
www.allitebooks.com

http://www.allitebooks.org

The Essential Guide to 3D
in Flash

Rob Bateman & Richard Olsson

www.allitebooks.com

http://www.allitebooks.org

ii

The Essential Guide to 3D in Flash

Copyright © 2010 by Rob Bateman & Richard Olsson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2541-6

ISBN-13 (electronic): 978-1-4302-2542-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-
sbm.com, or visit http://www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.

eBook versions and licenses are also available for most titles. For more information, reference our Special

Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution

has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or

indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer

questions pertaining to this book in order to successfully download the code.

Credits

Publisher and President:

Paul Manning

Lead Editor:

Ben Renow-Clarke

Technical Reviewer:

Gregory Caldwell

Editorial Board:

Clay Andres, Steve Anglin, Mark Beckner, Ewan

Buckingham, Gary Cornell, Jonathan Gennick, Jonathan

Hassell, Michelle Lowman, Matthew Moodie, Duncan

Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas

Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt

Wade, Tom Welsh

Coordinating Editor:

Anne Collett

Copy Editor:

Heather Lang

Compositor:

Bronkella Publishing LLC

Indexer:

Toma Mulligan

Artist:

April Milne

Cover Designer:

Anna Ishchenko

Cover Art and Turtle Model:

Peter Kapelyan

Suzanne Monkey Model:

www.blender.org

Skeleton Model:

www.geocities.jp/oirahakobito2/,

oirahakobito@yahoo.co.jp

www.allitebooks.com

http://www.allitebooks.org

 iii

Contents at a Glance

Contents at a Glance ... iii

Contents ... iv

About the Author .. x

About the Technical Reviewer ... xi

Acknowledgments ... xii

Introduction .. xiii

Chapter 1: Getting Started ... 1

Chapter 2: Creating Your First 3D Project.. 9

Chapter 3: The View, Scene, and Camera ... 19

Chapter 4: Primitives, Models, and Sprites... 47

Chapter 5: Materials, Lights, and Shading... 87

Chapter 6: Vector Shapes and Text in 3D .. 121

Chapter 7: Procedural 3D Content .. 147

Chapter 8: Interactivity ... 171

Chapter 9: Animation.. 193

Chapter 10: Optimizing Tips and Tricks... 217

Index ... 251

www.allitebooks.com

http://www.allitebooks.org

iv

Contents

Contents at a Glance ... iii

Contents ... iv

About the Author .. x

About the Technical Reviewer ... xi

Acknowledgments ... xii

Introduction .. xiii

Chapter 1: Getting Started ... 1

Getting the Away3D library .. 1

Setting up a project ..2

Using Adobe Flash CS4/CS5 ..2

Using Flash Builder ..3

Using FDT...5

Using FlashDevelop ...6

Open source workflow using the Flex SDK and Makefiles ..7

Summary .. 8

Chapter 2: Creating Your First 3D Project.. 9

Starting up the engine ... 9

Adding 3D objects to the scene .. 10

Understanding constructors and initialization objects ..12

Lighting the scene ... 12

Animating objects in 3D ... 14

Enabling interactivity in 3D... 15

Summary.. 15

Chapter 3: The View, Scene, and Camera ... 19

Understanding the basics ... 19

View ..19

www.allitebooks.com

http://www.allitebooks.org

 v

Scene..20

Camera ...20

Exploring the fundamentals of 3D .. 20

Working with coordinates in 3D space..21

The rendering process ...22

Setting up the chapter base class... 23

Creating and using the view ... 25

Centering the vanishing point ..26

Clipping the viewport..26

Managing the scene... 28

Adding and removing 3D objects ..29

Accessing 3D objects in the scene ...30

Working with nested 3D objects ..31

Moving, rotating, and scaling in 3D ...32

Using containers as pivots...34

Creating and using cameras ... 36

The Camera3D object ..37

The TargetCamera3D object ...42

The HoverCamera3D object ..43

Summary .. 46

Chapter 4: Primitives, Models, and Sprites... 47

Knowing the basic terminology.. 47

Vertices ...47

Faces and segments..48

Meshes and primitives ...48

Billboards and sprites...48

Setting up this chapter’s base class... 48

Understanding common primitives ... 50

The plane primitive ...51

Back-face culling ..52

The cube primitive ..52

vi

The sphere primitive...53

Understanding wire primitives and line segments .. 54

Wireframe primitives ..55

Combining wireframe and regular primitives ..56

Drawing irregular lines in space ..57

Using regular polygons ... 59

Working with external models ... 61

Workflow when loading a model..61

Optimizing external resources for size and speed .. 63

Converting a model to ActionScript ...64

Using the converted model ..65

Creating a library of models...66

Applying bitmap filter effects to 3D objects... 68

Using 3D sprites .. 69

Creating smoke using 3D sprites ..69

Tutorial: Creating a twisted image gallery.. 72

Laying out the application shell ...73

Creating the TV sets ..76

Loading the gallery image..79

Creating the menu items..79

Displaying the content..81

Adding movement and interactivity ...83

Summary .. 85

Chapter 5: Materials, Lights, and Shading... 87

Understanding Away3D materials .. 87

Using color and bitmap materials... 91

Working with wire materials... 95

Using lights and shading materials.. 97

Lighting in Away3D ..98

Creating and configuring light sources..100

Controlling the intensity of a light source ..100

Shading materials in Away3D..102

 vii

Using normal map shading ..106

Using environment shading ...113

Using animated and interactive materials .. 116

Using the MovieMaterial class...116

Using the VideoMaterial class ...118

Summary .. 119

Chapter 6: Vector Shapes and Text in 3D .. 121

Working with vector graphics... 121

Vector graphics vs. raster graphics...122

Creating lines and curves ..122

Using the Away3D drawing API ..123

Preparing the chapter base class ... 124

Drawing 3D vector shapes ... 126

Creating simple shapes with straight lines..126

Creating curved shapes ...128

Creating open-ended line segments ...129

Creating nonplaner shapes..130

Creating shapes with holes..131

Importing 3D vector shapes .. 132

Extracting vector shapes from an SWF file...132

Animating imported vector shapes..135

Importing 3D Text... 136

Extracting vector data from a font ...137

Extruding text..139

Warping text along a path ..140

Knowing the limitations of vector graphics in Away3D 144

Summary.. 145

Chapter 7: Procedural 3D Content .. 147

Preparing the chapter base class .. 147

Building a pyramid primitive.. 149

Starting with AbstractPrimitive...149

viii

Setting up the constructor..150

Adding public properties ..151

Building the Pyramid mesh..152

Mapping UV coordinates ...155

Using the extrusions tools .. 159

Creating a ribbon using the PathExtrusion class..159

Creating a vase with the LatheExtrusion class...161

Using mesh modifiers.. 163

Creating a terrain using the HeightMapModifier ...163

Summary .. 168

Chapter 8: Interactivity ... 171

Setting up the chapter base class.. 171

Interacting with 3D objects in a scene ... 174

Introducing the MouseEvent3D object ..175

Using MouseEvent3D’s scene coordinates ..177

Using MouseEvent3D’s UV coordinates ...179

First-person camera keyboard controls ... 182

Walking with the keyboard...183

Looking around by dragging the mouse..185

Summary .. 191

Chapter 9: Animation.. 193

The basics of scripted animation... 193

Using basic tweening... 195

Path tweening ... 197

Importing animation ... 202

Working with MD2 animations ...202

Working with COLLADA animations ...207

Creating programmatic animation with bones... 209

Defining an animation rig ...210

Bone tweening..210

Summary .. 214

 ix

Chapter 10: Optimizing Tips and Tricks... 217

Preparing the chapter base class .. 217

Optimizing geometry ... 219

Using level-of-detail objects...219

Culling and clipping polygons and meshes...223

Using models effectively ..228

Optimizing materials.. 232

Optimizing shading...233

Conserving material instances ..237

Exploring general best practice techniques .. 239

Switching between 3D coordinate systems ..239

Changing camera lenses ...245

Summary .. 249

Index ... 251

x

About the Author

Rob Bateman is a web developer and community leader who has been

involved in programming for over ten years. He specializes in content for the

Flash platform and has always held a particular interest in 3D on the Web. In

2007, he cofounded the Away3D engine with Alexander Zadorozhny and has

been leading the development of core features for the last two years.

Rob lives and works in London, UK where his production and consultancy

company Away Media Ltd. provides expert services in the field of browser-

based 3D content. A regular speaker on the international conference circuit, he

is an active member of the Flash community and hosts frequent training

programs teaching Away3D to web designers and developers.

His blog at www.infiniteturtles.co.uk provides further examples and musing on 3D in Flash, as well as

information on upcoming appearances, training courses, and new Away3D releases.

Richard Olsson is a Swedish freelance Flash developer based in the city of

Malmö and has been a member of the core Away3D development team since

the end of 2008. He found his interest in programming at the early age of 12,

writing BASIC on an old Commodore 64 that was passed on to him from a

relative who wanted something more modern. After a short detour to 3D

graphics, thinking he wanted to be a 3D modeler, he went back to

programming, exploring C/C++ and OpenGL before ending up working with the

Flash platform.

Richard is commissioned by several advertising agencies across Europe to

assist with Flash 3D application development and has worked with some of the

world’s largest brands. He is also a frequent Flash instructor and a contributor

to the Blender open source 3D suite.

On the Web, Richard himself, as well as his work and experiments, can be found at

www.richardolsson.se.

 xi

About the Technical Reviewer

Gregory Caldwell is a software developer with over 15 years’ experience

specializing in web development, and over the last three years, he has focused on

ActionScript and 3D graphics as part of the Away3D team. He lives in the UK and

has worked in a range of industries with various technologies, developing software

for online financial systems (using ASP.NET, C#, StoryServer) and real-time

command and control software (SCADA, PLC, DCS), as well as providing

bioinformatics analysis for the Human Genome Project. His web site

(www.geepers.co.uk) features his latest experiments in 3D graphics.

xii

Acknowledgments

Away3D is a non-commercial, open source project that relies on the free contributions of many designers

and developers from within the Flash community. We would, therefore, like to extend our gratitude and

admiration to everyone involved in the core development team. Your dedication and effort have made

Away3D what it is today, and your experimentation, exploration, and infectious enthusiasm continue to

drive development forward.

Another driving force has been the overwhelming support of the user base that has grown up around the

project. It is quite heartening to see what people are willing to give back to the project, so we would like to

thank all contributors who have helped out over the years filing bugs, offering patches, writing tutorials,

and answering technical queries, as well as the larger community for producing some of the coolest

looking web sites we’ve ever seen. The openness and collaborative atmosphere that you all encourage is

simply a joy to work with.

For the production of this book, special thanks go to a number of individuals for their assistance, including

Peter Kapelyan, Greg Caldwell, Jens Brynildsen, David Lenarts, and Alejandro Santander from the

Away3D core development team for their various contributions, Pavel and Edie from Syerit Interactive for

their modeling contributions, and Martin Jonasson for help with the setup instructions for FlashDevelop.

Thanks and respect must also go to Blender for the free use of its software as well as the monkey model

Suzanne, and to Powerflasher for its free FDT license program for open-source projects.

For acting as moral support and helping to coax this book into existence, we’d like to thank Caroline

Lindqvist for code sample ideas, Anna and Maria for not repeatedly asking how the book is coming along,

and Su for repeatedly asking how the book is coming along. The relief for completion will be mutual!

Finally, a special mention must go to the other cofounder of Away3D, Alexander Zarodozhny. His early

code contributions have not only offered many technical firsts for solving 3D Flash problems but also

provided a solid base on which to build—something invaluable in any code library. Although Alex is no

longer involved in the project directly, his high standards have set a precedent for all team members

working on today’s new features, and his work continues to provide many designers and developers with

the tools they need for creating unparalleled 3D Flash content.

Rob Bateman and Richard Olsson

 xiii

Introduction

3D on the Web has been something of a perennial pipe dream since the creation of the Internet. As far

back as 1994, talk of virtual realities and new ways of visualizing data in the 3D realm presupposed that

3D wasn’t just a different method of presentation but an ultimate inevitability for the Web. Around the

release of the first 3D web standard—VRML in 1998—the predictions and conjecture began to deflate, and

by 2001, it was painfully clear that the utopian dream of flying through Tron-like datascapes was not to be,

which was probably for the best.

Fast forward five years, and the early lessons of 3D on the Web had been well and truly learned, with

several standards and third-party plug-ins attempting to reignite interest along the way. The overriding

problem with many of these attempts related to the inherent compatibility problems associated with

hardware-accelerated graphics, which were necessary given the personal computing power available at

that time. These issues, combined with plug-in maintenance problems, sparse tool support, and counter-

productive architecture, sent web professionals everywhere running to the relative safety of 2D alternatives

such as HTML, JavaScript, and of course, Flash.

In late 2005, the first full-featured 3D engine for Flash came into being. Called Sandy, it was written in

ActionScript 2.0, the available scripting language for Flash at the time. Because of the interpreted nature of

ActionScript 2.0 and the somewhat limited capabilities of the graphics renderer in the Flash Player, the 3D

output achievable with Sandy was quite basic and generally limited to simple scaling billboards (their use

was known as the “postcards in space” approach to 3D). However, the release of Sandy represented the

genesis point for real-time 3D in Flash, and the library’s open source approach set the standard for future

engines.

Following Sandy in late 2006, another open source library called Papervision3D was released for the Flash

Player, this time turning the whole sad history of 3D web content on its head. It differed from Sandy in two

fundamental ways: it provided a simpler approach to creating 3D content, and it was written in the much

more powerful ActionScript 3.0 language, introduced in version 9 of the Flash Player. At this point,

consensus began to swing in Flash’s favor, with many people beginning to concede that the most

important aspect of any 3D web format wasn’t how many polygons it churned out but how accessible it

was to both creators and audience.

Flash being the king of interactive content meant that, for the first time, production and use of 3D content

was being handled from the point of view of interactive web professionals rather than 3D professionals.

This shift, coupled with the immense ubiquity of the Flash Player, delivered a killer punch—the world of 3D

web sites literally exploded. Designers and developers were happy to experiment with the easily

implemented framework, and audiences were charmed by the new look now possible for web content.

Papervision3D was a triumph of accessibility over standards; it quickly became the dominant 3D format on

the Web and left the surrounding world of browser-based 3D with a lot of catching up to do.

Away3D began its life as a branch of the Papervision3D engine in 2007 but quickly began evolving in a

direction intended for stability and ease of use. While Papervision3D had set the benchmark in terms of

interactive potential, it was lacking what every other format requires in order to promote longevity—a

standardized approach to content that promotes learning and aids future development. Over the ensuing

months and years, Away3D provided one of the most consistent upgrade paths of any 3D engine for

Flash, with its open source license allowing anyone to contribute a bug fix or feature enhancement.

xiv

As a testament to the success of Flash-based 3D, Adobe enhanced the 3D potential of Flash in their 2008

release of Flash Player 10 by including some 3D-specific features, with many of these intended for use by

3D engines. This move retained the accessible nature of 3D in Flash for web professionals, while moving

Flash in a direction more suited to 3D production and more familiar to traditional 3D designers and

developers.

The approach Away3D offers to the creation of web content should be familiar to anyone working from

within the Flash realm. The entire library is constructed using the object-oriented approach enabled by

ActionScript 3.0, with the arrangement of 3D objects, containers, and scenes matching the arrangement of

Flash’s native 2D objects in the display list. Classes are defined as sections of code with specific form and

function, and these, in turn, are grouped into packages that hold different varieties of class type. As an

example, the code used to construct a 3D cube is held within its own Cube class, and this is stored with

other geometric shape definitions inside a package called primitives. The same is true for classes that

define different types of camera, material, importer, animation, and so on. This organization helps simplify

the learning process for anyone new to the engine, and it offers flexibility when extending the engine’s

capabilities by clarifying the points at which additions can be made. Extensibility is an extremely useful

asset to any open source project, helping to drive contributions and ultimately accelerating the

development of new features.

These days, a basic approach to 3D using perspective-projected display objects (which are known as 2.5D

objects) is offered with the standard tools available in Flash Professional. This technique is great for

creating simple “postcards in space” interfaces, but it has limited potential for any other type of 3D content.

A 3D engine provides the necessary tools and interfaces to create a truly 3D experience, and Away3D

offers one of the most powerful and easy-to-use frameworks around. As well as being free, open source

software, Away3D has an active community providing free technical help to individuals via the official

website, www.away3d.com, where you will also find regularly published tutorials, demos and showcases.

This book has been created as an Away3D primer for everyone wishing to expand their Flash knowledge

into the third dimension, or for that matter, everyone wishing to expand their 3D knowledge into the Flash

dimension. We hope you enjoy the ride!

Layout conventions

To keep this book as clear and easy to follow as possible, the following text conventions are used

throughout.

Important words or concepts are normally highlighted on the first appearance in bold type.

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font .

Pseudo-code and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.

Where we want to draw your attention to something, We’ve highlighted it like this:

Ahem, don’t say I didn’t warn you.

Sometimes code won’t fit on a single line in a book. Where this happens, we use an arrow like this: ➥.

This is a very, very long section of code that should be written all on the same ➥
line without a break.

1

Chapter 1

Getting Started

Before the power of Away3D can be harnessed in a Flash project, the developer environment needs to be

set up correctly. The exact setup procedure may vary based on your own workflows, but two steps are

always present: obtaining the source code, then setting up your integrated development environment (IDE)

for use with Away3D.

For the source code, decide whether you want to obtain the latest trunk version from the Google Code

Subversion (SVN) repository, or download a release version ZIP file from www.away3d.com.

We will cover all of the major development environments in this chapter, so it’s best to follow the setup

relevant to your editor of choice and then move on to the next chapter, which describes how to build your

first 3D scene in Flash.

Getting the Away3D library

Away3D is a source code library, consisting of 400 or so ActionScript 3.0 source files. These work just like

the source files you would typically write yourself (except in this case you don't have to), and they need to

be included in your project in much the same way.

The library source code is available to download in two different ways, and the method you choose

depends on your experience and requirements. On one hand, the latest official release of the source is

available as a simple ZIP archive. You can find this download by browsing to the Downloads section of

www.away3d.com. However, to get the latest ongoing experimental features and bug fixes, you must check

out the source code from the project's SVN repository. SVN is a version control system that makes it

easier to keep your Away3D source code up to date. This download method is recommended if you want

to take advantage of the latest fixes and new features being produced by the Away3D Team.

The working code repository for the Away3D project is hosted at Google Code and can be checked out like

any other Google Code project. The project homepage at http://code.google.com/p/away3d describes the

general process of obtaining the source using an SVN client. The step-by-step process varies slightly

CHAPTER 1

2

between operating systems and developer environments. Flash Builder and FDT (code editors for both

Mac and Windows) both offer SVN client functionality through plug-ins, while other editors might not. If

your editor of choice doesn’t offer a built-in SVN client, TortoiseSVN for Windows and SyncroSVN or

Versions for Mac OS X are good alternatives.

When downloading the Away3D library, it is important to choose the correct source files for your needs.

There are currently two versions, one for use with Flash Player 9 and the other with Flash Player 10.

Before downloading anything, you need to make a decision about the version of Flash you will be using.

The minor differences in terms of functionality between the two libraries may impact your decision, but

attempting to compile Away3D source code for the wrong player will result in compile time errors. The ZIP

file download has two clearly labeled links, one for Flash 9 and the other for Flash 10. When downloading

from the SVN repository, there are two directories to choose from in the trunk: fp9 and fp10.

Regardless of which SVN client you use, please refer to its manual for how to use the checkout URL

supplied on the Google Code project page to retrieve the project source files. If you’re not familiar with

SVN and code repositories, you should stick with the release download from www.away3d.com. Once

you’re feeling more confident, it’s a simple matter to switch to the latest SVN release if you want to try that.

Setting up a project

After the source files have been downloaded onto your hard drive, you need to set up your tool chain to

work with Away3D. The general idea is to make the tools aware of where the Away3D library files are

located, but the exact procedure differs from editor to editor.

Using Adobe Flash CS4/CS5

The Adobe Flash Professional IDE is very simple in the sense that it has no real concept of projects or

linking between projects. Hence, setting up a project for use with Away3D consists of telling the IDE where

the Away3D source folder is located on the file system by including it in the class path list. When

publishing a SWF from Flash CS4, the directory that the FLA file is located in is used as the default class

path. By simply putting the contents of the src folder from the Away3D distribution files in the same

directory, the library will be made available for use in Flash.

An arguably better setup is to download the library, place it in a sensible location somewhere on your hard

drive, and add that directory to the Flash class path list. Using this approach, the same installation of

Away3D will be made available to all your Flash CS4/CS5 projects, now and in the future.

From the Flash Preferences pane, select ActionScript in the list and open the ActionScript 3.0 Settings

(see Figure 1-1.) Click the folder icon in the Source Path section, and browse to the folder named src in

the Away3D distribution. Away3D will now be available to all Flash projects you create.

GETTING STARTED

3

Figure 1-1. Adding Away3D to the source path in Flash CS4/CS5

Using Flash Builder

Adobe Flex Builder is more aimed at developers than its sister product Flash Professional. As is typical for

a tool of this kind, it promotes order and control but has a slightly steeper learning curve.

Just as with Flash CS4/CS5, Away3D can be used in Flash Builder simply by placing the contents of the

Away3D src directory into the source directory of your Flash Builder project. The preferred way, however,

is to create a Flex library project to hold the Away3D sources, and then reference that project from your

own. You can even check out the source for a library project directly from the Google Code SVN, using the

integrated SVN client Subclipse, a plug-in for the Eclipse framework (on which Flash Builder is built). For

now, let's walk through the method that doesn't use an SVN client.

From the File menu, create a new Flex library project by selecting New ➤ Flex Library Project. The New
Flex Library Project dialog appears, which lets you enter a name for your project. It also asks for a hard

drive location in which to store the project files. For the project name, “Away3D” makes a lot of sense, and

for project location, the default folder is fine. Clicking the Finish button will create a project folder

containing the standard files a Flex library project needs, including empty bin and src folders.

CHAPTER 1

4

The next step is to place the Away3D source files into the newly created project. To do this, you can drag

the contents of the src folder in the Away3D distribution from your file browser into the src folder of the

project. Next, open the project properties panel by right-clicking the project folder in the Flex Navigator

panel on the left and selecting Properties, or using the Project menu in the menu bar. Under Flex
Library Build Path, make sure all classes are included in the library (see Figure 1-2.)

Figure 1-2. All classes included in the Away3D Flex Library project

The Away3D library project can now be referenced from any other project in which you wish to use

Away3D functionality. To enable this, open the project properties dialog for that project, and under Build
Path, in the Library Path tab, add a reference to the Away3D project using the Add Project button (see

Figure 1-3).

GETTING STARTED

5

Figure 1-3. Adding a reference to the Away3D project from another project

Using FDT

FDT is based on the Eclipse IDE just like Flash Builder, but unlike Flash Builder, it makes no distinction

between library projects and regular projects. However, you can still link projects in the same way, as

illustrated in the walkthrough in this section.

Create an FDT project for holding the Away3D source files in exactly the same way as a new library

project in Flash Builder. Then, using the New Project wizard in FDT, create a new Flash project to contain

the project that will use the library. You are prompted to enter a name for the new project, and select a

language version and compiler SDK. In the second step of the New Flash Project wizard, you have the

opportunity to add linked libraries. This is also possible once the project is created by going to the project

properties dialog (see Figure 4-1), which is accessed by right-clicking the project’s folder in the Flash
Explorer panel on the left and selecting Properties, or choosing Properties from the Project menu in the

menu bar.

Clicking the Add Linked Libraries button opens the New Linked Libraries dialog. Here, click Add to open

a list of linked libraries that are available. If this is the first time you have done so, Away3D is nowhere to

CHAPTER 1

6

be seen, so you must first create it by clicking the New button. Enter a name (e.g., AWAY3D_SRC) for the

library path, and browse to the src directory of the Away3D project. Click OK, select the newly created

library link, and press OK again. You should see the name (e.g., AWAY3D_SRC) in the list of linked library

source folders, which means that you'll be able to use Away3D in your project (see Figure 1-4).

While this process might seem a bit long-winded, it does get better. The AWAY3D_SRC variable will, from

here on, be available in every new project you create, allowing you to skip the last couple of steps in future

project setups.

Figure 1-4. The AWAY3D_SRC path variable added to project linked libraries

Using FlashDevelop

FlashDevelop is another great tool for Flash development. At present, it is only possible to install on a

Windows-based system. The simplest way to enable Away3D functionality in FlashDevelop is to add the

Away3D source code to the class path used by the compiler (although as with any other editor, it is also

possible to simply keep the Away3D source files in the same directory as your project classes if that is

your preference).

Just as with Flash Professional, the class path can be set both globally and locally for each individual

project. A global class path setting is generally considered the best way, as it means you only ever have to

set it once.

GETTING STARTED

7

First, place the Away3D source code in a location on your hard drive that can be easily retrieved. Using

Windows Explorer, make a note of the file path to this location (or copy it to the clipboard) from the

Explorer address bar.

Next, open FlashDevelop, and from the Tools menu, select Program Settings. The Settings dialog

appears, with all of FlashDevelop’s configuration attributes. From the left-hand side category bar, select

AS3 Context (see Figure 1-5). In the list on the right is one attribute called User Classpath, with the value

said to be String[] Array. Clicking this value brings up a dialog that lets you put in any number of paths

to external libraries.

On a blank line, type (or paste) the file path to the Away3D source files on your hard drive. Click Close to

close the dialog, and you’re done. All subsequent projects created in FlashDevelop will be able to

reference Away3D classes, making Away3D functionality available to all your applications.

Figure 1-5. The FlashDevelop AS3Context settings panel, where User Classpath can be configured

Open source workflow using the Flex SDK and Makefiles

With the Flex SDK, Adobe provides a completely free and open source toolset for developing Flash and

Flex applications. Away3D works perfectly well with this type of workflow, allowing you to create engaging

3D productions in Flash with zero financial outlay.

Makefiles are an excellent way of creating batch compile scripts in this type of workflow, as GNU Make is

open source and comes preinstalled with Linux and Mac OS X. For Windows, a selection of free utilities for

Makefiles are available, but the general approach outlined here could just as easily be used with DOS BAT

files in a Windows environment.

CHAPTER 1

8

The Flex SDK, which contains the command-line ActionScript 3 compiler, can be downloaded from

http://opensource.adobe.com. Place the contents of the SDK distribution anywhere on your hard drive

and note the location.

Next, set up a simple project directory structure. Create a folder for your project anywhere on your hard

drive. This will be your project root directory, and within it, you need to create a directory named src and

one named lib-src. Your source files will go in the src directory, while external libraries (such as

Away3D) can be put in the separate lib-src. This helps prevent clutter in the src directory, where you

will be working most of the time. Move the contents of the src directory in the Away3D distribution files

into lib-src.

The last step in setting up the project is to create the Makefile. Entire books have been devoted to GNU

Make and the Makefile syntax, so to keep things simple, you can use the template in the following code

sample to achieve what we’re after. Make sure that the value of the MXMLC variable on line 1 reflects the

path to the location where you placed the Flex SDK compiler on your hard drive, and that the APP and OUT

variables in the Makefile (lines 3–4) have values that make sense for your project. The template should be

saved in the root directory of your project as a file called simply Makefile.

MXMLC=/Path/to/flex-sdk-4.0/bin/mxmlc
SRC=src lib-src
APP=src/MyAway3DApp.as
OUT=out/MyAway3DApp.swf

ARGS=-sp $(SRC) -o $(OUT)

all:
 $(MXMLC) $(ARGS) -file-specs $(APP)

In the src folder, create an ActionScript application file with a name that reflects the value of the Makefile

APP variable, and then type make in a terminal window after navigating to the project’s root directory. The

application will be compiled, and a directory named out will be created, containing the compiled SWF file.

Summary

This chapter has described in brief how to obtain the Away3D library source code, either from the

Downloads page at www.away3d.com or using the Away3D SVN repository hosted on Google Code.

Furthermore, it has walked through the process of setting up the most common Flash development

environments for use with Away3D. In the next chapter, we will go step by step through a basic Away3D

project, showing how 3D objects can be created, lit, and rendered, as well as how to move and interact

with 3D objects.

9

Chapter 2

Creating Your First 3D Project

It is time to get down to business. A project has been set up in your favorite editor, and you are ready to

create some nice 3D visuals in Flash. One hour, and some 60 lines of code from now, you'll be watching

and interacting with your first Away3D SWF!

Starting up the engine

After having worked with Away3D for a while, you’ll notice how most projects start out in very much the

same way. The basic Away3D objects are created, always including a View3D object, usually within what's

called the document class, the main entry point for your application. While it is also possible to write code

on the timeline in Flash Professional, the document class approach will be used throughout this book.

As with all graphics in Flash, Away3D needs to render the image produced from the objects contained in

its hierarchy. Unlike the native display list hierarchy in Flash, the rendering process has to be triggered

manually and is managed by the view, represented in Away3D by the View3D class. In a typical Away3D

project, the view is the place to start, and a very basic application needs no more than the following lines

of code:

package
{
 import away3d.containers.View3D;
 import flash.display.Sprite;
 import flash.events.Event;

 public class MyFirstApp extends Sprite
 {
 private var view : View3D;

 public function MyFirstApp()

CHAPTER 2

10

 {
 view = new View3D();
 view.x = 275;
 view.y = 200;
 addChild(_view);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 private function onEnterFrame(ev : Event) : void
 {
 view.render();
 }
 }
 }

In the preceding code, the view is created, positioned, and added to the stage on lines 13–16, shown in

bold. The View3D class extends Sprite, which allows it to be added to the display list of the Flash movie

so that the rendered contents can be seen. The (x, y) position of the view represents the vanishing point,

which in 3D terms means the position in a perspective drawing at which parallel lines appear to converge.

To produce natural-looking 3D images, it is best for the vanishing point of the view to be positioned at the

center of the Flash movie.

Next, an event listener is created for rendering the view on each frame. The rendering process occurs on

line 22 inside the event handler, also shown in bold.

To compile the MyFirstApp example into an SWF, it is necessary to first create an

ActionScript class file (a text file with the name MyFirstApp and extension .as) and

paste in the above code. Flash Professional users need to place this file in the class

path of the FLA being used. (i.e., the same directory location), and make sure the name

of the class is specified as the document class in the FLA properties panel. Other

ActionScript editors (Flash Builder, FDT, FlashDevelop, etc.) compile into an SWF using

a document class by default and only require that you identify the class file as such in

your project before compiling.

Compiling the MyFirstApp example, you will find that all that shows up is a blank window. This is to be

expected, so don’t worry! Once you have made it this far, we can start adding some 3D objects to be

rendered.

Adding 3D objects to the scene

The root container for 3D objects is generally known as the scene and is represented by the Scene3D

class in Away3D. Working with the scene closely resembles the approaches used when working with the

Flash display list in ActionScript, by using methods such as addChild() and removeChild(). These will

be covered in more depth in the next chapter.

CREATING YOUR FIRST 3D PROJECT

11

When the view is created in the MyFirstApp example, an empty scene is created for the view to use by

default. It can be accessed through the scene property on the View3D class instance. For example,

creating a Cube object and adding it to the scene can be accomplished by adding the following code to the

end of the constructor method in MyFirstApp:

var cube : Cube = new Cube();
_view.scene.addChild(cube);

The cube is an example of a 3D primitive object (covered in more detail in Chapter 4) and needs to be

imported from the away3d.primitives package. Add this to the other import statements in the example

to make sure the code will compile without errors.

import away3d.primitives.Cube;

Recompiling our MyFirstApp example will display a square on the screen made up from two triangles.

This is actually our cube rendered head-on, with a random solid color and black triangle outlines. In

Away3D, as with many 3D engines, the majority of 3D objects are composed from tessellating triangles.

The color used for the rendered output of the cube is the signature appearance of the default material,

WireColorMaterial. It is useful for debugging, as it clearly shows both the edges and triangles making

up the cube primitive.

Materials define the appearance of a 3D object when it is drawn to screen. We can apply a different

material to the cube when we create it to alter its visual appearance. One commonly used type of material

in Away3D is BitmapMaterial. Using this class will wrap a bitmap image (supplied as a BitmapData

object) around the 3D object to which it is applied, a process known as texture mapping. Replacing the

first line with the following code will use a BitmapData object containing Perlin noise as the material in

place of the default WireColorMaterial.

var bmp : BitmapData = new BitmapData(200,200);
bmp.perlinNoise(200, 200, 2, Math.random(), true, true);

var mat : BitmapMaterial = new BitmapMaterial(bmp);
var cube : Cube= new Cube({ material: mat });
_view.scene.addChild(cube);

Another two import statement are needed here, one for the BitmapMaterial class located inside the

package away3d.materials, and one for the native BitmapData class located inside the package

flash.display. Add the following lines to the rest of the import statements at the top of the document

class.

import away3d.materials.BitmapMaterial;
import flash.display.BitmapData;

Recompiling the MyFirstApp example will display a square much like the previous one but this time,

textured with multicolored noise (see Figure 2-1).

Figure 2-1. A cube with a Perlin noise bitmap used as its material, shown straight from the front

CHAPTER 2

12

Understanding constructors and initialization objects

As you may have noticed, the Cube instantiation in the MyFirstApp example uses an object literal

(surrounded by curly braces) as a constructor argument. You may think this is some wicked Away3D trick,

and depending on your views toward untyped objects, you could be deemed correct!

Object literals can be passed into the constructors of most Away3D objects and are referred to as

initialization objects (init objects for short). They provide a quick and compact way of setting default

initial values for the properties of the object being created. Using init objects can be a neat way of working

for the experienced user, requiring less typing and fewer lines of code to setup Away3D objects in the

desired manner. However, the approach is not so useful for the beginner because of the untyped nature of

the object literal. This removes useful type-checking features in your ActionScript editor such as code

completion, which you may prefer to have enabled when getting to grips with a new code library.

If you’re feeling discouraged, note that any property set using the init object (e.g., the material attribute

used when creating the cube in the previous code) can also be set as a public property on the object after

instantiation (e.g., cube.material). Hence, the following lines of code for creating a cube achieve exactly

the same result as the init object method, while also allowing your ActionScript editor to help you with code

completion (if that feature is supported):

var cube : Cube = new Cube();
cube.material = mat;

Whether you choose to use init objects in your code is entirely up to you. We find that this decision usually

comes down to personal preference. Because of the code completion advantages, which can be of great

assistance when learning a new library, we will be sticking with the easier to follow public property method

for the remainder of the book.

Lighting the scene

Using the same approach to creating 3D primitives as our cube object described previously, we will now

add a sphere primitive to the scene and create more of an atmosphere by adding a light source!

By appending the following lines of code to the document class constructor of our MyFirstApp example

(below the code for cube creation), a sphere using a material composed of the same Perlin noise bitmap

will be created and added to the scene:

var sphere : Sphere = new Sphere();
sphere.segmentsW = 32;
sphere.segmentsH = 32;
sphere.material = new BitmapMaterial(bmp);
sphere.x = 200;
_view.scene.addChild(sphere);

Just like the Cube class, the Sphere class needs to be imported from the primitives package, by adding

an import statement in the usual place.

import away3d.primitives.Sphere;

CREATING YOUR FIRST 3D PROJECT

13

The sphere is placed 200 units to the right of the cube and uses a material with exactly the same

appearance. Recompiling the example will display a large circle to the right of the square, textured with the

same multicolored noise.

At this point, you may be wondering whether the objects on the stage look right for 3D objects; after all,

circles and squares are pretty two-dimensional! This is because the difference between a sphere and a

circle on a 2D screen (the monitor you are using to view the Flash movie) is depth perception. You need to

fool the viewers’ eyes into thinking they are viewing a 3D object, and one way of doing that is with a light

source. If a light source is placed above the sphere, it will be possible to perceive its depth from the

shading that the light applies to the material—darker on the lower hemisphere and lighter on the upper

hemisphere. The code used in this experiment so far doesn’t use shading, which is why the shapes we

have created appear quite flat.

In Away3D, the choice of material determines whether any shading from a light source will be rendered.

The simple BitmapMaterial used for both the cube and the sphere has no shading capabilities, hence it

will always disregard light sources. To enable shading effects, we need to choose a material that supports

them, the simplest of which is the WhiteShadingBitmapMaterial class. Modifying line 4 shown in bold in

the preceding lines of code, where the Sphere’s material is set, we can enable shading by replacing the

line with the following code. Don’t forget to import the WhiteShadingBitmapMaterial class from the

away3d.materials package.

sphere.material = new WhiteShadingBitmapMaterial(bmp);

Recompiling the application after this alteration gives you your next surprise—the flat circle hasn’t

miraculously turned into a 3D sphere and instead has lost all color and turned into a black hole in our

scene. The explanation for this is simple: there are no light sources in the scene, so any object with a

shading-enabled material will be cast entirely in darkness.

Adding a light source will solve this, and luckily adding light is just as simple as adding any other 3D object

to the scene. The following lines of code will do the trick:

var light : PointLight3D = new PointLight3D();
light.y = 500;
_view.scene.addLight(light);

Line 1 of the preceding code creates a new PointLight3D object (which is a class imported from the

away3d.lights package), and represents a single point from which light is emitted in all directions. Line 2

moves our light source’s position 500 units up, and line 3 adds it to the scene. When we recompile our

MyFirstApp example, the sphere will have lit up, and the light and shade on its surface reveal the 3D

nature of the primitive Sphere object (see Figure 2-2).

CHAPTER 2

14

Figure 2-2. A shaded sphere added to the scene, with a light source straight above the (unshaded) cube

Animating objects in 3D

Up until now, rendering the view on every frame has made very little sense. There is no reason to force the

CPU to calculate and render a 3D scene 25 times a second when each frame looks exactly like the

previous one. Doing so isn’t necessary until animation is introduced into the project.

The automatic caching system in Away3D ensures that repeatedly rendering a view for

which the scene has not changed doesn’t waste CPU time with unnecessary redraws.

Each time the render() method is called, only areas that have changed in the view are

updated.

By incrementally adding to the rotation of the sphere in our scene on each frame, we can perform a

rotation on the object that mimics the way the Earth revolves on its axis. But before we can do so, a

permanent reference to the sphere object must be stored in the document class so that its rotation

property can be updated in the onEnterFrame handler. To achieve this, we move the sphere variable

declaration to the class scope and make it a private variable. As we do so, we prepend its name with an

underscore. This is a convention commonly used in object-oriented programming for a private class

variable, and is followed throughout the code examples in this book. Because of this change, make sure

you add the underscore to all sphere variable references.

public class MyFirstApp extends Sprite
{
 private var sphere : _Sphere;
 ...

In the onEnterFrame handler function, adding 5 to the sphere’s vertical (Y) axis rotation will rotate the

sphere in the manner we require.

private function onEnterFrame(ev : Event) : void
{
 _sphere.rotationY += 5;

CREATING YOUR FIRST 3D PROJECT

15

 _view.render();
}

Recompiling the MyFirstApp example will show the sphere slowly rotating around its Y axis. This very

simple animation technique in 3D allows many possibilities, and Away3D provides many versatile 3D

animation methods, some of which are covered in more depth in Chapter 9.

Enabling interactivity in 3D

Creating a button, perhaps the most basic form of mouse interaction in Flash, is just as simple to achieve

in Away3D as it is in a regular Flash movie. It involves adding an event listener to a 3D object that reacts

to events of the special type MouseEvent3D. The MouseEvent3D class resides alongside all custom events

for Away3D in the away3d.events package.

To illustrate how simple this process can be, we’ll set up a listener to make the cube in our scene rotate

randomly when it detects a mouse click. The first step toward achieving this is to create the event handler

function.

private function onClickCube(ev : MouseEvent3D) : void
{
GenericTweener.tween(ev.currentTarget, 1, {
 rotationX: Math.random()*360,
 rotationY: Math.random()*360,
 rotationZ: Math.random()*360 }
);
}

The preceding code handles MouseEvent3D events, such as mouse clicks. It uses a small tweening class

called GenericTweener to smoothly rotate all the cube's axes to random values. The GenericTweener

class is part of the source files package that can be downloaded from www.friendsofed.com, and resides

in the flash3dbook.common package. We will use it further in chapter 9.

Using the regular addEventListener() method on the cube object, the onClickCube function can be

defined as a handler for the MouseEvent3D.MOUSE_UP event.

cube.addEventListener(MouseEvent3D.MOUSE_UP, onClickCube);

Inserting this line directly under the code that deals with our cube creation will complete the process of

adding button interactivity to the cube. Recompile our MyFirstApp example, and try clicking the cube to

see it spin!

Summary

This chapter took you through creating a simple scene in less than an hour, with all the basic features that

you would usually want to use in a 3D project: primitives, texturing, lights, shading, animation, and

interactivity. All of the features in each of these categories are described in greater detail later in this book.

CHAPTER 2

16

The complete code for the MyFirstApp example created in this chapter follows:

package
{
 import flash3dbook.common.GenericTweener;

 import away3d.events.MouseEvent3D;

 import away3d.containers.View3D;
 import away3d.lights.PointLight3D;
 import away3d.materials.BitmapMaterial;
 import away3d.materials.WhiteShadingBitmapMaterial;
 import away3d.primitives.Cube;
 import away3d.primitives.Sphere;

 import flash.display.BitmapData;
 import flash.display.Sprite;
 import flash.events.Event;

 public class MyFirstApp extends Sprite
 {

 private var _view : View3D;
 private var _sphere : Sphere;

 public function MyFirstApp()
 {

 _view = new View3D();
 _view.x = 275;
 _view.y = 200;
 addChild(view);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);

 var bmp : BitmapData = new BitmapData(200, 200);
 bmp.perlinNoise(200, 200, 2, Math.random(), true, true);

 var mat : BitmapMaterial = new BitmapMaterial(bmp);

 var cube : Cube = new Cube({ material: mat });
 cube.addEventListener(MouseEvent3D.MOUSE_UP, onClickCube);
 _view.scene.addChild(cube);

 _sphere = new Sphere();
 _sphere.segmentsW = 32;
 _sphere.segmentsH = 32;
 _sphere.material = new WhiteShadingBitmapMaterial(bmp);
 _sphere.x = 200;

CREATING YOUR FIRST 3D PROJECT

17

 _view.scene.addChild(sphere);

 var light : PointLight3D = new PointLight3D();
 light.y = 500;
 _view.scene.addLight(light);
 }

 private function onEnterFrame(ev : Event) : void
 {
 _sphere.rotationY += 5;

 _view.render();
 }

 private function onClickCube(ev : MouseEvent3D) : void
 {
 GenericTweener.tween(ev.currentTarget, 1, {
 rotationX: Math.random() * 360,
 rotationY: Math.random() * 360,
 rotationZ: Math.random() * 360
 });
 }
 }
}

In the next chapter, we will be exploring the view and scene in more detail, looking at how the camera

object defines the relationship between them, and exploring more complex ways of grouping, moving, and

transforming 3D objects.

19

Chapter 3

The View, Scene, and Camera

In the last chapter, you saw how it is possible to create an Away3D project by simply adding a new View3D

object to the display list of the document class. More generally, three building blocks make up the

foundation of a 3D environment: the view, the scene, and the camera. The latter two objects are created

automatically by the view on instantiation but can be overwritten in cases where a greater degree of

control is required.

Ways of manipulating these elements range from simple adjustable properties on each object to advanced

configuration classes. A large number of core features are covered in this chapter, and learning as many

of these as possible will improve the adaptability of your 3D coding, enabling a wide variety of tasks.

Understanding the basics

It’s important to have a basic knowledge of the roles performed by the view, scene, and camera in your 3D

project, as they are always present even though you may not be explicitly creating them yourself. A brief

description of each follows.

View

The view holds the 2D representation of the 3D scene being rendered and links the virtual 3D world of

your project to the 2D world that is necessary for representation on a computer screen. It is sometimes

talked about as the viewport, which refers to the rectangular area that contains the visual output of a 3D

scene. A good analogy of the viewport is that of a window, cropping the scenery outside, as you look

through it from inside a room.

Often, the view is the only Away3D object that needs to be explicitly created. As the View3D constructor

method is called, Scene3D and Camera3D objects are created by default as scene and camera properties

on the view instance (as you saw in the previous chapter).

CHAPTER 3

20

Scene

The scene in Away3D is represented by the Scene3D class located in the away3d.containers package.

It acts as a 3D version of the native stage object in Flash, representing a top-level 3D container. Any 3D

objects to be included in the rendering process are attached inside the Scene3D class.

From Flash 10 onward, native display objects in Flash possess a 3D nature almost

identical to the 3D nature of scene objects in Away3D. This leads to all display objects

(Sprite, MovieClip, etc.) having position, rotation, and scaling properties in x, y, and z

dimensions.

Just as native Flash classes inheriting from the class flash.display. DisplayObject produce object

instances that can be placed on the stage, Away3D classes inheriting from the class

away3d.core.base.Object3D produce object instances that can be placed in a scene. Some of these

have already been encountered in the previous chapter (primitives and lights). As you will see, many

others exist within the engine, and we can also create our own.

As is the case with the native Flash display list, a 3D display list is made up of a tree hierarchy, in which

3D objects can be nested inside other 3D objects; these, in turn, can be nested inside further 3D objects,

and so on all the way back to the scene object. These 3D container objects are generally invisible when

rendered; only the noncontainers held within are actually displayed. In Away3D, the scene itself

(represented by the Scene3D class) is a subclass of a 3D container, the ObjectContainer3D class. We

will discuss how intelligent use of 3D containers can benefit the positioning and animating of 3D objects

later in this chapter.

Camera

The Camera3D object, a class inheriting from Object3D, represents the point of observation inside a

scene. It influences what is visible in the view by calculating a projected image based on the camera’s

position and rotation. It is as if the view is showing you the contents of the scene from the point of view of

the Camera3D object.

Under the hood, the camera is nothing more than a set of formulas by which the 3D coordinates in the

scene are transformed into 2D image coordinates in the view. Aside from position and rotation, the camera

can alter how the scene is rendered with properties such as zoom and focus, and the lens property

defines the type of projection performed. These attributes affect the rendered output in the same way that

selecting different lenses and settings for a real life camera affects the resulting photograph and will be

covered in greater detail later in this chapter.

Exploring the fundamentals of 3D

Before diving into the deep end of Away3D content creation, it is a good idea to lay down some basic

principles that hold true for any 3D framework. The most basic of these is the concept of a 3D coordinate

system and how it differs from the 2D one we use daily in Flash.

THE VIEW, SCENE, AND CAMERA

21

Working with coordinates in 3D space

You have likely encountered 2D coordinate systems several times before. If you didn’t study them in

geometry or algebra courses, you will have probably worked with them (knowingly or not) in Flash,

Photoshop, or even word processing software such as Microsoft Word or OpenOffice Writer.

A coordinate system is a way of defining a position in space, by decomposing the distance from a zero

point into a number of distance components. Each distance component has a direction defined by an axis,

which is a line drawn along the points in space that increment or decrement the distance (or coordinate)

for that direction.

In 2D space, the most common coordinate system uses two component directions arranged perpendicular

to each other—the X axis and Y axis. For image editing software, the position of any graphical element on

the screen can be defined using the x and y coordinate values determined by these axes.

Axes have their coordinate values defined as the distance from a single zero point. This point is generally

positioned where the two axes cross—either at the top-left corner of the screen (used in image editing

software), or the bottom-left corner of the screen (used in graphing software). This special point, in which

the distance on each axis is zero, is called the origin.

3D coordinate systems have one major difference from 2D systems; they have a third axis, named Z. The

Z axis is positioned perpendicular to the other two, and when being considered in computer graphics, is

usually characterized as either going into or coming out of the screen.

Figure 3-1 displays the Away3D and native Flash coordinate systems side by side. In both cases, the X

axis defines the position from left to right on the screen, and the Z axis defines the position into the screen

(the distance from observer to object). However, the Y axis points in opposite directions for each system,

resulting in corresponding values for the same point on-screen having opposite signs (positive becomes

negative and vice versa). For the native coordinate system in Flash 10, having the Y axis pointing down is

a remnant of Flash being 2D-only, with a typical top-left origin. Most 3D engines share the Away3D system

of an upward-pointing Y axis, which define positive direction from the bottom to the top of the screen.

Figure 3-1. The Away3D coordinate system (left) compared to the native Flash coordinate system in Flash

10 (right)

Using our chosen 3D coordinate system, a position can be defined as the combined total of the distance

along each axis. This position definition is sometimes referred to as the vector of the point, although the

term is generally used more widely in 3D graphics terminology than 2D. In 3D, a vector has three

components, the X, Y and Z values, corresponding to the point’s distance measured along the three

CHAPTER 3

22

respective axes. Such a vector is commonly written (X, Y, Z), that is, the three values in alphabetical order,

separated by commas and surrounded by parentheses.

Figure 3-2 shows how a point’s vector is calculated from the axes of a coordinate system in 3D.

Figure 3-2. A point, P, positioned at X = 100, Y = 100, Z = 50 in the Away3D coordinate system

The rendering process

Armed with the Away3D coordinate system, you are now ready to start considering how objects in the

scene are prepared for visualization in the view. Preparation can take any number of steps, but the most

basic ones we will look at now are clipping, Z sorting, and perspective projection.

Clipping

Clipping ensures that only the objects visible within the view are considered for rendering. A simple way

of determining this is to consider the position of projected vectors relative to the edges of the view (defined

either by the edges of a viewport or the edges of the Flash movie). If a vector falls outside the clipping area

of the view, it is flagged for removal before the rendering process takes place. In this way, the amount of

drawing operations (and therefore the amount of processing) required to render a view can be greatly

reduced. Using this technique is explored in more detail in the “Creating and using the view” section of this

chapter.

Z sorting

Z sorting is a process that calculates the order objects are drawn to screen. We generally take for granted

that, in real life, objects closer to us appear in front of objects further away. In a 3D engine, this order of

overlapping has to be calculated every frame so that the 3D objects displayed in a view appear natural.

Luckily, our coordinate system holds the information needed to solve this problem—using the Z coordinate

of our projected 3D vector for each point in the scene, we can sort all 3D objects into a list arranged by Z

value. To display the scene correctly in the view, we then draw the list of objects back to front (largest Z to

smallest Z), in a process known as the painter’s algorithm. Like an oil painting, objects drawn to the view

overlap objects already onscreen requiring background objects to be drawn before foreground objects.

THE VIEW, SCENE, AND CAMERA

23

From Flash 10 onward, native display objects have positions based in a 3D coordinate

system but are missing automatic Z sorting. This means display objects placed far away

on the Z axis won’t necessarily be drawn behind those nearby, occasionally resulting in

unnatural overlapping. Away3D automatically executes Z sorting on objects in a scene,

ensuring that all 3D objects are rendered to the view correctly.

Perspective Projection

Perspective Projection is the mechanism that converts the 3D coordinates of 3D objects in a scene to

the 2D coordinates required for drawing 2D objects into a view. In Away3D, this process is handled by the

lens classes found in the away3d.cameras.lenses package. A single lens instance is assigned to the

lens property of the camera in order to perform perspective projection on a scene. There are many

different lenses available for different projection techniques, and these are investigated in more detail in

Chapter 10. However the standard process takes the X and Y components of the scene vector and divides

them in turn by the Z component to get the X and Y components of the view vector (more often referred to

as the screen vector). This process is crucial to achieving perspective in a view, which is characterized by

objects appearing smaller at greater distances.

Setting up the chapter base class

To provide an illustration of the view, scene, and camera implementations in Away3D, we’ll start by

creating a base class that all examples in this chapter will extend. Create the Chapter03SampleBase

class in the flash3dbook.ch03 package with the following code, and study it carefully, as the rest of the

chapter will rely on you understanding and extending its functionality.

package flash3dbook.ch03
{
 import away3d.cameras.*;
 import away3d.containers.*;
 import away3d.materials.*;
 import away3d.primitives.*;

 import flash.display.*;
 import flash.events.*;

 [SWF(width="800", height="600")]
 public class Chapter03SampleBase extends Sprite
 {
 protected var _view : View3D;
 protected var _cube1 : Cube;
 protected var _cube2 : Cube;

 public function Chapter03SampleBase()
 {
 _createView();
 _createScene();

CHAPTER 3

24

 _createCamera();
 }

 protected function _createView() : void
 {
 // Create view and add it to the stage
 _view = new View3D();
 addChild(_view);

 //Relocate center point of view to the center of an 800x600 stage.
 _view.x = 400;
 _view.y = 300;

 //call the view render method on every frame of the Flash movie
 addEventListener(Event.ENTER_FRAME, _onEnterFrame);
 }

 protected function _createScene() : void
 {
 // Create a new scene containing a trident and two cubes
 var scene : Scene3D = new Scene3D();
 var trident : Trident = new Trident(200, true);
 _cube1 = new Cube();
 _cube1.x = -100;
 _cube1.material = new WireColorMaterial(0xFFFFFF);
 _cube2 = new Cube();
 _cube2.x = 100;
 _cube2.material = new WireColorMaterial(0x888888);
 scene.addChild(trident);
 scene.addChild(_cube1);
 scene.addChild(_cube2);

 //Assign the new scene to the view
 _view.scene = scene;
 }

 protected function _createCamera() : void
 {
 }

 protected function _onEnterFrame(ev : Event) : void
 {
 _view.render();
 }
 }
}

THE VIEW, SCENE, AND CAMERA

25

The class defines four protected methods, _createView(), _createScene(), _createCamera(), and

_onEnterFrame(). The first three are called from the constructor, with the _onEnterFrame() method set

up as a handler for the ENTER_FRAME event. _createView() and _createScene() starts out with some

code already in place so that we can get some visual feedback in the earlier examples, although we will be

dealing more thoroughly with _createScene() later in this chapter. _createCamera() is not used until

the “Creating and using cameras” section.

Creating and using the view

In Away3D, the View3D class located in the away3d.containers package represents the view. It extends

the native Sprite class and is displayed by instantiating the class and adding it to the display list of a

Flash movie using addChild(), as you would any regular display object. For example, take a look at the

first few lines of the _createView() method in the Chapter03SampleBase class.

// Create view and add it to the stage
_view = new View3D();
addChild(_view);

For the scene and its objects to be made visible, the contents of the scene must be drawn into the view by

invoking the render() method on the View3D instance. Typically, the render() method should be

executed once per frame, so that any updates in the scene can be redrawn continuously. For this reason,

the render() method is usually called inside an ENTER_FRAME event handler, as illustrated in the

_onEnterFrame() method at the end of the Chapter03SampleBase class definition.

protected function _onEnterFrame(ev : Event) : void
{
 _view.render();
}

The _onEnterFrame() method is set up as a handler for the ENTER_FRAME event the end of the

_createView() method.

//call the view render method on every frame of the Flash movie
addEventListener(Event.ENTER_FRAME, _onEnterFrame);

Rendering is the single most processor-intensive task performed by a 3D framework. It

involves a lot of calculations, performed recursively on the entire scene. The built-in

caching system of Away3D optimizes the render pipeline by making sure only those

parts of the scene that have changed since the last render will be redrawn. However, for

static scenes, halting the render process manually by ceasing render() method calls

may be more efficient. In these situations, it is worth noting that 3D mouse events will

also not execute, as they rely on the render() method to update their event model.

Chapter 8 deals with 3D mouse events in more detail.

CHAPTER 3

26

As well as automatically creating a camera and scene container on instantiation, the view will also create a

default center point and clipping parameters. Let’s take a closer look at how these are defined and what

happens when they are changed.

Centering the vanishing point

The x and y positions of the view on the stage define a center point for all perspective projection

calculations. In 3D graphics, this center point is commonly called the vanishing point and represents the

position toward which objects converge the further away they are. The center point also represents the

default screen vector for the projected origin of the scene

By default, the center point of the view is located at (0,0) in the top left-hand corner of the stage. To

achieve a natural symmetry in the projection of 3D objects, it is best to move the center point of the view to

the center of the viewport (in this case the center of the stage). This is done by setting the x and y

properties as you would any other display object after instantiation, as you see in the _createView()

method of the Chapter03SampleBase class following the instantiation of the view.

//Relocate the center point of the view to the center of an 800x600 stage
_view.x = 400;
_view.y = 300;

Figure 3-3 demonstrates the effects of not doing this step: Compiling the Chapter03SampleBase class

with the preceding lines commented out displays the result shown on the left. Here, the vanishing point of

the view (and the projected origin of the scene) is positioned in the top-left corner of the stage, and the

resulting viewport can only display the bottom-right quadrant of the scene in the view. Uncomment the

lines to center the view by setting the x and y properties to half the width and height of the stage

respectively, and recompile the class to see the result shown on the right. The entire scene is now visible,

with the vanishing point correctly located at the center of the stage.

Figure 3-3. On the left, the center point of the view remains unchanged in the default 0,0 position. On the

right, the view has been positioned at the center of the stage.

Clipping the viewport

As previously mentioned, the cropped area of the view once it is added to the stage is generally referred to

as the viewport. The process of cropping the view to the viewport is called clipping, and in Away3D is

THE VIEW, SCENE, AND CAMERA

27

controlled by one of the clipping classes available in the away3d.core.clip package. Like the scene and

camera objects, a default clipping instance is created in the clipping property of the view object on

instantiation. The clipping classes represent a variety of different types of clipping, but all define the

viewport’s boundaries with the use of minX, maxX, minY, and maxY properties.

By default a RectangleClipping object is created for the clipping property of the view, with boundary

properties set to infinity. This forces the view to use the boundaries of the stage as its viewport area, as

seen in the rendered output of the current base class displayed on the left in Figure 3-4.

To restrict the view to a smaller area of the screen, the boundary properties of the clipping object can be

reset to values that define the maximum and minimum extent of the viewport in the x and y directions, as

measured from the vanishing point of the view (the (X, Y) position of the view object on the stage). Let’s

create a new example that extends the Chapter03SampleBase class to investigate the effects of the

clipping property on the view object.

package flash3dbook.ch03
{
 import away3d.core.clip.*;

 [SWF(width="800", height="600")]
 public class ViewportClipping extends Chapter03SampleBase
 {
 protected override function _createView() : void
 {
 super._createView();

 //defining a viewport size of 200 x 200 pixels
 _view.clipping.minX = -100;
 _view.clipping.maxX = 100;
 _view.clipping.minY = -100;
 _view.clipping.maxY = 100;
 }
 }
}

The preceding code sets the boundary values of the clipping object to +/- 100 pixels, defining a viewport

size of 200 � 200 around our vanishing point. Recompiling the Chapter03SampleBase class will display

the result shown on the right in Figure 3-4.

CHAPTER 3

28

Figure 3-4. On the left, the default RectangleClipping object of the view displays all content right up to the

edges of the Flash movie. On the right, the custom clipping values crops the scene to a 200 � 200

viewport.

An alternative method of clipping can be achieved by resetting the clipping property on the View3D

object using a new RectangleClipping instance with the boundary properties already set. To

demonstrate this, replace the _createView() method of our ViewportClipping example with the

following:

protected override function _createView() : void
{
 super._createView();

 //defining a new clipping object
 var clipping:RectangleClipping = new RectangleClipping();
 clipping.minX = -100;
 clipping.maxX = 100;
 clipping.minY = -100;
 clipping.maxY = 100;

 //resetting the clipping instance on the view
 _view.clipping = clipping
}

Recompiling should display exactly the same result shown on the right in Figure 3-4.

Managing the scene

As mentioned previously, the scene is to Away3D what the stage is to a standard Flash movie. To make a

3D object available for rendering, it needs to be added to the Scene3D object in the same way a Sprite

needs to be added to the root document instance of the movie. This is what we’ve been doing so far with

cubes, spheres, and tridents in the _createScene method of the Chapter03SampleBase class.

THE VIEW, SCENE, AND CAMERA

29

The Scene3D object can contain a hierarchy of nested 3D objects just like a Flash display list. This

hierarchy is more commonly known as a scene graph.

Adding and removing 3D objects

The majority of renderable objects in Away3D inherit from the Object3D base class. Objects of this type

are valid as nodes in the scene graph and can be added using the addChild method of the scene.

Looking at the _createScene() method of the Chapter03SampleBase class, you can see how

renderable 3D objects are added one at a time in this manner.

scene.addChild(trident);
scene.addChild(_cube1);
scene.addChild(_cube2);

The addChild method (and other methods related to the management of child objects) is inherited from

the ObjectContainer3D class from which Scene3D extends. This is a generic container class for the

scene graph that can used to create a nested hierarchy for objects contained within the scene. The

ObjectContainer3D class extends the Object3D base class, once again bearing great similarity to the

native display list classes in Flash (see Figure 3-5).

