
Visual
Design of
GraphQL Data

A Practical Introduction with
Legacy Data and Neo4j
—
Thomas Frisendal

www.allitebooks.com

http://www.allitebooks.org

Visual Design of
GraphQL Data

A Practical Introduction with
Legacy Data and Neo4j

Thomas Frisendal

www.allitebooks.com

http://www.allitebooks.org

Visual Design of GraphQL Data: A Practical Introduction with
Legacy Data and Neo4j

ISBN-13 (pbk): 978-1-4842-3903-2 ISBN-13 (electronic): 978-1-4842-3904-9
https://doi.org/10.1007/978-1-4842-3904-9

Library of Congress Control Number: 2018956408

Copyright © 2018 by Thomas Frisendal

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484239032.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Thomas Frisendal
Copenhagen S, Denmark

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3904-9
http://www.allitebooks.org

My wonderful wife, Ellen-Margrethe Soelberg,
has again experienced a period of having an author

in the house, yet she has at the same time undertaken
the proof-reading job in her usual, professional manner.

Thank You!.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

Table of Contents

Chapter 1: Visual Design of GraphQL Data ��1

What Is GraphQL and Why Is Design Important? ���1

Issues with Defining Data Structures in GraphQL ���4

Issues with Data Content in GraphQL ��5

Chapter 2: GraphQL Concepts ���7

Chapter 3: Getting Started ��13

Which Design Levels? ���13

Getting an Overview ��14

Chapter 4: An Email Example ���19

Chapter 5: Business Meaning ���27

Data Names in the API Matter ���27

Finding Standard Data Structures ���30

Establishing Identity and Uniqueness ���31

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 6: Presenting the Business Flow ���35

Presenting the Keys ��35

Presenting State Changes ���37

Presenting Versions of Data ��38

Chapter 7: Content Matters ��39

Housekeeping Proper ��39

Scalar Data Types ��40

Presenting Dates and Times ���40

Using Custom Schema Directives ���41

Design Is Decisions ���43

Chapter 8: Getting the Structure Right ���45

Which Objects and Which Relationships? ���45

GraphQL Schema Stitching, Making a Patchwork ���46

Presenting Relationships and Missing References ���48

Presenting the Right Level of Detail ��50

Good Relationships ���56

Chapter 9: From Graph to Trees ��61

Structure Design at the API Level ���61

Positioning the Graph for Generation of Trees���63

Chapter 10: Resolving Legacy SQL Data Issues ����������������������������������69

Data Names ��71

Identity, Uniqueness, and Keys��72

States, Versions, and Housekeeping ���74

Scalar Data Types ��75

Date and Time ���76

Naming Relationships ���76

Table of ConTenTsTable of ConTenTs

vii

Relationship Types ��77

One-to-One Relationships ���77

One/Zero to Zero/Many Relationships ���77

Self References ���77

Many-to-Many Relationships ��78

Missing Information ��80

Properties on Relationships ��80

Chapter 11: Using GraphQL with an Existing Graph Database ������������81

The Neo4j GraphQL Plugin ��82

Generating Your First GraphQL Schema ��83

Data Names ��86

Identity, Uniqueness, and Keys��86

States, Versions, and Housekeeping ���86

Scalar Data Types ��87

Date and Time ���87

Naming Relationships ���88

Relationship Types ��89

Missing Information ��90

Properties on Relationships ��91

Chapter 12: Using GraphQL with a New Graph Database��������������������93

Design Goals of the Neo4j-GraphQL Integration ���93

Problem 1: Schema Duplication ��95

Problem 2: Server/Client Data Mismatch ��95

Problem 3: Superfluous Database Calls ��96

Problem 4: Poor Performance��97

Problem 5: Boilerplate Overdose ���98

Table of ConTenTsTable of ConTenTs

viii

Generating Your Neo4j Database from the GraphQL Schema �����������������������������99

Neo4j-GraphQL Resources ��104

Afterword: Summary ��107

Index ���109

Table of ConTenTsTable of ConTenTs

ix

About the Author

Thomas Frisendal is an experienced database

consultant with more than 30 years on

the IT vendor side and as an independent

consultant. He has worked with databases and

data modeling since the late 70s; since 1995

primarily on data warehouse projects. He has a

strong urge to visualize everything as graphs -

even datamodels! He excels in the art of

turning data into information and knowledge.

