizzBuzz problem. But the FizzBuzz problem—
with its multiple, overlapping rules—allows us to showcase how powerful 
active patterns are.

We can start by defining the active recognizer. From the preceding 
description, we know that we need four patterns: Fizz, Buzz, FizzBuzz, and a 
default case for everything else. We also know the criteria for each case, so 
our recognizer might look something like this:

let (|Fizz|Buzz|FizzBuzz|Other|) n =
  match u(n % 3, n % 5) with
  | v0, 0 -> FizzBuzz
  | w0, _ -> Fizz
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  | x_, 0 -> Buzz
  | y_ -> Other n

Here we have an active recognizer that defines the four case names. The 
recognizer’s body relies on further pattern matching to select the appropri-
ate case. At u, we construct a tuple containing the modulus of n and 3 and 
the modulus of n and 5. We then use a series of Tuple patterns to identify the 
correct case, the most specific being v, where both elements are 0. The cases 
at w and x match when n is divisible by 3 and n is divisible by 5, respectively. 
The final case, y, uses the Wildcard pattern to match everything else and 
return Other along with the supplied number. The active pattern gets us only 
partway to the solution, though; we still need to print the results.

The active recognizer identifies only which case a given number meets, 
so we still need a way to translate each case to a string. We can easily map 
the cases with a pattern-matching function like this:

let fizzBuzz =
  function
  | Fizz -> "Fizz"
  | Buzz -> "Buzz"
  | FizzBuzz -> "FizzBuzz"
  | Other n -> n.ToString()

The preceding fizzBuzz function uses basic pattern matching, but instead 
of using the built-in patterns, it uses cases defined by the active recognizer. 
Note how the Other case includes a Variable pattern, n, to hold the number 
associated with it.

Finally, we can complete the task by printing the results. We could do 
this in an imperative style, but because a functional approach is more fun 
let’s use a sequence like this:

seq { 1..100 }
|> Seq.map fizzBuzz
|> Seq.iter (printfn "%s")

Here, we create a sequence containing the numbers 1 through 100 
and pipe it to Seq.map, which creates a new sequence containing the strings 
returned from fizzBuzz. The resulting sequence is then piped on to Seq.iter 
to print each value.

Partial Active Patterns
As convenient as active patterns are, they do have a few drawbacks. First, each 
input must map to a named case. Second, active patterns are limited to seven 
named cases. If your situation doesn’t require mapping every possible input 
or you need more than seven cases, you can turn to partial active patterns.
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Partial active patterns follow the same basic structure as complete active 
patterns, but instead of a list of case names they include only a single case 
name followed by an underscore. The basic syntax for a partial active pat-
tern looks like this:

let (|CaseName|_|) [parameters] = expression

The value returned by a partial active pattern is a bit different than 
complete active patterns, too. Instead of returning the case directly, par-
tial active patterns return an option of the pattern’s type. For example, 
if you have a partial active pattern for Fizz, the expression needs to return 
either Some(Fizz) or None. As far as your match expressions are concerned, 
though, the option is transparent, so you need to deal only with the 
case name.

N o t e 	 If you’re following along in FSI, you’ll want to reset your session before proceeding 
with the next examples to avoid any potential naming conflicts between the active 
patterns.

To see partial active patterns in action, we can return to the FizzBuzz 
problem. Using partial active patterns lets us rewrite the solution more suc-
cinctly. We can start by defining the partial active patterns like this:

let (|Fizz|_|) n = if n % 3 = 0 then Some Fizz else None
let (|Buzz|_|) n = if n % 5 = 0 then Some Buzz else None

The first thing you probably thought after reading the preceding snip-
pet is “Why are there only two cases when the problem specifically defines 
three?” The reason is that partial active patterns are evaluated indepen-
dently. So, to meet the requirements, we can construct a match expression 
such that a single case matches both Fizz and Buzz with an AND pattern, as 
shown here:

let fizzBuzz =
  function
  | Fizz & Buzz -> "FizzBuzz"
  | Fizz -> "Fizz"
  | Buzz -> "Buzz"
  | n -> n.ToString()

Now all that’s left is to print the required values just like we did before:

seq { 1..100 }
|> Seq.map fizzBuzz
|> Seq.iter (printfn "%s")
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Parameterized Active Patterns
All of the active patterns we’ve seen so far have accepted only the single 
match value; we haven’t seen any that accept additional arguments that 
aid in matching. Remember, active recognizer functions are curried, so to 
include additional parameters in your active pattern definition you’ll need 
to list them before the match input argument.

It’s possible to construct yet another solution to the FizzBuzz prob-
lem using only a single Parameterized partial active pattern. Consider this 
definition:

let (|DivisibleBy|_|) d n = if n % d = 0 then Some DivisibleBy else None

This partial active pattern looks just like the Fizz and Buzz partial 
active patterns we defined in the previous section except that it includes 
the d parameter, which it uses in the expression. We can now use this pat-
tern to resolve the correct word from any input, like so:

let fizzBuzz =
  function
  | DivisibleBy 3 & DivisibleBy 5 -> "FizzBuzz"
  | DivisibleBy 3 -> "Fizz"
  | DivisibleBy 5 -> "Buzz"
  | n -> n.ToString()

Now, instead of specialized cases for Fizz and Buzz, we simply match 
whether the input is divisible by three or five through the parameterized 
pattern. Printing out the results is no different than before:

seq { 1..100 }
|> Seq.map fizzBuzz
|> Seq.iter (printfn "%s")

Summary
Pattern matching is one of F#’s most powerful and versatile features. 
Despite some superficial similarities to case-based branching structures 
in other languages, F#’s match expressions are a completely different ani-
mal. Not only does pattern matching offer an expressive way to match and 
decompose virtually any data type, but it even returns values as well.

In this chapter, you learned how to compose match expressions directly 
using match...with and indirectly using the function keyword. You also saw 
how the simple pattern types like the Wildcard, Variable, and Constant pat-
terns can be used independently or in conjunction with other more com-
plex patterns like those for records and lists. Finally, you saw how you can 
create your own custom patterns with complete and partial active patterns.



8
M e a s u r i n g  Up

It is all too easy to mix up units of mea-
surement in a long, intricate computer 

program. When such a mix-up occurs, the 
consequences can be extremely costly, even 

tragic. One of the most famous examples is the crash 
of NASA’s Mars Climate Orbiter in 1999. Investigation
into the accident revealed that the crash was caused by a unit mismatch; 
pound-force seconds were used instead of newton seconds. This error 
led to an incorrect trajectory calculation and ultimately to the vehicle’s 
demise.

One can argue that proper testing should have detected the calcula-
tion error and thus prevented the crash, but a bigger question is whether 
the error would have even occurred if the programming language had 
enforced the proper units through its type system.
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Over the years, people have tried enforcing units of measure in soft-
ware systems, usually through external libraries, to varying degrees of 
success. F# is one of the first languages to include units of measure as a 
native part of its static type checking system. In addition to providing an 
extra level of safety beyond the basic type system, F#’s units of measure 
can enhance code readability by removing ambiguity about what is actually 
expected in the code without resorting to longer identifiers.

Defining Measures
To enable static measure checking, you first need to define a measure. 
Measures are type-like constructs that are decorated with the Measure attri-
bute to represent real-world measurements. They can include an optional 
measure formula that describes the measure in terms of other measures. 
For example, the following definition creates a named unit of measure 
for a foot:

[<Measure>] type foot

Measure Formulas
Measure formulas allow you to define derivative measures based on one or 
more previously defined measures. At their most basic, formulas serve as an 
easy way to create synonyms for types. For instance, if you’ve defined a mea-
sure named foot and want to abbreviate it as ft, you could write this:

[<Measure>] type ft = foot

Measure formulas aren’t always quite so simple, though; they can also 
be used to describe more complex relationships between types, such as a 
measurement of distance over time. For example, miles per hour could be 
defined as m / h (assuming that m and h were previously defined to represent 
miles and hours, respectively).

In t e r n at ion a l Sys t e m of Uni t s

F# 3.0 includes predefined measure types for the International System of Units 
(SI) units, including meters, kilograms, and amperes, among many others. You 
can find each SI unit in the Microsoft.FSharp.Data.UnitSystems namespace. Prior 
to F# 3.0, the SI units are included in the F# PowerPack and can be found in 
the Microsoft.FSharp.Math namespace.
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Here are some of the most notable guidelines to follow when compos-
ing measure formulas:

•	 You can multiply measures by separating two measures with a space or 
an asterisk (*) to create a product measure. For instance, torque is some-
times measured in pound-feet and could be represented in F# as:

[<Measure>] type lb
[<Measure>] type ft
[<Measure>] type lbft = lb ft

•	 You can divide measures by separating two measures with a forward 
slash (/) to create a quotient measure. For instance, a distance over time, 
such as miles per hour, could be expressed like this:

[<Measure>] type m
[<Measure>] type h
[<Measure>] type mph = m / h

•	 Positive and negative integral values can be used to express an expo-
nential relationship between two measures. For instance, square feet 
can be expressed like this:

[<Measure>] type ft
[<Measure>] type sqft = ft ^ 2

Applying Measures
Once you’ve defined some measures you can apply them to values. Out of 
the box, F# defines measure-aware variations of the sbyte, int16, int32, int64, 
float, float32, and decimal primitive types. Values without measure annota-
tions are said to be measureless or dimensionless.

To apply a measure to a constant value, you simply need to annotate 
the value as if the measure were a generic type parameter. For instance, you 
could define a length in feet and an area in square feet as follows:

> let length = 10.0<ft>
let area = 10.0<sqft>;;

val length : float<ft> = 10.0
val area : float<sqft> = 10.0

As you can see, length is bound to float<ft> while area is bound to 
float<sqft>.
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Measure annotations are great for constant values, but how can we 
apply measures to external data (such as something read from a database)? 
The easiest way to convert a measureless value to a measured one is to mul-
tiply it by a measured value, like this:

[<Measure>] type dpi
let resolution = 300.0 * 1.0<dpi>

Here, we define a measure representing dots per inch (dpi) and create 
a resolution by multiplying 300.0 by 1.0<dpi>.

For a more verbose alternative, you can use one of the seven typed 
WithMeasure functions from the LanguagePrimitives module. Each WithMeasure 
function corresponds to one of the measured primitives. Here’s how to 
create a new measured value using the FloatWithMeasure function:

[<Measure>] type dpi
let resolution = LanguagePrimitives.FloatWithMeasure<dpi> 300.0

The WithMeasure functions are a bit more explicit in their intent and are 
definitely more verbose. Typically, their use is reserved for when type infer-
ence fails.

Stripping Measures
The vast majority of functions do not accept unitized values, so you may need 
to strip measures from values. Luckily, like applying measures, stripping 
measures is easy.

The typical way to strip measures is to simply divide the value by a mea-
sured 1, like this:

[<Measure>] type dpi
300.0<dpi> / 1.0<dpi>

W he r e H av e t he St a rs Gone?

Although units of measure play an important role within F#’s type system, they 
are erased during compilation and therefore have no impact on the compiled 
code. This is not to say that the measure types are not present in the compiled 
assembly; it means only that they’re not attached to any individual values. 
The net result of erasure is that units of measure can be enforced only within 
F# code, and any measure-aware functions or types used by assemblies writ-
ten in other languages will be treated as measureless.
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Alternatively, you can use the corresponding type conversion opera-
tor to achieve the same effect. For instance, we can strip the units from 
300.0<dpi> by calling the float function as follows:

[<Measure>] type dpi
float 300.0<dpi>

Enforcing Measures
Because units of measure are part of F#’s type system, you can enforce that 
values passed to a function use the correct units through type annotations 
on the parameters. Here we define a getArea function that requires the sup-
plied width and height to be measured in feet:

> let getArea (w : float<ft>) (h : float<ft>) = w * h;;

val getArea : w:float<ft> -> h:float<ft> -> float<ft ^ 2>

If you were to call getArea with measureless arguments as shown here, 
you’d receive the following error:

> getArea 10.0 10.0;;

  getArea 10.0 10.0;;
  --------^^^^

C:\Users\Dave\AppData\Local\Temp\stdin(9,9): error FS0001: This expression was expected to have type
    float<ft>    
but here has type
    float

Similarly, calling getArea with arguments annotated with the wrong mea-
sure (or no measure at all) will result in a compiler error. To correctly call the 
getArea function, you must provide values in the proper units, like this:

> getArea 10.0<ft> 10.0<ft>;;
val it : float<ft ^ 2> = 100.0

Notice that the function’s return value is float<ft ^ 2> despite our hav-
ing defined sqft as ft ^ 2. The compiler doesn’t automatically convert the 
measures unless explicitly instructed to do so through a return type annota-
tion, as shown here:

> let getArea (w : float<ft>) (h : float<ft>) : float<sqft> = w * h;;

val getArea : w:float<ft> -> h:float<ft> -> float<sqft>

> getArea 10.0<ft> 10.0<ft>;;
val it : float<sqft> = 100.0



182   Chapter 8

Ranges
Measured units are permissible in range expressions, but there’s a catch: 
You must provide a step value. To create a measured range, you could write 
something like this:

> let measuredRange = [1.0<ft>..1.0<ft>..10.0<ft>];;

val measuredRange : float<ft> list =
  [1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0]

Without an explicit step value, the compiler will try to create the 
range with the underlying type’s default, measureless value and will raise 
an error.

Converting Between Measures
While measure formulas allow you to create derivative units, they really 
aren’t flexible enough to allow arbitrary conversions between measures. 
To work around this limitation, you can define measure types with static 
members for both conversion factors and functions.

Static Conversion Factors
Defining a conversion factor on a measure type takes the same syntax as a 
static property. For instance, since there are 12 inches per foot, you could 
write something like this:

[<Measure>] type ft
[<Measure>] type inch = static member perFoot = 12.0<inch/ft>

The perFoot conversion can be accessed through the inch type like any 
static property. To convert from feet to inches, you would multiply a value 
measured in feet by inch.perFoot, as follows:

> 2.0<ft> * inch.perFoot;;
val it : float<inch> = 24.0

Notice how the compiler inferred through the multiplication operation 
that the result should be measured in inches. Similarly, we can convert from 
inches to feet by dividing a value measured in inches by inch.perFoot:

> 36.0<inch> / inch.perFoot;;
val it : float<ft> = 3.0
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Static Conversion Functions
When you need more than a conversion factor, you can define static conver-
sion functions (and their reciprocal conversions) directly on the measure 
types. Consistently defining the conversion functions on both measure 
types can help avoid confusion about where they’re defined.

To maximize code reuse, you can define the measure types as mutually 
recursive types by joining them together with the and keyword. Here, we 
define Fahrenheit and Celsius measures as mutually recursive types:

[<Measure>]
type f = 
  static member toCelsius (t : float<f>) = ((float t - 32.0) * (5.0/9.0)) * 1.0<c>
  static member fromCelsius (t : float<c>) = ((float t * (9.0/5.0)) + 32.0) * 1.0<f>
and
  [<Measure>]
  c =
    static member toFahrenheit = f.fromCelsius
    static member fromFahrenheit = f.toCelsius

The Fahrenheit measure includes functions for converting to and from 
Celsius. Likewise, the Celsius measure includes functions for converting to 
and from Fahrenheit, but through the mutually recursive definition it can 
reuse the functions defined on the Fahrenheit type.

Depending on the complexity of your measure definitions or the conver-
sion functions, you may find it cleaner to define the types independently and 
add the static methods later with intrinsic type extensions. This snippet shows 
one possible approach:

[<Measure>] type f
[<Measure>] type c

let fahrenheitToCelsius (t : float<f>) =
  ((float t - 32.0) * (5.0/9.0)) * 1.0<c>

let celsiusToFahrenheit (t : float<c>) =
  ((float t * (9.0/5.0)) + 32.0) * 1.0<f>

type f with static member toCelsius = fahrenheitToCelsius
            static member fromCelsius = celsiusToFahrenheit

type c with static member toFahrenheit = celsiusToFahrenheit
            static member fromFahrenheit = fahrenheitToCelsius

Here, the measure types are defined on their own (without mutual recur-
sion) and immediately followed by the conversion functions. Since neither 
of the conversion functions has been attached to the measure types, we fol-
low their definition by extending the measure types with static properties 
that expose the conversion functions.
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Generic Measures
You’ve already seen numerous examples of how to write measure-aware 
functions for specific measure types, but it’s also possible to write functions 
against arbitrary measures using generic measures. Writing such a function is 
the same as for specific measure types, except that instead of using a con-
crete unit value you use an underscore character (_). Alternatively, or when 
your function accepts multiple parameters that must use the same generic 
measure type, you can use a generic identifier (such as 'U) instead of an 
underscore.

You might use generic measures when you need to perform the same 
operation against a variety of measures. For instance, you could write a 
function that computes the square of any measured float like this:

let square (v : float<_>) = v * v

Because square is defined to use a generic measure, its argument can 
accept any measured type. In fact, its argument can even be measureless. 
Here we use the square function to compute square inches, square feet, and 
a measureless square:

> square 10.0<inch>;;
val it : float<inch ^ 2> = 100.0
> square 10.0<ft>;;
val it : float<ft ^ 2> = 100.0
> square 10.0;;
val it : float = 100.0

Custom Measure-Aware Types
You can create your own measure-aware type by defining a generic type 
with a type parameter decorated with the Measure attribute. Consider the 
following record type:

type Point< u[<Measure>] 'u > = { X : vfloat<'u>; Y : wfloat<'u> } with
  member xthis.FindDistance other =
    let deltaX = other.X - this.X
    let deltaY = other.Y - this.Y
    sqrt ((deltaX * deltaX) + (deltaY * deltaY))

The Point type behaves just like any other record type, except that its 
members are defined as generic measures. Rather than working only with 
measureless floats, Point includes a single measure, 'u u, that is used by 
X v and Y w. Point also defines a FindDistance function x that performs a 
measure-safe calculation to find the distance between two points. Here 



Measuring Up   185

we create a Point instance and invoke the FindDistance function against 
another Point:

> let p = { X = 10.0<inch>; Y = 10.0<inch> }
p.FindDistance { X = 20.0<inch>; Y = 15.0<inch> };;

val p : Point<inch> = {X = 10.0;
                       Y = 10.0;}
val it : float<inch> = 11.18033989

If you try calling FindDistance with a Point that uses a different measure, 
the compiler will raise a type mismatch error like this:

> p.FindDistance { X = 20.0<ft>; Y = 15.0<ft> };;

  p.FindDistance { X = 20.0<ft>; Y = 15.0<ft> };;
  ---------------------^^^^^^^^

C:\Users\Dave\AppData\Local\Temp\stdin(5,22): error FS0001: Type mismatch. Expecting a
    float<inch>    
but given a
    float<ft>    
The unit of measure 'inch' does not match the unit of measure 'ft'

Custom measure-aware types aren’t restricted to record types, either. 
For instance, you could define an equivalent measure-aware class like this:

type Point< [<Measure>] 'u > (x : float<'u>, y : float<'u>) =
  member this.X = x
  member this.Y = y
  member this.FindDistance (other : Point<'u>) =
    let deltaX = other.X - this.X
    let deltaY = other.Y - this.Y
    sqrt ((deltaX * deltaX) + (deltaY * deltaY))

Summary
Most programming languages rely on programmer discipline to ensure that 
measures are used correctly and consistently. One of the unique ways that 
F# helps developers produce more correct code is by including a rich syntax 
for units of measure directly within its type system.

F# not only includes predefined measure types for the International 
System of Units, but it also lets you define your own. You can enforce that 
the proper units are used in your calculations by annotating individual 
constant values with the appropriate measure or including them in type 
annotations in function definitions. Finally, you can define your own 
measure-aware types using a generic-like syntax.





9
C a n  I  Q u o t e  Y o u  o n  T h a t ?

Another feature introduced to the .NET 
Framework with LINQ is expression trees. 

Often using the same syntax as lambda 
expressions, expression trees compile not to 

executable code but instead into a tree structure that 
describes the code and can be parsed for translation
to other forms. This type of programming is often called metaprogramming. 
Just as we can think of metadata as data that describes data, we can think of 
metaprogramming as code that describes code.

This chapter isn’t about expression trees, though; it’s about a similar 
construct in F# called a quoted expression, also known as a code quotation. 
Quoted expressions address the same basic problem as expression trees, 
but they take a fundamentally different approach. Let’s quickly compare 
expression trees to quoted expressions before diving into how to compose 
and parse quoted expressions within your F# code.
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Comparing Expression Trees and Quoted Expressions
Expression trees are commonly used with LINQ providers to translate cer-
tain C# or Visual Basic expressions into SQL, but they aren’t only useful 
for translating code between languages. Sometimes expression trees are 
employed to add an extra degree of safety or readability to code that would 
otherwise be confusing or error-prone. Consider the INotifyPropertyChanged 
interface commonly used in WPF and Silverlight.

INotifyPropertyChanged defines a single member: an event with a 
string parameter, PropertyName, that identifies the property that changed 
and triggered the event. You raise the PropertyChanged event by creat-
ing a PropertyChangedEventArgs instance and passing the property name 
to the constructor as a string. This approach is error prone, though: 
Because there are no inherent checks around the string passed to the 
PropertyChangedEventArgs constructor, it’s possible to provide an invalid 
name. Expression trees can help avoid problems like this, as shown in the 
following C# class, which employs an expression tree to safely identify the 
changed property without resorting to obscene amounts of reflection code:

// C#
public class PropertyChangedExample
  : INotifyPropertyChanged
{
  public event PropertyChangedEventHandler PropertyChanged;

  private string _myProperty = String.Empty;
  
  public string MyProperty
  {
    get { return _myProperty; }
    set
    {
      _myProperty = value;
      RaisePropertyChangedEvent(u() => MyProperty);
    }
  }
  
  protected void RaisePropertyChangedEvent<TValue>(
    vExpression<Func<TValue>> propertyExpr)
  {
    if(PropertyChanged == null) return;

    var memberExpr = w(MemberExpression)propertyExpr.Body;
    var ea = new PropertyChangedEventArgs(xmemberExpr.Member.Name);

    PropertyChanged(this, ea);
  }
}

The preceding example shows a twist on the typical pattern for imple-
menting INotifyPropertyChanged. Instead of passing a magic string to the 
RaisePropertyChangedEvent method u, it uses a lambda expression. This 
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lambda expression isn’t compiled to a delegate, however. Instead, the C# 
compiler infers through the signature that it should compile the lambda 
expression to an expression tree v. Inside the method, we then cast the 
expression’s body to MemberExpression at w so we can extract the property 
name and pass it to PropertyChangedEventArgs at x.

Quoted expressions serve a similar purpose in F#, but unlike expres-
sion trees, they were designed with an emphasis on functional program-
ming, not only with how they’re constructed but also with how they’re 
parsed. Furthermore, expression trees don’t support many important F# 
concepts. By contrast, quoted expressions are fully aware of concepts like 
currying, partial application, and recursive declarations (let rec). Finally, 
quoted expressions are designed for recursive parsing, which makes it 
almost trivial to walk the entire quoted structure.

You can rewrite the preceding C# class in F# using quoted expressions 
as follows:

// F#
open Microsoft.FSharp.Quotations
open Microsoft.FSharp.Quotations.Patterns
open System.ComponentModel

type PropertyChangedExample() as x =
  let pce = Event<_, _>()
  let mutable _myProperty = ""
ulet triggerPce =
    function
    | vPropertyGet(_, pi, _) ->
        let ea = PropertyChangedEventArgs(pi.Name)
        pce.Trigger(x, ea)
    | _ -> failwith "PropertyGet quotation is required"
  interface INotifyPropertyChanged with
    [<CLIEvent>]
    member x.PropertyChanged = pce.Publish
  member x.MyProperty with get() = _myProperty
                      and set(value) = _myProperty <- value
                                       triggerPce(w<@@ x.MyProperty @@>)

This revised version of the PropertyChangedExample class is structured 
much like the C# version. As in the C# version, PropertyChangedEvent isn’t 
published directly. Instead, the triggerPce function at u accepts a quoted 
expression and uses pattern matching to determine whether the supplied 
quoted expression represents getting the value of a property at v. Finally, 
instead of a lambda expression in the call to triggerPce at w, the quoted 
expression is represented as a property reference enclosed within <@@ and @@>. 
By using a quoted expression, we allow the compiler to determine whether 
the supplied property is valid, rather than crossing our fingers and hoping 
we’ve entered the correct name. Using a quoted expression in this manner 
also protects us against future refactorings where we remove or rename a 
property but forget to update the string.