Figure 3-5. Comparison between a simplified display list class hierarchy in Flash (left) and scene graph

class hierarchy in Away3D (right).

Let’s create a new example that extends the Chapter03SampleBase class to investigate the properties of

the Scene3D and ObjectContainer3D objects.

package flash3dbook.ch03
{
import away3d.primitives.Cube;
import away3d.containers.ObjectContainer3D;
import away3d.core.base.Object3D; [SWF(width="800", height="600")]
 public class SceneProperties extends Chapter03SampleBase
 {
 protected override function _createScene() : void
 {
 super._createScene();
 _view.scene.removeChild(_cube2); // Remove from scene
 }
 }
}

CHAPTER 3

30

To remove objects that already exist in the scene from the scene graph, you can use the removeChild

method (again inherited from the ObjectContainer3D class). Child objects are removed from their parent

by executing this function on the parent object container. In the preceding code, we use the

removeChild() method to delete the second cube (gray) from our scene before it is displayed in the view.

Compiling this example will display just the first cube (white) and the trident. Again, this bears a striking

resemblance to how native display objects are removed from the display list.

Even though the API for adding and removing scene objects in Away3D is very similar to

the API used for display objects in Flash, they are not interchangeable. You cannot add

an instance of a Flash display object to an ObjectContainer3D instance, or an Away3D

scene object to a Sprite instance.

Accessing 3D objects in the scene

One way of accessing the children of an ObjectContainer3D instance is to use its children property.

This returns an Array object containing all 3D objects that are children of the 3D container and can be

used for determining certain useful information about the child objects contained within. For example, the

length property of the children array can be used to retrieve the total number of child objects in a

container. Replacing the _createScene() method of the SceneProperties example with the following

code and recompiling will return the number 3 in the trace output window, because three objects exist as

children of the scene:

protected override function _createScene() : void
{
 super._createScene();
 trace(_view.scene.children.length);
}

Retrieving a 3D object in a scene if it is known in what order it was added to a 3D container is easily done

by accessing the correct index of the children property. Replacing the _createScene() method of the

SceneProperties example with the following code and recompiling will return true in our trace output

window, because the first child added to the scene is a cube object.

protected override function _createScene() : void
{
 super._createScene();
 trace(_view.scene.children[0] is Cube); // returns true
}

3D objects in a scene can also be retrieved by using the name property, which is a unique string ID usually

set before adding each object to the scene. Once added, the 3D object is retrieved using the

getChildByName() method of the scene. As a demonstration, replace the _createScene() method of

the SceneProperties example with the following code. Recompiling returns true in our trace output

window because "theFirstCube" is the name of the _cube1 object in the scene.

protected override function _createScene() : void
{
 super._createScene();

THE VIEW, SCENE, AND CAMERA

31

 _cube1.name = "theFirstCube";
 trace(_view.scene.getChildByName("theFirstCube") is Cube); // returns true
}

One advantage of using the getChildByName() method is its recursive nature. The method can be used

to return an object from any 3D container in the scene graph, even if it is buried in a list of subcontainers.

Here’s a note on performance: Although 3D objects can at any time be retrieved using

names or index values, storing a direct reference to the object by declaring a global

variable will always be faster. If you’re planning to access a 3D object many times, such

as in a recursive code loop, it will always be more efficient to take the direct reference

approach.

There is no easy way of adding a 3D object at a specific index of the children array, because object

order is of little significance in a scene graph. In Away3D, Z-sorting algorithms define the order in which

items are drawn to screen. In the native display list framework in Flash, no Z sorting exists, so the order in

which objects are added is the order in which they are drawn. This explains why methods such as

getChildIndex() and setChildIndex() are omitted from the ObjectContainer3D and Scene3D

classes.

Working with nested 3D objects

As you have seen, the scene graph container object ObjectContainer3D inherits from Object3D and can

therefore be added as the child of another container. This allows the nesting of container objects to

whatever depth you desire. For example, replacing the _createScene() method of the SceneProperties

example with the following code and recompiling returns "true" "true" "true" in the trace output

window.

protected override function _createScene() : void
{
 super._createScene();
 _cube1.name = "theFirstCube";
 var myGrandParent : ObjectContainer3D = new ObjectContainer3D();
 var myParent : ObjectContainer3D = new ObjectContainer3D();
 var mySelf : Object3D = new Object3D;

 myParent.addChild(mySelf);
 myGrandParent.addChild(myParent);
 _view.scene.addChild(myGrandParent);

 trace(mySelf.parent == myParent); // prints true
 trace(mySelf.parent.parent == myGrandParent); // prints true
 trace(myGrandParent.children[0].children[0] == mySelf); // prints true
}

CHAPTER 3

32

Here, having two generations of children in a scene graph is perfectly acceptable. The parent property

exists for all Object3D instances and points to the ObjectContainer3D instance in which they reside. A

3D object can only have one parent; if addChild() is performed on an object that is already added

elsewhere in the scene graph, it is removed from that location before being added to the new 3D

container.

On the last line of the preceding code, we directly access the children array to return the first (and only)

child of myGrandParent, and in turn the first (and only) child of that child. As is confirmed by the equality

test, mySelf is the grandchild of myGrandParent.

For performance reasons, we advise you not to nest scene graph objects any deeper

than necessary. As you will see, nesting can be used to avoid advanced mathematics

when animating objects, but a deeply nested scene graph requires more processing to

render. To optimize your scene, it is best to only nest objects when required to avoid

unnecessary performance costs.

Keep in mind that to remove 3D objects from the scene graph, the removeChild() method needs to be

executed on the immediate parent of the object. Adding the following code to the _createScene()

method above will work because mySelf is a child of myParent.

myParent.removeChild(mySelf); // Works, myParent is the parent of mySelf

However, adding the following code fails, because myself is not a child of myGrandParent:

myGrandParent.removeChild(mySelf); // Fails

Moving, rotating, and scaling in 3D

In a scene graph, 3D object coordinates are not locked to the global coordinate system of the scene but

are influenced by the 3D containers above them in the scene graph hierarchy. This concept can be

confusing at first, but you will eventually see how this can be used to our advantage when carrying out

more complex rotating and translating operations.

The concept of hierarchical coordinates systems is nothing new, and in Flash is something we are used to

working with in 2D every day. As a demonstration, create a new MovieClip object in Flash, add it to the

stage, and rotate it 45 degrees. Create another MovieClip inside the first, and rotate this one 45 degrees

as well. You will notice how the inner clip appears rotated by 90 degrees, even though when you trace its

rotation value, it returns 45. This is not a mistake—what we are seeing here is the different levels of

rotation in a coordinate system that imposes the transformations of a container on its children in a

cumulative manner. Such an arrangement is know as a hierarchical coordinate system and is frequently

used in graphic design software.

Adding an extra dimension makes things difficult to follow when talking about cumulative transformations,

so for now, let’s stick to the world of 2D for a more abstract example. Imagine a point on the Y axis in a 2D

coordinate system. Since it lies on the Y axis, we know that its coordinate value on the X axis is 0. Such a

point is shown on the left in Figure 3-6.

THE VIEW, SCENE, AND CAMERA

33

Figure 3-6. Rotating a coordinate system affects the correlation between the global position and local

position of a point.

Now, let’s rotate the coordinate system of the point 45 degrees, as if it were in a display object container

being rotated. The result is displayed on the right in Figure 3-6. You can easily see that the global position

of the point no longer matches the local position, even though its local position vector has not changed.

Understanding this concept in 2D, you can now take the step into 3D by investigating how rotating the

axes of an ObjectContainer3D will affect its local coordinate system. For 2D, we only have the option of

rotating in the plane of the 2D surface (around the theoretical Z axis). In 3D, we have the option to rotate

around the X, Y, or Z axis, or all 3 at once!

In Figure 3-7, we stick to representing only two axes for the sake of clarity (the X and Y axes), but this

time, we will rotate in two separate stages around the Z and Y axes respectively. The image on the left

represents the starting state, with a 3D block aligned along the Y axis and centered on the X and Z axes.

In the first step, we apply the same rotation used in Figure 3-6, 45 degrees around the Z axis (which you

can imagine as a perpendicular line pointing into the page) of the 3D container. The rotation ends with the

Y axis pointing diagonally up and to the right. The block follows the rotation, remaining relative to its parent

coordinate system and ends up in the orientation shown in the center image of Figure 3-7.

The second step is the one crucial to understanding the nature of a hierarchical coordinate system. Here,

we rotate the block 45 degrees around its local Y axis. Because we first rotated the coordinate system of

the 3D container, the rotation will now be performed around the transformed representation of the Y axis.

The revolving arrow in the center image of Figure 3-7 depicts this rotation.

CHAPTER 3

34

Figure 3-7. Two consecutive rotation operations are applied to a 3D container with a rectangular block

contained within. The local Y axis is transformed by the rotation performed around the Z axis in the first

step, affecting the rotation performed around the Y axis in the second step.

The end result, after having rotated the block 45 degrees around its local Y axis, is displayed in the right

image of Figure 3-7.

When rotating a single 3D object around more than one axis, the order of rotation

operations is important. Preceding rotations can affect the resulting direction of axes

used for subsequent rotations. This is a common problem in 3D known as gimbal lock

and is discussed in more detail in Chapter 10.

Using containers as pivots

From the previous section in this chapter, you should now be familiar with the workings of nested 3D

containers. Next, let’s explore how this can be applied to our advantage in the scene graph of the Away3D

engine. If you’re not a master of 3D math, you will soon discover that rotating a 3D object around an

arbitrary point in space (such as a simulation of the Earth revolving around the sun or a pendulum

swinging around its pivot) is not a trivial task. However, it can be made a little simpler by taking advantage

of the scene graph’s hierarchical coordinate system.

In Away3D, the rotationX, rotationY, and rotationZ properties apply a rotation around the respective

X, Y, and Z axes of a 3D object. For geometric primitive objects created internally (such as cubes, spheres

and cylinders), the origin of the local coordinate system around which rotations are performed is usually

found at the center of the geometry. For example, when you rotate a sphere around any axis, the rotation

is performed around the center of the sphere. Creating 3D objects centered on their local origin is also

common practice in 3D modeling software, resulting in many imported models having the same

characteristics.

However, centered rotations are not always what we are after. In the case of a pendulum, the rotation

needs to be performed around a point at one end of the object. Let’s create a new example that extends

the Chapter03SampleBase class to explore how this can be done using Away3D.

THE VIEW, SCENE, AND CAMERA

35

package flash3dbook.ch03
{
import away3d.containers.*;
import away3d.primitives.*;

import flash.events.Event;
import flash.utils.getTimer;
 [SWF(width="800", height="600")]
 public class PendulumContainer extends Chapter03SampleBase
 {
 private var _pendulum:ObjectContainer3D;

 protected override function _createScene() : void
 {
 // Create a new scene containing a pendulum
 var scene : Scene3D = new Scene3D();
 var trident : Trident = new Trident(100, true);
 var sphere : Sphere = new Sphere();
 sphere.radius = 20;

 //create a new pendulum container
 _pendulum = new ObjectContainer3D();
 }
 }
}

The preceding code overrides the _createScene() method and creates a new scene object, a trident

object, and a sphere primitive with a radius of 20. We also create a 3D container object in a global variable

called _pendulum that can be accessed from anywhere in the class, by defining a new instance of

ObjectContainer3D. This will act as our pendulum container.

Next, we set the y position of sphere to –100 and add it as a child of _pendulum by adding the following

code to the end of the _createScene method. This creates a sphere inside the pendulum container with a

local coordinate offset of –100 units along the container’s Y axis.

//offset the local position of the sphere to (0, -100, 0)
sphere.y = -100;

//add the sphere to the pendulum container
_pendulum.addChild(sphere);

To visually identify where the local origin sits for the pendulum container, we add the following code to the

end of the _createScene() method to add the newly created trident object as another child of

_pendulum.

//add the trident to the pendulum container
_pendulum.addChild(trident);

Finally, we add the following code to the end of the _createScene() method to add the pendulum

container as a child of the scene and assign the new scene to the view so that it is displayed on rendering.

CHAPTER 3

36

//add the pendulum container to the scene
scene.addChild(_pendulum);

//Assign the new scene to the view
_view.scene = scene;

Rotating the sphere primitive at this point would simply cause the object to revolve around its own axis. But

if we rotate the pendulum container, the sphere will swing in an arc similar to the movement seen in Figure

3-6 where the global position of an object is altered by rotating its parent.

To animate the pendulum container, we can use the native getTimer method on every frame of the Flash

movie as a linearly incrementing value to drive the swing. For a realistic swinging motion, a sine function

can be used on the getTimer() value. Add the following code to the end of our PendulumContainer

class definition to override the _onEnterFrame() method:

protected override function _onEnterFrame(ev : Event) : void
{
 _pendulum.rotationZ = 45 * Math.sin(getTimer() / 500);
 _view.render();
}

Compiling the code will animate the sphere in a swinging motion, rotating the pendulum container back

and fourth between 45 and –45 degrees around its origin. For comparison, try switching the

pendulum.rotationZ property to pendulum.children[0].rotationZ (the rotationZ property of the

sphere) and recompiling to see the difference between rotating the pendulum container and rotating the

sphere primitive directly.

The pendulum-like motion seen in the PendulumContainer example could have been

achieved using trigonometry in place of nested 3D containers. However, the approach

used here is a much simpler and more intuitive method, especially if we start to perform

more complex nested rotations.

Creating and using cameras

Away3D offers several different types of camera object, each represented by its own class found in the

away3d.cameras package. While the primary job of a camera is to represent the viewer’s position in

space relative to the rest of the scene, the camera object also defines zoom and focus properties that

affect the projection of the scene into the view, something we will look at here in more detail. Each camera

type in Away3D allows different methods of movement, and the one you use depends on the type of

viewing you require.

The basic camera in Away3D is the Camera3D class, an instance of which is created by default in the

camera property of the View3D object. This camera produces a standard, front-facing perspective

projection of the scene by positioning itself –1,000 units along the Z axis and facing directly toward the

scene’s origin.

THE VIEW, SCENE, AND CAMERA

37

The Camera3D object

Let’s create a new document class that extends Chapter03SampleBase with the following code, overriding

the _createCamera() method to explore the various camera properties we have available for

manipulating the Camera3D object.

package flash3dbook.ch03
{
 import away3d.cameras.*;

 [SWF(width="800", height="600")]
 public class CameraProperties extends Chapter03SampleBase
 {
 protected override function _createCamera() : void
 {
 // Create a new camera object
 var camera : Camera3D = new Camera3D();
 camera.x = 0;
 camera.y = 0;
 camera.z = -1000;

 //Assign the new camera to the view
 _view.camera = camera;
 }
 }
}

In the preceding code, we replace the default camera by resetting the camera property on the view with a

new Camera3D instance. We start this example by recreating the view’s default camera position, and

because we have used a Camera3D instance, we have total control over the motion the camera can

perform. We will take a look at more bespoke camera types later; for now, let’s explore how we can adjust

the Camera3D properties with our new setup to produce different results in the view.

Moving the camera

Compiling the CameraProperties class at this stage will display what you have already seen in previous

examples, shown in the top left-hand image of Figure 3-8. With this setup, we have the ability to change

the x, y and z properties of the camera, directly controlling the X, Y, and Z components of its position

vector in the 3D space of the scene. Changing the position of our camera will affect the output of the

rendered view, as we can see with the four different setups represented in the four images of Figure 3-8.

You can try these out for yourself by replacing our new Camera3D object’s x, y, and z property values with

the corresponding x, y, and z values displayed for each image.

CHAPTER 3

38

Figure 3-8. The same scene from four different camera positions: The top-left image uses the default

camera position, x = 0, y = 0, z = –1.000. In the top-right image, the camera is moved up and right to x =

150, y = 100, z = –1,000. In the bottom-left image, it is moved back and left to x = –200, y = 0, z = –2,000.

And in the bottom-right image, it is moved forward to x = 0, y = 0, z = –200.

Rotating the camera

Camera objects in Away3D are rotated using the same rotationX, rotationY, and rotationZ

properties that regular 3D objects use. The names of each rotation property reflect the axis around which

the rotation is carried out, and their values represent the amount of rotation, in degrees. However, the

visual effect of rotating a camera appears different to rotating an object, because the camera is acting as

your point of view. This means that rotating around the X axis results in a movement similar to nodding

your head, rotating around the Y axis is similar to shaking your head to say “no”, and rotating around the Z

axis is similar to leaning your head left or right, as you might do if you had water in your ear!

Let’s look at the result of a simple camera rotation by replacing the contents of the _createCamera()

method in the CameraProperties example with the following code:

// Create a new camera object
var camera : Camera3D = new Camera3D();
camera.x = 0;
camera.y = 0;
camera.z = -1000;

// Rotate the camera by 10 degrees around the Y-axis
camera.rotationY = 10;

THE VIEW, SCENE, AND CAMERA

39

//Assign the new camera to the view
_view.camera = camera;

Here, we are resetting the camera position to the default set by the view, then rotating the camera 10

degrees around the Y axis. Recompiling CameraProperties will display the result shown in Figure 3-9,

with the view appearing as though you have turned your head 10 degrees to the right. The left cube (white)

has disappeared from your field of view, and the right cube (gray) is now displayed slightly to the left of the

center of the stage.

Figure 3-9. CameraProperties example viewed after rotating the camera 10 degrees around the Y axis,

effectively twisting the field of view to the right.

Adjusting the zoom and focus properties

As mentioned previously, the camera in Away3D has properties that allow you to make image adjustments

similar to those found on a real camera. For this sort of application, we aren’t talking about exposure and

shutter speed settings, but there are a few familiar sounding properties to be found on the Camera3D

object such as zoom, focus, and lens. Here, we will look at the effects of adjusting the first two properties

in that list. Lens controls are slightly more complex and are dealt with in more detail in Chapter 10.

To explore the effects of the zoom and focus properties, we can replace the contents of the

_createCamera() method in the CameraProperties example with the following code:

// Create a new camera object
var camera : Camera3D = new Camera3D();
camera.x = 0;
camera.y = 0;
camera.z = -500;

//set the zoom and focus properties
camera.zoom = 10;
camera.focus = 100;

//Assign the new camera to the view
_view.camera = camera;

CHAPTER 3

40

Here, we set the camera’s z position to –500, which is half the default distance to the center of the scene.

We also recreate the default settings of the zoom and focus properties of 10 and 100 respectively, so that

we may adjust these in subsequent compilations. Recompiling the CameraProperties example will

display the image shown in the top left-hand corner of Figure 3-10.

Let us start our adjustments by setting the zoom property to 20, or twice the default amount. The effect on

the view is much the same as you would expect for a real life camera zoom control; the resulting display is

scaled in proportion to the zoom value. Recompiling the CameraProperties example will output the

image shown in the top-right corner of Figure 3-10, with the scene displayed at twice the scale of the

image produced with our previous settings.

Next, let’s explore the effect of adjusting the focus property. In this case, the value of focus does not

relate to the focus setting in a real life camera but represents the distance between the camera position

and the viewing plane. In 3D graphics, a viewing plane is an invisible surface in space that is used as the

basis for projecting the scene to the view. If you imagine the computer screen as your viewing plane, the

focus property adjusts the theoretical distance between the surface of this plane and your camera’s

position in front of the plane. A small focus value results in a camera very close to the viewing plane, with

an extremely wide angle of view. If we adjust our focus property to 10 and recompile the

CameraProperties example, the result (shown in the bottom-left image of Figure 3-10) looks similar to

that of a wide-angle lens, with much more of the scene included in the viewport and very high perspective

distortion. A large focus value places the camera further from the viewing plane, resulting in a narrower

field of view and a loss of perspective distortion. Setting the focus property to 500 and the zoom property

back to 10 and recompiling shows the image in the bottom right-hand corner of Figure 3-10, with a highly

scaled scene where the sides of the cubes exhibit almost no perspective at all.

Figure 3-10. The same scene with four different zoom and focus settings on the camera: In the top-left

image, the camera properties are set to the default values of zoom = 10, focus = 100. In the top-right

image, the camera properties are set to zoom = 20, focus = 100. In the bottom-left image, the camera

properties are set to zoom = 20, focus = 10. And in the bottom-right image, the camera properties are set

to zoom = 10, focus = 500.

THE VIEW, SCENE, AND CAMERA

41

As the preceding example has demonstrated, the focus and zoom properties of the camera object allow

us to adjust the amount of perspective distortion and scaling that is applied when projecting the contents of

the scene into the view. These properties are available for all camera types in Away3D.

Aiming at objects using lookAt()

Often, the reason for rotating the camera is to center the viewport on some specific point in space, for

example, an object of interest. Calculating the precise rotation needed to center an object is not a trivial

task, which is why Away3D has a method to achieve this called lookAt(), defined on all camera classes.

The lookAt() method requires a position vector of the type away3d.math.Number3D (a 3D variant of the

native Point class in Flash). This is used as the position in the scene toward which the camera must

rotate. Let’s create a new example that extends the Chapter03SampleBase class with the following code

to explore the operation of the lookAt method.

package flash3dbook.ch03
{
 import away3d.cameras.*;
 import away3d.core.math.Number3D;

 [SWF(width="800", height="600")]
 public class CameraLookAt extends Chapter03SampleBase
 {
 protected override function _createCamera() : void
 {
 // Create a new camera object
 var camera : Camera3D = new Camera3D();
 camera.x = 1000;
 camera.y = 500;
 camera.z = -1000;

 //Use lookAt() to point the camera towards the center of the scene
 camera.lookAt(new Number3D(0, 0, 0));

 //Assign the new camera to the view
 _view.camera = camera;
 }
 }
}

In the _createCamera() method, a new Camera3D object is created with its position vector set to (1000,

500, –1000) in the scene (up and to the right). We then use the lookAt() method on the camera to point it

towards the scene’s origin at (0, 0, 0). Compiling the code should display the output shown in Figure 3-11.

CHAPTER 3

42

Figure 3-11. Sample scene after moving the camera up and to the right and using lookAt() to point it

toward the scene origin

More often, we want to center the viewport on an object rather than an arbitrary point in space. All 3D

objects have a position property that represents the position vector of the object’s local coordinate

system as a Number3D object. This property can be used with the same lookAt() method call in our

example to point the camera toward an object’s position. Let’s try this by replacing the lookAt line in the

CameraLookAt example with the following code to center the viewport on the second (gray) cube primitive,

which is located to the right of the scene’s origin:

//Use lookAt() to point the camera towards the cube2 primitve
camera.lookAt(_cube2.position);

The lookAt() method on the Camera3D object is inherited from the Object3D class, meaning that any 3D

object in Away3D can be rotated to point toward a position vector in the scene. However, in practice, its

most common use is in manipulating camera rotations.

The TargetCamera3D object

Most of the time, the Away3D applications you create will be animated, interactive scenes rather than still

images. At some point, it will make sense to have the camera track a moving object so that the object

stays in view at all times. If you’ve been following the previous section, you might already have solved that

problem in your head, thinking a good solution would be to use the lookAt() method on every frame.

You’d be right, but since tracking an object is such a regular requirement in Away3D, the TargetCamera3D

object will do this for you automatically. The target property tells a TargetCamera3D object which 3D

object to track, and the camera rotation will update automatically each time you render the view.

Let’s create another example extending the Chapter03SampleBase class and set up a target camera to

track one of the cubes while the camera moves.

THE VIEW, SCENE, AND CAMERA

43

package flash3dbook.ch03
{
 import away3d.cameras.*;
 import flash.events.Event;

 [SWF(width="800", height="600")]
 public class TargetCameraMovement extends Chapter03SampleBase
 {
 protected override function _createCamera() : void
 {
 // Create a new camera object
 var camera : TargetCamera3D = new TargetCamera3D();
 camera.z = -1000;

 //Assign the camera target as cube2
 camera.target = _cube2;

 //Assign the new camera to the view
 _view.camera = camera;
 }
 }
}

The target camera in the preceding code has been configured to target the cube2 object in our scene,

which is the gray cube visible to the right of the scene’s origin. Compiling the example renders the view

with the cube2 object at its center, in exactly the same orientation we saw in the previous CameraLookAt

example demonstrating the lookAt method.

To confirm the TargetCamera3D object is updating its lookAt routine every frame, we need to add some

movement. Override the _onEnterFrame method by adding the following code to the end of our

TargetCameraMovement class definition:

protected override function _onEnterFrame(ev : Event) : void
{
 _view.camera.y = -(stage.mouseY - stage.stageHeight/2);
 _view.camera.x = stage.mouseX - stage.stageWidth/2;
 _view.render();
}

Recompiling the TargetCameraMovement example, we see that the x and y coordinates of the camera

now update with the x and y coordinates of the mouse cursor. At all positions, the camera keeps the cube2

object firmly locked to the center of the view.

The HoverCamera3D object

A common 3D application in Flash is one that allows the user to navigate all sides of a 3D model by

rotating the camera around using the mouse. For this kind of interaction, the HoverCamera3D class is an

ideal camera type, as it simplifies the necessary rotation and position updates required to orbit around a

target object with the use of some extra features.

CHAPTER 3

44

The HoverCamera3D class inherits from the TargetCamera3D class and adds some custom properties to

fully serve its purpose. Let’s build an example to demonstrate these new properties by extending the

Chapter03SampleBase class with the following code:

package flash3dbook.ch03
{
 import away3d.cameras.*;
 import flash.events.Event;

 [SWF(width="800", height="600")]
 public class HoverCameraMovement extends Chapter03SampleBase
 {
 private var _hoverCamera : HoverCamera3D;

 protected override function _createCamera() : void
 {
 // Create a new camera object
 _hoverCamera = new HoverCamera3D();
 _hoverCamera.distance = 2000;
 _hoverCamera.tiltAngle = 10;

 //Assign the new camera to the view
 _view.camera = _hoverCamera;
 }

 protected override function _onEnterFrame(ev : Event) : void
 {
 _hoverCamera.panAngle = stage.mouseX - stage.stageWidth/2;
 _hoverCamera.hover();
 _view.render();
 }
 }
}

The _createCamera() method in the preceding code creates a new HoverCamera3D object and sets two

of its properties, called distance and tiltAngle. Further down in the _onEnterFrame() method, the

HoverCamera3D object has its _panAngle property updated from the x value of the mouse position.

Compiling the movie should see the x coordinate of the mouse controlling the horizontal rotation at which

the scene is viewed, with the camera looking down at an elevated angle onto the cube objects.

To explain what is going on, we need to analyze what the three new properties introduced in the hover

camera are doing. Going over them again, these are the distance, panAngle, and tiltAngle properties

of the HoverCamera3D object.

In Figure 3-12, the panAngle and tiltAngle properties represent the rotations (in degrees) performed on

the hover camera by and � respectively. Here, a single cube and camera is displayed from above in the

left image and from the side in the right image. Incrementing or decrementing the panAngle value causes

the camera to orbit around the target object in a horizontal plane, as represented in the left image.

THE VIEW, SCENE, AND CAMERA

45

Incrementing or decrementing the tiltAngle value causes the camera to increase or decrease it’s

elevation angle, as represented in the right image. The distance property defines the radius on which

both these rotations are performed. Two angles and a radius used to define a position in space in this

manner are sometimes referred to as polar coordinates.

Figure 3-12. In this schematic view of a simple scene using the hover camera, the left image show the

scene displayed from above, with denoting the panAngle property. The right images shows the scene

displayed from the side, with � denoting the camera tiltAngle property. Note that d denotes the distance

property in both cases.

In our example, tiltAngle is set to a constant value of 10 degrees, giving the camera a slightly elevated

view of the scene. panAngle is set to update with mouse position, giving you full control over the

horizontal angle at which the scene is viewed. The actual position and rotation values of the

HoverCamera3D object are recalculated every frame from the tiltAngle, panAngle, and distance

properties by calling the hover() method on the hover camera in _onEnterFrame(), directly before the

view is rendered.

You may have noticed that our example has some inertial damping applied to the camera motion relative

to the movement of the mouse. This is because HoverCamera3D updates its coordinates by default using a

series of steps, easing into its new position. The severity of the ease can be modified using the steps

property, allowing you to set very slow easing, medium easing or no easing at all should you wish. The

default value is 8. You can experiment with this setting by adding the following line to the end of the

_createCamera() method in our HoverCameraMovement example.

hoverCamera.steps = 0;

With the value of steps set to 0 in the preceding code, there is no easing at all on camera motion, and

recompiling the example with this value should make things feel much more snappy. Alternatively,

recompiling with a value of 16 for the steps property creates the opposite effect, with all sudden

movements of the mouse smoothed into a fluid camera motion.

CHAPTER 3

46

Summary

In this chapter, we have covered essential topics such as the basics of 3D geometry and how to simplify its

use, as well as the most recurrent Away3D classes that you will use in every project. If you have found

things a bit of a struggle so far, don’t worry! You are well on your way to mastering 3D in Flash.

Before you move on, make sure you can recall and feel comfortable with the following concepts and ideas:

� The view is the hub that connects the scene and the camera together.

� The view is represented in Away3D by the View3D class, found in the

away3d.containers package, and is an extension of the Flash display object Sprite.

� The clipping classes located in the away3d.core.clip package define the view

boundaries (the viewport) and crop the visible area of the scene. A new clipping object is

applied to the view by resetting the clipping property of the View3D object.

� The vanishing point of a view is controlled by its (x,y) position on the stage and can also

represent the projected origin of the scene.

� The view must be manually rendered for it to display anything. This is done using the

render() method of the View3D object, typically once per frame.

� The scene is like a 3D display list, containing all renderable 3D objects.

� The scene is represented in Away3D by the Scene3D class, found in the

away3d.containers package.

� 3D objects are added to and removed from the scene using addChild() and

removeChild() methods, which are also available on ObjectContainer3D objects.

� Moving, scaling or rotating a 3D container affects all contained children.

� 3D containers can be used as pivots, to rotate a contained 3D object around a point

other than its local origin.

� The camera serves as the point of observation used by the view.

� Camera3D, TargetCamera3D, and HoverCamera3D are types of camera object in

Away3D, and differ mainly in how their position and rotation properties are controlled.

� Using the lookAt() method, a camera can center the view on any point in a scene such

as the position of a 3D object or an arbitrary position vector.

The next chapter covers the different visual types of object encountered in Away3D, and explains how they

are best used in your 3D projects.

47

Chapter 4

Primitives, Models, and Sprites

In the majority of Away3D projects, the contents of a scene can be split into three categories. Primitives

are simple 3D geometric shapes (such as the Cube primitive shown in the previous chapter) generated

internally by the engine from preset collections of properties. Models derive their geometry from imported

3D file formats such as .dae, .3ds, or .obj files that are created using 3D modeling software. Sprites in

3D are flat images that scale with distance but ignore rotation, as if they are constantly facing the camera.

You obviously don’t need to know everything about the different content types to produce high-quality 3D

content, but knowledge of what’s possible is a great catalyst for creativity! A practical example can be

found at the end of this chapter; it demonstrates how the topics covered here can be used together for

maximum effect in a single project.

Knowing the basic terminology

The term “primitive” is a word commonly used in 3D graphics. In the majority of cases, including Away3D,

it describes a simple three-dimensional geometric model such as a cube, sphere, or cylinder. The term is

also used at times to speak of the most elementary visual part of a 3D object, such as a face or line

segment, but in Away3D, we refer to these as “elements”. Elements are visual surfaces or lines defined in

3D and have a form determined by the most fundamental of all 3D data, vertices.

Vertices

A vertex is a single point in space represented by an X, Y, Z vector that serves as the building block of a

larger shape. It is an invisible entity by itself, but visual elements are constructed using several vertices

grouped together. For example, two vertices define a line; three vertices define a triangle, and so on.

When defining a surface in 3D, a triangle is the simplest (and most common) representation, although any

number of vertices above this is allowed. In Away3D, lines and surfaces are represented by the classes

CHAPTER 4

48

Segment and Face respectively, while vertices are represented by the Vertex class. All are found in the

away3d.core.base package.

Faces and segments

Faces and segments are the two most common visual elements in Away3D. In other 3D applications, a

surface that consists of more than three vertices will sometimes be referred to as a polygon, whereas a

three-vertex surface will be called a triangle. These are valid terms, but they don’t appear very often in

Away3D. Face is the generic name used for a surface, and segment is the generic name used for a line.

Each can be made up of any number of vertices and can, therefore, have any number of straight edges.

Where faces and segments differ is in their permitted drawing routines. Faces will be drawn as filled areas;

segments will be drawn as connecting lines. This aspect is explored in more detail in Chapter 5.

Meshes and primitives

A mesh is a collection of vertices made visible by a collection of elements that use those vertices. As a

saving measure, vertices can be reused by multiple elements in a mesh; it is rarely necessary to build

elements with unique vertex points. A simple cube, for example, can have its shape defined by eight

vertices, positioned at each corner. To create a solid object, these vertices are shared between twelve

faces; six sides composed of two triangles each.

The cube belongs to a group of 3D objects called primitives. These are mesh-generating pieces of code

that use simple geometric equations to produce their geometry. In Away3D, primitive objects are created

using the classes found in the away3d.primitives package. Each primitive class controls the process of

mesh generation via a series of properties that update the internal mesh configuration when changed.

Billboards and sprites

A billboard is a 2D element that can be positioned inside a 3D space. It contains no rotational information,

so when rendered it appears to face the camera as a flat image that scales with distance. Consequently, it

only requires one vertex point representing its position in the scene. Billboards belong to the family of 3D

objects commonly referred to as sprites, although there are some fundamental differences between these

and the sprites we are accustomed to in Flash. The basic type can be created with the Sprite3D class

located in the away3d.sprites package.

3D sprites were heavily used in the early years of 3D gaming, because they can easily depict a complex

shape without the need for excessive drawing operations. Many different types exist—billboards being the

simplest form that can replace objects with spherical symmetry (i.e., objects that look roughly the same

from all angles), such as particles, spheres, and clouds. More complex sprites allow different images to be

used for different viewing angles (a technique seen in old-school first-person shooter games for drawing

the enemies) or permit some rotation to represent objects with axial symmetry (objects that look roughly

the same from a restricted set of angles) such as barrels or trees.

Setting up this chapter’s base class

As preparation for the following code samples, let’s set up the base class that we will extend to create the

sample projects throughout this chapter. The Chapter04SampleBase class is created in the

flash3dbook.ch04 package and is written as follows:

PRIMITIVES, MODELS, AND SPRITES

49

package flash3dbook.ch04
{
 import away3d.cameras.*;
 import away3d.containers.*;

 import flash.display.*;
 import flash.events.*;

 public class Chapter04SampleBase extends Sprite
 {
 protected var _camera : HoverCamera3D;
 protected var _view : View3D;

 public function Chapter04SampleBase()
 {
 super();

 _createView();
 _createScene();
 }

 protected function _createView() : void
 {
 _camera = new HoverCamera3D();
 _camera.distance = 1000;
 _camera.tiltAngle = 10;
 _camera.panAngle = 180;

 _view = new View3D();
 _view.x = 400;
 _view.y = 300;
 _view.camera = _camera;
 addChild(_view);
 addEventListener(Event.ENTER_FRAME, _onEnterFrame);
 }

 protected function _createScene() : void
 {
 // To be overridden
 }

 protected function _onEnterFrame(ev : Event) : void
 {
 _camera.panAngle += (stage.mouseX - stage.stageWidth/2) / 100;
 _camera.hover();

 _view.render();

CHAPTER 4

50

 }
 }
}

We start by importing the packages we will be using and then define the new class extending from Sprite

(as is required with any document class). In the constructor, we call two methods: _createView() which

sets up our basic view framework and the _onEnterFrame() handler method for rendering updates, and

_createScene() which is where 3D content will be created and added to the scene. This is left blank in

the Chapter04SampleBase class, to be overridden by our subsequent example classes.

Understanding common primitives

Some primitives are more commonly used than others. Countless sphere models of the earth are sprinkled

across the Web as part of a variety of projects. Planes are probably used in even more places, serving as

image cards in product carousels and pages in sites with creative 3D navigation. These objects are all

easy to create using Away3D.

For our first look at primitives, we create a document class extending Chapter04SampleBase:

package flash3dbook.ch04
{
 import away3d.materials.*;
 import away3d.primitives.*;

 import flash3dbook.ch04.*;

 [SWF(width="800", height="600")]
 public class CommonPrimitives extends Chapter04SampleBase
 {

 public function CommonPrimitives()
 {
 super();
 }

 protected override function _createScene() : void
 {
 // Create default material
 var mat : WireColorMaterial = new WireColorMaterial(0xcccccc);
 }
 }
}

The preceding code sets up our SWF with a width of 800 and height of 600, overrides the

_createScene() method to allow us to add our custom content, and creates a new WireColorMaterial

object that we will apply as our default material to our newly created Away3D primitive objects.

PRIMITIVES, MODELS, AND SPRITES

51

The plane primitive

The plane primitive provides a natural step from two to three dimensions, thanks to its flat appearance. Its

geometry consists of a 2D mesh in the shape of a square or rectangle. Because of this, planes are

frequently used as a way of adding subtle 3D effects to an interface by projecting 2D content (such as

images or text) onto the plane’s surface as a material. The content can then be rotated in three

dimensions, enabling some creative methods of display and interaction. This form of interface is commonly

referred to as postcards in space, because the planes appear like individual postcards onto which 2D

content is drawn.

Plane primitives are created using the Plane class from the away3d.primitives package. The yUp

property defines whether the plane has its geometry built with its normal (the vector perpendicular to the

plane’s surface) pointing along the Y axis (true) or Z axis (false). The majority of Away3D primitives

contain a yUp property in order to make this distinction. We can see the effect it has on a Plane object by

adding the following lines to the _createScene() method.

var plane : Plane = new Plane();
plane.yUp = false;
plane.material = mat;
_view.scene.addChild(plane);

Here, we create a new plane primitive by instantiating a Plane object, configure its yUp and material

properties, and add it to the scene. Notice that the plane’s material property is set to the material

instance we defined earlier. Try not to worry about what this is doing for now, as Chapter 5 will handle

materials in more depth.

Compiling the CommonPrimitives example at this point will draw a front-facing plane with a grey outlined

material. The plane’s mesh is made up of two triangles by default. In some scenarios, you will want to

subdivide the mesh into smaller triangles, for example, if you plan to deform the plane like a piece of

paper. This type of subdivision, or segmentation, is achieved by using the segmentsW and segmentsH

properties to subdivide along the width and height of the plane respectively. We can see the effects of

subdivision by adding the following lines of code to the end of our _createScene() method from the

previous sample:

plane.segmentsW = 10;
plane.segmentsH = 10;

Recompiling the CommonPrimitives example will display the result shown in Figure 4-1.

Figure 4-1. Plane with segmentsW and segmentsH both set to 10

CHAPTER 4

52

The size of a plane is determined by the width and height properties of the Plane object. These are both

set to 100 by default but can be updated in a similar manner to the segmentsW and segmentsH properties

by adding the following lines of code to the end of our _createScene() method.

plane.width = 200;
plane.height = 200;

Recompiling the CommonPrimitives example will display the same plane shown in Figure 4-1, only this

time at twice the width and height.

Back-face culling

Pause for a moment, run the code again, and roll over the Flash movie with your mouse to rotate the

camera so that the plane is observed from behind. At this angle the plane turns invisible, because of an

optimization technique known as back-face culling. Any face pointing away from the camera is ignored by

default in the render process. The direction in which a face points is defined by a 3D vector known as the

normal vector, which can be obtained in Away3D by using the getter property normal on the Face object.

The normal vector is calculated as a vector perpendicular to the surface of the face. The direction the

normal vector points is calculated such that if we were to observe the face by looking along its normal

vector (so that it is pointing away from us), the vertices making up the face would be arranged in a

counterclockwise order. It follows that if back-face culling is enabled on an object’s mesh, a triangle

prepared for drawing to screen with a clockwise ordering of its vertices will be omitted from the render

process.

Back-face culling is usually a good thing, because most mesh objects (such as cubes and spheres) are

built in such a manner that no faces are visible from their reverse side while viewing from outside the

object. For example, you can't see the inside of a 3D box created by a cube primitive unless the camera is

positioned inside the cube’s mesh.

Planes are an exception to this rule, so you’ll often want to turn off back-face culling for your plane objects.

You can do this by setting the property bothsides to true.

plane.bothsides = true;

Add the preceding line of code to the end of our _createScene() method and recompile

CommonPrimitives to see both sides of the plane when you rotate it with the mouse.

The cube primitive

The cube is another commonly used primitive and is created in Away3D using the Cube class found in the

away3d.primitives package. To continue our CommonPrimitives example, add the following code to

the end of the _createScene() method to create a cube and position it 200 units to the right:

var cube : Cube = new Cube();
cube.material = mat;
cube.x = 200;
_view.scene.addChild(cube);

PRIMITIVES, MODELS, AND SPRITES

53

To make room for the cube, add the following line of code to position the plane 200 units to the left:

plane.x = -200;

Recompiling the CommonPrimitives example displays the cube and plane primitives side by side. The

cube uses similar properties as the plane for defining segmentation and size, adding a depth and

segmentsD property for the extra depth dimension of the cube. Adding the following code to the end of the

_createScene() method will subdivide the cube object and double its width, height, and depth

dimensions:

cube.segmentsW = 10;
cube.segmentsH = 10;
cube.segmentsD = 10;
cube.width = 200;
cube.height = 200;
cube.depth = 200;

The sphere primitive

Sphere primitives are created in Away3D using the Sphere class, again found in the away3d.primitives

package. The size of a sphere is not determined by any width, height or depth properties we have seen in

previous primitives, but by a single property called radius. To demonstrate this, add the following lines of

code to the _createScene() method.

var sphere : Sphere = new Sphere();
sphere.radius = 50;
sphere.material = mat;
_view.scene.addChild(sphere);

Recompiling the CommonPrimitives example will display the sphere in between the existing cube and

plane objects. The sphere on the left in Figure 4-2 displays the rendered output. Here, we can instantly

spot a problem with the sphere primitive, in that the small amount of faces making up the geometry causes

it to look very blocky. To create a smoother looking sphere we need to use more faces. Luckily, this is

possible by setting segmentation in the same way as the previous primitives, using segmentsW and

segmentsH properties on the sphere primitive. Add the following lines of code to the _createScene()

method.

sphere.segmentsW = 24;
sphere.segmentsH = 12;

Recompiling the CommonPrimitives example will display a sphere similar to the one on the right in Figure

4-2. In the preceding code, the values used for the segmentsW and segmentsH properties are not equal,

as they were for the cube and plane primitives. This is because the construction for the sphere’s geometry

is different, with the overall distance between the first and last height segments half that of the distance

between the first and last width segments (the latter of which would more commonly be referred to as the

circumference). Taking this into account, the optimal configuration for an even segmentation of a sphere is

to set half the amount of width segments compared to the amount of height segments.

CHAPTER 4

54

It might be tempting to raise the segmentsW and segmentsH properties of the sphere to

a very high number to achieve a perfectly smooth surface. However, this approach has a

large effect on the amount of faces rendered each frame and thus impacts heavily on

performance. There are other ways of making surfaces look smooth, as we will see

when covering materials in chapter 5.

Figure 4-2. Default sphere (left) created with segmentsW = 8, segmentsH = 6, and sphere with higher

level of detail (right), created with segmentsW = 24, segmentsH =12

Understanding wire primitives and line segments

So far, you have seen how to create solid objects composed of face elements in Away3D. But suppose we

wanted to create a wireframe representation of a primitive, consisting of line segments forming the edges

of a cube or edges of a plane? We have the ability to draw lines for the edges of faces as seen in the

preceding example using the sphere primitive, but this is not ideal if the edges of our faces form polygons

with more that three sides. We need a new way of constructing primitives in Away3D using segment

elements. Happily, this can be accomplished using the wire primitive classes located in the same

away3d.primitives package.

For our first look at wire primitives, we create a new document class extending Chapter04SampleBase.

package flash3dbook.ch04
{
 import away3d.materials.*;
 import away3d.primitives.*;

 import flash3dbook.ch04.*;

 [SWF(width="800", height="600")]
 public class CommonWirePrimitives extends Chapter04SampleBase
 {
 public function CommonWirePrimitives()
 {
 super();
 }

PRIMITIVES, MODELS, AND SPRITES

55

 protected override function _createScene() : void
 {
 // Create default material
 var mat : WireframeMaterial = new WireframeMaterial(0x000000);
 }
 }
}

In the preceding code, the default material is set as a WireFrameMaterial object, a material that extends

the base class SegmentMaterial and is therefore compatible with segment-based objects.

Wireframe primitives

Most of our face-based primitives have equivalent segment-based primitives in the wireframe family. In

Away3D, these wireframe primitives are created with classes named the same as regular primitives, but

prefixed with the word “Wire”. The following code is a reconstruction of the code added to the

_createScene() method of the CommonPrimitives example in the previous section, with wireframe

primitives in place of regular primitives:

var plane : WirePlane = new WirePlane();
plane.yUp = false;
plane.x = -200;
plane.width = 200;
plane.height = 200;
plane.material = mat;
_view.scene.addChild(plane);

var cube : WireCube = new WireCube();
cube.x = 200;
cube.width = 200;
cube.height = 200;
cube.depth = 200;
cube.material = mat;
_view.scene.addChild(cube);

var sphere : WireSphere = new WireSphere();
sphere.radius = 50;
sphere.segmentsW = 24;
sphere.segmentsH = 12;
sphere.material = mat;
_view.scene.addChild(sphere);

Adding this code to the end of the _createScene() method in the CommonWirePrimitives example and

compiling will display the same three primitive objects as before, only this time rendered entirely with line

segments using the WireframeMaterial object as their material.

CHAPTER 4

56

Combining wireframe and regular primitives

A useful effect can be achieved by combining a regular primitive with its wireframe counterpart. Try

positioning a WireCube and a regular Cube on top of each other by creating the following new document

class extending Chapter04SampleBase.

package flash3dbook.ch04
{
 import away3d.materials.*;
 import away3d.primitives.*;

 import flash3dbook.ch04.*;

 [SWF(width="800", height="600")]
 public class CombinedWireAndRegularCube extends Chapter04SampleBase
 {
 public function CombinedWireAndRegularCube ()
 {
 super();
 }

 protected override function _createScene() : void
 {
 var wireCube : WireCube = new WireCube();
 wireCube.material = new WireframeMaterial(0x000000);
 _view.scene.addChild(wireCube);

 var regularCube : Cube = new Cube();
 regularCube.material = new ColorMaterial(0xcccccc);
 regularCube.scale(0.99);
 _view.scene.addChild(regularCube);
 }
}

Here, we are creating a WireCube object and Cube object at the same position in space. The wire cube

uses the same WireframeMaterial object seen before to define the color of the segments in the

WireCube primitive, while the regular cube uses a ColorMaterial object for defining the color of the

faces used in the Cube primitive. Compiling the CombinedWireAndRegularCube example will display what

appears to be a single cube with its edges outlined in black, as shown in Figure 4-3. The regular cube

object is scaled to 0.99 of its original size by using the scale() method (available to any 3D object in

Away3D). This is done to ensure the segments of the wire cube always overlay the faces of the regular

cube. It is an amount large enough to influence the sorting order calculated by the Z-sorting algorithm but

small enough to not be obviously visible in the scene.

Compare the output in Figure 4-3 with the previous rendering of a regular cube with a

WireColorMaterial material in the CommonPrimitives example to see the visual difference between

rendering with wire primitives and rendering outlined faces with regular primitives.

PRIMITIVES, MODELS, AND SPRITES

57

Figure 4-3. Using a combination of wire primitives and regular primitives, a cube with outlined edges can

be constructed.

Drawing irregular lines in space

The segment element can be implemented as the building block of more user-defined geometry by using

the LineSegment primitive class, also located in the away3d.primitives package. This creates a simple

3D line in space, by specifying the start and end point vectors. To experiment with this, let’s create the

following new document class extending Chapter04SampleBase:

package flash3dbook.ch04
{
 import away3d.core.math.*;
 import away3d.primitives.*;

 import flash3dbook.ch04.*;

 [SWF(width="800", height="600")]
 public class LinesInSpaceWithLineSegment extends Chapter04SampleBase
 {
 public function LinesInSpaceWithLineSegment ()
 {
 super();
 }

 protected override function _createScene() : void
 {
 var i : int, p1 : Number3D, p2 : Number3D, seg : LineSegment;

 p1 = new Number3D();
 p2 = new Number3D();

 for (i=0; i < 500; i++) {
 p2.x = (Math.random()-0.5) * 200;
 p2.y = (Math.random()-0.5) * 200;
 p2.z = (Math.random()-0.5) * 200;

CHAPTER 4

58

 p2.add(p2, p1);

 seg = new LineSegment();
 seg.start = p1;
 seg.end = p2;
 _view.scene.addChild(seg);

 p1.clone(p2);
 }
 }
 }
}

Here, we create 500 LineSegment objects with Number3D objects used for the start and end positions of

the line. It is ensured that the start property of the next LineSegment object is the same as the end

property of the previous LineSegment object. This creates a continuous line moving between random

points in space. Compiling the code should display the output shown in Figure 4-4.

Figure 4-4. Randomly generated pattern from the LinesInSpaceWithLineSegment example using

LineSegments

PRIMITIVES, MODELS, AND SPRITES

59

Using regular polygons

Earlier in this chapter, we talked about the plane primitive having a square or rectangular shape to its

sides. This is a restriction of the Plane class in Away3D, but it is also possible to create a plane with any

number of sides using the RegularPolygon class. Here, the resulting convex geometry has rotational

symmetry, forming a mesh in the shape of a pentagon, hexagon, octagon, and so on. The number of sides

is set by the sides property of the RegularPolygon object.

To explore the different results possible, let’s create a new document class by extending

Chapter04SampleBase:

package flash3dbook.ch04
{
 import away3d.materials.*;
 import away3d.primitives.*;

 import flash3dbook.ch04.*;

 [SWF(width="800", height="600")]
 public class PolygonsWithRegularPolygon extends Chapter04SampleBase
 {
 public function PolygonsWithRegularPolygon ()
 {
 super();
 }

 protected override function _createScene() : void
 {
 //create a pentagon
 _createPoly(5, 0xdddddd, -250);

 //create a dodecahedron
 _createPoly(12, 0x999999, 0);

 //create a circle
 _createPoly(100, 0x222222, 250);
 }

 protected function _createPoly(sides : int, color : int, x : Number) : void
 {
 var polygon : RegularPolygon;

 polygon = new RegularPolygon();
 polygon.sides = sides;
 polygon.material = new ColorMaterial(color);
 polygon.x = x;
 polygon.yUp = false;
 polygon.bothsides = true;

CHAPTER 4

60

 _view.scene.addChild(polygon);
 }
 }
}

In the preceding code, creation of the various RegularPolygon objects has been broken out into a

separate class method called _createPoly(), which accepts three arguments: sides, color, and x.

Each RegularPolygon object is created inside this method using the sides argument for its number of

sides, color argument for its material color, and x argument for its X axis position. Aside from these

properties, each new object also has its yUp property set to false and bothsides property set to true, in

much the same way our Plane object had in the CommonPrimitives example earlier in this chapter.

Using the _createPoly() method, three RegularPolygon objects are created with varying numbers of

sides and varying material color. Compiling the example should display the image shown in Figure 4-5.

Figure 4-5. Three polygons created using the RegularPolygon class

Like the common primitives explored earlier, the RegularPolygon primitive has a line segment equivalent

called WireRegularPolygon. To see it in action, replace the contents of the _createPoly() method with

the following code:

var wirePolygon : WireRegularPolygon;

wirePolygon = new WireRegularPolygon();
wirePolygon.sides = sides;
wirePolygon.material = new WireframeMaterial(color);
wirePolygon.x = x;
wirePolygon.yUp = false;
wirePolygon.bothsides = true;

view.scene.addChild(wirePolygon);

Here, we have replaced all RegularPolygon objects with WireRegularPolygon objects and the

ColorMaterial with a WireframeMaterial. The resulting geometry on compiling is identical to that

shown in Figure 4-5, only now the primitives are drawn using segments instead of faces as their mesh

elements.

PRIMITIVES, MODELS, AND SPRITES

61

Working with external models

Primitives are a good starting point for geometry creation in Away3D and can be extremely useful in

creating basic 3D effects. But let’s face it; they can only take us so far. For more advanced 3D scenes,

such as those required in game development, the 3D content we want will require more complexity. In

these cases, it is usually necessary to create the model geometry using software dedicated to the task and

then save the result it in a 3D file format that Away3D can understand.

Luckily, Away3D supports most major 3D formats, making it compatible with virtually every piece of 3D

modeling software available. Table 4-1 lists some of the major software packages next to the compatible

export options available for use in Away3D. As well as importing files, there is also a neat way to embed

models directly into an Away3D project, which is covered in the next section.

Table 4-1. Major 3D Modeling Software Titles Alongside Available Away3D File Export Options

Software Away3D-Compatible Formats

Maya OBJ and COLLADA (requires plug-in)

3ds Max OBJ, 3DS, and COLLADA (requires plug-in)

SoftImage OBJ, 3DS, and COLLADA

Cinema4D COLLADA and 3DS

LightWave OBJ and COLLADA

Blender COLLADA, OBJ, 3DS, and ActionScript (requires plug-in)

Google SketchUp KMZ, COLLADA, OBJ, and 3DS

Workflow when loading a model

The loading and parsing procedure for 3D files in Away3D is the same regardless of format. It consists of

five steps:

1. Create a loader object.

2. Create a parser object.

3. Link the parser object to the loader object.

4. Set up event listeners on the loader object.

5. Define the file path of the object to be loaded and commence loading.

To maintain a level of continuity, Away3D uses an approach for loading 3D content similar to the display

list’s approach for loading 2D content with the native Loader class in Flash. Because the object that is

being loaded is unavailable until the loading finishes, the actual loader object serves as a placeholder that

can be added to the scene. Let’s have a look at some familiar code when working with images in Flash.

CHAPTER 4

62

var loader : Loader = new Loader();
loader.contentLoaderInfo.addEventListener(Event.COMPLETE, _onComplete);
loader.load(new URLRequest('image.jpg'))
addChild(loader);

This approach of triggering the download and adding the loader to the display list (regardless of whether

the object has finished loading) is handled exactly same way in Away3D.

var loader : Loader3D = new Loader3D();
loader.addEventListener(Loader3DEvent.LOAD_SUCCESS, _onSuccess);
loader.loadGeometry("model.3ds", new Max3DS());
scene.addChild(loader);

The biggest difference arises from Away3D having separate parsing classes for interpreting the results of

loading, while Flash automatically detects the content type and parses it accordingly. In the preceding

Away3D example, the parser is defined as a new Max3DS object in an argument of the loadGeometry()

call, which tells the engine to use the 3DS parser when reading the loaded file.

All parsers and loaders in Away3D are found in the away3d.loaders package. Loader3D is the default

loader, acting in much the same way as the native Loader class. LoaderCube is a specialized loader class

that acts as a 3D loading indicator that is visible throughout the loading process. Let’s create an example

using the LoaderCube object by extending the Chapter04SampleBase class and overriding the

_createScene() method.

package flash3dbook.ch04
{
import away3d.containers.*;
import away3d.core.base.*;
import away3d.core.utils.*;

import away3d.events.*;
import away3d.exporters.*;
import away3d.loaders.*;

import flash.system.*;
import flash.events.*;

import flash3dbook.ch04.*;
 [SWF(width="800", height="600")]
 public class LoadingExternalModels extends Chapter04SampleBase
 {
 private var _loader:LoaderCube;
 public function LoadingExternalModels ()
 {
 super();
 }

 protected override function _createScene() : void
 {
 _loader = new LoaderCube();

PRIMITIVES, MODELS, AND SPRITES

63

 var url : String = '../../assets/ch04/monkey.3ds';

 _loader.addEventListener(Loader3DEvent.LOAD_SUCCESS, _onSuccess);
 _loader.loadGeometry(url, new Max3DS());
 _loader.scale(10);
 _view.scene.addChild(loader);
 }

 protected function _onSuccess(ev : Loader3DEvent) : void
 {
 trace('Finished loading!')
 }
 }
}

In the preceding code, the monkey.3ds model is obtained from the chapter resource files. This is a zip file

containing all content used in the chapter and can be downloaded along with all other chapters resources

for the book from the downloads section of www.friendsofed.com. Once you have the chapter files on

your local machine, make sure that the file path written for the url property matches the path to your local

file. Because monkey.3ds is being loaded at runtime, the path must be correct from the location of the

compiled SWF file.

Compiling the example will display the loading indicator as it tracks loading progress. Once the model

finishes loading, it replaces the loading indicator on screen. You should also see the trace output

Finished loading! appear in the console window. Because loading a file from a location on your local

machine is very fast, the LoaderCube object may not get a chance to display its loading indicator before

the content completes loading. If you want a closer look at the LoaderCube object, you may have to

upload the monkey model to a location online in order to slow down its loading progress. However, it is

easy to see the LoaderCube object when a load fails, because it doesn’t ever get replaced by the loading

model. Typing an incorrect file path in the url property and recompiling will display a red cube with an

error message printed on it. This visual state is taken by the LoaderCube object when a load fails for any

reason and can be useful when debugging an Away3D application.

Optimizing external resources for size and speed

Few 3D file formats come optimized for use on the Web or for use with Flash. Some are not designed with

limited bandwidth in mind, like the verbose COLLADA format. Others rely on binary decompression

algorithms like ZIP that require extra processing to decompress, slowing down parsing times.

For these reasons, Away3D offers an export option that can process 3D model data already in Away3D’s

scene graph and output it as an ActionScript class. The process uses the AS3Exporter class located in

the away3d.exporters package and requires only a few steps to carry out the conversion:

1. Load your 3DS, COLLADA, or similar model into Away3D using the Loader3D class.

2. Use the AS3Exporter class to convert the model data to ActionScript code, and paste the output

to the clipboard.

CHAPTER 4

64

3. Create a new class file in your project folder, and paste the contents of the clipboard into the

class.

4. Recompile your project, this time creating the model by instantiating the newly created class,

instead of loading a separate file.

Once this process has been carried out on your model files, you can easily embed your model in your

SWF application file or compile a separate SWF that can then be loaded using the regular Flash Loader

class. SWF files are compressed using ZIP and are very compact as a result, plus the decompression

occurs natively in the Flash Player, so it's extremely fast! As well as this, parsing the model data is highly

efficient because of the optimized methods contained in the created class file.

The open-source 3D modeling package Blender can export to Away3D-compatible

ActionScript files directly, taking away the need for the first three steps in the

AS3Exporter optimization process. This requires a plug-in script written by Dennis

Ippel, available from www.rozengain.com.

Converting a model to ActionScript

As an example of the conversion process, let’s now use the AS3Exporter class to create an ActionScript

version of our monkey.3ds file by building on the previous LoadingExternalModels example. Add the

following line of code to the end of the _onSuccess() method:

stage.addEventListener(MouseEvent.CLICK, _onClick);

Because we are copying text to the clipboard, the process needs to be triggered by user interaction. We

therefore use a CLICK event handler to avoid a security error. In the preceding code, we have set up a

listener for the mouse event using a handler called _onClick(). We now need to create the _onClick()

method used to receive this event, by adding the following code to the end of the

LoadingExternalModels class definition.

protected function _onClick(ev : MouseEvent) : void
{
 var exporter:AS3Exporter = new AS3Exporter();
 exporter.addEventListener(ExporterEvent.COMPLETE, _onComplete);
 exporter.export(_loader.handle, 'MonkeyMesh', 'flash3dbook.common');
}

protected function _onComplete(ev : ExporterEvent) : void
{
 trace('Export completed!');
 System.setClipboard(ev.data);
}

The AS3Exporter class is configured to produce an ActionScript file called MonkeyMesh that is contained

in a package named flash3dbook.ch04. After executing the AS3Exporter with the export() method, the

_onComplete() handler method is triggered, and the generated class string is extracted from the data

PRIMITIVES, MODELS, AND SPRITES

65

property of the ExporterEvent object. This is then placed in the system clipboard, ready for you to paste

into a newly created class file.

Using the converted model

In your ActionScript editor of choice, create a new class file called MonkeyMesh in the package

flash3dbook.common, and paste in the contents of the clipboard (usually performed by the keyboard

shortcut CTRL+V on Windows or CMD+V on Mac OS X). Note that what has been created by the

AS3Exporter is a well-formed, ready-to-compile class definition using the name and package strings

supplied in our previous _onClick() method definition.