His approach to information- driven analysis

and design is “New Nordic” in the sense that it represents the traditional

Nordic values such as superior quality, functionality, reliability and

innovation by new ways of communicating the structure and meaning of

the business context.

He lives in Copenhagen, Denmark. His firm, TF Informatik, was

founded in 1995 and is registered in Denmark (DK66048950). He is on

LinkedIn and Twitter @VizDataModeler1. Thomas is an active writer and

speaker.

His recent book about Graph Data Modeling2 has a lot of background

and in-depth guidance on most of what has been presented in this book. It

proposes property graph modeling as a general modeling paradigm. It has

many examples from many contexts.

1 https://twitter.com/VizDataModeler
2 https://technicspub.com/graph-data-modeling/

https://twitter.com/VizDataModeler
https://technicspub.com/graph-data-modeling/
https://twitter.com/VizDataModeler
https://technicspub.com/graph-data-modeling/

x

Figure 1. Graph Data Modeling

abouT The auThorabouT The auThor

xi

About the Technical Reviewer

Ahmed Mohammed is an experienced full stack Java/Angular Developer.

He is skilled in Java, JavaScript, CI/CD, Spring Boot, GraphQL, GraphQL

Apollo, Linux, Microservices in Cloud, and Angular 2/5. He has an MSc

and BSc of Information Technology focused in Web Technologies.

xiii

Acknowledgments

Named relationships is one of the fundamental recommendations of

this book. The importance of this was made originally by Prof. Joseph

D. Novak, who was one of the fathers of Concept Mapping in the

development of the psychology of learning.

GraphQL is designed by Facebook, Copyright © 2015-2016. It is now an

open source project, where the software is available under a BSD 3 license.

Refer to www.graphQL.org1 for more information.

The GraphQL @relation schema directive originated at Graphcool,

refer to www.graph.cool2 for more information.

The chapter about using GraphQL with a new graph database draws

heavily on a blogpost Five Common GraphQL Problems and How Neo4j-

GraphQL Aims To Solve Them3 written by Will Lyon of Neo4j4. I am

quoting from it with the author’s kind permission. Thank you!

1 http://www.graphQL.org
2 http://www.graph.cool
3 https://blog.grandstack.io/five-common-graphql-problems-and-how-
neo4j-graphql-aims-to-solve-them-e9a8999c8d43

4 https://neo4j.com

http://www.graphql.org/
http://www.graph.cool/
https://blog.grandstack.io/five-common-graphql-problems-and-how-neo4j-graphql-aims-to-solve-them-e9a8999c8d43
https://blog.grandstack.io/five-common-graphql-problems-and-how-neo4j-graphql-aims-to-solve-them-e9a8999c8d43
https://blog.grandstack.io/five-common-graphql-problems-and-how-neo4j-graphql-aims-to-solve-them-e9a8999c8d43
https://neo4j.com/
http://www.graphql.org/
http://www.graph.cool/
https://blog.grandstack.io/five-common-graphql-problems-and-how-neo4j-graphql-aims-to-solve-them-e9a8999c8d43
https://blog.grandstack.io/five-common-graphql-problems-and-how-neo4j-graphql-aims-to-solve-them-e9a8999c8d43
https://neo4j.com/

xv

Introduction

You know the basics of GraphQL, but you are still uncertain about how to

get business content and API structures right in GraphQL?

GraphQL is indeed an attractive data API for applications (and people).

The GraphQL Schema is pivotal to the success of a GraphQL

API. Most development projects involve many stakeholders. There are the

developers, of course, and there are business experts as well as application

owners, who are to consume the content of the API. This means that the

schema is not only a scope contract, but also the authoritative source

of structure and meaning of the context covered by the API. There

are many other contexts, where complex structures and semantics

must be communicated effecetively between a number of people with

various backgrounds. And the trick invariably turns out to be: Use good

visualizations!

The main proposition of this book is graph visualization: GraphQL

Schema structure and meaning must be visualized, and the book shows

you how. Since the schema is a “data graph” containing related concepts

in a network organized as a directed graph, the increasingly popular

property graph paradigm is very appropriate for visualizing GraphQL

structures and semantics.