Despite their many similarities, quoted expressions and expression 
trees aren’t quite the same. First, there’s no built-in way to evaluate quoted 
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expressions, nor is there any built-in way to translate between quoted expres-
sions and expression trees. Should you need to perform either task, you’ll 
need to turn to the F# PowerPack, or another library that provides these 
capabilities. With the inclusion of query expressions (Chapter 10) in F# 3.0, 
however, these needs should be diminished.

Composing Quoted Expressions
Quoted expressions can take one of two forms: strongly typed and weakly 
typed. The distinction between the two forms is a bit of a misnomer because 
all quotation expressions are ultimately based upon either the Expr<'T> or Expr 
types found in the Microsoft.FSharp.Quotations namespace. In this context, 
strong and weak typing really indicates whether the quotation carries infor-
mation about the expression type as opposed to describing the expression 
through its constituent parts. You can get a weakly typed quoted expression 
from a strongly typed one through its Raw property.

In addition to the Expr and Expr<'T> types, the Microsoft.FSharp.Quotations 
namespace also includes the Var type. The Var type is used inside quoted 
expressions to describe binding information including a binding name, its 
data type, and whether the binding is mutable.

Regardless of whether a quoted expression is strongly or weakly typed, 
all quoted expressions are subject to a few constraints. First, object expres-
sions are forbidden within quotations. Next, the quotation cannot resolve to 
a generic expression. Finally, the quotation must be a complete expression; 
that is, a quotation must do more than define a let binding. Attempting to 
create a quoted expression that violates any of these criteria will result in a 
compiler error.

Quoted Literals
To create a quoted expression, you simply need to enclose an expression 
within <@ and @> or <@@ and @@>, where the first form creates a strongly typed 
quoted expression and the second creates a weakly typed quoted expres-
sion. For example, to create a strongly typed quoted expression that repre-
sents multiplying two values, you could write something like this:

> open Microsoft.FSharp.Quotations
let x, y = 10, 10
let expr = <@ x * y @>;;

val x : int = 10
val y : int = 10
val expr : uExpr<int> =
  Call (None, op_Multiply, [PropertyGet (None, x, []), PropertyGet (None, y, [])])

In the preceding snippet, the underlying type of the quoted expres-
sion is u Expr<int>. In this case, the compiler infers the quoted expression’s 
type as int and carries that type along with the expression. The expression’s 
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value is a listing of the source expression’s constituent elements. We’ll dive 
into what the pieces mean and how to use them to decompose quoted 
expressions a bit later in this chapter.

Quoted expressions can be simple like the one in the preceding example, 
but they can also represent more complex expressions including lambda 
expressions. For instance, a lambda expression that multiplies two integers 
could be quoted like this:

> open Microsoft.FSharp.Quotations
let expr = <@ fun a b -> a * b @>;;

val expr : Expr<(int -> int -> int)> =
  Lambda (a, Lambda (b, Call (None, op_Multiply, [a, b])))

Similarly, you can include multiple expressions in a single quoted expres-
sion. Here, a let bound function is defined and applied to two integer values:

> let expr = <@ let mult x y = x * y
              mult 10 20 @>;;

val expr : Quotations.Expr<int> =
  Let (mult, Lambda (x, Lambda (y, Call (None, op_Multiply, [x, y]))),
     Application (Application (mult, Value (10)), Value (20)))

.NET Reflection
Another way to create a quoted expression is through standard .NET reflec-
tion. Normally, quoted expressions are created from nonexecutable code, 
but on occasion you may find that you’ve already defined a function that 
includes the code you want to quote. Rather than duplicating the code, 
you can decorate the function with the ReflectedDefinition attribute:

type Calc =
  [<ReflectedDefinition>]
  static member Multiply x y = x * y

Here, Multiply is compiled normally so it can be invoked directly, but 
the ReflectedDefinition attribute instructs the compiler to also generate a 
weakly typed quoted expression and embed the result within the compiled 
assembly. To access the generated quoted expression, you need to obtain a 
standard reflection MethodInfo object that represents the compiled method 
and pass it to the Expr class’s static TryGetReflectedDefinition method:

> let expr =
  typeof<Calc>
    .GetMethod("Multiply")
  |> Expr.TryGetReflectedDefinition;;

val expr : Expr option =
  Some Lambda (x, Lambda (y, Call (None, op_Multiply, [x, y])))
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When you need to quote multiple values within a type, decorating each 
one with the ReflectedDefinition attribute can get tedious. Fortunately, 
you can also apply the attribute to modules and types to generate quoted 
expressions for each of their values or members, respectively.

Manual Composition
The final way to compose a quoted expression is to manually construct one 
by chaining the results of calls to the Expr type’s static methods. The Expr 
type defines over 40 methods that create new Expr instances, each represent-
ing the various constructs that can appear in a quoted expression. 

The Expr methods are defined such that their purpose should be clear 
now that you know about the data structures and language constructs avail-
able to you in F#, so I won’t go into detail about each of them. There are 
two important things to note about the methods, though.

First, the method parameters are tupled so instead of currying multiple 
parameters, they must be provided in tupled form. Second, many of the 
methods—nearly 50 percent of them—use .NET reflection to construct the 
corresponding expression.

Building quoted expressions manually can be tedious, but it gives 
you the most control over how expressions are constructed. Perhaps more 
important, however, is that these methods allow you to build quoted expres-
sions based on code that you don’t control and therefore can’t decorate 
with the ReflectedDefinition attribute.

To demonstrate the process of manually constructing a quoted expres-
sion, let’s walk through constructing a method that multiplies two values 
using the multiplication operator. To begin, we need to use reflection to 
access the Operators module where the multiplication operator is defined, 
like this:

let operators =
  System.Type.GetType("Microsoft.FSharp.Core.Operators, FSharp.Core")

This binding uses a partially qualified name to identify the type 
we’re looking for. (We had to use reflection here because typeof<'T> and 
typedefof<'T> don’t work on modules.) Now that we have a reference to the 
Operators module, we can obtain a reference to the multiplication operator 
method by its name, op_Multiply, with the GetMethod method:

let multiplyOperator = operators.GetMethod("op_Multiply")

Next, we inspect the returned MethodInfo to retrieve each of the opera-
tor’s parameters. To include these parameters in our expression, we need to 
create Var instances from the corresponding PropertyInfo instances. We can 
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easily perform this transformation by mapping each parameter through 
the Array.map function. For convenience, we can also use an Array pattern 
to convert the resulting array into a tuple, as shown here:

let varX, varY =
  multiplyOperator.GetParameters()
  |> Array.map (fun p -> Var(p.Name, p.ParameterType))
  |> (function | [| x; y |] -> x, y
               | _ -> failwith "not supported")

We now have enough information to construct the quoted expression:

let call = Expr.Call(multiplyOperator, [ Expr.Var(varX); Expr.Var(varY) ])
let innerLambda = Expr.Lambda(varY, call)
let outerLambda = Expr.Lambda(varX, innerLambda)

The preceding bindings incrementally construct a quoted expression 
representing a curried function that multiplies two values. As you can see, 
the quoted expression contains a method call for the multiplication opera-
tor, an inner lambda expression that applies the y value, and an outer 
lambda expression that applies the x value. If you were to inspect the value 
of outerLambda, you should see the resulting expression represented like this:

val outerLambda : Expr =
  Lambda (x, Lambda (y, Call (None, op_Multiply, [x, y])))

After all this work, we finally have a quoted expression that’s equivalent 
to this weakly typed expression:

<@@ fun x y -> x * y @@>

For your convenience, I’m including the previous examples in their 
entirety here so you can see all the parts working together.

let operators =
  System.Type.GetType("Microsoft.FSharp.Core.Operators, FSharp.Core")
let multiplyOperator = operators.GetMethod("op_Multiply")
let varX, varY =
  multiplyOperator.GetParameters()
  |> Array.map (fun p -> Var(p.Name, p.ParameterType))
  |> (function | [| x; y |] -> x, y
               | _ -> failwith "not supported")

let call = Expr.Call(multiplyOperator, [ Expr.Var(varX); Expr.Var(varY) ])
let innerLambda = Expr.Lambda(varY, call)
let outerLambda = Expr.Lambda(varX, innerLambda)
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Splicing Quoted Expressions
If you need to combine multiple quoted expressions, you could manually 
construct a new quoted expression by passing each one to the appropriate 
static method on the Expr class (typically Call), but there’s a much easier way: 
You can create a new literal quoted expression by splicing them together 
using the splicing operators. For example, suppose you have the following 
sequence and strongly typed quoted expressions:

let numbers = seq { 1..10 }
let sum = <@ Seq.sum numbers @>
let count = <@ Seq.length numbers @>

You can combine sum and count into a third quoted expression that rep-
resents calculating the average from a sequence using the strongly typed 
splice operator (%) like this:

let avgExpr = <@ %sum / %count @>

Weakly typed quoted expressions can be spliced, too. If sum and count 
had been defined as weakly typed quoted expressions (via the <@@ ... @@> 
syntax), you could splice them with the weakly typed splice operator (%%) 
like this:

let avgExpr = <@@ %%sum / %%count @@>

Decomposing Quoted Expressions
While code quotations can be useful for helping you understand the struc-
ture of code, most of their power comes from decomposition. F# includes 
three modules, also within the Microsoft.FSharp.Quotations namespace, that 
define a plethora of complete and partial active patterns that you can use to 
decompose a quoted expression to its constituent parts at varying degrees 
of granularity.

Pattern module  The partial active patterns in the Pattern module match 
the elementary F# language features such as function calls, function 
applications, looping constructs, raw values, binding definitions, and 
object creation. They correspond nearly one-to-one with the functions 
defined on the Expr type, helping you identify which pattern to use for 
the most common expressions.

DerivedPatterns module  The DerivedPatterns module includes partial 
active patterns that primarily match quoted expressions representing 
primitive literals, basic Boolean operators such as && and ||, and con-
structs decorated with ReflectedDefinition.
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ExprShape module  The ExprShape module defines a complete active 
pattern with three cases: ShapeVar, ShapeLambda, and ShapeCombination. It’s 
designed for use in recursive pattern matching so you can easily tra-
verse a quoted expression, matching every expression along the way.

Parsing Quoted Expressions
Rather than going into detail about the specific active patterns defined in 
each module, I think it’s more helpful to see how they work together. We’ll 
start with a typical example, where a sampling of patterns from each mod-
ule is used to build a string that represents the quoted F# syntax.

open System.Text
open Microsoft.FSharp.Quotations.Patterns
open Microsoft.FSharp.Quotations.DerivedPatterns
open Microsoft.FSharp.Quotations.ExprShape

let rec showSyntax =
  function
  | Int32 v ->
      sprintf "%i" v
  | Value (v, _) ->
      sprintf "%s" (v.ToString())
  | SpecificCall <@@ (+) @@> (_, _, exprs) ->
      let left = showSyntax exprs.Head
      let right = showSyntax exprs.Tail.Head
      sprintf "%s + %s" left right
  | SpecificCall <@@ (-) @@> (_, _, exprs) ->
      let left = showSyntax exprs.Head
      let right = showSyntax exprs.Tail.Head
      sprintf "%s - %s" left right
  | Call (opt, mi, exprs) ->
      let owner = match opt with
                  | Some expr -> showSyntax expr
                  | None -> sprintf "%s" mi.DeclaringType.Name
      if exprs.IsEmpty then
        sprintf "%s.%s ()" owner mi.Name
      else
        let sb = StringBuilder(showSyntax exprs.Head)
        exprs.Tail
        |> List.iter (fun expr ->
                        sb
                          .Append(",")
                          .Append(showSyntax expr) |> ignore)
        sprintf "%s.%s (%s)" owner mi.Name (sb.ToString())
  | ShapeVar var ->
      sprintf "%A" var
  | ShapeLambda (p, body) ->
      sprintf "fun %s -> %s" p.Name (showSyntax body)
  | ShapeCombination (o, exprs) ->
      let sb = StringBuilder()
      exprs |> List.iter (fun expr -> sb.Append(showSyntax expr) |> ignore) 
      sb.ToString()
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The preceding example may look intimidating, but despite includ-
ing a number of match cases, it’s really not particularly complicated when 
you break it down. The first thing to note is that the showSyntax function is 
recursive, which allows us to traverse the tree with any nested expressions 
we encounter. Each of the match cases belongs to one of the three quoted 
expression modules and matches a particular type of expression. I won’t go 
into detail about the bodies of each case since they don’t introduce any new 
concepts, but I encourage you to experiment with them.

The first two cases, Int32 and Value, match individual literal values. The 
Int32 pattern is a derived pattern that matches only integer values, whereas 
Value is a basic pattern that matches any literal value. As you can see from 
the definitions, both of these patterns extract the literal value. The Value 
pattern also extracts the corresponding data type, but since we’re not using 
it here we simply discard it with the Wildcard pattern.

Following the Value case are two SpecificCall cases and a generalized 
Call case. The SpecificCall cases are derived patterns that match calls to the 
addition and subtraction operators (as inline weakly typed quoted expres-
sions), respectively. The Call case, on the other hand, is a basic pattern that 
matches any function call. The SpecificCall cases are much simpler than the 
Call case because we can make certain assumptions about the code given 
that we know more about what constitutes a match. The Call case needs to 
do more work to expand the expression.

Finally, we reach the last three cases: ShapeVar, ShapeLambda, and 
ShapeCombination. The simplest of these, ShapeVar, matches any variable defi
nition. (Note that the term variable is preferable to binding here because it 
represents a placeholder within the code.) The value captured by ShapeVar 
includes information such as the variable name, its data type, and mutabil-
ity. ShapeLambda matches any lambda expression, capturing its parameter 
definition and body as a nested expression. The last case, ShapeCombination, 
matches any other expression and is included here for completeness.

To see the showSyntax function in action, you can pass in any quoted 
expression. Just remember that this implementation hardly covers every 
possible case, so with more complex expressions your results will probably 
be less than stellar. For starters, though, here are a few sample inputs and 
results:

> showSyntax <@ fun x y -> x + y @>;;
val it : string = "fun x -> fun y -> x + y"
> showSyntax <@ fun x y -> x - y @>;;
val it : string = "fun x -> fun y -> x - y"
> showSyntax <@ 10 * 20 @>;;
val it : string = "Operators.op_Multiply (10,20)"
> showSyntax <@@ System.Math.Max(10, 20) @@>;;
val it : string = "Math.Max (10,20)"
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Substituting Reflection
Just as you can use expression trees to enable reflection-like capabilities (as 
you saw at the beginning of this chapter), you can use quoted expressions 
to achieve a similar effect. To demonstrate, I’ll use an adapted version of 
a sample I found extremely helpful when I was first learning about quoted 
expressions.

This example, found in its original form at http://fssnip.net/eu/, defines a 
module that makes extensive use of higher-order functions, partial applica-
tion, and quoted expressions, letting you define ad hoc validation functions 
for your types. We’ll start with the full listing and break it down after you’ve 
had a chance to digest it.

module Validation =
  open System
  open Microsoft.FSharp.Quotations
  open Microsoft.FSharp.Quotations.Patterns

  type Test<'e> = | Test of ('e -> (string * string) option)

  ulet private add (quote : Expr<'x>) message args validate (xs : Test<'e> list) =
    let propName, eval =
      match quote with
      | PropertyGet (_, p, _) -> p.Name, fun x -> p.GetValue(x, [||])
      | Value (_, ty) when ty = typeof<'e> -> "x", box
      | _ -> failwith "Unsupported expression"
    let test entity =
      let value = eval entity
      if validate (unbox value) then None
      else Some (propName, String.Format(message, Array.ofList (value :: args)))
    Test(test) :: xs

  vlet notNull quote =
    let validator = (fun v -> v <> null)
    add quote "Is a required field" [] validator

  wlet notEmpty quote =
    add quote "Cannot be empty" [] (String.IsNullOrWhiteSpace >> not)

  xlet between quote min max =
    let validator = (fun v -> v >= min && v <= max)
    add quote "Must be at least {2} and greater than {1}" [min; max] validator

  ylet createValidator (f : 'e -> Test<'e> list -> Test<'e> list) =
    let entries = f Unchecked.defaultof<_> []
    fun entity -> List.choose (fun (Test test) -> test entity) entries

The Validation module’s heart is the private add function at u. This 
function accepts five parameters that each participate in the validation. 
Of primary interest are the first parameter, quote; the third parameter, 
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validate; and the final parameter, xs. These represent the quotation that 
identifies the property being validated, a validation function, and a list of 
test functions, respectively.

Inside add, we first attempt to match quote against the PropertyGet and 
Value active patterns to appropriately extract the value from the source 
object so it can be passed to the validation function later. Next, we define 
a function, test, that invokes the supplied validate function and returns an 
option indicating whether the extracted value is valid. Finally, the test func-
tion is wrapped inside the Test union case and prepended to xs, and the 
entire list is returned.

With the add function in place, we define a variety of functions that 
return partially applied versions of add, giving us an expressive validation 
syntax. In this example, we’ve defined notNull v, notEmpty w, and between x. 
Each of these functions accepts a quoted expression that’s applied to add 
along with the next three parameters, resulting in new functions that 
accept only a list of Test union cases and return the same.

The createValidator y function is the primary entry point into the 
Validation module. createValidator accepts a curried function whose argu-
ments include a generic value and a list of Test union cases (of the same 
generic type), and ultimately returns another list of Test union cases. 
Notice how the second parameter and return value correspond to the 
functions returned by the notNull, notEmpty, and between functions. The 
implication here is that we can compose a validation function to pass into 
createValidator for arbitrary invocation later.

Now that the Validation module is fully defined, we can see how to use it. 
Let’s begin by opening the Validation module and defining a simple record 
type definition that we can validate against.

open Validation
type TestType = { ObjectValue : obj
                  StringValue : string
                  IntValue : int }

There’s nothing particularly notable about this type; it merely includes 
three labels we can reference for validation. Now we can create a validation 
method by calling createValidator like this:

let validate =
  createValidator <| fun x -> notNull <@ x.ObjectValue @> >>
                              notEmpty <@ x.StringValue @> >>
                              between <@ x.IntValue @> 1 100

Here, we’ve chained together calls to notNull, notEmpty, and between using 
the composition operator within the function we pass to createValidator. 
The resulting function (returned from createValidator) is then bound to 
validate. Each of the chained calls includes a quoted expression that identi-
fies one of TestType’s labels. You can even see here how F#’s type inference 
has played a role in determining the type of x in this expression.
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All we need to do now is invoke the validate function by passing it 
instances of TestType. When all values satisfy the validation, validate simply 
returns an empty list like this:

> { ObjectValue = obj(); StringValue = "Sample"; IntValue = 35 }
|> validate;;
val it : (string * string) list = []

On the other hand, when one or more values fail validation, the validate 
function returns a list including the name of the member that failed along 
with a failure message, as shown here where all three values fail:

> { ObjectValue = null; StringValue = ""; IntValue = 1000 }
|> validate;;
val it : (string * string) list =
  [("IntValue", "Must be at least 100 and greater than 1");
   ("StringValue", "Cannot be empty"); ("ObjectValue", "Is a required field")]

Summary
Although quoted expressions serve much the same purpose as the expres-
sion trees introduced with LINQ, F#’s quoted expressions are more finely 
tuned for functional programming. As you’ve seen, you can construct 
quoted expressions as literal expressions, directly through reflection with 
the ReflectedDefinition attribute, or programmatically with reflection 
and the static methods on the Expr class. Quoted expressions derive their 
true power from their decomposition, however. By using the active pat-
terns defined in the Patterns, DerivedPatterns, and ExprShape modules, you 
can decompose a quoted expression at varying degrees of granularity to 
accomplish a variety of tasks such as language translation or even flexible 
validation.





10
S h o w  M e  t h e  D a t a

Virtually every application written today 
requires robust mechanisms to both access 

and manipulate data. While the full gamut 
of data access technologies across the .NET 

Framework is available to you in F#, this chapter 
focuses on two specific areas: query expressions and 
type providers.

Query Expressions
When LINQ was added to .NET, it revolutionized the way we access data by 
providing a unified syntax for querying data from disparate data sources. 
Upon LINQ’s introduction, C# and Visual Basic were extended to include 
the query syntax, a SQL-like syntax with context-sensitive keywords that were 
really syntactic sugar over several language features, such as extension 
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methods and lambda expressions. In this regard, F# was a little late to 
the party because, prior to F# 3.0, the only way to use LINQ in F# was to 
directly call the LINQ extension methods.

Despite their foundations in functional programming, using the LINQ 
methods directly has a highly object-oriented feel due to their fluent inter-
face; sequences are passed to methods that return new sequences and the 
methods are typically chained with dot notation. Consider the following 
query, which uses the LINQ extension methods directly against an F# list 
to filter out odd numbers, and then sorts the results in descending order 
(remember to open the System.Linq namespace):

[ 1..100 ]
  .Where(fun n -> n % 2 = 0)
  .OrderByDescending(fun n -> n)

As you can see, chaining the method calls in this manner is much 
more object-oriented than functional. Query expressions, introduced 
with F# 3.0, changed that by providing a convenient SQL-like syntax 
that resembles the query syntax from C# and Visual Basic. They really 
are LINQ for F#.

Query expressions take the form of query { ... }. Inside the braces we 
identify a series of operations we want to apply to a sequence, thereby form-
ing a query. For instance, we could rewrite the previous query as a query 
expression like this (explicitly opening System.Linq isn’t required for query 
expressions):

query { for n in [ 1..100 ] do
        where (n % 2 = 0)
        sortByDescending n }

Now, filtering and sorting the list looks and feels more functional. 
Instead of chaining method calls directly, we’re expressing the query in 
a more idiomatic manner that uses expression composition and function 
calls. Because query expressions are a wrapper around the LINQ technolo-
gies, you can use them with any sequence.

Given this simple example, one could argue that the Seq and List mod-
ule functions could be used to similar effect, and in many cases, that’s 
true. For instance, we could easily replace the where operator with a call to 
Seq.filter. Likewise, we can often sort using Seq.sortBy instead of the sortBy 
operator. What’s not immediately apparent is that by being built upon 
LINQ, query expressions can offer additional optimizations, such as gen-
erating a WHERE clause in a SQL query to prevent retrieving a large data set 
from a database.

In the interest of simplicity, unless otherwise noted, each query expres-
sion example in this chapter will use the types and collections defined in 
the following QuerySource module.
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module QuerySource =
  open System

  type film = { id : int; name : string; releaseYear : int; gross : Nullable<float> }
              override x.ToString() = sprintf "%s (%i)" x.name x.releaseYear
  type actor = { id : int; firstName : string; lastName : string }
               override x.ToString() = sprintf "%s, %s" x.lastName x.firstName
  type filmActor = { filmId : int; actorId : int }

  let films =
    [ { id = 1; name = "The Terminator"; releaseYear = 1984; gross = Nullable 38400000.0 }
      { id = 2; name = "Predator"; releaseYear = 1987; gross = Nullable 59735548.0 }
      { id = 3; name = "Commando"; releaseYear = 1985; gross = Nullable<float>() }
      { id = 4; name = "The Running Man"; releaseYear = 1987; gross = Nullable 38122105.0 }
      { id = 5; name = "Conan the Destroyer"; releaseYear = 1984; gross = Nullable<float>() } ]

  let actors =
    [ { id = 1; firstName = "Arnold"; lastName = "Schwarzenegger" }
      { id = 2; firstName = "Linda"; lastName = "Hamilton" }
      { id = 3; firstName = "Carl"; lastName = "Weathers" }
      { id = 4; firstName = "Jesse"; lastName = "Ventura" }
      { id = 5; firstName = "Vernon"; lastName = "Wells" } ]

  let filmActors =
    [ { filmId = 1; actorId = 1 }
      { filmId = 1; actorId = 2 }
      { filmId = 2; actorId = 1 }
      { filmId = 2; actorId = 3 }
      { filmId = 2; actorId = 4 }
      { filmId = 3; actorId = 1 }
      { filmId = 3; actorId = 5 }
      { filmId = 4; actorId = 1 }
      { filmId = 4; actorId = 4 }
      (* Intentionally omitted actor for filmId = 5 *) ]

There’s nothing particularly interesting about the QuerySource module, 
but the types and collections defined here sufficiently represent a basic 
data model we can query in a variety of ways. The film and actor types also 
include overrides of ToString to simplify the query output.

Basic Querying
In their most basic form, query expressions consist of an enumerable for 
loop and a projection. The enumerable for loop defines a name for items in 
a source sequence. The projection identifies the data that will be returned 
by the query.