To use the file in an Away3D project, simply instantiate the MonkeyMesh class, and add it to the scene as

you would any other 3D object. In this case, only a simple mesh was exported, but there is no limit to the

complexity of the output—we could have converted a container object with an entire scene enclosed if we

had wanted.

With an ActionScript model, it is extremely easy to create copies of the model at runtime by instantiating

the class over and over. Let’s create an example using our newly generated MonkeyMesh object by

extending the Chapter04SampleBase class and overriding the _createScene() method:

package flash3dbook.ch04
{
 import away3d.core.base.Mesh;
 import away3d.lights.*;
 import away3d.materials.*;

 import flash.display.*;
 import flash.events.*;
 import flash.net.*;
 import flash.utils.*;

 import flash3dbook.common.*;

 [SWF(width="800", height="600")]
 public class LoadingAS3Models extends Chapter04SampleBase
 {
 public function LoadingAS3Models ()
 {
 super();
 }

 protected override function _createScene() : void
 {
 var i : int;
 var material : ShadingColorMaterial = new ShadingColorMaterial(0x888888);
 for (i=0; i < 5; i++) {
 var monkeyMesh : MonkeyMesh = new MonkeyMesh();
 monkeyMesh.material = material;
 monkeyMesh.x = (Math.random()-0.5) * 400;

CHAPTER 4

66

 monkeyMesh.y = (Math.random()-0.5) * 400;
 monkeyMesh.z = (Math.random()-0.5) * 400;

 _view.scene.addChild(monkeyMesh);
 }

 var light : PointLight3D = new PointLight3D();
 light.x = 300;
 light.z = -400;
 light.y = 500;
 _view.scene.addLight(light);
 }
 }
}

Notice how each monkeyMesh model is created by instantiating a new monkeyMesh object inside a for
loop. Compiling the code will create five randomly spaced MonkeyMesh models with a grey

ShadingColorMaterial applied, as shown in Figure 4-6.

As an alternative to the method of using the AS3Exporter class described here, there is

an Adobe AIR utility, called Prefab3D, available from the Away3D website that will let

you create ActionScript model classes by simply dragging and dropping model files.

Figure 4-6. Five monkey meshes created with the ActionScript class MonkeyMesh and positioned

randomly in the scene

Creating a library of models

When using a large number of ActionScript models, it is a good idea to embed them in a separate SWF file

to get the best of both worlds: a quick initial load combined with small, efficient model files loaded

PRIMITIVES, MODELS, AND SPRITES

67

incrementally. The idea of using a separate SWF file as an asset library is certainly not unique to the world

of 3D, but it is a concept that fits perfectly with the use of 3D ActionScript models.

When loading an external SWF file in Flash with the native Loader class, all assets embedded within that

SWF are made available to the running application. This includes graphics and sounds, as well as any

ActionScript classes defined by the SWF’s source code. Let’s create a library SWF file containing our

model and then use it in our LoadingAS3Modelsexample.

Create the new document class MyLibraryClass in the package flash3dbook.ch04 with the following

code:

package flash3dbook.ch04
{
 import flash3dbook.common.*;

 import flash.display.*;

 public class MyLibraryClass extends MovieClip
 {
 // Force mesh classes to be included in the SWF
 private var mesh01 : MonkeyMesh;
 }
}

Compile this into our model library SWF file called assets.swf. Obviously, a library SWF such as this

would normally contain more than one model! We can now use this in our LoadingAS3Models example by

replacing the _createScene() method with the following code:

protected override function _createScene() : void
{
 var loader : Loader = new Loader();
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE, _onComplete);
 loader.load(new URLRequest('assets.swf'));
}

Once the load is complete, any classes in the loaded SWF will be available to the main application. In the

preceding code, we have defined an event handler for the COMPLETE event called onComplete(). We now

need to create this method by adding the following code to the end of the LoadingAS3Models class

definition.

private function _onComplete(ev : Event):void
{
 var MClass : Class;
 MClass = getDefinitionByName('flash3dbook.common.MonkeyMesh') as Class;
 var monkeyMesh : Mesh = new MClass();
 _view.scene.addChild(monkeyMesh);
}

To avoid errors at compile time (and to avoid inadvertently compiling MonkeyMesh with our document

class), we need to extract the MonkeyMesh class definition using the Flash utility function

getDefinitionByName(). This method takes the string supplied in its argument and returns the class or

CHAPTER 4

68

object instance defined by that string. Calling getDefinitionByName() here returns a reference to the

MonkeyMesh class and stores it in the MClass variable. We then invoke the MClass constructor to create a

new instance of the MonkeyMesh class, which can be cast to Mesh (its inherited object type) and added to

the scene. Compiling the code will display the same result as before, but without the LoaderCube

placeholder because, in this case, the loading is handled by the native Loader class.

Applying bitmap filter effects to 3D objects

Bitmap filter effects (blurs, glows, drop shadows, etc.) that you are familiar with applying to display list

objects in Flash will work just as well applied to scene graph objects in Away3D. In fact, the way they are

applied is identical to display list objects, and the exact same filter classes from the flash.filters

package can be used. Let’s create an example to demonstrate this feature:

package flash3dbook.ch04
{
 import away3d.primitives.*;
 import away3d.materials.*;

 import flash3dbook.ch04.*;

 import flash.filters.*;

 [SWF(width="800", height="600")]
 public class BitmapFilterModels extends Chapter04SampleBase
 {
 public function BitmapFilterModels ()
 {
 super();
 }

 protected override function _createScene() : void
 {
 var cube : Cube = new Cube();
 cube.material = new ColorMaterial(0xcccccc);
 cube.filters = [new GlowFilter(0)];
 cube.ownCanvas = true;
 _view.scene.addChild(cube);
 }
 }
}

Compiling the preceding code will display the output shown in Figure 4-7. As well as applying filters in an

array object using the familiar filters property, we need to explicitly tell Away3D to render the 3D object

in a separate Sprite object using the ownCanvas property. When ownCanvas is set to true, a designated

Sprite object is created to act as a wrapper for the visible output of the 3D object, and the filter array is

automatically applied to this wrapper to render the contained filter effects.

PRIMITIVES, MODELS, AND SPRITES

69

Figure 4-7. A Cube with the ownCanvas property set to true and a black-colored GlowFilter applied

The disadvantage of using the ownCanvas property to enable filter effects on 3D objects is the limitation it

imposes on Z sorting. With the visible output of an object grouped into a Sprite container, we lose the

ability to individually sort each face (or segment) element of the object with other object’s elements,

restricting the Z-sorting algorithm to only deal with the object as a single sorted entity. This can lead to

unwanted sorting artifacts if, for example, two 3D objects exist as two intersecting meshes that require

different sorting depths across their elements. The solution is to only apply ownCanvas to objects that need

it, splitting objects that could cause sorting problems into separate meshes that make more sense to the Z-

sorting algorithm.

Using 3D sprites

As mentioned earlier, when dealing with 3D, the term sprite generally refers to a 3D object represented by

a 2D image projected onto a flat plane. The most basic type of sprite is a billboard (or spherical) sprite,

which operates by ensuring its 2D image is always rendered facing the camera. Sprites are regularly used

for optimizing the rendering process, by faking the appearance of more complex objects that look

essentially the same from all angles.

Examples of 3D objects that can potentially take advantage of the sprite approach to rendering are trees

and smoke. Trees are typically implemented using cylindrical sprites that turn to face the camera around a

restricting axis, because trees can be considered to have axial symmetry. Smoke can be created using

spherical sprites that always face the camera, because a cloud of smoke can be considered to have

spherical symmetry.

Creating smoke using 3D sprites

There are many complex ways to create realistic smoke effects using particle engines, but in applications

where performance is of extreme importance (such as computer games and real-time 3D on the Web),

scattering large spherical sprites is perhaps the most popular method of faking it.

A basic 3D sprite in Away3D is created using the Sprite3D class located in the away3d.sprites package

and uses a material object to define its 2D image. There is also a 3D sprite variant called

MovieClipSprite that uses a native Sprite object as its 2D image; this has some advantages over

CHAPTER 4

70

Sprite3D, such as faster animation and interaction, but comes with the restriction of allowing only one

MovieClipSprite per Sprite source, and when using Flash 9, only in spherical sprite mode. Since the

puffs of smoke in our example will be static, we’ll use the more applicable Sprite3D class.

Let’s begin by creating a sample class that create a large number of sprites and scatters them randomly

around the scene origin.

package flash3dbook.ch04
{
 import away3d.sprites.*;
 import away3d.materials.*;

 import flash.display.*
 import flash.filters.*;
 import flash.geom.*;

 [SWF(width="800", height="600")]
 public class SmokeWithSprites extends Chapter04SampleBase
 {
 private var _material : BitmapMaterial;

 public function SmokeWithSprites ()
 {
 super();
 }

 protected override function _createScene() : void
 {
 _createMaterial();
 var i : int;

 for (i=0; i<50; i++) {
 var sprite : Sprite3D = new Sprite3D(_material);

 sprite.x = (Math.random()-0.5) * 200;
 sprite.y = (Math.random()-0.5) * 200;
 sprite.z = (Math.random()-0.5) * 200;

 _view.scene.addSprite(sprite);
 }
 }

 protected function _createMaterial() : void
 {
 var bmp : BitmapData = new BitmapData(100, 100, false,�
0xffffff*Math.random());
 _material = new BitmapMaterial (bmp);
 }

PRIMITIVES, MODELS, AND SPRITES

71

 }
}

Notice that in our _createScene() method, we use a similar technique to the one in the

LoadingAS3Models example, with a for loop creating objects and assigning them random positions. In

this case, the objects are 3D sprites. One notable difference is that instead of using the addChild()

method to include our 3D sprites in the scene, we use an addSprite() method.

Compiling the preceding code will display 50 randomly colored 100 � 100–pixel squares, scattered

randomly within a 100-unit cube area centered around the scene’s origin. Moving our mouse over the

scene will rotate the cloud of sprites to show you that they are indeed positioned in 3D space. Sprites

further away from the camera will appear smaller than sprites closer to the camera, but they still feel very

2D because a flat color is hardly representative of an object with spherical symmetry.

The next step is to create a texture for the sprites that resembles a puff of smoke. To achieve this, replace

the contents of the _createMaterial() method in the SmokeWithSprites example with the following

code:

var puff : Shape = new Shape();
var dia : Number = Math.random() * 40 + 30;
puff.graphics.beginFill(0xcccccc, Math.random());
puff.graphics.drawEllipse(-dia/2, -dia/2, dia, dia);

var bmp : BitmapData = new BitmapData(100, 100, true, 0);
bmp.draw(puff, new Matrix(1, 0, 0, 1, 50, 50));

var blur : BlurFilter = new BlurFilter(32, 32, 2);
bmp.applyFilter(bmp, bmp.rect, new Point, blur);

_material = new BitmapMaterial (bmp);

Here, the smoke material is created by first drawing a circle using the ActionScript drawing API. The circle

has a diameter of anywhere between 40 and 70 pixels and is colored gray with a random level of

transparency. The circle is then drawn into a bitmap data object, and a blur effect is applied to give it a

hazy look.

Recompiling the SmokeWithSprites example now generates 50 randomly sized puffs of smoke, scattered

across the same 3D space as before. The overall effect should be one of a 3D smoke cloud that can be

rotated with the mouse to view it from all angles. Figure 4-8 depicts the result.

CHAPTER 4

72

Figure 4-8. Smoke effect created using 3D sprite objects

Because 3D sprites are a general technique for the fast rendering of complex objects, we could increase

the complexity of the effect in the SmokeWithSprites example to create a greater sense of realism,

without running into too many performance problems. For example, the cloud could be animated or have

filter effects applied to produce something even more abstract.

Tutorial: Creating a twisted image gallery

At this stage, you are hopefully starting to feel confident about creating 3D objects in Flash. But so far, we

have yet to build a practical application. For this, we need to look at creating a more complex example.

One very typical use for Flash on the Web is as an image gallery interface. There are many different ways

to implement this type of interface in Flash, so to stand out from the crowd, we will need one that is a bit….

twisted. This project pulls together several of the topics we have covered in this chapter, so it should serve

as a nice recap. We will use the following features and workflows in the production of our image gallery:

� The hover camera (to navigate our way around the scene)

� The plane primitive (to project our gallery images into 3D)

� ActionScript models (to import our custom geometry)

� Billboards (to optimize the render process)

� A 3D container object (to move several objects at once)

The gallery images will be displayed inside TV screens, which are stacked on top of each other and

randomly rotated around the Y axis. The user navigates the image gallery with a simple menu built from

Flash text fields or using the mouse to spin the hover camera around, panning up and down through the

images. Have a look at Figure 4-9 for a sneak preview of the completed application.

PRIMITIVES, MODELS, AND SPRITES

73

Figure 4-9. The image gallery built in this tutorial

Laying out the application shell

The application is built from four classes, all located in the flash3dbook.ch04.tutorial package:

� TwistedImageGallery: The main application class that is responsible for creating all content,

using an array of images names

� TVBox: Represents a single TV object that groups the elements making up a single TV into an

object container

� TVBoxMesh: The mesh data of the TV model as an ActionScript class, created using the

AS3Exporter class

� ImageMenuItem: A single menu item that holds a reference to its associated TV container and

handles basic user interaction, such as rollover effects

Let’s begin by looking at the document class TwistedImageGallery, which is responsible for setting up

all content, including the Away3D view and text-based menu:

CHAPTER 4

74

package flash3dbook.ch04.tutorial
{
 import away3d.cameras.*;
 import away3d.containers.*;
 import away3d.core.base.*;
 import away3d.lights.*;
 import away3d.primitives.*;

 import flash3dbook.ch04.tutorial.*;

 import flash.display.*;
 import flash.events.*;
 import flash.geom.*;
 import flash.filters.*;

 [SWF(width="800", height="600")]
 public class TwistedImageGallery extends Sprite
 {
 private var _view : View3D;
 private var _camera : HoverCamera3D;

 public function TwistedImageGallery()
 {
 super();

 _createScene();
 _createContent();
 }

 private function _createScene() : void
 {
 _camera = new HoverCamera3D();
 _camera.distance = 600;
 _camera.tiltAngle = 0;
 _camera.steps = 4;

 _view = new View3D();
 _view.x = 400;
 _view.y = 300;
 _view.camera = _camera;
 addChild(_view);

 addEventListener(Event.ENTER_FRAME, _onEnterFrame);

 // Light positioned up and back, to shade the scene
 var light : PointLight3D = new PointLight3D();
 light.ambient = 0.8

PRIMITIVES, MODELS, AND SPRITES

75

 light.position = new Number3D(1000, 500, -1000);
 _view.scene.addLight(light);

 // Beautiful gradient background
 var matrix : Matrix = new Matrix();
 matrix.createGradientBox(800, 600, Math.PI/2);
 graphics.beginGradientFill(GradientType.LINEAR,�
[0xffffff, 0xdddddd], [1,1], [0, 0xff], matrix);
 graphics.drawRect(0, 0, 800, 600);
 }

 private function _createContent() : void
 {
 }

 private function _onEnterFrame(ev : Event) : void
 {
 if (stage.mouseX < 160 || stage.mouseX > 640)
 _camera.panAngle += (stage.mouseX - stage.stageWidth/2) / 60;

 _camera.hover();
 _view.render();
 }
 }
}

The preceding code defines the shell of the TwistedImageGallery class. On instantiation, the constructor

calls two initializing methods, _createScene() and _createContent(). The _createContent() method

currently exists as a stub that will be added to later. Inside the _createScene() method, we have the

basic code for setting up our view.

First, a hover camera is created and has its distance, tiltAngle, and steps properties initialized to

what we want for the camera movement. Next, the view is created and positioned at the center of the

stage, with its camera property set to our newly created HoverCamera3D object.

As we have come to expect, an ENTER_FRAME listener is created to allow us to update the hover camera

position and invoke the render() method of the view on every frame of the Flash movie. The handler

method _onEnterFrame rotates the camera relative to the x coordinate of the mouse, with some

restrictions on maximum and minimum rotation to keep the motion under control.

Next, a light source is added to the scene in the form of a PointLight3D object that will be used by any

shading materials we assign to a mesh. Lights and shading materials are covered in greater detail in

Chapter 5.

Finally, a subtle gradient is drawn across the entire stage background using the standard ActionScript

drawing API, to add some variation to the background of the scene.

CHAPTER 4

76

Creating the TV sets

Now, let’s prepare the external model to be used for the 3D TV set. We want to use an ActionScript class

of the mesh, which can be created with the tvbox.3ds file downloaded in the chapter resource files

mentioned earlier. Conversion can be done using the AS3Exporter class, the Blender export scripts, or

the export utility from www.away3d.com. In this case, we’ll take a look at the AS3Exporter approach,

which requires a modification to our previously created LoadingExternalModels example to convert our

tvbox.3ds file.

If you have not already created the LoadingExternalModels example from earlier in

this chapter, you can skip this step by using the ready-made TVBoxMesh file supplied

with the chapter download files, available from the downloads section of

www.friendsofed.com.

In the _createScene() method of our LoadingExternalModels example, replace the url variable

definition with the following code:

var url : String = 'http://flash3dbook.com/files/chapter4/tvbox.3ds';

We also need to adjust the output name of the ActionScript file, which can be done by replacing the

contents of the_onClick() method with the following code:

new AS3Exporter(loader.handle, 'TvBoxMesh', 'flash3dbook.ch04.tutorial');

Recompiling the LoadingExternalModels example imports the tvbox.3ds file into the Flash movie.

Once it is loaded, click the mouse anywhere on the stage to copy the ActionScript class definition

TVBoxMesh to the clipboard. In your ActionScript editor, create a new class called TVBoxMesh in the

package flash3dbook.ch04.tutorial, and paste in the clipboard contents. Save the file, and you’re

ready to use the TVBoxMesh class in the application.

Next, we need to create the container for the elements of a single TV item in the gallery, called TVBox.

This class extends ObjectContainer3D, which allows us to group several elements in a scene simply by

adding them as children of the container. Wrapping 3D objects in this manner is a common practice when

creating complex, reusable 3D assets. We’ll start by creating the shell of the TVBox class.

package flash3dbook.ch04.tutorial
{
 import away3d.containers.*;
 import away3d.materials.*;
 import away3d.primitives.*;

 import flash.display.*;
 import flash.events.*;
 import flash.net.*;

 public class TVBox extends ObjectContainer3D
 {
 public function TVBox(imageUrl : String)

PRIMITIVES, MODELS, AND SPRITES

77

 {
 super();
 _createChildren();
 _loadImage(imageUrl);
 }

 private function _createChildren() : void
 {
 }

 private function _loadImage(url : String) : void
 {
 }
 }
}

As you can see, the constructor takes one parameter—the URL string of the image that the TV is to

display. This is passed to the _loadImage method, which currently exists as a stub that we will fill out

shortly. Before that, the constructor calls the _createChildren method, inside which we wish to create

the visual assets of the TVBox class from three pieces:

� The TV box and stand are both parts of the mesh geometry encoded in the TVBoxMesh

ActionScript class, which is built automatically on instantiation.

� The TV picture is the gallery image, made from a simple plane primitive configured with a bitmap

material.

� The TV antenna is a flat PNG, drawn using a Sprite3D object and positioned on top of the TV

box.

Starting with the creation of the TV box and stand, we add the following code to the _createChildren()

method:

var tv : TVBoxMesh = new TVBoxMesh();
tv.material = new ShadingColorMaterial(0xcccccc);
tv.scale(30);
addChild(tv);

An instance of the TVBoxMesh class is created, and its material property is set to a new

ShadingColorMaterial object. We then adjust its scaling to 30 times the default, because the original

model was created in a modeling application with a world scale different from the one used here.

Next, we create a plane primitive representing the TV screen, onto which the loaded image will be

mapped. Because we want to have easy access to the plane both now and later when the image finishes

loading, the first thing we do is to create a global class variable inside the definition of the TVBox class, that

will hold the plane primitive instance.

private var _image : Plane;

With this done, we can now create the plane primitive by adding the following code to the

_createChildren() method:

_image = new Plane();

CHAPTER 4

78

_image.yUp = false;
_image.width = 50;
_image.height = 50;
_image.x = 2;
_image.z = -10;
_image.pushback = true;
_image.material = new ColorMaterial(0x000000);
addChild(_image);

The plane is built facing forward rather than up (thanks to yUp being set to false) and is placed in a

suitable position with regard to the geometry of the TVBoxMesh object. For now, it is uses a black color

material, but this will be reset once our gallery image is loaded. By setting the pushback property to true,

we ensure that the image is never drawn on top of the TV mesh. This could have been a problem when

the TV is rendered from behind, but because backface culling will render the plane invisible from those

angles, we can safely use this method to prevent Z-sorting artifacts from faces being too close to each

other.

Finally, we build the antenna for the TV using the image antenna.png, which is distributed inside the

same chapter download files mentioned before. We embed the image into the SWF by adding an

ActionScript [Embed] meta-tag inside the definition of the TVBox class.

[Embed('../../../../assets/ch04/tutorial/antenna.png')]
private var AntennaBitmap : Class;

This will assign a bitmap asset definition to the AntennaBitmap variable as if it were a regular class

definition. Instantiating the class referenced by this variable will create a new BitmapAsset object— a

class definition that extends the standard Bitmap class in Flash.

The [Embed] meta-tag is available for use in the Flex SDK and can be used with the

most recent Flash editors, including Flash Professional CS4 and CS5. Flash

Professional CS3, however, does not support this syntax. To compile using CS3, import

the image as a library item and set its linkage class name to AntennaBitmap. This

approach achieves essentially the same outcome as using Embed in the previous code.

We can now create the 3D sprite for the antenna by adding the following code to the _createChildren

method:

var bmp : BitmapData = Bitmap(new AntennaBitmap()).bitmapData;
var spriteMaterial : BitmapMaterial = new BitmapMaterial(bmp);
spriteMaterial.smooth = true;
var antenna : Sprite3D = new Sprite3D(spriteMaterial);
antenna.scaling = 0.15;
antenna.y = 40;
addSprite(antenna);

This creates a new bitmap material using the bitmap data extracted from an instance of the

AntennaBitmap class and uses it as the material definition of a new 3D sprite object. The material has

PRIMITIVES, MODELS, AND SPRITES

79

smoothing enabled to keep the bitmap from looking pixilated, and the antenna is scaled and positioned to

align neatly with the top of the TVBoxMesh object.

Loading the gallery image

To handle the loading of the gallery images, we need to add the following code to the _loadImage method

of the TVBox class:

var loader : Loader = new Loader();
var info : LoaderInfo = loader.contentLoaderInfo;

info.addEventListener(Event.COMPLETE, _onImageComplete);
info.addEventListener(IOErrorEvent.IO_ERROR, _onImageError);
loader.load(new URLRequest(url));

This defines a new native Loader object that takes the urlargument of the method and creates a new

URLRequest object for the loader. Before the load is triggered, two handler functions,

_onImageComplete() and _onImageError(), are set to trigger from COMPLETE and IO_ERROR events

dispatching from the loader. We now need to create these functions by adding the following code to the

end of the LoadingExternalModels class definition:

private function _onImageComplete(ev : Event) : void
{
 var info : LoaderInfo = ev.currentTarget as LoaderInfo;
 var bmp : BitmapData = Bitmap(info.loader.content).bitmapData;
 var imageMaterial : BitmapMaterial = new BitmapMaterial(bmp);
 imageMaterial.smooth = true;
 _image.material = new BitmapMaterial(bmp);
}
private function _onImageError(ev : Event) : void
{
 trace("Error loading image");
}

In the preceding _onImageComplete method, the BitmapData object is retrieved from the loaded bitmap

and used to create a new bitmap material for the _image plane. The _onImageError method traces an

error message to the output window so that we are notified if the application has had a problem loading its

images.

Creating the menu items

So far, we have yet to see the result of the TVBox class created in the last section. Before we start to piece

everything together in the document class, we need to create one more subclass that represents an item

in the navigation menu. This is constructed as an extension of the Sprite class, with a text field contained

within and some very simple mouse interaction.

package flash3dbook.ch04.tutorial
{
 import flash.display.*;
 import flash.events.*;

CHAPTER 4

80

 import flash.text.*;
 import flash.filters.DropShadowFilter;
 import flash.utils.getTimer;

 public class ImageMenuItem extends Sprite
 {
 private var _tv : TVBox;
 private var _tf : TextField;

 public function ImageMenuItem(str : String, tv : TVBox)
 {
 _tv = tv;
 _createText(str);
 }

 private function _createText(str : String) : void
 {
 _tf = new TextField();
 _tf.defaultTextFormat = new TextFormat('Arial', 11);
 _tf.autoSize = TextFieldAutoSize.LEFT;
 _tf.text = str;
 _tf.selectable = false;
 _tf.mouseEnabled = false;

 addChild(_tf);
 addEventListener(MouseEvent.MOUSE_OVER, _onMouseOver);
 addEventListener(MouseEvent.MOUSE_OUT, _onMouseOut);
 }

 public function get tv() : TVBox
 {
 return _tv;
 }

 private function _onMouseOver(ev : MouseEvent) : void
 {
 _tf.textColor = 0x666666;
 }

 private function _onMouseOut(ev : MouseEvent) : void
 {
 _tf.textColor = 0;
 }
 }
}

The class constructor requires two arguments: one for the text displayed by the menu item and the other

for the instance reference of the TVBox container representing the gallery item. First, we save the

PRIMITIVES, MODELS, AND SPRITES

81

reference to the TVBox instance as a local variable. Next, the _createText() method is called; it creates

a new TextField object and adds it to the display list. Event listeners for MOUSE_OVER and MOUSE_OUT

events are added, which change the color of the text to gray when the over event is triggered and back to

black when the out event is triggered.

Now that we have our TVBox and ImageMenuItem classes defined, we can glue everything together with

the TwistedImageGallery document class.

Displaying the content

To start testing the visual output of what we have been building, we need to fill the empty

_createContent method with the code that will instantiate both the TVs and the menu items.

The TV objects will be added to the scene within a single container, allowing us to simultaneously pan all

3D content up and down through the gallery images. Because this container needs to be accessed from

several methods, we create it in a global variable added to the TwistedImageGallery class definition.

private var _pivot : ObjectContainer3D;

The _pivot container instance is created along with the rest of the application content by adding the

following code to the _createContent method:

var i : int;
var last_angle : Number = 0;
var images : Array = [
 'archer.jpg',
 'butterfly.jpg',
 'flowers.jpg',
 'flying.jpg',
 'hiding.jpg',
 'hitting.jpg',
 'jumprope.jpg',
 'mischief.jpg',
 'sharpened.jpg',
 'singer.jpg',
 'villains.jpg'
];

_pivot = new ObjectContainer3D();
_view.scene.addChild(_pivot);

for (i=0; i < images.length; i++) {
 var url_base : String = '../../../../assets/ch04/tutorial/';
 var tv : TVBox = new TVBox(url_base + images[i]);
 tv.y = -i*100;
 tv.rotationY = last_angle + Math.random() * 90 + 45;
 last_angle = tv.rotationY;
 _pivot.addChild(tv);

 var item : ImageMenuItem = new ImageMenuItem(images[i], tv);

CHAPTER 4

82

 item.x = 550;
 item.y = i*18 + 140;
 item.buttonMode = true;
 item.addEventListener(MouseEvent.CLICK, _onClickMenuItem);
 addChild(item);
}

In the preceding code, each entry in the images array has corresponding TVBox and ImageMenuItem

objects created. The TVBox objects are added to the _pivot container, and the ImageMenuItem objects

directly to the stage.

For the purposes of this example, the file names of the images have been hard-coded

straight into an array in the application source. In a real-world application, it may be

more useful to make this data source configurable using some external file definition,

such as an XML document. Note that your path in the url_base variable may differ from

the one that we have here. Make sure that you enter the correct path to your tutorial files

The TVs are oriented somewhat randomly by rotating each model between 45 and 90 degrees relative to

the previous one, around the Y axis. The URL used to load each image is prefixed with a base URL

pointing to the location of the local sample files.

The menu items are positioned on the stage as a simple vertical list. Each item has a listener function

called _onClickMenuItem() that is set to trigger from a CLICK event. To allow us a test compile at this

point with no errors, we can create an empty _onClickMenuItem() method by adding the following code

to the end of the TwistedImageGallery class definition.

private function _onClickMenuItem(ev : MouseEvent) : void
{
}

Compiling the class will display the result shown in Figure 4-10. Moving the mouse left and right over the

stage rotates the column of TVs left and right. To complete the gallery, we need to add code to the inside

of the _onClickMenuItem() method that will allow us to navigate between each gallery item.

PRIMITIVES, MODELS, AND SPRITES

83

Figure 4-10. The image gallery before adding interactivity

Adding movement and interactivity

The movement we wish to add to the application will be triggered when the user clicks a menu item. We

want to rotate the camera until it faces the TV screen corresponding to the item clicked and pan the

_pivot container up or down so that the selected TV ends up at the center of the stage. As an extra

subtlety, we will give the selected model a drop shadow filter to lift it off the page.

To react to a CLICK event from a menu item, we need to add some code to the _onClickMenuItem()

method. Before we do that, let’s define three new global class variables that will be used here and

elsewhere in the TwistedImageGallery class.

private var _target_y : Number = 0;
private var _flying_to_tv : Boolean;
private var _last_active_tv : TVBox;

Insert this code at the start of the class definition, and then add the following to the _onClickMenuItem()

method:

var tv : TVBox = (ev.currentTarget as ImageMenuItem).tv;

CHAPTER 4

84

if (_last_active_tv) {
 _last_active_tv.ownCanvas = false;
 _last_active_tv.filters = [];
}

tv.ownCanvas = true;
tv.filters = [new DropShadowFilter(0, 0, 0, 1, 16, 16, 0.5, 2)];

_flying_to_tv = true;

_target_y = -tv.y;
_camera.panAngle = tv.rotationY - 180;

_last_active_tv = tv;

In the preceding code, we grab a reference to the selected TV instance from the tv property of the

ImageMenuItem object returned in the event’s currentTarget property. Next, we reset the ownCanvas

and filters properties of any previously selected TVBox object. The newly selected TVBox object has its

ownCanvas and filters properties modified to enable the drop shadow filter effect, and the motion mode

_flying_to_tv is set to true, informing the application to take control of the camera and container

movements and temporarily deactivate all other user interaction.

Two properties are required to define the movement required to move to the selected TV screen. The

_target_y variable stores the y coordinate that aligns the _pivot container object so that the selected TV

is positioned at the center of the stage. The camera panAngle properties stores the rotation value required

by the camera to face the selected TV’s screen image. Each variable is used as the end value in a

tweening movement so that the change in position is performed smoothly. In the case of panAngle, we

use the built-in tweening methods of the HoverCamera3D class.

As a final step in the _onClickMenuItem() method, the _last_active_tv variable is updated to the

currently selected TVBox object, so that its ownCanvas and filters properties can be reset on the next

menu selection.

Now that we have defined the motion mode and variables of a menu item selection, we need to modify the

_onEnterFrame() method so that it will disable the mouse-controlled camera panning motion when the

TV selection motion is taking place. We also need to use our _target_y variable to define the position

tween of the _pivot container. Replace the onEnterFrame() method with the following code:

private function _onEnterFrame(ev : Event) : void
{
 if (!_flying_to_tv) {
 if (stage.mouseY < 120 || stage.mouseY > 480) {
 var max_y : Number = _pivot.maxY - _pivot.minY - 100;

 _target_y += (stage.mouseY - stage.stageHeight/2) / 30;
 _target_y = Math.max(0, Math.min(max_y, _target_y));
 }

 if (stage.mouseX < 160 || stage.mouseX > 640)
 _camera.panAngle += (stage.mouseX-stage.stageWidth/2) / 60;

PRIMITIVES, MODELS, AND SPRITES

85

 }
 else if (Math.abs(_pivot.y-_target_y) < 0.5) {
 _flying_to_tv = false;
 }

 _pivot.y += (_target_y - _pivot.y) / 4;

 // Wobble a bit up and down
 _pivot.y += 2 * Math.sin(getTimer() / 700);

 _camera.hover();
 _view.render();
}

The previously existing code in _onEnterFrame() for the mouse-controlled camera motion is now

accompanied by a control for moving the _pivot container up or down depending on the y coordinate of

the mouse, all wrapped within an if statement that checks if the camera is already animating on its way to

a selected TV. If it is, the mouse-controlled motion is skipped, and instead, a check is made to see if the

automatic camera control has completed its tween. Only when the y position of the _pivot container is

within a tolerance of 0.5 units to the _target_y property will control be handed back to the mouse.

Notice that when the mouse-controlled motion is active, the total height of _pivot is

calculated by subtracting its minY property from its maxY property. The same calculation

can be made for width (maxX-minX) and depth (maxZ-minZ) of any 3D object in

Away3D.

Following the if statement, the y position of the _pivot container is updated using the _target_y

property, with a slight easing effect. It then has an offset applied using a sine wave output, to achieve a

“hovering” motion effect as the TVs move. The calls to the hover camera update hover() and view

rendering method render() at the end of the _onEnterFrame() method remain the same as before.

Recompiling the application, you should instantly see a difference in interaction as the TVs can now be

moved up and down as well as rotated left and right with the mouse. Clicking a menu item will

automatically animate the application to the correct viewing position for the selected TV. You have

completed the creation of the twisted image gallery!

Summary

In this chapter, we have introduced and compared the most common types of 3D objects: primitives that

are geometric shapes created internally and custom models created externally that can be either loaded at

runtime or embedded within the application using a converted ActionScript model class. We have also

created your first practical 3D application using Away3D.

This chapter included some new 3D terminology that may not be all that familiar. The important terms,

concepts, and techniques are recapped in the following list that will hopefully assist the creative process

when building your own 3D applications in Flash:

CHAPTER 4

86

� Vertices, faces, and segments are the most basic visual elements in any 3D model but are rarely

accessed directly.

� Primitives are basic 3D geometric shapes, such as spheres and planes, represented by classes

located in the away3d.primitives package.

� Polygons in Away3D are a particular type of primitive, represented by the RegularPolygon and

WireRegularPolygon classes.

� Segments are used to draw the wire primitive classes and can form abstract networks by using

the LineSegment class.

� Custom models can be loaded from a variety of different file formats using Loader3D and the

parsing classes available in the away3d.loaders package.

� Encoding 3D geometry as an ActionScript model using the AS3Exporter class in the

away3d.exporters package has both size and speed benefits.

� 3D sprites can be used to simplify and speed up the rendering of nondescript symmetric objects

such as smoke clouds. A variety of different types of 3D sprite exist in the away3d.sprites

package.

Later chapters will cover using other types of content in Away3D, such as vector graphics and text, and

procedural meshes using more complex generative tools. Before that, Chapter 5 looks in more detail at

how to use lighting and materials to improve the visual impact of a 3D project.

87

Chapter 5

Materials, Lights, and Shading

As you saw in the previous chapter, all meshes (including internally created primitives and imported

models) are built from geometric elements such as triangles and line segments that have their shapes

defined by vertex points. For the renderer to be able to draw these elements to the view, an appearance

definition similar to the line and fill style settings used in the native drawing API in Flash is required. In 3D,

this definition is frequently referred to as a material, and in Away3D, it takes the form of a class instance

that can be set in the material property of an individual element or global mesh object. Materials can be

used to paint solid colors or bitmap images onto the surface of 3D objects, and special types can define

how an object should react to light in a scene.

The process of simulating light in the field of 3D graphics is known as shading. It can involve a high

degree of processing per-frame due to the methods used for shading calculations (in Flash, this is

generally accomplished by building up layers of color that are resolved into a single blended layer at

runtime). Creating convincing shading on a 3D object can be considered a bit of an art form, requiring

expertise in the familiar area of design versus programming where the perfect balance is sought between

performance and aesthetics.

Understanding Away3D materials

Despite Away3D offering many different types of material, every effort has been made to keep the

programming interface consistent. This consistency should assist in your general understanding of

material types and creating easily interchangeable materials, a great timesaver when searching for the one

that looks and performs the best in your application. As a general rule in this chapter, simple materials

are better from a performance point of view, while more-complex shading materials have the potential to

start chewing heavily on the CPU and need to be used sparingly.

All materials are represented by classes in the away3d.materials package and are applied to a mesh

object by setting its material property to an instance of the desired material type. This property has

CHAPTER 5

88

already been used in code examples seen earlier in the book, such as the following snippet from an early

example in Chapter 3:

_cube1.material = new WireColorMaterial(0xFFFFFF);

Here, we set see the material property of the cube primitive cube1 being set to a WireColorMaterial

instance using a white color for its shape fill, and a (default) black color for its outline. Of course, different

material classes have different properties, some of which require setting before the material can be

rendered. The BitmapMaterial object requires a BitmapData object passed in its constructor, whereas

the ColorMaterial object needs only a color value. But aside from these minor differences, Away3D

materials are all created and applied in the same way. Let’s dive into some code by setting up a base

class for the examples in this chapter, starting with the following class shell:

package flash3dbook.ch05
{
 import away3d.cameras.*;
 import away3d.containers.*;
 import away3d.primitives.*;

 import flash3dbook.common.MonkeyMesh;

 import flash.display.*;
 import flash.events.*;

 [SWF(width="800", height="600")]
 public class Chapter05SampleBase extends Sprite
 {
 protected var _view : View3D;
 protected var _camera : HoverCamera3D;
 protected var _cube : Cube;
 protected var _sphere : Sphere;
 protected var _ape : MonkeyMesh;

 protected var _state : int = 0;

 public function Chapter05SampleBase()
 {
 _createView();
 _createScene();
 _createMaterials();
 }

 protected function _createView() : void
 {
 }

 protected function _createScene() : void
 {
 }

MATERIALS, LIGHTS, AND SHADING

89

 protected function _createMaterials() : void
 {
 }

 protected function _toggle() : void
 {
 }

 protected function _onClick(ev : MouseEvent) : void
 {
 _toggle();
 }

 protected function _onEnterFrame(ev : Event) : void
 {
 }
 }
}

The preceding code defines global variables for the view, camera, and three mesh objects we will use

throughout our examples as test objects for different materials, as well as stub methods that we will fill out

before moving on to our first example. The global _state variable will be used when necessary to toggle

between different material states in our examples (e.g., between different light types or different material

types).

Let’s start by creating and setting up the basic elements for an Away3D application. First, we create the

camera by adding the following lines of code to the _createView() method:

_camera = new HoverCamera3D();
_camera.distance = 150;
_camera.tiltAngle = 10;

Here, we are using a hover camera, with a default distance 150 units away from the scene’s origin and a

tilt angle of 10 degrees to elevate our viewing position by a small amount.

Next, we create the view by adding the following lines of code to the end of the _createView() method:

_view = new View3D();
_view.x = 400;
_view.y = 300;
_view.camera = _camera;
addChild(_view);

Here, we align the position of the view with the center of our 800 � 600 stage, set the camera property to

use our newly created hover camera, and add the view to the Flash display list so it can be seen.

Before moving on, we need to define two event listeners by adding the following lines of code to the end of

the _createView() method:

stage.addEventListener(Event.ENTER_FRAME, _onEnterFrame);
stage.addEventListener(MouseEvent.CLICK, _onClick);

CHAPTER 5

90

The ENTER_FRAME event handler _onEnterFrame() will render the view and handle some basic camera

movement, while the CLICK event handler _onClick() is set up so that we can toggle between different

materials and light settings when the mouse button is clicked anywhere inside the Flash movie.

Now, we add the code to create the 3D objects used as test cases in our examples for this chapter: these

are a cube, a sphere, and an instance of an imported monkey model. Let’s start by creating a cube

primitive with the following lines of code added to the end of the _createScene() method:

_cube = new Cube();
_cube.width = 30;
_cube.height = 30;
_cube.depth = 30;
_cube.x = -70;
_view.scene.addChild(_cube);

This creates a cube primitive that is 30 units in all dimensions and positions it 70 units to the left of the

scene’s origin. Next, we add the following to the end of the _createScene() method to create a sphere

primitive with a radius of 25 and a position 70 units to the right of the scene’s origin.

_sphere = new Sphere();
_sphere.radius = 25;
_sphere.x = 70;
_view.scene.addChild(_sphere);

Finally, we create an instance of the imported class MonkeyMesh by adding the following to the end of the

_createScene() method:

_ape = new MonkeyMesh();
_view.scene.addChild(_ape);

The MonkeyMesh class is a model that has been converted to ActionScript using the ActionScript exporter

for the 3D modeling package Blender. The conversion process is covered in more detail in Chapter 4, but

the resulting class can be instantiated and added to a scene in Away3D just like a regular primitive class.

Since we don’t adjust the position of the MonkeyMesh instance, it will be centered on the scene’s origin by

default, sandwiched between our two other primitives. The ActionScript file for the MonkeyMesh class is

assumed to exist at its correct location inside the flash3dbook.common package. If you do not have this

file, it can be downloaded online inside the examples resource file for this chapter by going to the

Downloads section of www.friendsofed.com.

Let’s take a quick look at the remaining empty methods from our Chapter05SampleBase class definition.

The _createMaterials() and _toggle() methods can be left blank, as they will both be overridden with

custom functionality by subsequent example class definitions. _createMaterials() will instantiate and

apply the different material classes to be investigated, and _toggle() will control our viewing mode for

comparing different material settings, triggered by the event handler method _onClick() mentioned

earlier.

The _onEnterFrame() method controls the camera position according to the position of the mouse

cursor. To enable the camera movement, we add the following lines of code to this method:

_camera.panAngle -= (stage.mouseX - stage.stageWidth / 2) / 100;
_camera.hover();

MATERIALS, LIGHTS, AND SHADING

91

The hover camera’s panAngle property is incremented on every frame by an amount dependent on the x

position of the mouse cursor, with half the stage width subtracted from the mouse position to give a

coordinate relative to the center of the view. Incrementing the panAngle property causes the camera to

rotate either left or right, with the speed of rotation dependent on the distance of the cursor from the center

of the stage. The incrementing value is divided by 100 to keep the rotation speed within controllable limits.

All that is left to do is render the view, which is done by adding the usual render method call to the end of

the _onEnterFrame() method.

_view.render();

Compiling the Chapter05SampleBase class at this point will display the output shown in Figure 5-1.

Moving the mouse cursor left and right will rotate the camera left and right, allowing you to view the three

mesh objects in the scene from any angle. Because we have yet to set the material property on any of

our meshes, they are all displayed using the default material type—a WireColorMaterial object with a

random color defined for the surface fill. We will investigate this material type in more detail later in this

chapter, but for now, let’s kick off our first example with a look at some basic material types available in

Away3D.

Figure 5-1. The result of compiling the chapter base class Chapter5SampleBase, before any materials are

applied to the three mesh objects

Using color and bitmap materials

Color materials use simple color values to paint the visible elements of a 3D object. Various types of color

material exist, differing in the way they apply color to an object and the way the object is rendered. By

contrast, bitmap materials use an image to texture the surface of a 3D object as if it were covered in a

piece of gift wrap. For bitmap materials to work, data points called UV coordinates must be available for

each vertex of each face in the mesh. A UV data point is a 2D vector that represents the (x, y) position on

the surface of the texture image to be mapped to the corresponding 3D (X, Y, Z) vertex position on the

surface of a face. The material then uses bilinear interpolation to stretch the texture’s pixel data between

UV positions for each vertex in the face (which is typically a triangle or quadrilateral polygon). The entire

process is known as texture mapping.

CHAPTER 5

92

UV coordinates for imported models are usually created by the 3D artist in a modeling package prior to

export, but we will take a closer look at how UV coordinates can be generated and modified from inside

Away3D in Chapter 7 when we build our own custom 3D object from scratch.

To create our first materials example, let’s start by extending the newly created Chapter05SampleBase

class with the following document class, overriding the _createMaterials() and _toggle() methods

with stubs ready for custom use:

package flash3dbook.ch05
{
 import away3d.core.utils.*;
 import away3d.materials.*;
 import flash.display.*;

 [SWF(width="800", height="600")]
 public class SimpleMaterials extends Chapter05SampleBase
 {
 [Embed(source="../../../assets/ch05/redapple.jpg")]
 private var AppleImage : Class;

 private var _bitmapMaterial : BitmapMaterial;
 private var _colorMaterial : ColorMaterial;

 public function SimpleMaterials()
 {
 super();

 _toggle();
 }

 protected override function _createMaterials() : void
 {
 }

 protected override function _toggle() : void
 {
 }
 }
}

The first defined global variable AppleImage is an embedded image asset, created from a file called

redapple.jpg. Make sure the path reflects the actual location of the file on your hard drive. If you are

working with the chapter download files from www.friendsofed.com, this path should be correct from the

outset.

MATERIALS, LIGHTS, AND SHADING

93

The [Embed] meta-tag used in the preceding example compiles images and other file

assets into project SWFs created with Flex Builder, Flash Develop, FDT, or any other

editor that uses the Adobe Flex SDK to compile. This method of asset inclusion mimics

the organization and compilation of library assets contained in an FLA. Since the

introduction of CS4, [Embed] tags will compile in Flash Professional as well, but if you’re

using CS3, you will need to modify the code and update the library assets of the

container FLA in the following way to compile: Import the image file into the library, open

its properties panel, and check the Export for Actionscript option. Underneath,

enter the name of the variable you find directly under the [Embed] tag line (in this case

AppleImage) as the class name. Also, make sure you remove the [Embed] line and the

one that directly follows it from the source code. The modification will allow this and any

subsequent examples using the [Embed] meta-tag to work in CS3.

The remaining two private variables called _bitmapMaterial and _colorMaterial are global

placeholders for the two material classes we will be testing: the BitmapMaterial and ColorMaterial

classes.

To complete our example, we need to fill out the code required in our _createMaterials() and

_toggle() method stubs. First, we need to create instances of our material classes by adding the

following code to the _createMaterials() method:

_bitmapMaterial = new BitmapMaterial(Cast.bitmap(AppleImage));
_colorMaterial = new ColorMaterial(0xFFAA00);

For the BitmapMaterial instance, we see the first use of the Cast class. This handy Away3D utility

resides in the away3d.core.utils package and contains static methods for converting one type of

ActionScript object to another. In this case, the BitmapMaterial class requires a BitmapData object

representing the texture to be passed in its constructor argument. However, an object created by an

[Embed] meta-tag class will be of type Class. In previous chapters, we created an instance of the

AppleImage class variable and directly cast it into a regular ActionScript Bitmap object, then extracted the

bitmap data from its bitmapData property. However, this approach requires typing a couple of extra lines

of code every time you needed a new bitmap material. With Cast, the work is done for you in a quick, neat

fashion.

The ColorMaterial instance is passed a constructor argument that sets the color value of the material on

instantiation. Color values are unsigned integers by type, and in this example, we define the color in

hexadecimal as 0xffaa00, a bright orange. Hexadecimal is a common notation for color values as it is

generally easier to read than the equivalent decimal value. ColorMaterial requires no constructor

arguments by default but will end up using a random color if none is given. The color could also be set

after instantiation by using the color property of the ColorMaterial object.

Next, we add the code required for toggling between our materials at runtime. The idea here is to be able

to hot swap materials on all our objects, so that direct comparisons can be made. Remember that the base

class sets up the _toggle() method to be invoked when we click with the mouse anywhere on the stage.

By updating the _state class variable when this occurs, we will know what to do the next time the

_toggle() method is called. For our SimpleMaterials example, we have two possible states to toggle

between. Using the _state integer variable, we identify these as 0 and 1 in a simple switch statement by

adding the following to the _toggle() method:

CHAPTER 5

94

switch (_state) {
 case 0:
 _cube.material = _colorMaterial;
 _sphere.material = _colorMaterial;
 _ape.material = _colorMaterial;
 _state = 1;
 break;
 case 1:
 _cube.material = _bitmapMaterial;
 _sphere.material = _bitmapMaterial;
 _ape.material = _bitmapMaterial;
 _state = 0;
 break;
}

In the preceding code, we see that if the _state variable returns 0, the color material is applied to all mesh

objects by resetting their material properties, and _state is reset to 1, ready for the next click. Likewise,

if the _state variable returns 1, the bitmap material is applied to all mesh objects, and _state is reset to

0.

Compiling the example, our three mesh objects are rendered with our AppleImage texture applied using

the bitmap material option. Moving the mouse left and right rotates the camera left and right around the

origin of the scene. The bitmap material option is used initially because the _toggle) method is called

once in the constructor of the SimpleMaterials class, setting up a default bitmap material state. Clicking

once anywhere in the Flash movie swaps the bitmap material for the orange-colored material on all

objects. This looks very flat by comparison—so much so that if the camera remains still by keeping the

mouse in the center of the movie, you’d be hard pressed to tell you were looking at a 3D scene and not

just three irregular orange shapes. Jumping back to the bitmap material option with a further click, we can

really start to see the extra detail texture mapping adds when applied to a mesh object. A comparison of

the two results is displayed in Figure 5-2.

Figure 5-2. The two states of the SimpleMaterials example side by side: ColorMaterial with orange faces

on the left and BitmapMaterial with textured faces on the right

MATERIALS, LIGHTS, AND SHADING

95

The advantage of using bitmap materials over color materials doesn’t stop with detail enhancement.

Textures can be created to simulate objects lit by a light source, providing a greater level of realism in a

scene. However, this method of static shading (or texture baking as its more commonly known) can only

go so far; for maximum realism Away3D can apply shading in real time, as you will see in the shading

materials section later in this chapter.

Working with wire materials

Wire materials are so called because they provide a wireframe look to a 3D mesh object. In Away3D, all

materials inherit from a basic wire material represented by the WireframeMaterial class found in the

away3d.materials package including the default WireColorMaterial class, which is set to use a black

color for its wire component. This material doesn’t win any prizes for aesthetics but is useful for debugging

purposes thanks to its ability to draw all the lines that connect the vertices in a face, as well as filling all

faces with a solid color.

As an alternative look, the WireframeMaterial class can be used when we want to only draw the outlines

of faces, without a solid fill. Let’s extend our chapter base class to see how these two materials compare:

package flash3dbook.ch05
{
 import away3d.materials.*;

 [SWF(width="800", height="600")]
 public class WireMaterials extends Chapter05SampleBase
 {
 private var _wfMaterial : WireframeMaterial;
 private var _wcMaterial : WireColorMaterial;

 public function WireMaterials() {
 super();
 _toggle();
 }

 protected override function _createMaterials() : void
 {
 }

 protected override function _toggle() : void
 {
 }
 }
}

In the preceding code, we define two private variable placeholders for an instance of WireframeMaterial

and WireColorMaterial. The constructor calls the _toggle() method once to execute the code we

eventually create for initializing our materials. We also override the _createMaterials() and _toggle()

methods, ready for our custom functionality. Now, let’s create our material instances by adding the

following code to the _createMaterials() method:

CHAPTER 5

96

_wfMaterial = new WireframeMaterial();
_wfMaterial.wireColor = 0x000000;

_wcMaterial = new WireColorMaterial();
_wcMaterial.color = 0XCCCCCC;
_wcMaterial.wireColor = 0x666666;

The first two lines of code create a WireframeMaterial object and set its wireColor property to black.

This will produce a black line drawn around all triangles. The remaining code creates a

WireColorMaterial specified by two properties, color for the face color and wireColor for the line

color. Here we are using property setters for updating the color values of our materials, but in the same

way you saw in the previous example for the ColorMaterial class, we can also set the color for each

material in the class constructor, corresponding to wireColor for the WireframeMaterial class and color

for the WireColorMaterial class.

Next, we fill out our script for switching between materials by adding the following lines of code to the

_toggle method:

switch (_state) {
 case 0:
 _cube.material = _wfMaterial;
 _sphere.material = _wfMaterial;
 _ape.material = _wfMaterial;

 _cube.bothsides = true;
 _sphere.bothsides = true;
 _ape.bothsides = true;
 _state = 1;
 break;
 case 1:
 _cube.material = _wcMaterial;
 _sphere.material = _wcMaterial;
 _ape.material = _wcMaterial;

 _cube.bothsides = false;
 _sphere.bothsides = false;
 _ape.bothsides = false;
 _state = 0;
 break;
}

Once again, we start by checking the value of the _state variable and react accordingly by setting the

material property of all mesh objects to the WireframeMaterial instance if _state returns 0, and the

WireColorMaterial instance if _state returns 1. We also set reset the bothsides property of the mesh

objects depending on the type of material being used - when wire materials are used we need to see both

sides of the geometry and the bothsides property is reset to true, but when color materials are used we

only see the front faces of the geometry and the bothsides property can be reset to false. In each case,

_state is reset to the alternative state value, ready for the next mouse click.

MATERIALS, LIGHTS, AND SHADING

97

Compile the code, and click the stage anywhere to toggle between the two materials. Figure 5-3 portrays

the appearance of both states side by side. Each material is useful for debugging a mesh when you need

to see the exact orientation of the faces, and the application of the WireframeMaterial instance has the

added bonus of only drawing the triangle outlines, allowing both sides of the object to be displayed at once

as long as the bothsides property of the mesh object is set to true. The stylized effect of a wire material

can also be useful in certain design situations.

Figure 5-3. The two states of the WireMaterials example side by side: on the left, WireframeMaterial is

used as the mesh material, and on the right, WireColorMaterial is used.

Using lights and shading materials

In the real world, light reflected from the surfaces of the objects around us enters our eyes and produces a

perceived image of the scene. Without a light source, everything would appear black. Simulating this

process in a computer is known as shading and typically requires a large amount of processing.

One method of shading calculates virtual light rays for every pixel in the view, in a technique known as ray

tracing. This method is used by the majority of professional 3D modeling programs to render high-quality

3D images. However, real-time 3D engines require a fast render speed and consequently aim to

approximate a lot of real-world processes rather than carrying out faithful simulations. Instead of

measuring light intensities for every pixel in an image, values are estimated using a variety of techniques

ranging from precalculating intensities in a texture (the previously mentioned texture baking technique) to

texel-based normal mapping that uses an extra texture image to calculate light intensities across the

surface of an entire object’s texture in a single step. We will look at the latter technique in more detail later

in this chapter.

In the majority of preceding chapter examples, we have gotten away with not using any shading

techniques on our materials. This approach is perfectly acceptable when speed is a priority over image

quality. But if we want to produce 3D scenes with a higher degree of realism, shading materials are one

option we can use. When a shading material is applied to a face, the resulting rendered surface can be

CHAPTER 5

98

brighter or darker than the actual color, depending on the shading calculations. In simple terms, a surface

that directly faces toward a light source will appear brighter, while one that directly faces away will appear

darker. A shading material produces an overall intensity map of light to be applied to the underlying texture

or color of the object, commonly referred to as the light map of the object.

In Away3D, several different types of shading material exist, offering varying degrees of detail and

requiring varying amounts of processing. As is the case with much real-time 3D content, finding a happy

balance between these two quantities is the main basis on which choices are made.

Lighting in Away3D

For a shading material to work, we need to define at least one light source. In Away3D, lighting is

achieved by adding light source objects to a scene. Three types of light source objects can be used: point,

directional, and ambient. These are represented by the classes PointLight3D, DirectionalLight3D,

and AmbientLight3D found in the away3d.lights package, and each type of light source produces a

different shading result when applied to a shading material.

Omnidirectional lighting with point lights

Point light sources work in a way similar to a single light bulb and are represented in Away3D by the

PointLight3D object. They emit light in all directions from a definable position in the scene. If a point light

is positioned between two objects, the objects will appear lit from opposite directions because the relative

position of each object with regard to the light source is reversed. An illustration of this shown in Figure 5-

4.

A defining characteristic of the point light source is the falloff over distance exhibited by the intensity. As in

the real world, the overall intensity of reflected light from an object’s surface is proportional to the inverse

square of the distance from the surface to the light source. This means that the brightness of a light beam

decays with the distance (d) from the light by an amount 1/d
2
. The overall brightness of a light source can

be adjusted using the brightness property of the PointLight3D object, but the decay of intensity over

distance will always follow the same curve.

Figure 5-4. An example of two objects lit from a single point light source emitting in all directions

MATERIALS, LIGHTS, AND SHADING

99

Parallel beam lighting with directional lights

Directional light sources are represented in Away3D by the DirectionalLight3D class and can be

imagined as light-emitting, infinitely large planes with all emitting rays pointing in the same direction. This

is in contrast to point lights whose rays emit in all directions from a center point.

A directional light source is a simplification of the kind of light field generated by a point light source with

near-infinite brightness positioned at a near-infinite distance. In this scenario, the natural falloff of the point

light would be barely noticeable over the differing distances in our scene, and to use a point light object for

such a setup would be impractical. All that is required to set up a directional light source is a 3D direction

vector that defines the direction of the light rays. This is set on a DirectionalLight3D object using the

direction property. For a shading material, the most important piece of information when dealing with a

directional light is the angle between the light source direction and the object’s surface. It is assumed that

the intensity of the light is constant at all distances.

Figure 5-5 illustrates an example scenario, with a directional light source (drawn as a wall of parallel

beams) emanating from the right-hand side of the screen. In Away3D, there is no such thing as a position

for a directional light source; here, we are imagining one for illustrative purposes. Both the right and left

spheres are lit identically, despite the left sphere being further away from the light source than the right

sphere. This characteristic of directional lights makes them ideal for simulating sunlight in an outdoor

scene, as well as being generally more efficient than their closely related point light counterparts, requiring

fewer calculations to produce a similar shading effect.

Figure 5-5. An example of two sphere primitives lit from a single directional light source. The parallel

nature of the source can be considered a close approximation of the light field generated by a point light

source positioned at a near-infinite distance with a near-infinite brightness.

Background lighting with AmbientLight3D

Ambient light sources are represented in Away3D by the AmbientLight3D class and can be considered

one of the simplest types of light source. Adding an ambient light source to a scene will light all faces of all

meshes in the scene equally, regardless of angle or position.

In Away3D, ambient lights have an effect on only a few shading materials. They are commonly used

together with the other light source types to boost the overall brightness in a scene. For those shading

materials that do not react to ambient lights, directional lights and point lights have their own internal

ambient coefficients to provide an ambient component to their lighting effect.

CHAPTER 5

100

Creating and configuring light sources

Creating a light source and preparing it for use with a shading material is as easy as instantiating the

respective class, setting its color property, and adding it to the scene using the custom addLight

method. This process is identical for all light types. For example, a red point light source would be created

in the following manner:

var light : PointLight3D = new PointLight3D();
light.color = 0xFF0000;
myView.scene.addLight(light);

Each type of light brings its own configuration properties, the one common property being color, which

sets the emitting color value for the light object. Ambient lights don’t require any further configuration due

to their simplicity, so we will take a closer look at the remaining two types of light source on offer.

The brightness property on the DirectionalLight3D and PointLight3D classes controls the overall

intensity of the light that is emitted from the light source. For a directional light source, this means the

overall intensity at any position in the scene. The effects of a light source on the surface of a shading

material are cumulative, so an Away3D scene with more than one light object will have the resulting

intensities added together (through color components) to calculate the total light intensity to be applied. A

point light source's intensity is attenuated over distance, so in this case the brightness property

represents the intensity of the light 500 units away from the source. The default brightness value is 1.0

for both PointLight3D and DirectionalLight3D.

Controlling the intensity of a light source

The basic principal of the rendering process for any shaded material is to calculate the intensity of the light

entering the camera from any point on the surface of a face. If you investigate how different materials

appear around you in the real world, you will quickly come to realize that they each react to light in subtly

different ways. Some are reflective and glossy, while others are diffuse and dull. Real real-world materials

have physical properties on a microscopic level that influence these different characteristics, but in a real-

time 3D engine, replicating these surface perturbations in the same terms would be too complex. For most

engines, the reflected light from the surface of a material is represented by three distinct components:

ambient, diffuse, and specular reflections. These add up to a cumulative shading intensity called a light

map, which is applied to the underlying shading material color to produce the final appearance of the

material.

The ambient component of a light source is applied in a similar manner to the output of an

AmbientLight3D object. It represents the fraction of light incident on the surface of a shading material that

originates as ambient light from the light source. For example, a point light source inside a room has its

ambient component created from diffuse reflection of the interior walls bouncing light back into the room.

The resulting component is simulated by applying a uniform intensity to all shading materials encountered

in a scene.