The second theme of this book is that of quality. GraphQL APIs can

be used in many constellations possibly including legacy data and/or

externally sourced data. Quality must be ensured in all cases. Both on the

definitional level (business terminology etc.) and on the data content level

(meaningful presentation of the data in business-friendly formats). The

book summarizes the top 10 most important focal areas of such quality

assurance remedies.

xvi

In this edition of the book, the following was added:

• Catching up with the latest version of the GraphQL

specifikation (minor adjustments)

• Brief explanation of “schema stitching” etc. and the

impact of it on development style

• Discussion of resolver requirements, in particular

vis-a- vis legacy SQL data

• Explanation of the Neo4j-GraphQL integration and

a look at applying GraphQL to both existing and new

Neo4j graph databases.

In this manner, the (data and metadata quality) challenges of front-

ending old and new databases with a GraphQL API is the third theme of

this book.

The book contains simple guidelines based on lessons learned

from real life data discovery and unification. This helps developers and

architects to get good quality in the resulting API designs. And the visual

techniques helps in producing convincing visual communication about

the structure of the API designs.

Spending time on schema quality means that developers work from

sharp definitions, which in turn leads to greater productivity and well-

structured applications.

InTroduCTIonInTroduCTIon

1© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_1

CHAPTER 1

Visual Design
of GraphQL Data
 What Is GraphQL and Why Is Design
Important?
GraphQL is getting a lot of interest. GraphQL is a Facebook open source

project that has its primary information site at http://graphql.org/.1

My interest is the relationship between GraphQL and design. That

relationship is certainly very real. In graphql.org’s own words:

“Describe what’s possible with a type system. GraphQL APIs
are organized in terms of types and fields, not endpoints.
Access the full capabilities of your data from a single endpoint.
GraphQL uses types to ensure apps only ask for what’s possi-
ble and provide clear and helpful errors. Apps can use types to
avoid writing manual parsing code.”

The gist of GraphQL can be seen in the example in Figure 1-1, from

graphql.org.

1 http://graphql.org/

http://graphql.org/
http://graphql.org/

2

The context of Figure 1-1 is Star Wars metadata. And what you see to

the right is actually part of a GraphQL Schema. What you see on the left

could well be a query to the API, and the resulting set of data will share

exactly that (data) structure.

The open GraphQL project started in 2012 and belongs in the software

architecture universe talked about as APIs these days. In Facebook’s own

terms: “… GraphQL [is] a query language created by Facebook in 2012 for

describing the capabilities and requirements of data models for client-

server applications” (GraphQL on GitHub2).

2 http://facebook.github.io/graphql/October2016/

Figure 1-1. GraphQL simple example

Chapter 1 Visual Design of graphQl Data

http://facebook.github.io/graphql/October2016/

3

The graphql.org site does a nice job of explaining, so I will not repeat

all of that here. Graphcool has a nice blog post called “GraphQL Server

Basics: The Schema”,3 which includes a good introduction to structure and

behavior of GraphQL. William Lyon of Neo4j (http://www.neo4j.com/4) has

made an excellent overview of GraphQL, which is available as a “refcard”

from Dzone at GraphQL Refcard5 (login is required).

The best tool for getting structure and meaning right is visualization

of the graphs. The property graph approach is very powerful for database

design across many different data stores. And it is equally well suited for

design of data-level APIs, as you will see in this book.

Also notice that the most developers today only have indented bracket

displays with “prettify” functionality available. Type completion, driven by

the GraphQL Schema, is also available.

Note there are a few “boxes and arrows” poC-level diagramming
tools on the web. see for example graphQl Voyager,6 graphQl
Visualizer graphQl Visualizer,7 or graphQl rover.8 all of them are
“after the fact” in the sense that they visualize from the schema
definition. (and they are, to my regret, in the legacy boxes-and-
arrows style.)

High-quality data designs are possible only if you get the structure and

the meaning right, and that is what this book is about.

3 https://blog.graph.cool/graphql-server-basics-the-schema-ac5e2950214e
4 http://www.neo4j.com/
5 https://dzone.com/refcardz/an-overview-of-graphql
6 https://apis.guru/graphql-voyager/
7 http://nathanrandal.com/graphql-visualizer/
8 https://brbb.github.io/graphql-rover/

Chapter 1 Visual Design of graphQl Data

http://www.neo4j.com/
https://blog.graph.cool/graphql-server-basics-the-schema-ac5e2950214e
http://www.neo4j.com/
https://dzone.com/refcardz/an-overview-of-graphql
https://apis.guru/graphql-voyager/
http://nathanrandal.com/graphql-visualizer/
https://brbb.github.io/graphql-rover/

4

 Issues with Defining Data Structures
in GraphQL
As you know, GraphQL is not a database, but it is an API of data, which is

described in (and produced from) a set of GraphQL schema(s). Since so

much relies on the schema, you need to ensure it has high quality.