One of the most common projection operators is select, which equates 
to LINQ’s Select method and defines the structure of each item in the 
resulting sequence (much like Seq.map). At their most basic, select opera-
tions simply project each data item directly, like this:

query { for f in QuerySource.films do select f }
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which results in:

val it : seq<QuerySource.film> =
  seq
    [{id = 1;
      name = "The Terminator";
      releaseYear = 1984;
      gross = 38400000.0;};
      -- snip -- ]

select operations aren’t limited to projecting only the source data item; 
they can also transform the source sequence to project more complex types 
like tuples, records, or classes. For instance, to project a tuple containing 
the film’s name and its release year, you could write:

query { for f in QuerySource.films do
        select (f.name, f.releaseYear) }

which gives:

val it : seq<string * int> =
  seq
    [("The Terminator", 1984); ("Predator", 1987); ("Commando", 1985);
     ("The Running Man", 1987); ...]

In these simple examples, we’ve explicitly included a select operation 
to transform the source sequence. As query complexity grows, projecting 
the raw, nontransformed data items is often implied, so the select opera-
tion can often be safely omitted. In the interest of space, I’ll generally proj-
ect results with ToString, but I encourage you to experiment with different 
projections to familiarize yourself with the query behavior.

Filtering Data
Queries often involve specifying some criteria to filter out unwanted data. 
There are two primary approaches to filtering with query expressions: 
predicate-based filters and distinct item filters.

Predicate-Based Filters

Predicate-based filters allow you to filter data by specifying the criteria that 
each item in the source sequence must satisfy in order to be included in 
the projected sequence. To create a predicate-based filter, simply include 
F#’s equivalent of LINQ’s Where method, the where operator, followed by 
a Boolean expression (often called a predicate) in your query. (Note that 
parentheses are typically required around the expression.) For example, 
to select only the films released in 1984, you could write this:

query { for f in QuerySource.films do
        where (f.releaseYear = 1984)
        select (f.ToString()) }
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to get:

val it : seq<string> =
  seq ["The Terminator (1984)"; "Conan the Destroyer (1984)"]

When composing predicate-based filters, you must be aware of the source 
sequence’s underlying type. For the simple examples you’ve seen so far it 
hasn’t been an issue, but in many cases, particularly when you are working 
with IQueryable<'T> instances, you might have to deal with null values.

Null values can pose a problem in query expressions because the stan-
dard comparison operators don’t handle them. For example, if you were to 
query for all films that grossed no more than $40 million using the stan-
dard equality operator like this:

query { for f in QuerySource.films do
        where (f.gross <= 40000000.0)
        select (f.ToString()) }

you’d receive the following error because gross is defined as Nullable<float>:

QueryExpressions.fsx(53,16): error FS0001: The type 'System.Nullable<float>' 
does not support the 'comparison' constraint. For example, it does not support 
the 'System.IComparable' interface

To work around this limitation, you need to use the nullable operators 
defined in the Microsoft.FSharp.Linq.NullableOperators module. These opera-
tors look like the standard operators except that they begin with a question 
mark (?) when the left operand is Nullable<_>, end with a question mark when 
the right operand is Nullable<_>, or are surrounded by question marks when 
both operands are Nullable<_>. Table 10-1 lists each of the nullable operators.

Table 10-1: Nullable Operators

Operator Left Side 
Nullable

Right Side 
Nullable

Both Sides 
Nullable

Equality ?= =? ?=?

Inequality ?<> <>? ?<>?

Greater than ?> >? ?>?

Greater than or equal ?>= >=? ?>=?

Less than ?< <? ?<?

Less than or equal ?<= <=? ?<=?

Addition ?+ +? ?+?

Subtraction ?- -? ?-?

Multiplication ?* *? ?*?

Division ?/ /? ?/?

Modulus ?% %? ?%?
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Now we can rewrite the previous query using the appropriate nullable 
operator like this:

open Microsoft.FSharp.Linq.NullableOperators

query { for f in QuerySource.films do
        where (f.gross ?<= 40000000.0)
        select (f.ToString()) }

to get:

val it : seq<string> = seq ["The Terminator (1984)"; "The Running Man (1987)"]

As you can see, the query resulted in two matches despite the under
lying sequence containing some null values.

It’s possible to chain multiple predicates together with Boolean opera-
tors. For instance, to get only the films released in 1987 that grossed no 
more than $40 million, you could write:

query { for f in QuerySource.films do
        where (f.releaseYear = 1987 && f.gross ?<= 40000000.0)
        select (f.ToString()) }

which gives:

val it : seq<string> = seq ["The Running Man (1987)"]

Distinct-Item Filters

Query expressions can produce a sequence containing only the distinct 
values from the underlying sequence by filtering out duplicates. To achieve 
this, you need only include the distinct operator in your query.

The distinct operator corresponds to LINQ’s Distinct method, but unlike 
in C# or VB, query expressions allow you to include it directly within the 
query rather than as a separate method call. For example, to query for dis-
tinct release years, you could write this:

query { for f in QuerySource.films do
        select f.releaseYear
        distinct }

Here, we’ve projected the distinct release years to a new sequence:

val it : seq<int> = seq [1984; 1987; 1985]



Show Me the Data   207

Accessing Individual Items
It’s quite common for a sequence to contain multiple items when you really 
care about only one in particular. Query expressions include several opera-
tors for accessing the first item, the last item, or arbitrary items from a 
sequence.

Getting the First or Last Item

To get the first item from a sequence, you can use the head or headOrDefault 
operators. These operators respectively correspond to the parameterless 
overloads of the First and FirstOrDefault LINQ methods but use the more 
functional nomenclature of “head” to identify the first item (just like with 
F# lists). The difference between head and headOrDefault is that head raises an 
exception when the source sequence is empty, whereas headOrDefault returns 
Unchecked.defaultof<_>.

To get the first item from a sequence, simply project a sequence to one 
of the head operators like this:

query { for f in QuerySource.films do headOrDefault }

In this case, the result is:

val it : QuerySource.film = {id = 1;
                             name = "The Terminator";
                             releaseYear = 1984;
                             gross = 38400000.0;}

Similarly, you can get the last item in a sequence using either the last or 
lastOrDefault operators. These operators behave the same way as their head 
counterparts in that last raises an exception when the sequence is empty, 
whereas lastOrDefault does not. Depending on the underlying sequence type, 
getting the last item may require enumerating the entire sequence, so exer-
cise some care because the operation could be expensive or time consuming.

Getting an Arbitrary Item

When you want to get a specific item by its index you can use the nth operator, 
which is equivalent to LINQ’s ElementAt method. For instance, to get the third 
element from the films sequence, you could structure a query like this:

query { for f in QuerySource.films do nth 2 }

Here, the result is:

val it : QuerySource.film = {id = 3;
                             name = "Commando";
                             releaseYear = 1985;
                             gross = null;}
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Although the nth operator is useful when you already know the index, 
it’s more common to want the first item that matches some criteria. In those 
cases, you’ll want to use the find operator instead.

The find operator is equivalent to calling LINQ’s First method with a 
predicate. It is also similar to the where operator except that it returns only 
a single item instead of a new sequence. For example, to get the first film 
listed for 1987, you could write:

query { for f in QuerySource.films do find (f.releaseYear = 1987) }

Executing this query will give you:

val it : QuerySource.film = {id = 2;
                             name = "Predator";
                             releaseYear = 1987;
                             gross = 59735548.0;}

The find operator is useful for locating the first item that matches some 
criteria, but it doesn’t guarantee that the first match is the only match. 
When you want to return a single value but also need to be certain that a 
query result contains one and only one item (such as when you are find-
ing an item by a key value), you can use the exactlyOne operator, which 
corresponds to the parameterless overload of LINQ’s Single method. For 
example, to get a film by its id while enforcing uniqueness, you could 
write:

query { for f in QuerySource.films do
        where (f.id = 4)
        exactlyOne }

In this case, the query yields:

val it : QuerySource.film = {id = 4;
                             name = "The Running Man";
                             releaseYear = 1987;
                             gross = 38122105.0;}

When the source sequence doesn’t contain exactly one item, the 
exactlyOne operator raises an exception. Should you want a default value 
when the source sequence is empty, you can use the exactlyOneOrDefault 
operator instead. Be warned, though, that if the source sequence includes 
more than one item, exactlyOneOrDefault will still raise an exception.

NO  T E 	 Query expression syntax does not include operators equivalent to the predicate-based 
overload of Single or SingleOrDefault.
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Sorting Results
Query expressions make sorting data easy, and, in some ways, they are more 
flexible than the sorting functions in the various collection modules. The 
sorting operators allow you to sort in ascending or descending order on 
both nullable and non-nullable values. You can even sort by multiple values.

Sorting in Ascending Order

Sorting a sequence in ascending order requires either the sortBy or 
sortByNullable operators. Both of these operators are built upon LINQ’s 
OrderBy method. Internally, these methods differ only by the generic con-
straints applied to their arguments. As their names imply, the sortBy opera-
tor is used with non-nullable values, whereas sortByNullable is used with 
Nullable<_> values.

With both of these operators, you need to specify the value on which to 
sort. For example, to sort the films by name, you could write:

query { for f in QuerySource.films do
        sortBy f.name
        select (f.ToString()) }

This returns the following sequence:

val it : seq<string> =
  seq
    ["Commando (1985)"; "Conan the Destroyer (1984)"; "Predator (1987)";
     "The Running Man (1987)"; ...]

Sorting in Descending Order

To sort a sequence in descending order, you use either the sortByDescending 
or sortByNullableDescending operators. These operators are based on LINQ’s 
OrderByDescending method and, like their ascending counterparts, internally 
differ only by the generic constraints applied to their parameters.

To sort the films sequence in descending order by name, you could write:

query { for f in QuerySource.films do
        sortByDescending f.name
        select (f.ToString()) }

which returns:

val it : seq<string> =
  seq
    ["The Terminator (1984)"; "The Running Man (1987)"; "Predator (1987)";
     "Conan the Destroyer (1984)"; ...]
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Sorting by Multiple Values

To sort on multiple values, first sort with one of the sortBy or sortByDescending 
operators and then supply subsequent sort values with one of the thenBy 
operators. As with the primary sort operators, there are variations of thenBy 
that allow you to sort in ascending or descending order using both nullable 
and non-nullable values.

The four thenBy variations, which can appear only after one of the 
sortBy variations, are:

•	 thenBy

•	 thenByNullable

•	 thenByDescending

•	 thenByNullableDescending

These operators are based upon LINQ’s ThenBy and ThenByDescending 
methods. To see these in action, let’s sort the films sequence by releaseYear 
and then in descending order by gross:

query { for f in QuerySource.films do
        sortBy f.releaseYear
        thenByNullableDescending f.gross
        select (f.releaseYear, f.name, f.gross) }

This query results in the following sorted sequence:

val it : seq<int * string * System.Nullable<float>> =
  seq
    [(1984, "The Terminator", 38400000.0); (1984, "Conan the Destroyer", null);
     (1985, "Commando", null); (1987, "Predator", 59735548.0); ...]

You can chain additional thenBy operators to create even more complex 
sorting scenarios.

Grouping
Another common query operation is grouping. Query expressions provide 
two operators, both based on LINQ’s GroupBy method, to do just that. Both 
operators produce an intermediate sequence of IGrouping<_,_> instances that 
you refer to later in your query.

The first operator, groupBy, lets you specify the key value by which the 
items in the source sequence will be grouped. Each IGrouping<_,_> produced 
by groupBy includes the key value and a child sequence containing any items 
from the source sequence that matches the key. For example, to group the 
films by release year, you could write:

query { for f in QuerySource.films do
        groupBy f.releaseYear into g
        sortBy g.Key
        select (g.Key, g) }
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This query produces the result (formatted and abbreviated for 
readability):

val it : seq<int * IGrouping<int, QuerySource.film>> =
  seq
    [(1984, seq [{id = 1; -- snip --};
                 {id = 5; -- snip --}]);
     (1985, seq [{id = 3; -- snip --}]);
     (1987, seq [{id = 2; -- snip --};
                 {id = 4; -- snip --}])]

It isn’t always necessary to include the full source item in the result-
ing IGrouping<_,_> like the groupBy operator does. Instead, you can use the 
groupValBy operator to specify what to include, be it a single value from the 
source or some other transformation. Unlike the other operators we’ve seen 
so far, groupValBy takes two arguments: the value to include in the result, and 
the key value.

To demonstrate the groupValBy operator, let’s group the films by 
releaseYear again, but this time we’ll include a tuple of the film name and 
its gross earnings:

query { for f in QuerySource.films do
        groupValBy (f.name, f.gross) f.releaseYear into g
        sortBy g.Key
        select (g.Key, g) }

This gives us:

val it : seq<int * IGrouping<int,(string * System.Nullable<float>)>> =
  seq
    [(1984,
      seq [("The Terminator", 38400000.0); ("Conan the Destroyer", null)]);
     (1985, seq [("Commando", null)]);
     (1987, seq [("Predator", 59735548.0); ("The Running Man", 38122105.0)])]

Now, instead of the full film instance, the resulting groupings include 
only the data we explicitly requested.

Paginating
Query expressions allow you to easily paginate a sequence. Think about 
your typical search results page, where items are partitioned into some 
number of items (say, 10) per page. Rather than having to manage place-
holders that identify which partition a user should see, you can use query 
expressions, which provide the skip, skipWhile, take, and takeWhile operators 
to help you get to the correct partition in the query itself. Each of these 
operators shares its name with its underlying LINQ method.
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The skip and take operators both accept an integer indicating how many 
items to bypass or include, respectively. For example, you could compose a 
function to get a particular page, like this:

let getFilmPageBySize pageSize pageNumber =
  query { for f in QuerySource.films do
          skip (pageSize * (pageNumber - 1))
          take pageSize
          select (f.ToString()) }

Now, getting a particular page is only a matter of invoking the 
getFilmPage function. For instance, to get the first page of three items, 
you would write:

getFilmPageBySize 3 1

which yields:

val it : seq<string> =
  seq ["The Terminator (1984)"; "Predator (1987)"; "Commando (1985)"]

Likewise, you would get the second result page as follows:

getFilmPageBySize 3 2

which gives us:

val it : seq<string> =
  seq ["The Running Man (1987)"; "Conan the Destroyer (1984)"]

It’s okay to specify more items than are present in the sequence. If the 
end of the sequence is reached, the skip and take operators return what has 
been selected so far and no exceptions are thrown.

The skipWhile and takeWhile operators are very similar to skip and take 
except that instead of working against a known number of items, they skip 
or take items as long as a condition is met. This is useful for paging over a 
variable number of items according to some criteria. For example, the fol-
lowing function returns the films released in a given year:

let getFilmPageByYear year =
  query { for f in QuerySource.films do
          sortBy f.releaseYear
          skipWhile (f.releaseYear < year)
          takeWhile (f.releaseYear = year)
          select (f.ToString()) }
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Invoking this function with a year will generate a sequence containing 
zero or more items. For instance, invoking it with 1984 returns:

val it : seq<string> =
  seq ["The Terminator (1984)"; "Conan the Destroyer (1984)"]

whereas invoking it with 1986 returns no items because the source sequence 
doesn’t include any films released in 1986.

If you’re wondering whether this simple example of paging by releaseYear 
could be simplified with a single where operator, it can. This example simply 
demonstrates takeWhile’s effect. where and takeWhile serve similar purposes, 
but distinguishing between them is important, particularly for more complex 
predicates. The difference between the two operators is that takeWhile stops 
looking as soon as it finds something that doesn’t match, but where does not.

Aggregating Data
As often as we need to present or otherwise work with tabular data, some-
times what we’re really after is an aggregated view of the data. Aggregations 
such as counting the number of items in a sequence, totaling some values, 
or finding an average are all commonly sought-after values that can be 
exposed through built-in query operators.

Counting the items in a sequence is easy; simply project the sequence to 
the count operator.

query { for f in QuerySource.films do count }

Evaluating this query tells us that five items are present in the films 
sequence. Be warned, though, that counting the items in a sequence can 
be an expensive operation; it typically requires enumerating the entire 
sequence, which could have a negative impact on performance. That said, 
the Count method on which this operator is based is smart enough to short-
circuit some sequences (like arrays). If you’re counting items only to deter-
mine whether the sequence contains any data, you should instead consider 
using the exists operator, discussed in “Detecting Items” on page 214.

The remaining aggregation operators allow you to easily perform 
mathematical aggregations against a sequence according to a selector. The 
operators—minBy, maxBy, sumBy, and averageBy—allow you to calculate the mini-
mum value, maximum value, total, or average for the values, respectively. 
Internally, the minBy and maxBy operators use LINQ’s Min and Max methods, 
respectively, but sumBy and averageBy provide their own implementations and 
are completely independent of LINQ.

Each of these four operators also have nullable counterparts that 
work against nullable values much like the sorting operators introduced 
in “Sorting Results” on page 209. To demonstrate, we’ll query the films 
sequence using the nullable forms.
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To find the highest grossing film, we could write:

query { for f in QuerySource.films do maxByNullable f.gross }

As expected, running this query returns 59735548.0. Replacing 
maxByNullable with minByNullable returns 38122105.0, and sumByNullable 
returns 136257653.0. The averageByNullable operator doesn’t behave quite 
as you might expect, however.

Averaging the gross earnings using averageByNullable results in 27251530.6. 
What happens is that although the operator skips null values during the 
summation phase, it divides the sum by the count of items in the sequence 
regardless of how many null items were skipped. This means that the null 
values are effectively treated as zero, which may or may not be desirable. 
Later in this chapter, we’ll look at how to define a new query operator that 
truly ignores null values when calculating an average.

Detecting Items
Thus far, we’ve explored the many ways you can structure query expres-
sions to transform, filter, sort, group, and aggregate sequences. Sometimes, 
though, you don’t really care to obtain specific items from a sequence but 
rather want to inspect a sequence to determine whether it contains data 
that matches some criterion. Instead of returning a new sequence or a spe-
cific item, the operators discussed in this section return a Boolean value 
indicating whether the sequence contains the desired data. Like the distinct 
operator, these operators are part of the query expression itself, which is 
another feature that distinguishes F#’s query expressions from query syntax 
in C# and Visual Basic.

When you want to see if a known item is contained within a sequence, 
you use the contains operator. Built upon LINQ’s Contains method, the 
contains operator accepts the item you are looking for as its argument. For 
instance, if we want to detect whether Kindergarten Cop is present in the 
films collection, we could write:

open System
open QuerySource

let kindergartenCop =
  { id = 6; name = "Kindergarten Cop"; releaseYear = 1990; gross = Nullable 91457688.0 }

query { for f in films do
        contains kindergartenCop }

Invoking this query will inform you that Kindergarten Cop is not present 
in the collection (much to my relief). As you can see, though, the contains 
operator is really suitable only when you already have a reference to an item 
that may already be part of the collection. If you know only part of the value 
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you’re looking for, such as the name of the film, you can revise the query to 
project each name and pass the name you’re looking for to contains, like this:

query { for f in QuerySource.films do
        select f.name
        contains "Kindergarten Cop" }

Projecting the values like this, however, isn’t particularly efficient 
because it involves enumerating the entire sequence prior to locating the 
specified item. Instead, you can turn to another operator, exists, which is 
based on LINQ’s Any method. The exists operator is like where except that it 
stops enumerating the sequence and returns true or false as soon as an item 
that matches its predicate is found. For example, the previous query could 
be expressed with exists like this:

query { for f in QuerySource.films do
        exists (f.name = "Kindergarten Cop") }

Of course, the predicate supplied to exists doesn’t have to look for a 
specific item. We can easily determine if any films grossed at least $50 mil-
lion with the following query:

open Microsoft.FSharp.Linq.NullableOperators

query { for f in QuerySource.films do
        exists (f.gross ?>= 50000000.0) }

Because Predator grossed nearly $60 million, the previous query returns 
true. If you want to check whether every item in a sequence satisfies some 
condition, you can use the all operator. Based on LINQ’s All method, the all 
operator enumerates the sequence and returns true when each item matches 
the predicate. When an item that doesn’t match the predicate is encountered, 
enumeration stops and all returns false. For example, to see if every film 
grossed at least $50 million, you could construct a query like this:

query { for f in QuerySource.films do
        all (f.gross ?>= 50000000.0) }

In our films collection, only one item satisfies the condition; therefore, 
the query returns false.

Joining Multiple Data Sources
Querying data from a single sequence is useful, but data is often spread 
across multiple sources. Query expressions carry forward LINQ’s join capa-
bilities, which allow you to query data from multiple sources within a single 
expression. Joins in query expressions resemble enumerable for loops in 
that they include an iteration identifier and the source sequence but begin 
with the appropriate join operator and also include join criteria.
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The first type of join, the inner join, uses the join operator to correlate 
values from one sequence with values in a second sequence. Internally, the 
join operator uses LINQ’s Join method to work its magic. Once the sequences 
are joined, values from both sequences can be referenced by subsequent 
operators like where or select.

Until now, all of the queries we’ve written have used only the films 
collection. Recall that when we created the QuerySource module at the 
beginning of the chapter, we also defined two other collections: actors and 
filmActors. Together, the films, actors, and filmActors collections model a 
many-to-many relationship between films and actors, with filmActors serv-
ing as the junction table. We can use the join operator to bring these three 
collections together in a single query like this:

query { for f in QuerySource.films do
        join fa in QuerySource.filmActors on (f.id = fa.filmId)
        join a in QuerySource.actors on (fa.actorId = a.id)
        select (f.name, f.releaseYear, a.lastName, a.firstName) }

Joining multiple sequences together merely requires us to include a 
join expression for each sequence and identify the relationship between 
them through their members and an equality operator. Invoking this query 
results in the following sequence (truncated per FSI):

val it : seq<string * int * string * string> =
  seq
    [("The Terminator", 1984, "Schwarzenegger", "Arnold");
     ("The Terminator", 1984, "Hamilton", "Linda");
     ("Predator", 1987, "Schwarzenegger", "Arnold");
     ("Predator", 1987, "Weathers", "Carl"); ...]

F# exposes LINQ’s GroupJoin function through the groupJoin operator. 
This lets you join two sequences, but instead of selecting items that satisfy 
the join criterion individually, you project each item that satisfies the join 
criterion into another sequence you can subsequently reference within your 
query. You can use this intermediate sequence to create a hierarchical data 
structure that resembles the IGrouping<_,_> instances created by the groupBy 
operator.

Consider the following query, which creates a hierarchy where each 
actor is grouped by the films in which he or she appears:

query { for f in QuerySource.films do
        groupJoin fa in QuerySource.filmActors on (f.id = fa.filmId) into junction
        select (f.name, query { for j in junction do 
                                join a in QuerySource.actors on (j.actorId = a.id)
                                select (a.lastName, a.firstName) } ) }
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Here, we use the groupJoin operator to create an intermediate sequence 
named junction. Inside the projected tuple, we have a nested query where 
we join actors to junction and project individual actor names. This results in 
the following sequence, which I’ve formatted for readability:

val it : seq<string * seq<string * string>> =
  seq
    [("The Terminator", seq [("Schwarzenegger", "Arnold");
                             ("Hamilton", "Linda")]);
     ("Predator", seq [("Schwarzenegger", "Arnold");
                       ("Weathers", "Carl");
                       ("Ventura", "Jesse")]);
     ("Commando", seq [("Schwarzenegger", "Arnold");
                       ("Wells", "Vernon")]);
     ("The Running Man", seq [("Schwarzenegger", "Arnold");
                              ("Ventura", "Jesse")]);
     ...]

As you can see, the outer query (the films part) returns a single sequence 
of tuples. Nested within each item is another sequence containing the actors 
associated with that film. What isn’t apparent from these truncated results 
is that when none of the items in the joined sequence satisfies the join 
criterion (as is the case for Conan the Destroyer), the sequence created by the 
groupJoin operation is empty.

If you prefer to flatten the results of a groupJoin rather than return them 
as a hierarchy, you can follow the groupJoin operation with another enumer-
able for loop, using the junction sequence as the loop source. Here, the pre-
vious query is restructured to return each actor inline with the film:

query { for f in QuerySource.films do
        groupJoin fa in QuerySource.filmActors on (f.id = fa.filmId) into junction
        for j in junction do
        join a in QuerySource.actors on (j.actorId = a.id)
        select (f.name, f.releaseYear, a.lastName, a.firstName) }

The result of this query is the same as for an inner join, so I won’t 
repeat the output here. In most cases, you’d want to use the join operator 
to forego the overhead associated with creating the intermediate junction 
sequence, but there is one place where using a groupJoin like this makes 
sense: left outer joins.