The diffuse component of a light source represents the fraction of incident light that originates directly

from the source and is then scattered in all directions from the surface of a shading material. Its purpose is

to simulate the light scattering performed by a soft material such as a ball of putty, that at a microscopic

level is pitted and irregular, diffusing light uniformly regardless of incident angle. Because of its scattered

nature, the diffuse component of a light source is ambivalent to viewing angle and is only concerned with

the concentration of the beam incident on the surface of a shading material to calculate its reflected

MATERIALS, LIGHTS, AND SHADING

101

intensity. This is directly affected by the incident angle, which can be considered as the angle at which

light from the light source arrives at the material surface.

The specular component of a light source represents the fraction of incident light direct from the source

that is then reflected in a mirror-like fashion from the surface of a shading material. For this to occur, the

incident angle of the light must be near equal the viewing angle of the camera, as is the case for a real

mirror. For example, the reflected light seen in a mirror from someone holding a torch would be considered

the specular component of that light source. As a comparison, if the same torch were shone on a stone

wall, the reflected light seen would be the diffuse component of the light source.

Figure 5-6 illustrates how the resulting ambient, diffuse, and specular components of a light source are

blended together to produce the light map for a sphere object with a shading material applied. The

properties on point and directional lights that control the individual intensities of ambient, diffuse, and

specular shading are unsurprisingly called ambient, diffuse, and specular. They represent the fraction

of total light (taken from the brightness) to be used for that shading component, as a decimal number

between 0 and 1. For example, the intensities seen in Figure 5-6 would be set using the following code

snippet:

myPointLight.ambient = 0.3;
myPointLight.diffuse = 0.7;
myPointLight.specular = 1;

Figure 5-6. Ambient, diffuse, and specular light intensities are calculated separately and added together to

create the final light map for an object with a shading material.

CHAPTER 5

102

Shading materials in Away3D

As previously mentioned, shading materials are specific material types in Away3D that react to light. In this

section, we will take a tour through the most frequently used types, highlighting the strengths and

weaknesses of each. It is worth reiterating that almost all shading materials are very processor intensive

and need to be used sparingly in an Away3D project. Recent advances in the Flash 10 Player have

allowed some optimizations to be performed on certain shading material classes, but if the frame rate of an

application is to remain smooth, the amount of shading materials use will always need to be kept within

limits set by the processing overheads.

Flat shading materials

One of the simplest and most efficient methods of shading a 3D mesh object is known as flat shading.

This calculates a single reflected intensity for each face based on the angle of the face to the light source.

The result is applied to the base color of the material, producing the final output. There are two classes

that perform this type of shading: ShadingColorMaterial and WhiteShadingBitmapMaterial. Both of

these material classes work similarly to their respective nonshading counterparts, without the use of any

processor-intensive layering, and are therefore useful as fast shading options.

For simplicity, the WhiteShadingBitmapMaterial class assumes the light color to be white for all light

sources. The ShadingColorMaterial class is more versatile in its coloring, reacting to different colored

lights and allowing you to configure different material colors for the three components of the light source.

For example, a ShadingColorMaterial can use a red hue for its ambient color, a blue hue for its diffuse

color, and a green hue for its specular color. The disadvantage of using ShadingColorMaterial is its

lack of texture mapping, meaning that any color settings are applied across the entire material surface.

Let’s create a sample class where the two types of flat shading material can be compared, starting with the

following document class definition extending the Chapter05SampleBase class:

package flash3dbook.ch05
{
 import away3d.lights.*;
 import away3d.core.math.*
 import away3d.core.utils.*
 import away3d.materials.*;

 import flash.text.TextField;

 public class FlatShadingMaterials extends Chapter05SampleBase
 {
 private var _tf : TextField;

 private var _pointLight : PointLight3D;
 private var _dirLight : DirectionalLight3D;

 [Embed(source="../../../assets/ch05/redapple.jpg")]
 private var AppleImage : Class;

 private var _bMaterial : WhiteShadingBitmapMaterial;
 private var _cMaterial : ShadingColorMaterial;

MATERIALS, LIGHTS, AND SHADING

103

 public function FlatShadingMaterials()
 {
 super();

 _createLights();

 addChild(_tf = new TextField());

 _toggle();
 }

 protected function _createLights() : void
 {
 }

 protected override function _createMaterials() : void
 {
 }

 protected override function _toggle() : void
 {
 }
 }
}

In the preceding code, we start by declaring a text field variable that will give us an indication of state for

the toggle functionality. We then define two private variables called _pointLight and _dirLight to be

used as our comparative light sources. Next, we embed the same redapple.jpg image file used earlier in

this chapter, and as usual, the file path should work fine if you are working with the downloaded sample

files. Similarly, the remaining two private variables called _bMaterial and _cMaterial are global

placeholders for the two materials we will be testing in this example.

Aside from the usual initializing call to the _toggle() method in the constructor, we create a new

TextField object for our _tf variable and add it to the display list. We then call a new method specific to

this example called _createLights(), which for now is defined further down as an empty stub. We finish

with the usual _createMaterials() and _toggle method overrides, ready for some custom functionality.

To start with we will create two lights objects using an instance of the PointLight3D class and

DirectionalLight3D class, in order to compare the relative effects of each. We begin configuring our

point light source by adding the following lines of code to the _createLights() method:

_pointLight = new PointLight3D();
_pointLight.position = new Number3D(70, 200, -200);
_pointLight.ambient = 0.1;
_pointLight.diffuse = 0.5;
_pointLight.specular = 1;
_pointLight.brightness = 1;

CHAPTER 5

104

Here, the position of the point light is set to be 200 units above the scene’s origin and 70 units to the right,

locating it over the top of the sphere primitive in our scene. The ambient, diffuse, and specular

properties of the light source are then set to provide a decent lighting range across the shading

calculations. These values often require a little tweaking to achieve the desired effect, but the numbers

used here are usually a good starting point. The last property configured is brightness, set to ensure the

overall light levels from the point light source are appropriate, given the falloff over distance exhibited with

this type of source.

Next, we configure our directional light with the following code added to the _createLights() method:

_dirLight = new DirectionalLight3D();
_dirLight.direction = new Number3D(70, 200, -200);
_dirLight.ambient = 0.1;
_dirLight.diffuse = 0.5;
_dirLight.specular = 1;
_dirLight.brightness = 3;

Here, we set the direction vector of our DirectionalLight3D object to match the same vector created

for the position of the point light relative to the center of the scene. All component properties of the light

source are set to match the point light values as closely as possible, the only major difference being the

brightness value, which takes into account the uniform nature of the directional light intensity. Brightness

can be set to any number, but generally, the aim is to provide a sufficient intensity that doesn’t wash out

the resulting shading with nothing but white light.

Now, we set up our instances of ShadingColorMaterial and WhiteShadingBitmapMaterial on the

material properties of the mesh objects by adding the following to the _createMaterials() method:

_bMaterial = new WhiteShadingBitmapMaterial(Cast.bitmap(AppleImage));

_cMaterial = new ShadingColorMaterial();
_cMaterial.ambient = 0xff0000;
_cMaterial.diffuse = 0x008800;
_cMaterial.specular = 0x0000ff;

_cube.material = _cMaterial;
_sphere.material = _cMaterial;
_ape.material = _bMaterial;

Looking at the first line in the preceding code, you can see that a WhiteShadingBitmapMaterial object

is instantiated in a similar way a nonshading BitmapMaterial object, requiring a BitmapData object

passed in its constructor argument that contains the texture to be used for the material. As shown earlier in

the SimpleMaterials example, using the Cast class on our embedded AppleImage asset is a simple

way to extract this data. Next, we instantiate a SimpleMaterials object and use the overriding

component colors rather than the base color property to define its shading by setting the ambient,

diffuse, and specular properties to a selection of color values. Finally, we apply our shading materials

to the desired mesh objects, with the WhiteShadingBitmapMaterial instance applied to the MonkeyMesh

model and the ShadingColorMaterial instance applied to the Cube and Sphere primitive objects.

To complete the FlatShadingMaterials example, we want to enable light source swapping at runtime

using the same toggle system as before. We do this by adding the following code to the _toggle()

method:

MATERIALS, LIGHTS, AND SHADING

105

switch (_state) {
 case 0:
 _view.scene.addLight(_pointLight);
 _view.scene.removeLight(_dirLight);
 _tf.text = 'POINT';
 _state = 1;
 break;
 case 1:
 _view.scene.addLight(_dirLight);
 _view.scene.removeLight(_pointLight);
 _tf.text = 'DIR';
 _state = 2;
 break;
 case 2:
 _view.scene.removeLight(_dirLight);
 _view.scene.removeLight(_pointLight);
 _tf.text = 'NONE';
 _state = 0;
 break;
}

This adds and removes the relevant light source from the scene and updates our descriptive text of what is

currently being used as a light source. Starting with the default value of the _state variable 0,

PointLight3D is activated and our descriptive text is set to POINT. A single mouse click will advance the

state to 1, activating our DirectionalLight3D object and setting the descriptive text to DIR. A second

click will use no lights at all and set the descriptive text to NONE. A further mouse click will start the cycle

again, returning us to the 0 state with PointLight3D active.

Compiling the example reveals the three mesh objects displayed with shading materials. The monkey

model has the shading equivalent of a bitmap material applied, while the cube and sphere primitives have

the shading equivalent of a color material applied, with the results looking similar to Figure 5-7. Because

we have defined separate material colors for use by the ambient, diffuse, and specular components of the

light source on the ShadingColorMaterial object, the shading color applied to the face elements of the

cube and sphere primitives should clearly show what intensity from the source is attributed to each

component. Faces pointing away from the light source will be colored red (the ambient component),

whereas those directly reflecting the light source will be colored blue (the specular component). All other

faces will appear green (the diffuse component) or some mixed shade of green, red, and blue where the

component intensities combine. Of course, this explanation does not apply to the monkey model, because

WhiteShadingBitmapMaterial can only shade in varying degrees of white. However, the monkey model

does retain a texture to its surface, which is one advantage of using this type of shading material.

CHAPTER 5

106

Figure 5-7. The POINT state of the FlatShadingMaterials example, rendered using simple shading

materials. The cube and sphere primitives both use the ShadingColorMaterial object, while the monkey

model has the WhiteShadingBitmapMaterial object applied.

Clicking once anywhere on the stage will swap the default PointLight3D object for the

DirectionaLight3D object. With this light source active, you can see that intensities for reflected

components of the light vary uniformly across all objects, demonstrating the uniform nature of the

directional light source. Also, the angles of incidence for the incoming light on each object will match,

creating matching areas of shadow (areas lit by the ambient component only) for each object. A final click

will remove lights from the scene altogether, causing all mesh objects to be rendered black as you would

expect in a real-world scenario.

Because we are generally restricted to relatively small numbers of faces in an Away3D scene, flat shading

can be somewhat limiting. You only have to look at the sphere from our FlatShadingMaterials example

to realize that the big square shading areas are somewhat revealing of our low polygon count. To achieve

some smoother shading effects, we need to start looking at materials that generate light maps with a level

of detail independent of polygon count.

Using normal map shading

Normal map shading (or DOT3 shading) is an approach to shading materials that can be used to work

around the low polygon problems associated with real-time 3D. It is a little more expensive in processing

terms than the simple shading techniques described in the previous section, but in certain scenarios, the

visual benefits will vastly outweigh the increase in processing time.

The idea behind normal map shading is to process incident light intensities at a texel level rather than a

face level. A texel is the representation of a single pixel of a bitmap texture as seen on the surface of an

object with a texture mapping material applied. With separate light calculations made for each texel in a

material, the detail of a mesh object’s light map can be far greater than that achieved by single face

calculations.

In normal map shading, we want to process the perceived light intensity of each texel of a material’s

texture. With flat shading, light intensity calculations are made by using a vector called the face normal

that represents the 3D vector perpendicular to the surface of the face and determines the direction in

which the face is pointing. In Figure 5-8, a simple cube is depicted showing two of its face normal vectors,

MATERIALS, LIGHTS, AND SHADING

107

on the top and right side. For normal map shading to work, we need the same normal vector information

for each texel of the material texture, stored in an easily accessible data format. This takes the form of a

second bitmap image created alongside the texture, known as a normal map.

A normal map is created programmatically in a process called normal mapping, which usually occurs at

the model creation stage. We want the normal values in a normal map to vary in a much smoother way to

the normals produced by face calculations, and there are two ways this can be done. The first is to start

with a more detailed model that contains many more triangles and iterate through each texel of the

material, generating a normal value based on a smoothed face normal value. The second is to use a

height map (or bump map) texture to perturb the surface normals of the texels, again smoothing out the

variation between face normal values but, in this case, producing a surface that has added relief detail.

Typically, normal maps store normal information in color channels, with red, green and blue (RGB) values

corresponding to the x, y, and z values of the normal vector. Once a normal map has been created, the

amount of detail in an object’s light map is no longer dependent on the polygon count of the model, and

the geometry can be simplified to whatever is acceptable for the 3D engine to render. However, each

normal map is tied to the object it was created for; consequently, each normal mapping material can only

be applied to the object used in its creation.

Figure 5-8. Face normal vectors for the top and right-hand sides of a cube primitive

Because a normal map stores values relating to the surface normal of a texel, each pixel in the normal

map image must refer to a unique texel on the model surface. Unfortunately, many models are built with

areas of a texture map that are reused for more than one area of a model’s surface. For example, when

texturing a car, the same piece of a texture can potentially be used for the left and right sides of the body.

This results in a problem known as overlapping UVs, where a reversed-engineered map of a mesh’s

face’s UV coordinates printed onto the texture creates overlapping polygons. A model that has no

overlapping UVs is required for effective normal mapping.

Figure 5-9 depicts the normal map of a sphere (one that we will be using in our next code example).

Normal maps produce quite colorful images because of the channel mapping that goes into their creation.

To see the map in full color, look for the sphere_normals.jpg image inside the sample files for this

chapter.

CHAPTER 5

108

Figure 5-9. Generated normal map for a sphere

With a bit of effort, you can deduce some information about the geometry of the related object just from

looking at a normal map. Remember that the X, Y, Z vector of the texel’s normal is represented by the

RGB value of the corresponding pixel. Along the top edge of Figure 5-9, all pixels are some shade of

green, signifying that the texel normals are pointing up along the Y axis. If we consider that the texture of

this material maps onto a sphere similarly to the way a map of the world maps onto a globe, the top edge

of the texture will converge around the north pole of the sphere creating upwardly-pointing normals and

confirming our green values. Using the same logic, we can deduce that the color shift from blue to

magenta to red to light blue and back again across the central line of pixels in the normal map represents

a horizontal texel normal vector rotating in a circle around the equator of the sphere.

Generating a normal map

The task of generating a normal map generally falls to the 3D designer or texture artist and for fairly good

reasons; the best tools available to create normal maps are modeling and 3D rendering packages such as

Blender, 3ds Max, Maya, and Cinema4D. For those without access to such software, there also exists a

free Adobe AIR application called Prefab3D, downloadable from the Adobe AIR Marketplace at

www.adobe.com. Developed by core Away3D developer Fabrice Closier to produce normal map images

and more, this application works particularly well alongside Away3D in the preparation of 3D assets.

As you can imagine, the exact steps to render a normal map will differ from application to application, but

here are a few pointers to help generate maps for use in Away3D:

� The UV coordinates on a high-polygon mesh used to render a normal map needs to match that of

the low-polygon mesh used in the engine.

� Overlapping UVs will cause problems when rendering the resulting light maps for the object.

� Always use the object’s local coordinate space (commonly referred to as object space) for the

normal vector values in a normal map.

MATERIALS, LIGHTS, AND SHADING

109

� Make sure your mesh object’s geometry is oriented the same way in your modeler as it appears

in Away3D. If the local axes don’t align, rotate your model to match them up before generating

the normal map.

� The expected mapping of color channels to normal vector coordinates in Away3D is RGB to XYZ

(red is X, green is Y, and blue is Z).

Once your normal maps have been created, they can be imported into Away3D as JPG or PNG images

and used with any DOT3 material to produce n rmal map shading.

Using DOT3 materials in Away3D

Materials in Away3D that use normal mapping in some way have a prefix of Dot3 in their class name. Let’s

extend the Chapter05SampleBase class to create an example using normal map shading on all our

objects.

package flash3dbook.ch05
{
 import away3d.core.math.*;
 import away3d.core.utils.*;
 import away3d.lights.*;
 import away3d.materials.*;
 import away3d.primitives.*;

 import flash.display.*;
 import flash.events.*;

 [SWF(width="800", height="600")]
 public class UsingNormalMaps extends Chapter05SampleBase
 {
 private var _dirLight : DirectionalLight3D;

 [Embed(source="../../../assets/ch05/sphere_normals.jpg")]
 private var SphereNormals : Class;

 [Embed(source="../../../assets/ch05/ape_normals.jpg")]
 private var ApeNormals : Class;

 [Embed(source="../../../assets/ch05/cube_normals.jpg")]
 private var CubeNormals : Class;

 [Embed(source="../../../assets/ch05/redapple.jpg")]
 private var AppleImage : Class;

 private var _angle : Number = 0;

 public static const RADS_PER_DEG : Number = Math.PI / 180;

CHAPTER 5

110

 public function UsingNormalMaps()
 {
 super();

 _cube.mappingType = CubeMappingType.MAP6;

 _createLights();
 }

 protected function _createLights() : void
 {
 }

 protected override function _createMaterials() : void
 {
 }
 }
}

We start by embedding three pregenerated normal map images, one for each mesh object. The

ape_normal.jpg and sphere_normal.jpg images are generated by smoothing face normals of the

existing geometry, while the cube_normal.jpg has been created with an additional height map to add a

bit of extra detail to the cube’s surface, as you will see. Our next embedded image, the redapple.jpg

shown in previous examples, will be used for our base material texture on each object. All images can be

found in the chapter files from the Downloads section of www.friendsofed.com. We finish our property

definitions with a constant RADS_PER_DEG and a global variable _angle that will be used for rotation

effects later in the class.

The constructor in the preceding code modifies the mappingType property of the cube primitive to MAP6, a

special texture-mapping mode that is a requirement for the cube_normal.jpg texture, because it uses a

different area of the texture for mapping each side of the cube. We then call _createLights(), a new

method included in the class to setup the lights in a similar manner to the previous

FlatShadingMaterials example. Finally, we override the _createMaterials() method, ready for our

custom code. Before we define our materials, let’s create our light sources by adding the following code to

the _createLights() method:

_dirLight = new DirectionalLight3D();
_dirLight.direction = new Number3D(70, 500, -70);
_dirLight.ambient = 0.1;
_dirLight.diffuse = 0.5;
_dirLight.specular = 1;
_dirLight.brightness = 2;
_view.scene.addLight(_dirLight);

This creates a directional light source identical to the one in the FlatShadingMaterials example, so that

a direct comparison can be made.

MATERIALS, LIGHTS, AND SHADING

111

Note that DOT3 materials react to point light sources in the current Flash 10 version of

Away3D but not in the Flash 9 version. In the interest of maintaining maximum

compatibility, we will only be looking at the directional light implementation in our

example.

Now, we need to create the three BitmapData objects used for each of our mesh object normal maps and

the one BitmapData object used for all base textures. Once again, this is easily done using the Cast class

by adding the following code to the _createMaterials() method:

var texture : BitmapData = Cast.bitmap(AppleImage);
var sphereMap : BitmapData = Cast.bitmap(SphereNormals);
var apeMap : BitmapData = Cast.bitmap(ApeNormals);
var cubeMap : BitmapData = Cast.bitmap(CubeNormals);

With these in place, we can start creating the DOT3 materials. We use the Dot3BitmapMaterial class

located in the away3d.materials package, adding the following code to the _createMaterials()

method:

var sphereMaterial : Dot3BitmapMaterial;
sphereMaterial = new Dot3BitmapMaterial(texture, sphereMap);
sphereMaterial.specular = 0xFFFFFF;

var apeMaterial : Dot3BitmapMaterial;
apeMaterial = new Dot3BitmapMaterial(texture, apeMap);
apeMaterial.specular = 0xFFFFFF;

var cubeMaterial : Dot3BitmapMaterial;
cubeMaterial = new Dot3BitmapMaterial(texture, cubeMap);
cubeMaterial.specular = 0xFF0000;

The Dot3BitmapMaterial object requires two arguments in its constructor: the first for the bitmap data of

the texture map (the same data used in a standard BitmapMaterial) and the second for the bitmap data

of the normal map. Notice that in the preceding code, we set a specular property on the

Dot3BitmapMaterial objects after instantiation. This is interpreted in a similar way to the specular

property seen earlier on the ShadingColorMaterial object, defining the color of the reflected specular

component of the light source. In the cases of sphereMaterial and apeMaterial, the specular property

is set to white, but for cubeMaterial, it is set to red.

Now, we just need to apply these materials to their respective mesh objects by adding the following code

to the _createMaterials() method:

_cube.material = cubeMaterial;
_cube.ownCanvas = true;
_sphere.material = sphereMaterial;
_sphere.ownCanvas = true;
_ape.material = apeMaterial;
_ape.ownCanvas = true;

While setting the material properties of each object, we also isolate each material to a unique rendering

sprite for each object, known as a canvas. Because many shading materials are layered, isolating the

CHAPTER 5

112

objects that use them to their own canvas helps with the speed and consistency of the rendering process.

This setup is easily configured by setting the ownCanvas property of each mesh object to true.

Compiling the code at this point will display something similar to Figure 5-10. On the sphere and monkey

model objects, the shading appears smooth without a hint of the underlying polygons making up the mesh.

The normal map on the cube illustrates how normal mapping can be used to add surface detail to an

otherwise flat object—the apparent indentations on each side make it look like a die, despite the fact that

no geometry has been added to the cube primitive.

Figure 5-10. Normal map shading applied to our test objects, using externally created normal map images

in the UsingNormalMaps example

As a final touch to the UsingNormalMaps example, let’s override the _onEnterFrame() method to create

a moving light source. Add the following code to the bottom of the class:

override protected function _onEnterFrame(ev : Event) : void
{
 _angle = (_angle + 5) % 360;

 var x : Number= 100 * Math.cos(RADS_PER_DEG * _angle);
 var y : Number = 50;
 var z : Number= 100 * Math.sin(RADS_PER_DEG * _angle);

 _dirLight.direction = new Number3D(-x, -y, -z);

 super._onEnterFrame(ev);
}

Here, we use our global _angle variable to increment a rotation value of 5 degrees every frame and then

apply it to the direction vector of our directional light source with the help of some trigonometry. We

calculate the x, y, and z components required for the direction vector of the directional light and then

apply them in a new Number3D object. To ensure the rest of the example functions normally, we finish our

modifications by calling the superclass _onEnterFrame() method. Recompiling the example rotates the

directional light object around the scene with the light maps of the DOT3 materials updating in real time.

MATERIALS, LIGHTS, AND SHADING

113

Using environment shading

When considering highly reflective materials, the standard shading options you have seen so far are a little

lacking in detail. What if you want an object to appear made of glass or chrome? The answer lies in a

technique known as environment shading. This uses a cached image of the surroundings as the basis

for a light map, overlaying a calculated reflection of the image onto an underlying color or texture.

Environment shading employs a technique called environment mapping to draw its light map. Let’s

create an example to demonstrate the effect by implementing the EnviroBitmapMaterial and

EnviroColorMateiral classes in Away3D. Once again, we begin by extending the

Chapter05SampleBase class with the following code:

package flash3dbook.ch05
{
 import away3d.core.utils.*;
 import away3d.materials.*;

 import flash.display.*;
 [SWF(width="800", height="600")]
 public class EnvironmentMaterials extends Chapter05SampleBase
 {
 [Embed(source="../../../assets/ch05/environment.jpg")]
 private var EnviroMap : Class;

 [Embed(source="../../../assets/ch05/redapple.jpg")]
 private var AppleImage : Class;

 private var _colorMaterial : EnviroColorMaterial;
 private var _bitmapMaterial : EnviroBitmapMaterial;

 public function EnvironmentMaterials()
 {
 super();

 _toggle();
 }

 protected override function _createMaterials() : void
 {
 }

 protected override function _toggle() : void
 {
 }
 }
}

As usual, we start our class definition by embedding the textures used in the example. You are familiar

enough with the redapple.jpg texture by now, but the following environment.jpg file is a new image to

CHAPTER 5

114

be used as our environment mapping texture. Opening it up, you will see an image of a garden that has

been morphed as though viewed through a fish-eye lens. Panoramic projections such as this work well

with environment mapping materials and can be easily generated with the right image editing software.

However, perfectly acceptable results can be achieved using a regular image of the scene you wish to see

reflected in the surface of the material.

The next global variables we declare are two placeholders for the environment mapping material objects.

The EnviroColorMaterial object applies an environment map to a standard color material, while the

EnviroBitmapMaterial object does the same to a bitmap material. The constructor in the preceding

code contains an initializing call to the _toggle() method, and the class is rounded off with the usual

_createMaterial() and _toggle() stub methods.

To complete the example, we first need to fill out the _createMaterials method with the following code:

var texture : BitmapData = Cast.bitmap(AppleImage);
var envMap : BitmapData = Cast.bitmap(EnviroMap);

_colorMaterial = new EnviroColorMaterial(0xffcc66, envMap);
_bitmapMaterial = new EnviroBitmapMaterial(texture, envMap);

_cube.material = _colorMaterial;
_sphere.material = _colorMaterial;
_ape.material = _bitmapMaterial;

Here, we start with the familiar extraction of embedded image bitmap data using the Cast class and then

use the result to define our environment materials. The EnviroColorMaterial takes a color value as its

first constructor argument, while the EnviroBitmapMaterial takes the bitmap data for the material

texture. They both expect an environment image as their second constructor parameter, which will be

blended with the base texture or color of the material. We finish by applying the EnviroColorMaterial

object to the cube and sphere primitives, and the EnviroBitmapMaterial object to the monkey model.

Compiling the example will display the output shown in Figure 5-11. As you rotate the view with the

mouse, you’ll see that both materials appear to be reflecting an invisible background environment.

Figure 5-11. Environment materials applied to all mesh objects in the EnvironmentMaterials example

MATERIALS, LIGHTS, AND SHADING

115

In Away3D, environment materials use a reflectiveness property to control the degree to which an

environment texture is reflected in the material’s surface. This is represented by a fractional value between

0 and 1, with the default set to 0.5 (what you have seen so far). To compare different settings, add the

following lines of code to the _toggle() method:

switch (_state) {
 case 0:
 _colorMaterial.reflectiveness = 0.1;
 _bitmapMaterial.reflectiveness = 0.1;
 _state = 1;
 break;
 case 1:
 _colorMaterial.reflectiveness = 0.9;
 _bitmapMaterial.reflectiveness = 0.9;
 _state = 0;
 break;
}

Recompile the EnvironmentMaterials example, and click the mouse anywhere inside the stage to see

the reflectiveness property swap between 0.1 and 0.9 for both color and bitmap environment materials.

Figure 5-12 shows the appearance of each setting side by side. Environment shading is one of the most

efficient rendering shading techniques in Away3D, which make it a very versatile material option.

Figure 5-12. Adjusting the reflectiveness property of the environment materials in the

EnvironmentMaterials example. On the left, reflectiveness is set to 0.9, on the right it is set to 0.1.

CHAPTER 5

116

Using animated and interactive materials

An animated material extends the functionality of a standard bitmap material to allow the contents of the

texture image to be animated in real time. Using the MovieMaterial class in Away3D, it is possible to

project time-line–based animations contained in a MovieClip or code-based animations contained in a

Sprite onto the surface of a 3D mesh object. As the examples in this section will demonstrate, animated

materials can also be made interactive through the surface of a 3D mesh object by setting the

interactive property of a MovieMaterial object to true.

Using the MovieMaterial class

The MovieMaterial class is found in the usual away3d.materials package. Let’s explore the

functionality available by extending the Chapter05SampleBase class with the following document class:

package flash3dbook.ch05
{
 import away3d.primitives.*;
 import away3d.materials.*;
 import away3d.events.*;

 [SWF(width="800", height="600")]
 public class UsingAnimatedMaterials extends Chapter05SampleBase
 {
 [Embed(source="../../../assets/ch05/animatedTexture.swf")]
 private var AnimatedTexture : Class;

 [Embed(source="../../../assets/ch05/interactiveTexture.swf")]
 private var InteractiveTexture : Class;

 private var _movieMat :MovieMaterial;

 public function UsingAnimatedMaterials()
 {
 super();
 }

 protected override function _createScene():void
 {
 }

 protected override function _createMaterials() : void
 {
 }
 }
}

In the preceding code, we embed two SWF files as global properties AnimatedTexture and

InteractiveTexture. These will be cast to Sprite on instantiation for use in our MovieMaterial object.

MATERIALS, LIGHTS, AND SHADING

117

In this case, we override the _createScene() method, because we want to reconfigure our scene to

display a single _cube primitive. We finish the class definition by overriding the _createMaterials()

method with the usual method stub.

Now, let’s create our single cube object by adding the following code to the _createScene() method:

_cube = new Cube();
_cube.width = 75;
_cube.height = 75;
_cube.depth = 75;
_view.scene.addChild(_cube);

This creates a cube with a size in all dimensions of 75 units and adds it to the scene. To complete the

example, we need to apply a MovieMaterial object to the surface of the cube by adding the following

code to the _createMaterials() method.

_movieMat = new MovieMaterial(new AnimatedTexture());
_cube.material = _movieMat;

Here, we use an instance of the AnimatedTexture class containing the embedded SWF file

animatedTexture.swf for the required movie clip instance, passed in the constructor of the

MovieMaterial object. Both embedded SWF files used here can be found in this chapter’s resource

download available at www.friendsofed.com. The animatedTexture.swf file contains a simple looping

animated movie that can be previewed by opening the file using the stand-alone Flash Player. Compiling

the code will display a single cube primitive with the animating movie clip projected onto every side. Notice

that the default mapping used for this cube’s UV coordinates projects an identical image of the texture onto

each side of the cube, unlike the mapping used in the previous UsingNormalMaps example.

We can adapt the UsingAnimatedMaterials example to display an interactive movie material by

replacing the preceding code for the _createMaterials() method with the following:

_movieMat = new MovieMaterial(new InteractiveTexture());
_movieMat.interactive = true;
_movieMat.smooth = true;
_cube.material = _movieMat;

Here, we pass an instance of the InteractiveTexture class in the constructor argument of the

MovieMaterial object. Opening the associated inteactiveTexture.swf file in the stand-alone Flash

Player will display a collection of Flash Professional UI components. These are ideal for use in an

interactive texture demonstration, because they react to mouse events such as rollovers and clicks. To

enable interactivity, we set the interactive property of the MovieMaterial object in the preceding code

to true. A property called smooth is also set to true to produce an antialiased result for the texture

mapping on the surface of the cube object. This helps when dealing with interface components in a

texture, as items such as text and buttons appear clearer when antialiased.

Recompiling the example displays a cube similar to the one shown in Figure 5-13. Each side has the

contents of the inteactiveTexture.swf file projected onto its surface, and using the mouse, you will

quickly discover that interactivity is preserved.

CHAPTER 5

118

Figure 5-13. Interactive UI components mapped onto the surface of a cube using the MovieMaterial object

At times you might want to use MovieMaterial for movie clips that are not constantly animating. When

the movie clip is static, redrawing the material is a waste of resources. To prevent a MovieMaterial from

automatically redrawing, set its autoUpdate property to false. Setting it to true will resume updating

every time the view is rendered. If at any point you need to refresh a MovieMaterial, without activating

automatic redrawing, you can invoke its update() method.

Using the VideoMaterial class

The VideoMaterial class is an animated material that extends the functionality of the MovieMaterial

class to accept FLV files as its animating source. The playback of Flash video inside a VideoMaterial

object is achieved through transport control methods on the object that mirror the standard video

component controls in Flash. In its simplest form, a VideoMaterial implementation is set up by creating a

class instance and setting its file property to the location of an FLV file. We can try this out by replacing

the contents of the _createMaterials() method in the previous UsingAnimatedMaterials example

with the following code:

var videoMat : VideoMaterial = new VideoMaterial();
videoMat.file = '../assets/ch05/Away3D_Showreel2010.flv'
_cube.material = videoMat;

Here, we are setting the file property of the VideoMaterial object to a string value representing the

path to our FLV file, which once again can be obtained through the resource download available at

www.friendsofed.com. Recompiling the example will display the chosen video file playing back on the

surface of the cube primitive. You can experiment further by using the play() and pause() methods of

MATERIALS, LIGHTS, AND SHADING

119

the VideoMaterial object to start and stop playback and the seek() method to jump back and forth in

the video stream, as you would with a native flash.net.NetStream object.

Summary

In this chapter, we have covered the majority of material types that are available in Away3D. An important

concept to take with you is that all materials are applied to 3D objects in the same way. However, a light

source object in the scene is an extra requirement of a shading material if it is to function correctly.

With more complex material types such as those concerned with shading, the required real-time

computations can be very processor heavy. Where possible, it is best to try to avoid using a lot of light

sources and shading materials at the same time; often, it is possible to fake shading using the texture

baking technique that requires no real-time processing overhead. It is also possible to optimize the use of

animated materials with the use of the autoUpdate property. In Chapter 10, we will look further at some of

the ways we can optimize the usage of materials.

Here is the summary of topics covered in this chapter:

� Materials are created by instantiating classes from the away3d.materials package. They are

applied by setting the material property on a 3D mesh object or 3D element that supports them.

� Shading can be achieved in Away3D by adding at least one instance of a light source class from

the away3d.lights package to the scene and applying a shading material to any 3D mesh

object in the scene to produce shading results.

� The PointLight3D class creates a light source that emits light in all directions.

� The DirectionalLight3D class creates a light source that emits light in a single

direction from a near-infinite distance.

� The AmbientLight3D class creates an ambient light source that raises the overall

lighting level in a scene.

� Visual results from shading materials are controlled from properties set on the light source (such

as ambient, diffuse, and specular properties) as well as on the material object (such as the

color property on a ShadingColorMaterial object).

� Normal maps are images that define the normal vectors of each texel on the surface of the 3D

mesh object and can be used to separate light map detail from mesh detail.

� Normal maps are usually created in a 3D modeling application such as Blender or 3ds

Max.

� Normal maps are implemented in Away3D using DOT3 materials.

� In Flash 9, normal maps are restricted to working with directional light sources only.

� The mouse can interact with the contents of a movie clip texture through the surface of a 3D

mesh using a MovieMaterial object with its interactive property set to true.

� Materials can be animated by using a MovieMaterial object with an animated movie clip, or by

using a VideoMaterial object with an FLV video file.

CHAPTER 5

120

In the next chapter, we will explore how the use of 3D vector shapes in Away3D can completely transform

the way you import SWF files and text into your 3D projects, as well as the visual benefits of using curves

instead of lines in a scene.

121

Chapter 6

Vector Shapes and Text in 3D

Up to this point, the 3D geometry we have created and imported into Away3D has been defined using

groups of faces and segments that consist of vertices connected by straight lines. This approach is the

most commonly used by 3D modeling applications and the majority of 3D engines for defining 3D

geometry, partly because it allows for easy interchange between applications and partly because the

hardware acceleration used by many graphical libraries is designed to work with collections of straight-

edged polygons.

However, this format does no favors for those of us wanting to create smoothly varying surfaces in 3D,

because the rendering process for any shape following a curved outline involves tessellating many straight

edged polygons together. An accelerated engine has little problem working this way, but the same

approach is pretty detrimental for Flash where every extra polygon impacts performance due to the

limitations of software rendering.

From working with any of the graphical tools available for producing Flash content, you’ll be familiar with

the concept of vector graphics that allows the creation of shapes with curves as well as straight edges.

Because we are not pandering to the restrictions of a GPU, the same drawing techniques can be applied

in 3D to produce perfectly curved surfaces without the need for tessellation. This chapter gives an

overview of the use of vector graphics in Away3D, exploring some of the advantages and limitations that

are encountered. To start with, let’s take a look at some general concepts surrounding vector graphics.

Working with vector graphics

In the world of digital graphics, there are generally two methods used for creating and storing images. The

first is raster (or bitmap) graphics, and the second is vector graphics. Raster graphics are stored as

individual pixel color values that are drawn directly to screen when viewed, while vector graphics are

stored as a series of shape definitions that are rasterized on the fly when required to be displayed.

CHAPTER 6

122

Vector graphics vs. raster graphics

One huge advantage of vector graphics over raster graphics is their ability to scale with no loss of quality.

A raster image is stored as a 2D array of pixels that has an optimum width and height on screen.

Stretching or compressing a raster image to fit different dimensions almost always results in some loss of

fidelity, because the color values of on-screen pixels have to be interpolated between the color values of

pixels in a source image. As a result, straight lines become stepped, curves become blocky, and while

antialiasing can go some way to disguise these artifacts, you are unlikely to achieve the same crisp lines

as your original image. Vector graphics have none of these issues because the rasterization of an image

occurs only when the graphics are drawn to screen, allowing image pixels to match up perfectly with

screen pixels. Images are stored as a series of drawing commands, which can often be an efficient

approach in terms of file size. If a vector image is scaled or transformed in any way, the coordinates in the

drawing commands are adjusted before the rasterizing process begins, ensuring a crisp output.

As an example of the differences between raster graphics and vector graphics, consider a red circle with a

radius of 50 pixels stored in both formats. To store the data as a raster image, we would require 100 � 100

pixels, each with a color value of 0xFFFF0000 (solid red) or 0x00000000 (transparent) for a total of 10,000

32-bit integer values. Resizing this image to twice its original size would double the area represented by

each pixel onscreen and cause a pixilated look. To store the same red circle as a vector image, we would

require the drawing instructions necessary to re-create the circle. The specific instructions would depend

entirely on the graphics engine being used to draw them but, in this case, could be something as simple as

“draw a red circle with a 50 pixel radius.” Not only is this vastly more efficient in terms of storage space,

but scaling comes very naturally. Resizing the image to twice its original size would simply replace the

radius value of 50 pixels with a radius value of 100 pixels, and the next drawing operation would rasterize

the circle to screen at twice the size while retaining the same level of fidelity.

Creating lines and curves

In Flash, we have a well-defined set of instructions for drawing vector graphics programmatically. The

most basic of these are the moveTo(), lineTo(), and curveTo() commands from the Graphics class

that allow us to draw curves and lines in a sequential order. We can create a closed loop to define a filled

shape or an open length to define a line segment. Armed with these drawing commands, it is possible to

represent almost any shape imaginable. For example, the circle mentioned previously can be constructed

from four curves, while a rectangle can be constructed from four lines.

The same basic commands form the building blocks of our vector drawing routines in Away3D. Before we

have a closer look at how they are implemented, let’s briefly consider the process involved in converting

these commands to rasterized images on the screen.

The definition of a line can be stored as two position vectors: a start position and an end position. To draw

this data, the software renderer in Flash colors individual pixels on the screen using a line algorithm such

as the Bresenham line algorithm, producing the final bitmap output displayed by our monitor.

The definition of a curve can take many forms, but the most common definition used in vector graphics is

known as a Bézier curve. This type of curve is quick to rasterize, and the position at any point along its

path can be easily calculated, hence its popularity.

In Flash, we are able to draw quadratic Bézier curves programmatically using the native drawing API.

Quadratic Bézier curves are so called because of the quadratic formula used to trace their paths, and they

require three position vectors for their definition: a start position, a control position, and an end position.

Figure 6-1 depicts an example of a 2D quadratic Bézier curve, displaying its three defining points and the

resulting path.

VECTOR SHAPES AND TEXT IN 3D

123

Figure 6-1. An example of the path drawn by a 2D quadratic Bézier curve, showing the position of the

three points that define the shape of its path.

Bézier curves can work with any number of dimensions, which makes them ideal for defining curves in 3D.

As you have seen in previous chapters, 3D polygons are built from a series of 3D vertices connected by

straight lines. It is therefore possible to build a polygon with an irregular outline using vertices coupled with

drawing commands, defining a series of 3D curves and lines that produce an open-ended segment or a

closed vector shape.

While projecting a 3D line definition to screen is a trivial process, we have no native drawing routine in

Flash for projecting a 3D curve to screen. To visualize these new 3D constructs, we have to use an

approximation when it comes to rendering. In Away3D, vertex positions are projected to screen in the

rendering process, producing a 2D set of position vectors. For 3D Bézier curves, drawing the projected

representation of a shape using 2D Bézier curves is a close approximation to the actual representation

and is easily done with the projected vertex positions and the native drawing API of Flash. The approach

ignores any perspective distortion that would exist for the projected curves, but the difference is

unnoticeable in the majority of cases.

Using the Away3D drawing API

As a generalization, all visible output drawn into the view in Away3D can be considered a collection of

vector shapes. The most commonly seen shape in a Mesh object is the triangle, which is a vector shape

made up of three vertex points connected by straight lines in a closed loop. This data is defined in the

CHAPTER 6

124

Face class, but the definitions aren’t required to stick to simple triangle geometry. To construct an irregular

vector shape, we can use a set of methods on the Face class that mimic the native drawing API of the

Graphics object in Flash, accessed through the graphics property of a Shape or Sprite object. For the

purposes of analogy, a Face definition in Away3D can be treated in a similar way to a Shape definition in

Flash. As an example, consider the following code snippet written to create an irregular vector shape in

Flash:

var shape : Shape = new Shape();
shape.graphics.beginFill(0xffcc00);
shape.graphics.moveTo(-10, -10);
shape.graphics.lineTo(10, -10);
shape.graphics.lineto(10, 10);
shape.graphics.lineTo(-10, -10);
shape.graphics.endFill();

The preceding code executes a number of methods on the graphics property of a Shape instance,

drawing a small, right-angled yellow triangle 20 pixels high by 20 pixels wide. If the Shape instance were

attached to the display list, its contents would be rasterized on the stage of the Flash movie during the next

frame draw. In Away3D, the code for creating an equivalent 3D shape looks very similar:

var face : Face = new Face();
face.material = new ColorMaterial(0xffcc00);
face.moveTo(-10, -10, 0);
face.lineTo(10, -10, 0);
face.lineTo(10, 10, 0);
face.lineTo(-10, -10, 0);

When we compare the preceding code to the previous native Flash code, there are three main differences.

First, we are creating a new Face instance instead of a new Shape instance, which comes with its own set

of custom drawing methods for constructing a complex shape outline. Second, rather than defining a fill

style for the shape, we implement the same material configuration method used for Mesh objects in

Away3D, setting the material property of the Face object to a yellow instance of the ColorMaterial

class. Finally, because we are working in three dimensions, a third property is added to any drawing

commands used on the Face object. The positions defined in the drawing commands are used to create

vertices for the resulting shape that are then projected to screen in the usual way, defining the

representation of the shape in the view.

Before we look further into the use of 3D drawing commands in Away3D, let’s set up the base class

required for all sample code in this chapter.

Preparing the chapter base class

The following class is used as a starting point for subsequent code examples. It defines a few basic

controls for the camera, while carrying out the usual tasks to initialize the view. As with all code examples,

copies of the classes created can be found inside the resource files for this chapter, available for download

at www.friendsofed.com.

package flash3dbook.ch06
{
 import away3d.cameras.*;

VECTOR SHAPES AND TEXT IN 3D

125

 import away3d.containers.*;

 import flash.display.*;
 import flash.events.*;

 [SWF(width="800", height="600")]
 public class Chapter06SampleBase extends Sprite
 {
 protected var _camera : Camera3D;
 protected var _view : View3D;

 public function Chapter06SampleBase()
 {
 _createView();
 _createScene();
 }

 protected function _createView() : void
 {
 _camera = new TargetCamera3D();
 _camera.z = -1000;

 _view = new View3D();
 _view.x = 400;
 _view.y = 300;
 _view.camera = _camera;
 addChild(_view);
 addEventListener(Event.ENTER_FRAME, _onEnterFrame);
 }

 protected function _createScene() : void
 {
 // To be overridden
 }

 protected function _onEnterFrame(ev : Event) : void
 {
 _camera.x -= (_camera.x - 3*(mouseX - stage.stageWidth/2))/4;
 _camera.y -= (_camera.y + 2*(mouseY - stage.stageHeight/2))/4;
 _view.render();
 }
 }
}

In the preceding code, the regular base class methods and objects are constructed. One difference in the

_createView() method is the use of the TargetCamera3D class for our view camera, which offers a

subtly different way of navigating the scene compared to the usual HoverCamera3D class. The event

listener created at the end of the _createView() method for the ENTER_FRAME event triggers the familiar

CHAPTER 6

126

_onEnterFrame() handler method on every frame so that our camera position, and view contents are

updated. Also, the _createScene() method remains empty, so it can be overridden to add custom

content in our example classes.

Drawing 3D vector shapes

As you saw in the previous section, Away3D has a set of drawing commands that mimic the native Flash

drawing API for creating irregular 3D shapes. Let’s start with an example exploring the various types of

shape that can be created in this manner, extending the Chapter06SampleBase class with the following

document class definition:

package flash3dbook.ch06
{
 import away3d.core.base.*;
 import away3d.materials.*;

 [SWF(width="800", height="600")]
 public class SimpleVectorShapes extends Chapter06SampleBase
 {
 override protected function _createScene():void
 {
 var mesh:Mesh = new Mesh();
 mesh.bothsides = true;

 var material : WireColorMaterial = new WireColorMaterial(0xFF0000);
 material.wireColor = 0x000000;
 material.thickness = 2;
 mesh.material = material;

 _view.scene.addChild(mesh);
 }
 }
}

Here, we override the _createScene() method with some code that adds an instance of the Mesh class to

the scene with bothsides set to true and material set to an instance of the WireColorMaterial class,

defining a red color fill with a 2-pixel black border. The mesh object will act as our canvas for adding a

variety of vector shapes, represented by individual Face objects. Faces in Away3D always represent

closed loops—if you want an outline that doesn’t close the start and end points in a shape definition, you

need to use a Segment object instead.

Creating simple shapes with straight lines

To begin with, let’s take a look at drawing some regular 3D shapes that have straight edges. The simplest

of these is the familiar triangle, although this being somewhat of a standard, it is also possible to create a

triangle face using the built-in vertex definitions in the Face class constructor. We’ll be investigating this

approach in more detail in Chapter 7, but for now, let’s stick to the process of shape creation using the

Away3D drawing commands, adding the following code to the end of the _createScene() method:

VECTOR SHAPES AND TEXT IN 3D

127

// Triangle.
var face0:Face = new Face();
face0.moveTo(-50, -50, 0);
face0.lineTo(50, 50, 0);
face0.lineTo(-50, 50, 0);
face0.lineTo(-50, -50, 0);
face0.offset(-300, 0, 0);
mesh.addFace(face0);

Here, we create an instance of the Face class and use the 3D moveTo() and lineTo() methods to draw

our triangle shape. Imagine an invisible active drawing position that exists like a pen you can move over

a piece of paper. The moveTo() method repositions the pen without affecting the paper, while the

lineTo() method draws a straight line with the pen from its current position to the one given by the (x, y,

z) arguments in the lineTo() method.

The active drawing position of a shape defaults to the origin (0, 0, 0) of the containing mesh. In the

preceding code, we reset this position to (–50, –50, 0) with a moveTo() command, defining the location of

the bottom-left corner of our triangle. From here, we draw a line diagonally up to the top-right corner of our

triangle at (50, 50, 0) and then straight across to the top-left corner at (–50, 50, 0). The final line closes the

path by returning the drawing position to (–50, –50, 0).

Before our new face is added to mesh, we call the offset() method. All preceding drawing instructions

have been stored internally in our created Face instance, and the offset() method updates the stored

coordinates of each command by incrementing the x, y, and z values a specified amount. This offers a

useful way of repositioning the geometry inside a single face after it has been created, allowing moveTo()

and lineTo() methods to use easily visualized, localized coordinates that are then incremented by the

offset() method. Here, we offset our created face 300 units to the left to leave room for future shapes,

and then add it to be visible in the scene using the addFace() method of our mesh object.

When using the drawing commands in Away3D, we are not limited to creating polygons with a set number

of sides. To illustrate this, let’s create a square in our example by adding the following code to the end of

the _createScene() method..

// Square.
var face1:Face = new Face();
face1.moveTo(-50, -50, 0);
face1.lineTo(50, -50, 0);
face1.lineTo(50, 50, 0);
face1.lineTo(-50, 50, 0);
face1.lineTo(-50, -50, 0);
face1.offset(-180, 0, 0);
mesh.addFace(face1);

The approach used is nearly identical to our previously created triangle shape, with one additional

lineTo() method. The process begins by moving the active drawing position to the bottom-left corner of

the square at (–50, –50, 0), and lines are then drawn sequentially between each of the four corners, in a

counterclockwise fashion.

As with the triangle shape, we use localized coordinates that are globally incremented by the offset()

method to leave room for subsequent shapes.

CHAPTER 6

128

Compiling the code at this point should give you a similar output to the one displayed in Figure 6-2, with a

triangle and a square positioned side by side, colored red with a black border.

Figure 6-2. Triangle and square shapes drawn using the Away3D vector drawing commands in the

SimpleVectorShapes example

Creating curved shapes

So far, we have drawn nothing in the SimpleVectorShapes example that couldn’t be emulated in an

imported mesh model. However, the next step for us is to apply the same API to the creation of curved

shapes, opening a whole world of new possibilities.

The brute force approach of creating a perfectly curved line with a collection of standard straight lines is

quite a wasteful process in Away3D, and you are often restricted to only creating the necessary detail for a

single level of zoom. Defining a 3D shape using vector definitions has the advantages of being quick to

draw and retaining a smooth appearance from any distance. As an addition to the SimpleVectorShapes

example, let’s add the following code to the _createScene() method that creates a circle shape from a

collection of curved lines using the curveTo() drawing command:

// Curved shape.
var face2:Face = new Face();
face2.moveTo(-50, 0, 0);
face2. curveTo(-50, -50, 0, 0, -50, 0);
face2.curveTo(50, -50, 0, 50, 0, 0);
face2.curveTo(50, 50, 0, 0, 50, 0);
face2.curveTo(-50, 50, 0, -50, 0, 0);
face2.offset(-60, 0, 0);
mesh.addFace(face2);

Because we are restricted to using quadratic Bézier curves in our 2D drawing operations, we have the

same restriction imposed on our 3D drawing operations. Here, our curve commands specify two 3D

positions to define a Bézier curve with a similar form to the representation in Figure 6-1. The active

drawing position is used as the start point of the curve, the first Number triplet in the method arguments is

used as the control point of the curve, and the second Number triplet is used as the end point or the curve.

After tracing our circle outline using four such curve commands, we use the offset() method once again

to shift the entire shape definition 60 units to the left. Recompiling the example will display the output

shown in Figure 6-3.

VECTOR SHAPES AND TEXT IN 3D

129

It is important to note that the resulting circle representation is only an approximation, as quadratic Bézier

curves do not produce exactly the same curves as those required for a perfectly circular shape. We do not

currently have a drawCircle() method available from our 3D drawing commands in Away3D, but the

approximation we have generated here is a close match. For greater accuracy, it would be possible to

create the same shape from a greater number of approximating Bézier curves, but this approach would

generate more vertices in the shape and therefore add to the processing requirements during a render.

Figure 6-3. Faces using the Away3D vector drawing commands from our previous version of the

SimpleVectorShapes example, with a new face added that implements the curveTo() command to create

an approximation of a circle shape

Creating open-ended line segments

As mentioned at the beginning of this section, we discriminate between open-ended outlines and closed

loops in Away3D by using different classes. So far, the Face class we have used will always close the loop

of the shape defined, creating a form that represents a solid surface. If we don’t want to close our shape,

we can use the Segment class to create irregular line segments. To demonstrate this, we can include an

irregular line segment our SimpleVectorShapes example by adding the following code to the end of the

_createScene() method:

// Open-ended line segment
var segment0:Segment = new Segment();
segment0.moveTo(10, 50, 0);
segment0.lineTo(60, 50, 0);
segment0.lineTo(60, 0, 0);
segment0.curveTo(110, 0, 0, 110, -50, 0);
mesh.addSegment(segment0);

The drawing commands available on the Segment class are identical to the ones available on the Face

class, but the result only renders the outline of the created shape, ignoring any definitions in the material

relating to surface fills. Once we have built up our shape definition, the segment object is added to the

scene using the addSegment() method available on our mesh object.

CHAPTER 6

130

Recompiling the SimpleVectorShapes example displays the Segment shape alongside our previously

created shapes. The visual style used for the line is taken from the same WireColorMaterial object set

on the mesh, which applies a black stroke 2 pixels thick to our line segment.

Creating nonplaner shapes

At this point, all our vector shapes in the SimpleVectorShapes example have been drawn on a 2D XY

plane in our scene. This is frequently what we require for irregular faces, but it doesn’t always have to be

the case. It is possible to use a collection of defining positions placed anywhere in space to produce a

nonplaner shape, although there are certain visual restrictions to be aware of when doing this. As an

example, add the following code to the end of the createScene() method:

// Non-planer shape.
var face3:Face = new Face();
face3.moveTo(-50, -50, 0);
face3.curveTo(0, -50, 50, 50, -50, 0);
face3.lineTo(50, 50, 0);
face3.curveTo(0, 50, 50, -50, 50, 0);
face3.lineTo(-50, -50, 0);
face3.offset(180, 0, 0);
mesh.addFace(face3);

At a glance, this looks very similar to the approach we have been using to construct our previous vector

shapes. The difference here is that we are now using more than a single Z value for the positions passed

to our drawing commands, so that the vertices produced are no longer all located in the same plane.

Recompiling the code reveals that the new shape is a variant of our previously created square, with its top

and bottom edges bent inward as if the face were a piece of card being gently pinched at the sides.

Panning the camera around to get a good look at the shape, you will notice some peculiarities at certain

orientations. This output is illustrated in Figure 6-4, with our new shape displayed from various angles. The

image on the far right demonstrates the limitations of such a shape in 3D, with the renderer having a hard

time realizing the solid nature of the shape object from the projected 2D drawing commands it is given. In

this case, we would expect an extra vertical line to be defined at the back of the shape to maintain the

perceived volume of the object we are trying to represent. This is currently a limitation of using the

Away3D drawing commands in this manner.

Figure 6-4. This is the displayed output of the nonplaner shape created in the SimpleVectorShapes

example, depicted from a number of different angles. The illusion is maintained until the shape is viewed

from the direction used in the image on the right, whereupon the basic rendering technique produces an

incorrect representation.

VECTOR SHAPES AND TEXT IN 3D

131

Creating shapes with holes

It is possible to create shapes with holes using the Away3D drawing commands, even though it might not

be immediately apparent how. The procedure relies on the winding property of a shape (the drawing

direction) that can be either positive or negative. This property is used in the native drawing API of Flash,

where intersecting shapes of different winding result in one shape subtracting itself from the other.

Because we are ultimately using the native drawing API to render our shapes in the view, we can apply the

same winding logic to objects in 3D. A shape has positive winding if its vertices are arranged in a

clockwise fashion and has negative winding if its vertices are arranged in a counterclockwise fashion. To

create a shape with a hole, all we need do is define an outer shape with its winding in one direction and

then define an inner shape with its winding in the other direction. Let’s illustrate the effect in our

SimpleVectorShapes example, starting with the outer shape created by adding the following lines of code

to the _createScene() method:

// Shape with a hole.
var face4:Face = new Face();
face4.moveTo(-50, -50, 0);
face4.lineTo(50, -50, 0);
face4.lineTo(50, 50, 0);
face4.lineTo(-50, 50, 0);
face4.lineTo(-50, -50, 0);

You may recognize these drawing commands from our square shape created earlier in this chapter. The

points are defined in counterclockwise order, starting at the bottom-left corner, followed by the bottom-

right, top-right, top-left, and back to bottom-left corner. To create a hole in this arrangement, we need to

add a further series of drawing commands to the face4 object, ordered in a clockwise order so that the

resulting shape is subtracted from the one defined here.

face4.moveTo(30, 30, 0);
face4.lineTo(0, -30, 0);
face4.lineTo(-30, 30, 0);
face4.lineTo(30, 30, 0);

In this case, the active drawing position is first moved to a region in the upper-right corner of the square at

(30, 30, 0), and lines are then drawn in a clockwise order to a region in the lower center of the square at

(0, –30, 0), the upper-left corner of the square at (–30, 30, 0) and finally back to our starting position in the

upper-right corner.

We complete the creation of our new shape by adding the following lines of code to the end of the

_createScene() method, applying an offset 300 units to the right and adding our Face instance to the

mesh in the usual way.

face4.offset(300, 0, 0);
mesh.addFace(face4);

Recompiling the SimpleVectorShapes example will display something similar to the output shown in

Figure 6-5, with our final shape drawn as a square with an inverted triangle cut out of its center.

CHAPTER 6

132

Figure 6-5. The final output of the SimpleVectorShapes example, showing all six shapes created in this

section using the Away3D vector drawing commands

The methods explained here are useful for getting into the nitty-gritty of irregular shape creation in

Away3D. However, using them to produce anything remotely complex can often be a laborious task. The

next section looks at a way of importing prebuilt shapes in much the same way we import prebuilt 3D

models. In this case, the editor used to create the content isn’t some fancy 3D modeling software but the

familiar Flash IDE!

Importing 3D vector shapes

When constructing 3D shapes such as the ones seen in the previous section, using a visual tool is quite

often quicker and easier than typing in drawing commands. In Flash Professional, the currently available

drawing tools allow us to create complex 2D shapes with ease. Away3D enables the creation of 3D

content with these tools by offering a custom importer for the SWF format that converts the created 2D

shapes into 3D shape data. The method of importing an SWF file for use in this manner is similar to the

approach discussed in Chapter 4 for importing 3D models.

Extracting vector shapes from an SWF file

Depending on the environment you are using for developing your Away3D project, a typical workflow for

importing vector shapes from an external SWF file includes the following steps:

1. Open a new FLA file, and create some vector shapes using the drawing tools of the Flash IDE.

2. Place your shapes inside a library symbol (or number of symbols), giving each symbol a linkage

class name by selecting the Export For ActionScript check box in the Properties panel.

3. Publish the FLA as an SWF file.

VECTOR SHAPES AND TEXT IN 3D

133

4. From inside your Away3D project, create a new instance of the Loader3D class found in the

away3d.loaders package and a new instance of the Swf class for parsing SWF files. Set the

libraryClips property of the Swf instance to an array of symbol names you wish to convert to

3D shapes.

5. Call the loadGeometry() method on the created instance of the Loader3D class, using the file

path string of the SWF file containing your vector shapes and the instance of the Swf class as

arguments.

6. Once the SWF file has finished loading, each parsed library symbol is represented as a Mesh

object. All meshes are stored as children of the generated 3D container of the Swf class,

accessed from the handle property on the Loader3D instance.

This foolproof approach works in every development environment including Flash Builder, FDT,

FlashDevelop and Flash Professional. However, if your Away3D project is constructed inside Flash

Professional, you can use a simpler approach to importing vector shapes that does away with using a

separate SWF file:

1. Inside your project FLA, create your linked library symbols containing the vector shapes you wish

to use in Away3D.

2. Create an instance of the Swf class, setting the libraryClips property to an array of symbol

names you wish to convert to 3D objects.

3. Call the parseGeometry() method on the created instance of Swf class, passing the global

property root.loaderInfo.bytes as an argument. This ByteArray object contains the raw

bytes of the running SWF file and can be parsed at runtime as easily as an externally loaded

SWF file.

This approach is certainly handy in Flash Professional if you want to avoid setting up the listeners and

handlers required for asynchronous file loading. However, what if you want to avoid this extra work in

Flash Builder, FDT, and FlashDevelop? Using the familiar [Embed] meta tag, we can package an external

assets SWF file as raw bytes inside the code of the project class. At runtime, the data can be passed to

the parseGeometry() method of the Swf class in exactly the same manner as the

root.loaderInfo.bytes property used in the workflow for Flash Professional.

Let’s take a look at an example that uses the [Embed] meta tag approach by extending the

Chapter06SampleBase class with the following document class definition:

package flash3dbook.ch06
{
 import away3d.containers.*;
 import away3d.core.base.*;
 import away3d.loaders.*;

 import flash.events.*;
 import flash.utils.*;

 [SWF(width="800", height="600")]
 public class ImportingVectorShapes extends Chapter06SampleBase
 {

CHAPTER 6

134

 [Embed(source='../../../assets/ch06/snowman.swf',
 mimeType="application/octet-stream")]
 private var SnowmanSwf : Class;

 private var _mesh : Mesh;

 override protected function _createScene() : void
 {
 }
 }
}

Here, we embed a previously created SWF file called snowman.swf, which can be found in the chapter

resource files downloaded from www.friendsofed.com. The mimeType="application/octet-stream"

line in the [Embed] meta tag instructs the compiler to embed the file as binary data, which is then

represented at runtime as a ByteArray class variable called SnowmanSwf.