You are also looking at servers producing data from many different

sources, legacy or new. Whatever kind of source, there may be quality

issues. Garbage in equals garbage out. For that reason, GraphQL API

design may take you into having to resolve data discovery and unification

issues, such as quality, metadata, and business acceptance.

The focus should always be on the application or business-facing

aspects of the interface exposed by the GraphQL server, based on the

definitions in the server-side schema.

Consider these guidelines and issues for a GraphQL API:

• Structural mistakes (many-to-many et al.) should be

avoided.

• Meaning must be provided and preserved in business

terms—in the end, business people will meet the

model through the tools.

• Uniqueness must be provided.

• Identity should also be nurtured, just like in a data model.

• The presentation of the data through the API should

present (“prettify”, if you will) the data in business-

and developer-friendly manners—including handling

missing or bad data.

• The model should essentially be hierarchical, so care

should be spent on nursing the hierarchies and their

levels, just like one would do in a multidimensional model.

Chapter 1 Visual Design of graphQl Data

5

• In particular, the traversal of many-to-many data

structures in the underlying data model should be

carefully understood when the API structures that span

such relationships are set up.

The major value proposition of this book is to illustrate how issues

like these are handled in the GraphQL environment by way of adding

visualizations in the property graph style.

 Issues with Data Content in GraphQL
Handling the garbage-in/garbage-out dilemma is a matter of:

• Getting to know the data better (a.k.a. data discovery)

• Unifying data from disparate sources (a.k.a. data

unification).

There is (too) much information about data preparation and ETL on

the Internet and in books (including one of mine). In the GraphQL context,

you should be observant of these 10 most important issues:

• Including business names in the API

• Providing identity and uniqueness

• Presenting the keys

• Presenting state changes

• Presenting versions of data

• Presenting dates and times

• Presenting relationships and missing references

• Determining which objects and which relationships

• Presenting the right level of detail

• Developing good relationships

Chapter 1 Visual Design of graphQl Data

6

How much work is necessary on the resolver side really depends on

these issues, most of which are partly out of your control:

• The quality of the data sources by themselves

(structure, meaning, and content)

• Conflicts arising from unification of data from multiple

sources (both upstream and down-stream)

We will look at these issues in later chapters of this book.

First, we need to deconstruct the GraphQL language.

Chapter 1 Visual Design of graphQl Data

7© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_2

CHAPTER 2

GraphQL Concepts
There are a number of concepts defined in the GraphQL context. The

concept model shown in Figure 2-1 lays out all the important ones.

Figure 2-1. GraphQL concepts

8

(Refer to the GraphQL Schema introduction at http://graphql.org/

learn/schema/ for all the schema details.1) A few words on the diagram

style shown in Figure 2-1:

• It is a directed graph (of the concept map category)

• Relationships are named

• Relationships may be:

 – One-to-one (no arrows)

 – One-to-many (arrow)

 – Many-to-many (double-sided arrow and not found

Figure 2-1).

You can learn more about this diagramming style in my book entitled

Graph Data Modeling for NoSQL and SQL,2 2016, Technics Publications

(visit https://technicspub.com/graph-data-modeling/).

Some concepts, such as Mutation, Input, Function, and Subscription,

are application/server construction services (updates, inserts, DB

mapping, and push services), which also are part of the schema. However,

since my focus is on the structure and meaning of the exposed model in its

own right, I disregard all of them in the following discussion.

1 http://graphql.org/learn/schema/
2 https://technicspub.com/graph-data-modeling/

Chapter 2 GraphQL ConCepts

http://graphql.org/learn/schema
http://graphql.org/learn/schema
https://technicspub.com/graph-data-modeling
http://graphql.org/learn/schema/
https://technicspub.com/graph-data-modeling/

9

The rest of the concepts are pretty much what their names imply. Here

are some one-liner explanations:

Concept Explanation

GraphQL

schema

Defines the structure and the meaning of the exposed data model (as

well as the data-manipulation functions, which we do not look at here).

enum Basically a list of values, which can be applied to a field.