By default, if no items satisfy the join criterion in a group join, the 
result is an empty sequence. However, if you use the DefaultIfEmpty method 
with the resulting sequence, you’ll get a new sequence containing a single 
item that’s the default value for the underlying type. To perform a left outer 
join in your query, you can use the groupJoin operator as we did in the previ-
ous query but include a call to DefaultIfEmpty in your enumerable for loop—
for example, j.DefaultIfEmpty(). Alternatively, you can use the leftOuterJoin 
operator to achieve the same result.



218   Chapter 10

Unfortunately, left outer joins are one area where the dissonance 
between F# and the rest of the .NET Framework can cause a lot of misery. 
But this is really a problem only when you’re working with the core F# types. 
Consider the following query:

query { for f in QuerySource.films do
        leftOuterJoin fa in QuerySource.filmActors on (f.id = fa.filmId) into junction
        for j in junction do
        join a in QuerySource.actors on (j.actorId = a.id)
        select (f.name, f.releaseYear, a.lastName, a.firstName) }
|> Seq.iter (printfn "%O")

When this query enumerates (via Seq.iter), it raises a NullReferenceException 
as soon as it tries to join in the actors for Conan the Barbarian. Because 
there are no entries for that film in the filmActors sequence, the call to 
DefaultIfEmpty in the left outer join causes the sole entry in junction to be null.

Wait, what? Null? Isn’t filmActor a record type? How can it possibly be 
null if null isn’t a valid value for record types? The answer lies in the fact 
that by calling into .NET Framework methods we’ve left the confines of the 
F# sandbox. null may not be valid for record types in F#, but the Common 
Language Runtime has no notion of a record type; all it knows are value 
and reference types and, from its perspective, a record type is just a refer-
ence type. Therefore, null is a valid value. Unfortunately, because our code 
is all in F# and the F# compiler enforces the value constraints around 
the record type, we can’t handle the null value with pattern matching or 
if...then expressions. We can’t even use the AllowNullLiteral attribute on 
the type because the compiler doesn’t allow that either.

Working around this issue is a bit of a pain. We can start by splitting the 
query into two parts: one that joins actors to filmActors and another that 
joins in films, like this:

let actorsFilmActors =
  query { for a in QuerySource.actors do
          join fa in QuerySource.filmActors on (a.id = fa.actorId)
          select (fa.filmId, a) }

query { for f in QuerySource.films do
        leftOuterJoin (id, a) in actorsFilmActors on (f.id = id) into junction
        for (_, a) in junction do
        select (f.name, a.lastName, a.firstName) }

This is a good start, but we’ll still get a NullReferenceException with the 
Tuple pattern match in the enumerable for loop for junction because F# 
doesn’t allow null for tuples either. There is yet another workaround we can 
use: an upcast to obj.

query { for f in QuerySource.films do
        leftOuterJoin (id, a) in actorsFilmActors on (f.id = id) into junction
        for x in junction do
        select (match (x :> obj) with
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                | null -> (f.name, "", "")
                | _ -> let _, a = x
                       (f.name, a.lastName, a.firstName))
         }

null may not be a valid value for a tuple, but it certainly is for obj. By 
explicitly upcasting to obj, we can use pattern matching to detect the null 
value and return the appropriate tuple instead of raising the exception.

Extending Query Expressions
As you’ve seen in the previous sections, query expressions provide an easy 
and expressive way to work with data. Query expressions also offer another 
benefit that really sets them apart from query syntax in C# and Visual Basic: 
They’re fully extensible. In this section, I’ll show a few additional operators. 
We’ll start by plugging a hole in the built-in operators by defining operators 
that expose the parameterized overloads of Single and SingleOrDefault. We’ll 
then move on to a more complex example that allows us to calculate an 
average by disregarding all null values.

Example: ExactlyOneWhen

Recall from “Getting an Arbitrary Item” on page 207 that the exactlyOne and 
exactlyOneOrDefault operators expose the parameterless versions of LINQ’s 
Single and SingleByDefault operators, but no such operators exist for the 
overloads that accept a predicate. We can easily define our own operators 
to expose these methods by leveraging the power of F# type extensions.

To create the custom operators, we need to extend the QueryBuilder class 
found within the Microsoft.FSharp.Linq namespace. This class defines the 
methods that ultimately serve as the query operators. Fundamentally, the 
type extension we’ll define is no different than any other type extension; we 
need only to include a few attributes so the compiler knows how the func-
tions should behave within a query expression.

Here is the code listing in full:

open System
open Microsoft.FSharp.Linq

type QueryBuilder with
u[<CustomOperation("exactlyOneWhen")>]
  member v__.ExactlyOneWhen (wsource : QuerySource<'T,'Q>,
                              x[<ProjectionParameter>] selector) =
    System.Linq.Enumerable.Single (source.Source, Func<_,_>(selector))

  [<CustomOperation("exactlyOneOrDefaultWhen")>]
  member __.ExactlyOneOrDefaultWhen (source : QuerySource<'T,'Q>,
                                     [<ProjectionParameter>] selector) =
    System.Linq.Enumerable.SingleOrDefault (source.Source, Func<_,_>(selector))

This snippet defines two extension methods on the QueryBuilder class: 
exactlyOneWhen and exactlyOneOrDefaultWhen. Because these are so similar, we’ll 
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just focus on the exactlyOneWhen operator. The first item of interest is the 
CustomOperation attribute u applied to the method itself. This attribute indi-
cates that the method should be available within a query expression and the 
operator name.

Next, the method’s this identifier is two underscore characters v to be 
consistent with the other operator definitions. The source parameter at w, 
annotated as QuerySource<'T, 'Q>, identifies the sequence the operator will 
work against.

Immediately following source is the selector parameter x. This param-
eter is a function that will be applied against every item in source to deter-
mine whether it should be selected. The ProjectionParameter attribute applied 
to selector instructs the compiler that the function is implied to accept 'T 
(as inferred from source) so that you can write the selector function as if 
you were working directly with an instance; that is, if you’re querying the 
films collection and have used f as your iteration identifier, you could write 
f.id = 4. Without ProjectionParameter, you’d have to use the full lambda syn-
tax (or a formal function) instead of just the expression.

With the new operators defined, we can now write queries that use 
them. For instance, to use the exactlyOneWhen operator to find a film by id, 
you would write:

query { for f in QuerySource.films do
        exactlyOneWhen (f.id = 4) }

As you can see, with these operators you no longer need to include the 
where operator to filter the results before checking that the sequence con-
tains only a single item.

Example: AverageByNotNull

For a more complex example of a custom operator, let’s provide an alter-
native to the averageByNullable operator we used in “Aggregating Data” on 
page 213 to compute the average gross earnings for our films. The calcula-
tion resulted in the average being reported as 27251530.6 because the two 
null values were excluded from the sum but the divisor was still five. If you 
wanted to truly ignore the null values and divide the total by three, the 
averageByNullable operator wouldn’t help you, but you could define a custom 
operator like this:

open System
open Microsoft.FSharp.Linq

type QueryBuilder with
  -- snip --
  [<CustomOperation("averageByNotNull")>]
  member inline __.AverageByNotNull< 'T, 'Q, 'Value
                      when 'Value :> ValueType
                      and 'Value : struct
                      and 'Value : (new : unit -> 'Value)
                      and 'Value : (static member op_Explicit : 'Value -> float)>



Show Me the Data   221

    (source : QuerySource<'T, 'Q>,
     [<ProjectionParameter>] selector : 'T -> Nullable<'Value>) =
      source.Source
      |> Seq.fold
          (fun (s, c) v -> let i = v |> selector
                           if i.HasValue then
                            (s + float i.Value, c + 1)
                           else (s, c))
          (0.0, 0)
      |> (function
          | (_, 0) -> Nullable<float>()
          | (sum, count) -> Nullable(sum / float count))

Notice that the AverageByNotNull method incorporates many of the 
same principles as exactlyOneWhen and exactlyOneOrDefaultWhen; that is, they 
each involve the CustomOperation and ProjectionParameter attributes. Where 
AverageByNotNull differs is that it’s defined as inline to ensure that the generic 
parameters can be resolved. Because they’re so similar, I’ve based the sig-
nature and generic constraints for AverageByNotNull largely upon that of the 
averageByNullable operator, although I’ve simplified it a bit for demonstra-
tion purposes. 

Now that we’ve defined the averageByNotNull operator, we can include it 
in a query like this:

query { for f in QuerySource.films do
        averageByNotNull f.gross }

Invoking this query returns 45419217.67, a stark contrast from 27251530.6 
as returned by averageByNullable.

Type Providers
Along with query expressions, the other “killer feature” of F# 3.0 is type 
providers. Type providers were developed to abstract away creation of the 
types, properties, and methods necessary to work with external data because 
this process is often tedious, error prone, and difficult to maintain.

Many type providers can be likened to traditional object-relational 
mapping (ORM) tools like NHibernate or Entity Framework, although 
their scope is potentially much greater. ORM tools typically require a great 
deal of configuration to be used effectively. Although there are tools that 
simplify this process for many of the more popular ORM technologies, they 
still require plenty of maintenance. ORM-like type providers aim to remove 
this overhead by automating type generation as part of the compilation 
process.

The other primary use for type providers is to simplify otherwise com-
plex interfaces. Consider how cumbersome and error-prone something 
like matching strings with regular expressions can be. Regular expression 
syntax is confusing enough on its own, but getting named captures from 
the match collection requires using string keys to identify the values you’re 
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trying to access. A regular expression type provider can simplify the inter-
face by generating types that correspond to the named captures in the 
regular expression. 

Regardless of which need type providers satisfy, they all offer three pri-
mary benefits:

•	 Making data-centric exploratory programming more accessible by elim-
inating the need to manually create mappings and type definitions

•	 Eliminating the administrative burden of manually maintaining map-
pings or other type definitions

•	 Reducing the likelihood of errors caused by undetected changes to the 
underlying data structure

A full discussion of type providers goes well beyond the scope of this 
book. Instead, this section is intended to introduce many of the type pro-
viders that are available to you either as part of the core F# distribution or 
through some popular third-party libraries. After you’ve seen what’s avail-
able, we’ll discuss how to initialize and use a few type providers to easily get 
the data you care about.

Available Type Providers
F# 3.0 includes several type providers out of the box. Table 10-2 lists the 
built-in providers and a brief description of each.

Table 10-2: Built-in Type Providers

Provider Description
DbmlFile Provides the types that correspond to a SQL Server database as 

described in a Database Markup Language file (.dbml)
EdmxFile Provides the types that correspond to a database as described by 

a LINQ-to-Entities mapping file (.edmx)
ODataService Provides the types that correspond to those returned by an OData 

service
SqlDataProvider Provides the types that correspond to a SQL Server database
SqlEntityProvider Provides the types that correspond to a database according to a 

LINQ-to-Entities mapping
WsdlService Provides the types that correspond to those returned by a WSDL - 

based web service

The list of built-in type providers is pretty sparse and is focused on data-
base or database-like sources. Even so, what’s provided covers a fairly large 
number of use cases. Should your data fall outside of the cases covered by 
the built-in types, you can define custom type providers, but doing so is out-
side the scope of this book.
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Before you start down the path of building your own type providers, you 
should see if there are any third-party providers that will meet your needs. 
At the time of this writing, several popular libraries include a number of 
useful type providers, most notably: FSharpx and FSharp.Data. Table 10-3 lists 
several of the type providers in each library to give you an idea of what’s 
readily available and the diversity of uses for type providers. This list is not 
meant to be exhaustive; there are definitely other libraries available.

Table 10-3: Some Available Third-Party Type Providers

Provider Description FSharpx FSharp.Data
AppSettingsProvider Provides types that correspond to 

the nodes in the AppSettings sec-
tion of a configuration file

P

CsvProvider Provides types that allow for 
easy parsing of comma-separated 
value (CSV) files

P

ExcelProvider Provides the types necessary for 
working with an Excel workbook P

FileSystemProvider Provides the types necessary for 
working with the filesystem P

JsonProvider Provides types that represent 
a JavaScript Object Notation 
(JSON) document

P

RegexProvider Provides types that allow for 
inspecting regular expression 
matches

P

XamlProvider Provides types that allow for easy 
XAML parsing P

XmlProvider Provides types that represent an 
XML document P

Using Type Providers
Regardless of which type provider you need, initializing one always follows 
the same basic pattern:

type name = providerName<parameters>

In the preceding syntax, name is the name by which you’ll access the 
provider’s capabilities, providerName identifies the provider type itself, and 
parameters are the provider-specific arguments that control the provider’s 
behavior. Parameters will typically include things like a connection string 
or the path to the data source, but ultimately each type provider is respon-
sible for defining the parameters it accepts.
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The first time a provider is used within Visual Studio, you’ll be pre-
sented with a security dialog like the one pictured in Figure 10-1.

Figure 10-1: Type Provider Security dialog

As the dialog indicates, type providers can connect to remote data 
sources and execute custom code for build and IntelliSense features. Once 
you’ve enabled or disabled a type provider, you won’t be prompted again. 
If you want to change your selection at a later time, you can find a listing 
of type providers under F# Tools in the Visual Studio Options dialog.

Example: Accessing an OData Service
This first example uses the ODataService type provider to query the publicly 
available Northwind sample OData service from http://www.odata.org/. To 
start, we need to reference two assemblies:

#r "System.Data.Services.Client"
#r "FSharp.Data.TypeProviders"

The first assembly includes several Windows Communication Foundation 
(WCF) classes required by the ODataService provider. Though we don’t use 
the WCF types directly within this example, failure to add the reference 
will result in compilation errors. The second assembly contains the provider 
itself. With these assemblies referenced, we can now open the namespace 
that contains the ODataService provider:

open Microsoft.FSharp.Data.TypeProviders

Next, we include a type definition that references the appropriate type 
provider along with the address to the Northwind service:

type northwind =
  ODataService<"http://services.odata.org/V3/Northwind/Northwind.svc/">

The ODataService provider takes the supplied address, appends 
$metadata, and then proceeds to construct and import the types described 
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by the service. In order to do anything with the service, we need to obtain a 
data context via the provider type like this:

let svc = northwind.GetDataContext()

With the data context established, we now have everything we need to 
query the data. Here we’ll use a query expression to get some invoice infor-
mation from the Northwind service.

let invoices =
  query { for i in svc.Invoices do
          sortByNullableDescending i.ShippedDate
          select (i.OrderDate, i.CustomerName, i.ProductName)
          take 5 }

There’s nothing out of the ordinary with the preceding query; it uses 
standard query operators to select OrderDate, CustomerName, and ProductName 
from the five most recently shipped invoices. What is exceptional is that 
with no more effort than pointing the type provider at the OData service, 
we have a full type hierarchy that models the types exposed by the service.

NO  T E 	 Not all of the standard query operators are supported by every data source. For example, 
join is not supported by OData, so including it in a query with two OData sources will 
result in an error.

Although we’ve defined the invoices binding, the query execution is 
deferred until we actually enumerate the sequence. For simplicity, we can 
do so by piping the sequence to Seq.iter, which we’ll use to print each item 
like this:

invoices |> Seq.iter (printfn "%A")

Invoking the preceding code printed the following items when I ran it, 
but your results may differ if the source data changes:

(5/4/1998 12:00:00 AM, "Drachenblut Delikatessen", "Jack's New England Clam Chowder")
(4/30/1998 12:00:00 AM, "Hungry Owl All-Night Grocers", "Sasquatch Ale")
(4/30/1998 12:00:00 AM, "Hungry Owl All-Night Grocers", "Boston Crab Meat")
(4/30/1998 12:00:00 AM, "Hungry Owl All-Night Grocers", "Jack's New England Clam Chowder")
(5/4/1998 12:00:00 AM, "Tortuga Restaurante", "Chartreuse verte")

So far, the ODataService provider has been a black box; as long as you 
give it a valid address, it usually just works and you don’t have to think about 
how. This is particularly great when you’re doing exploratory coding, but 
it can be frustrating when the provider isn’t returning what you expect. 
Fortunately, there are a couple of events you can subscribe to in order 
to gain some insight into what the provider is doing: SendingRequest and 
ReadingEntity.
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The SendingRequest event occurs whenever the provider creates a new 
HttpWebRequest, whereas ReadingEntity occurs after data has been read into 
an entity. For the purposes of this discussion, we’ll focus on SendingRequest 
because it can show exactly what is being requested and help you refine 
your queries.

Probably the most helpful thing to do with SendingRequest is interrogate 
the RequestUri property of the WebRequest object that’s associated with the 
SendingRequestEventArgs. RequestUri includes the full address of the OData 
request, so once you have it, you can paste it into a browser (or other diag-
nostic utility such as Fiddler) and refine it. One easy way to get the URI is 
to simply print it to the console like this:

svc.DataContext.SendingRequest.Add (fun args -> printfn "%O" args.Request.RequestUri)

So long as the preceding snippet is executed before the query is enumer-
ated, the URI will be printed ahead of the results. In the case of the query 
described in this section, the printed URI is: http://services.odata​.org/V3/
Northwind/Northwind.svc/Invoices()?$orderby=ShippedDate%20desc&$top=5&$select= 

OrderDate,CustomerName,ProductName.
For your convenience, the entire example from this section, including 

the subscription to SendingRequest, is reproduced in its entirety here:

#r "System.Data.Services.Client"
#r "FSharp.Data.TypeProviders"

open Microsoft.FSharp.Data.TypeProviders

type northwind =
  ODataService<"http://services.odata.org/V3/Northwind/Northwind.svc/">
let svc = northwind.GetDataContext()

let invoices =
  query { for i in svc.Invoices do
          sortByNullableDescending i.ShippedDate
          select (i.OrderDate, i.CustomerName, i.ProductName)
          take 5 }

svc.DataContext.SendingRequest.Add (fun args -> printfn "%O" args.Request.RequestUri)
invoices |> Seq.iter (printfn "%A")

Example: Parsing a String with RegexProvider
For this example, we’ll look at how the RegexProvider from the FSharpx proj-
ect can generate types that correspond to a regular expression, providing 
you with a remarkable degree of safety when working with matches. To use 
this provider, you’ll need to obtain the FSharpx.TypeProviders.Regex package 
from NuGet or download the source from GitHub (https://github.com/fsharp/
fsharpx/).

https://github.com/fsharp/fsharpx
https://github.com/fsharp/fsharpx
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As with the ODataProvider example, we’ll start by referencing some 
assemblies and opening some namespaces:

#r "System.Drawing"
#r @"..\packages\FSharpx.TypeProviders.Regex.1.8.41\lib\40\FSharpx.TypeProviders.Regex.dll"

open System
open System.Drawing

Because I created this script as part of a project that included the 
FSharp.TypeProviders.Regex package from NuGet, I simply referenced the 
package directly via a relative path; the path to the assembly may be differ-
ent on your machine depending on how you obtained the assembly and its 
version.

With the assemblies referenced and the common namespaces opened, 
we can now create the type provider. Creating a RegexProvider is similar to 
creating the ODataService except that, instead of a URI, RegexProvider takes a 
regular expression pattern. For this example, we’ll create the RegexProvider 
with a simple pattern that matches hexadecimal RGB values. (The space 
before the verbatim string is significant. Without the space, the compiler 
would try to interpret the string as a quoted expression, which is definitely 
not what we want.)

type colorRegex =
  FSharpx.Regex< @"^#(?<Red>[\dA-F]{2})(?<Green>[\dA-F]{2})(?<Blue>[\dA-F]{2})$">

The RegexProvider works a bit differently than the ODataService in that it’s 
not really intended for use as a query source. Instead, we’ll write a function 
that uses the type provider to convert a hexadecimal string into a standard 
.NET Color instance if it matches the regular expression pattern.

let convertToRgbColor color =
  let inline hexToDec hex = Convert.ToInt32(hex, 16)
  let m = color |> ucolorRegex().Match
  if m.Success then
    Some (Color.FromArgb(vm.Red.Value |> hexToDec,
                         wm.Green.Value |> hexToDec,
                         xm.Blue.Value |> hexToDec))
  else None

In the preceding code, we push the supplied color string into the Match 
method of a new instance of the colorRegex u. The value returned by Match 
is similar to the Match object returned when we’re using regular expressions 
directly (through the Regex class in System.Text.RegularExpressions), but as 
you can see at v, w, and x, it also includes named properties that match 
the named groups defined within the source regular expression! This 
means that you don’t have to fumble with magic strings to access the indi-
vidual named captures!
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To test this, we merely need to pass some strings to the convertToRgbColor 
function. Here we invoke the function for each string in a list:

[ ""; "#FFFFFF"; "#000000"; "#B0C4DE" ]
|> List.iter
  (convertToRgbColor >>
   (function
    | None -> printfn "Not a color"
    | Some(c) -> printfn "%O" c))

Evaluating this code should result in the following:

Not a color
Color [A=255, R=255, G=255, B=255]
Color [A=255, R=0, G=0, B=0]
Color [A=255, R=176, G=196, B=222]

As you can see, the first string didn’t match the color pattern so it was 
not converted, whereas the remaining three items were converted and writ-
ten accordingly.

Summary
With the addition of query expressions and type providers in F# 3.0, F# 
took massive strides toward being an even better language for data-intensive 
development work.

Query expressions bring the power of LINQ to the language with an 
idiomatic flair. With them, you can easily compose complex queries for 
analyzing and presenting data from a variety of data sources. Furthermore, 
the extensible nature of query expressions makes them well suited for more 
complex needs.

Type providers further expand upon F#’s already rich data experience 
by abstracting away the details of creating types that map to different data 
sources. They greatly improve a developer’s ability to perform exploratory 
programming in data-centric scenarios because the developer doesn’t need 
to be as concerned about how to access the data. Finally, type providers can 
add an extra degree of safety to the code by detecting changes to the under-
lying data structures as part of the build process.



11
A s y n c h r o n o u s  a n d 

P a r a l l e l   P r o g r a mm  i n g

For most of computing’s history, software 
developers have been spoiled by processor 

manufacturers that were constantly pushing 
the limits of their chips’ clock speeds. If you 

needed your software to run faster (to process larger 
data sets, or because users were complaining about
the system freezing when it was really just busy), often all you had to 
do was upgrade to the latest chip. Over the past decade or so something 
changed: Processor manufacturers began improving processor perfor-
mance not by increasing clock speeds but by adding processing cores.

Although processor architecture has changed, software architecture 
has largely remained static. Multicore processors have become the norm, 
yet many applications are still written as though only one core is available 
to them and thus are not taking full advantage of the underlying hard-
ware. Long-running tasks are still being executed on the UI thread, and 
large data sets are often processed synchronously. A big reason for this is 
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that, traditionally, asynchronous and parallel programming have been 
sufficiently complex and error prone that they were typically the domain 
of expert developers working on highly specialized software.

Fortunately, software is starting to catch up. Programmers are learning 
that the days of solving performance issues by throwing faster hardware at 
the problem have passed and that it’s increasingly important to consider 
concurrent processing needs at an architectural level.

Although they’re closely related, asynchronous and parallel program-
ming have different goals. Asynchronous programming aims to separate 
processing and reduce blocking so that longer-running tasks don’t prevent 
the system from completing other tasks within the same process. By con-
trast, parallel processing aims to improve performance by partitioning work 
into chunks that can be distributed across processors and operated against 
independently.

Since its inception, the .NET Framework has supported both asynchro-
nous and parallel programming through threads and a multitude of syn-
chronization mechanisms such as monitors, mutexes, semaphores, and so 
on. The Asynchronous Programming Model (APM), where classes define BeginX 
and EndX methods for operations that should be run asynchronously (such 
as the BeginRead and EndRead methods on the System.IO.FileStream class) has 
long been the preferred approach to asynchronous programming in .NET.

In this chapter, we’ll explore several ways that F# makes asynchronous 
and parallel programming more accessible, thereby freeing you to focus 
on creating correct solutions. We’ll begin with a brief introduction to 
the Task Parallel Library. Next, we’ll discuss another F# construct: asyn-
chronous workflows. Finally, we’ll conclude with an introduction to the 
MailboxProcessor, F#’s agent-based model for asynchronous programming.

Task Parallel Library
As its name implies, the Task Parallel Library (TPL) excels at handling parallel 
programming scenarios and is the preferred mechanism for CPU-bound 
operations. It abstracts much of the complexity of managing threads, locks, 
callbacks, cancellations, and exception handling behind a uniform interface. 
Although the TPL is not specific to F#, a basic understanding of it is helpful 
especially if you need to interact with code from libraries that use it.

The TPL enables two types of parallelism: data parallelism and task 
parallelism.

Data parallelism  Involves performing a specific action against each 
value in a sequence by distributing the work effectively across available 
processing resources. Under the data parallelism model, you specify a 
sequence along with an action and the TPL determines how to parti-
tion the data and distributes the work accordingly.