The chapter resources also include the FLA file used to create snowman.swf. Opening this file, we see it

contains a symbol that has been exported for ActionScript with the linkage class name Snowman. If you are

not using the sample files from www.friendsofed.com, you can create your own snowman.swf file by

following steps 1 to 3 in the workflow for importing vector shapes from an external SWF file described

earlier in this section.

To parse the vector shapes contained within our embedded SWF file in the ImportingVectorShapes

example, we add the following code to the empty _createScene() method:

var snowmanSwf: ByteArray = new SnowmanSwf() as ByteArray;

var swf : Swf = new Swf();
swf.libraryClips = [“Snowman”];

var snowman : ObjectContainer3D = swf.parseGeometry(snowmanSwf) as
ObjectContainer3D;
_view.scene.addChild(snowman);

The first line of code creates an instance of the embedded SWF asset as a ByteArray object. The next

two lines create a new Swf parser object and set its libraryClips property to an array containing the

name of our library symbol we want to convert. Finally, we use the parseGeometry() method of the Swf

parser object to return the 3D container that is the parent of our parsed library symbol (now represented as

a 3D mesh) and add it to the scene.

Compiling the ImportingVectorShapes example displays the output shown in Figure 6-6. Despite the

Snowman symbol containing many curved edges, the rendering of the 3D mesh representation is perfectly

smooth thanks to the use of Away3D’s vector drawing commands inside the Swf parser object to

reconstruct the shape.

The parsing of the vector data from a binary SWF file is performed by a third-party open

source library called SwfVector, developed by Guojian Wu. The code is distributed along

with the Away3D library and can be found in the wumedia package of the source files.

VECTOR SHAPES AND TEXT IN 3D

135

To achieve high-quality results, keep in mind the following guidelines when creating vector shapes in the

Flash IDE that are to be imported to Away3D in this manner.

� Avoid grouped shapes, movie clips, and text field elements in your library symbol. If you are

importing graphics from Illustrator, this can be achieved by repeatedly using the Break Apart

feature, found in the Modify menu of Flash Professional, until all graphics are represented as raw

shapes.

� Stroke styles are not yet supported in the Swf parser object. If your symbols contain strokes,

make sure you convert them to fills using Convert lines to fills from the Shape submenu of

Modify.

� Keep in mind that Away3D groups shapes into faces according to the layers in a symbol. If you

want all your shapes in the same face, arrange them in the same layer. Fewer faces consume

less processing time when rendering, but potential sorting problems can occur in Away3D when

the Z-depth calculations from a complex group of shapes produces ambiguous sorting values for

a single face.

Figure 6-6. The Snowman symbol used in the ImportingVectorShapes example, converted to 3D from the

vector shape data contained in the snowman.swf file

Animating imported vector shapes

When importing SWF files in this manner, it is possible to apply any number of 3D transformation

techniques on the resulting vector shapes once our 2D symbols have been converted into 3D data. In the

previous example, a single mesh is created from the Snowman symbol, which means that all the vertices

used in the 3D vector shapes in Figure 6-6 are contained within the vertices property of the snowman

mesh. Let’s extend our ImportingVectorShapes example to animate these vertices along the Z axis. To

begin with, we add the following code to the end of the _createScene() method:

_mesh = snowman.children[0] as Mesh;

This assigns the global variable _mesh to the mesh object of the converted Snowman symbol, allowing us

easy access to the vertices array for updating vertex positions. Next, we add the following code to the

end of the ImportingVectorShapes class definition:

override protected function _onEnterFrame(ev : Event) : void
{
 super._onEnterFrame(ev);

CHAPTER 6

136

 for each (var vertex : Vertex in _mesh.vertices)
 vertex.z = 50*Math.sin(vertex.x/50 + getTimer()/200);
}

Here, we loop through all vertices in the _mesh object, adjusting their z values to update over time creating

movement along the Z axis of the mesh.

Recompiling the ImportingVectorShapes example displays an output similar to the one shown in Figure

6-7. The snowman mesh animates with a horizontal rippling effect that moves across the object as if it

were a flag blowing in the wind. This type of motion benefits from the 3D nature of the symbol shapes after

conversion and is a good example of how irregular shapes in Away3D can be used to produce smooth 3D

vector effects.

Figure 6-7. The imported Snowman symbol animated in 3D by offsetting the vertices of the resulting mesh

object along the Z axis

Importing 3D Text

When dealing with text in Flash, the characters in a font are drawn using the same vector techniques

discussed in the previous sections of this chapter. The vector shape of a single character is known as a

glyph, and a text field defines a collection of glyphs that are drawn to screen using a familiar set of Bézier

curve and line definitions contained within each glyph object. When a font is embedded in an FLA in Flash

Professional, the SWF format stores its glyph data in a similar way to the vector shape data of library

symbols. This can be extracted from the SWF file using a similar approach to the extraction of vector

shapes in the previous section, converting 2D glyph data to 3D shape data and allowing the creation of 3D

text fields in Away3D.

VECTOR SHAPES AND TEXT IN 3D

137

Extracting vector data from a font

In the Flash Player, the main difference between the process of rendering vector symbols and vector text

is in the method used for assembling the graphical output. Symbols are rendered by creating instances

that have to be manually managed in your display list, while text fields define a string of characters that are

replaced by glyph data when drawn to screen. The same differentiation exists in Away3D, but in the case

of a 3D text field, we first have to import the font to be used and convert all glyphs to 3D data. Let’s create

a new example to demonstrate this process by extending the Chapter06SampleBase class with the

following class definition:

package flash3dbook.ch06
{
 import away3d.primitives.*;
 import wumedia.vector.*;

 import flash.utils.*;

 [SWF(width="800", height="600")]
 public class UsingTextField3D extends Chapter06SampleBase
 {
 [Embed(source="../../../assets/ch06/verdana.swf",
 mimeType="application/octet-stream")]
 private var VerdanaSwf : Class;

 protected override function _createScene() : void
 {
 }
 }
}

Here, we embed an SWF file called verdana.swf, which like our previous example can be found in the

chapter resource files download from www.friendsofed.com. The FLA used to create the verdana.swf

file contains a single text field on the stage with its font set to Verdana and its embedding options set to

include the Basic Latin glyphs set. Once the resulting SWF has been embedded as binary data in the

VerdanaSwf class, its font data can be parsed by adding the following code to the empty _createScene()

method:

var verdanaSwf : ByteArray = new VerdanaSwf() as ByteArray;
VectorText.extractFont(verdanaSwf);

As you saw in the previous ImportingVectorShapes example, our embedded SWF asset is first

instantiated as a ByteArray object. To process the font glyphs inside, we use the VectorText class

found in the wumedia.vector package, passing our byte array as an argument of the static method

extractFont(). This creates an internal lookup table for any embedded fonts found in the SWF file,

producing the 3D data required for re-creating each glyph of each font and storing it ready for subsequent

use by the Textfield3D class.

The Textfield3D class is found in the away3d.primitives package and behaves in a similar manner to

any other Away3D primitive. It has a number of configuration property getters and setters that work just

like regular primitive properties, only in this case, a redraw is performed by recreating the faces inside the

CHAPTER 6

138

primitive using the parsed font data found in the VectorText class to represent the string of glyph

definitions found in the text property. For this reason, one required argument is specified in the

constructor of the Textfield3D class to define the name string of the font to be used. If the specified font

cannot be found inside the lookup table of the VectorText class, an error will be thrown. For this reason it

is important that any fonts being used by Textfield3D objects are parsed using the VectorText class at

the start of an Away3D application.

If you are uncertain what name string is used internally in an SWF file for a particular

font, embed it in a text field on stage in a dummy FLA in Flash Professional, and trace

the defaultTextFormat.font property of the TextField instance, or select 'Copy

Font Name for ActionScript' from the Command menu, and paste it into your code..

To create a Textfield3D object in our UsingTextField3D example, add the following code to the end of

the _createScene() method:

var tf3D : TextField3D = new TextField3D('Verdana');
tf3D.text = 'Vector text in 3D!';
tf3D.size = 100;
tf3D.leading = 20;
tf3D.width = 600;
tf3D.x = -300;
tf3D.y = 150;
_view.scene.addChild(tf3D);

Here, we create a new instance of the Textfield3D class, set up to use the Verdana font parsed by the

VectorText class in the previous code. We then configure our 3D text field using a number of properties.

Some of these (such as text, width, x, and y) will be familiar to anyone using the native TextField class

in Flash and apply to the TextField3D class in exactly the same way. The remaining configuration

properties are similar to the properties set on a native TextFormat object, controlling the formatting

applied to the text contained within. These properties include the following:

� size: This Number value defines the size of the font. Because the notion of a pixel holds no real

meaning in 3D, the number represents the size in local units. The default value is 20.

� leading: This Number value defines the vertical space, in local units, added between each

horizontal line of text. The default value is 20.

� letterSpacing: This Number value defines the horizontal space, in local units, added between

all characters in the text field. The default value is 0.

The final step in the preceding code is to add the TextField3D instance to the scene, which is done using

the standard addChild() method. Compiling the code will display an output similar to the one shown in

Figure 6-8.

VECTOR SHAPES AND TEXT IN 3D

139

Figure 6-8. 3D text created in the UsingTextField3D example using the TextField3D class

Extruding text

One way we can enhance our new 3D text format is to apply an extrusion along the Z axis, creating

characters that appear solid, as if they were carved from stone. This is done with a custom extrusion class

found in the away3d.extrusions package called TextExtrusion. We can test this class by creating a

new example from the following document class definition:

package flash3dbook.ch06
{
 import away3d.core.base.*;
 import away3d.materials.*;
 import away3d.extrusions.*;
 import away3d.primitives.*;
 import wumedia.vector.*;

 import flash.utils.*;

 [SWF(width="800", height="600")]
 public class ExtrudingTextField3D extends Chapter06SampleBase
 {
 [Embed(source="../../../assets/ch06/verdana.swf",
 mimeType="application/octet-stream")]
 private var VerdanaSwf : Class;

 protected override function _createScene() : void
 {
 }
 }
}

We start out with code identical to the previous example and add the following similar code setting up our

3D text field to the empty _createScene() method:

var verdanaSwf : ByteArray = new VerdanaSwf() as ByteArray;

CHAPTER 6

140

VectorText.extractFont(verdanaSwf);

var tf3D : TextField3D = new TextField3D('Verdana');
tf3D.text = 'Extruded vector text';
tf3D.size = 100;
tf3D.leading = 20;
tf3D.width = 600;
tf3D.x = -300;
tf3D.y = 150;

_view.scene.addChild(tf3D);

Now, we can apply an extrusion to our created Textfield3D instance by adding the following code to the

end of the _createScene() method. The extra geometry for the extrusion is created inside its own mesh

object that has to be added to the scene separately to be visible in the view:

var extrusion : TextExtrusion = new TextExtrusion(tf3D);
extrusion.bothsides = true;
_view.scene.addChild(extrusion);

The material used for the TextExtrusion object is inherited from the originating 3D text field passed in

the class constructor, although it can also be set using the material property of the extrusion mesh. The

bothsides property is set to true in order to ensure no elements of the extruded geometry are removed

with back-face culling. This is an unfortunate necessity with imported vector text, as the exterior winding

values of font glyphs have no convention for clockwise versus counterclockwise ordering. Compiling the

code will display the output shown in Figure 6-9.

Figure 6-9. Extruded text in the ExtrudingTextField3D example using the TextExtrusion class

Warping text along a path

A final enhancement we will look at for text involves warping a 3D text field along the axis of a spline

curve, using the PathAlignModifier class found in the away3d.modifers package. Technically, this

modifier can be applied to any mesh object, but in this case the effect produced is similar to the “text on a

path” feature that exists in many graphics applications.

VECTOR SHAPES AND TEXT IN 3D

141

A spline in 3D is a collection of Bézier curves that join up to form a continuous irregular curve through

space. In Away3D, a spline is defined using the Path class found in the away3d.core.geom package.

Combined with this class, the PathAlignModifier class can produce many different warping effects such

as text wrapped around a circle or twisted in a spiral.

To demonstrate how the PathAlignModifier class works, let’s create an example that warps a text field

along a rollercoaster-like path by extending the Chapter06SampleBase class with the following document

class definition:

package flash3dbook.ch06
{
 import away3d.core.base.*;
 import away3d.core.geom.*;
 import away3d.core.math.*;
 import away3d.modifiers.*;
 import away3d.primitives.*;

 import flash.events.*;
 import flash.utils.*;

 import wumedia.vector.*;

 [SWF(width="800", height="600")]
 public class WarpingTextField3D extends Chapter06SampleBase
 {
 [Embed(source="../../../assets/ch06/verdana.swf",
 mimeType="application/octet-stream")]
 private var VerdanaSwf : Class;

 private var _pathAlignModifier : PathAlignModifer;
 private var _maxOffset : Number;
 private var _offset : Number = 0;
 private var _speed : int = 10;

 protected override function _createScene() : void
 {
 }
 }
}

As with the previous two examples, we start by embedding our font SWF file in the global class property

VerdanaSwf and add a few global variables to be used in subsequent interactions. We then create our 3D

text field by adding some familiar-looking code to the _createScene() method:

var verdanaSwf : ByteArray = new VerdanaSwf() as ByteArray;
VectorText.extractFont(verdanaSwf);

var tf3D : TextField3D = new TextField3D('Verdana');
tf3D.text = 'Text along a path';

CHAPTER 6

142

tf3D.size = 355;
tf3D.width = 355;
tf3D.leading = 20;
tf3D.x = -450;
tf3D.y = 50;

_view.scene.addChild(tf3D);

Next, we create a path onto which the text field can be aligned. This is done using an array of Number3D

objects representing the control points along a spline curve. We use this form of curve data to define a

continuous curve (that is, one without breaks or kinks) in our Path class definition to provide a smooth

path for our text object to follow. To create the path object, add the following lines of code to the end of the

_createScene() method:

var points : Array = new Array();

for (var i : int=0; i<10; i++)
 points.push(new Number3D(i*100, i%2? 50 : -25, 0));

var path : Path = new Path();
path.continuousCurve(points);

Here, an array of control points is created using a for loop and passed to a new instance of the Path

object via the continuousCurve() method, creating our spline data. The Number3D objects created inside

the points array have smoothly incrementing x coordinates, while the y coordinate alternates between 50

and –25. When passed to the Path object, this arrangement creates a smooth undulating curve orientated

along the X axis, which is perfect for our purposes.

To visualize the curve created inside the Path object, we create an instance of the Segment class and

convert the spline data into drawing commands by adding the following code to the end of the

_createScene() method:

var segment : Segment = new Mesh();
segment.drawPath(path);

var mesh : Mesh = new Mesh();
mesh.x = tf3D.x;
mesh.y = tf3D.y;
mesh.addSegment(segment);
_view.scene.addChild(mesh);

The conversion from Path object to Segment object is handled using the drawPath() method of our newly

created Segment instance. To attach this to the scene, we create a new Mesh object and adjust its position

to match that of the Textfield3D object, and then add the segment to the mesh and the mesh to the

scene.

Completing the example, we add the following code to the end of the _createScene() method, creating

an instance of the PathAlignModifier class with our Textfield3D object and Path object passed as

arguments in the class constructor:

_pathAlignModifier = new PathAlignModifier(tf3D, path);
_pathAlignModifier.execute();

VECTOR SHAPES AND TEXT IN 3D

143

After the PathAlignModifier class has been instantiated, the modifier is applied to the mesh object

specified in the constructor by calling the execute() method. Compile the code to see the output

displayed in Figure 6-10.

Figure 6-10. Text transformed along a path in the WarpingTextField3D example, using the TextField3D

and PathAlignModifier classes

The WarpingTextField3D example applies a static effect to our Textfield3D object, but it is also

possible to produce an animated scrolling effect by calling the execute() method of the

PathAlignModifier class on every frame while adjusting the offset property. This property defines a

Number3D value that represents the vector offset applied to the mesh object before it is transformed by the

modifier. Incrementing the x property of offset will appear to scroll the text along the axis of our path. To

test this in the WarpingTextField3D example, we first define the global variable _maxOffset by adding

the following code to the end of the _createScene() method:

_maxOffset = _pathAlignModifier.pathLength - tf3D.width;

This variable determines the maximum offset that can be applied to the PathAlignModifier object before

the 3D text field begins to moves outside the boundary of our defined spline curve. We can use this value

to contain the text scrolling effect to the confines of the Path object, keeping track of the offset value and

reversing the direction of scroll when we reach a boundary value. This motion is applied by adding the

following lines of code to the end of the WarpingTextField3D class definition:

override protected function _onEnterFrame(ev : Event) : void
{
 super._onEnterFrame(ev);

 if (_offset + _speed > _maxOffset || _offset + _speed < 0)
 _speed *= -1;

 _offset += _speed;
 _pathAlignModifier.offset.x = _offset;
 _pathAlignModifier.execute();
}

Here, we begin by running a check to determine whether our _offset value is within the limits defined by

the boundaries of the Path object, with 0 taking the place of our minimum allowed offset value. The global

variable _speed holds the incrementing value of _offset and has its sign reversed if a boundary is

detected.

CHAPTER 6

144

After our boundary check, we add the incrementing value of the _speed property to the _offset property

and update the x value of the offset property on the PathAlignModifier object. To recalculate the

results of the modifier with our property update, we call the execute() method, updating the

transformation applied to the vertices in the Textfield3D object.

Recompiling the WarpingTextField3D example will display the 3D text field scrolling along our spline

curve, with our boundary conditions causing it to ping-pong between maximum and minimum positions.

By default, the PathAlignModifier class uses specially formulated algorithms when calculating the offset

along its length. This is because Bézier curves can be a little devious when it comes to calculating

distances along a curve, as standard step calculations do not result in a constant step length. This holds

special significance when it comes to animations, as these differences result in variable speed calculations

that can be a lot more noticeable.

Arc-length parameterization is an approach that attempts to correct these inconsistencies in distance

calculations, creating a lookup table of fractional steps that traverse the same distance along all sections

of a Bézier curve. While this is necessary to produce animations with constant speed, it means a lot of

extra work for the CPU every time execute() is invoked on the PathAlignModifier object. The

accuracy of arc-length parameterization can be varied to produce high levels of accuracy with large lookup

tables and a high amount of processing or low levels of accuracy with smaller lookup tables and a small

amount of processing. To adjust the balance between accuracy and speed, the arcLengthPrecision

property of the PathAlignModifier class can be set to whatever value you require. Smaller values result

in higher precision but lower performance, with the default set at 0.01. As a test, you can adjusting the

arcLengthPrecision property in the WarpingTextField3D example by adding the following line of code

to the end of the _onEnterFrame() method:

_pathAlignModifier.arcLengthPrecision = 1/(1 + mouseY/3);

Recompiling the example allows you to control the level of arc-length precision via the Y coordinate of the

mouse cursor, with a high precision value set when the cursor is near the top of the screen, and a low

precision value set when the cursor is near the bottom of the screen.

Knowing the limitations of vector graphics in Away3D

Generally, there is a fine balance between practicality and possibility when using vector graphics in

Away3D. Creating irregular faces or segments consisting of more than three vertices will often help with

overall rendering speeds when directly compared to triangle tessellating approaches, and produce better

looking results when dealing with curves. However, many calculations made under the hood often don’t

work quite as well in these circumstances and can frequently lead to rendering artifacts such as Z-sorting

issues. The following list covers the main pitfalls to be aware of when creating or importing vector graphics

in the ways we have covered in this chapter:

� Irregular vector shapes can only have basic material types applied to their surfaces such as

ColorMaterial, WireColorMaterial, WireframeMaterial, and ShadingColorMaterial.

� RectangleClipping is the only reliable clipping option when a scene contains irregular vector

shapes.

� Results can vary when importing font data and heavily depend on the skill of the font designer to

minimize the use of extraneous outlines.

VECTOR SHAPES AND TEXT IN 3D

145

� The Textfield3D object will often require its bothsides property set to true because of

arbitrary winding directions used by individual character glyphs. This also causes problems for

face normal calculations, occasionally leading to shading complications when using shading

materials.

Overall, Away3D’s vector graphics abilities provide a powerful set of features that can be used to enhance

any elements in a scene that benefit from irregular shape definitions drawn with smooth lines and curves.

Summary

This chapter has investigated how smooth vector shapes and text can be rendered in Away3D. We have

seen how vector graphics are generated from scratch using the Away3D drawing commands, as well as

how vector shapes and font data can be loaded from external sources. We have also had a look at the

different options for manipulating 3D vector graphics once they are created.

The following list is a short summary of the key topics you should take with you from this chapter:

� Vector graphics are drawn using an instance of the Face or Segment class and are added to a

Mesh instance attached to the scene in order to be rendered in the view.

� The moveTo() method available on faces or segments moves the active drawing

position to a given point in 3D space.

� The lineTo() method available on faces or segments draws a straight line from the

active drawing position to a given point in 3D space.

� The curveTo() method available on faces or segments draws a quadratic Bézier curve

using the active drawing position and a given control point and anchor point in 3D space.

� Vector shapes drawn in Flash Professional can be imported by parsing the raw bytes of an SWF

file with the help of the Swf class located in the away3d.loaders package. This data is either

loaded at runtime using an externally created SWF asset file with the Loader3D class or

embedded in the application SWF as binary data and instantiated as a ByteArray object, which

is then parsed by the Swf class. The application SWF file itself can be specified as the

ByteArray object to be parsed by using the root.loaderInfo.bytes property of the Flash

movie.

� Vector shapes can be easily animated in Away3D by updating the position of vertices in

the vertices array of the containing Mesh object.

� Text can be displayed as vector graphics in Away3D by using the TextField3D class. The

required font data is extracted from the raw bytes of an SWF file using the VectorText class

located in the wumedia.vector package.

� A 3D text field can have a linear extrusion effect applied to its geometry with the help of

the TextExtrusion class located in the away3d.extrusions package.

CHAPTER 6

146

� A 3D text field can be transformed to follow the curves in a Path object by using the

PathAlignModifier class located in the away3d.modifiers package.

In the next chapter, we will look at the various ways Away3D allows us to generate our own geometry at

runtime, from the basic construction methods used in primitives to the advanced structures possible with

the extrusion and modifier tools.

147

Chapter 7

Procedural 3D Content

With the built-in primitive classes in Away3D, simple geometric 3D shapes can be created on the fly

without the need for importing an externally created model. However, primitives are quite limited in their

configuration, with only a handful of properties available to adjust their sizes and shapes. For more

complex internally generated geometry, we need to consider using some of the more advanced features of

the Away3D engine.

The advantage of generating 3D objects inside your application extends beyond simply avoiding the need

to load a model. Imagine a scenario where a 3D object is created from user interaction or where you

require many unique objects with similar characteristics. It would be impractical to store a model for each

of these results, as well as being a large overhead for the size of your SWF file.

This chapter will take a look at the process behind creating your own 3D geometry within Away3D from

scratch. We will also investigate some of the more advanced geometric tools available for creating a wide

variety of shapes.

Preparing the chapter base class

To provide a basic viewing mechanism for the examples created in this chapter, let’s set up a chapter base

class with a simple hover camera that can be used as our starting point for subsequent class files.

package flash3dbook.ch07
{
 import away3d.cameras.*;
 import away3d.containers.*;

 import flash.display.*;
 import flash.events.*;

CHAPTER 7

148

 public class Chapter07SampleBase extends Sprite
 {
 protected var _view : View3D;
 protected var _camera : HoverCamera3D;

 public function Chapter07SampleBase()
 {
 _createView();
 _createScene();
 }

 protected function _createView() : void
 {
 _camera = new HoverCamera3D();
 _camera.distance = 1000;
 _camera.tiltAngle = 10;
 _camera.panAngle = 180;
 _view = new View3D();
 _view.x = 400;
 _view.y = 300;
 _view.camera = _camera;

 addChild(_view);
 addEventListener(Event.ENTER_FRAME, _onEnterFrame);
 }

 protected function _createScene() : void
 {
 }

 protected function _onEnterFrame(ev : Event) : void
 {
 _camera.panAngle -= (stage.mouseX - stage.stageWidth/2) / 100;
 _camera.hover();

 _view.render();
 }
 }
}

In the preceding code, the _createView() method instantiates our view and camera objects, which are

held in the global class properties _view and _camera respectively. The camera uses an instance of the

HoverCamera3D class to offer easy navigation around the scene. The view is rendered using the

_onEnterFrame() method, which is set up as an ENTER_FRAME event handler at the end of the

_createView() method. The _createScene method is written as an empty stub so that it can be

overridden in our following example classes to add custom content to the scene.

PROCEDURAL 3D CONTENT

149

Building a pyramid primitive

To demonstrate building a 3D object from scratch, we will focus on creating a simple geometric shape that

doesn’t currently exist in the away3d.primitives package. One such shape is a square-based pyramid. It

is theoretically possible to build a pyramid shape from the cone primitive, but let’s ignore that for the sake

of this example.

A good way to manage our custom code is to create a new class that will represent the 3D object in a

scene, in the same manner as existing primitive classes. Attributes of the object such as width and height

can then be tweaked using custom property getters and setters that update the contained geometry on the

fly, allowing us to adjust the overall look of the object even after instantiation.

Starting with AbstractPrimitive

Looking at the source code for the existing primitives in Away3D, we see that all classes extend a generic

AbstractPrimitive class, found in the away3d.primitives package. The AbstractPrimitive class

contains useful functionality for anyone wishing to create a custom geometric object, making it easier to

build and update the vertices and faces of the underlying mesh.

If we are to extend the AbstractPrimitive class for our custom pyramid primitive, we will need to follow

a few conventions in order to take advantage of the existing functionality. Our pyramid class must have the

following:

 A constructor that accepts an init object

 A buildPrimitive() method that overrides the existing method in AbstractPrimitive,

executing the code necessary to create the vertices and faces for the 3D mesh of the new

primitive object

 Getter and setter methods for the externally facing properties that define the geometry of the

object, with all setters invalidating the existing geometry and flagging it for a rebuild

We will go through each one of these requirements in more detail shortly, but first, let’s create the base

code of our primitive by creating a class called Pyramid that extends AbstractPrimitive and is located

in the flash3dbook.ch07.primitives package.

package flash3dbook.ch07.primitives
{
 import away3d.arcane;
 import away3d.primitives.*;
 import away3d.core.base.*;

 use namespace arcane;

 public class Pyramid extends AbstractPrimitive
 {
 private var _height : Number;
 private var _width : Number;
 private var _depth : Number;

 public function Pyramid(init : Object = null)

CHAPTER 7

150

 {
 super(init);

 buildPrimitive();
 }
 }
}

Here, we have created a number of internal configuration variables and a constructor that accepts an init
object. Now, let’s take a closer look at the code required for the constructor method.

In the preceding code, an ActionScript namespace called arcane is imported at the top

of the class definition. This namespace is defined by Away3D and is somewhat jokingly

called “arcane” because it is applied to elements of a class not intended for external

access in normal operation.

Nonpublic functions and properties exist all over the Away3D library, but the ones given

the namespace arcane still need to be accessed between different classes and

packages from within the library. The standard Flash namespaces such as private or

protected are simply not suitable for this purpose, so the custom namespace arcane
is created.

When extending the engine, it is quite possible you will need to access Away3D arcane
methods if you want your extensions to be fully integrated into the existing framework. In

this case, we will use the arcane namespace to access the custom methods of the

AbstractPrimitive class that are intended for use inside other geometric primitive

classes.

Setting up the constructor

As is common when extending a class, the first thing to do in the constructor is call the superclass

constructor. This ensures any initializing code is triggered and in this case, passes our init object from

the constructor argument to the parent class to ensure it is received and processed by any superclass

properties.

Because Away3D allows initializing properties of many new object instances to be passed in an init
argument as name/value pairs, a utility class called Init exists to help parse this data. The initial init
argument is wrapped inside an instance of the Init class that can then offer typed object extraction of the

various properties held within. The Init instance is stored in the protected ini variable, so once the

superclass constructor is called, all further init values are extracted through ini. For example, the

following line uses the ini variable to retrieve the numerical value of a variable called width:

width = ini.getNumber("width", 100, {min:1});

This will look up the property called width in the init object and cast any returned value as a Number
object type. If no value is found, or if the returned value cannot be cast to a Number, the default value of

PROCEDURAL 3D CONTENT

151

100 is used. In this particular piece of code, we also use a further configuration argument in the

getNumber() method to specify that the minimum value of the returned number can be no less than 1. If

circumstances require it, you may also set a maximum value in the same way:

width = ini.getNumber("width", 100, {min:1, max: 1000});

Using the Init class will help you ensure type safety on any init argument properties. Similar methods

exist for all basic data types such as String, int, and Boolean, as well as frequently used Away3D data

types such as BitmapMaterial and Number3D.

Let’s set up our constructor to parse the init argument for the property values we will be using in our

pyramid primitive. Add the following lines of code to the end of the Pyramid class constructor:

_height = ini.getNumber('height', 180, { min: 1 });
_width = ini.getNumber('width', 180, { min: 1 });
_depth = ini.getNumber('depth', 180, { min: 1 });

Adding public properties

According to Away3D convention, all configuration values of a 3D object should be adjustable via public

properties on the class instance. This allows the modification of an object’s mesh structure after

instantiation, avoiding the need for re-creating an object simply to reconstruct it. The public property

names should correspond to those used in the init object, with any adjustment propagating to the mesh

the next time the 3D object is rendered.

The common setup for the configuring properties of Away3D primitives has a getter/setter pair that flags

the object as modified (or dirty) when updated. This will notify the view on the next render call to rebuild

the geometry of the mesh. Rebuilding the mesh of a 3D object is achieved by invoking the

buildPrimitive method, which contains the custom code for constructing the mesh from the configuring

properties. The code required here for our pyramid primitive will be created shortly.

First, let’s take a look at the getters and setters required for the properties of the pyramid primitive. We

begin with the width property by adding the following code to the Pyramid class definition:

public function get width() : Number
{
 return _width;
}

public function set width(val : Number) : void
{
 if (_width == val)
 return;

 _width = val;
 _primitiveDirty = true;
}

Most of the time, a getter of a primitive property will do nothing more than return its internal value, which, in

this case, is stored in our global variable _width. There is more going on in the setter, though. First, the

setting value is checked to ensure the property is not just being set to its current value. If the value is the

CHAPTER 7

152

same, nothing more is done because the geometry doesn’t require updating. If the value is different, the

new value is stored in the internally defined global variable _width, and the primitive is flagged for an

update on the next render() call by setting the _primitiveDirty variable (inherited from

AbstractPrimitive) to true.

Using the same arrangement we have written for the width property, we create getters and setters for the

remaining configuration properties of the Pyramid class by adding the following code to the class

definition:

public function get height() : Number
{
 return _height;
}
public function set height(val : Number) : void
{
 if (_height == val)
 return;

 _height = val;
 _primitiveDirty = true;
}

public function get depth() : Number
{
 return _depth;
}

public function set depth(val : Number) : void
{
 if (_depth == val)
 return;

 _depth = val;
 _primitiveDirty = true;
}

Building the Pyramid mesh

Now, we can turn our attention to the creation of the custom buildPrimitive method that will be

triggered when our pyramid primitive requires rebuilding. Let’s begin by considering the shape we are

trying to create. All 3D mesh objects are created from a collection of vertices that are grouped into face

definitions, more often than not existing as triangles made out of three vertex points each. As shown in

Figure 7-1, a pyramid requires only five corners to create its geometry, so these will be our five vertex

positions. We need to define six faces: one for each triangular side and two to create the rectangular base

of the pyramid.

PROCEDURAL 3D CONTENT

153

Figure 7-1. The vertices and faces of our pyramid primitive

The order in which vertices are instantiated is not important, as long as we keep track of the vertex objects

created. However, the order in which vertices are bound to faces is important, because of the automated

process of back-face culling (described in more detail in Chapter 4). With back-face culling active, the

visibility of face is determined on the order of its observed vertices, with a counterclockwise order being

visible and a clockwise order being invisible. Therefore, when we create our faces, we order the vertices

so that each face when viewed from its outer side will appear with vertices arranged in a counterclockwise

order, ensuring the outside of the pyramid is always visible. Because the pyramid is a closed geometric

shape (i.e., its faces form a completely enclosed interior), faces observed as invisible will always be

covered by faces observed as visible, giving the appearance of a solid object.

Let’s go ahead and create our custom buildPrimitive method by adding the following code to the end of

the Pyramid class definition and overriding the base method from the AbstractPrimitive class:

protected override function buildPrimitive() : void
{
 super.buildPrimitive();
}

We begin by calling the superclass method, which clears any previously generated mesh elements, ready

for the new geometry generation. Using Figure 7-1 as a guide, we then create five vertex objects a to e at

the appropriate positions in 3D space by adding the following code to the end of our newly created

buildPrimitive() method:

var a : Vertex = createVertex(0, _height/2, 0);
var b : Vertex = createVertex(-_width/2, -_height/2, _depth/2);
var c : Vertex = createVertex(_width/2, -_height/2, _depth/2);
var d : Vertex = createVertex(_width/2, -_height/2, -_depth/2);
var e : Vertex = createVertex(-_width/2, -_height/2, -_depth/2);

CHAPTER 7

154

Our _width, _height, and _depth properties are used to define the precise locations of all vertices,

arranging them in a way that centers the resulting geometry around the local origin of the primitive. Rather

than use the Vertex class to create a new vertex, we use the inherited AbstractPrimitive method

createVertex(). This assists memory usage by recycling any previously used Vertex instances. Later,

you’ll see the same technique being used for creating face and UV coordinate objects.

The createVertex() method requires nothing more than three arguments representing the x, y, and z

coordinates of the vertex being created. Figure 7-2 offers an alternative view of our pyramid geometry from

above, with the vertices using the same labels as in Figure 7-1.

Figure 7-2. The geometry to be constructed by the pyramid primitive, as seen from above

Now, we need to construct the faces that make up the visible surfaces of the pyramid primitive. We do this

by adding the following lines to the end of our newly created buildPrimitive method:

 addFace(createFace(a, c, b));
 addFace(createFace(a, d, c));
 addFace(createFace(a, e, d));
 addFace(createFace(a, b, e));
 addFace(createFace(b, d, e));
 addFace(createFace(b, c, d));

Here, we are using two methods for the creation of each face. The addFace() method inherited from the

Away3D base class Mesh adds a Face instance to the mesh geometry, ready for rendering. The

createFace() method inherited from the AbstractPrimitive class operates in a similar way to the

createVertex() method you’ve seen previously and requires at least three arguments representing the

three Vertex objects to be used for the face. It is here that vertex ordering is taken into account, applying

our previously defined rule to ensure back-face culling is performed correctly on the resulting mesh.

PROCEDURAL 3D CONTENT

155

At this stage, we have created all the geometry required for our pyramid primitive and can easily test it by

extending the Chapter07SampleBase class with the following document class definition:

package flash3dbook.ch07
{
 import away3d.core.utils.*;
 import away3d.materials.*;

 import flash3dbook.ch07.primitives.*;

 [SWF(width="800", height="600")]
 public class PyramidTest extends Chapter07SampleBase
 {
 public function PyramidTest()
 {
 super();
 }

 protected override function _createScene() : void
 {
 var pyramid : Pyramid = new Pyramid();
 pyramid.width = 200;
 pyramid.depth = 200;
 _view.scene.addChild(pyramid);
 }
 }
}

Compiling the code will display a pyramid centered around the scene origin with a base dimension of 200

 200 and a default height of 100. The texture used on the mesh is a default WireColorMaterial object,

because we haven’t specified any material for the primitive to use in this example. However, this brings to

our attention a problem with our current Pyramid class definition—we have no way of texturing the

pyramid with a BitmapMaterial object, because we have defined no UV coordinates in our geometry. To

rectify this problem, let’s go back to the buildPrimitive() method in our Pyramid class to add in the

necessary UV definitions.

Mapping UV coordinates

Recall from Chapter 4 that UV mapping is a process that defines how a texture material is applied to the

different faces in a mesh object. The default primitives in Away3D come prebuilt with UV mapping, so

bitmap textures will wrap nicely around the created 3D mesh. Because we are creating our pyramid

primitive from scratch, we will have to generate our own UV mapping coordinates if we want to apply any

type of bitmap material to the resulting mesh.

Our pyramid primitive has UV mapping applied by creating a series of UV coordinates and matching them

with the vertex instances defined in each face. A UV coordinate is a 2D vector that represents the

fractional position value of a point on the surface of the texture image. These coordinates describe the

texture positions that map to the positions defined by the associated vertices on each face of the mesh.

CHAPTER 7

156

UV coordinate positions represent a fractional value of the width and height of the

texture image between 0 and 1, in order to be independent of texture dimensions. In a

bitmap that is 200 pixels wide, a U value of 0.5 translates to a horizontal position 100

pixels to the left, whereas in a larger texture of 500 pixels, the same U value translates

to a horizontal position 250 pixels to the left.

The origin of a UV coordinate system (the point at which the UV coordinate value in a texture is (0,0)) is

defined as the bottom-left corner of the bitmap image used for the texture data. Similarly, the point at

which the UV coordinate of a texture is (1,1) is defined as the top-right corner of the bitmap image. This is

unlike normal 2D coordinate systems, where the origin is defined as being in the top-left corner, but is a

standard approach for UV mapping. Figure 7-3 depicts the UV mapping we will be applying to our pyramid

primitive, with the representations of each face projected into the UV coordinate system of the texture. This

form of UV coordinate representation is often referred to as UV unwrapping.

Figure 7-3. The proposed UV mapping of our custom pyramid primitive is projected onto a representation

of the texture. Note the origin (0,0) of the UV coordinate system located in the bottom-left corner of the

bitmap image.

Going back to our Pyramid class definition, let’s add UV coordinates to our faces with the help of the UV

map shown in Figure 7-3. We’ll start by creating the necessary UV objects with the following lines of code

added inside the buildPrimitive() method, directly after creating our five Vertex objects:

var uva0 : UV = createUV(0.5, 1);
var uva1 : UV = createUV(1, 0.5);
var uva2 : UV = createUV(0.5, 0);

PROCEDURAL 3D CONTENT

157

var uva3 : UV = createUV(0, 0.5);
var uvb : UV = createUV(1/3, 2/3);
var uvc : UV = createUV(2/3, 2/3);
var uvd : UV = createUV(2/3, 1/3);
var uve : UV = createUV(1/3, 1/3);

The first thing to note in Figure 7-3 is that the vertex for the top point of the pyramid occurs in four places

in the UV map. It is important to understand that UV mapping is applied to each face, not to each vertex,

so a single vertex being used multiple times in a map is not uncommon. In the preceding code, we

represent the four occurrences of this vertex with the first four UV objects: uva0, uva1, uva2, and uva3.

The remaining four UV objects represent the UV coordinates assigned to the four corners of the pyramid

base. In this case, each face has the same UV coordinate assigned to the associated vertex object.

To apply these UV coordinates to the relevant Face objects, we need to modify the lines that create our

faces in the buildPrimitive() method. Locate these lines and replace them with the following similar

lines of code:

addFace(createFace(a, c, b));
addFace(createFace(a, d, c));
addFace(createFace(a, e, d));
addFace(createFace(a, b, e));
addFace(createFace(b, d, e));
addFace(createFace(b, c, d));

Here, we have added a few more arguments to each of the createFace() methods to pass the created

UV objects to their correct faces. The order of UV objects here is important, as they need to map to the

existing Vertex objects in the same sequence so that the first UV coordinate is mapped to the position of

the first vertex point, the second to the second vertex point, and so on. The null argument inserted

between the Vertex and UV arguments for the createFace() method is intended for assigning a custom

material instance to a face and is not being used in this example.

All the modifications we have made here should leave us with a buildPrimitive method containing the

following code:

protected override function buildPrimitive() : void
{
 super.buildPrimitive();

 var a : Vertex = createVertex(0, _height/2, 0);
 var b : Vertex = createVertex(-_width/2, -_height/2, _depth/2);
 var c : Vertex = createVertex(_width/2, -_height/2, _depth/2);
 var d : Vertex = createVertex(_width/2, -_height/2, -_depth/2);
 var e : Vertex = createVertex(-_width/2, -_height/2, -_depth/2);

 var uva0 : UV = createUV(0.5, 1);
 var uva1 : UV = createUV(1, 0.5);
 var uva2 : UV = createUV(0.5, 0);
 var uva3 : UV = createUV(0, 0.5);
 var uvb : UV = createUV(1/3, 2/3);
 var uvc : UV = createUV(2/3, 2/3);

CHAPTER 7

158

 var uvd : UV = createUV(2/3, 1/3);
 var uve : UV = createUV(1/3, 1/3);

 addFace(createFace(a, c, b, null, uva0, uvc, uvb));
 addFace(createFace(a, d, c, null, uva1, uvd, uvc));
 addFace(createFace(a, e, d, null, uva2, uve, uvd));
 addFace(createFace(a, b, e, null, uva3, uvb, uve));
 addFace(createFace(b, d, e, null, uvb, uvd, uve));
 addFace(createFace(b, c, d, null, uvb, uvc, uvd));
}

To test the texture mapping of the modified Pyramid class, we can update our previous PyramidTest
example to apply a BitmapMaterial object in place of the default WireColorMaterial object. We first

need an image for the texture, which we can import by adding the following lines of code to the class

definition:

 [Embed(source="../../../assets/ch07/pyramidcolor.jpg")]
 private var PyramidImage : Class;

Check that the file path in the [Embed] tag matches the path to the pyramidcolor.jpg image

downloaded inside the chapter resource files from www.friendsofed.com. To use this for our material,

replace the existing code inside the _createScene() method with the following:

var pyramid : Pyramid = new Pyramid();
pyramid.material = new BitmapMaterial(Cast.bitmap(PyramidImage));
pyramid.width = 200;
pyramid.depth = 200;
_view.scene.addChild(pyramid);

Recompiling the PyramidTest example should display the output in Figure 7-4, with our pyramid primitive

texture printing a different color on each side of the pyramid primitive.

Figure 7-4. The updated pyramid primitive rendered with a bitmap material using the pyramidcolor.jpg

image, resulting in a different color on each side

PROCEDURAL 3D CONTENT

159

Using the approach outlined in our PyramidTest example, it is possible to build an infinite variety of

custom geometric objects from scratch. If you feel like donating particularly useful creations of your own, it

is worth submitting new classes to the Away3D team for consideration as an official addition to the engine.

In the next section, we will look at some of the more advanced classes that already exist in Away3D for

generating geometry. The area we will concentrate on includes a group of classes known as the extrusion

tools. While these use a set of prebuilt classes rather than the “build from scratch” approach we have

investigated here, the tools provide a way of generating highly configurable 3D objects with a greater

degree of control compared to the standard primitive classes.

Using the extrusions tools

The process of extruding (in 3D terms) generally means the creation of a 3D model from the surface

traced by the outline of a 2D shape dragged through space. In Away3D, a set of classes known as the

extrusion tools enable many different 3D extrusion techniques and can be found inside the

away3d.extrusions package. In this section, we will take a look at some of the classes on offer.

Creating a ribbon using the PathExtrusion class

The PathExtrusion class allows us to take an array of points, usually referred to as a profile, and

extrude its defined shape along a smooth Bézier curve. The profile we use is generally an outline of the

cross section of the 3D object we want to create. For example, an extrusion forming a girder object would

require a profile in the shape of an “H”.

The PathExtrusion class is ideal for creating objects such as roads or ribbons dynamically. Let’s take a

look at how we would go about creating a ribbon by extending our chapter base class with the following

document class definition:

package flash3dbook.ch07
{
 import away3d.core.geom.*;
 import away3d.core.math.*;
 import away3d.extrusions.*;

 [SWF(width="800", height="600")]
 public class UsingPathExtrusion extends Chapter07SampleBase
 {
 public function UsingPathExtrusion()
 {
 super();
 }

 protected override function _createScene() : void
 {
 }
 }
}

CHAPTER 7

160

Here, we create no more than an empty _createScene() method, ready for some custom code. The first

thing we need is an instance of the Path class, a basic geometric definition found in the

away3d.core.geom package, which defines a series of Bézier curves in a 3D shape known as a spline.

For more about Bézier curves and splines, read the section on animating along a path in Chapter 9.

Each curve in a spline consists of three points: a start point, an end point, and a control point that defines

curvature. The constructor of the Path class accepts an array argument that contains these points as

triplets of Number3D instances. To create a Path object to be used in our path extrusion, add the following

code inside the empty _createScene() method of the UsingPathExtrusion class:

var path : Path = new Path([
 // First curve:
 new Number3D(-200, 0, 0),
 new Number3D(-100, 0, 200),
 new Number3D(0, 0, 0),

 // Second curve:
 new Number3D(0, 0, 0),
 new Number3D(100, 0, -200),
 new Number3D(200, 0, 0)
]);

Here, we have two curves, each represented by three points. If you look closely, you'll notice that the last

point in the first curve is identical to the first point in the second curve. This ensures the resulting spline is

continuous, with no breaks between the two curve segments.

Next, we need to define the profile shape we will use in our path extrusion. This is an array of points that

trace out the positions to be extruded along the path. For the sake of simplicity, we will define this in our

example as two points forming a straight line by adding the following code to the end of the

_createScene() method:

var profile : Array = [
 new Number3D(0, -20, 0),
 new Number3D(0, 20, 0)
];

Here, we define a vertical line 40 units long, beginning at a point 20 units above the origin and ending at a

point 20 units below the origin. Extruding this profile along our path will create a vertical wall. If we wanted

to create a road, we could use a similar profile that was oriented horizontal, for example, along the X axis.

We can now create our path extrusion by combining the previously created path and profile data

objects inside a PathExtrusion object. Add the following lines of code to the end of the _createScene()
method:

var extrusion : PathExtrusion = new PathExtrusion(path, profile);
extrusion.subdivision = 10;
extrusion.bothsides = true;
_view.scene.addChild(extrusion);

Here, our path and profile properties are passed to the PathExtrusion object as arguments in the

constructor. As with any other 3D object, we have the option to set configuration properties after

instantiation. In the preceding code, we assign new values to the bothsides and subdivision properties:

PROCEDURAL 3D CONTENT

161

bothsides is a general property for all 3D mesh objects that ensures both sides of all faces in a mesh are

visible by disabling the default process of back-face culling. The subdivision property is specific to the

PathExtrusion class, and its use is described in the following list, along with the use of several other path

extrusion properties:

subdivision: This Number value defines how each Bézier curve definition is subdivided in the

resulting path extrusion. A curve is approximated by a series of vertices created at regular

intervals along the path of each curve. In our example, the two points in the profile shape will be

duplicated ten times along each curve, with faces generated between each set of points to create

a continuous surface. The default value is 1.

coverAll: This Boolean value defines how UV coordinates are applied to the geometry of the

extrusion object. If it’s set to true, UV values are created to stretch the texture from the

beginning to the end of an extrusion. If it’s set to false, the same geometry repeats the texture

across each curve in the path. The default value is true.

closePath: This Boolean value defines whether an extra curve is automatically created to join

the last position in the extrusion path with the first, creating a closed loop. It defaults to false,

leaving the resulting extrusion geometry open at both ends.

Compiling the code will display the output seen in Figure 7-5. The potential for different shapes using the

PathExtrusion class is virtually limitless, and we hope this introduction has got you thinking of your own

uses for this nifty extrusion object.

Figure 7-5. A ribbon created in the UsingPathExtrusion example with the PathExtrusion class

Creating a vase with the LatheExtrusion class

In carpentry, the process of lathing involves carving a piece of wood or metal using a machine known as a

lathe. This cuts a profile into a block of the desired material as it spins, producing an object with axial

symmetry (such as a table leg or baseball bat). A 3D object with axial symmetry has a single axis around

which it can rotate with no changes in profile. This form can be reproduced in Away3D using the

LatheExtrusion class.

The process used to construct a 3D mesh in this manner requires a profile consisting of a series of points

(similar to the profile definition used by the PathExtrusion class in our previous example), which is then

rotated around an axis to produce a lathed mesh object. Let’s look at a simple example using the

LatheExtrusion class by extending our Chapter07SampleBase class with the following document class

definition:

package flash3dbook.ch07
{
 import away3d.core.math.*;

CHAPTER 7

162

 import away3d.extrusions.*;

 [SWF(width="800", height="600")]
 public class UsingLatheExtrusion extends Chapter07SampleBase
 {
 public function UsingLatheExtrusion()
 {
 super();
 }

 protected override function _createScene() : void
 {
 }
 }
}

In this example, we will create a vase shape from a simple four-point profile of the side of a vase. We

begin by adding the following code to the empty _createScene() method:

var profile : Array = [
 new Number3D(-50, 200, 0),
 new Number3D(-40, 150, 0),
 new Number3D(-60, 120, 0),
 new Number3D(-40, 0, 0)
];

Here, we create a vase profile from an array of Number3D points defined in the XY plane, starting at a point

above the origin and finishing at a point horizontal to the origin. Note that all x coordinates are negative,

placing them to the left of the Y axis. It is generally necessary to create a profile for lathe extrusions that

has all points positioned to one side of the axis of rotation, to ensure we create a mesh that doesn’t

intersect with itself. For our profile array defined here, any point positioned to the right of the Y axis would

have the potential to come into conflict with points positioned to the left when the profile is rotated to create

the resulting geometry. To avoid potential collisions, we keep all profile points on one side of the Y axis,

which is the default axis of rotation.

As with the PathExtrusion class, we pass our profile array in the constructor of the LatheExtrusion
object, creating our vase object by adding the following code to the end of the _createScene() method:

var vase : Lathe = new Lathe(profile);
vase.subdivision = 12;
vase.centerMesh = true;
vase.thickness = 10;
_view.scene.addChild(vase);

Once again, we set a few configuration properties on our extrusion object after instantiation. The following

descriptions cover the most frequently used properties for the LatheExtrusion class.

axis: This Number3D object defines the axis around which the profile is rotated as the mesh is

created. The default value is (0, 1, 0), representing the Y axis.

PROCEDURAL 3D CONTENT

163

subdivision: This Number value defines the number of vertices added to the mesh as the profile

is revolved around the axis. As with the PathExtrusion class, faces are generated between

each set of profile points to create a continuous surface. The default value is 2.

centerMesh: This Boolean value indicates whether the mesh created by the lathing operation

should be automatically translated so that it's local origin matches the center of the geometry.

Without this, the position of the resulting mesh is determined by the absolute positions of the

profile points after rotating. The default value is false.

thickness: This Number value determines if the resulting mesh has a back and a front to the

rotated profile. Its default value is 0, causing the lathe to create a single set of faces from the

profile points. If we set the value to anything other than 0, the lathe will add thickness to the

resulting mesh by creating two surfaces, an inner one and an outer one, separated by a distance

defined by the thickness property. This is a great feature for our vase, as it allows us to define a

general contour for the vase shape as a single line, and then create a hollow object with some

thickness to its walls.

Compiling the code should display the image shown in Figure 7-6.

Figure 7-6. A vase created using the LatheExtrusion class in the UsingLatheExtrusion example

Using mesh modifiers

Mesh modifiers are classes in Away3D that modify existing geometry rather than creating it from scratch.

There are many different modifier types available from the away3d.modifers package. A general feature

of mesh modifiers is their ability to modify the vertices and faces of a mesh (or meshes) to change the

appearance or configuration of the resulting mesh object (or objects).

We will be taking a look at one type of mesh modifier in particular, represented by the

HeightMapModifier class. This allows you to perturb the vertices of any existing mesh object along their

normal vectors to create deformations in the mesh surface.

Creating a terrain using the HeightMapModifier

The HeightMapModifier class can be used on any existing mesh object or 3D object that extends the

Mesh class. All modifiers in Away3D operate on the principal that mesh objects need to be explicitly

CHAPTER 7

164

defined for the modifier. It is not possible to apply a modifier to a 3D container object, because a container

can contain any number of meshes.

A height map is generally considered to be a bitmap image that contains data relating to the relief of a 3D

mesh’s surface. The pixel values are interpreted as height values, and the resulting image describes a

continuous contour in 3D. This can be applied to a mesh using the UV coordinates on each face to map

the height map as a texture map. A position offset is then applied to the vertices of the mesh by taking the

average of the offset values for the height map around the UV positions of each vertex point.

Because a height map only defines the offset amount. The direction of offset is calculated for each vertex

in the mesh using a vector called the vertex normal. This vector is similar to the face normal vector

described in Chapter 4 and is calculated automatically for each vertex by taking the weighted average of

the face normal vectors of all faces using the vertex.

To demonstrate the effect achieved with the HeightMapModfier class, we will use a plane primitive as our

input mesh object, as this will produce results that are easy to interpret. Let’s begin by extending the

Chapter07SampleBase class with the following document class definition:

package flash3dbook.ch07
{
 import away3d.modifiers.*;
 import away3d.primitives.*;

 import flash.display.*;
 import flash.events.*;
 import flash.ui.*;

 [SWF(width="800", height="600")]
 public class UsingHeightMapModifier extends Chapter07SampleBase
 {
 private var _scale : Number = 0;
 private var _modifier : HeightMapModifier;

 protected override function _createScene() : void
 {
 }
 }
}

There are a few more import statements seen here compared to previous examples, because we will be

adding a bit of keyboard interaction later in the code to control our modifier object and require the native

classes for events and keyboard objects. But before we deal with interaction, we need to create a height

map to use in our HeightMapModifier class. This is generated by adding the following lines of code to

the _createScene() method:

var bmp : BitmapData = new BitmapData(200, 200, false);
bmp.perlinNoise(20, 20, 2, 0, true, true, 7, true);

Here, we use Perlin noise to create a 200 200 bitmap data image with a smoothly varying grayscale pixel

value. To check what it looks like, let’s draw the resulting BitmapData object to the stage by adding the

following lines of code to the end of the _createScene() method:

PROCEDURAL 3D CONTENT

165

graphics.beginBitmapFill(bmp);
graphics.drawRect(0, 0, 200, 200);

Compiling the code should display something similar to the output shown in Figure 7-7.

Figure 7-7. The bitmap image used as our height map for the HeightMapModifier class in the

UsingHeightMapModifier example, created using a low-resolution Perlin noise filter

Next, we create the plane primitive to which the modifier will be applied. A key point to consider is that the

HeightMapModifer class can do no more than offset the position of individual vertices in a mesh. To

ensure reasonable results, we must subdivide the plane into an appropriate number of faces. We use a

plane with 20 subdivisions along both the width and height dimensions, a sufficient density for our

purposes, by adding the following code to the end of the _createScene() method:

var _plane : Plane = new Plane();
_plane.width = 500;
_plane.height = 500;
_plane.segmentsW = 20;
_plane.segmentsH = 20;
_view.scene.addChild(_plane);

All that’s left to create is the modifier object itself, which requires two arguments in its constructor: the

mesh object it will operate on and the BitmapData object containing the height map data. To achieve this,

add the following code to the end of the _createScene() method:

_modifier = new HeightMapModifier(_plane, bmp);

With the plane primitive now linked to our HeightMapModifier object, we can control its geometry by

adjusting properties of the modifier. To dynamically control this process, let’s create a keyboard interaction

that allows us to make adjustments on the fly. Add the following code to the end of the _createScene()
method to set up a handler for the KeyboardEvent.KEY_DOWN event:

stage.addEventListener(KeyboardEvent.KEY_DOWN, _onKeyDown);

CHAPTER 7

166

The event handler is defined as a method called _onKeyDown(), which we create by adding the following

code to the end of the UsingHeightMapModifier class definition:

private function _onKeyDown(ev : KeyboardEvent) : void
{
 switch (ev.keyCode) {
 case Keyboard.UP:
 _scale += 0.05;
 break;
 case Keyboard.DOWN:
 _scale -= 0.05;
 break;
 }
 _modifier.scale = _scale;
 _modifier.offset = -_scale * 127;
 _modifier.execute();
}

In the preceding handler, we begin by executing a switch statement to determine whether an up or down

cursor key was pressed. In the case of UP, we increase the value of our global variable _scale by 0.05. In

the case of DOWN, we decrease the value of _scale by 0.05. This variable is then applied to the scale
property of the HeightMapModifier object, a value that controls the degree to which the pixel values in

the height map offset the vertices in the mesh.

To update the modified position of the vertices in our plane mesh, we follow setting the scale property in

the _onKeyDown() method with a call to the execute() method of the HeightMapModifier object. This

call allows us to control the overall offset scale of the HeightMapModifier object while our Flash movie is

running.

The execute method is a common feature of all modifier classes in Away3D. It has to

be called manually to propagate updates in a modifier to updates in any associated

mesh objects. The scale property in the HeightMapModifier class is an absolute

fractional value that defaults to 1. It can be set to negative values as well as positive

values, which has the effect of reversing the direction of applied offset on the mesh

vertices. This can be seen occurring in the UsingHeightMapModifier example if we

continually press the DOWN key.

Because the vertices in the plane primitive all belong to faces pointing in the same direction, they all have

the same vertex normal. This means that any perturbation applied by the HeightMapModifier object will

move all vertices in the same direction—in this case, either up or down.

To keep the mesh centered in the scene while this movement occurs, we counterbalance the effect of the

height map by adjusting the offset property of the HeightMapModifier object in the opposite direction.

The height map values taken from the supplied Perlin noise bitmap range from 0 to 255, so to center these

offsets, we need adjust the base offset property by an appropriately scaled –127 units. This is done in

the final line of code of the preceding _onKeyDown() method by multiplying –127 by _scale to match the

PROCEDURAL 3D CONTENT

167

scaling applied to our height map values, which results in an overall vertex offset applied equally in both up

and down directions from the starting position of the vertices in the plane.

Compile the code and press the up and down cursor keys to see a display similar to that shown in Figure

7-8.

Figure 7-8. A Perlin noise height map applied to a simple plane primitive using the HeightmapModifier

object in the UsingHeightMapModifier example

With planes, the HeightmapModifier class can be great for creating objects that simulate the terrain of a

rocky landscape. However, we are not restricted to applying height maps to flat surfaces. The same can

be done on any 3D mesh you create or import that has UV coordinate values. As an alternative example,

let’s use a sphere primitive as our base mesh by replacing the code creating the plane in the

_createScene() method of the UsingHeightMapModifier example with the following code:

var _sphere : Sphere = new Sphere();
_sphere.radius = 200;
_sphere.segmentsW = 40;
_sphere.segmentsH = 20;
_view.scene.addChild(_sphere);

We also need to update the line that creates our HeightMapModifier object to replace the old plane
variable with our new sphere variable.

_modifier = new HeightMapModifier(_sphere, bmp);

Recompiling the example will display a sphere primitive in place of the plane. The cursor keys control the

effect of the height map modifier in the same way; only this time, the vertex normal vectors are arranged in

CHAPTER 7

168

a radial configuration. This means that the position of each vertex is perturbed along its own path

perpendicular to the sphere’s surface, creating a rocky globe!

For a greater degree of control, you will most likely want to start experimenting with drawing your own

heights maps. This approach has many potential applications, such as creating dents in a car model as it

crashes against a wall or artificially ageing a face model to appear more wrinkled. The HeightMapModfier
class should prove to be a versatile tool in your Away3D applications.

Summary

This chapter has walked through some of the basic geometry-creation methods that exist in Away3D, as

well as a selection of advanced geometry classes and mesh modification tools. Several more classes exist

in the away3d.extrusions and away3d.modifiers packages that we aren’t able to delve into here, but

you are welcome to read about them in the documentation section of the www.away3d.com site.

The following list recaps the main topics you should take with you from this chapter:

 Creating a custom 3D object from scratch can be easily done by extending the

AbstractPrimitive class. This approach gives you access to some useful utility methods such

as createFace(), createVertex(), and createUV().

 According to Away3D conventions, all configuration properties on a class should be available to

set via public properties as well as inside the init object of the constructor.

 UV mapping is a process that associates each vertex of a 3D face with its position on a 2D

texture map of the mesh.

 A mesh that has no UV data cannot have any type of bitmap material applied.

 UV coordinates are stored as fractional values from 0 to 1 in two dimensions, where 1

represents the total width or height of the texture image.

 The origin point of a UV map is defined as the bottom-left corner of the texture image.

 The extrusion classes allow you to create more complex geometry from simple 3D path and

profile definitions.

 The PathExtrusion class extrudes a profile shape along a smooth Bézier spline and is

ideal for creating roads and ribbons.

 The LatheExtrusion class rotates a profile shape around a defined axis and is ideal for

creating a 3D object with axial symmetry, such as a vase or lamp.

 The modifier classes allow you to update the geometry of one or more existing mesh objects at

the vertex level.

 The HeightMapModifier class applies a 2D height map to any mesh with UV mapping.

The data used for the height map is created from a bitmap image where pixel values

represent the offset amount along the normal vector of each vertex.

PROCEDURAL 3D CONTENT

169

In the next chapter, we will explore some of the options available to us when it comes to interactivity in

Away3D. We will demonstrate the advantage of using 3D mouse events and cover some alternative

control methods for advanced camera movement.

171

Chapter 8

Interactivity

The interactivity of any real-time 3D experience is key to its effectiveness, and in Flash is one of the best

reasons to use Away3D over alternative approaches. If your application isn’t interactive, then it’s likely you

have options available to you such as prerendered still images or video that potentially produce better

visual results, due to the current processing limits imposed on rendering a real-time 3D scene. Having said

that, interactive 3D can produce compelling visual results that are simply unattainable with conventional

approaches, thanks to the relative freedom it gives the movement and animation of an interface.

In preceding chapters, the only type of interactivity covered in any great depth concerns the movement of

a HoverCamera3D object. In this chapter, we will take a look at alternative ways to interact with 3D objects

in a scene using the mouse, as well as general topics such as keyboard interaction.

Setting up the chapter base class

As always, let’s start by setting up a base class. Create Chapter08SampleBase using the following stub

code, which will serve as a starting point for our examples throughout this chapter. The theme in this case

is chess, and the base class will construct a scene composed of a chessboard with a rook piece standing

in the center.

package flash3dbook.ch08
{
 import away3d.containers.*;
 import away3d.core.math.*;
 import away3d.core.utils.*;
 import away3d.lights.*;
 import away3d.materials.*;
 import away3d.primitives.*;

 import flash.display.*;

CHAPTER 8

172

 import flash.events.*;

 import flash3dbook.ch08.misc.*;
 public class Chapter08SampleBase extends Sprite
 {
 protected var _rook : RookMesh;
 protected var _board : Plane;
 protected var _view : View3D;

 [Embed('../../../assets/ch08/chessboard.jpg')]
 private var ChessBoardBitmapClass : Class;

 public function Chapter08SampleBase()
 {
 _createView();
 _createScene();
 }

 protected function _createView() : void
 {
 }

 protected function _createScene() : void
 {
 }

 protected function _onEnterFrame(ev : Event) : void
 {
 _view.render();
 }
 }
}

In the preceding code, we begin by declaring some global variables to allow quick access to key objects

anywhere in the application. The private variable ChessBoardBitmapClass contains a bitmap image

called chessboard.jpg embedded using the Flex [Embed] meta-tag (a technique discussed in greater

detail in Chapters 4 and 5). The image consists of a black-and-white checkered pattern and will be used as

the texture for the plane that represents our 3D chessboard object. At this point, it is a good idea to check

that the path used in the meta-tag is pointing to the correct location of the image file on your hard drive. If

you are building the examples from this chapter’s resource files downloaded from www.friendsofed.com,

you should already have the chessboard.jpg image located in the correct directory.

The remainder of the Chapter08SampleBase code contains stub definitions for the usual _createView()

and _createScene() methods and a familiar _onEnterFrame() method triggering the render() method

of the view.

Before continuing, we need to fill out the rest of our base class with code that sets up our 3D environment.

Let’s start by creating a view object and a light object by adding the following lines to the _createView()

method:

INTERACTIVITY

173

_view = new View3D();
_view.x = 400;
_view.y = 300;
_view.camera.y = 700;
_view.camera.lookAt(new Number3D(0,0,0));
addChild(_view);

var light : PointLight3D = new PointLight3D();
light.x = 500;
light.y = 800;
light.z = -500;
light.ambient = 0.2;
_view.scene.addLight(light);

stage.addEventListener(Event.ENTER_FRAME, _onEnterFrame);

In the preceding code, the first task is to create the view object and position it correctly at the center of the

stage. The default camera at (0, 0, –1000) is moved up by 700 units and uses the lookAt() method to

point it at the scene’s origin. Next, we create a PointLight3D object with a position 800 units above the

scene’s origin and 500 units to the right and front of the scene. Finally, we register the method

_onEnterFrame() as a handler for the ENTER_FRAME event dispatched from the stage, so that the view

renders its scene on every frame of the Flash movie.

Now, let’s take a look at the code we need to add to the _createScene() method. Here, we will create a

chessboard from a plane primitive and a rook piece from a model that has been converted to the

ActionScript class RookMesh (a process that is covered in more detail in Chapter 4). Just like the

chessboard.jpg image, the RookMesh class is an asset supplied in this chapter’s resource files and is

assumed to be located inside the flash3dbook.ch08.misc package.

var boardBitmap : BitmapData = Cast.bitmap(ChessBoardBitmapClass);

_board = new Plane();
_board.yUp = true;
_board.segmentsW = 8;
_board.segmentsH = 8;
_board.width = 800;
_board.height = 800;
_board.material = new WhiteShadingBitmapMaterial(boardBitmap);
_board.pushback = true;
_view.scene.addChild(_board);

_rook = new RookMesh();
_rook.material = new ShadingColorMaterial(0xffffff);
_view.scene.addChild(_rook);

In the preceding code, the first line takes the class definition of the embedded image

ChessBoardBitmapClass and extracts its BitmapData to a local variable boardBitmap, using the utility

class Cast (a technique introduced in Chapter 5). The next two blocks of code set up the 3D objects

CHAPTER 8

174

representing the chessboard and rook piece respectively. The board is created from a regular Plane

primitive, with the black and white tiles’ bitmap data boardBitmap wrapped in a

WhiteShadingBitmapMaterial object to achieve some realistic shading. The rook piece is instantiated

from the RookMesh class and has a shading color material applied with a base color of white. Compiling

the Chapter08SampleBase class at this point displays the result shown in Figure 8-1. Let’s move on to

create some interactivity!

Away3D occasionally has a hard time with its standard Z-sorting algorithm, producing

incorrect results for triangle sorting. This can cause rendering artifacts seen as flickering

triangles where mesh elements take turns being in front and behind each other and is

appropriately named Z fighting. In the preceding code for the _createScene() method,

setting the pushback property of the board to true gives the mesh object a reduced

sorting priority relative to others in the scene, keeping it behind objects where

appropriate at close distances. Further tricks to avoid Z-fighting artifacts are covered in

Chapter 10.

Figure 8-1. The newly created scene from the Chapter8SampleBase class that we will use in subsequent

examples

Interacting with 3D objects in a scene

In regular Flash development, you are likely familiar with creating 2D objects such as buttons and sprites

that can react to mouse events. In Away3D, the same type of mouse interaction is possible on 3D objects

such as primitives and imported models. As you will see, the variety of 3D mouse events on offer covers

the majority of native 2D mouse events and allows the creation of many interesting ways to interact with a

3D scene.

INTERACTIVITY

175

Introducing the MouseEvent3D object

Development using native mouse events in Flash tends to be centered around the MouseEvent class,

available in the flash.events package. The equivalent event class in Away3D is the MouseEvent3D

class, available in the away3d.events package, and it is used in much the same way.

To demonstrate some common types of mouse interaction in Away3D, we can extend our

Chapter08SampleBase class to create an example that reacts to 3D mouse events broadcast from our

rook model. Let’s start by creating the shell of our example class with the following code:

package flash3dbook.ch08
{
 import away3d.core.base.*;
 import away3d.events.*;

 import flash.net.*;
 [SWF(width="800", height="600")]
 public class UsingMouseEvent3D extends Chapter08SampleBase
 {
 public function UsingMouseEvent3D()
 {
 super();
 }
 }
}

In this case, we will be listening for rollover, rollout, and mouse up events. To react to these, we need

three event handler methods for the MOUSE_OVER, MOUSE_OUT, and MOUSE_UP events of the MouseEvent3D

class.

First, let’s create our event handlers for MOUSE_OVER and MOUSE_OUT events by adding class methods

_onMouseOver() and _onMouseOut() to the end of the UsingMouseEvent3D class definition. These need

to accept a single argument of the type MouseEvent3D, in a similar way to native MouseEvent handlers.

private function _onMouseOver(ev : MouseEvent3D) : void
{
 var obj : Object3D = ev.object;

 obj.scale(1.1);
}

private function _onMouseOut(ev : MouseEvent3D) : void
{
 var obj : Object3D = ev.object;

 obj.scale(1);
}

The object property of the MouseEvent3D argument received by the event handlers contains a reference

to the target 3D object where the event originated. In this case, it is the 3D object that the mouse cursor

either rolled over or rolled out of.

CHAPTER 8

176

The preceding code scales the target 3D object to 110 percent when the _onMouseOver() method is

triggered and back to 100 percent when the _onMouseOut() method is triggered. Now, we add a final

method _onMouseUp() to the end of the UsingMouseEvent3D class definition, to be used as a handler for

the MOUSE_UP event.

private function _onMouseUp(ev : MouseEvent3D) : void
{
 if (ev.object == _rook) {
 navigateToURL(new URLRequest('http://www.flash3dbook.com'));
 }
}

Here, we check whether the MOUSE_UP event originates from the rook model (which should always be true

in this example) and then submit a URLRequest object to navigate to the 3D book web site.

3D mouse events in Away3D bubble up the scene graph hierarchy in the same way

native Flash events bubble up the display list. So in the UsingMouseEvent3D example,

our handlers for events dispatched from the rook model could just as easily be listening

for events dispatched from the scene, as long as all handler methods check the origin

object of the event, using the technique seen in the onMouseUp() method.

To hook up our event handlers to our event dispatchers, we need to add the following code to the

UsingMouseEvent3D class constructor:

_rook.addEventListener(MouseEvent3D.MOUSE_OVER, _onMouseOver);
_rook.addEventListener(MouseEvent3D.MOUSE_OUT, _onMouseOut);
_rook.addEventListener(MouseEvent3D.MOUSE_UP, _onMouseUp);

Compile the UsingMouseEvent3D example, and try using your mouse to interact with the rook model.

Rolling over the object scales it up, and rolling out scales it back down. Clicking the model when rolled

over dispatches a URL request for the www.flash3dbook.com site address.

There is currently no event named CLICK in Away3D, but listening for MOUSE_UP events

serves a similar purpose and will suffice in most situations.

It is often good practice to display a hand cursor when a clickable object is directly under the mouse

position. This is an effective way of providing visual feedback to the user that whatever is under the cursor

at that moment is clickable and is a default technique used by native Flash SimpleButton objects. Setting

the useHandCursor property to true on a 3D object (such as our rook model) will enable the same

feature in Away3D.

_rook.useHandCursor = true;

Add the preceding code to the end of the UsingMouseEvent3D constructor, and recompile the example to

see the hand cursor displayed when the mouse is positioned over the rook model.

INTERACTIVITY

177

Using MouseEvent3D’s scene coordinates

From regular mouse events in Flash, you may be familiar with the use of stageX, stageY, localX, and

localY properties on MouseEvent objects. These act as handy references to the mouse position in

relation to the broadcasting object when a particular mouse event is dispatched. In Away3D, the

MouseEvent3D class has similar properties available that serve the same purpose for 3D positioning.

The sceneX, sceneY, and sceneZ properties of a MouseEvent3D object reveal the position at which a

mouse event took place in global scene coordinates. The coordinates refer to the point on the surface of

the object broadcasting the 3D mouse event that is located directly under the mouse cursor. Scene

coordinates from a MouseEvent3D object can be used to update the location of a second object from the

position returned, creating a visual representation of a mouse event occurring on the surface of the

broadcasting object. This can be of great use when designing the interaction for a 3D scene.

To create an example that uses the scene coordinates from a MouseEvent3D object, let’s extend the

Chapter08SampleBase class with the following code:

package flash3dbook.ch08
{
 import away3d.events.*;

 [SWF(width="800", height="600")]
 public class DraggingObjectsInSpace extends Chapter08SampleBase
 {
 public function DraggingObjectsInSpace()
 {
 super();

 _rook.addEventListener(MouseEvent3D.MOUSE_DOWN, _onMouseDown);
 _rook.addEventListener(MouseEvent3D.MOUSE_UP, _onMouseUp);

 _rook.useHandCursor = true;
 }

 private function _onMouseDown(ev : MouseEvent3D) : void
 {
 _board.addEventListener(MouseEvent3D.MOUSE_MOVE, _onMouseMove);
 }

 private function _onMouseMove(ev : MouseEvent3D) : void
 {
 }

 private function _onMouseUp(ev : MouseEvent3D) : void
 {
 _board.removeEventListener(MouseEvent3D.MOUSE_MOVE, _onMouseMove);
 }
 }
}

CHAPTER 8

178

The constructor method in the preceding code begins by setting up a listener for a 3D MOUSE_DOWN event

and a 3D MOUSE_UP event dispatched from the _rook model. We also set the useHandCursor property of

the rook to true, so that interaction with the mouse is implied on rollover.

When the mouse button is depressed while the cursor is over the rook model, the MOUSE_DOWN event is

triggered and we start listening for 3D MOUSE_MOVE events dispatching from the _board object. The

_onMouseMove() handler will continue to trigger until a 3D MOUSE_UP event is received from the _board

object when the mouse button is released. To complete this example, we need to flesh out the

_onMouseMove() method, adding the following code to place the rook in the scene position of the 3D

mouse event received from the _board object:

_rook.x = ev.sceneX;
_rook.z = ev.sceneZ;

Since the object broadcasting the 3D MOUSE_MOVE event is a plane oriented along the X and Z axes of the

scene, the preceding code will move the rook model to the position on the X and Z axes of the scene

where the MOUSE_MOVE event was recorded. Because the rook is a direct child of the scene, we can rely on

the sceneX and sceneZ properties to directly correlate with the x and z properties of the _rook object,

without the need for any transformations of coordinate space.

If an object being manipulated by the scene position properties of a 3D mouse event

were contained within a transformed (e.g., rotated) container, we would need to use

some simple matrix math to convert from one coordinate space to another before setting

position values for the object. More information about such a scenario can be found in

Chapter 10.

Compiling the DraggingObjectsInSpace example at this point allows you to click and drag the rook

model with the mouse, demonstrating the practical use mentioned earlier for the scene position information

returned in a 3D mouse event. You will notice that as you drag the rook around, the motion is rather jerky.

This is due to the MOUSE_MOVE event of the chessboard being interrupted by the geometry of the rook

model whenever its position updates. The _board object will only dispatch MOUSE_MOVE events when its

geometry is found directly under the cursor, without anything else being rendered in front. So our code will

not update the rook’s position until the cursor rolls off the rook model and has uninterrupted sight of the

chessboard. This is not an ideal situation for the desired interaction, so to fix the problem, we can exclude

the rook from registering mouse events while we are dragging, using the mouseEnabled property.

_rook.mouseEnabled = false;
_board.useHandCursor = true;

Add the preceding code to the end of the _onMouseDown() method. The mouseEnabled property is

available on all scene objects in Away3D, and causes a 3D object to ignore 3D mouse events when set to

false. For good measure, we are also making use of the hand cursor on the _board object while

dragging, so that it remains visible while the mouse is clicked and held over the rook (see Figure 8-2).

With the preceding modification, the MOUSE_UP handler will not fire when the mouse button is released,

because the _rook model has had its mouse interaction disabled. In order to ensure the _onMouseUp()

method is triggered, we need to modify the constructor code to look like the following:

public function DraggingObjectsInSpace()
{

INTERACTIVITY

179

 super();

 _rook.addEventListener(MouseEvent3D.MOUSE_DOWN, _onMouseDown);
 _board.addEventListener(MouseEvent3D.MOUSE_UP, _onMouseUp);

 _rook.useHandCursor = true;
}

Here, the line in bold has been changed to listen to MOUSE_UP events on the _board object instead of the

_rook model.

Now, we need to reverse our modifications in the _onMouseDown method when the mouse button is

released, requiring the following code to be added to the end of the _onMouseUp method.

_rook.mouseEnabled = true;
_board.useHandCursor = false;

Recompiling the DraggingObjectsInSpace example will give us a much smoother, more responsive

interaction when dragging the rook with the mouse (see Figure 8-2). Next, let’s take a look at some other

useful properties returned in the MouseEvent3D object.

Figure 8-2. Dragging the rook model around the chessboard using the mouse (Notice the hand cursor

active on the rook model.)

Using MouseEvent3D’s UV coordinates

As mentioned in Chapter 5, UV coordinates represent 2D position vectors in texture space, using numbers

between zero and one. Recall that a UV value of (0,0) maps to the lower left-hand corner of a material’s

BitmapData object, and a UV value of (1,1) maps to the upper right-hand corner.

When Away3D broadcasts a 3D mouse event, the 3D scene position mentioned in the previous section is

not the only piece of information available. If the material of the broadcasting object is one that uses UV

coordinates, the precise UV value under the mouse cursor is calculated (i.e., the position on the object’s

CHAPTER 8

180

texture from which the event was broadcast). This information can be accessed as a UV object from the uv

property on the MouseEvent3D object received by the event handler.

One potential use for this information reveals itself when we construct a painting interface that uses the

mouse cursor to draw directly onto the surface of an object textured with a bitmap material, by painting into

the BitmapData of the texture image. Let’s create another example class extending

Chapter08SampleBase, and implement a texture-painting tool on the surface of the chessboard.

package flash3dbook.ch08
{
 import away3d.events.*;
 import away3d.materials.*;

 import flash3dbook.ch08.*

 import flash.display.*;
 import flash.geom.*;

 [SWF(width="800", height="600")]
 public class PaintingOnObjects extends Chapter08SampleBase
 {
 private var _brush : Shape;

 public function PaintingOnObjects()
 {
 super();

 _brush = new Shape();
 _brush.graphics.beginFill(0xff0000, 0.5);
 _brush.graphics.drawEllipse(-10, -10, 20, 20);

 _board.useHandCursor = true;
 _board.addEventListener(MouseEvent3D.MOUSE_DOWN, _onMouseDown);
 _board.addEventListener(MouseEvent3D.MOUSE_UP, _onMouseUp);
 }

 protected function _onMouseDown(ev : MouseEvent3D) : void
 {
 _board.addEventListener(MouseEvent3D.MOUSE_MOVE, _onMouseMove);
 }

 protected function _onMouseMove(ev : MouseEvent3D) : void
 {
 }

 protected function _onMouseUp(ev : MouseEvent3D) : void
 {
 _board.removeEventListener(MouseEvent3D.MOUSE_MOVE, _onMouseMove);
 }

INTERACTIVITY

181

 }
}

In the preceding code, the listener setup for 3D mouse events is similar to the previous

DraggingObjectsInSpace example, the main difference being that all 3D mouse event listeners are set

up on the _board object. We also create a Shape object called _brush in the PaintingOnObjects

constructor, which consists of a single semitransparent red circle. This will be used as our paintbrush to

draw into the BitmapData object of the chessboard’s material. The UV coordinate returned by the

MouseEvent3D object is accurate to the pixel, but in this case, it is much more practical to paint with a big

brush as opposed to individual points.

Once again, we need to add some code to the _onMouseMove() method to complete the example. We

start by locating the material object of the chessboard and creating a variable bmp as a reference to the

BitmapData object containing the texture of the chessboard’s material.

var mat : WhiteShadingBitmapMaterial = _board.material as
WhiteShadingBitmapMaterial;
var bmp : BitmapData = mat.bitmap;

Next, we create a Matrix object mtx, which will be used by the draw method of the BitmapData object to

position our brush. It requires only one piece of information—the 2D position vector in pixels that draws the

red circle of _brush into the BitmapData object bmp at the precise location of the mouse cursor. This

position is calculated from the uv property of the MouseEvent3D object and is applied by setting the tx and

ty properties of mtx to the desired offset.

var mtx : Matrix = new Matrix();
mtx.tx = ev.uv.u * bmp.width;
mtx.ty = (1 - ev.uv.v) * bmp.height;
bmp.draw(_brush, mtx);

As mentioned earlier, UV coordinates are stored as a 2D position vector with each coordinate value

represented as a number between 0 and 1. We calculate the position on the BitmapData object by

multiplying these coordinates by the respective width and height values of the texture (the width and

height properties of bmp) to convert them to pixel units.

The v property of a UV coordinate is a common gotcha, since contrary to the majority of 2D coordinate

systems, 0 represents the bottom edge of the texture image, and 1 the top edge. This is consistent with

the Y axis orientation in Away3D but not with the coordinate system used in a BitmapData object! To

convert it, we are required to subtract the v value from 1 before multiplying by the height of the texture.

The final task to perform in the _onMouseMove() method is to reset the bitmap property for the

chessboard’s material object. This flags the material for a redraw when the render() method of the view

is next executed. Without this, Away3D would be unaware that the contents of the material had changed,

since the action of updating pixel values in a BitmapData object alone broadcasts no events.

mat.bitmap = bmp;

This is the simplest way to perform a material reset on a bitmap material and has very little impact on

performance compared to, say, re-creating the material using a new WhiteShadingBitmapMaterial

object.

CHAPTER 8

182

Away3D utilizes a namespace called arcane, through which you can access properties

used in internal engine systems. One such internal system is a series of Boolean

properties that temporarily mark an object as dirty (requiring a redraw). In this case, the

property used to flag a material for redrawing is called _materialDirty. If you are

familiar with namespaces, using the arcane namespace and setting _materialDirty

to true on the mat object in the preceding code might be considered a cleaner solution

for flagging a material for redrawing, as it rids us of the need for an extra bmp variable in

our code.

Compile the PaintingOnObjects example, and try clicking and dragging the mouse over the chessboard.

The interaction should act like a paintbrush on the surface of the plane, applying the red circles of the

_brush object to the portion of the texture directly underneath the mouse cursor, with results similar to the

output displayed in Figure 8-3.

Figure 8-3. Painting on the chessboard using the UV coordinates returned in the MouseEvent3D object

First-person camera keyboard controls

Now that you are an expert at interaction with the scene on an object level, what other methods can we

use to control a scene? A commonly used mechanism for navigating a 3D environment involves moving

the camera based on keyboard and mouse input, as if you were moving within the scene yourself, with the

camera representing your position. This kind of control is referred to as a first-person camera control.

Using the keyboard to interact with an Away3D scene is really no different from using the keyboard in any

other type of Flash application. It involves listening for native Flash keyboard events and the state of

specific keys before updating the scene and rendering it to the view.

In our first example, we will create a simple first-person navigation system using the keyboard.

Subsequent examples will extend functionality to add complimentary mouse interaction for looking around.

INTERACTIVITY

183

Walking with the keyboard

In many first-person games and applications, the W, A, S, and D keyboard keys are used to move the

camera forward, left, back, and right. Keeping in mind that not everyone will have a keyboard layout that

suits this interaction, it is a good idea to provide an alternate set of keys to use as a backup control

method. We will use the arrow keys for this purpose, as they are positioned in the same inverted T

arrangement for the majority of keyboards.

There are several coding techniques that can be used to achieve the type of keyboard interaction we are

aiming for. The common approach we will use here is to keep track of individual key states: keys can

either be down (pressed) or up (released). Each time the scene updates (i.e., immediately before we call

render() on the view), the camera updates its position according to the keys that are currently registered

in their down state.

To test this interaction, let’s extend the Chapter08SampleBase class to set up a new example.

package flash3dbook.ch08
{
 import flash.events.*;
 import flash.ui.*;

 import flash3dbook.ch08.*;

 [SWF(width="800", height="600")]
 public class FirstPersonCamera extends Chapter08SampleBase
 {
 public function FirstPersonCamera()
 {
 super();
 }

 protected override function _onEnterFrame(ev : Event) : void
 {
 _view.render();
 }
 }
}

Add the following variable definitions for key state to the top of our new class, one for each key. These

properties are Boolean values, because each key exists in one of only two possible states.

protected var _keyUp : Boolean = false;
protected var _keyDown : Boolean = false;
protected var _keyLeft : Boolean = false;
protected var _keyRight : Boolean = false;

Now, let’s create some event listeners for keyboard events and update the key state variables accordingly.

We’ll start by creating a method handler for the KEY_DOWN event, dispatched when a user presses a key,

by adding the following onKeyDown() method to the end of our FirstPersonCamera class definition:

private function _onKeyDown(ev : KeyboardEvent) : void
{

CHAPTER 8

184

 if (ev.charCode == 119 || ev.keyCode == Keyboard.UP) {
 _keyUp = true;
 }
 else if (ev.charCode == 97 || ev.keyCode == Keyboard.LEFT) {
 _keyLeft = true;
 }
 else if (ev.charCode == 115 || ev.keyCode == Keyboard.DOWN) {
 _keyDown = true;
 }
 else if (ev.charCode == 100 || ev.keyCode == Keyboard.RIGHT) {
 _keyRight = true;
 }
}

This method will execute every time a keyboard key is pressed. Our key state variables are defined by

their function, grouping the outcome for alphanumeric and arrow keys by the resulting direction of

movement. The first if statement in the _onKeyDown() method checks whether the key pressed is the W

key (ASCII code 119) or the up arrow key. If either are true, we set the value of the _keyUp state to

true, indicating that a key relating to the up direction has been pressed. We go on to do the same for all

other directions.

A similar method handler needs to be created for when the user releases a key, the difference being that

any released keys set their respective key state variables to false. For this, we add the following

_onKeyUp() method to the end of our FirstPersonCamera class definition:

private function _onKeyUp(ev : KeyboardEvent) : void
{
 if (ev.charCode == 119 || ev.keyCode == Keyboard.UP) {
 _keyUp = false;
 }
 else if (ev.charCode == 97 || ev.keyCode == Keyboard.LEFT) {
 _keyLeft = false;
 }
 else if (ev.charCode == 115 || ev.keyCode == Keyboard.DOWN) {
 _keyDown = false;
 }
 else if (ev.charCode == 100 || ev.keyCode == Keyboard.RIGHT) {
 _keyRight = false;
 }
}

Connecting up our event handlers to trigger on keyboard events, we register the _onKeyUp() and

_onKeyDown() methods as handlers for their respective keyboard events by adding the following lines of

code to the end of the constructor method of the FirstPersonCamera class:

stage.addEventListener(KeyboardEvent.KEY_DOWN, _onKeyDown);
stage.addEventListener(KeyboardEvent.KEY_UP, _onKeyUp);

Now, when a user presses or releases a relevant key, that key will be logged as pressed (true) or

released (false) in our key state variables.

INTERACTIVITY

185

Before we compile the FirstPersonCamera example, we need to add some code that moves our camera

in reaction to our changing key state variables. This is best done in the _onEnterFrame method so that

continuously holding down a key (or several keys) will continuously update the camera movement, until the

key is released.

For the forward and backward movement, we will use the moveForward() and moveBackward() methods

on the camera to move forward and back when the _keyUp and _keyDown variables are active. As you

saw in Chapter 3, these methods transform an object's position relative to its local axes. However, the

camera is tilted down slightly, so in order to keep our movement along a horizontal plane, we will need to

compensate our local forward and back motion with some local up and down motion. This can be

accomplished with the moveUp() and moveDown() methods and some simple trigonometry. In order to

rotate the camera we can increment its rotationY property. Add the following code to the start of the

_onEnterFrame() method of the FirstPersonCamera class, before render() is called on the view:

// Move forward or backward
if (_keyUp) {
 _view.camera.moveForward(15*Math.cos(_view.camera.rotationX*Math.PI/180));
 _view.camera.moveUp(-15*Math.sin(_view.camera.rotationX*Math.PI/180));
} else if (_keyDown) {
 _view.camera.moveBackward(15*Math.cos(_view.camera.rotationX*Math.PI/180));
 _view.camera.moveDown(-15*Math.sin(_view.camera.rotationX*Math.PI/180));
}

// Turn left/right
if (_keyLeft)
 _view.camera.rotationY -= 3;
else if (_keyRight)
 _view.camera.rotationY += 3;

Compile the FirstPersonCamera example, and try navigating around the chessboard using the arrow

keys or W, A, S, and D alphanumeric keys.

When compiling the FirstPersonCamera example, you may have to first click the stage

of the Flash movie with the mouse for it to gain focus and start receiving keyboard

events.

In this example, we are relying solely on keyboard interaction to navigate around the scene, which limits

our available movements somewhat. Next, let’s take a look at some more advanced approaches to first-

person interaction that use the mouse alongside the keyboard for a greater degree of control.

Looking around by dragging the mouse

A common approach for first-person interaction in many commercial 3D games allows the user to look

around a scene by moving the mouse. We can achieve the same interaction to some extent here, with one

significant limitation—in Flash, we have information only about the cursor position on screen, and usually

only while the cursor is positioned over the Flash movie window. For most Flash applications, this

limitation isn’t a problem, but in a first-person camera interface, it limits our ability to continuously rotate the

camera while looking around our scene. Even if Flash is running in full screen-mode and we can be certain

CHAPTER 8

186

the cursor is always inside the Flash movie window, when the cursor hits the edge of the screen, our

perceived mouse movement halts until the cursor is moved back across the screen in the other direction.

One way to work around this problem is to use a dragging interaction. This rotates the camera only when

the user holds down the mouse button and drags the cursor, and removes the maximum rotation limit as

rotations can be incremented with consecutive mouse drags. It also has the advantage of detecting mouse

movement outside the Flash movie window, as long as the mouse button is initially pressed down while

the cursor is still inside.

To accomplish this interaction, we first need to listen for a standard MOUSE_DOWN event and, when that

occurs, start listening to MOUSE_MOVE events to update the rotation of the camera. Each time the mouse

moves, we apply a rotation that reflects the distance traveled by the cursor since the last received

MOUSE_MOVE event. We also need to listen for MOUSE_UP events to know when to stop reacting to

MOUSE_MOVE events. Let’s use the previous example class FirstPersonCamera as our starting point and

extend its functionality with the following class:

package flash3dbook.ch08
{
 import flash.events.*;
 import flash.geom.*;

 import flash3dbook.ch08.*;

 [SWF(width="800", height="600")]
 public class FirstPersonCameraWithDrag extends FirstPersonCamera
 {
 private var _lastPoint : Point = new Point();

 public function FirstPersonCameraWithDrag()
 {
 super();

 stage.addEventListener(MouseEvent.MOUSE_DOWN, _onMouseDown);
 stage.addEventListener(MouseEvent.MOUSE_UP, _onMouseUp);
 }

 private function _onMouseDown(ev : MouseEvent) : void
 {
 stage.addEventListener(MouseEvent.MOUSE_MOVE, _onMouseMove);
 stage.addEventListener(Event.MOUSE_LEAVE, _onMouseLeave);
 }

 private function _onMouseMove(ev : MouseEvent) : void
 {
 }

 private function _onMouseUp(ev : MouseEvent) : void
 {
 stage.removeEventListener(MouseEvent.MOUSE_MOVE, _onMouseMove);
 stage.removeEventListener(Event.MOUSE_LEAVE, _onMouseLeave);

INTERACTIVITY

187

 }

 private function _onMouseLeave(ev : Event) : void
 {
 stage.removeEventListener(MouseEvent.MOUSE_MOVE, _onMouseMove);
 stage.removeEventListener(Event.MOUSE_LEAVE, _onMouseLeave);
 }
 }
}

The preceding code is laid out in a very similar manner to the click-and-drag functionality applied to 3D

objects earlier in this chapter. When the mouse button is clicked and held, the listener for MOUSE_MOVE

events will activate, and when the button is released, the listener will deactivate. Notice that to stop

listening for mouse movement, we actually require two event handlers: a MOUSE_UP handler for when the

mouse button is released with the cursor position still over the Flash movie window and a MOUSE_LEAVE

handler for when the mouse button is released with the cursor position outside the Flash movie window,

after having been dragged out.

To complete the interaction, we add the following code to the _onMouseMove() method to calculate the

rotation of the camera when a MOUSE_MOVE event is broadcast. First, we calculate the distance the mouse

has travelled since the last MOUSE_MOVE event and use that value to increment the camera rotation. Then,

we prepare for the next event by storing the current mouse position in our global class variable

_lastPoint.

_view.camera.rotationX -= (stage.mouseY - _lastPoint.y) / 5;
_view.camera.rotationY += (stage.mouseX - _lastPoint.x) / 5;

_lastPoint.x = stage.mouseX;
_lastPoint.y = stage.mouseY;

The pitch increment of the camera is calculated using the y increment of the mouse position, and the yaw

increment of the camera is calculated using the x increment of the mouse position. Converting from pixels

to degrees, we divide each result by 5 to give an appropriate ratio of rotation speed to mouse movement.

As we saw in the previous example, rotation of a first person camera can use standard rotation properties,

so we apply our calculated pitch and yaw increments to the respective rotationX and rotationY

properties of the camera object.

Before compiling our FirstPersonCameraWithDrag example, we need to make sure that the first time the

mouse movement is calculated in a mouse drag, the increment value starts from the point where the user

started dragging (i.e., the point where the mouse button was first clicked). To achieve this, we can copy

the last two lines of the preceding code snippet and add them to the start of the _onMouseDown() method

so that it now looks like the following:

private function _onMouseDown(ev : MouseEvent) : void
{
 _lastPoint.x = stage.mouseX;
 _lastPoint.y = stage.mouseY;

 stage.addEventListener(MouseEvent.MOUSE_MOVE, _onMouseMove);
 stage.addEventListener(Event.MOUSE_LEAVE, _onMouseLeave);

CHAPTER 8

188

}

Here, the additional lines to the _onMouseDown() method are highlighted in bold. Compile the

FirstPersonCameraWithDrag example, and try clicking and dragging the mouse to look around. The

camera should rotate in the direction you drag, with movement in both a horizontal and vertical direction.

You are still able to walk around as before, and better still, both interactions can be used simultaneously.

The left and right arrow keys (and the A and D keys) still control the camera rotation as before, but have

been made redundant in this example by the introduced mouse interaction. Next, let’s take a look at a

different approach for using the mouse to look around.

Looking around by scrubbing the mouse

The main downside with the dragging approach to mouse controlled rotation in the previous

FirstPersonCameraWithDrag example is that a user has to repeatedly click and drag the mouse to

execute sharp turns, because a single drag has a finite distance and therefore executes a finite rotation.

An alternative method that doesn’t suffer the same limitations uses an interactive technique known as

scrubbing.

A scrubbing interface in an audio or video application tends to consist of a handle or wheel that can be

dragged left or right to control the speed and direction of playback. The speed depends on how far off

center you drag the control, and when released, the control jumps back to its center position and playback

stops. The same interaction can be applied to our camera rotation control, so that when the mouse cursor

is scrubbed from anywhere inside the Flash movie, the camera will rotate continuously in the direction of

scrub until the mouse button is released.

To implement this interaction, let’s again use the FirstPersonCamera class as our starting point and

extend its functionality with the following:

package flash3dbook.ch08
{
 import flash.events.*;
 import flash.geom.*;

 import flash3dbook.ch08.*;

 [SWF(width="800", height="600")]
 public class FirstPersonCameraWithScrub extends FirstPersonCamera
 {
 private var _lastPoint:Point = new Point();
 private var _scrub:Boolean;

 public function FirstPersonCameraWithScrub()
 {
 super();

 stage.addEventListener(MouseEvent.MOUSE_DOWN, _onMouseDown);
 stage.addEventListener(MouseEvent.MOUSE_UP, _onMouseUp);
 }

 private function _onMouseDown(ev : MouseEvent) : void
 {

INTERACTIVITY

189

 _scrub = true;

 _lastPoint.x = stage.mouseX;
 _lastPoint.y = stage.mouseY;

 stage.addEventListener(Event.MOUSE_LEAVE, _onMouseLeave);
 }

 private function _onMouseUp(ev : MouseEvent) : void
 {
 _scrub = false;
 stage.removeEventListener(Event.MOUSE_LEAVE, _onMouseLeave);
 }

 private function _onMouseLeave(ev : Event) : void
 {
 _scrub = false;
 stage.removeEventListener(Event.MOUSE_LEAVE, _onMouseLeave);
 }

 protected override function _onEnterFrame(ev : Event) : void
 {
 _view.render();
 }
 }
}

The preceding code uses the same listener setup as the FirstPersonCameraWithDrag example for

detecting when the cursor is being dragged, but instead of using a MOUSE_MOVE event for updating the

camera rotation, we simply monitor the up and down state of the mouse button with a global class variable

_scrub.

The _onEnterFrame() method at the end of the class overrides the original keyboard interaction of the

FirstPersonCamera class. Let’s start by adding back in that functionality, this time with a sidestepping

motion instead of a rotation for left and right keypresses. The following code needs to be inserted before

the render call in the _onEnterFrame() method:

// Move forward or backward
if (_keyUp) {
 _view.camera.moveForward(15*Math.cos(_view.camera.rotationX*Math.PI/180));
 _view.camera.moveUp(-15*Math.sin(_view.camera.rotationX*Math.PI/180));
} else if (_keyDown) {
 _view.camera.moveBackward(15*Math.cos(_view.camera.rotationX*Math.PI/180));
 _view.camera.moveDown(-15*Math.sin(_view.camera.rotationX*Math.PI/180));
}

// Sidestep left/right
if (_keyLeft) {

CHAPTER 8

190

 _view.camera.x -= 15*Math.cos(_view.camera.rotationY*Math.PI/180);
 _view.camera.z += 15*Math.sin(_view.camera.rotationY*Math.PI/180);
} else if (_keyRight) {
 _view.camera.x += 15*Math.cos(_view.camera.rotationY*Math.PI/180);
 _view.camera.z -= 15*Math.sin(_view.camera.rotationY*Math.PI/180);
}

Previously, the code for reacting to left and right keypresses incremented or decremented the rotationY

property of the camera, but here we are using a similar technique to that seen in the code for moving

forward and back, incrementing the x and z position properties of the camera. Compiling the code at this

point will demonstrate that sidestepping with the camera is now possible using the left and right cursor

keys (or A and D character keys).

Now, let’s add the code for rotating the camera using the scrubbing method. The rotation code is only

executed when the value of the _scrub variable returns true and is updated on every frame by adding the

following code to the start of the _onEnterFrame() method.

// Rotate camera up/down and left/right
if (_scrub) {
 _view.camera.rotationX -= (stage.mouseY - _lastPoint.y) / 200;
 _view.camera.rotationY += (stage.mouseX - _lastPoint.x) / 200;
}

When a scrub is in progress, the X and Y distance from the start of a scrub (the point at which the mouse

button was pressed) can be calculated using the _lastPoint class variable and the current X and Y

position of the cursor. Once again, we need to convert between pixels and degrees for the pitch() and

yaw() increment arguments. Because we are incrementing the total distance scrubbed by the mouse

every frame, the dividing value needs to be considerably higher to achieve a useable rotation speed, and

is chosen here as 200.

Recompile the code, and try out the scrubbing interaction by clicking and dragging the mouse anywhere in

the Flash movie. You’ll notice that as long as the mouse button is held down, the rotation of the camera

will continue in the direction of drag. The speed and direction of motion is relative to the distance the

mouse cursor moves from the starting position of the scrub. Releasing the mouse button will halt the

motion of the camera.

The advantage of using a scrubbing interaction over others is its ability to rotate the camera all the way

round its axes with a single click. However, it demonstrates less precision when positioning the camera

compared to the dragging interaction in the FirstPersonCameraWithDrag example seen earlier.

The mouse interactions described in the last two sections rely on the overall frame rate

of the Flash movie for their absolute speeds of motion. This rate can vary from machine

to machine depending on performance. To accommodate for this, and prevent

inconsistent speeds of motion across machines, the elapsed duration between frames

needs to be taken into account. This can be done by calling the Flash method getTimer()

each frame and comparing it to the previous.

INTERACTIVITY

191

Summary

This chapter has described a variety of different interactions that can be applied to a 3D scene based on

the input from mouse and keyboard. You have seen how the 3D mouse event API available in Away3D is

arranged in a similar fashion to the native mouse event system available in Flash and how you can use the

properties available from the MouseEvent3D object to perform advanced interactions based on event

information. We have also explored a variety of first-person camera interactions. We hope these forms of

3D interaction inspire you to create some great interactive experiences with 3D in Flash!

Take some time to study the following list, and make sure that you are happy with your understanding of

the topics covered in this chapter.

� 3D mouse events in Away3D provide specific 3D information on mouse interactions, and are

represented by the MouseEvent3D class.

� Supported 3D mouse events include MOUSE_DOWN, MOUSE_UP, MOUSE_OVER, MOUSE_OUT,

MOUSE_MOVE, ROLL_OVER, and ROLL_OUT.

� The sceneX, sceneY, and sceneZ properties on MouseEvent3D objects represent the location of

a 3D mouse event on the surface of the broadcasting object.

� The uv property on MouseEvent3D objects represents the texture coordinate under the mouse

position of the broadcasting object.

� The mouseEnabled property of a 3D object can be used to disable mouse interactions for that

object. The useHandCursor property turns the mouse cursor into a link hand symbol when the

cursor is hovered over the 3D object.

� Standard keyboard events applied in Flash can be used in exactly the same way to create

keyboard controls in 3D.

The next chapter takes a tour of the various forms of animation available in Away3D.

193

Chapter 9

Animation

Right from its inception, a main strength of Flash has been its animation capabilities. Despite the arrival of

ActionScript programming shifting the focus somewhat, animation (or tweening in Flash authoring terms)

is still considered a core feature of Flash. As yet, we have no timeline functionality for animating 3D

objects aside from some limited 2.5 effects (the “postcards in space” approach) using sprites in Flash CS4.

Away3D helps to fill in the gaps by offering a number of different options for 3D animation, as we will see

in this chapter.

Tweening in code is something you’ve most likely encountered already as an alternative to tweening on

the timeline. This is one of many approaches adopted by Away3D for its animation controls, although all

techniques discussed here will require some form of scripted control. We will also examine how to import

animations created in external 3D modeling packages such as 3ds Max, Maya, and Blender.

The basics of scripted animation

One defining element of all animation in Flash, including video, is the concept of frames. By quickly

stepping through a sequence of images, we can simulate continuous motion. When animating using the

timeline in Flash Professional, we get to create keyframes. These are frames in which we explicitly define

how an object is oriented at that precise moment. In-between frames are then created by the tool to

achieve a smooth motion (or tween) between the two defined keyframe positions.

When animating in ActionScript, we still have to work within the same frame-based approach seen in the

timeline, gradually adjusting property values over time (often from a start value to an end value). Assuming

that we have an Away3D scene set up containing a cube primitive held in the _cube property, the following

ENTER_FRAME event handler would achieve the motion displayed in Figure 9-1:

private function _onEnterFrame(ev : Event) : void
{
 _cube.rotationY += 10;
}

CHAPTER 9

194

The preceding code increments the cube's rotation by 10 degrees, creating a continuously rotating cube

moving at the rate of 10 degrees per frame.

Figure 9-1. All animation in Flash is based around the concept of frames. Individual images are played in

sequence to create continuous motion.

As animations get more and more complex, keeping track of our tweening values can become tedious.

Luckily, a wide variety of free, open source libraries called tweening engines track these values for us.

Examples of popular tweening engines include GTween, TweenLite, Tweensy, and Tweener. In this

chapter, we will use a custom class called GenericTweener to keep our examples self-contained and

generic. GenericTweener can be found in the flash3dbook.ch09.misc package inside this chapter’s

resource download available from www.friendsofed.com, but the code using GenericTweener can be

easily modified if you prefer to use your tweening engine of choice.

Before we continue, let’s set up our simple base class to take care of the generic Away3D code for the

examples in this chapter.

package flash3dbook.ch09
{
 import away3d.containers.*;

 import flash3dbook.ch09.misc.*;

 import flash.display.*;
 import flash.events.*;

 public class Chapter09SampleBase extends Sprite
 {
 protected var _view : View3D;

 public function Chapter09SampleBase()
 {
 _createView();
 _createScene();
 }

 protected function _createView() : void

ANIMATION

195

 {
 _view = new View3D();
 _view.x = 400;
 _view.y = 300;
 _view.camera.y = 500;
 _view.camera.z = -1000;
 _view.camera.lookAt(_view.scene.position);

 addChild(_view);
 addEventListener(Event.ENTER_FRAME, _onEnterFrame);
 }

 protected function _createScene() : void
 {
 }

 protected function _onEnterFrame(ev : Event) : void
 {
 _view.render();
 }
 }
}

Here, we have defined our usual base class methods, with _createView setting up a View3D instance

with a standard camera 500 units above the origin and 1,000 units in front, _createScene empty and

ready for custom scene instructions, and _onEnterFrame() calling our render() method on the view.

Now, we are ready to try out the animation features of Away3D, starting with a look at how to apply

tweening to the motion of a 3D object.

Using basic tweening

Using an ActionScript 3.0 tweening engine with Away3D is really no different from using it in any other

context. Let’s take a quick look at how it can work, before we move on to more complex animation features

specific to the Away3D engine.

In a very simple example that extends the Chapter09SampleBase class and overrides the

_createScene() method, we make a variant of one of the chessboard examples from Chapter 8. When

we click the surface of a plane primitive, another 3D object—in this case, a cube primitive—will tween from

its current position to the scene position of the 3D mouse event. Let’s start by creating the document class

definition, which contains two global variables for holding the plane and cube instances, as well as all the

necessary class imports.

package flash3dbook.ch09
{
 import away3d.primitives.*;
 import away3d.events.*;
 import away3d.materials.*;

CHAPTER 9

196

 import flash3dbook.ch09.*;
 import flash3dbook.common.*;
 [SWF(width="800", height="600")]
 public class TweeningIn3D extends Chapter09SampleBase
 {
 private var _plane : Plane;
 private var _cube : Cube;

 public function TweeningIn3D()
 {
 super();
 }

 protected override function _createScene() : void
 {
 }
 }
}

As usual, the _createScene() method is where we set up our 3D objects to be used in the example.

First, let’s create a cube primitive by adding the following code to the method:

_cube = new Cube();
_cube.y = 50;
_cube.material = new ColorMaterial(0x888888);
_view.scene.addChild(_cube);

Here, we assign the cube a simple flat color material imported from the away3d.materials package. We

then position the cube 50 units above the scene’s origin by setting its y property to 50. Because its height

is 100 units by default and its registration point is in the center, this positioning allows the cube to sit

directly on top of the plane primitive we create next, which by default is centered horizontally on the

scene’s origin:

_plane = new Plane();
_plane.yUp = true;
_plane.material = new ColorMaterial(0xcccccc);
_plane.scale(10);
_plane.pushback = true;
_plane.addEventListener(MouseEvent3D.MOUSE_UP, _onClick);
_view.scene.addChild(_plane);

The plane primitive is created with its yUp property set to true so that it will be oriented horizontally and

assigned a color material slightly lighter than the cube primitive. The default dimension of 100 � 100 units

is much too small for our purposes, so we increase its overall size using the scale() method. We also

apply a trick from Chapter 8 that forces the plane to ensure its triangles do not unnecessary overlap the

cube (and any other object) using the pushback property. To enable mouse interaction, we add an event

listener for MOUSE_UP events on the plane and finish by adding the plane to the scene. The _onClick

handler method is something we need to create by adding the following code to the end of the

TweeningIn3D class definition:

ANIMATION

197

private function _onClick(ev : MouseEvent3D) : void
{
 GenericTweener.tween(_cube, 0.5, { x: ev.sceneX, z : ev.sceneZ });
}

Here, we are using our GenericTweener class to animate the cube to the position in the scene returned

from the 3D mouse event. From Chapter 8, you may recall a similar demonstration using the sceneX,

sceneY, and sceneZ properties from the MouseEvent3D object. In this case, we take the sceneX and

sceneZ positions and use them as the target x and z positions in our tween declaration for the cube

primitive.

Let’s take a closer look at what at what is going on inside our GenericTweener class. The static method

tween() takes a minimum of three arguments. The first argument is the object to be animated, referred to

as the target. The second argument represents the duration of the desired tween in seconds. The third

argument is an untyped ActionScript object (typically defined using the curly brace notation seen in the

Away3D initializer object), in which we define the property names and values we wish to tween. The

values defined here represent the finishing values for the tweening animation. In the preceding code for

the _onClick() method, we instruct GenericTweener to tween the x and z properties of the cube to the

values of ev.sceneX and ev.sceneZ respectively, over a period of 0.5 seconds.

Compile the example, and click anywhere on the plane to tween the cube to that position. The animation

runs for half a second from start to finish, and if you click again in the middle of one animation, a new

tween will be created that overrides the existing tween.

With this approach, it is easy to animate objects in a straight line from one point to another. You can also

apply a tween to the scale or rotation properties of a 3D object, replacing the x and z properties in the

TweeningIn3D example with scaleX, scaleY, and scaleZ, or rotationX, rotationY, and rotationZ

properties.

So far, we have demonstrated how familiar ActionScript tweening tools can be used to animate 3D objects.

But Away3D offers several animation tools and techniques of its own, enabling many other options for

tackling 3D animation. These tools will be the focus of our attention for the remainder of this chapter,

starting with a look at how we can tween objects along a path more complex than a straight line.

Path tweening

From Flash Professional CS4, there are new timeline options for tweening along a path in 3D. However, in

CS3 we are stuck with tweening in 2D. This omission can make complex animation movement difficult if

we stick to using simple tweening methods. Even now in CS4 and CS5, we are restricted to tweening the

3D transforms of 2D display objects, which isn’t ideal. What we really need is a way of defining a path in

3D space that can then be used as a basis for tweening the position and rotation of a 3D object. Luckily,

Away3D provides just that in the form of the Path and PathAnimator classes.

An Away3D Path object is a data structure with a variety of uses, but in this case, we are interested in how

it can be used for animation. The class is located in the away3d.core.geom package and allows us to

define a spline in 3D space as a series of Number3D objects. A spline is a collection of Bézier curves laid

end to end forming a highly configurable complex curve. Bézier curves are discussed in more detail in

Chapter 6, and an example of a single quadratic Bézier curve is displayed in Figure 9-2. As you can see,

it is defined using three separate vector positions, represented in the Path object by a triplet of Number3D

objects.

CHAPTER 9

198

Figure 9-2. In this curved path created using a quadratic Bézier curve, a triplet of Number3D objects

defines the corresponding start, control, and end points of the curve.

Once a Path object is created, it can be used for animating a 3D object with the help of the PathAnimator

class. This acts as a control mechanism for a single 3D object, using a property called progress to adjust

the position of the object along the spline defined by the given Path object. progress is a generic property

used in all animators in Away3D and takes a fractional value between 0 and 1, with 0 representing the

start of the animation and 1 representing the end of the animation. With this setup, the progress property

can be used by a tweening engine to control the animation of the 3D object, with the PathAnimator object

updating the relevant variable values of the associated 3D object in relation to the progress property

value.

Let’s create an example that uses the Path and PathAnimator classes by extending the base class and

overriding the _createScene() method:

package flash3dbook.ch09
{
 import away3d.animators.*;
 import away3d.core.geom.*;
 import away3d.core.math.*;
 import away3d.materials.*;
 import away3d.primitives.*;

 import flash3dbook.common.*;

 [SWF(width="800", height="600")]
 public class AnimatingAlongPaths extends Chapter09SampleBase
 {
 private var _cube : Cube;
 private var _path : Path;
 private var _animator : PathAnimator;

 public function AnimatingAlongPaths()
 {
 super();
 }

 protected override function _createScene() : void

ANIMATION

199

 {
 }
 }
}

The preceding code declares three global properties we will use for our path tween. The _cube property

will hold the 3D object to be animated, _path will hold an instance of the Path class containing our spline

data, and _animator will hold an instance of the PathAnimator class that links everything together and

creates our tweening interface.

Now, let’s fill out the _createScene() method, starting with the code for creating our cube primitive.

_cube = new Cube();
_cube.scale(0.5);
_cube.material = new ColorMaterial(0x888888);
_view.scene.addChild(_cube);

Here, we create a cube primitive with default dimensions of 100 � 100 � 100, but adjust its overall size to

50 percent with the scale() method. We use the same simple color material seen in the previous

example and finish by adding the object to the scene.

Next, we create our path from an array of positions in 3D space, defined as Number3D objects. Each curve

of a path’s spline is a quadratic Bézier definition composed of three positions: start, control, and end. Our

path is composed of three curves in the shape of a shield, created by adding the following code to the end

of the _createScene() method:

var pathArray : Array = [
 // First segment
 new Number3D(100, 0, 100),
 new Number3D(100, 0, -100),
 new Number3D(0, 0, -150),

 // Second segment
 new Number3D(0, 0, -150),
 new Number3D(-100, 0, -100),
 new Number3D(-100, 0, 100),

 // Third segment
 new Number3D(-100, 0, 100),
 new Number3D(0, 0, 100),
 new Number3D(100, 0, 100)
];
_path = new Path(pathArray);

The constructor for the Path class requires an array passed as an argument that contains at least three

Number3D objects (the minimum for defining one quadratic Bézier curve). Here, we define three such

triplets, using new lines within the array definition for easier reading. Each Number3D object is initialized

with the desired vector values by accepting three constructor arguments that correspond to the x, y, and z

values of the position.

CHAPTER 9

200

If you look closely, you’ll see that the first position in each successive curve is identical to the last position

in the preceding curve. This is done to ensure the resulting path is continuous. Figure 9-3 illustrates the

shape of our path, as seen looking straight down from above. You can clearly see how some positions are

shared between curve definitions.

For situations in a path where a straight edge is required, the control point can be

positioned directly between the start and end point positions, as is the case with the path

between points E and A in Figure 9-3.

Figure 9-3. The spline defined by our Path object (from above) in the AnimatingAlongPaths example,

which will be used to tween the cube’s position

Now that we have defined our Path object, we can set about creating a PathAnimator class to control the

movement of our cube. We do this by adding the following code to the end of the _createScene()

method:

_animator = new PathAnimator(_path, _cube);

The PathAnimator object associates the _cube object with the _path object by passing them as required

arguments in its constructor. Once the instance is created, there are several properties that can be set to

configure the method in which the animator object adjusts the position of the 3D object when its progress

property is updated. Two of the most significant of these are described here:

ANIMATION

201

� alignToPath: This Boolean value defines whether the animating 3D object should be rotated to

align its local Z axis in the direction of travel. This property operates in a similar way to the motion

tween option Orient to path we see when using a guide layer in Flash Professional. The

default setting is true.

� offset: This Number3D object defines an additional vector offset added to the calculated position

vector of the 3D object along the path. This is useful for situations when, for example, your path

follows a road and you want to animate the camera above the road surface. If the path used in

the generation of the road were also used for the camera tween, without an offset vector the

camera position would end up directly intersecting the road surface. Applying an offset value of

(0, 50, 0) in this case would raise the tweened position to 50 units above the road, a much better

vantage point.

All that’s left to do is set up our tweening engine to control the progress property of the PathAnimator

object and animate our cube. Once again we use the GenericTweener class to perform tweening duties

with the following line of code added to the end of the _createScene() method:

GenericTweener.tween(_animator, 5.0, { progress: 1 });

Compiling the code will display the cube animating around the shield shape of our defined path. Because

the PathAnimator object initializes the position of its animating 3D object to the start of the path, the

preceding code will tween the _cube object’s position from the start to the end of the path over a period of

5 seconds. As it moves, the cube is rotated to always align with the direction of motion thanks to the

default setting of the alignToPath property.

To better illustrate the position vectors used in the construction of a path, a small sphere primitive can be

drawn in the scene for each position in the path’s Number3D array. We can modify the

AnimatingAlongPaths example to achieve this by looping through the locally created pathArray object

with the following code added to the end of the _createScene() method:

for each (var p : Number3D in pathArray) {
 var marker : Sphere = new Sphere();
 marker.scale(0.1);
 marker.material = new ColorMaterial(0x000000);
 marker.x = p.x;
 marker.y = p.y;
 marker.z = p.z;

 _view.scene.addChild(marker);
}

For each Number3D object p in the array, a sphere called marker is created and positioned according to

the x, y, and z properties of p. A black color material is applied, and the sphere is scaled to 0.1 (10

percent) of its default size so as not to be obtrusive. Recompiling the code displays an output similar to

Figure 9-4, with the cube animating along the same path as before.

CHAPTER 9

202

Figure 9-4. The cube primitive in the AnimatingAlongPaths example, animating along a path created using

an array of positions illustrated by the black spheres

Importing animation

Because 3D mesh objects are generally composed of hundreds of tessellating triangles, it can be difficult

to animate them in code using anything more than simple object transformations. For more complex

movements, it makes sense to consider using a dedicated 3D animation package to create a 3D animation

that is saved in one of the common 3D file formats and then import that animation for use in Flash.

Away3D offers the option to import 3D animations in both COLLADA and MD2 file formats—two of the

most widely used formats in real-time 3D animation. Both of these offer animation at a mesh level (i.e., the

movement of individual vertex positions in a mesh to manipulate the shape of a 3D object over time). This

type of animation comes in handy for tasks such as character animation, where a model requires limbs

that move independently of its body while being connected to the same 3D mesh. Let’s take a closer look

at the comparable restrictions and benefits to using the two animation formats on offer and how they are

used in an Away3D application.

Working with MD2 animations

The MD2 file format is a binary format, meaning that the information it contains is stored as one long

indexed byte array. A byte array is one of the most compact ways of storing raw data, an important

consideration when dealing with 3D animations that have the potential to contain large amounts of vertex

position references.

MD2 files use a frame-based vertex animation format, storing animation data as a series of keyframes.

Each keyframe contains an array of position vectors representing the position of every vertex in the model

for that frame. The shift in vertex positions between keyframes can be interpolated (tweened) so that the

amount of required data for an animation can be reduced. Typically, an MD2 animation runs at no more

than 5 or 6 keyframes per second.

Importing an MD2 file

MD2 files are parsed into Away3D using the MD2 class located in the away3d.loaders package. The

loading process is very similar to the loading process used in Away3D for any external model resource,

which is covered in more detail in Chapter 4. Let’s create a new example to import and test an MD2 file by

extending the Chapter09SampleBase class with the following document class definition:

package flash3dbook.ch09
{
 import away3d.animators.*;

ANIMATION

203

 import away3d.core.base.*;
 import away3d.events.*;
 import away3d.loaders.*;
 import away3d.loaders.utils.*;
 import away3d.materials.*;

 public class UsingMD2Animation extends Chapter09SampleBase
 {
 private var _loader : Loader3D;
 private var _animator : VertexAnimator;

 public function UsingMD2Animation()
 {
 super();
 }

 private function _onLoadSuccess(ev : Loader3DEvent) : void
 {
 }

 protected override function _createScene() : void
 {
 }
 }
}

To load any 3D file into Away3D, we require an instance of the Loader3D class. In the preceding code, we

create a global variable _loader to store a reference to the Loader3D instance we will use in this

example. Next, we define a class variable _animator to store an instance of the VertexAnimator object.

This class is found in the away3d.animators package alongside the PathAnimator object we used in the

previous example, although in this case, we will be extracting the data for our _animator object from our

parsed MD2 animation file, rather than creating one from scratch.

The preceding class definition continues with a definition of a new method stub _onLoadSuccess() to be

used as our handler method for a LOAD_SUCCESS event from the Loader3D object. Once again, we finish

with the usual Loader3D method override, ready for our custom code.

The first step in loading any model file is to create a parser for the correct file format. In the case of this

example, add the following code to the empty _createScene method:

var md2 : Md2 = new Md2();
md2.material = new BitmapFileMaterial('../assets/ch09/turtle.jpg');

Here, we create an instance of the MD2 parser class and then set the material property of the MD2

instance to a new type of bitmap material. The BitmapFileMaterial class operates as a standard bitmap

material once created, but its constructor replaces the required BitmapData object of a BitmapMaterial

class with a string defining an image file path that BitmapFileMaterial automatically loads at runtime.

Once loaded, the bitmap data for the material’s texture is extracted from the image. This type of material

can be easily used in place of a standard bitmap material and is particularly useful in situations when you

don’t have the necessary texture data for the model embedded in your SWF file from the outset.

CHAPTER 9

204

In the UsingMD2Animation example, a BitmapFileMaterial is used because an MD2 file does not

explicitly define a material name in its file format, and therefore cannot load one automatically in the

parser. The MD2 format is a simple structure and only allows for one mesh to be defined in the file data.

Therefore, we can easily use a single texture image for the mesh, which in this case is a JPEG file called

turtle.jpg. Check that the file path matches the location on your hard drive, although as usual, this

should already be the case if you are using the chapter resource download from www.friendsofed.com.