Task parallelism  Focuses on executing independent tasks concur-
rently. With task parallelism, you are responsible for manually creating 
and managing tasks, but this model offers you more control. Through 
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the various Task classes, you can easily initiate asynchronous processing, 
wait for tasks to complete, return values, set up continuations, or spawn 
additional tasks.

NO  T E 	 This section is not intended to be a comprehensive guide to the TPL. Thus, it won’t 
get into many of the intricacies of task creation, scheduling, management, or other 
associated topics. The intention here is to establish a baseline, providing you with 
enough information to make you immediately productive when writing code using 
the TPL.

Potential Parallelism
One of the key differences between working directly with threads and using 
the TPL is that the TPL is task based rather than thread based. This differ-
ence is quite important in that the TPL tries to run tasks concurrently by 
pulling threads from the thread pool, but it does not guarantee parallelism. 
This is known as potential parallelism.

Whenever you create a thread directly, you incur the overhead of 
allocating and scheduling it. This overhead can be detrimental to overall 
system performance if there aren’t enough system resources available to 
support it. The basic concurrency mechanisms, like thread pooling, help 
reduce the impact by reusing existing threads, but the TPL goes a step fur-
ther by taking available system resources into account. If there aren’t suf-
ficient resources available or the TPL otherwise determines that running 
a task in parallel will be detrimental to performance, it will run the task 
synchronously. As resources fluctuate over time, the TPL’s task scheduling 
and work partitioning algorithms help rebalance work to use the available 
resources effectively.

Data Parallelism
Data parallelism is achieved primarily through the use of the static For and 
ForEach methods of the Parallel class located in the System.Threading.Tasks 
namespace. As their names imply, these methods are essentially parallel ver-
sions of the simple and enumerable for loops, respectively.

NO  T E 	 Data parallelism can also be achieved through PLINQ’s (Parallel LINQ) AsParallel 
extension method. To simplify working with parallel sequences in F#, the PSeq module 
in the F# PowerPack exposes many of the ParallelEnumerable methods using the same 
nomenclature as the Seq module.

For normal usage, Parallel.For and Parallel.ForEach differ only by their 
input; Parallel.For accepts range boundaries, whereas Parallel.ForEach 
accepts a sequence. Both methods also accept a function that serves as the 
loop body, and they implicitly wait for all iterations to complete before 
returning control to the caller. Since the methods are so similar, the 
examples in this section will use Parallel.For for consistency.



232   Chapter 11

The simplest form, the parallel for loop, simply invokes an action for 
each value in the range. Here, we use a parallel for loop to write the num-
bers 0 through 99.

open System
open System.Threading.Tasks

Parallel.For(0, 100, printfn "%i")

This snippet is pretty self-explanatory. The first argument passed to 
Parallel.For identifies the inclusive beginning of the range, while the sec-
ond identifies the exclusive end of the range. The third argument is a func-
tion that writes a number to the console.

Locking and Lock Avoidance

Now that we’re dealing with concurrency, there’s a subtle bug in the 
previous example. Internally, printfn incrementally sends its text to 
System.Console.Out as it parses the pattern. Hence, it’s possible that as 
each parallel iteration executes, multiple calls to printfn will be invoked 
simultaneously, resulting in some items being interlaced.

n o t e 	 The example used for this discussion is less of an issue in F# 3.1, where printf and 
its related functions have been improved such that they run up to 40 times faster than 
in previous releases.

We can address this problem a few ways. One approach is to control 
access to System.Console.Out with the lock operator. The lock operator serves 
the same purpose as the lock statement in C# (SyncLock in Visual Basic) in 
that it prevents additional threads from executing a block of code until 
the locked resource is freed. Here is the previous example reworked to use 
locking:

Parallel.For(0, 100, fun n -> lock Console.Out (fun () -> printfn "%i" n))

There are times when locking is appropriate, but using it like this is a 
horrible idea. By locking, we negate most of the benefits of parallelizing the 
loop because only one item can be written at a time! Instead, we want to try 
another approach that avoids locking and doesn’t interlace the results.

One of the easiest ways to achieve a satisfactory result is with function 
composition. Here, we use the sprint function to format the number and 
send that result to Console.WriteLine:

Parallel.For(0, 100, (sprintf "%i") >> Console.WriteLine)

This approach works because each call to sprintf writes to an isolated 
StringBuilder rather than a shared TextWriter. This eliminates the need to 
lock, thereby eliminating a potential bottleneck in your application.
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Short-Circuiting Parallel Loops

Unlike F#’s built-in for loops, parallel loops provide some short-circuiting 
mechanisms by means of the ParallelLoopState class’s Break and Stop methods. 
The TPL handles creating and managing the loop state, so all you need to 
do to access either of these methods is use one of the overloads that exposes 
it. Consider the following shortCircuitExample function:

open System.Collections.Concurrent
open System.Threading.Tasks

let shortCircuitExample shortCircuit =
  let bag = ConcurrentBag<_>()
  Parallel.For(
    0,
    999999,
  ufun i s -> if i < 10000 then bag.Add i else shortCircuit s) |> ignore
  (bag, bag.Count)

Like the previous examples, the shortCircuitExample function uses 
Parallel.For, but notice at u that the supplied function accepts two param-
eters instead of one. The second parameter, s, is the loop state.

With shortCircuitExample in place we can now invoke it, passing a func-
tion that accepts a ParallelLoopState instance and calls either Stop or Break, 
like this:

shortCircuitExample (fun s -> s.Stop()) |> printfn "%A"
shortCircuitExample (fun s -> s.Break()) |> printfn "%A"

Both of the preceding lines will force the parallel loop to terminate 
before all iterations complete, but they have very different effects. Stop 
causes the loop to terminate at its earliest convenience but allows any itera-
tions that are executing to continue. Break, on the other hand, causes the 
loop to terminate at its earliest convenience after the current iteration. You 
also need to take care that you do not call Stop and Break in succession to 
avoid an InvalidOperationException.

The difference between these two methods can be drastic. For example, 
in one run on my desktop, the Break version processed 10,000 items, whereas 
the Stop version processed only 975.

Cancelling Parallel Loops

Cancelling a parallel for loop is similar to short-circuiting, except that 
instead of using the Stop or Break methods to terminate the loop from 
within, you identify an external cancellation token that the loop monitors 
and responds to. Unlike the short-circuiting mechanism, cancellation forces 
all tasks configured with the same token to stop. Cancelling does raise an 
OperationCanceledException, so you’ll want to handle that accordingly.
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The following function demonstrates cancelling a parallel for loop:

open System
open System.Threading.Tasks

let parallelForWithCancellation (wait : int) =
  use tokenSource = new uSystem.Threading.CancellationTokenSource(wait)

  try
    Parallel.For(
      0,
      Int32.MaxValue,
    vParallelOptions(wCancellationToken = xtokenSource.Token),
      fun (i : int) -> Console.WriteLine i
    ) |> ignore
  with
  | :? yOperationCanceledException -> printfn "Cancelled!"
  | ex -> printfn "%O" ex

In the preceding code, we create a CancellationTokenSource at u. This 
object is initialized to automatically cancel after a provided number of milli
seconds. Inside the try block, we use an overload of Parallel.For that accepts a 
ParallelOptions instance as shown at v. Through this ParallelOptions instance, 
we initialize the CancellationToken property w to the token exposed by the 
CancellationTokenSource x. When the token source’s internal timer expires, 
the parallel loop raises an exception, which is then caught and handled at y. 
Although we relied on a CancellationTokenSource that automatically cancelled, 
you can manually force cancellation by calling the Cancel method, typically 
from another task or thread.

Task Parallelism
Task parallelism gives you the most control over executing code in parallel 
while still abstracting many of the implementation details from you.

Creating and Starting Tasks

Tasks can be created and started in several ways. The easiest, but least flex-
ible, way is the Parallel.Invoke method, which accepts one or more functions 
to execute concurrently and implicitly waits for them to finish, like this:

open System
open System.Threading.Tasks

Parallel.Invoke(
  (fun () -> printfn "Task 1"),
  (fun () -> Task.Delay(100).Wait()
             printfn "Task 2"),
  (fun () -> printfn "Task 3")
)

printfn "Done"
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Here, Parallel.Invoke creates and starts three independent tasks. The 
first and third tasks simply print a message, while the second task waits 
100 milliseconds before printing its message.

Parallel.Invoke limits what you can do because it doesn’t expose any 
information about the individual tasks, nor does it provide any feedback 
about whether the tasks succeeded or failed. You can catch and handle 
exceptions raised by the tasks and cancel them by providing a cancella-
tion token (similar to the approach used in “Cancelling Parallel Loops” 
on page 233), but that’s about it. When you want to do anything more 
advanced with tasks, you’ll need to create them manually.

There are two ways to create tasks manually: directly via a constructor, 
or through a TaskFactory. For our purposes, the primary difference between 
the two approaches is that when creating tasks with the constructor you 
must manually start them. Microsoft recommends favoring the TaskFactory 
when task creation and scheduling don’t need to be separated.

To create a new task with the Task constructor, you need only provide a 
function that serves as the task’s body, like this:

open System.Threading.Tasks

let t = new Task(fun () -> printfn "Manual Task")

This creates a new task that prints a string. To start the task, call its 
Start method.

t.Start()

Alternatively, you can combine the two steps into one with a TaskFactory. 
Conveniently, the Task class has a static Factory property that is preset to a 
default TaskFactory, so you don’t need to create one on your own. Here, we 
create and start a task using the default factory’s StartNew method:

open System.Threading.Tasks

let t = Task.Factory.StartNew(fun () -> printfn "Factory Task")

Returning Values from Tasks

The tasks we’ve looked at so far simply invoke an action, but you also need to 
know how to return a value—a commonly needed but cumbersome process 
under traditional asynchronous models. The TPL makes returning values triv-
ial through a generic Task<'T> class, where 'T represents the task’s return type.

WARNING       	 The random-number generation used in the following examples is sufficient for dem-
onstration purposes, but be aware that the System.Random class is not thread-safe and 
even creating a new instance per task may not be sufficient. Should your solution 
require a more robust approach to concurrently generating random numbers, I recom-
mend reading Stephen Toub’s article on the subject at http://blogs.msdn.com/b/
pfxteam/archive/2009/02/19/9434171.aspx.
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Creating tasks that return values is almost identical to the basic tasks 
we’ve already looked at. The Task<'T> class provides a set of constructor 
overloads that are comparable to that of the non-generic Task class, and the 
TaskFactory includes a generic overload of StartNew. To demonstrate, let’s use 
StartNew<'T> to create and run a task that returns a random number.

let t = Task.Factory.StartNew(fun () -> System.Random().Next())

The only truly notable thing about this example is that the function 
passed to StartNew returns an integer and the generic overload is inferred. 
Of course, returning a value doesn’t do much good without a way to access 
that value, and that’s why Task<'T> provides the Result property, which will 
contain the return value when the task completes. Here, we see how to 
access the return value:

t.Result |> printfn "Result: %i"

Because this is an asynchronous operation, there’s no guarantee that 
the task has completed executing before the Result property is accessed. 
For this reason, Result’s get accessor checks whether the task has completed 
and waits for it to complete if necessary before returning its result. It’s more 
typical to access the result as part of a continuation (as shown a bit later in 
this chapter) than immediately after the task starts.

Waiting for Task Completion

When your program depends on one or more tasks completing before it 
can continue processing, you can wait for those tasks using one of the wait 
mechanisms. For convenience, the examples in this section will use the 
following function, which returns a new function that sleeps for a random 
amount of time (simulating a long-running operation lasting up to delayMs) 
before printing a message:

let randomWait (delayMs : int) (msg : string) =
  fun () -> (System.Random().Next delayMs |> Task.Delay).Wait()
            Console.WriteLine msg

We can use the TaskFactory to create a task and wait for it to complete 
with the task’s Wait method like this:

let waitTask = Task.Factory.StartNew(randomWait 1000 "Task Finished")
waitTask.Wait()
printfn "Done Waiting"

In this code, a new task is created and started, but the message “Done 
Waiting” won’t be written to the console until it completes due to the 
explicit wait. This can be helpful when subsequent code is dependent upon 
the task’s completion. 
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You’ll often want to run a number of tasks in parallel and block until 
one completes. To do so, you can use the static WaitAny method from the 
Task class. The most basic WaitAny overload accepts a params array of tasks and 
will stop blocking as soon as one of the tasks in the array completes. Here, 
we pass three started tasks to WaitAny:

Task.WaitAny(
    Task.Factory.StartNew(randomWait 2000 "Task 0 Finished"),
    Task.Factory.StartNew(randomWait 2000 "Task 1 Finished"),
    Task.Factory.StartNew(randomWait 2000 "Task 2 Finished"))
Console.WriteLine "Done Waiting"

When any of the three tasks complete, WaitAny will stop blocking, thus 
allowing execution to continue to the Console.WriteLine call. Note that WaitAny 
doesn’t kill the remaining tasks when it unblocks, so they’ll continue exe-
cuting in parallel with the source thread.

Similar to WaitAny, the Task class provides a static WaitAll method. WaitAll 
also accepts a params array of tasks, but instead of allowing execution to con-
tinue when one task completes, WaitAll unblocks only when all of the tasks 
have completed. Because the code differs only by which method is called, I 
haven’t included a sample, but I encourage you to experiment with each. As 
you do so, run each form several times and observe the differences.

Continuations

Traditionally, whenever you wanted to execute some code as soon as some 
parallel or asynchronous code completed, you needed to pass a function, 
called a callback, to the asynchronous code. In .NET, callbacks have typically 
been implemented through the built-in AsyncCallback delegate type.

Using callbacks is effective, but they can complicate the code and be 
tricky to maintain. The TPL greatly simplifies this process with continua-
tions, which are tasks configured to start when one or more tasks, called 
antecedents, complete.

The simplest continuations are created from individual tasks. Let’s start 
by creating a task that will serve as an antecedent:

let antecedent =
  new Task<string>(
    fun () -> 
      Console.WriteLine("Started antecedent")
      System.Threading.Thread.Sleep(1000)
      Console.WriteLine("Completed antecedent")
      "Job's done")

Now that we have a task, we can set up a continuation by passing a func-
tion to the task’s ContinueWith method, like so:

let continuation =
  antecedent.ContinueWith(
    fun u(a : Task<string>) ->
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      Console.WriteLine("Started continuation")
      Console.WriteLine("Antecedent status: {0}", a.Status)
      Console.WriteLine("Antecedent result: {0}", a.Result)
      Console.WriteLine("Completed continuation"))

As you can see, creating a continuation is very similar to creating a 
regular task, but notice at u how the function passed to the ContinueWith 
method accepts a parameter of type Task<string>. This parameter represents 
the antecedent so that the continuation can branch according to the ante-
cedent’s status (for example, RanToCompletion, Faulted, Canceled, and so on) or 
its result if it has one.

At this point, neither task has been started, so we’ll start antecedent. 
When it completes, the TPL will automatically start continuation. We can 
observe this behavior as follows:

antecedent.Start()
Console.WriteLine("Waiting for continuation")
continuation.Wait()
Console.WriteLine("Done")

which should print the following messages:

Waiting for continuation
Started antecedent
Completed antecedent
Started continuation
Antecedent status: RanToCompletion
Completed continuation
Done

The ContinueWith method is useful when you’re dealing with only a 
single task. When you have multiple tasks, you can turn to the TaskFactory’s 
ContinueWhenAny or ContinueWhenAll methods. Like their WaitAny and WaitAll 
counterparts, the ContinueWhenAny and ContinueWhenAll methods will start the 
continuation task when any or all of the tasks in an array complete, respec-
tively. For brevity we’ll focus on the ContinueWhenAll method.

let antecedents =
  [|
    new Task(
        fun () ->
          Console.WriteLine("Started first antecedent")
          System.Threading.Thread.Sleep(1000)
          Console.WriteLine("Completed first antecedent"))
    new Task(
        fun () ->
          Console.WriteLine("Started second antecedent")
          System.Threading.Thread.Sleep(1250)
          Console.WriteLine("Completed second antecedent"))
    new Task(
        fun () ->
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          Console.WriteLine("Started third antecedent")
          System.Threading.Thread.Sleep(1000)
          Console.WriteLine("Completed third antecedent"))
  |]

let continuation =
  uTask.Factory.ContinueWhenAll(
    antecedents,
    fun v(a : Task array) ->
      Console.WriteLine("Started continuation")
      for x in a do Console.WriteLine("Antecedent status: {0}", x.Status)
      Console.WriteLine("Completed continuation"))

for a in antecedents do a.Start()

Console.WriteLine("Waiting for continuation")
continuation.Wait()
Console.WriteLine("Done")

ContinueWhenAny follows the same pattern as WaitAny. Here we’ve defined 
three tasks, which we manually start after creating the continuation at u. 
Notice the continuation task’s parameter at v. Instead of receiving a single 
antecedent task as you would with ContinueWith or ContinueWhenAny, continua-
tions created with ContinueWhenAll accept an array of tasks. This array contains 
all of the tasks supplied to ContinueWhenAll instead of the individual task that 
caused the continuation to start. This allows you to inspect each antecedent 
and handle success and failure scenarios as granularly as you need.

Cancelling Tasks

Cancelling a task is fundamentally the same as cancelling a parallel for 
loop, but it requires a bit more work because the parallel for loops handle 
the cancellation details for you. The following function demonstrates can-
celling a task and follows the typical pattern for handling the cancellation:

let taskWithCancellation (cancelDelay : int) (taskDelay : int) =
uuse tokenSource = new System.Threading.CancellationTokenSource(cancelDelay)
vlet token = tokenSource.Token

  try
    let t =
      Task.Factory.StartNew(
        (fun () ->
        wtoken.ThrowIfCancellationRequested()
          printfn "passed cancellation check; waiting"
          System.Threading.Thread.Sleep taskDelay
        xtoken.ThrowIfCancellationRequested()),
        token)
    yt.Wait()
  with
  | ex -> printfn "%O" ex
  printfn "Done"
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As with cancelling parallel for loops, we start by creating a 
CancellationTokenSource at u. For convenience, we then bind the token 
to a name at v so we can reference it within the function the task is 
based upon. Within the task body, the first thing we do at w is call the 
token’s ThrowIfCancellationRequested method, which interrogates the token’s 
IsCancellationRequested property and throws an OperationCanceledException if 
that property returns true. We do this to ensure that no unnecessary work 
is performed if cancellation was requested when the task was started. When 
no exception is thrown, execution continues. At x we again check for can-
cellation to avoid a successful task completion. Finally, at y we wait for the 
task to complete so we can handle any exceptions thrown by the task.

Exception Handling

Exceptions can be raised by any number of executing tasks at any time. 
When this happens, we need a way to capture and handle them. In the 
previous section, we handled the exception in a general manner—by 
matching any exception and writing it to the console. If you executed the 
taskWithCancellation function, you may have noticed that the exception we 
caught wasn’t an OperationCanceledException but rather an AggregateException 
that included an OperationCanceledException. The base exception classes 
aren’t well suited for parallel scenarios because they represent only a single 
failure. To compensate, a new exception type, AggregateException, was intro-
duced to allow us to report one or more failures within a single construct.

Although you certainly could handle an AggregateException directly, 
you’ll typically want to find a specific exception within it. For this, the 
AggregateException class provides the Handle method, which iterates over the 
exceptions contained within its InnerExceptions collection so you can find 
the exception you really care about and handle it accordingly.

try
  raise (AggregateException(
          NotSupportedException(),
          ArgumentException(),
          AggregateException(
            ArgumentNullException(),
            NotImplementedException())))
with
| :? AggregateException as ex ->
      ex.Handle(
        uFunc<_, _>(
          function
          v| :? AggregateException as ex1 ->
              wex1.Handle( 
                Func<_, _>(
                  function
                  | :? NotImplementedException as ex2 -> printfn "%O" ex2; true
                  | _ -> true))
              true
          | _ -> true))
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Handling an AggregateException follows the familiar exception-handling 
pattern: We match against the AggregateException and bind it to the name 
ex as you might expect. Inside the handler, we invoke the Handle method u, 
which accepts a Func<exn, bool> indicating that the supplied function accepts 
an exception, and return a Boolean value. (To use pattern-matching func-
tions as we’ve done here, we explicitly construct Func<_, _> instances and 
allow the compiler to infer the proper type arguments.) Inside the pattern-
matching function v, we detect whether we have a nested AggregateException 
and handle it at w. At each level, we need to return a Boolean value indicat-
ing whether the particular exception was handled. If we return false for any 
exception, a new AggregateException which contains the unhandled excep-
tion will be raised.

Handling AggregateExceptions like this can get quite cumbersome, com-
plex, and tedious. Fortunately, AggregateException provides another method, 
Flatten, which simplifies error handling by iterating over the InnerExceptions 
collection and recursing over each nested AggregateException to construct a 
new AggregateException instance that directly contains all of the exceptions 
within the source exception’s hierarchy. For example, we can revise the pre-
vious example to use Flatten to simplify the handler, like this:

try
  raise (AggregateException(
          NotSupportedException(),
          ArgumentException(),
          AggregateException(
            ArgumentNullException(),
            NotImplementedException())))
with
| :? AggregateException as ex ->
      ex.Flatten().Handle(
        Func<_, _>(
          function
          | :? NotImplementedException as ex2 -> printfn "%O" ex2; true
          | _ -> true))

In this revised example, we call Handle against the flattened 
AggregateException. With only one level to process, we can omit the checks 
for nested AggregateExceptions and handle the NotImplementedException 
directly.

Asynchronous Workflows
Despite the many improvements that the TPL brings to asynchronous and 
parallel programming, F# offers its own model, which better matches the 
functional paradigm emphasized by the language. While it’s sometimes 
desirable to use the TPL in F# (particularly when working across language 
boundaries) you’ll often turn to F#’s asynchronous workflows, which are 
best suited for I/O-based operations.
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Asynchronous workflows provide a uniform and idiomatic way to compose 
and execute asynchronous code against the thread pool. Furthermore, their 
very nature often makes it difficult (if not impossible) to fall into some of 
the asynchronous traps present even in the TPL.

NO  T E 	 Like our TPL discussion, this section is intended to give you a basic working knowl-
edge of asynchronous workflows rather than serving as a comprehensive guide.

Creating and Starting Asynchronous Workflows
Asynchronous workflows are based on the Async<'T> class that resides in 
the Microsoft.FSharp.Control namespace. This type represents a bit of code 
you want to run asynchronously, ultimately returning some value. Instead 
of creating Async<'T> instances directly, though, we compose them through 
async expressions much like we compose sequences or queries.

Async expressions take the following form:

async { async-expressions }

Here, async-expressions represents one or more expressions that will 
participate in the asynchronous operation. In addition to the standard 
expressions we’ve seen throughout this book, asynchronous workflows allow 
you to easily invoke additional workflows and wait for results without block-
ing through specialized variants of some familiar keywords such as let and 
use. For instance, the let! keyword invokes an asynchronous workflow and 
binds the result to a name. Similarly, the use! keyword invokes an asynchro-
nous workflow that returns a disposable object, binds the result to a name, 
and disposes of the object when it goes out of scope. It’s also possible to 
invoke an asynchronous workflow and immediately return the result with 
the return! keyword.

To demonstrate, we’ll turn to the “hello world” example of asynchro-
nous workflows: requesting multiple web pages. To begin, let’s define some 
functions that encapsulate the logic needed to create an asynchronous 
page request (note that a similar function, Http.AsyncRequestString, is avail-
able in the FSharp.Data framework):

open System
open System.IO
open System.Net

type StreamReader with
  member x.AsyncReadToEnd () =
    async { do! Async.SwitchToNewThread()
            let content = x.ReadToEnd()
            do! Async.SwitchToThreadPool()
            return content }

let getPage (uri : Uri) =
  async {
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    let req = WebRequest.Create uri
    use! response = req.AsyncGetResponse()
    use stream = response.GetResponseStream()
    use reader = new StreamReader(stream)
    return! reader.AsyncReadToEnd()
  }

After opening the relevant namespaces, we extend the StreamReader 
class with a single AsyncReadToEnd method. This method, adapted from the 
F# PowerPack, is similar to the existing ReadToEndAsync method except that 
instead of using the TPL, it returns an asynchronous workflow that we can 
evaluate as the final step of the larger workflow in the getPage function where 
we describe how to make the page request. The overall flow of the expres-
sion is pretty standard: Create a WebRequest, wait for the response, and then 
explicitly return the response stream’s contents.

NO  T E 	 The AsyncGetResponseMethod is an extension method defined in the F# core library. It 
conveniently wraps the standard .NET code within another asynchronous workflow, 
which makes it possible to employ use! and greatly simplifies the code.

It’s important to recognize that getPage doesn’t actually execute the 
request; it merely creates an instance of Async<string> that represents the 
request. This allows us to define multiple requests or pass them around 
to other functions. We can even execute the request multiple times. To 
execute the request we need to turn to the static Async class, which you can 
think of as a controller for asynchronous workflows.

There are a number of methods for starting an asynchronous workflow. 
Some common methods are listed in Table 11-1.

Table 11-1: Common Async Start Methods

Method Description
RunSynchronously Starts an asynchronous workflow and waits for its result.
Start Starts an asynchronous workflow but does not wait for a 

result.
StartImmediate Starts an asynchronous workflow immediately using the 

current thread. Useful for UI updates.
StartWithContinuations Immediately starts an asynchronous workflow using the 

current thread, invoking a success, exception, or cancel-
lation continuation depending on how the operation 
completed.

The method you choose is largely dependent upon what the workflow 
does, but you’ll typically use Start unless your application requires one of 
the others. The workflow created by the getPage function returns the result 
of a web request. Since we’re making the request, we probably don’t want 
to ignore the result, so we’ll need to wire up a continuation to do some-
thing with it. The easiest way to do that is to wrap the call to getPage inside 
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another asynchronous expression, passing the result to another function 
when it completes, and starting the entire workflow with Start. Here, we 
call getPage and print the result:

async {
  let! content = Uri "http://nostarch.com" |> getPage
  content.Substring(0, 50) |> printfn "%s" }
|> Async.Start

Alternatively, we can use the StartWithContinuations method, which 
accepts an asynchronous workflow and three functions to invoke when the 
workflow finishes successfully, raises an exception, or is cancelled, respec-
tively. The following code shows such an approach:

Async.StartWithContinuations(
  ugetPage(Uri "http://nostarch.com"),
  v(fun c -> c.Substring(0, 50) |> printfn "%s..."),
  w(printfn "Exception: %O"),
  x(fun _ -> printfn "Cancelled")
)

When the asynchronous operation u completes successfully, the suc-
cess continuation v is invoked and the first 50 characters from the page 
source will be printed. Should the operation throw an exception, the 
exception continuation w will execute and print the exception. Finally, 
if the operation is cancelled, as described in “Cancelling Asynchronous 
Workflows” on page 245, the cancellation continuation x will execute and 
display a note informing the user of the cancellation.

Instead of relying on continuations, we can use the RunSynchronously 
method and get the result directly, like this:

let html =
  Uri "http://nostarch.com"
  |> getPage
  |> Async.RunSynchronously

Using A sy nc

The fact that Async is a static class rather than a module has ramifications for 
how you interact with it. Rather than providing let-bound functions as a mod-
ule would, Async provides methods, many of which are overloaded primarily 
to aid in cancellation. Furthermore, Async’s methods are typically designed 
with a more object-oriented approach than is typical in the core F# libraries. 
Accordingly, their parameters are often tupled, making it difficult to use them 
with pipelining.
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Of course, running a single asynchronous workflow like this defeats 
the purpose of running it asynchronously because RunSynchronously waits 
for the result. Instead, RunSynchronously is often used in conjunction with 
Async.Parallel to run multiple workflows in parallel and wait for all of them 
to complete. For instance, we can make multiple requests, starting with an 
array of asynchronous workflows, as follows:

open System.Text.RegularExpressions

[| getPage(Uri "http://nostarch.com")
   getPage(Uri "http://microsoft.com")
   getPage(Uri "http://fsharp.org") |]
|> Async.Parallel
|> Async.RunSynchronously
|> Seq.iter (fun c -> let sample = c.Substring(0, 50)
                      Regex.Replace(sample, @"[\r\n]| {2,}", "")
                      |> printfn "%s...")

Here, we employ the Parallel method to combine each of the asyn-
chronous workflows into a single workflow that is then piped to the 
RunSynchronously method. When each of the requests has completed, we 
iterate over the resulting array, stripping a few characters from the content 
for readability and printing the result.

Cancelling Asynchronous Workflows
In the previous section I indicated that asynchronous workflows can be can-
celled. Just as in the TPL, asynchronous workflows use cancellation tokens 
to control cancellation. It’s possible, and sometimes even necessary, to man-
age tokens on your own, but in many cases you can rely on the Async class’s 
default token.

For simple scenarios, such as when you’re starting a single work-
flow via the Start or StartWithContinuations methods, you can use the 
CancelDefaultToken method to cancel the workflow, like this:

u Async.StartWithContinuations(
  getPage(Uri "http://nostarch.com"),
  (fun c -> c.Substring(0, 50) |> printfn "%s..."),
  (printfn "Exception: %O"),
  (fun _ -> printfn "Cancelled")
)

v Async.CancelDefaultToken()

The StartWithContinuations method u monitors the default token 
and cancels the workflow when the token is marked as cancelled via the 
CancelDefaultToken method v. In this example, because the workflow is can-
celled before it completes, the cancellation callback is invoked instead of 
the success callback, resulting in the cancellation message being displayed.
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The TryCancelled method, which accepts a workflow and a function that 
will be invoked when cancellation is requested, is a nice alternative for work-
flows that don’t return a value. Here, the displayPartialPage function wraps 
a call to getPage within another asynchronous workflow. The outer workflow 
waits for the response and writes out the first 50 characters when the message 
is received. Because TryCancelled returns yet another workflow and doesn’t 
automatically start it, we need to explicitly do so with a call to Start.

let displayPartialPage uri =
  Async.TryCancelled(
    async {
      let! c = getPage uri
      Regex.Replace(c.Substring(0, 50), @"[\r\n]| {2,}", "")
      |> sprintf "[%O] %s..." uri
      |> Console.WriteLine },
    (sprintf "[%O] Cancelled: %O" uri >> Console.WriteLine))

Async.Start(displayPartialPage (Uri "http://nostarch.com"))

Async.CancelDefaultToken()

The default token is often sufficient for cancelling workflows. When 
you’re executing multiple workflows and want to coordinate cancellation 
or if you want more control over cancellation, you can supply your own. 
Consider what happens when you request three pages but request cancella-
tion with the default token.

[| Uri "http://nostarch.com"
   Uri "http://microsoft.com"
   Uri "http://fsharp.org" |]
|> Array.iter (fun u -> Async.Start(displayPartialPage u))

Async.CancelDefaultToken()

Executing the preceding code usually results in all three workflows 
being cancelled. (Usually, but not always, because there’s a chance that one 
or more workflows complete before the cancellation is handled.) To isolate 
each workflow’s cancellation, we can use an overload of the Start method 
that accepts a user-specified token, like this:

open System.Threading

let tokens =
  [| Uri "http://nostarch.com"
     Uri "http://didacticcode.com"
     Uri "http://fsharp.org" |]
  |> Array.map (fun u -> ulet ts = new CancellationTokenSource()
                         Async.Start(displayPartialPage u, vts.Token)
                         ts)

w tokens.[0].Cancel()
x tokens.[1].Cancel()
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In this revised version, we use Array.map to map each Uri to a workflow 
with its own CancellationTokenSource created at u. We then pass the associ-
ated token to Async.Start as the second argument v before returning the 
CancellationTokenSource. Finally, at w and x, respectively, we request cancel-
lation of the first and second requests, allowing the third to proceed as 
normal.

What’s especially nice about cancelling asynchronous workflows is that, 
unlike the TPL, cancellation tokens are propagated through the entire 
workflow automatically. This means that you don’t have to manually ensure 
that each new workflow is given a token, leaving you with cleaner code.

Exception Handling
Because exceptions can and do occur within asynchronous workflows, it’s 
important to know how to handle them properly. There are a few exception-
handling options available, but their utility may vary depending on what 
you’re doing.

The most uniform way to handle exceptions in an asynchronous work-
flow is to wrap the potentially offending code inside a try...with block 
within the async expression. For instance, we can provide a version of our 
getPage function that handles exceptions raised during the page request 
and read, like this:

let getPageSafe uri =
  async {
    try
      let! content = getPage uri
      return Some content
    with
    | :? NotSupportedException as ex ->
      Console.WriteLine "Caught NotSupportedException"
      return None
    | :? OutOfMemoryException as ex ->
      Console.WriteLine "Caught OutOfMemoryException"
      return None
    | ex ->
      ex |> sprintf "Caught general exception: %O" |> Console.WriteLine
      return None }

There’s nothing unusual about the try...with block in the preceding 
code—we simply wrap the asynchronous call to getPage in the try...with 
block and return a successful read as an option. Should the operation 
raise an exception, we match the exception type, print a message, and 
return None.

Another way to handle exceptions from asynchronous workflows is 
the Async.Catch method. Async.Catch takes a more functional approach than 
StartWithContinuations in that rather than accepting an exception-handling 
function, it returns Choice<'T, exn>, where 'T is the asynchronous workflow’s 
return type and exn is the exception thrown by the workflow.
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The Choice type is a discriminated union with two union cases: Choice1Of2 
and Choice2Of2. For Async.Catch, Choice1Of2 represents successful completion 
of the workflow and contains the result, whereas Choice2Of2 represents fail-
ure and contains the first raised exception.

Handling exceptions with Async.Catch lets you structure your asynchro-
nous code to create an idiomatic, pipelined data flow. For example, the fol-
lowing code shows how we can model an asynchronous operation as a series 
of function applications, beginning with a Uri.

Uri "http://nostarch.com"
|> getPage
|> Async.Catch
|> Async.RunSynchronously
|> function
   | Choice1Of2 result -> Some result
   | Choice2Of2 ex ->
      match ex with
      | :? NotSupportedException ->
        Console.WriteLine "Caught NotSupportedException"
      | :? OutOfMemoryException ->
        Console.WriteLine "Caught OutOfMemoryException"
      | ex ->
        ex.Message |> sprintf "Exception: %s" |> Console.WriteLine
      None

Here, a Uri is piped into the getPage function to create an asynchronous 
workflow. The resulting workflow is piped into Async.Catch to set up another 
workflow, which we then pipe to Async.RunSynchronously so we can wait for the 
result. Finally, we pipe the Choice into a pattern-matching function where we 
either return Some result or handle the exception before returning None.

Asynchronous Workflows and the Task Parallel Library
In addition to the ThreadPool-based asynchronous operations we’ve seen so 
far, the Async class provides a few methods for working with TPL tasks. Most 
notable among them are StartAsTask and AwaitTask.

The StartAsTask method invokes an asynchronous workflow as a TPL task. 
You would typically use this for CPU-bound operations or to expose an asyn-
chronous workflow to code using the TPL in C# or Visual Basic. For instance, 
we can treat the result of our getPage function as a TPL task like this:

Uri "http://nostarch.com"
|> getPage
|> Async.StartAsTask
|> (fun t -> ut.Result.Substring(0, 50))
|> printfn "%s"

The presence of the Result property at u indicates that the result 
of StartAsTask is indeed a Task. In a more real-world scenario, you likely 
wouldn’t fire off a task and immediately block by waiting for the result, 
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but this example is intended only to show how to start an asynchronous 
workflow as a TPL Task.

The StartAsTask method is handy when you need to create a new task, 
but what about when you need to handle an existing task? Consider the 
DownloadStringTaskAsync method added to the System.Net.WebClient class in 
.NET 4.5. This method serves the same purpose as our getPage function 
except that it encapsulates downloading a resource within a TPL task.

In C#, you can easily handle such methods with the async modifier and 
await operator, as shown here:

// C#
// using System.Threading.Tasks

private static uasync Task<string> GetPageAsync(string uri)
{
    using (var client = new System.Net.WebClient())
    {
      return vawait client.DownloadStringTaskAsync(uri);
    }
}

static void Main()
{
    var result = GetPageAsync("http://nostarch.com").Result;
    Console.WriteLine("{0}", result.Substring(0, 50));
    Console.ReadLine();
}

From a greatly simplified perspective, what happens in the preced-
ing C# code is this: The async modifier u is applied to the GetPageAsync 
method to signify that part of the method will run asynchronously. The 
await operator v then signifies that execution should return to the caller 
and the remainder of the method should be treated as a continuation to 
be executed when the task completes.

Asynchronous workflows allow us to follow a similar pattern in F# using 
the AwaitTask method in combination with a TPL task and let!, use!, or 
return!. Here is the corresponding code in F#:

// F#
open System.Threading.Tasks

let getPageAsync (uri : string) =
  async {
    use client = new System.Net.WebClient()
  ureturn! Async.AwaitTask (client.DownloadStringTaskAsync uri)
  }

async {
vlet! result = getPageAsync "http://nostarch.com"
  result.Substring(0, 50) |> printfn "%s"
} |> Async.Start
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Although they’re not quite functionally equivalent (the C# version 
waits for the result in Main while the F# version passes the result to a con-
tinuation), the F# approach is similar to that of C#. In the F# version, the 
asynchronous workflow created by the getPageAsync function uses return! 
and Async.AwaitTask u to wait for the task to complete before returning the 
result. Then, in the second asynchronous workflow, let! v is used to evalu-
ate getPageAsync, while printing the result is treated as a continuation.

Agent-Based Programming
As if the TPL and asynchronous workflows didn’t make parallel and asynchro
nous programming accessible enough, F# has borrowed a message-processing 
mechanism from Erlang. The MailboxProcessor<'T> class implements a queue-
based system for asynchronously routing messages (data items) to handlers 
using shared memory. This is especially useful in scenarios where multiple 
sources (clients) need to request something from a single target (server), the 
canonical example being a web server. Furthermore, because MailboxProcessor 
instances are extremely lightweight, an application can manage thousands of 
them without breaking a sweat. This fact enables mailbox processors to work 
independently or together by passing messages between instances.

MailboxProcessor instances are usually referred to as agents, and I’ll fol-
low this convention throughout this section. In that regard, a common prac-
tice in agent-based programming is to alias MailboxProcessor<'T> as Agent<'T> 
as follows:

type Agent<'T> = MailboxProcessor<'T>

With the type aliased, we can create agents using the more conve- 
nient name.

Getting Started
I think the best way to understand agent-based programming is with an 
example. We’ll start with a simple agent that simply prints whatever is sent 
into it.

type Message = | Message of obj

let echoAgent =
uAgent<Message>.Start(
    fun inbox ->
    vlet rec loop () =
        async {
          let! (Message(content)) = winbox.Receive()
          printfn "%O" content
        xreturn! loop()}
    yloop())
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In the preceding code, we create an agent called echoAgent by passing a 
function to the Start method as shown at u. By convention, the function’s 
parameter is called inbox because it’s the mailbox from which we’ll receive 
new messages. At v we define the recursive loop function, which we’ll call 
continually to receive new messages.

NO  T E 	 It’s certainly possible to loop imperatively using a while loop, but the recursive func-
tion is the more typical approach. Functional loops provide the additional benefit of 
easily allowing you to provide different looping logic when you need to manage mul-
tiple states. For instance, if your agent needs to behave differently in a paused state 
than a running state, you could define a pair of mutually recursive functions that 
both return a workflow that handles the corresponding state accordingly.

Inside the loop, we create an asynchronous workflow that first asynchro-
nously receives a message from inbox using the Receive method as shown at w. 
Next, the received message is printed before making an asynchronous recur-
sive call to loop at x. Finally, at y we initiate recursion by making a standard, 
synchronous call to loop.

With echoAgent actively listening, we can send it some messages via the 
Post method, like this:

> Message "nuqneH" |> echoAgent.Post;;
nuqneH
> Message 123 |> echoAgent.Post;;
123
> Message [ 1; 2; 3 ] |> echoAgent.Post;;
[1; 2; 3]

As you can see, when echoAgent receives a message, it is written to the 
console and then echoAgent waits for another message, and the process 
repeats ad infinitum.

Scanning for Messages
In the echoAgent example, we used the Receive method to get messages from 
the underlying queue. In many cases, Receive is appropriate, but it makes 
it difficult to filter messages because it removes them from the queue. To 
selectively process messages, you might consider using the Scan method 
instead.

Scanning for messages follows a different pattern than receiving them 
directly. Rather than processing the messages inline and always returning 
an asynchronous workflow, the Scan method accepts a filtering function that 
accepts a message and returns an Async<'T> option. In other words, when 
the message is something you want to process, you return Some<Async<'T>; 
otherwise, you return None. To demonstrate, let’s revise the echoAgent to pro-
cess only strings and integers.
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let echoAgent2 =
  Agent<Message>.Start(fun inbox ->
    let rec loop () =
      inbox.Scan(fun (Message(x)) ->
        match x with
        | u:? string
        | v:? int ->
          Some (async { printfn "%O" x
                        return! loop() })
        | _ -> printfn "<not handled>"; None)
    loop())

At u and v you can see standard dynamic type-test patterns used to 
filter incoming messages to strings and integers, respectively. When the 
message is one of those two types, we associate an asynchronous workflow 
with Some and return it. For all other messages, we return None. Scan then 
examines the returned value, and when it is Some, the message is consumed 
(removed from the queue) and the workflow is invoked. When the returned 
value is None, Scan immediately waits for another message.

Passing messages to echoAgent2 is the same as before—just pass the mes-
sages via the Post method:

> Message "nuqneH" |> echoAgent2.Post;;
nuqneH
> Message 123 |> echoAgent2.Post;;
123
> Message [ 1; 2; 3 ] |> echoAgent2.Post;;
<not handled>

Scanning for messages does offer some flexibility with how you pro-
cess messages, but you need to be mindful of what you’re posting to the 
agent because messages not processed by Scan remain in the queue. As the 
queue size increases, scans will take longer to complete, so you can quickly 
run into performance issues using this approach if you’re not careful. You 
can see how many messages are in the queue at any time by inspecting 
the CurrentQueueLength property. If you need to remove messages from the 
queue, you can do so by invoking Receive for each message in the queue, 
but needing to do so is probably indicative of a larger design problem that 
should be addressed.

Replying to Messages
The agents we’ve created so far have been self-contained: They receive a 
message, do something with it, and wait for another message. Agents don’t 
have to work in isolation, though. One way you can make agents more inter-
active is by having them reply via an AsyncReplyChannel. To demonstrate, let’s 
revise echoAgent again, but this time, instead of printing a message within 
the agent, we’ll have it reply.
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u type ReplyMessage = | ReplyMessage of obj * AsyncReplyChannel<obj>

let echoAgent3 =
  Agent.Start(fun inbox ->
    let rec loop () =
      async {
        let! v(ReplyMessage(m, c)) = inbox.Receive()
        wc.Reply m
        return! loop()
      }
    loop())

The overall structure of echoAgent3 doesn’t differ much from the previ-
ous versions. For convenience, we’re using a discriminated union u for 
our message type as is typical in agent-based programming. In this case, 
the ReplyMessage union type has a single case with two associated values, an 
object and the reply channel.

Inside the loop body, we use pattern matching v to identify the union 
case and extract the message and channel. We then pass the message to the 
channel’s Reply method w before repeating. Now all that’s left is to send a 
message to the agent.

ReplyMessage’s second value is an AsyncReplyChannel<obj>, as you’ve already 
seen. In theory we could manually construct a reply channel and send the 
ReplyMessage to the agent with the Post method, but then we’d have to handle 
waiting for the result manually. There are much better ways to get the reply 
channel—namely, the PostAndReply method and its variants.

The PostAndReply methods differ a bit from Post in that, instead of accept-
ing the message directly, they are higher-order functions that accept a func
tion that takes in a preconstructed reply channel and returns the fully 
constructed method. For our purposes, we’ll simply create a ReplyMessage 
like this:

echoAgent3.PostAndReply(fun c -> ReplyMessage("hello", c))
|> printfn "Response: %O"

Internally, PostAndReply (and its variants) construct reply channels that 
they pass on to the supplied function, which then creates the message that 
is ultimately posted to the agent.

Example: Agent-Based Calculator
Now that you’ve seen a variety of ways to create and interact with agents, 
let’s look at a more interesting example that ties together several of the 
concepts for something a bit more useful than simply regurgitating its 
input: an agent-based calculator. We’ll begin by defining a discriminated 
union that represents the messages the calculator will support.
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type Operation =
| Add of float
| Subtract of float
| Multiply of float
| Divide of float
| Clear
| Current of AsyncReplyChannel<float>

The Operation union type defines six cases. Of those, four represent 
basic mathematical operations and have an associated float that is used 
in the calculation. The Clear case allows us to clear the stored value. Finally, 
the Current case lets us interrogate the agent for its current value using its 
associated reply channel. From this definition, we can create a new agent 
that handles each case as follows:

let calcAgent =
  Agent.Start(fun inbox ->
    let rec loop total =
      async {
        let! msg = inbox.Receive()
        let newValue =
          match msg with
          | Add x -> total + x
          | Subtract x -> total - x
          | Multiply x -> total * x
          | Divide x -> total / x
          | Clear -> 0.0
          | Current channel ->
            channel.Reply total
            total
        return! loop newValue }        
    loop 0.0)

Even though calcAgent appears to keep a running total, it is a bit of an 
illusion in that we keep state only by passing a value (total) to the recursive 
loop function. When calcAgent receives a message, it uses pattern matching to 
determine the appropriate action, binding the result to newValue. For instance, 
when it receives an Add, Subtract, Multiply, or Divide operation, it applies the 
corresponding mathematical operation to total. Similarly, when it receives a 
Clear operation, it simply returns 0.0 and Current returns total after replying.

To see calcAgent in action, we just need to send it some messages:

[ Add 10.0
  Subtract 5.0
  Multiply 10.0
  Divide 2.0 ]
|> List.iter (calcAgent.Post)

calcAgent.PostAndReply(Current) |> printfn "Result: %f"
calcAgent.Post(Clear)
calcAgent.PostAndReply(Current) |> printfn "Result: %f"
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In the preceding snippet, we simply pass a list of Operations to List.iter, 
posting each message to calcAgent. When those have been processed, we 
query for the current value, clear, and then query again to ensure that the 
total has been zeroed out. Invoking the preceding snippet results in the 
following:

Result: 25.000000
Result: 0.000000

Summary
Asynchronous and parallel programming have long been viewed as tools 
for specialized software and reserved for experienced developers. With pro-
cessor manufacturers improving processor performance by adding cores 
instead of increasing clock speed, software developers can no longer solve 
performance issues solely by upgrading hardware, nor can they continue 
expecting users to wait for long-running operations to complete before 
returning control.

Languages such as F# make asynchronous and parallel programming 
more accessible by providing multiple, robust mechanisms. The TPL makes 
it easy for developers to efficiently handle CPU-bound operations such as 
processing large data sets while effectively using available system resources. 
Language features such as asynchronous workflows excel at keeping appli-
cations responsive during IO-based operations such as web requests or file 
accesses. Finally, agent-based programming lets you easily coordinate com-
plex systems by firing off individual asynchronous processes without hav-
ing to directly manage the complexity of traditional thread-based models. 
Together, these approaches help you build scalable, responsive applications 
that meet the demands of modern computing while keeping you focused on 
the actual problems your software is trying to solve.





12
C o mp  u t a t i o n  E x p r e s s i o n s

In Chapter 6, we looked at how sequence 
expressions simplify creating sequences. 

In Chapter 10, we saw how query expres-
sions provide a unified approach to query-

ing data from disparate data sources. Similarly, in 
Chapter 11, we explored how asynchronous workflows
can be employed to simplify creating and executing asynchronous opera-
tions. Each of these constructs serves a very different purpose, but what 
they all have in common is that they’re examples of another F# language 
feature: the computation expression.

Computation expressions, sometimes referred to as workflows, provide a 
convenient construct for expressing a series of operations where data flow 
and side effects are controlled. In that regard, computation expressions are 
similar to what other functional languages refer to as monads. Where com-
putation expressions differ, though, is that they’re designed in such a way 
that individual expressions look like a natural part of the language.



258   Chapter 12

Within the context of a computation expression, you can repurpose 
several familiar language elements—such as the let and use keywords, and 
for loops—to unify the syntax with the language. Computation expressions 
also provide an alternative “bang” syntax for some of these elements, allow-
ing you to nest computation expressions for inline evaluation. 

This feature’s generalized nature means that computation expressions 
can simplify working with complex types and are applicable to a variety 
of situations. For instance, we already know that the built-in computation 
expressions streamline sequence creation, querying, and asynchronous 
processing, but they also have applications in logging and in projects such 
as the {m}brace framework that aim to simplify offloading computations to 
the cloud.