Remember that, in this instance, the file path needs to be correct from the location of the compiled SWF

rather than the location of the ActionScript file.

The next step in the UsingMD2Animation example is to create and initialize the Loader3D object we

require by adding the following lines of code to the end of the _createScene() method:

_loader = new Loader3D();
_loader.addEventListener(Loader3DEvent.LOAD_SUCCESS, _onLoadSuccess);
_loader.loadGeometry('../assets/ch09/seaturtle.md2', md2);
_view.scene.addChild(_loader);

We begin by instantiating a Loader3D object and adding a listener for the LOAD_SUCCESS event, using

_onLoadSuccess() as our event handler. We then call the loadGeometry() method, which instructs the

Loader3D object to load and parse the MD2 file specified in the file path string. Again, check to make sure

that the path reflects the location of your MD2 file.

As explained in Chapter 4, the Loader3D object serves as a container for the geometry of the file being

loaded. This means we can add it to the scene before the file has finished loading, knowing that once

loading is complete, the container will be replaced by the contents of the file. Compiling the code at this

point will load and display the sea turtle model shown in Figure 9-5. All that’s left to do is add some code to

the _onLoadSuccess() method to trigger the playback of our animation sequence.

Figure 9-5. The sea turtle mesh loaded from an MD2 file in the UsingMD2Animation example

Playing an MD2 animation

To play back the animation stored in an MD2 file, we need access to the AnimationLibrary object

created by the MD2 parser, as this is where our keyframe information is stored. The AnimationLibrary

object can be retrieved either from the resulting mesh object created by the parser or from the MD2 parser

object itself. In both cases, the AnimationLibrary object is stored in a property called

ANIMATION

205

animationLibrary. We will use the former method in our UsingMD2Animation example, accessing the

mesh object from a property on the Loader3D object called handle by adding the following code inside the

empty _onLoadSuccess() method:

var mesh : Mesh = _loader.handle as Mesh;
mesh.x = 100;
var animationLibrary : AnimationLibrary = mesh.animationLibrary;

Here, the handle property returns the Away3D model resulting from the parsing process. In this case, we

want to cast the returned value to Mesh because we know that the MD2 format contains only a single mesh

definition, and handle is cast by default as a generic Object3D object.

Next, we need to extract our definition of the animation we wish to play from the retrieved

AnimationLibrary object. MD2 files contain all keyframes of animation in a single block of data, but

several different animation loops can be defined from within this data with the help of keyframe names.

Each keyframe is assigned a name string that is read into the animation object during parsing. To discern

between different animation loops, different keyframe name prefixes are used, with the remainder of the

string usually used for the frame number of the loop (e.g., walk01, walk02, walk03, run01, run02, and

run03). The MD2 parser automatically sorts frames into different animation loops according to their

prefixes, then stores them in the AnimationLibrary object. Because we are dealing with vertex

animation, the animation loops created are represented by VertexAnimator objects.

In Away3D, trace() statements that communicate information about internal operations

can be revealed using the Debug class found in the away3d.core.utils package. In

the case of file parsers, information is displayed about the contents of the file being

parsed. This is especially useful for the MD2 parser, where the trace() output reveals

the frame name of all keyframes encountered in the file. To activate this output, enter

the line Debug.active = true; before the Loader3D object is triggered in our

example, and import the necessary Debug class from away3d.core.utils.Debug

In the UsingMD2Animation example, we want to retrieve the VertexAnimator object for the animation

prefix “swim”. We do this by adding the following line of code to the end of the _onLoadSuccess method:

_animator = animationLibrary.getAnimation("swim").animator as VertexAnimator;

Here, we extract our desired animator instance from the animator property on the getAnimation()

method of the AnimatorLibrary object. The returned value is cast by default as a generic Animator

object because AnimationLibrary handles more than one type of animator, so we need to recast the

output to VertexAnimator and store the result in our class property, _animator.

Now that we have our MD2 animation data contained in our _animator property, we have more than one

option for playback. Besides allowing the use of the generic progress property you saw in the previous

section’s AnimatingAlongPaths example, the VertexAnimator class introduces the concept of time with

the update() method. Because a vertex animation is separated into a number of discrete frames, we can

apply a frames-per-second definition to the playback speed and hence derive a virtual animation timeline

mimicking the operation of the timeline in Flash Professional. A time value can then be set to control

playback of the animation, representing the position of a virtual playhead in our constructed timeline setup.

CHAPTER 9

206

The update method accepts a single argument representing the time in seconds we want to jump to in our

animation. The idea is to trigger update on every frame of the Flash movie with an incrementing time

argument to move the playhead of the animation to the next position on our animation timeline. The

VertexAnimator object holds a number of configuring properties that affect the internal representation of

the timeline, a selection of which are defined here:

� delay: A Number value that represents the delay to the start of the animation in second (the time

before the animation starts playing). Defaults to 0.

� loop: A Boolean value that defines whether the animation plays continuously or halts after a

single run through, defaults to true.

� fps: An int value that controls the rate at which keyframes are played relative to time (in other

words, the keyframes-per-second value), defaults to 6.

� smooth: A Boolean value that defines whether in-between frames (tweening frames) are linearly

interpolated to avoid jerky movement, defaults to true.

As a test, let’s set a few configuring properties on our VertexAnimator instance before we continue, by

adding the following code to the end of the _onLoadSuccess method:

_animator.delay = 0;
_animator.loop = true;
_animator.fps = 5;
_animator.interpolate = true;

To complete the UsingMD2Animation example, we add a call to the update method on every frame of the

Flash movie by overriding the existing _onEnterFrame method of the chapter base class with the following

code added to the end of the UsingMD2Animation class definition:

protected override function _onEnterFrame(ev : Event) : void
{
if (_animator)
 _animator.update(getTimer()/1000);
 super._onEnterFrame(ev);
}

Here, we provide a steadily incrementing time value for update() by using the native getTimer method to

return the time passed from the start of the Flash movie, dividing it by 1,000 to get a value in seconds.

Recompiling the code displays the same output shown in Figure 9-5; only now, the sea turtle gently swims

through space.

As an alternative to using the update() method on every frame, the VertexAnimator object comes

equipped with a few methods you are familiar with using on native MovieClip objects to control timeline-

based animations. The play(), stop(), gotoAndPlay(), and gotoAndStop() methods can all be used

in a similar way on the VertexAnimator object, giving us the option to control MD2 animations in a more

familiar manner. As an example, try deleting the previous override made to the _onEnterFrame method

and add the following code to the end of the _onLoadSuccess method:

_animator.play();

ANIMATION

207

Recompiling the code produces exactly the same result achieved using the update method; the only

difference being that the timeline clock used to advance the playhead is calculated internally by the
VertexAnimator object.

Working with COLLADA animations

The COLLADA (Collaborative Design Activity) file format is an XML-based format that stores data as

human-readable text. It is currently one of the most widely compatible exchange formats around thanks to

its open format policy, and is used in many professional 3D modeling applications and 3D engines.

Because COLLADA files (which generally use the extension .dae) are essentially text files, they can be

easily opened and edited using text editors. However, text encoding also results in large file sizes, which is

a problem compounded by the verbose nature of COLLADA files. Compared to the equivalent binary

formats, such as MD2 and 3DS, COLLADA files are bloated in size, leading to longer download and

parsing times -- not an ideal format for the Web.

Animation data in a COLLADA file is stored using a technique known as bones animation; instead of

storing arrays of vertex positions, bones animation uses a virtual skeleton to animate a mesh based on the

position of various limbs. Each vertex in a mesh is attached to a bone or number of bones, and animations

are executed by transforming each bone’s position in much the same way that the earlier TweeningIn3D

example transformed the position of a cube primitive. Thus, one advantage of using bones animation over

vertex animation is less data and more precision.

Importing a COLLADA file

COLLADA files are parsed in Away3D using the Collada class located in the away3d.loaders package.

Let’s set up a new example to import and test a COLLADA file by extending the Chapter09SampleBase

class with the following document class:

package flash3dbook.ch09
{
 import away3d.animators.*;
 import away3d.containers.*;
 import away3d.events.*;
 import away3d.loaders.*;
 import away3d.loaders.utils.*;

 public class UsingColladaAnimation extends Chapter09SampleBase
 {
 private var _loader : Loader3D;
 private var _animator : BonesAnimator;

 public function UsingColladaAnimation()
 {
 super();
 }

 private function _onLoadSuccess(ev : Loader3DEvent) : void
 {

CHAPTER 9

208

 }

 protected override function _createScene() : void
 {
 }
 }
}

The preceding code is very similar to the previous UsingMD2Animation example, the only difference

being the object type of our _animator variable that has been swapped to a BonesAnimator object. The

COLLADA parser uses this type of animator object to store the bones animation data extracted from the

file. As before, we start by filling out the code required for the _createScene method:

var collada : Collada = new Collada();
_loader = new Loader3D();
_loader.addEventListener(Loader3DEvent.LOAD_SUCCESS, _onLoadSuccess);
_loader.loadGeometry('../assets/ch09/puma_run.dae', collada);
_view.scene.addChild(_loader);

Here, we don’t require a material definition to be set, as the COLLADA file stores a reference to the image

files it requires for textures and loads them automatically. Once again, be sure to check that the path used

in the loadGeometry method matches the location of your downloaded COLLADA file for this example.

Compiling the UsingColladaAnimation example will display the puma model shown in Figure 9-6.

Figure 9-6. A puma model loaded from a COLLADA file in the UsingColladaAnimation example

ANIMATION

209

Playing a COLLADA animation

To trigger the animation, we first need to extract the animator object using the same approach seen for our

MD2 file in the previous UsingMD2Animation example by adding the following code to the

_onLoadSuccess() method:

var container : ObjectContainer3D = _loader.handle as ObjectContainer3D;
container.scale(50);
container.x = 50;
container.y = -50;
container.rotationY = 135;
var animationLibrary : AnimationLibrary = container.animationLibrary;
_animator = animationLibrary.getAnimation("default").animator as BonesAnimator;
_animator.play();

Here, our handle property from the loader is cast as an ObjectContainer3D object, which is the

expected output from a parsed COLLADA file. The extracted BonesAnimator object has some similar

properties to the BonesAnimator object, such as start and loop. However, in this case, we are sticking

with the default values. The transport methods are also present, which allows us to call play() straight

away on the BonesAnimator object to set things in motion.

One difference to note between the expected content for MD2 and COLLADA animations shown in these

examples is in the general handling of animation loops. While it is perfectly possible for a COLLADA file to

have differently named loops for its bones animations, many 3D software exporters favor exporting a

single loop of animation with no name definitions at all. In these cases, the string "default" can be used

in the getAnimation() method of the AnimationLibrary object to extract a single global timeline

containing all animation data. The same approach can be used with MD2 files, although loop names are

far more common with this format.

Recompiling the UsingColladaAnimation example will animate the puma model in a run sequence. As

with vertex animations, many bones animations are designed for looping in order to provide an easy way

to continuously animate a character.

Creating programmatic animation with bones

The animation loops shown in the previous two examples were predefined in an external modeling

application and offer little in the way of modification once loaded. We can play them forward and

backward, pause them, and jump to a new loop, but what if we want to define our own movement within an

animation timeline? Sometimes, an application such as a game requires finer control over the way a model

moves in order to disguise prerendered animation loops as something a little more interactive. In these

situations, we can take a programmatic approach to animation, controlling the movement of vertices

directly rather than through an imported animation sequence.

As an example, predefined animations of a falling character might end with the model lying flat on the

ground. But if the character falls against a box, its body should deform to follow the shape of the box,

producing a different animation outcome. This kind of effect is often achieved using the same skeleton rig

created for bones animation, as the amount of individual elements requiring programmatic animation for

this format is much less than the equivalent animation created with keyframe vertices. Let’s take a look at

how we can go about setting up a COLLADA model for animation in this manner.

CHAPTER 9

210

Defining an animation rig

In the world of 3D, bones are a way to define a skeletal structure in a 3D model, sometimes called an

armature or rig. Instead of animating a mesh by pushing vertices around, an animator or programmer can

rotate, translate, and scale bone objects, and the rigged mesh will deform around the new positions. An

important point to note is that a bone can be parented to another bone, resulting in the child bone following

the movement of the parent. If you think of the bones in your arm as an example of an animated rig, your

lower arm is parented to your upper arm. Your lower arm follows any transformation your upper arm

performs, but your lower arm can also have its own transformation applied cumulatively to the upper arm

transformation.

Figure 9-7 shows an example of a simple rig applied to the puma model used in the previous

UsingColladaAnimation example. The lower backbone in the middle of the body serves as the top-level

bone, to which all other bones are connected via parenting. If we were to move or rotate the backbone, the

entire rig would follow, moving or rotating the entire mesh. Four bones are connected to the backbone: a

pair that makes up the pelvis, one that represents the upper back, and one that marks the start of the tail.

This hierarchy continues all the way out to bones representing the head, feet, and tail. In this example,

rotating the right pelvis bone would rotate the entire right leg, and all the mesh vertices attached to that

part of the rig would be affected. Likewise, if you were to only rotate the lower leg bone in the same limb,

only the mesh vertices attached to the lower leg bone would be affected.

In Away3D, there is currently no way of creating an animation rig from scratch. In order to

programmatically control a mesh animation with bones, a model needs to be rigged in an external 3D

modeling program and then exported as a COLLADA file, ready for use. Methods of creating a rig in an

external modeler are outside the scope of this book, but the process should be familiar to any professional

3D animator.

Figure 9-7. Representation of the animation rig used for the puma model seen in the previous

UsingColladaAnimation example.

Bone tweening

The puma model uses a quadrupedal rig to create a convincing running motion, with the animation data

stored as a series of bone transformations. In Away3D, it is a relatively easy matter to ignore this data and

interactively manipulate bones with just the imported rig. Let's take a look at how this is done with a rigged

COLLADA model by creating a new document class with the following code:

ANIMATION

211

package flash3dbook.ch09
{
 import away3d.animators.data.*;
 import away3d.containers.*;
 import away3d.events.*;
 import away3d.loaders.*;
 import flash.events.*;

 [SWF(width="800", height="600")]
 public class AnimatingColladaBones extends Chapter09SampleBase
 {
 private var _loader : Loader3D;
 private var _skeleton : ObjectContainer3D;
 private var _left_arm : Bone;
 private var _left_leg : Bone;
 private var _right_arm : Bone;
 private var _right_leg : Bone;

 public function AnimatingColladaBones()
 {
 super();
 }

 private function _onLoadSuccess(ev : Loader3DEvent) : void
 {
 }

 protected override function _createScene() : void
 {
 }
 }
}

As with the previous two examples, we start with a class variable called _loader used to store a

Loader3D object. _skeleton will be used to store the loaded COLLADA model, and the remaining

variables will be used for storing references to the specific bone objects we will be animating. Finishing off

the class definition is our familiar _onLoadSuccess() method, stub, and our override for the

_createScene() method, which we fill out with the following code:

var collada : Collada = new Collada();
_loader = new Loader3D();
_loader.addEventListener(Loader3DEvent.LOAD_SUCCESS, _onLoadSuccess);
_loader.loadGeometry('../assets/ch09/skeleton.dae', collada);
_view.scene.addChild(_loader);

This is almost identical to the code used for the previous _createScene() method in the

UsingColladaAnimation example, aside from the file path, which uses a COLLADA file called

skeleton.dae. The file contains no animation data, just the animation rig for the vertices in the mesh that

in this case is a bipedal rig of a human skeleton. The underlying bones structure (the rig) mimics the visible

CHAPTER 9

212

bones structure (the mesh) to a degree—we stop short of having bone objects for fingers and toes! Check

that the file path used is correct for the location of your download chapter files, then move on by adding the

following code to the _onLoadSuccess method:

 _skeleton = _loader.handle as ObjectContainer3D;
 _skeleton.y = -200;
 _skeleton.scale(20);

Here, we extract the skeleton model from the loader, using its handle property. Once again, we cast

handle as an ObjectContainer3D object, as this is the expected root object returned for an imported

COLLADA file.

Adjusting the position and size of an imported model is a common requirement in Away3D, as there are no

standards set for these attributes in the 3D modeling software used to create the files. In the preceding

code, we move the position of the model 200 units down the Y axis, and scale it up 20 times to produce an

orientation and size we can work with.

Now, we need to extract the bone objects from the 3D container object and store them in our previously

created class variables. For this task, we use the method getBoneByName() on the 3D container object of

the COLLADA file, supplying the name string of each bone we wish to return as an argument that adds the

following code to the end of the _onLoadSuccess method:

 _left_arm = _skeleton.getBoneByName('arm_l');
 _left_leg = _skeleton.getBoneByName('leg_l');
 _right_arm = _skeleton.getBoneByName('arm_r');
 _right_leg = _skeleton.getBoneByName('leg_r');

In Away3D, bone objects inherit from 3D container objects and, therefore, allow you to add and remove

child bones to create a bone hierarchy. The getBoneByName method returns a bone object contained at

any point within the hierarchy, as long as a match is found for the given name.

As with MD2 files, it is sometimes useful to view a trace() output of the contents of the COLLADA file

being imported to discover which name strings to use when accessing the contained elements. Again, we

can use the debug trace methods of Away3D to get a printout of the parser by adding the line

Debug.active = true; to the _createScene() method, at a point before the Loader3D object is

triggered.

Compiling the code at this point will load and display the skeleton shown in Figure 9-8, standing vertically

with its arms positioned horizontally. This pose is a common default for a bipedal rig. Now, we can use the

bone references we have extracted to apply some interactive animation. As a straightforward example of

how this might work, let’s turn our skeleton into a Jumping Jack!

ANIMATION

213

Figure 9-8. The skeleton.dae model loaded in the AnimatingColladaBones example, before animation

Because bones inherit from 3D container objects, they can be transformed in the same way with rotation,

position, and scaling values. Let’s apply some rotation to our extracted bones by overriding the existing

_onEnterFrame() method of the chapter base class with the following code added to the end of the

AnimatingColladaBones class definition:

protected override function _onEnterFrame(ev : Event) : void
{
 if (_skeleton) {
 _left_arm.rotationZ = (stage.mouseY - stage.stageHeight/2) / 4;
 _right_arm.rotationZ = -(stage.mouseY - stage.stageHeight/2) / 4;

 _left_leg.rotationZ = (stage.mouseY - stage.stageHeight) / 6;
 _right_leg.rotationZ = -(stage.mouseY - stage.stageHeight) / 6;
 }

 super._onEnterFrame(ev);
}

The first thing we do here is to confirm the model has loaded by checking the contents of the _skeleton

variable. Because the process of loading a file is not instantaneous, we need to make sure our COLLADA

model exists in the scene before we start trying to move its limbs. If we don't, we will get a runtime error,

because we are trying to set rotation properties on variables that have null values. Once the _skeleton

variable returns something other than null, we know that everything is ready for animating.

Inside the if() statement in the preceding code, we update the rotationZ property of each of our

extracted bone objects relative to the coordinates of the mouse cursor. The rotation values for the left and

right arms are calculated by measuring the offset of the y coordinate of the mouse from the center of the

stage. This means that when the cursor is halfway up the height of the stage, the rotation of the arms will

be 0, as they appear in the unanimated model in Figure 9-8. Because the stage is 600 pixels high, the

maximum and minimum values here would be 300 and –300 respectively, which is quite a large range for

a rotation in degrees. To scale the result to something more suitable, we divide by 4 to give us a range of

CHAPTER 9

214

75 to –75 degrees. To mirror the rotation effect for the left and right arms, the rotation on the left arm is

applied in a positive direction, and the rotation on the right arm is applied in a negative direction.

The same rotation effect is applied to the legs, but this time, we calculate the rotation value using the offset

of the y coordinate of the mouse from the bottom of the stage rather than the center. Using this offset

means that when the cursor is around the bottom edge of the Flash movie, the rotation of the legs will be

0, as they appear in the unanimated model in Figure 9-8. In this case, the resulting offset value is divided

by 6 before setting the rotationZ property, simply because we don’t want the legs rotating as far as the

arms.

Recompiling the code, we can move the mouse up and down to see the Jumping Jack skeleton wildly

flapping his arms and legs. A still of the output can be seen in Figure 9-9, taken with the mouse position

nearly two-thirds of the way up the stage window.

Figure 9-9. The skeleton.dae model loaded in the AnimatingColladaBones example, animated by rotating

his arms and legs on mouse input

Controlling a rigged model in this way has virtually limitless potential and is possibly a topic for an entire

book in itself! We have only really scratched the surface here— everything from multiple animation merges

to ragdoll interactions can be accomplished using programmatically controlled bones.

Summary

In this chapter, we have shown you how to apply various 3D animation techniques to Away3D content,

including how the familiar tweening methods used by tweening libraries can be applied to 3D objects in a

scene. We have also covered how externally created animation can be imported for use in Away3D. With

this knowledge, you should now be ready to create some beautifully animated 3D productions in Flash!

Here are some key ideas to take with you from this chapter.

� The majority of animations in Away3D are set up in the same way as general code-based

animation in ActionScript. It is a good idea to have your tweening library of choice to hand.

� The PathAnimator class allows any 3D object to be tweened along a predefined Path

object in 3D space.

� Externally created mesh animations can be imported to Away3D from MD2 or COLLADA files.

ANIMATION

215

� Loading an animated model in Away3D uses the same approach shown in Chapter 4 for

loading a file without animation. Animation data can be accessed and triggered once the

model has been loaded from the animationLibrary property.

� Rigging a model with bones can be used as a way to create dynamic character animations and

more.

� Animation rigs for use in Away3D are created using an external 3D software package

and then imported using the COLLADA file format.

� The getBoneByName() method invoked on the loaded 3D container of a COLLADA file

can be used to retrieve bone object references in order to control the movement of an

animation rig programmatically.

In the next chapter, we will take a look at a variety of optimization techniques and utility classes available

in Away3D that can help with some of the trickier aspects of 3D content generation and management.

217

Chapter 10

Optimizing Tips and Tricks

At this point, you should have a solid understanding of the Away3D API and are hopefully already building

your next 3D masterpiece! However, as is the case with many web formats, Flash comes with a fairly

harsh limitation on processing power. 3D graphics can be more of a processor drain than most, so getting

the best possible performance out of the Flash Player when using Away3D is of key importance.

In this chapter, we cover a variety of techniques that can help optimize your Away3D application. Whether

you’re creating a game, web site, or widget, aiming to achieve the best possible output with the resources

at your disposal is always a good idea! We will begin by looking at ways you can optimize your geometry

in Away3D, where the majority of savings come from reducing the number of polygons rendered per

frame. Next, we will take a look at material optimization, which centers around the steps you can take to

produce better visual results with shading and texturing, at less cost to the processor. Finally, we will look

at some general tips and advice on ways of using the Away3D framework to ease the complexity of day-to-

day 3D tasks.

Preparing the chapter base class

To provide a basic viewing mechanism for the examples created in this chapter, we set up a base class

that can be used as our starting point for subsequent document class files.

package flash3dbook.ch10
{
 import away3d.cameras.*;
 import away3d.containers.*;

 import flash.display.*;
 import flash.events.*;

 public class Chapter10SampleBase extends Sprite

CHAPTER 10

218

 {
 protected var _view : View3D;
 protected var _camera : HoverCamera3D;

 public function Chapter10SampleBase()
 {
 _createView();
 _createScene();
 }

 protected function _createView() : void
 {
 _camera = new HoverCamera3D();
 _camera.distance = 1000;
 _camera.tiltAngle = 10;
 _camera.panAngle = 180;

 _view = new View3D();
 _view.x = 400;
 _view.y = 300;
 _view.camera = _camera;

 addChild(_view);
 addEventListener(Event.ENTER_FRAME, _onEnterFrame);
 }

 protected function _createScene() : void
 {
 }

 protected function _onEnterFrame(ev : Event) : void
 {
 _camera.panAngle -= (stage.mouseX - stage.stageWidth/2) / 100;
 _camera.hover();

 _view.render();
 }
 }
}

In the preceding code, the _createView() method instantiates our view and camera objects, which are

held in the global class properties _view and _camera respectively. The camera uses an instance of the

HoverCamera3D class to enable easy navigation around the scene. The view is rendered using the

_onEnterFrame() method, which is setup as an ENTER_FRAME event handler at the end of the

_createView() method. The _createScene() method here is written as an empty stub so that it can be

overridden in the example class definitions to add custom content to the scene.

OPTIMIZING TIPS AND TRICKS

219

Optimizing geometry

The biggest limitation for any 3D engine is the amount of polygons per second that can be realistically

rendered to screen. This amount relies on the processing power available and the graphics architecture

being used to make all the necessary drawing commands. With the Flash Player, we are restricted to

what’s known as a software rendering architecture for the graphics. It is a simultaneous blessing and

curse for Flash users, for while software rendering is a highly compatible solution (and one of the main

reasons for Flash’s ubiquity), it also imposes comparatively high demands on the CPU of a home

computer.

When it comes to raw 3D rendering speeds, software rendering is simply not able to compete with the

more specialized hardware rendering approach used in the majority of 3D console and desktop game

engines. This takes advantage of the purpose-built hardware architectures of the graphics processing unit

(GPU)—the graphics card in your machine—and can produce equivalent drawing speeds an order of

magnitude faster than that achievable on the CPU.

Having said all that, we shouldn’t grumble. The trump card Flash holds is its ubiquity, and without a

prevalent cross-platform solution for the browser, hardware rendering is only good for those of us with the

right hardware! An interesting consideration to make while others lament the restrictive nature of the

rendering speed of Flash is that the latest Flash Player 10 now has around the same level of 3D power

that was available in an original Sony PlayStation games console. A lot of cool content was created for that

platform, so what’s stopping us?

Since the act of drawing is the biggest drain on processing power in Flash, we need to consider ways of

reducing the number of rendered polygons without sacrificing visual quality. Let’s take a look at some of

the tricks available to us in Away3D specifically for this purpose.

Using level-of-detail objects

One obvious way of reducing polygon counts in a 3D application is to reduce the detail of your 3D models.

Low-polygon modeling is a fundamental requirement for any model rendered in Away3D, but with a bit of

careful surgery, it is possible to reduce the number of polygons to a minimum while maintaining the

desired detail. However, what if care and efficiency isn’t enough? If your application demands several

models onscreen at any one time, you may still be hitting a performance wall and need to reduce the detail

in your models further still, destroying their carefully constructed surfaces to a blocky mess.

Level-of-detail (LOD) objects can help in this situation. They work on the assumption that several models

needn’t be close to the camera at the same time, and while a model is far away from the camera (and

therefore smaller on screen), it can be swapped for a simplified mesh representation rather than

unnecessarily retaining the detail of its more complex close-up representation. On their own, low-polygon

models betray their angular surfaces when viewed close up, while high-polygon models suck unnecessary

processing power when viewed at a distance. But if we were to swap a model representation between a

low-polygon version and a high-polygon version at the appropriate moment, we could potentially avoid

these disadvantages and get the best of both worlds.

The LODObject class in Away3D provides just such a service by acting as a 3D container that

automatically adjusts its visibility depending on its distance from the camera. More specifically, the

container is given a perspective scale range relating to the absolute scale of the container on screen,

outside of which the LODObject is invisible. Using this capability allows you to automatically switch

between any number of models for a single 3D representation in a scene by ensuring a model of

appropriate complexity is always visible.

CHAPTER 10

220

Let’s create an example that uses the LODObject class to switch between some dummy sphere primitives

of varying complexity by extending the base class and overriding the _createScene() method with the

following code:

package flash3dbook.ch10
{
 import away3d.containers.*;
 import away3d.primitives.*;

 import flash.events.*;

 [SWF(width="800", height="600")]
 public class LODObjectTest extends Chapter10SampleBase
 {
 public function LODObjectTest()
 {
 super();

 stage.addEventListener(MouseEvent.MOUSE_MOVE, _onMouseMove);
 }

 private function _onMouseMove(event : MouseEvent) : void
 {
 _camera.distance = event.stageY*5;
 }

 protected override function _createScene() : void
 {
 }
 }
}

We start in the class constructor by adding an event listener for the MOUSE_MOVE event that triggers the

handler method _onMouseMove(), controlling the z property of the camera with the y position of the

mouse over the stage. We then override the _createScene() method with an empty stub ready for some

custom code. Let’s begin by filling out this method, adding the following code to create our dummy

spheres:

var s0:Sphere = new Sphere();
s0.radius = 200;
s0.segmentsW = 4;
s0.segmentsH = 4;

var s1:Sphere = new Sphere();
s1.radius = 200;
s1.segmentsW = 8;
s1.segmentsH = 6;

var s2:Sphere = new Sphere();

OPTIMIZING TIPS AND TRICKS

221

s2.radius = 200;
s2.segmentsW = 16;
s2.segmentsH = 10;

var s3:Sphere = new Sphere();
s3.radius = 200;
s3.segmentsW = 32;
s3.segmentsH = 18;

In a real-life scenario, the sphere primitives created here would be replaced with imported models. The

majority of 3D modeling applications provide the capability to reduce the number of faces in a model while

keeping the general shape of the mesh intact. It would be a simple matter to start at your desired

maximum level of detail and export your model to an Away3D compatible format, reduce the number of

faces, and export again until you have a sufficient number of models that cover the levels of detail you

require. In the preceding code, this arrangement is simulated by creating a distant version of our sphere

with a minimal amount of faces and gradually increasing the polygon count of each successive sphere until

we reach our final close-up version, which requires a significantly greater number of faces to maintain a

spherical appearance.

To add these objects to the scene, we first need to create our level-of-detail containers by adding the

following code to the end of the _createScene() method:

var lod0:LODObject = new LODObject(s0);
lod0.minp = 0.0;
lod0.maxp = 0.4;

var lod1:LODObject = new LODObject(s1);
lod1.minp = 0.4;
lod1.maxp = 0.8;

var lod2:LODObject = new LODObject(s2);
lod2.minp = 0.8;
lod2.maxp = 1.2;

var lod3:LODObject = new LODObject(s3);
lod3.minp = 1.2;
lod3.maxp = Infinity;

The LODObject class is an extension of the ObjectContainer3D class, and like any object container,

allows child objects to be automatically added on instantiation by receiving a 3D object or group of objects

as arguments in its constructor. In the preceding code, we attach each sphere primitive inside its own level

of detail object so that we can control its visibility. Two additional properties, minp and maxp, are then set

on each object, defining the minimum and maximum perspective scale range within which the contained

sphere objects will be visible. Figure 10-1 illustrates the effect of this arrangement.

CHAPTER 10

222

Figure 10-1. In this schematic representation of the setup generated in the LODObjectTest example, the

planes represent the position from the camera at which the visible sphere primitive switches to one of

lesser or greater detail depending on whether the camera moves toward or away from the object.

The minp and maxp properties of the LODObject class have a range of possible values between 0 and

infinity, where a value of 0 represents an infinitely far away object (with a perspective scale of 0) and a

value of infinity represents an object at the same position as the camera’s location (with a perspective

scale of infinity).

To create a convincing effect, make sure all objects have the same positions and orientations inside their

LOD objects. We also assume that the minp and maxp ranges do not overlap between levels of detail,

ensuring only one object is visible at a time.

To complete our example, we need to add our LOD objects to the scene so that their contents are

rendered. To avoid having to individually assign each LODObject instance the same position, rotation, and

scaling values if we ever want to move our LOD setup, it is good practice to group all objects in an

ObjectContainer3D instance by adding the following code to the end of the _createScene() method:

var _lodContainer : ObjectContainer3D;
_lodContainer = new ObjectContainer3D(lod0, lod1, lod2, lod3);
_view.scene.addChild(_lodContainer);

Compile the code, and move the mouse cursor up or down over the stage to adjust the proximity of the

camera to our LOD setup. Away3D automatically determines which of the LOD objects to display and

which to hide, seamlessly switching them in and out and removing unnecessary polygons from the scene.

Figure 10-2 depicts the visible output of each sphere displayed, with the leftmost sphere visible when far

away and the rightmost visible when near to the camera.

OPTIMIZING TIPS AND TRICKS

223

Figure 10-2. These four levels of detail of our sphere representation are shwn in the LODObjectTest

example. The leftmost object is rendered at the smallest perspective scale, and the rightmost object at the

largest perspective scale.

Culling and clipping polygons and meshes

A complex 3D scene composed of many 3D objects can be a strain on the overall performance of the

Flash Player because of the large number of projection calculations and drawing operations required to

render all polygons to the view. Culling and clipping are two processes that remove unnecessary polygon

processing by optimizing the polygon lists sent to the view: culling removes whole polygons (or sets of

polygons), and clipping subdivides the existing meshes to perform more accurate viewport cropping. Both

these techniques are available to use in Away3D, and the following subsections take a look at their

implementation in more detail.

Back-face culling

The process of back-face culling applies to the rendering of Face objects in Away3D and is already used

in many of our examples because it is applied to all faces by default. The technique assumes that the

triangles in a mesh possess only one visible side (the front side) and only if that side is facing the camera

will the triangle be drawn on screen. This culling process is enabled by default because of the number of

3D objects that benefit from its application. As an example, consider the cube primitive shown in Figure

10-3. Viewing it from any position in the scene, we never observe an interior surface, because the shape is

a closed volume. If the faces that make up the surface are arranged so that their front sides are all pointing

outward (forming the exterior), we can ignore drawing the faces in the view that are being observed from

behind, because these are always obscured by faces observed from the front.

Figure 10-3. A visible face on the surface of a mesh with back-face culling enabled is one aligned with its

front side facing the camera. If the faces in a mesh belong to a closed geometry, such as the cube

primitive shown here, the faces observed from their front will always obscure the faces observed from their

back, and back-face culling has no visual consequence.

CHAPTER 10

224

Controlling back-face culling is achieved on a per-mesh basis by setting the bothsides property of the

Mesh object as follows:

// turn on backface culling (default)
mesh.bothsides = false;

// turn off backface culling
mesh.bothsides = true;

There are only a few cases where back-face culling should be disabled:

� When the material of the mesh is semitransparent and the back faces are visible through the front

faces

� When the camera is allowed to position itself inside the mesh as well as outside

� When the mesh is an object with a discontinuous surface (such as a plane)

Viewport clipping

In many situations, a scene is only partially visible through the viewport, resulting in significant numbers of

polygons in the scene being unnecessary when rendering the view. In these cases, Away3D has a number

of viewport clipping options represented by the clipping classes located in the away3d.core.clip

package; these offer different techniques designed to reduce the amount of polygons rendered in any one

frame to just those visible through the viewport.

The View3D class applies a clipping algorithm to the view by setting its clipping property to an instance

of the desired clipping class. In Away3D, each clipping class uses the same set of properties to define its

clipping boundaries, a topic that we touched on in Chapter 3. The following code snippet is a reminder of

how these are set on the clipping object instance for the view:

_view.clipping.minX = -400; // cull or clip if x < -400
_view.clipping.maxX = 400; // cull or clip if x > 400
_view.clipping.minY = -300; // cull or clip if y < -300
_view.clipping.maxY = 300; // cull or clip if y > 300
_view.clipping.minZ = 50; // culled if z < 50
_view.clipping.maxZ = 2000; // culled if z > 2000

All the boundary properties defined here are optional. By default, the edges of the stage are used as the

viewport boundaries for defining the minX, maxX, minY, and maxY properties. The z boundaries defined by

the minZ and maxZ properties represent the positions of the near-field and far-field clipping planes

respectively, and are set to –focus/2 and infinity by default. These values represent the z position of two

planes parallel to the projection plane of the camera, clipping polygons in the same manner as the x and y

boundaries of the viewport.

Rectangle clipping is the simplest type of viewport clipping available and takes up the least amount of

extra processing for a scene. It is represented in Away3D by the RectangleClipping class and is set as

the default clipping type in the clipping property of the View3D object.

If all the projected vertices of a polygon fall outside the x and y clipping boundaries of a

RectangleClipping object, the polygon is removed from the drawing process and prevented from taking

up any further processing time. The z boundaries of a RectangleClipping object are applied slightly

OPTIMIZING TIPS AND TRICKS

225

differently, because any polygon vertex projected from behind the camera can produce wildly inaccurate

results due to a singularity (division by zero) present in the calculations. To keep us safe from this

eventuality, the RectangleClipping object will cull a polygon with one or more vertices falling outside the

near-field clipping boundary. However, this approach can sometimes be a little too cautious, suffering from

rendering artifacts that appear as missing polygons in the visible portion of the scene being viewed.

Near-field clipping is a similar process to rectangular clipping but uses an advanced algorithm that avoids

near-field artifacts. It is represented in Away3D by the NearfieldClipping class and handles polygons

that cross the near-field plane by splitting them along their intersecting lines, passing the polygon

fragments that appear on the visible side of the clipping plane for drawing to screen.

Let’s create an example to illustrate the advantage of using near-field clipping over rectangle clipping by

extending the Chapter10SampleBase class with the following code:

package flash3dbook.ch10
{
 import away3d.containers.*;
 import away3d.core.clip.*;
 import away3d.primitives.*;

 import flash.events.*;

 [SWF(width="800", height="600")]
 public class ClippingTest extends Chapter10SampleBase
 {
 public function ClippingTest()
 {
 super();
 _camera.tiltAngle = 0;
 _camera.zoom = 5;
 }

 protected override function _createScene() : void
 {
 }
 }
}

We begin filling out the stub override of the _createScene() method with the following code to create the

interior geometry of a room:

var cube : Cube = new Cube();
cube.segmentsW = 4;
cube.segmentsH = 4;
cube.segmentsD = 4;
cube.width = 3000;
cube.height = 1000;
cube.depth = 3000;
cube.bothsides = true;
_view.scene.addChild(cube);

CHAPTER 10

226

Here, a cube primitive is used to form the walls, floor, and ceiling of a room that contains our camera

position. Because we are positioned inside the cube’s geometry, the bothsides property of the cube

needs to be set to true so that back-face culling doesn’t render all of the triangles in the mesh invisible.

Compiling the example at this point will display the output shown in the left-hand image of Figure 10-4.

This demonstrates the clipping artifacts seen when using the default RectangleClipping class. The

example suffers from disappearing triangles in the floor and ceiling of the room, caused by a combination

of their close proximity to the camera and large surface area.

The near-field clipping process can assist in these situations, so let’s add the following code to the end of

the _createScene() method to switch our clipping class:

_view.clipping = new NearfieldClipping();

Recompiling the ClippingTest example displays the output shown in the right-hand image of Figure 10-

4. The missing triangle artifacts have gone, and moving around the room by moving the mouse cursor over

the stage demonstrates that the correction is consistent.

Figure 10-4. Two types of clipping class applied to the view of our ClippingTest example: On the left, the

artifacts caused by the default RectangleClipping class are visible; on the right the same scene is

displayed using the NearfieldClipping class with no clipping artifacts.

As a final comparison, let’s adjust our code again to apply yet another type of clipping object by replacing

the previous line of code added to the _createScene() method with the following:

_view.clipping = new FrustumClipping();

Frustum clipping is similar to near-field clipping in the way it handles near and far-field planes but differs

in the way it handles viewport clipping for the x and y boundary properties. In this case, polygons can

intersect with up to a total of six different clipping planes that represent the precise area in the scene that

is visible in the view, known as the frustum. Each plane handles itself in the same way, splitting

intersecting polygons along their intersecting lines and passing on the polygon fragments that lie on the

visible side of the clipping plane for drawing to screen.

Recompiling the example will display a similar output to what’s shown in Figure 10-4 for near-field clipping,

only, in this case, the triangles around the edges of the view appear dynamically tessellated with the

OPTIMIZING TIPS AND TRICKS

227

viewport boundaries. This approach has little aesthetic advantage but can improve processing speeds in

certain situations where a small portion of a larger scene is rendered thanks to the frustum removing

projection calculations as well as drawing calculations for polygons excluded by the clipping planes.

Object culling

All culling techniques we’ve discussed so far are tested on a per-polygon basis. For 3D objects that are

completely out of view, it would be much faster if we could discard the entire object with a single

calculation. This is a process known as object culling and is possible in Away3D with the objectCulling

property present in all clipping classes. It is disabled by default in the standard RectangleClipping class

but can be enabled by setting its value to true, as illustrated in the following code snippet:

_view.clipping.objectCulling = true;

The idea behind object culling is to use a fast method of checking whether a 3D object in the scene is at all

visible in the view. If it is determined to be out of sight, no further projecting or drawing operations need be

executed for the object. This early out speeds up the rendering process by reducing the amount of overall

work done by the renderer. To keep this test as simple as possible, we approximate the 3D extent of an

object in Away3D using its bounding radius, a value calculated automatically and accessed from the

boundingRadius property available on any 3D object. This value represents the radius of a sphere

centered around the object’s origin that encloses the entire contents of its geometry.

The same frustum calculations used for the FrustumClipping class are used to check whether the

bounding radius of a 3D object intersects with the frustum of the view, and the contents of the scene are

classified into objects that are either contained by the frustum, intersecting the frustum, or outside the

frustum. Those inside are considered a trivial case and continue on to be rendered; those outside are

discarded and removed from the remainder of the render loop; and those that intersect a frustum plane are

flagged for further processing depending on whether the 3D object in question is a container or mesh

object. Eventually, all objects in the scene are classified, and the scene is drawn.

Because near-field clipping and frustum clipping both use frustum calculations, object culling is enabled by

default in both the NearFieldClipping and FrustumClipping classes. The RectangleClipping class

has an objectCulling property that defaults to false, because in this case the process adds extra

frustum calculations that can have an impact on the amount of overall processing. In many cases, it would

be considered overkill to run a check for object culling on a scene, especially in scenarios where all 3D

objects are visible in the view at all times.

Manual culling

In certain scenarios, despite all the automated culling options that Away3D offers, it can still be preferential

to roll up your sleeves and perform some culling yourself. If an object is attached in the scene graph but is

not required to be rendered, simply setting its visible property to false will remove it from the render

loop, as demonstrated in the following code snippet:

_myObject3D.visible = false;

This approach to culling uses your own external rulings to control of the visibility of objects, which can

sometimes be more beneficial to optimization than any general-purpose culling techniques.

Overall, the processes of culling and clipping are always present in an Away3D view, with the default

settings catering for the generic case. The potential processing reductions using the various extended

CHAPTER 10

228

options described here rely heavily on the contents of the scene and the camera’s orientation within it. It is

often a good idea to experiment and see what gives the best results.

Using models effectively

A common scenario when designing a 3D project involves the acquisition and import of complex model

data. Maybe the model is created from scratch, or maybe it is downloaded from a paid-for resource. Either

way, it is worth being mindful of the restrictions imposed by the software renderer of the Flash Player and

how to make the most of these restrictions at the 3D design stage.

Polygon counts

A suitable polygon count to aim for when designing a scene can be set at around 4,000 triangles. This is

an upper limit of what is expected to achieve a reasonably smooth frame rate in Flash, as 4,000 polygon

redraws per-frame adds up to 120,000 redraws per second for a Flash movie running at 30 frames-per-

second—that is a high number of redrawing operations for Flash to handle! The recent 3D features added

in the Flash 10 Player are helping to push the upper limit higher, but as demand for 3D increases and the

range of machines on which quality results are required forever widens, it is best to consider similar figures

for the majority of projects.

With that in mind, after having downloaded your perfect-looking dragon model containing 180,000

polygons, you will still need to perform a fair bit of reduction work in a 3D modeling package before it can

be used in your Away3D project! This process requires more than a little skill, as generic polygon-reducing

tools often leave a lot of residual tidying up to do on the resulting 3D mesh. Areas that demand specific

attention include polygons that are never seen by the renderer, high-detail areas such as those for the

hands and feet of an avatar, and surfaces that overlap extremely close to one another.

Intersecting polygons

In Away3D, every polygon visible in the view requires sorting in order of Z depth before being drawn to

screen, in a process known as Z sorting (covered in more detail in Chapter 3). The default rendering option

uses a simple algorithm to sort the rendered order of polygons, calculating a polygon’s Z depth value

based on the average z value of all projected vertices in the polygon. This process is prone to error when

dealing with certain geometric scenarios, the most common being when two polygons intersect.

Away3D has some advanced sorting options to deal with such problems, but the extra calculations in their

algorithms make them too slow for anything but the simplest geometry. It is usually more effective to

manually correct any problem areas in your 3D modeling package before importing your models to Flash,

so the default sorting option in Away3D can be used and the best render speeds attained.

As an example, consider the geometry represented in the image on the left in Figure 10-5. Two triangles

are shown with a clear intersecting axis that will cause trouble with the default sorting option in Away3D. In

the 3D modeler’s preview window, polygons are rendered with a pixel-based sorting algorithm performed

on the GPU, and our two triangles appear as they should. In Away3D, the triangles will be rendered

sequentially in reverse order of Z depth, which gives the option of either the left or right triangle appearing

in front. This simplified sorting method will clearly be unable to represent the true nature of our geometry.

When rendering in Away3D, such arrangements are usually identifiable as flickering areas where the

resolved order of Z depth keeps swapping between problem triangles in a process known as Z fighting.

The solution is to subdivide one or both of the triangles at the modeling stage into a series of smaller

triangles that do not intersect. The correct sorting order then becomes something solvable with the basic

sorting option in Away3D. The image on the right in Figure 10-5 depicts such a subdividing solution.

OPTIMIZING TIPS AND TRICKS

229

Figure 10-5. On the left, two triangles in a 3D modeling package are arranged so that they intersect. This

arrangement is impossible to resolve correctly with the default sorting option in Away3D. On the right, the

same geometry has been subdivided to avoid any unresolvable intersections between triangles.

The example here represents a simple occurrence of an intersection problem. In practice, these problems

occur in complex model meshes on a regular basis, thanks to the majority of 3D engines (for which the

models are designed) having access to hardware-based per-pixel Z sorting that can easily handle such

configurations. Any models that exhibit the telltale Z fighting flicker when rendered in Away3D will most

likely have some sort of polygonal intersection occurring in their geometry, and subdividing the problem

areas in the manner described here is one of the most effective solutions.

Double-sided geometry

In certain cases, it is desirable to render a mesh that has both sides of its geometry visible. As mentioned

in the previous section on culling and clipping, setting the bothsides property of a mesh object to true

will achieve this in Away3D by disabling the back-face culling algorithm of the renderer. However, this

solution doesn’t always produce satisfactory results; there are occasional rendering issues relating to

sorting or performance. Let’s take a look at an example of each problem, and the potential solutions

available to us at the modeling stage.

Sorting problems tend to occur when the bothsides property of a mesh is set to true on very simple

geometry. Figure 10-6 illustrates a typical example with a model of an open-ended box. On the left-hand

side, the model is displayed correctly in the modeling package before export; on the right hand side, the

same model is displayed after being imported in Away3D. Because the faces of the box are made up of

pairs of large triangles, sorting artifacts start to appear in our resulting output in Flash.

CHAPTER 10

230

Figure 10-6. A simple open-ended box creates sorting artifacts when rendered in Away3D with the

bothsides property set to true. On the left, the box is shown as it appears in the modeller before export; on

the right is the resulting imported geometry in Away3D with sorting artifacts visible.

These artifacts are once again caused by the default simplistic sorting method we are compelled to use in

Away3D if we want to keep an optimum performance level. One simple solution to the problem is

demonstrated in Figure 10-7. Instead of relying on the bothsides property, we create the box as a closed

geometric shape with separate polygons for its inner and outer sides. On the left, Figure 10-7 shows the

geometry in the modeler with some thickness added to its walls, and on the right, the rendered result of

this approach in Away3D. Because the inner and outer faces have a small separation in depth, the sorting

algorithm of the renderer is not so easily confused, and sorting artifacts are removed.

OPTIMIZING TIPS AND TRICKS

231

Figure 10-7. The previous sorting artifacts in Figure 10-6 have been removed by modelling the geometry

again, with additional faces representing the internal surfaces of the box. On the left is the new geometry

in the modelling package before export, and on the right, the resulting model displayed correctly in

Away3D.

If the solution in Figure 10-7 isn’t suitable for the 3D content you require, it is possible to

use one of the more advanced sorting options (thanks to the relatively low polygon count

of our example geometry) to render our original box without sorting artifacts. The

renderer object of an Away3D scene controls the Z-sorting options applied to the

polygons in the scene and is set using the renderer property of the view object. Various

options exist as statically typed variables on the Renderer class in the

away3d.core.render package, including BASIC (the default setting),

CORRECT_Z_ORDER (for resolving problematic triangles that aren’t intersecting), and

CHAPTER 10

232

INTERSECTING_OBJECTS (for resolving problematic triangles that are intersecting). In the

case of our original box geometry in Figure 10-6, the CORRECT_Z_ORDER rendering

option should suffice and is applied by setting the renderer property of the view to

Renderer.CORRECT_Z_ORDER.

A second problem that arises with the use of the bothsides property relates to the extra processing

involved at the drawing stage of rendering. Back-face culling is an easy way of reducing polygon counts,

as any polygons that face away from the camera are removed at an early stage of the render loop. Without

these savings, the number of polygons drawn to screen will approximately double, causing a significant

drop in performance with complex models of 2,000 or more triangles.

As an example, consider a model of a t-shirt that takes the shape of an invisible wearer. The areas around

the neck and sleeves are hollow, requiring the backs of faces to be visible. If we were to set the

bothsides property to true after the model was imported to Away3D, we would achieve the desired

effect but the renderer would have twice as many polygons to draw in a single frame, noticeably affecting

the overall frame rate of the application.

An alternative approach is possible at the design stage, as illustrated in Figure 10-8. Here, we have

created some duplicate faces around the areas of the t-shirt that are visible on the inside (the white

triangles), reversing their face normals so their perceived front sides are facing in. Combined with the

original faces definitions, this arrangement allows us to selectively determine which faces are rendered

from their reverse side, and which remain invisible. The vertices used in the extra face definitions are

shared among the existing faces, so no extra projection information is required. When this model is

imported into Away3D, the bothsides property can remain set to false, and the extra faces with the

reversed face normals take care of rendering the inside of the t-shirt around the neck and sleeve areas,

keeping the total number of rendered polygons to a minimum.

Figure 10-8. This t-shirt model is modifed to selectively render faces on the inside of its geometry. The

white triangles are duplicated from the original mesh with reversed normal vectors, making them visible

when the front facing triangles are invisible.

OPTIMIZING TIPS AND TRICKS

233

Optimizing materials

Materials in Away3D vary wildly in complexity and style, but you can take many optimizing approaches to

minimize the memory and processing power they consume. The more complex materials such as those

using textures or lighting can be a huge drain on resources if not used efficiently, so it is always worth

taking some time to ensure against being needlessly wasteful with materials in your Away3D projects. This

section takes a look at how you can avoid some of the common pitfalls to maximize the quality of your

materials with the runtime resources at your disposal in the Flash Player.

Optimizing shading

When exploring any 3D Flash engine, some of the most exciting features to discover involve dynamic real-

time shading. The practical aspects of shading materials in Away3D are explored in more detail in Chapter

5. By using shading materials, you can build scenes that contain multiple light sources, with controls over

various shading options similar to the ones seen in non-Flash engines. However, when dynamic lighting is

used to any great extent in Flash, a performance limitation is quickly reached. Thanks to the software

renderer of the current Flash Player, it is almost impossible to completely shade a complex scene in real

time. When shading is required, we currently have to make a choice between static and dynamic shading

for individual objects, with a limit placed on the amount dynamic shading. Let’s take a look at how and

when we can apply static shading to objects in Away3D.

Static shading

One option commonly seen for static shading is an approach known as texture baking. This process is

applied to the texture of a material before the image is imported, multiplying the bitmap data in the texture

with a static light map. Because the shading step is performed outside the Flash Player, a shading effect

can be achieved with a standard bitmap material in Away3D at no extra processing cost. The technique is

best used on background meshes and objects that don’t move relative to their perceived light source.

Professional 3D programs such as Maya, LightWave, Blender, and 3ds Max have a plethora of lighting

options for texture baking, allowing you to achieve the precise look you are after before exporting the static

texture image. Alternatively, a free program called Prefab3D can be downloaded from the Adobe AIR

Marketplace (or direct from http://www.closier.nl/prefab/). This application is a 3D tool made for

preprocessing textures and other 3D effects and can integrate seamlessly with any Away3D workflow (the

program itself is actually written in Away3D!). As well as performing texture baking with multiple light

sources, Prefab3D handles advanced shading processes, such as shadow casting, with ease and offers

the option to create normal maps and texture maps (diffuse or specular) that can be used with dynamic

shading materials.

For 3D objects that occasionally need to update their light maps, it is sometimes appropriate to use a static

shading technique known as surface caching to generate a static output of a shading material at runtime,

with the option of updating the light map on an occasional basis. Surface caching is an option available on

the majority of bitmap shading materials in Away3D (including PhongBitmapMaterial and

Dot3BitmapMaterial) and is activated by setting the surfaceCache property of the material to true.

Materials with surface caching activated will appear very similar to uncached materials but will render

almost as fast as regular bitmap materials. Because the material will update its cached texture when the

light map changes, it is not wise to apply surface caching to a shading material that requires updating on

every frame. Light maps are generally affected by the position of the light source relative to the position of

the object. If specular shading is enabled, a light map will also be affected by the position of the camera

relative to the position of the object.

CHAPTER 10

234

Figure 10-9 displays four representations of the same model with four different shading options applied.

The No shading and Baked representations use a standard bitmap material but produce very different

results, nicely illustrating the potential enhancement texture baking can offer. The Away3D Dot3 and

Away3D Phong representations use a DOT3 bitmap material and a phong bitmap material respectively.

Both produce dynamic smooth shading over the surface of a model, and both have the option of surface

caching to increase the overall performance of the scene when their light maps are static.

Figure 10-9. This model of a bust is displayed with various shading material options. No shading and

Baked are examples of permenant static materials, while Away3D Dot3 and Away3D Phong are examples

of dynamic materials that can be temporarily flattened to static mateirals using surface caching.

Normal map images

Of all the dynamic shading options available in Away3D, DOT3 materials are one of most efficient and

versatile shading material types on offer. However, in order to function, they require a normal map

image—something that can be difficult to generate without access to professional modeling software. The

NormalMapGenerator class located in the away3d.materials.utils package offers a solution to this

problem by providing a simple method of normal map generation at runtime using any 3D mesh as input,

as long as the UV data in the supplied geometry contains no overlapping UV coordinates (these are

discussed in more detail in Chapter 5).

To demonstrate how the NormalMapGenerator class is used, let’s create a new example by extending the

Chapter10SampleBase class with the following document class definition:

package flash3dbook.ch10
{
 import away3d.core.base.*;
 import away3d.core.math.*;
 import away3d.core.utils.*;
 import away3d.events.*;
 import away3d.lights.*;
 import away3d.loaders.*;
 import away3d.materials.*;
 import away3d.materials.utils.*;

 import flash3dbook.ch10.models.*;

OPTIMIZING TIPS AND TRICKS

235

 [SWF(width="800", height="600")]
 public class UsingNormalMapGenerator extends Chapter10SampleBase
 {
 [Embed(source=”../../assets/ch10/headtexture.jpg”)]
 private var HeadTexture : Class;

 private var _head : ObjectContainer3D;
 private var _generator : NormalMapGenerator;
 private var _light : DirectionalLight3D;

 public function UsingNormalMapGenerator()
 {
 super();
}

 private function _onTraceProgress(event:TraceEvent):void {
 trace("Processing normal map : " + event.percent.toFixed(0) + "% complete");
 }

 private function _onTraceComplete(event:TraceEvent):void {
 trace("Completed normal map");
 }

 protected override function _createScene() : void
 {
 }
 }
}

To generate a normal map image, we must first import a model to use as the source geometry. In its

default mode, the NormalMapGenerator class will generate a map that represents the smoothed vector

data between vertex normal vectors of a 3D mesh object. The class variable _head in the preceding code

is defined as a placeholder for the geometry, which we will now create by adding the following code to the

empty _createScene() method:

_head = new HeadModel();
_head.scale(30);
_view.scene.addChild(_head);

 The HeadModel class is an ActionScript model, created with the AS3Exporter class using a technique

covered in the optimizing external resources section in Chapter 4. Compiling the code at this point will

display the output seen in the left-hand image of Figure 10-10.

To use a shaded material on our head model, we set up a new directional light source by adding the

following code to the end of the _createScene() method:

_light = new DirectionalLight3D();
_light.ambient = 0.3;
_light.diffuse = 0.5;
_light.specular = 0.5;

CHAPTER 10

236

_light.direction = new Number3D(0.5, -0.5, 0);
_view.scene.addLight(_light);

Next, we pass the instance of the HeadModel class to the constructor of a new NormalMapGenerator

object, adding the following code to the end of the _createScene() method:

_generator = new NormalMapGenerator(_head, 512, 512);
_generator.addEventListener(TraceEvent.TRACE_PROGRESS, _onTraceProgress);
_generator.addEventListener(TraceEvent.TRACE_COMPLETE, _onTraceComplete);
_generator.execute();

Because the creation of a normal map image is quite a processor-intensive task, the

NormalMapGenerator class builds the image in short steps over a number of frames. This requires us to

add event handlers for TRACE_PROGRESS and TRACE_COMPLETE events after instantiation of the

NormalMapGenerator object, in order to wait for the generating process to complete before applying the

image to our head model. The handler methods _onTraceProgress() and _onTraceComplete() already

exist in the UsingNormalMapGenerator class definition, containing trace() statements to monitor

progress. As a final step, we apply a new DOT3 material to the head model after receiving the

TRACE_COMPLETE event from our NormalMapGenerator object by adding the following code to the end of

the _onTraceComplete() handler method:

_head.children[0].children[0].material = new
Dot3BitmapMaterial(Cast.bitmap(HeadTexture), _generator.normalMap);

Recompiling the UsingNormalMapGenerator example will display the output seen in the right-hand image

of Figure 10-10, and the actual image generated for the normal map texture is shown in the center image.

If you compare this to the headtexture.jpg image used for the base texture, you’ll see the unwrapped

UV coordinates match exactly—a requirement of the DOT3 shading process.

DOT3 shading materials offer additional depth and quality to the graphical output of an Away3D scene,

and using the NormalMapGenerator class to create the required normal map images puts their use within

easy reach of any designer or developer wishing to take advantage of this type of shading. Rotating the

camera with the mouse, you'll notice that the direction of the light is stationary in relation to the head. If,

instead, we want to keep the light stationary in relation to the camera, we can add the following code to the

end of the class definition:

override protected function _onEnterFrame(ev : Event) : void
{
 super._onEnterFrame(ev);

 var angle:Number = (_camera.rotationY)*Math.PI/180;
 _light.direction = new Number3D(-Math.cos(angle), -0.5, Math.sin(angle));
}

Recompiling the example will show the head model as before with the light souce adjusting its direction in

relation to the camera position.

OPTIMIZING TIPS AND TRICKS

237

Figure 10-10. These stages of the shading process are encountered in the UsingNormalMapGenerator

example. The left-hand image shows the head model before a shading material is applied; the center

image shows the image generated from the NormalMapGenerator class, and the right-hand image shows

the final shaded head model using the generated normal map with an instance of the Dot3BitmapMaterial

class.

Conserving material instances

Like any Flash application, reducing the number of new object instances in an Away3D project will reduce

the overall memory consumption and improve performance. The most common way of achieving this is

through object pooling and reuse. In Away3D, bitmap material instances are a prime candidate for reuse

because of their large memory footprints.

One scenario for optimization occurs when several objects are created that share the same texture image.

Let’s create a new example to illustrate this setup by extending the Chapter10SampleBase class with the

following document class definition:

package flash3dbook.ch10
{
 import away3d.core.utils.*;
 import away3d.materials.*;
 import away3d.primitives.*;

 [SWF(width="800", height="600")]
 public class BitmapInstanceTest extends Chapter10SampleBase
 {
 [Embed(source=”../../assets/ch10/cubetexture.jpg”)]
 private var CubeTexture : Class;

 public function BitmapInstanceTest()
 {
 super();
 }

CHAPTER 10

238

 protected override function _createScene() : void
 {
 }
 }
}

Here, we define the global variable CubeTexture containing the embedded image data for our texture and

override the _createScene() method with a stub. We then add the following code to the empty

_createScene() method, creating 50 randomly positioned cubes with 50 separate instances of a bitmap

material and using the Cast utility class to extract the required bitmap data from the CubeTexture class.