In this chapter, we’ll explore the inner workings of computation expres-
sions. We’ll forego discussing monadic theory because it doesn’t really help 
you understand how computation expressions can fit into your solutions. 
Instead, we’ll begin with a look at builder classes and how they enable 
computation expressions. With that foundation established, we’ll then 
walk through two examples of custom computation expressions.

Anatomy of a Computation Expression
You’re already familiar with the basic pattern for writing computation 
expressions, but until now, you haven’t seen how they work beyond a brief 
glimpse behind the scenes when we created some additional query opera-
tors in “Extending Query Expressions” on page 214. To reiterate for the 
more general case, computation expressions take the following form:

builder-name { computation-expression-body }

Computation expressions are designed around an underlying com-
putation type (sometimes called a monadic type) that we compute by trans-
parently invoking methods exposed by a builder class. In the preceding 
syntax, builder-name represents a concrete instance of a builder class, and 
computation-expression-body represents the series of nested expressions that 
map to the method calls necessary to produce an instance of the compu-
tation type. For example, asynchronous workflows are based on Async<'T> 
and built via AsyncBuilder. Similarly, query expressions are based on 
QuerySource<'T, 'Q> and built via QueryBuilder.

NO  T E 	 Sequence expressions are an anomaly in the realm of computation expressions in 
that they don’t follow the normal implementation pattern. Although sequence expres-
sions use the computation expression syntax and are based on IEnumerable<'T>, they 
don’t have a corresponding builder class. Instead, the details that would normally be 
handled by the builder class are handled directly by the F# compiler.

Builder classes define the operations supported by a computation 
expression. Defining a builder class is largely a matter of convention, as 
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there are no specific interfaces to implement or base classes to inherit. 
There aren’t any steadfast rules for naming builder classes, but you typically 
do so by appending Builder to the underlying type name (for example, 
AsyncBuilder and QueryBuilder). 

Although computation expressions are part of the language, they are 
really just syntactic sugar—a more convenient way to call into the builder 
class’s methods. When the compiler encounters what appears to be a com-
putation expression, it attempts to convert the code to a series of method 
calls through a process called desugaring. This process involves replacing 
each operation in the computation expression with a call to a correspond-
ing instance method on the builder type (similar to how LINQ query 
expressions are translated to extension method calls and delegates in C# 
and Visual Basic). I like to think of the builder class methods as belonging 
to either of two groups. The first group, listed in Table 12-1, controls vari-
ous syntactic elements such as bindings, for and while loops, and return 
values.

Table 12-1: Control Methods for Syntactic Elements

Method Description Signature
Bind Enables let! and do! bindings M<'T> * ('T -> M<'U>) -> M<'U>

For Enables for loops seq<'T> * ('T -> M<'U>) -> M<'U>  
or 
seq<'T> * ('T -> M<'U>) -> seq<M<'U>>

Return Enables return 'T -> M<'T>

ReturnFrom Enables return! M<'T> -> M<'T>

TryFinally Allows exception handling 
through try...finally

M<'T> * (unit -> unit) -> M<'T>

TryWith Allows exception handling 
through try...with

M<'T> * (exn -> M<'T>) -> M<'T>

Using Enables creating IDisposable 
objects with use and use!

'T * ('T -> M<'U>) -> M<'U> 
when  
'U :> IDisposable

While Allows you to use while...do 
loops within a computation 
expression

(unit -> bool) * M<'T> -> M<'T>

Yield Returns items from a nested 
computation expression using 
a sequence-like approach with 
the yield keyword

'T -> M<'T>

YieldFrom Returns items from a nested 
computation expression using 
a sequence-like approach with 
the yield! keyword

M<'T> -> M<'T>

The second group of methods, those that control how computation 
expressions are evaluated, is listed in Table 12-2.
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Table 12-2: Methods Affecting Computation Expression Evaluation

Method Description Signature
Combine Merges two parts of a computation 

expression into one
M<'T> * M<'T> -> M<'T>  
or 
M<unit> * M<'T> -> M<'T>

Delay Wraps a computation expression in a 
function for deferred execution, thereby 
helping prevent unintended side effects

(unit -> M<'T>) -> M<'T>

Run Executed as the last step in evaluating a 
computation expression; can “undo” a 
delay by invoking the function returned 
by Delay and can also transform the result 
into a more consumable format

M<'T> -> M<'T>  
or 
M<'T> -> 'T

Zero Returns a default value for the expression’s 
monadic type; used when a computation 
expression doesn’t explicitly return a value

unit -> M<'T>  
('T can be unit)

Because computation expressions are intended to be designed in such 
a way that they apply to a variety of situations, it’s important to keep them 
as generic as possible. This is reflected in the highly generalized structure 
of the signatures. For instance, the notation M<_> is used to indicate that the 
underlying type wraps another value.

It is not necessary to implement each method listed in Table 12-1 in 
your builder classes. Should you omit any of those methods, though, the 
corresponding mapped syntax will not be available within the computation 
expression and the compiler will produce an error. For example, if you 
try to include a use binding within a custom computation expression but 
omit the Using method from the builder class, compilation will fail with the 
message:

error FS0708: This control construct may only be used if the computation 
expression builder defines a 'Using' method

Likewise, it is not always necessary to implement each method from 
Table 12-2, but failure to do so in some situations can lead to undesirable 
results. For instance, not implementing the Delay method will prevent you 
from composing expressions that yield multiple results. Furthermore, when 
your computation expression involves side effects, not implementing the 
Delay method can invoke the side effects prematurely—regardless of where 
they appear within the expression—because they are evaluated immedi-
ately when they’re encountered instead of wrapped up in a function for 
deferred execution.

Computation expressions can be difficult to understand when discussed 
in abstract terms focused on the builder classes and method calls. I think 
it’s far more helpful to walk through some simple implementations to see 
how the pieces work together. We’ll spend the remainder of the chapter dis-
cussing two examples. In particular, we’ll look at the builder implementa-
tions, their corresponding expression syntax, and the desugaring process.
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Example: FizzBuzz
In Chapter 7, we looked at a few ways to solve the FizzBuzz problem by 
iterating over a sequence using Seq.map and using pattern-matching func-
tions with active patterns and partial active patterns to identify which value 
should be printed. At its core, however, the FizzBuzz problem is essentially 
just an exercise in sequence transformation. As such, the problem can easily 
be solved with a computation expression.

When implemented as a computation expression, our FizzBuzz sequence 
can be constructed in a manner such that it looks and behaves like a standard 
sequence expression. With the computation expression, though, mapping 
a number to the corresponding string will be completely abstracted away 
within the builder class.

Because FizzBuzz transforms integers to strings and carries no intrinsic 
state, we’ll forego creating an intermediary wrapper type and jump right 
into creating the builder class incrementally, beginning with the Yield 
method.

type FizzBuzzSequenceBuilder() =
  member x.Yield(v) =
    match (v % 3, v % 5) with
    | 0, 0 -> "FizzBuzz"
    | 0, _ -> "Fizz"
    | _, 0 -> "Buzz"
    | _ -> v.ToString()

Now that we have a rudimentary builder class, we can create the instance 
that we’ll use for every FizzBuzz computation expression, like this:

let fizzbuzz = FizzBuzzSequenceBuilder()

That’s it! There’s nothing fancy here; we just create an instance of 
the class via its primary constructor. To use the instance as a computation 
expression, we can write something such as the following:

> fizzbuzz { yield 1 };;
val it : string = "1"

As you can see, evaluating the preceding expression doesn’t give us quite 
the result we’re looking for. Instead of returning a sequence of strings, it gives 
us only a single string, because so far the builder class doesn’t know how to 
create a sequence; it simply yields a string based on an integer value. You can 
see this a bit more clearly in the desugared form, which resembles this:

fizzbuzz.Yield 1

To get a sequence of strings, we could make Yield return a singleton 
sequence (a sequence containing only a single item), but doing so would 
complicate implementing other methods, such as For and While. Instead, 
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we’ll extend the builder class to include the Delay method as follows (be 
sure to re-create the builder instance after updating the builder class 
to ensure that the fizzbuzz expressions are evaluated using the latest 
definitions):

type FizzBuzzSequenceBuilder() =
  -- snip --
  member x.Delay(f) = f() |> Seq.singleton

Evaluating the previous fizzbuzz expression with the Delay method in 
place gives us a slightly more desirable result:

> fizzbuzz { yield 1 };;
val it : seq<string> = seq ["1"]

Again, the desugared expression can help clarify what’s happening. 
With the inclusion of the Delay method, the desugared form now looks 
like this:

fizzbuzz.Delay(fun () -> fizzbuzz.Yield 1)

As it stands now, though, all we’ll ever get from a fizzbuzz expression is 
a singleton sequence because we can’t yield multiple values. In fact, trying 
to do so as follows will result in a compiler error indicating that the builder 
class must define a Combine method:

fizzbuzz {
  yield 1
  yield 2
  yield 3 }

To make the preceding snippet work, we’ll provide two overloaded 
implementations of the Combine method. The reason for overloading the 
methods is that, depending on their position within the expression, we’ll 
either be combining individual strings into a sequence or appending a new 
string to an existing sequence. We want to be careful that we don’t create a 
sequence containing a sequence, so we’ll also need to overload the existing 
Delay method to simply return a supplied sequence. We can implement each 
of these methods as follows:

type FizzBuzzSequenceBuilder() =
  -- snip --
  member x.Delay(f : unit -> string seq) = f()
  member x.Combine(l, r) =
    Seq.append (Seq.singleton l) (Seq.singleton r)
  member x.Combine(l, r) =
    Seq.append (Seq.singleton l) r
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Now evaluating the preceding fizzbuzz expression will result in a 
sequence containing three strings:

> fizzbuzz {
  yield 1
  yield 2
  yield 3 };;
val it : seq<string> = seq ["1"; "2"; "Fizz"]

When yielding multiple results like this, the desugaring process pro-
duces a much more complicated chain of method calls. For instance, desug-
aring the preceding expression that yields three items results in code that 
resembles this:

fizzbuzz.Delay (fun () ->
  fizzbuzz.Combine (
    fizzbuzz.Yield 1,
    fizzbuzz.Delay (fun () ->
      fizzbuzz.Combine(
        fizzbuzz.Yield 2,
        fizzbuzz.Delay (fun () -> fizzbuzz.Yield 3)))))

Yielding instances one at a time as we’ve been doing isn’t a very effec-
tive way to build a sequence of any length. It would be much nicer if we 
could compose a fizzbuzz expression using a for loop. For this we need to 
implement the For method. The approach we’ll take is to simply wrap a call 
to Seq.map, as shown here:

type FizzBuzzSequenceBuilder() =
  -- snip --
  member x.For(g, f) = Seq.map f g

Now it’s trivial to generate FizzBuzz sequences because instead of using 
multiple yield expressions, we can nest a single yield expression within a for 
loop, like this:

fizzbuzz { for x = 1 to 99 do yield x }

Part of the beauty of implementing the Yield, Delay, Combine, and For 
methods in the builder class is that we can combine the styles for more 
flexible expressions. For instance, we can yield values directly before yield-
ing them from a loop:

fizzbuzz { yield 1
           yield 2
           for x = 3 to 50 do yield x }

As it’s currently written, the builder class doesn’t support every way you 
could combine the various expressions, but you shouldn’t have trouble add-
ing the appropriate overloads to support many more scenarios.
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For your convenience, here’s the builder class in its entirety:

type FizzBuzzSequenceBuilder() =
  member x.Yield(v) =
    match (v % 3, v % 5) with
    | 0, 0 -> "FizzBuzz"
    | 0, _ -> "Fizz"
    | _, 0 -> "Buzz"
    | _ -> v.ToString()
  member x.Delay(f) = f() |> Seq.singleton
  member x.Delay(f : unit -> string seq) = f()
  member x.Combine(l, r) =
    Seq.append (Seq.singleton l) (Seq.singleton r)
  member x.Combine(l, r) =
    Seq.append (Seq.singleton l) r
  member x.For(g, f) = Seq.map f g

Example: Building Strings
FizzBuzz does a nice job showing how you can use computation expressions 
to create your own sequence-like constructs with the For and Yield methods, 
but it’s not particularly practical for everyday computing. For a more useful 
example, we turn to a common programming task: combining strings.

It has long been established that constructing strings using a 
StringBuilder is usually more efficient than concatenation. StringBuilder’s 
fluent interface keeps the code fairly clean, as shown in the following 
snippet:

open System.Text

StringBuilder("The quick ")
  .Append("brown fox ")
  .Append("jumps over ")
  .Append("the lazy dog")
  .ToString()

Creating a StringBuider instance and chaining calls to the various 
Append methods doesn’t really fit into the functional-first paradigm, how-
ever. The Printf module tries to address this disconnect through the 
bprintf function, which formats a string and appends it to a StringBuilder 
instance as shown here:

let sb = System.Text.StringBuilder()
Printf.bprintf sb "The quick "
Printf.bprintf sb "brown fox "
Printf.bprintf sb "jumps over "
Printf.bprintf sb "the lazy dog"
sb.ToString() |> printfn "%s"
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All bprintf really accomplishes, though, is replacing an instance 
method call with a call to a function that accepts a StringBuilder as 
an argument. What’s more, you still have to manage the StringBuilder 
instance and pass it to each bprintf call. With a computation expression, 
not only can you make string construction look like a natural part of the 
F# language, you can also abstract away the StringBuilder! The computa-
tion expression we’ll define shortly will allow us to compose strings using 
the following syntax:

buildstring {
  yield "The quick "
  yield "brown fox "
  yield "jumps over "
  yield "the lazy dog" }

Here, we chain together a number of strings by yielding them within a 
buildstring expression. To make this magic happen, we first need to define 
the underlying type for the expression. For convenience we’ll use a discrimi-
nated union called StringFragment to track all of the strings as we yield them. 
The StringFragment type is defined as follows:

open System.Text

type StringFragment =
| uEmpty
| vFragment of string
| wConcat of StringFragment * StringFragment
  override x.ToString() =
    let rec flatten frag (sb : StringBuilder) =
      match frag with
      | Empty -> sb
      | Fragment(s) -> sb.Append(s)
      | Concat(s1, s2) -> sb |> flatten s1 |> flatten s2
    (StringBuilder() |> flatten x).ToString()

The StringFragment union has three cases, Empty u, Fragment v, and 
Concat w. The Empty case represents empty strings, while the String case 
contains a single string. The final case, Concat, forms a hierarchy of 
StringFragment instances that will eventually be joined together through 
the ToString method. The beauty of this type is that once the builder 
is in place, you never have to manually manage these instances or the 
StringBuilder.

The builder class, which we’ll call StringFragmentBuilder, is similar to the 
FizzBuzzBuilder, but instead of creating sequences it creates StringFragments. 
We already know based on the earlier syntax that we’ll be using the yield 
keyword, so we’ll need to provide a Yield method. To yield multiple items, 
we’ll need to implement the Combine and Delay methods as well. It would be 
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nice to allow nested expressions, too, so we’ll implement a YieldFrom method. 
Here is the StringFragmentBuilder class in its entirety along with the instance 
used with buildString expressions:

type StringFragmentBuilder() =
  member x.Zero() = Empty
  member x.Yield(v) = Fragment(v)
  member x.YieldFrom(v) = v
  member x.Combine(l, r) = Concat(l, r)
  member x.Delay(f) = f()
  member x.For(s, f) =
    Seq.map f s
    |> Seq.reduce (fun l r -> x.Combine(l, r))

let buildstring = StringFragmentBuilder()

The StringFragmentBuilder class is considerably simpler than 
FizzBuzzSequenceBuilder because it’s concerned only with mapping 
strings to StringFragments and controlling execution. Let’s look at each 
method individually to understand how it’s used within the context of 
the computation expression.

The first method, Zero, returns a default value for the expression. In 
this case, we return Empty to indicate an empty string. During the desugar-
ing process, a call to Zero will be inserted automatically in scenarios such as 
the expression returning unit, or a nested if expression not including an 
else branch.

The Yield method enables the yield keyword within the buildstring 
expression. In this implementation, Yield accepts a string, which it wraps 
in a new Fragment instance.

The YieldFrom method allows you to evaluate a nested buildstring expres-
sion through the yield! keyword. This method is similar to Yield, but instead 
of returning a new StringFragment, it returns the one created by the nested 
expression.

Each yield or yield! in the computation expression represents the end 
of a portion of the expression, so we need a way to merge them all together. 
For that we turn to the Combine method, which essentially treats the remain-
der of the expression as a continuation. Combine takes two StringFragments 
and wraps them each within a Concat instance.

combine, e x pose d

I think it’s easier to understand the Combine method’s role by looking at the 
desugared form. Say you’re writing a buildstring expression that combines 
"A" and "B" into a single string like this:

buildstring {
  yield "A"
  yield "B" }
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The next method in the StringFragmentBuilder class, Delay, controls when 
the computation expression is evaluated. When a computation expression 
has multiple parts, the compiler requires you to define Delay to avoid pre-
maturely evaluating expressions that contain side effects and control execu-
tion as expressions are combined. Many of the method calls are wrapped 
in a function that’s passed to Delay, so that those portions of the expres-
sion won’t be evaluated until Delay is invoked. More specifically, the entire 
expression is wrapped in one Delay call, as are the calls that compute the 
second argument to each Combine call. The desugared form looks a bit like 
this (simplified for clarity):

buildstring.Delay(
  fun () -> 
    buildstring.Combine(
      buildstring.Yield("A"),
      buildstring.Delay(
        fun () ->
          buildstring.Combine(
            buildstring.Yield("B"),

The corresponding desugared form of this expression would look very 
much like this:

buildstring.Combine(
  buildstring.Yield("A"),
  buildstring.Yield("B"))

For clarity, I simplified the desugared form to just the parts essential for 
understanding the process. Here, the first call to Yield returns Fragment("A") and 
the second returns Fragment("B"). The Combine method takes both of these and 
produces the following:

Concat (Fragment "A", Fragment "B")

Combine is called for every yield after the first. If our hypothetical example 
were extended to also yield "C", then the desugared form would then resemble 
this simplified code:

buildstring.Combine(
  buildstring.Yield("A"),
  buildstring.Combine(
    buildstring.Yield("B"),
    buildstring.Yield("C")))

The resulting StringFragment should then be: 

Concat (Fragment "A", Concat (Fragment "B", Fragment "C"))
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            buildstring.Delay(
              fun () ->
                buildstring.Yield("C"))))))

Finally, the For method allows us to use for loops within a buildstring 
expression. Unlike the FizzBuzz implementation, however, this version 
employs the Map/Reduce pattern to map the supplied sequence values 
to individual StringFragment instances and then reduce them into a single 
StringFragment instance through the Combine method. This flattened instance 
can then be used in conjunction with other instances.

Now that you’ve seen the builder class and understand how the 
methods work together through the desugaring process, let’s look at an 
example that exercises the entire chain. For this, we can use buildstring 
expressions to build the lyrics to a popular children’s song about a farmer 
and his dog, Bingo. The song’s simple lyrics and its repetitive nature make 
it easy to represent programmatically, like this:

let bingo() =
  let buildNamePhrase fullName =
    buildstring {
      yield "And "
      yield fullName
      yield " was his name-o\n"
    }
  let buildClapAndSpellPhrases maxChars chars =
    let clapCount = maxChars - (List.length chars)
    let spellPart =
      List.init clapCount (fun _ -> "*clap*") @ chars
      |> Seq.ofList
      |> String.concat "-"
    buildstring {
      for i in 1..3 do yield spellPart
                       yield "\n" }
  let rec buildVerse fullName (chars : string list) =
    buildstring {
      yield "There was a farmer who had a dog,\n"
      yield! buildNamePhrase fullName
      yield! buildClapAndSpellPhrases fullName.Length chars
      yield! buildNamePhrase fullName
      match chars with
      | [] -> ()
      | _::nextChars -> yield "\n"
                        yield! buildVerse fullName nextChars
    }
  let name = "Bingo"
  let letters = [ for c in name.ToUpper() -> c.ToString() ]
  buildVerse name letters

Nested within the bingo function are three functions: buildNamePhrase, 
buildClapAndSpellPhrases, and buildVerse. Each of these functions constructs 
a StringFragment through a buildstring expression. At the end of each verse, 
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the buildstring expression includes a match expression to determine whether 
it should end with the Zero value (implied by returning unit) or recursively 
include another fully constructed verse via the yield! keyword.

Evaluating the preceding snippet should print the following string 
(remember, the %O token formats the corresponding argument by calling 
its ToString method):

> bingo() |> printfn "%O";;
There was a farmer who had a dog,
And Bingo was his name-o!
B-I-N-G-O
B-I-N-G-O
B-I-N-G-O
And Bingo was his name-o!

There was a farmer who had a dog,
And Bingo was his name-o!
*clap*-I-N-G-O
*clap*-I-N-G-O
*clap*-I-N-G-O
And Bingo was his name-o!

There was a farmer who had a dog,
And Bingo was his name-o!
*clap*-*clap*-N-G-O
*clap*-*clap*-N-G-O
*clap*-*clap*-N-G-O
And Bingo was his name-o!
-- snip --

Summary
Computation expressions play an important role within F#. Out of the box, 
they make creating sequences, querying data from disparate data sources, 
and managing asynchronous operations appear to be a native part of the 
language by reusing familiar language elements. They’re also fully exten-
sible, so you can define your own computation expressions by creating a 
builder class that constructs an instance of an underlying type. Creating 
custom computation expressions can be a tricky endeavor, but once you 
understand the purpose of each builder class method and the desugaring 
process, the result can be cleaner, more descriptive code. 