// create 50 cubes
for (var i : int = 0; i < 50; i++) {
 var cube : Cube = new Cube();

 // assign a random position to the cube
 cube.x = (Math.random()-.5)*1000;
 cube.y = (Math.random()-.5)*1000;
 cube.z = (Math.random()-.5)*1000;

 // assign a new bitmap material to the cube
 cube.material = new BitmapMaterial(Cast.bitmap(CubeTexture));

 _view.scene.addChild(cube);
}

Compiling the code will display the scene with no obvious issues, but if you take a look at the memory

consumption of the Flash movie (by opening the Task Manager in Windows or the Activity Monitor in

OS X) you will notice an abnormally high value caused by each bitmap material generating an internal

copy of the bitmap data supplied for its texture. In Away3D bitmap materials are designed for reuse,

allowing us to optimize memory consumption by assigning the same material to multiple mesh objects in

cases where the same texture is being used. We can therefore rewrite the BitmapInstanceTest example

to take advantage of this feature, replacing the contents of the _createScene() method with the following

code:

var material : BitmapMaterial = new BitmapMaterial(Cast.bitmap(CubeTexture));

// create 50 cubes
for (var i : int = 0; i < 50; i++) {
 var cube : Cube = new Cube();

 // assign a random position to the cube
 cube.x = (Math.random()-.5)*1000;
 cube.y = (Math.random()-.5)*1000;
 cube.z = (Math.random()-.5)*1000;

 // assign the same bitmap material to the cube
 cube.material = material;

OPTIMIZING TIPS AND TRICKS

239

 _view.scene.addChild(cube);
}

Recompiling the example with display exactly the same output with the memory consumption at a fraction

of what it was, thanks to the preceding code using the same bitmap material instance for all 50 primitives.

This setup has one restriction in that any adjustment of material properties (such as color and alpha) will

globally affect all cube primitives. However, a workaround that allows material properties to be

independently set on a small number of individual primitives could involve separate material instances

created for this purpose, swapped on specific cubes as and when they are required.

Exploring general best practice techniques

As a final section on optimization, we will now look at a variety of shortcuts available in Away3D that can

assist with getting the most out of the engine. Some help simplify development; others help simplify the

rendering process.

Switching between 3D coordinate systems

In Chapter 3, we briefly touched on the concept of hierarchical coordinate systems. The framework that

underpins the calculations necessary for this system is full of useful properties we can tap into, and this

section explains how to take advantage of the framework to extract useful spatial data from a scene.

A single 3D coordinate system is defined by three axes and a point of origin. In Away3D, every object in a

scene has its own local coordinate system that works by concatenating the transformation of its parent

container with its own transformation. The directions of the three axes depend on the rotation and scaling

values applied to the 3D object, and the position of the origin is considered the object’s center point. This

means that when we rotate, scale, or position an object with its transformation properties, we are

essentially updating its coordinate system.

When expressing the vector position of a point in space, there are five main types of coordinate system to

consider:

� Object space: This is the local coordinate system of a 3D object such as a mesh, equivalent to

the coordinate system of a native DisplayObject in Flash. The position vectors of vertices inside

a mesh are represented in object space.

� Parent space: This is the coordinate system of a 3D object relative to its parent container,

equivalent to the coordinates of vertices inside a mesh after the transformation of their local

coordinate system is applied. The position vectors of objects inside a container are represented in

parent space.

� Scene space (or world space): This is the global coordinate system of the scene, equivalent to

the coordinate system of the native Stage object in Flash. Describing a 3D object in scene space

is similar to converting the coordinates of a native DisplayObject from local to global

coordinates.

CHAPTER 10

240

� Camera space (or view space): This is the scene space of a 3D object relative to the camera.

The inverted transformation of the camera object is applied to the representation of the object in

scene space, giving its position and transformation as viewed by the camera.

� Screen space: This is the coordinate system into which the scene contents are projected and

then drawn. The projection transformation of the camera’s lens object is applied to the

representation of the 3D object in camera space, giving its position and transformation after being

projected to screen.

A schematic representation of these coordinate systems is shown in Figure 10-11. As you can see, 3D

objects that share a scene will also share the same scene space, camera space, and screen space.

Because Mesh A is a direct child of the scene, its resulting transformation in scene space is the same as

its transformation in parent space.

With the exception of screen space, every coordinate system described here is an orthogonal

transformation of the 3D object’s local coordinate system relative to another 3D object, be it local (object

space), parent (parent space), scene (scene space), or camera (camera space).

Figure 10-11. Schematic representation of the different coordinate systems available in Away3D, depicting

the relationship between systems for a scene containing two 3D mesh objects

Now that you’ve seen an overview of the various types of coordinate system, let’s take a look at how these

can be accessed and utilized in an Away3D project. We’ll begin by extending the Chapter10SampleBase

class with the following code to use as a starting point for the subsequent examples in this section:

package flash3dbook.ch10
{
 import away3d.containers.*;
 import away3d.core.draw.*;
 import away3d.core.math.*;
 import away3d.materials.*;
 import away3d.primitives.*;

 import flash.display.*;
 import flash.events.*;

 [SWF(width="800", height="600")]
 public class TransformTest extends Chapter10SampleBase

OPTIMIZING TIPS AND TRICKS

241

 {
 private var _plane : Plane;
 private var _planeContainer : ObjectContainer3D;
 private var _cube : Cube;
 private var _cubeContainer : ObjectContainer3D;
 private var _marker : Sphere;
 private var _shape : Shape;

 public function TransformTest()
 {
 super();
 }

 protected override function _createScene() : void
 {
 }

 protected override function _onEnterFrame(event : Event) : void
 {
 super._onEnterFrame(event);
 }
 }
}

Here, we create some class variables to use as 3D object references for the scene content and override

both the _createScene() and _onEnterFrame() methods to prepare them for some custom code. We

begin by adding the following code to the _createScene() method to set up a generic scene for our

purposes:

_plane = new Plane();
_plane.segmentsW = 10;
_plane.segmentsH = 10;
_plane.material = new WireColorMaterial(0x808080);
_plane.width = 200;
_plane.height = 200;
_plane.bothsides = true;
_plane.yUp = false;
_plane.position = new Number3D(-200, 0, 0);

_planeContainer = new ObjectContainer3D(new Trident(100, true));
_planeContainer.x = -200;
_planeContainer.addChild(_plane);
_view.scene.addChild(_planeContainer);

_cube = new Cube();
_cube.material = new WireColorMaterial(0xFFFFFF);
_cube.pivotPoint = new Number3D(200, 0, 0);

_cubeContainer = new ObjectContainer3D(new Trident(100, true));

CHAPTER 10

242

_cubeContainer.x = 200;
_cubeContainer.addChild(_cube);
_view.scene.addChild(_cubeContainer);

The preceding code creates a simple scene hierarchy with a cube and a plane primitive contained inside

their own 3D container objects, which are, in turn, contained inside the scene. As a visual aid, both the 3D

container objects have trident primitives added to their children, so that the local coordinate system of the

containers can be seen.

Now, we create some movement by adding the following code to the end of the _onEnterFrame()

method:

_cube.rotationY += 5;

_planeContainer.rotationY += 5;

Compiling the TransformTest example at this point will display a plane and a cube performing identical

orbiting motions around two different positions in the scene. The orbiting motion is achieved in the

preceding code using the two distinct methods described here:

� For the cube primitive, a rotation is applied around the Y axis of the primitive object. Normally,

this would rotate the cube around its center, but in this case, the previous code added to the

_createScene() method has modified the local position of the cube’s center point. By setting the

pivotPoint property of the cube to (100, 0, 0), its local coordinate system is offset in object

space by the given Number3D value. This would be equivalent to moving all the vertices in the

cube 100 units along the local X axis, resulting in the cube’s geometry no longer being centered

around the local origin and producing an orbiting motion when it is rotated. The local origin of the

cube is then offset to the left by the 3D container for the cube, moving the center of rotation in the

scene –200 units along the X axis.

� For the plane primitive, the same rotation is applied to the 3D container of the plane. In the

previous code added to the _createScene() method, the position of plane is offset in parent

space by (–100, 0, 0) using the position property of the primitive. Rotating the plane with this

setup wouldn’t produce the same orbiting motion we see for the cube, because the local

coordinate system doesn’t contain the applied offset. However, the 3D container of the plane

does contain the offset, so it produces the same orbiting effect as the setup for the cube when

rotated. In this case, the local origin of the 3D container is offset to the right, moving the center of

rotation in the scene 200 units along the X axis.

Converting from object space to scene space

Scene space is useful for performing any kind of global operation on a 3D object. Collision detection is a

good example of such a scenario, where the absolute position of an object in a scene is required. If we are

dealing with a collection of 3D objects that are all direct children of the scene, the object’s position in scene

space will match the object’s position in parent space. In this case, we can simply use the x, y and z

OPTIMIZING TIPS AND TRICKS

243

properties for the object's position in scene space, but for a different scene hierarchy, this may not always

be the case.

For the position vector of a 3D object, Away3D provides us with the position property that returns a

Number3D value representing the 3D object’s position in parent space. The same position is represented in

scene space with the scenePosition property, calculated automatically from the position property

when an object is added to the scene graph. We can test this functionality by adding the following code to

the _createScene() method in our TransformTest example:

_marker = new Sphere();
_marker.radius = 50;
_marker.material = new WireColorMaterial(0xFFFFFF);
_view.scene.addChild(_marker);

Here, we create an instance of a sphere primitive inside the global property _marker, to be used as a

marker for the scene position of our plane primitive. This instance is added to the scene graph as a direct

child of the scene, so its position property can be set to represent the scene position of any object we

choose. To represent the scene position of the plane primitive, we add the following code to the end of the

_onEnterFrame() method:

_marker.position = _plane.scenePosition;

Recompiling the TransformTest example will display the output shown in Figure 10-12. The cube and

plane primitives animate in the same way as before, and the newly added white marker sphere follows the

scene position of the plane primitive exactly.

Figure 10-12. A sphere and plane primitive orbiting around opposite points on the X axis of the scene in

the TransformTest example, with a white marker sphere following the positoin of the plane in scene space.

It is important to note in the code that the position property of _marker is updated after all

transformations have been performed on the primitive objects and their respective containers. This is a

necessary precaution, as the scenePosition property calculates its value from the current

transformations applied to all objects in its scene hierarchy. If these transformations are altered prior to the

CHAPTER 10

244

next render() call, the scene position would need to be reacquired from the scenePosition property to

remain in sync with the visible scene position of the objects on screen.

Converting from scene space to object space

In the previous example, imagine that our marker object was a child of the cube container in our scene,

rather than being a child of the scene itself. To continue following the scene position of the plane with our

marker, we would need to take into account the scene position of the cube container as well as the scene

position of the plane container. Let’s set up such a scenario from the code in our current TransformTest

example by updating the last line of the _createScene() method to the following:

_cubeContainer.addChild(_marker);

Recompiling the TransformTest example will show the effects of ignoring the cube position in this setup.

The position of the marker is offset by the position of the _cubeContainer object, destroying our visual

link between the marker object and the position of the plane primitive.

To fix our example, we need to apply the inverse of the cube container’s scene position to the marker

position, converting the scene space received from our plane to the object space determined by our cube

container. Applying the inverse of a position vector is the same as subtracting it, so we replace the last line

of the _onEnterFrame() method with the following code:

var position : Number3D = new Number3D();
position.sub(_plane.scenePosition, _cubeContainer.scenePosition);
_marker.position = position;

Here, a new Number3D object is created for calculating the subtraction, and the position is then re-applied

to the position property of the marker sphere. This is necessary to flag the position of the marker sphere

for update, which is done on the setter of the position property. Recompiling the example displays the

marker once more following the position of the plane exactly.

One point to note about our current setup in the TransformTest example is that the marker follows the

position of the plane but doesn’t follow the rotation. If we want the two objects to be transformed in exactly

the same way, we need to use a property similar to scenePosition available on all 3D objects called

sceneTransform. This represents the overall transformation of an object in scene space, calculated from

the entire cumulative transformation of a 3D object through its scene hierarchy (including all rotation,

scaling, and positioning properties).

We can update the code in our TransformTest example to use the sceneTransform property in place of

scenePosition, allowing us to retain all transforming aspects of the objects in our scene. We do this by

replacing the last three lines of the _onEnterFrame() method with the following code:

_marker.sceneTransform.multiply(_cubeContainer.inverseSceneTransform,�
_plane.sceneTransform);
_marker.transform = _marker.sceneTransform;

In this instance, we set the local transform property of the marker sphere to the resulting transform of the

sceneTransform property of the plane already multiplied with the inverseSceneTransform property of

the cube container. Multiplying transformation properties has the effect of adding together their influences,

although in this case, we need to use the inverse of the sceneTransform property of the cube container,

because we actually want to subtract its influence. The inverseSceneTransform property is another

automatically calculated property on all 3D objects in an Away3D scene.

OPTIMIZING TIPS AND TRICKS

245

As with the position property, the transform property of the marker sphere needs to be updated via its

setter, but in this example, we can use a transformation that already exists (the sceneTransform property

of the marker sphere) to hold the result of the multiplication. We then reapply the new transform to the

transform property of the marker sphere. Recompiling the TransformTest example displays our marker

sphere following both the position and rotation of the plane, as if both objects were children of the same

3D container.

Converting from object space to screen space

Screen space is the coordinate system used to draw the visible representation of a scene to the view and

is, therefore, a useful way of overlaying standard 2D content that is linked in some way to the displayed 3D

content. Because screen space is used for drawing operations, the x and y coordinates match the native

2D coordinate system of Flash, while the redundant z coordinate represents the perpendicular distance of

objects from the viewing plane and is only really useful for calculating distance scaling values.

Let’s modify our current TransformTest example to demonstrate a practical use of screen space by

adding the following lines to the end of the _createScene() method:

_shape = new Shape();
_shape.graphics.beginFill(0x000000);
_shape.graphics.drawEllipse(-20, -20, 40, 40);
_view.foreground.addChild(_shape);

Here, we create a native Shape object and add it as a child of the foreground property of the view. This

property represents a Sprite object automatically placed in front of everything else contained within the

view’s display list, and is best used when we want to add any native DisplayObject as an overlay to the

rendered contents of the view. The x and y coordinates of the Shape object now match the same

coordinate system used for the screen space of the view, so we can use _shape as a marker for a 3D

object’s screen position. The camera object contains a handy screen() method that returns the screen

coordinates of any 3D object in the scene as a ScreenVertex object. In this case, let’s follow the screen

position of the cube primitive by adding the following code to the end of the _onEnterFrame() method:

var _screenPosition : ScreenVertex = _view.camera.screen(_cube);
_shape.x = _screenPosition.x;
_shape.y = _screenPosition.y;

Recompiling the TransformTest example displays the black circle of the Shape object following the

position of our cube primitive on the screen. This is done in the preceding code by setting the x and y

properties of our Shape object to the x and y values of the returned screen vertex to match the resulting

position of the cube in screen space.

Changing camera lenses

In a real-world camera, the lens barrel can be interchanged to produce different results in your

photographs. A similar configuration process is used in Away3D, with the lens property of the camera

object allowing the interchange of various lens types to produce a different result in the view.

When the contents of a scene are projected to screen space, the transformation of coordinate systems is

calculated via the lens object present in the lens property. As with many other Away3D configurations,

this object is instantiated from one of a variety of class types available. In this case, lens classes found in

the away3d.cameras.lenses package can be swapped into the lens property of the camera object at

CHAPTER 10

246

any time, each producing a different screen projection. Let’s take a look at some of the lens options

available,

Traditional perspective projections

In Away3D, the default lens uses a combination of zoom and focus properties to calculate the projection of

the scene to screen space. These properties are discussed in more detail in the cameras section of

Chapter 3 and are utilized by the default ZoomFocusLens class to produce the effects demonstrated.

However, the ZoomFocusLens class is the only lens to use these properties in this manner. In all other

lenses, zoom and focus are used as interchangeable multipliers for the overall scale of the view, and it is

usually necessary to adjust only one value, such as the zoom property.

The ZoomFocusLens class is a bit of a legacy projection method from the early days of 3D in Flash. When

attempting to match the projection of an Away3D scene with the projection seen in some other 3D

application such as a 3D modeling package, you are better off using the standardized PerspectiveLens

class as your projection method.

Extreme wide-angle projections

For wide-angle lens effects in Away3D, it is possible to reduce the zoom property of the camera to increase

the field of view of the viewport. However, the standard projection method becomes less and less accurate

with wider angles. Extreme wide-angle projections should give the view a spherical look, as if the scene

were being reflected in the surface of a glass sphere. This effect is sometimes referred to as a fish-eye

lens and can be achieved in Away3D using the SphericalLens class. We can demonstrate the effect by

extending our Chapter10SampleBase class with the following document class definition:

package flash3dbook.ch10
{
 import away3d.cameras.lenses.*;
 import away3d.materials.*;
 import away3d.primitives.*;

 [SWF(width="800", height="600")]
 public class UsingSphericalLens extends Chapter10SampleBase
 {
 public function UsingSphericalLens()
 {
 super();

 _camera.lens = new SphericalLens();
 }

 protected override function _createScene() : void
 {
 }
 }
}

OPTIMIZING TIPS AND TRICKS

247

In the constructor method, we define a new SphericalLens class instance on the lens property of our

camera. We also create our usual empty override for the _createScene() method, into which we write

the following code:

var cube : Cube = new Cube();
cube.scale(10);
cube.material = new WireColorMaterial(0xCCCCCC);
_view.scene.addChild(cube);

Compiling the example will display a slightly distorted looking cube, and hovering over the stage with the

mouse will cause the distortion effect to alter as the cube turns. This is the spherical lens doing its work,

but it is hard to see precisely what is going on because the lens projection can only act on individual vertex

positions, and a standard cube only has 8 vertices with which to project.

To better visualize the effect, we can add more vertices to our cube by adding the following code to the

end of the _createScene() method:

cube.segmentsW = 10;
cube.segmentsH = 10;
cube.segmentsD = 10;

Recompiling the UsingSphericalLens example gives us a clearer picture of the projection achieved with

the SphericalLens object. The geometry out to the edges of the viewport appears further away than the

geometry closer to the center of the viewport, and the entire effect distorts straight lines that appear

tangential to the center of the view, while preserving straight lines that appear radial to the center of the

view. This mimics the expected projection of a real life fish-eye lens and is useful in scenarios that demand

such a projection effect.

Isometric projections

So far, we have only considered projections with some form of perspective scaling, producing recognizably

3D views with a central vanishing point. However, it is sometimes desirable to render a 3D scene without

perspective scaling, in a manner that preserves size and keeps parallel lines parallel. This type of

projection is frequently referred to as isometric and is something that should be familiar to any strategy

gamer or CAD designer.

In Away3D, an isometric view is achieved using the OrthogonalLens class. Let’s create another example to

demonstrate its effects with the following document class definition:

package flash3dbook.ch10
{
 import away3d.cameras.lenses.*;
 import away3d.primitives.*;
 import away3d.materials.*;
 [SWF(width="800", height="600")]
 public class UsingOrthogonalLens extends Chapter10SampleBase
 {
 public function UsingOrthogonalLens()
 {
 super();

CHAPTER 10

248

 camera.lens = new OrthogonalLens();
 camera.zoom = 100;
 }

 protected override function _createScene() : void
 {
 }
 }
}

Here, we set the lens property of our hover camera to a new instance of the OrthogonalLens class and

adjust the zoom value to something more suitable for our purposes (seeing as our scene will no longer be

scaling with distance). In this case, we will create two cubes and a trident primitive in our scene by adding

the following code to the empty _createScene() method:

var cube1 : Cube = new Cube();
cube1.x = -100;
cube1.material = new WireColorMaterial(0xFFFFFF);
_view.scene.addChild(cube1);

var cube2 : Cube = new Cube();
cube2.x = 100;
cube2.material = new WireColorMaterial(0x808080);
_view.scene.addChild(cube2);

_view.scene.addChild(new Trident(200, true));

Compiling the example will display the image shown in Figure 10-13. Without any scaling, the two cubes

appear identical in size and shape, whatever angle they are viewed from. This form of projection is useful

for certain games that are constructed from a series of tiled objects. With this arrangement, it is possible to

replicate the rendered output of a single complex object as a 3D sprite that is then tiled across a large area

to create many representations of the object, without the need for further rendering. It is also possible to

create large scrolling areas that use this type of tiled arrangement, because the rendering costs of a small

group of 3D sprites is a lot lower than the same number of complex objects projected with a perspective

lens class.

OPTIMIZING TIPS AND TRICKS

249

Figure 10-13. Using the OrthogonalLens object in the UsingOrthogonalLens example to produce an

isometric projection of the scene, where scale is preserved and parallel lines remain parallel

Summary

In this chapter, we have highlighted a number of optimizing tricks to assist with the performance and visual

consistency of your Away3D projects. We have also presented a collection of tips to assist in day-to-day

3D production such as how to create a normal map, how to convert between coordinate systems, and how

to apply different projection methods to a scene using the built-in features Away3D has to offer.

The following topics have been covered in this chapter:

� The total number of polygons projected and rendered in any one frame must be kept to a

minimum in order to maintain a smooth frame rate.

� Level-of-detail (LOD) objects in Away3D can reduce the number of rendered polygons in

the view by automatically adjusting the detail revealed in an object’s geometry

depending on its proximity to the camera and size on the screen.

� Clipping reduces the number of rendered polygons in the view by restricting the

rendering area to the defined boundaries of the viewport, with alternative clipping

techniques preventing culling artifacts by trading accuracy with overall rendering

performance.

CHAPTER 10

250

� Object culling can reduce the number of projection calculations carried out for large

scenes by using the bounding radius of individual mesh objects to cull them in a single

step when out of sight of the viewport.

� Polygon counts and rendering artifacts can be reduced at the modeling stage by being

mindful of sorting restrictions and limiting the use of double-sided materials.

� Materials can hog memory and processing resources, depending on the type and number used in

an Away3D scene.

� Static shading is a way of retaining a shaded look in a scene without the performance

overheads created by real-time shading.

� Bitmap materials need to be shared between models wherever possible to save on

memory consumption.

� Various coordinate systems of a 3D object including object space, parent space, scene space,

and screen space can be easily accessed using the built-in properties and methods in Away3D.

� Different lens objects are used for different projection methods in Away3D.

� The SphericalLens class produces a fish-eye lens effect for views that require large

fields of view.

� The OrthogonalLens class produces an isometric effect that preserves scaling and

parallel lines in a scene.

� The PerspectiveLens class produces a standard projection method that is best used

when trying to emulate the camera setting in another 3D application.

� The default ZoomFocusLens class is a legacy projection method that produces a

general-purpose projection effect.

Congratulations! You have made it to the end of this book. We hope that you have found some 3D

enlightenment along the way and that you have already felt compelled to start producing some of your own

Flash projects and experiments using Away3D. If you are interested in learning more, you can always join

the Away3D mailing list, or check out the tutorials and showcase sites over at www.away3d.com.

Adding a whole extra dimension to a traditionally 2D environment is no small step to master but can be

hugely rewarding for those looking for an alternative approach to interactive web content. The animation

and interaction capabilities of Flash combined with the 3D tools and interfaces of the Away3D engine offer

a powerful platform that is worth exploring if you are keen to develop 3D applications and games that are

easily accessible on the Web. Have fun!

251

Index

A

AbstractPrimitive class, 149–150

ActionScript, 193

active drawing position, 127

addChild(), 10, 25, 32

addEventListener(), 15

addFace(), 154

addSegment(), 129

alignToPath property, 201

ambient component, 100

AmbientLight3D class, 98–99

animated materials

AnimatedTexture class, 117

enabling interactivity, 117

interactive property, 116–117

InteractiveTexture class, 117

MovieMaterial class, 116

smooth property, 117

UsingAnimatedMaterials class, code listing,

116

VideoMaterial class, 118

See also extrusion tools; geometry

AnimatedTexture class, 117

animation

ActionScript, animating in, 193

alignToPath property, 201

animating objects in a straight line, 197

AnimatingAlongPaths class, 198

AnimationLibrary object, 204

away3d.core.geom package, 197

away3d.loaders package, 202

Bézier curves, 197

bones animation, 207

Chapter09SampleBase class, code listing,

194

COLLADA animations, working with, 207

_createScene(), 196, 199

Debug class, 205

ENTER_FRAME event handler, 193

Flash and, 193

flash3dbook.ch09.misc package, 194

frames, definition of, 193

GenericTweener class, 194, 197, 201

GTween, 194

importing 3D animations, 202

keyframes, definition of, 193

Loader3D class, 203

MD2 animations, working with, 202

Number3D objects, 197, 199

offset property, 201

Path class, 197

path tweening, 197

PathAnimator class, 197–198, 200

plane primitive, 196

progress property, 198

INDEX

252

pushback property, 196

scale(), 196, 199

spline, definition of, 197

target, 197

trace(), 205

tween(), 197

tween, definition of, 193

Tweener, 194

tweening, 193

tweening engines, 194

TweeningIn3D class, 196

TweenLite, 194

Tweensy, 194

using an ActionScript 3.0 tweening engine,

195

UsingMD2Animation class, 202

yUp property, 196

See also COLLADA animations; MD2

animations; tweening

animation techniques, automatic caching

system, 14

AntennaBitmap class, 78

ape_normals.jpg, 110

AppleImage texture, 92, 94

arcane namespace, 150, 182

arc-length parameterization, 144

arcLengthPrecision property, 144

armature, defining, 210

AS3Exporter class, 63–64, 76, 235

assets.swf, 67

Away3D

choosing your version of Flash, 2

FDT, using, 5

Flash CS4, using, 2

FlashDevelop, using, 6

Flex Builder, using, 3

Flex SDK, using, 7

Google Code, 1

setting up a project’s tool chain, 2

source code library, downloading, 1

Away3D drawing API, 123

away3d.cameras package, 36

away3d.cameras.lenses package, 23, 245

away3d.containers package, 20, 25

away3d.core.base package, 48

away3d.core.base.Object3D class, 20

away3d.core.clip package, 27, 224

away3d.core.geom package, 141, 160, 197

away3d.core.utils package, 93

away3d.events package, 175

away3d.exporters package

outputting 3D data as an ActionScript class,

63

away3d.lights package, 98

away3d.loaders package, 62, 133, 202, 207

away3d.materials package, 87, 95, 111

away3d.materials.utils package, 234

away3d.primitives package, 11, 48, 51, 137, 149

away3d.sprites package, 48, 69

AWAY3D_SRC path variable, adding to project

linked libraries, 6

axial symmetry, definition of, 48, 161

axis property, 162

axis, definition of, 21

B

back-face culling, 153

bothsides property, 224

definition of, 52, 223

when to disable, 224

Bézier curves, 122, 197

bilinear interpolation, 91

billboard, definition of, 48

bitmap filter effects, 68

bitmap materials, 91

BitmapAsset class, 78

BitmapData class, 11, 88, 180

BitmapInstanceTest class, code listing, 237

BitmapMaterial class, 11, 88, 93, 158

Blender, 64, 90

bones animation, 207, 210

bothsides property, 52, 160, 224, 226, 229–230,

232

boundingRadius property, 227

Bresenham line algorithm, 122

brightness property, 100, 104

buildPrimitive(), 149, 151, 153, 155–157

bump map, 107

ByteArray class, 134

C

camera

adjusting the amount of perspective

distortion and scaling, 39

aiming at objects, 41

away3d.cameras package, 36

away3d.cameras.lenses package, 245

INDEX

253

camera lenses, changing, 245

camera property, 19, 36

CameraProperties class, 37–38

changing the position of, 37

_createCamera(), 37, 39

creating a hover camera, 89

definition of, 20

distance property, 44–45

extreme wide-angle projections, 246

fish-eye lens, 246

focus property, 20, 36, 39, 246

HoverCamera3D class, 43

isometric projections, 247

lens property, 20, 245, 248

lookAt(), 41

OrthogonalLens class, 247–248

panAngle property, 44, 91

performing a simple camera rotation, 38

PerspectiveLens class, 246

polar coordinates, definition of, 45

rotationX, rotationY, and rotationZ

properties, 38

SphericalLens class, 246

steps property, 45

TargetCamera3D class, 42

TargetCameraMovement class, 43

tiltAngle property, 44

tracking a moving object, 42

traditional perspective projections, 246

UsingOrthogonalLens class, code listing,

247

UsingSphericalLens class, code listing, 246

viewing plane, definition of, 40

zoom property, 20, 36, 39, 246

ZoomFocusLens class, 246

See also light sources

camera control, first-person, 182

camera space (view space), 240

Camera3D class, 19–20, 36

Cast class, 93, 111, 114

centerMesh property, 163

Chapter03SampleBase class, 29, 34

code listing, 23

_createCamera(), 25

_createScene(), 25

_createView(), 25

extending, 27

_onEnterFrame(), 25

Chapter04SampleBase class, code listing, 48

Chapter05SampleBase class

code listing, 88

extending, 92

Chapter06SampleBase class, code listing, 124,

126

Chapter07SampleBase class

code listing, 147

extending, 155, 161

Chapter08SampleBase class

code listing, 171

extending, 177

implementing a texture-painting tool, 180

Chapter09SampleBase class

code listing, 194

extending, 195

Chapter10SampleBase class, code listing, 217

chessboard.jpg, 172

children property, 30

CLICK event handler, 64

clipping property, 224

clipping, definition of, 22, 26, 223

ClippingTest class, code listing, 225

closePath property, 161

Closier, Fabrice, 108

COLLADA animations

animation loops, 209

applying rotation to bones, 213

away3d.loaders package, 207

bone tweening, 210

bones animation, 207

Collada class, 207

_createScene(), 208, 211

creating programmatic animation with bones,

209

defining a rig (armature), 210

getAnimation(), 209

getBoneByName(), 212

handle property, 209

Jumping Jack example, 212

loadGeometry(), 208

_onLoadSuccess(), 209, 211

playing a COLLADA animation, 209

puma model example, 210

rotationZ property, 213

skeleton.dae, 211

trace(), 212

using programmatically controlled bones,

210

UsingColladaAnimation class, 207

See also animations; MD2 animations;

tweening

color materials, 91

color property, 100

INDEX

254

ColorMaterial class, 88, 93, 124

CombinedWireAndRegularCube class, 56

CommonPrimitives class, 51

CommonWirePrimitives class, 55

constructors, 12

continuous curve, defining, 142

continuousCurve(), 142

coverAll property, 161

_createCamera(), 25, 41

_createChildren(), 77

_createContent(), 75, 81

createFace(), 154, 157

_createLights(), 103–104, 110

createMaterial(), 71

_createMaterials(), 90, 93, 95

_createPoly(), 60

_createScene(), 25, 29–30, 50–51, 75, 90, 158,

162, 164, 173, 196, 199, 208, 211

createVertex(), 154

_createView(), 25–26, 50, 89, 172

creating level-of-detail containers, 221

creating procedural 3D content, 147

Cube class, 11–12, 52

cube primitive, 52

creating, 90

cube_normals.jpg, 110

CubeTexture class, 238

culling, definition of, 223

currentTarget property, 84

curveTo(), 122

D

.dae files, 47

Debug class, 205

depth property, 53

diffuse component, 100

directional light sources, 99

DirectionalLight3D class, 98–99, 103

distance property, 44–45

document class, 9

DOT3 bitmap material, 233

DOT3 shading, definition of, 106

Dot3BitmapMaterial class, 111

double-sided geometry, 229

draw(), 181

drawPath(), 142

E

elements, definition of, 47

Embed metatag, 78, 93, 172

ENTER_FRAME event handler, 193

ENTER_FRAME listener, 75

EnviroBitmapMaterial class, 114

EnviroColorMaterial class, 114

environment shading

definition of, 113

environment mapping, 113

environment.jpg, 113

panoramic projections, 114

reflectiveness property, 115

See also flat shading; normal map shading;

shading; shading materials

EnvironmentMaterials class, code listing, 113

execute(), 144, 166

extractFont(), 137

ExtrudingTextField3D class, code listing, 139

extrusion tools

away3d.core.geom package, 160

bothsides property, 160

closePath property, 161

coverAll property, 161

creating a ribbon, 159

extruding, definition of, 159

Path class, 160

PathExtrusion class, 159–160

profile, 159

spline, 160

subdivision property, 160

UsingPathExtrusion class, 160

See also animated materials; geometry

F

face, 48

Face class, 48, 124, 129

face normal, 106

far-field clipping, 224

FDT

adding the AWAY3D_SRC path variable to

project linked libraries, 6

configuring for use with Away3D, 5

New Flash Project wizard, 5

file property, 118

filters property, 84

first-person camera control, 182

FirstPersonCamera class, 183, 186, 188

INDEX

255

fish-eye lens, 246

Flash

ActionScript, animating in, 193

animation in, 193

ENTER_FRAME event handler, 193

frames, definition of, 193

keyframes, definition of, 193

tween, definition of, 193

tweening, 193

Flash CS4

ActionScript 3.0 Settings, 2

Flash Preferences pane, 2

including Away3D in the class path list, 2

Flash Professional, 133, 136

flash.filters package, 68

flash3dbook.ch07.primitives package, 149

flash3dbook.ch09.misc package, 194

flash3dbook.common package, downloading, 90

FlashDevelop

AS3Context settings panel, 7

configuring for use with Away3D, 6

Program Settings, 7

flat shading

bump map, 107

definition of, 102

face normal, 106

normal map, 107

See also environment shading; normal map

shading; shading; shading materials

FlatShadingMaterials class, 102, 110

Flex Builder, 2

configuring for use with Away3D, 3

Flex Navigator panel, 4

New Flex Library Project dialog, 3

Subclipse, 3

Flex Navigator panel, 4

Flex SDK

configuring for use with Away3D, 7

downloading, 8

GNU Make, 7

using Makefiles to create batch compile

scripts, 7

focus property, 20, 36, 39, 246

foreground property, 245

frames, definition of, 193

frustum clipping, definition of, 226

FrustumClipping class, 227

G

GenericTweener class, 194, 197, 201

geometry

3D models, using effectively, 228

away3d.core.clip package, 224

back-face culling, definition of, 223

bothsides property, 224, 226, 229–230, 232

boundingRadius property, 227

clipping, definition of, 223

ClippingTest class, code listing, 225

creating level-of-detail containers, 221

culling, definition of, 223

double-sided geometry, 229

far-field clipping, 224

frustum clipping, definition of, 226

FrustumClipping class, 227

intersecting polygons, sorting, 228

level-of-detail (LOD) objects, using, 219

LODObject class, 219

LODObjectTest, code listing, 220–222

manual culling, 227

near-field clipping, 224–225

NearFieldClipping class, 225, 227

object culling, 227

ObjectContainer3D class, 221

objectCulling property, 227

optimizing, 219

polygon count, setting, 228

rectangle clipping, 224

RectangleClipping class, 224, 227

reducing the number of rendered polygons,

219

View3D class, 224

viewport clipping, 224

Z fighting, 228

Z sorting, 228

See also animated materials; extrusion tools

getAnimation(), 209

getBoneByName(), 212

getChildByName(), 30

getDefinitionByName(), 67

getTimer(), 36, 206

gimbal lock, 34

glyphs

Basic Latin glyphs set, 137

definition of, 136

GNU Make, 7

Google Code, using the checkout URL, 2

gotoAndPlay(), 206

gotoAndStop(), 206

INDEX

256

Graphics class, illustration of 2D quadratic

Bézier curve, 122

GTween, 194

H

hand cursor

displaying, 176

useHandCursor property, 176

handle property, 205, 209

hardware rendering and the graphics processing

unit (GPU), 219

HeadModel class, 235

HeightMapModifier class

applying height maps to flat surfaces, 167

_createScene(), 164

creating a terrain, 163

execute(), 166

height map, definition of, 164

offset property, 166

_onKeyDown(), creating, 166

Perlin noise, using, 164

scale property, 166

uses for, 168

vertex normal, definition of, 164

hierarchical coordinate system, 32, 34

hover camera, 72

HoverCamera3D class, 43, 84, 125, 148, 171,

218

I

image gallery, implementing in Flash, 72

ImageMenuItem class, 73

importing 3D animations, 202

ImportingVectorShapes class, code listing, 133

Init class, 150

init objects, advantages and disadvantages of,

12

interactive property, 116–117

InteractiveTexture class, 117

interactivity

creating a button, 15

enabling in 3D, 15

first-person camera control, 182

HoverCamera3D class, 171

interacting with the rook model, 176

looking around by scrubbing the mouse, 188

MouseEvent3D class, 15

onClickCube function, 15

viewing a scene by moving the mouse, 185

walking with the keyboard, 183

intersecting polygons, sorting, 228

inverseSceneTransform property, 244

isometric projections, 247

J

Jumping Jack example, 212

K

keyboard events, creating event listeners for,

183

keyframes, definition of, 193

L

LatheExtrusion class

axial symmetry, definition of, 161

axis property, 162

centerMesh property, 163

_createScene(), 162

creating a vase, 161

subdivision property, 163

thickness property, 163

length property, 30

lens property, 20, 245, 248

level-of-detail (LOD) objects, 219

libraryClips property, 133

light sources

adding, 13

ambient component, 100

AmbientLight3D class, 98–99

away3d.lights package, 98

brightness property, 100

color property, 100

creating and configuring, 100

diffuse component, 100

directional light sources, 99

DirectionalLight3D class, 98–99, 103

enabling light source swapping at runtime,

104

light map, 98, 100

overall brightness of, 98

point light sources, 98

PointLight3D class, 13, 98, 103

ray tracing, 97

INDEX

257

shading, 97

specular component, 101

types of, 98

See also camera

LineSegment class, 57

lineTo(), 122, 127

Loader class, 61

loading an external SWF file in Flash, 67

Loader3D class, 62, 133, 203

LoaderCube class, 62

loadGeometry(), 62, 133, 204, 208

_loadImage(), 77, 79

loading and parsing 3D files, procedure for, 61

LoadingAS3Models class, 67

LoadingExternalModels class, 64, 76, 79

LODObject class

creating level-of-detail containers, 221

grouping objects in an ObjectContainer3D

instance, 222

LODObjectTest, code listing, 220–222

maxp property, 221

minp property, 221

ObjectContainer3D class, 221

lookAt(), 41, 173

M

manual culling, 227

material property, 51, 203

materials

AppleImage texture, 92, 94

applying a different material, 11

AS3Exporter class, 235

away3d.core.utils package, 93

away3d.materials package, 87, 95

away3d.materials.utils package, 234

bilinear interpolation, 91

bitmap materials, 91

BitmapData class, 88

BitmapInstanceTest class, code listing, 237

BitmapMaterial class, 11, 88, 93

Cast class, 93

Chapter05SampleBase class, code listing,

88

color materials, 91

ColorMaterial class, 88, 93

comparing bitmap and color materials, 95

_createLights(), 104

_createMaterials(), 90, 93, 95

CubeTexture class, 238

default, 11

definition of, 87

DOT3 bitmap material, 233

enabling light source swapping at runtime,

104

flat shading, definition of, 102

FlatShadingMaterials class, code listing, 102

HeadModel class, 235

material property, 87

MonkeyMesh, 90

NormalMapGenerator class, 234–235

object pooling and reuse, 237

_onEnterFrame(), 90

optimizing, 232

panAngle property, 91

Perlin noise, 11

phong bitmap material, 233

Prefab3D, 233

shading materials, optimizing, 233

shading, definition of, 87

ShadingColorMaterial class, 102, 104

simple versus shading materials, 87

_state variable, 89

static shading (texture baking), 95, 233

surface caching, 233

surfaceCache property, 233

texture mapping, definition of, 91

_toggle(), 90, 93, 95

UsingNormalMapGenerator class, code

listing, 234

UV coordinates, 91

WhiteShadingBitmapMaterial class, 102, 104

wire materials, definition of, 95

wireColor property, 96

WireColorMaterial class, 11, 88, 91, 95–96

WireframeMaterial class, 95–96

WireMaterials class, code listing, 95

Max3DS class, 62

maxp property, 221

maxX property and maxY properties, 27

MD2 animations

AnimationLibrary object, 204

animationLibrary property, 205

away3d.loaders package, 202

Debug class, 205

getTimer(), 206

gotoAndPlay(), 206

gotoAndStop(), 206

handle property, 205

importing an MD2 file, 202

Loader3D class, 203

loadGeometry(), 204

INDEX

258

material property, 203

MD2 file format, 202

_onLoadSuccess(), 203–204

play(), 206

playing an MD2 animation, 204

stop(), 206

trace(), 205

update(), 205

UsingMD2Animation class, 202

VertexAnimator object, 205–206

See also animation; COLLADA animations;

tweening

mesh, definition of, 48

Mesh class, 126

mesh modifiers

features of, 163

HeightMapModifier class, 163

minp property, 221

minX property and minY properties, 27

models

.dae files, 47

definition of, 47

.obj files, 47

.3ds files, 47

monkey.3ds model, 63

MonkeyMesh class, 65, 90

MOUSE_LEAVE handler, 187

mouseEnabled property, 178

MouseEvent class, 175

MouseEvent3D class, 15

away3d.events package, 175

sceneX, sceneY, and sceneZ properties, 177

using 3D mouse events, 175

using scene coordinates, 177

UV coordinates, 179

moveTo(), 122, 127

MovieClipSprite class, 69

MovieMaterial class, 116

MyFirstApp

adding 3D objects to the scene, 10

compiling into an SWF, 10

complete code listing, 16

Cube class, adding, 11

sphere primitive, adding, 12

View3D class, code listing, 9

MyLibraryClass class, 67

N

near-field clipping, 224–225

NearFieldClipping class, 225, 227

New Flex Library Project dialog, 3

normal map, 107

normal map shading

away3d.materials package, 111

bump map, 107

Closier, Fabrice, 108

_createLights(), 110

definition of, 106

Dot3BitmapMaterial class, 111

face normal, 106

generating a normal map, 108

normal map of a sphere, illustration of, 107

overlapping UVs, 107

Prefab3D, 108

specular property, 111

texel, definition of, 106

using DOT3 materials, 109

UsingNormalMaps class, code listing, 109

See also environment shading; flat shading;

shading; shading materials

normal vector, definition of, 52

NormalMapGenerator class, 234–235

Number3D objects, 197, 199

O

.obj files, 47

object culling, 227

object literals

init objects, 12

using as a constructor argument, 12

object pooling and reuse, 237

object space, 239

Object3D class, 29

ObjectContainer3D class, 20, 29, 33, 76, 221

objectCulling property, 227

offset property, 166, 201

offset(), 127–128

_onClick(), 76, 90

onClickCube function, 15

_onClickMenuItem(), 82–83

_onComplete(), 67

_onEnterFrame(), 25, 75, 84, 90, 173, 185, 189

_onImageComplete(), 79

_onImageError(), 79

_onKeyDown(), 166, 184

INDEX

259

_onKeyUp(), 184

_onLoadSuccess(), 203–204, 209, 211

_onMouseMove(), 178, 187

_onMouseOut(), 175

_onMouseOver(), 175

_onMouseUp(), 176

_onSuccess(), 64

origin, definition of, 21

OrthogonalLens class, 247–248

overlapping UVs, 107

ownCanvas property, 68, 84

P

painter’s algorithm, 22

PaintingOnObjects constructor, 181

panAngle property, 44, 84, 91

panoramic projections, 114

parent space, 239

parseGeometry(), 133–134

Path class, 141, 160, 197

path tweening, 197

PathAlignModifier class, 141–142, 144

PathAnimator class, 197–198, 200

PathExtrusion class, 159–160

pause(), 118

pendulum container

animating, 36

creating, 34

Perlin noise, 11, 164

perspective projection, definition of, 23

PerspectiveLens class, 246

phong bitmap material, 233

pitch(), 190

_pivot container, 81–85

Plane class, 51–52

plane primitive, 51, 196

play(), 118, 206

point light sources, 98

PointLight3D class, 13, 75, 98, 103, 173

polar coordinates, definition of, 45

polygon, 48

polygon count, setting, 228

position property, 243

postcards in space, 51

Prefab3D, 108, 233

primitives

creating a wireframe representation of a

primitive, 54

definition of, 47–48

procedural 3D content, creating, 147

profile, 159

progress property, 198

puma model example, 210

pushback property, 174, 196

Pyramid class

addFace(), 154

back-face culling, 153

BitmapMaterial class, 158

buildPrimitive(), 151, 153, 155–157

constructing the faces of the pyramid

primitive, 154

constructor, setting up, 150

createFace(), 154, 157

_createScene(), 158

createVertex(), 154

creating, 149

getters and setters, 151

Init class, 150

public properties, configuring, 151

pyramid mesh, building, 152

UV coordinates, mapping, 155

UV unwrapping, 156

WireColorMaterial class, 155, 158

pyramid primitive

AbstractPrimitive class, extending, 149

away3d.primitives package, 149

building, 149

flash3dbook.ch07.primitives package, 149

R

raster graphics

comparison to vector graphics, 122

definition of, 121

ray tracing, 97

rectangle clipping, 224

RectangleClipping class, 27, 224, 227

redapple.jpg, 92

reflectiveness property, 115

RegularPolygon class, 59

removeChild(), 10

render(), 14, 25, 75, 181

rendering

Chapter03SampleBase class, code listing,

23

clipping, definition of, 22

optimizing the render pipeline, 25

painter’s algorithm, 22

perspective projection, definition of, 23

screen vector, 23

view and, 9

INDEX

260

Z sorting, definition of, 22

See also scene

rig, defining, 210

RookMesh class, 173

rotationX and rotationY properties, 38

rotationZ property, 38, 213

S

scale property, 166

scale(), 196, 199

scene

away3d.core.base.Object3D class, 20

children property, 30

definition of, 10, 20

length property, 30

moving, rotating, and scaling in 3D, 32

nested 3D objects, 31

removing objects from a scene graph, 30

retrieving 3D objects by name or index

value, 30

scene graph, definition of, 29

scene property, 11, 19

See also rendering

scene space (world space), 239

Scene3D class, 10, 19–20, 29

scenePosition property, 243–244

sceneTransform property, 244

screen space, 240

screen vector, 23

screen(), 245

scrubbing

advantages and disadvantages of, 190

definition of, 188

seek(), 119

segment, 48

Segment class, 48, 129, 142

segmentation, 51

segmentsD property, 53

segmentsH property, 51, 53

segmentsW property, 51, 53

shading

definition of, 87

enabling shading effects, 13

light map, 98, 100

ray tracing, 97

WhiteShadingBitmapMaterial class, 13

See also environment shading; flat shading;

normal map shading; shading materials

shading materials

brightness property, 104

_createLights(), 103–104

enabling light source swapping at runtime,

104

flat shading, definition of, 102

FlatShadingMaterials class, code listing, 102

optimizing, 233

Prefab3D, 233

processing overhead of, 102

ShadingColorMaterial class, 102, 104

static shading, 233

surface caching, 233

surfaceCache property, 233

texture baking, 233

_toggle(), 104

WhiteShadingBitmapMaterial class, 102, 104

See also environment shading; flat shading;

normal map shading; shading

ShadingColorMaterial class, 66, 102, 104

sides property, 59

SimpleMaterials class, code listing, 92

skeleton.dae, 211

smooth property, 117

snowman.swf, 134

software rendering, performance demands of,

219

specular component, 101

specular property, 111

Sphere class, 12, 53

sphere primitive, 53

adding to a scene, 12

sphere_normals.jpg, 107, 110

spherical symmetry, definition of, 48

SphericalLens class, 246

spline, 160

definition of, 141, 197

Sprite class, 10, 79

Sprite3D class, 48, 69

sprites, definition of, 47

_state variable, 89

static shading, 95

steps property, 45

stop(), 206

Subclipse, 3

subdivision property, 160, 163

Subversion (SVN)

FDT, 2

Flex Builder, 2

INDEX

261

obtaining the Away3D source using an SVN

client, 1

SyncroSVN, 2

TortoiseSVN, 2

surface caching, 233

surfaceCache property, 233

Swf class, 133

SWF files, embedding ActionScript models, 66

SwfVector library, 134

SyncroSVN, 2

T

target, 197

TargetCamera3D class, 42, 125

TargetCameraMovement class, 43

tessellating triangles, 11

texel, definition of, 106

TextField class, 81

Textfield3D class, 137–138

texture baking, 95, 233

texture mapping, definition of, 11, 91

thickness property, 163

.3ds files, 47

3D coordinates

Away3D coordinate system, 21

axis, definition of, 21

camera space (view space), 240

contrasting with 2D coordinates, 21

converting from object space to scene

space, 242

converting from object space to screen

space, 245

converting from scene space to object

space, 244

coordinate system, definition of, 21

coordinate systems, list of main types, 239

Flash 10 coordinate system, 21

foreground property, 245

gimbal lock, 34

hierarchical coordinate system, 32, 34

inverseSceneTransform property, 244

object space, 239

parent space, 239

pendulum container, animating, 36

pendulum container, creating, 34

position property, 243

position, defining and calculating, 21

scene space (world space), 239

scenePosition property, 243–244

sceneTransform property, 244

screen space, 240

screen(), 245

3D coordinate systems, switching between,

239

transform property, 244

TransformTest class, code listing, 240

using containers as pivots, 34

vector of a point, 21

Z axis, 21

See also 2D coordinates

3D display list, tree hierarchy, 20

3D environment, three building blocks of, 19

3D file formats, table of modeling software and

export options, 61

3D primitive objects, 11

3D sprites

creating realistic smoke, 69

definition of, 69

tiltAngle property, 44

_toggle(), 90, 93, 95, 104

TortoiseSVN, 2

trace(), 205, 212

transform property, 244

TransformTest class, code listing, 240

tree hierarchy, 20

triangle, 48

TV set model, creating, 76

TVBox class, 73, 77

tvbox.3ds, 76

TVBoxMesh class, 73, 76

tween, definition of, 193

tween(), 197

Tweener, 194

tweening

alignToPath property, 201

animating objects in a straight line, 197

AnimatingAlongPaths class, 198

away3d.core.geom package, 197

Bézier curves, 197

_createScene(), 196, 199

flash3dbook.ch09.misc package, 194

GenericTweener class, 194, 197, 201

GTween, 194

Number3D objects, 197, 199

offset property, 201

Path class, 197

path tweening, 197

PathAnimator class, 197–198, 200

plane primitive, 196

progress property, 198

pushback property, 196

INDEX

262

scale(), 196, 199

spline, definition of, 197

target, 197

tween(), 197

Tweener, 194

tweening engines, 194

TweeningIn3D class, 196

TweenLite, 194

Tweensy, 194

using an ActionScript 3.0 tweening engine,

195

yUp property, 196

See also animation; COLLADA animations;

MD2 animations

TwistedImageGallery class, 81, 83

code listing, 73

2D coordinates

coordinate system, definition of, 21

origin, definition of, 21

X axis and Y axis, 21

See also 3D coordinates

U

update(), 205

URLRequest class, 176

useHandCursor property, 176

UsingAnimatedMaterials class, code listing, 116

UsingColladaAnimation class, 207

UsingMD2Animation class, 202

UsingMouseEvent3D class, 175–176

UsingNormalMapGenerator class, code listing,

234

UsingNormalMaps class, code listing, 109

UsingOrthogonalLens class, code listing, 247

UsingPathExtrusion class, 160

UsingSphericalLens class, code listing, 246

UsingTextField3D class, code listing, 137

UV coordinates, 91

definition of, 155

mapping, 155

origin of, 156

storing as a 2D position vector, 181

uv property, 180

UV unwrapping, 156

V

vanishing point

centering, 26

definition of, 10, 26

positioning of, 10

vector graphics

active drawing position, 127

addSegment(), 129

arc-length parameterization, 144

arcLengthPrecision property, 144

Away3D drawing API, using, 123

away3d.core.geom package, 141

away3d.loaders package, 133

away3d.primitives package, 137

Bézier curves, 122

Bresenham line algorithm, 122

ByteArray class, 134

Chapter06SampleBase class, code listing,

124

ColorMaterial class, 124

comparison to raster graphics, 122

continuous curve, defining, 142

continuousCurve(), 142

creating a path for aligning text, 142

creating an irregular vector shape in Flash,

code listing, 124

curved shapes, creating, 128

curveTo(), 122

definition of, 121

drawPath(), 142

embedding a font in an FLA in Flash

Professional, 136

execute(), 144

extractFont(), 137

extracting vector data from a font, 137

extracting vector shapes from an SWF file,

procedure for, 132

ExtrudingTextField3D class, code listing, 139

Face class, 124, 129

Flash Professional, 133

glyph, definition of, 136

HoverCamera3D class, 125

imported vector shapes, animating, 135

ImportingVectorShapes class, code listing,

133

libraryClips property, 133

lines and curves, creating, 122

lineTo(), 122, 127

Loader3D class, 133

INDEX

263

loadGeometry(), 133

Mesh class, 126

moveTo(), 122, 127

nonplaner shapes, creating, 130

offset(), 127–128

open-ended line segments, creating, 129

parseGeometry(), 133–134

Path class, 141

PathAlignModifier class, 141–142, 144

producing an animated scrolling text effect,

143

producing perfectly curved surfaces without

tessellation, 121

Segment class, 129, 142

shapes with holes, creating, 131

shapes with positive and negative winding,

131

SimpleVectorShapes class, code listing, 126

snowman.swf, 134

spline, definition of, 141

Swf class, 133

SwfVector library, 134

TargetCamera3D class, 125

text along a path, warping, 140

text, extruding, 139

Textfield3D class, 137–138

3D shapes, creating with straight lines, 126

3D text, importing, 136

3D vector shapes, drawing, 126

3D vector shapes, importing, 132

understanding the limitations of, 144

UsingTextField3D class, code listing, 137

vector shapes, guidelines for creating, 135

vector, definition of, 21

VectorText class, 138

VerdanaSwf class, 137

vertex normal, definition of, 164

vertex, definition of, 47

vertices property, 135

WarpingTextField3D class, code listing, 141

winding property, 131

WireColorMaterial class, 126

Wu, Guojian, 134

wumedia.vector package, 137

Vertex class, 48, 154

VertexAnimator object, 205–206

VideoMaterial class

file property, 118

pause(), 118

play(), 118

seek(), 119

view

clipping the viewport, 26

creating and using, 25

definition of, 19

managing the rendering process, 9

maxX and maxY properties, 27

minX and minY properties, 27

vanishing point, definition of, 26

viewport, definition of, 19

View3D class, 25

clipping property, 224

clipping property, resetting, 28

extending the Sprite class, 10

MyFirstApp, code listing, 9

viewing plane, definition of, 40

viewport clipping, 224

W

WarpingTextField3D class, code listing, 141

WhiteShadingBitmapMaterial class, 13, 102,

104, 181

winding property, 131

wire materials, definition of, 95

wire primitive classes, 54

wireColor property, 96

WireColorMaterial class, 11, 50, 56, 88, 91,

95–96, 126, 155, 158

WireCube class, 56

wireframe primitives, 55

WireframeMaterial class, 55, 95, 96

WireMaterials class, code listing, 95

WireRegularPolygon class, 60

Wu, Guojian, 134

wumedia.vector package, 137

X

X axis, 21

Y

Y axis, 21

yaw(), 190

yUp property, 51, 196

INDEX

264

Z

Z axis, 21

Z fighting, 228

Z sorting, 22, 174, 228

zoom property, 20, 36, 39, 246

ZoomFocusLens class, 246

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Layout conventions

	Chapter 1 Getting Started
	Getting the Away3D library
	Setting up a project
	Using Adobe Flash CS4/CS5
	Using Flash Builder
	Using FDT
	Using FlashDevelop
	Open source workflow using the Flex SDK and Makefiles

	Summary

	Chapter 2 Creating Your First 3D Project
	Starting up the engine
	Adding 3D objects to the scene
	Understanding constructors and initialization objects

	Lighting the scene
	Animating objects in 3D
	Enabling interactivity in 3D
	Summary

	Chapter 3 The View, Scene, and Camera
	Understanding the basics
	View
	Scene
	Camera

	Exploring the fundamentals of 3D
	Working with coordinates in 3D space
	The rendering process
	Clipping
	Z sorting
	Perspective Projection

	Setting up the chapter base class
	Creating and using the view
	Centering the vanishing point
	Clipping the viewport

	Managing the scene
	Adding and removing 3D objects
	Accessing 3D objects in the scene
	Working with nested 3D objects
	Moving, rotating, and scaling in 3D
	Using containers as pivots

	Creating and using cameras
	The Camera3D object
	Moving the camera
	Rotating the camera
	Adjusting the zoom and focus properties
	Aiming at objects using lookAt()

	The TargetCamera3D object
	The HoverCamera3D object

	Summary

	Chapter 4 Primitives, Models, and Sprites
	Knowing the basic terminology
	Vertices
	Faces and segments
	Meshes and primitives
	Billboards and sprites

	Setting up this chapter’s base class
	Understanding common primitives
	The plane primitive
	Back-face culling
	The cube primitive
	The sphere primitive

	Understanding wire primitives and line segments
	Wireframe primitives
	Combining wireframe and regular primitives
	Drawing irregular lines in space

	Using regular polygons
	Working with external models
	Workflow when loading a model

	Optimizing external resources for size and speed
	Converting a model to ActionScript
	Using the converted model
	Creating a library of models

	Applying bitmap filter effects to 3D objects
	Using 3D sprites
	Creating smoke using 3D sprites

	Tutorial: Creating a twisted image gallery
	Laying out the application shell
	Creating the TV sets
	Loading the gallery image
	Creating the menu items
	Displaying the content
	Adding movement and interactivity

	Summary

	Chapter 5 Materials, Lights, and Shading
	Understanding Away3D materials
	Using color and bitmap materials
	Working with wire materials
	Using lights and shading materials
	Lighting in Away3D
	Omnidirectional lighting with point lights
	Parallel beam lighting with directional lights
	Background lighting with AmbientLight3D

	Creating and configuring light sources
	Controlling the intensity of a light source
	Shading materials in Away3D
	Flat shading materials

	Using normal map shading
	Generating a normal map
	Using DOT3 materials in Away3D

	Using environment shading

	Using animated and interactive materials
	Using the MovieMaterial class
	Using the VideoMaterial class

	Summary

	Chapter 6 Vector Shapes and Text in 3D
	Working with vector graphics
	Vector graphics vs. raster graphics
	Creating lines and curves
	Using the Away3D drawing API

	Preparing the chapter base class
	Drawing 3D vector shapes
	Creating simple shapes with straight lines
	Creating curved shapes
	Creating open-ended line segments
	Creating nonplaner shapes
	Creating shapes with holes

	Importing 3D vector shapes
	Extracting vector shapes from an SWF file
	Animating imported vector shapes

	Importing 3D Text
	Extracting vector data from a font
	Extruding text
	Warping text along a path

	Knowing the limitations of vector graphics in Away3D
	Summary

	Chapter 7 Procedural 3D Content
	Preparing the chapter base class
	Building a pyramid primitive
	Starting with AbstractPrimitive
	Setting up the constructor
	Adding public properties
	Building the Pyramid mesh
	Mapping UV coordinates

	Using the extrusions tools
	Creating a ribbon using the PathExtrusion class
	Creating a vase with the LatheExtrusion class

	Using mesh modifiers
	Creating a terrain using the HeightMapModifier

	Summary

	Chapter 8 Interactivity
	Setting up the chapter base class
	Interacting with 3D objects in a scene
	Introducing the MouseEvent3D object
	Using MouseEvent3D’s scene coordinates
	Using MouseEvent3D’s UV coordinates

	First-person camera keyboard controls
	Walking with the keyboard
	Looking around by dragging the mouse
	Looking around by scrubbing the mouse

	Summary

	Chapter 9 Animation
	The basics of scripted animation
	Using basic tweening
	Path tweening
	Importing animation
	Working with MD2 animations
	Importing an MD2 file
	Playing an MD2 animation

	Working with COLLADA animations
	Importing a COLLADA file
	Playing a COLLADA animation

	Creating programmatic animation with bones
	Defining an animation rig
	Bone tweening

	Summary

	Chapter 10 Optimizing Tips and Tricks
	Preparing the chapter base class
	Optimizing geometry
	Using level-of-detail objects
	Culling and clipping polygons and meshes
	Back-face culling
	Viewport clipping
	Object culling
	Manual culling

	Using models effectively
	Polygon counts
	Intersecting polygons
	Double-sided geometry

	Optimizing materials
	Optimizing shading
	Static shading
	Normal map images

	Conserving material instances

	Exploring general best practice techniques
	Switching between 3D coordinate systems
	Converting from object space to scene space
	Converting from object space to screen space

	Changing camera lenses
	Traditional perspective projections
	Extreme wide-angle projections
	Isometric projections

	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