It can be difficult to find good information about computation 
expressions, but there are a few resources you can use for further study. 
First, the computation expressions series at F# for Fun and Profit (http://
fsharpforfunandprofit.com/series/computation-expressions.htm) has plenty of 
examples covering the range of builder methods. For some more real-
world examples, check out the ExtCore project on GitHub (https://github 
.com/jack-pappas/ExtCore/), which contains several practical applications 
for computation expressions, such as a lazy list implementation.

http://fsharpforfunandprofit.com/series/computation-expressions.html
http://fsharpforfunandprofit.com/series/computation-expressions.html
https://github.com/jack-pappas/ExtCore/
https://github.com/jack-pappas/ExtCore/
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Symbols
(|...|) (active patterns), 173–174
[|...|] (array expressions), 142
<- operator (assignment), 29, 71, 120
* (asterisk)

multiplication operator, 35
tuple delimiter, 113

@ (at)
list concatenation operator, 

151–152
verbatim string prefix, 38

<< operator (backward function 
composition), 108, 109

<| operator (backward pipelining), 108
&&& operator (bitwise AND), 35
^^^ operator (bitwise exclusive OR), 35
<<< operator (bitwise left shift), 35
~~~ operator (bitwise negation), 35
||| operator (bitwise OR), 35
>>> operator (bitwise right shift), 35
(*...*) (block comments), 60
&& operator (Boolean AND), 34
|| operator (Boolean OR), 34
:: operator (cons), 151
- (dash)

set difference operator, 154
subtraction operator, 35
unary negative operator, 35

/ operator (division), 35
:?> operator (dynamic cast), 83
// (end-of-line comments), 60
= operator (equality), 35, 36
** operator (exponent), 35
>> operator (forward function 

composition), 108, 109
|> operator (forward pipelining), 42, 

79, 107, 108

;; (FSI expression terminator), 14
> operator (greater than), 35
>= operator (greater than or 

equal to), 35
<> operator (inequality), 35
< operator (less than), 35
<= operator (less than or equal to), 35
#light directive, 6
% operator (modulus), 35
?? operator (null coalescing, C#), 42
? (optional parameter prefix), 41, 75
+ (plus)

addition operator, 35
set union operator, 153
string concatenation operator, 38
unary positive operator, 35

~ (prefix operator), 94
``...`` (quoted identifier delimiter), 33
.. operator (range expression), 135–136
:= operator (reference cell 

assignment), 30
! operator (reference cell 

dereferencing), 30
-> (right arrow)

function value, 105, 112
sequence expressions, 135

- (set difference operator), 154
[...] (square brackets)

indexed properties, 71
list expressions, 149

^ (statically resolved type parameters), 
49, 52

:> operator (static cast), 82
^ operator (string concatenation, 

ML style), 38
<@...@> (strongly typed quoted literal), 

190, 194
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() (unit value), 42
| (vertical bar)

pattern matching delimiter, 11, 160
union case delimiter, 127

<@@...@@> (weakly typed quoted literal), 
190, 193, 194

_ (Wildcard patterns), 115
/// (XML comment), 60–61

A
abstract

classes, 84–86
keyword, 85
members

methods, 86
properties, 85–86

AbstractClassAttribute, 85
access modifiers, 66

internal, 66, 70
private, 66, 69, 70
protected, 66
public, 66, 70

accessor (property), 69
Action (delegate), 105
active patterns ((|...|))

defined, 173–174
parameterized, 176
partial, 174–175

active recognizer functions, 173
add function (Event module), 78
additional constructors, 66–67
addition operator (+), 35
agent-based programming, 250–255

counting queued messages, 252
receiving messages, 251
replying to messages, 252–253
scanning messages, 251–252
sending messages, 251
starting agents, 251

Agent<'T> type alias. See 
MailboxProcessor<'T> class

AggregateException class, 240, 241
Flatten method, 241
Handle method, 240, 241
InnerExceptions property, 240, 241

all operator (query expressions), 215
AllowNullLiteralAttribute, 41
and keyword, 111

mutually recursive functions, 111
mutual recursion, 91
property accessors, 70

AND patterns, 171–172
antecedents, defined, 237
Apache 2.0 license, 2
ArgumentException, 56
arguments, named, 74
array

expressions, 142–143
keyword, 143 

Array2D module, 147
array2D operator, 147
Array3D module, 147
ArrayList class, 49, 133–134
Array module

copy function, 145
empty function, 143
get function, 145
init function, 144
set function, 145
sortInPlaceBy function, 146
sortInPlace function, 145–146
sortInPlaceWith function, 146
zeroCreate function, 144

Array patterns, 168
arrays, 133, 142–149

accessing elements, 144–145
copying, 145
defined, 142
empty, 143
initializing, 144
jagged, 148–149
multidimensional, 147–148
slicing, 145, 149
sorting, 145–147

as keyword (self-identifiers), 67–68
As patterns, 171
assignment operator (<-), 29, 71, 120
Async class

AwaitTask method, 248–249
CancelDefaultToken method, 245–246
Catch method, 247–248
Parallel method, 245
RunSynchronously method, 

243–245, 248
StartAsTask method, 248–249
StartImmediate method, 243
Start method, 243–244, 

246–247, 249
StartWithContinuations method, 

243, 244
TryCancelled method, 246

asynchronous programming model, 230
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asynchronous workflows, 241–250
cancelling, 245–247
defined, 241
exception handling, 247–248
let! keyword, 242, 249, 250
return! keyword, 242, 249–250
with TPL, 248–250
use! keyword, 242

async modifier (C#), 249
AsyncReplyChannel<'T> class, 252–255
Async<'T> class, 242
automatic generalization, generics, 49
automatic properties, 70–71
AutoOpenAttribute (modules), 8
averageByNullable operator (query 

expressions), 214
averageBy operator (query 

expressions), 213
await operator (C#), 249

B
backward function composition 

operator (<<), 108, 109
backward pipelining

defined, 108
operator (<|), 108

banana clips, 173
base implementations, calling, 84
base keyword (inheritance), 84
bigint data type, 35
bindings

do, 33
let, 28
use, 30

Bind method (computation 
expressions), 259

bitwise operators
AND (&&&), 35
left shift (<<<), 35
negation (~~~), 35
OR, exclusive (^^^), 35
OR, non-exclusive (|||), 35
right shift (>>>), 35

block comments ((*...*)), 60
Boolean

data type, 34
operators

AND (&&), 34
OR (||), 34

values, 34
branching, 47–48

building strings example (computation 
expressions), 264–269

byte data type, 34

C
Call active pattern, 196
callbacks, defined, 237
CancellationTokenSource class, 234, 239, 

246–247
casting, 82–83
char data type, 37
Choice union type, 248
classes, 64–80
CLIEventAttribute, 77, 80, 189
CLIMutableAttribute, 121
closures, 29, 112
code quotation. See quoted expressions
collections, enumerable, 134
collection types, converting between, 

157–158
Combine method (computation 

expressions), 260, 262, 263, 
266–267

CommandLineArgs property, 22
comments, 59–61

block, 60
end-of-line, 60
XML, 60–61

computation expressions
anatomy of, 258–260
builder classes, 258–259
computation type, 258
defined, 257–258
desugaring, 259

concat function (string extension), 38
conditional compilation, 21, 22
Console class

Write method, 58
WriteLine method, 58

cons operator (::), 151
Cons patterns, 169
Constant patterns, 164
constraints, generics, 50
constructors, 64–68

additional, 66–67
default, 64
primary, 65–66
self-identifiers in, 67–68

contains operator (query 
expressions), 214

continuations, defined, 237–239
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conversions, numeric, 36
count operator (query expressions), 213
currying, 106–109
custom exceptions, 56–58

D
data parallelism, 230, 231–234
data types, built-in

bigint, 35
Boolean, 34
byte, 34
double, 34
float, 34
float32, 35
int, 34
int8, 34
int16, 34
int32, 34
int64, 34
nativeint, 35
sbyte, 34
single, 35
string, 37
uint, 34
uint16, 34
uint32, 34
uint64, 34
unativeint, 35
unit, 42, 104

decimal data type, 34
defaultArg function, 41–42, 75
default constructor, 64
default indexed property, 71–72
default keyword (inheritance), 87
DefaultValueAttribute, 67–69
Delay method (computation 

expressions), 260, 262, 
263, 267

DerivedPatterns module (quoted 
expressions), 194

discriminated unions, 41, 47, 122–130
additional members, 129–130
defined, 122
as object hierarchies, 124–126
self-referencing, 126
single case, 127
as tree structures, 126–127
as type abbreviations, 127–129

distinct operator (query 
expressions), 206

division operator (/), 35

do! keyword (computation 
expressions), 259

do bindings, 33
double data type, 34
downcasting, 83
downto keyword (simple for loops), 46
dynamic cast operator (:?>), 83
Dynamic Type-Test patterns, 170

E
eager evaluation, 130
elif keyword, 47–48
end-of-line comments (//), 60
entry point, 9
EntryPointAttribute, 9
enumerable collections, 134
Enumerable.Range method, 136
enumerations, 43–45

changing base type, 43
defined, 43
FlagsAttribute, 43–45
reconstructing

enum function , 45
EnumOfValue function, 45

equality operator (=), 35, 36
escape sequences, 37
Event module, 78, 80

add function, 78
filter function, 78
map function, 80
pairwise function, 78
partition function, 78

events, 77–80
custom, 79–80
observing, 78–79

Event<'T> class, 77
Publish property, 79
Trigger function, 79

exactlyOne operator (query 
expressions), 208

exactlyOneOrDefault operator (query 
expressions), 208

Exception class, 53, 56
exception keyword, 56
exceptions, 53

custom, 56–58
handling, 53–55
raising, 55–56
reraising, 54
try...finally, 55

exists operator (query expressions), 
213, 215
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exn type abbreviation, 53
explicit properties, 69–70
exponent operator (**), 35
expressions, 8–9
expression trees, 187, 188–190
Expr<'T> type, 190
Expr type, 190, 191, 192, 194
ExtCore project, 269
ExtensionAttribute, 100, 105
extension methods (C# and Visual 

Basic), 99

F
F# for Fun and Profit, 269
F# Interactive

defined, 13
directives

#help, 16
#I, 17, 21
#load, 16–17, 21
#quit, 16
#r, 17, 21
#time, 17–18

expression terminator (;;), 14
fsi.exe, 13
it identifier, 15
options

--, 22
--define, 21
--exec, 22
-I, 21
--lib, 21
--load, 20–21
--optimize, 23
--quiet, 22–23
-r, 21
--reference, 21
--tailcalls, 23
--use, 21
in Visual Studio, 20

reset interactive session, 16
timing, 17
val (output), 15
Visual Studio window, 13–14

F# Software Foundation, 2
Factory pattern, 90
FailureException, 56
failwithf function, 56
failwith function, 56
fields, 68–69

explicit, 68–69
let bindings, 68

file extensions
.fs, 18
.fsx, 18

FileNotFoundException, 54
filter function (Event module), 78
find operator (query expressions), 208
FizzBuzz example

active patterns, 173-174
computation expressions, 261–264
partial active patterns, 174–175

FlagAttribute enumerations, 43–45
flexible types, 52
float32 data type, 35
float data type, 34
flow control, 45–48

for loops, 46–47
if...then expressions, 47–48
while loops, 46

foreach loop (C#), 46
for loops, 46–47
For method (computation expressions), 

259, 263
forward function composition operator 

(>>), 108, 109
forward pipelining, 107–108
forward pipelining operator (|>), 42, 

79, 107, 108
FSharpFunc (delegate), 105, 112
FSharpFuncUtil class, 105
FSharpList<'T> class, 149
.fs files, 18
FSI. See F# Interactive
fsi.exe, 13
fst function, 114
.fsx files, 18
Func (delegate), 105
function

composition, 108–109
expressions, 78, 112
keyword, 161
values, 105

functional purity, 27–28
functions, higher-order, 105

G
generic measures, 184
generics

constraints, 50–52
comparison, 52
default constructor, 51
defined, 50
delegate, 51
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generics: constraints (continued)
enumeration, 51
equality, 52
member, 51
nullness, 50
reference type, 51
subtype, 50
unmanaged, 51
value type, 51

defined, 48
generalization

automatic, 49
explicit, 50

type parameters, statically resolved, 
49, 52

Wildcard pattern, 52
GetCommandLineArgs method, 22
GetEnumerator method, 134
GetSlice method, 76–77
global keyword (namespaces), 7
greater than operator (>), 35
greater than or equal to operator 

(>=), 35
groupBy operator (query expressions), 

210–211
groupJoin operator (query expressions), 

216–217
groupValBy operator (query 

expressions), 211

H
handling exceptions, 53–55
HasFlag method (System.Enum), 44–45
Hashtable class, 134
head operator (query expressions), 207
headOrDefault operator (query 

expressions), 207
higher-order functions, 105

I
IComparable<'T> interface, 139
Identifier patterns, 128, 129, 163, 

164–165
identifiers, quoted, 33
IDisposable interface, 30, 92, 93
IEnumerable interface, 134
IEnumerable<'T> interface, 46, 134, 149
if...then expressions, 47–48
ignore function, 42
immutability, 26–28
implicit properties, 70–71

indexed properties
one-dimensional, 71
multidimensional, 72

inequality operator (<>), 35
inheritance, 81–88
inherit keyword, 82, 94
initializing properties, 72–73
instance methods, 73
int8 data type, 34
int16 data type, 34
Int32 active pattern, 196
int32 data type, 34
int64 data type, 34
int data type, 34
interface keyword, 93
interfaces, 91–94

defining, 93–94
implementing, 92–93
inheritance, 94
marker, 93

internal access modifier, 66, 70
International System of Units, 178
invalidArg function, 56
InvalidCastException, 83
IStructuralEquatable interface, 115
Item property (indexed properties), 71
it identifier (F# Interactive), 15

J
join operator (query expressions), 216

L
lambda expressions, 78, 112
LanguagePrimitives module, 180
last operator (query expressions), 207
lastOrDefaultOperator (query 

expressions), 207
lazy evaluation, 130–131
lazy keyword, 130
Lazy<'T> class, 130
less than operator (<), 35
less than or equal to operator (<=), 35
let! keyword

asynchronous workflows, 242
computation expressions, 259

let keyword, 28
license, Apache 2.0, 2
lightweight syntax, 6
LINQ, 49, 76, 99, 104, 187, 201
list comprehensions. See sequence 

expressions
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list concatenation operator (@), 151–152
List module

append function, 152
concat function, 152
contains function, 151
empty function, 150
exists function, 151
head function, 150
nth function, 150
tail function, 150

List patterns, 168–169
lists, 149–152

accessing elements, 150
combining, 151–152
creating, 149–150
defined, 149
head, 150
tail, 150

List<'T> class, 49, 134, 149
LiteralAttribute, 28, 164, 165
Literal patterns, 165
literals, 28
locking, 232
loops, 45–47

for, enumerable, 46
for, simple, 46
while, 46

M
MailboxProcessor<'T> class, 250

CurrentQueueLength property, 252
PostAndReply method, 253
Post method, 251, 252
Receive method, 251, 252
Reply method, 253
Scan method, 251
Start method, 250–251

main method. See entry point
map function (Event module), 80
Map<'Key, 'Value> class, 155
Map module

containsKey function, 156
find function, 156
findKey function, 157
tryFind function, 157
tryFindKey function, 157

maps, 155–157
creating, 156
defined, 155
finding keys, 157
finding values, 156–157

marker interfaces, 93

Mars Climate Orbiter, 177
match expressions, 127, 159–162

defined, 159–160
exhaustive matching, 162–163
guard clauses, 160–161
pattern matching functions, 

161–162
MatchFailureException, 162
maxByNullable operator (query 

expressions), 214
maxBy operator (query expressions), 213
MeasureAttribute, 178
measures. See units of measure
member keyword, 69, 73
member val keyword pair (implicit 

properties), 70
metaprogramming, 187
method accessibility, 73–74
methods, 73–77

instance, 73
overloaded, 75

minByNullable operator (query 
expressions), 214

minBy operator (query expressions), 213
ML programming language, 1
modules, 7–8

declaring, 7
defined, 7
local, 7
opening, 8
top-level, 7

modulus operator (%), 35
monads, 257. See also computation 

expressions
multiplication operator (*), 35
mutability, 29
mutable bindings, 29
mutable keyword, 29, 120, 121
mutual recursion

between functions, 111
between types, 91

N
named arguments, 74
namespace keyword, 6
namespaces, 6–7

declaring, 6
global, 7
nesting, 6
opening, 7

nativeint data type, 35
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new keyword
additional constructors, 66
instance creation, 65
object expressions, 98, 99

not (Boolean operator), 34
nth operator (query expressions), 207
nullability, 41–42
nullable operators, 205–206
null keyword, 41
Null patterns, 165–166
numeric data types, 34–35

O
object expressions, 97–99
OCaml programming language, 1
of keyword (discriminated unions), 122
open keyword

modules, 8
namespaces, 7

OperationCanceledException, 233–234, 240
operators

custom, 94–97
global, 96–97
infix, 95–96
new, 96
overloading, 94
prefix, 94–95

optional parameters, 75
Option Infer (Visual Basic), 39
option keyword, 41
Option<'T> type, 41, 75, 122

defined, 122
introduced, 41
None, 41, 122–123
Some<'T>, 41, 122–123

optional parameter prefix (?), 41, 75
optional parameters, 41, 75
OR patterns, 172
out parameters, 116
overloading

methods, 75
operators, 94

Overridable modifier (Visual Basic), 87
override keyword (inheritance), 83–84
overriding members, 83–84

P
pairwise function (Event module), 78
Parallel class

ForEach method, 231
For method, 231–232, 233
Invoke method, 234–235

Parallel LINQ, 231
parallel loops

cancelling, 233–234
short-circuiting, 233

ParallelLoopState class, 233
Break method, 233
Stop method, 233

ParallelOptions class, 234
parallel programming, 230
parameters, optional, 75
partial active patterns, 174–175
partial application, 106
partition function (Event module), 78, 79
pattern matching

active patterns, 173–174
AND patterns, 171–172
Array patterns, 168
As patterns, 171
Cons patterns, 169
Constant patterns, 164
Dynamic Type-Test patterns, 170
and exception handling, 53–55
Identifier patterns, 128, 129, 163, 

164–165
List patterns, 168–169
Literal patterns, 165
Null patterns, 165–166
OR patterns, 172
parentheses, use of, 172–173
partial active patterns, 174–175
Record patterns, 167–168
Singleton pattern, 66
Tuple patterns, 114, 166–167
Type-Annotated patterns, 169–170
Union Case patterns, 164–165
Variable patterns, 163
Wildcard patterns, 115, 163

pattern matching delimiter (|), 11, 160
pattern-matching functions, 161–162
Pattern module (quoted 

expressions), 194
pipelining, 107–108

backward, 108
defined, 107
forward, 107–108
noncurried functions, 108

PLINQ, 231
potential parallelism, 231
prefix operator (~), 94
primary constructor, 65–66
printf function, 58
printfn function, 58
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private access modifier, 66, 69, 70
ProjectionParameterAttribute, 219–220
project templates, 2–4
properties, 69–73

automatic, 70–71
explicit, 69–70
implicit, 70–71
indexed

one-dimensional, 71
multidimensional, 72

initializing, 72–73
PropertyGet active pattern, 198
protected access modifier, 66
public access modifier, 66, 70
Publish property (events), 79
purity, functional, 27–28

Q
query expressions

aggregating data, 213–214
defined, 201–202
detecting items, 214–215
distinct values, 206
extending, 219–221
filtering data, 204–206
finding arbitrary items, 207–208
first or last item, 207
grouping, 210–211
joining data sources, 215–219
pagination, 211–213
projecting data, 203–204
sorting, 209–210

quoted expressions
creating through reflection, 191–192
decomposing, 194–199
defined, 187
manual composition, 192–193
quoted literals, 190–191
splicing, 194
strongly typed, 190
weakly typed, 190

quoted identifier delimiter (``...``), 33

R
raise function, 55, 56
raising exceptions, 55–56
range expression operator (..), 135, 136
range expressions, 135–136
read-evaluate-print loop (REPL), 13
readonly keyword (C#), 28

rec keyword (recursive functions), 109
record expressions

copy and update, 120
defined, 118
new records, 118–119

Record patterns, 167–168
record types, 118–122

additional members, 121–122
copying, 120
creating, 118–119
defined, 118
mutability, 120–121
naming conflicts, 119–120

recursion
defined, 109
tail-call, 110–111

reference cell assignment operator 
(:=), 30

reference cell dereferencing operator 
(!), 30

reference cells, 29-30
referential transparency, 104
ReflectedDefinitionAttribute, 191, 192, 194
ref operator, 29
REPL (read-evaulate-print loop), 13
reraise function, 54
ResizeArray<'T> type abbreviation, 149
ReturnFrom method (computation 

expressions), 259
return! keyword

asynchronous workflows, 242
computation expressions, 259

return keyword, 104 
Return method (computation 

expressions), 259
return values, 9–10
Run method (computation 

expressions), 260

S
sbyte data type, 34
scripting

command-line arguments, 22
with F# Interactive, 18–19

SealedAttribute, 87, 88
sealed classes, 87–88
Select Case statement (Visual Basic), 

127, 160
select operator (query expressions), 

203–204
self-identifiers in constructors, 67–68
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Seq module
averageBy function, 142
average function, 141
empty function, 136–137
filter function, 140
fold function, 140–141
isEmpty function, 138
iter function, 139
length property, 138
map function, 139
reduce function, 141
sortBy function, 140
sort function, 139
sumBy function, 142
sum function, 141

seq<'T> type abbreviation, 134
sequence expressions, 134–135

defined, 134
yielding results, 135

sequences, 46, 134–142
aggregating, 140–142
defined, 134
empty, 136–137
filtering, 140
initializing, 137
iterating over, 139
length of, 138–139
sorting, 139–140
transforming, 139

set difference operator (-), 154
Set module

difference function, 154
intersect function, 154
isProperSubset function, 154
isProperSuperset function, 154
isSubset function, 154
isSuperset function, 154
union function, 153

sets, 152–155
creating, 152–153
defined, 152
differences, 154
intersections, 154
subsets and supersets, 154
unions, 153

Set<'T> class, 153
set union operator (+), 153
ShapeCombination active pattern, 195, 196
ShapeLambda active pattern, 195, 196
ShapeVar active pattern, 195, 196
side effects, 26–27

single data type, 35
Singleton pattern, 66
SI units, 178
Skip extension method, 76
skip operator (query expressions), 211
skipWhile operator (query 

expressions), 211
slice expressions, 76–77, 145, 147–149
snd function, 114
sortByDescending operator (query 

expressions), 209
sortByNullableDescending operator (query 

expressions), 209
sortByNullable operator (query 

expressions), 209
sortBy operator (query expressions), 209
SpecificCall active pattern, 196
sprintf function, 58
statically resolved type parameters (^), 

49, 52
static cast operator (:>), 82
static class, 88
static keyword, 88, 89
static members

constructors, 88–89
fields, 89
initializers, 88–89
methods, 90–91
properties, 89–90

string concatenation operator (+), 38
string concatenation operator, ML style 

(^), 38
String class

Concat method, 38
Format method, 58
Join method, 38
Split method, 71

string data type, 37
strings, 37

concatenation, 38
formatting, 58
literal, 37
triple-quoted, 38
verbatim, 38

StructAttribute, 80
structs, 80–81
structures, 80–81
subtraction operator (-), 35
sumByNullable operator (query 

expressions), 214
sumBy operator (query expressions), 213
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switch statement (C#), 127, 160
symbols

COMPILED, 21
DEBUG, 21
INTERACTIVE, 21
RELEASE, 21

SyncLock statement (Visual Basic), 232
syntactic tuples, 115–116

T
tail-call recursion, 110–111
Take extension method, 76
take operator (query expressions), 

211–212
takeWhile operator (query 

expressions), 211
Task class

constructor, 235
ContinueWith method, 237, 238
Factory property, 235
Start method, 235
WaitAll method, 237
WaitAny method, 237

TaskFactory class, 235, 236, 238
ContinueWhenAll method, 238, 239
ContinueWhenAny method, 238, 239
StartNew method, 235
StartNew<'T> method, 236
Wait method, 236

task parallelism, 230–231, 234–241
Task Parallel Library (TPL), 

230–241, 249
tasks

cancelling, 239–240
continuations, 237–239
creating and starting, 234–235
exception handling, 240–241
returning values from, 235–236
waiting for completion, 236–237

Task<'T> class, 235, 236, 238
Task<'T>.Result property, 236
templates, project, 2–4
thenByDescending operator (query 

expressions), 210
thenByNullableDescending operator (query 

expressions), 210
thenByNullable operator (query 

expressions), 210
thenBy operator (query expressions), 210
then keyword, constructors, 67
timing (F# Interactive), 17

TPL (Task Parallel Library), 
230–241, 249

ToFSharpFunc method, 105
tokens, string formatting, 58
to keyword (simple for loops), 46
Trigger function (events), 79
triple-quoted strings, 38
try...finally expressions, 53, 55
TryFinally method (computation 

expressions), 259
TryGetReflectedDefinition method, 191
try...with expressions, 53
TryWith method (computation 

expressions), 259
tuple delimiter (*), 113
Tuple patterns, 114, 166–167
tuples, 113–114

for out parameters, 116–117
syntactic, 115–116

type abbreviations, 33, 59
Type-Annotated patterns, 169–170
type annotations

defined, 40
with units of measure, 181

type augmentations. See type 
extensions

type extensions, 99–100
intrinsic, 99
optional, 99

type functions, 137
type inference, 34, 39
type keyword, 59, 118, 123

classes, 64
interfaces, 93

type providers, 221–228
available providers, 222–223
defined, 221
security warning, 224

U
uint16 data type, 34
uint32 data type, 34
uint64 data type, 34
uint data type, 34
unary negative operator (-), 35
unary positive operator (+), 35
unativeint data type, 35
Unicode, 37
union case delimiter (|), 127
Union Case patterns, 164–165
unit data type, 42, 104
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unit value (()), 42
units of measure

applying, 179–180
conversions, 182–183
defined, 178
enforcing, 181
formulas, 178–179
generic, 184
measure annotations, 179–180
measure-aware types, 184–185
ranges, 182
stripping, 180–181

upcasting, 82–83
use bindings

defined, 30
within modules, 31

use! keyword
asynchronous workflows, 242
computation expressions, 259

use keyword
computation expressions, 259
defined, 30 

using directive (C#), 59
using function

C# implementation, 32
defined, 31

Using method (computation 
expressions), 259

using statement (C#), 30

V
val

F# Interactive, 15
keyword (explicit fields), 67, 68, 81

Value active pattern, 196, 198
value types, 81
Variable patterns, 163
variables, 27
var keyword (C#), 39
Var type, 190
verbatim string prefix (@), 38
verbatim strings, 38

verbose syntax, 6
virtual members, 84, 87
virtual modifier (C#), 87
void type (C#), 42

W
where operator (query expressions), 204
while loops, 46
While method (computation 

expressions), 259
whitespace, significance of, 5–6
Wildcard patterns (_)

exception handling, 53
generics, 52
defined, 115, 163

with keyword
object expressions, 98
property accessors, 70
type extensions, 100

workflows. See asynchronous workflows; 
computation expressions

X
XML comments (///), 60–61

Y
YieldFrom method (computation 

expressions), 259, 266
yield! keyword (computation 

expressions), 259, 266
yield keyword

computation expressions, 259
defined, 135

Yield method (computation 
expressions), 259, 261, 
263, 266

Z
Zero method (computation expressions), 

260, 266
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