Query the root query defines the anchor point of the application graph (tree)

and shapes the result sets.

Interface essentially a “view” of an object (or query); it is frequently used for

“subtyping”.

Union a concatenation of results sub-graphs sharing related content.

For example various types of persons, as in users, actors, etc.

object a business object (think Movie or starship in the Star Wars example).

Fragment a subset of a sub-graph. Inline fragments are typically used with

union-constructs.

Field the data-bearing things. Can be scalars or lists (yes, like in repeating

groups).

Directive User-definable extensions to the GraphQL syntax.

@relation is a good example of a GraphQL directive. It is introduced

by Graphcool3 (see http://www.graph.cool/). I like it very much, because

it names the relationships.

Otherwise you just connect object types like this:

Type Movie { actors: [Actor] })

3 http://www.graph.cool

Chapter 2 GraphQL ConCepts

http://www.graph.cool/
http://www.graph.cool/

10

In general, reusable GraphQL schema directives can be used for a

variety of purposes:

• Enforcing access permissions

• Formatting date strings

• Auto-generating resolver functions for a particular

backend

• Marking strings for internationalization

• Synthesizing globally unique identifiers

• Specifying caching behavior

• Skipping, including, or deprecating fields

• And much more

See the blog post from Ben Newman4 at https://dev-blog.apollodata.

com/reusable-graphql-schema-directives-131fb3a177d1 for all the

details.

Note that in the latest working draft of the GraphQL specification5

(see https://github.com/facebook/graphql/blob/master/spec/

GraphQL.md), the following types can be extended by user-defined

extensions: Scalars, Objects, Interfaces, Unions, Enums, and InputObjects.

This might be used, for example, by a local service to represent data a

GraphQL client only accesses locally, or by a GraphQL service that is

itself an extension of another GraphQL service. The extensions can be

constants, directives, or field definitions.

The syntax graph of the schema parts, which we are interested in, looks

like Figure 2-2 on the meta level.

4 https://dev-blog.apollodata.com/reusable-graphql-schema-directives-
131fb3a177d1

5 https://github.com/facebook/graphql/blob/master/spec/GraphQL.md

Chapter 2 GraphQL ConCepts

https://dev-blog.apollodata.com/reusable-graphql-schema-directives-131fb3a177d1
https://dev-blog.apollodata.com/reusable-graphql-schema-directives-131fb3a177d1
https://github.com/facebook/graphql/blob/master/spec/GraphQL.md
https://github.com/facebook/graphql/blob/master/spec/GraphQL.md
https://dev-blog.apollodata.com/reusable-graphql-schema-directives-131fb3a177d1
https://dev-blog.apollodata.com/reusable-graphql-schema-directives-131fb3a177d1
https://github.com/facebook/graphql/blob/master/spec/GraphQL.md

11

Figure 2-2. GraphQL syntax elements

The rounded rectangles signify properties of the concepts (object

types) they are connected to.

Let’s look at data design issues in general and determine which of

those are relevant in the GraphQL API context.

Chapter 2 GraphQL ConCepts

13© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_3

CHAPTER 3

Getting Started
 Which Design Levels?
Classical data modeling failed in a number of ways. We have to do better

than that. What did not work well was conceptual modeling, which has

faded away in favor of what one could call “The Great Pragmatic and

Quick, Unified Data Modeling Practice”.

Today many development organizations have a one-step approach

to modeling, which is performed when necessary in the development

process. Logical and physical models have come together. The driving

force is time to delivery, and what the unified process is trying to answer

are two aspects of developing a good solution:

• Describing the “what” in terms of a logical data model

• Describing some aspects of the “how,” e.g., physical

access optimization for better performance

In the GraphQL context, the aim is complete independence between

applications (or users) and data stores. Since we (in this book) are only

interested in the schema(s) and queries, we should focus on the “what”

question.

14

In other words, we need a fresh take on the conceptual level. It still

adds business value, because it is a tool to communicate effectively with

business folks about things like terminology, relationships, and the like.

This is why visualization techniques must play a dominant role.

Secondly, we should also nurse the “logical level,” since it (the

schema) is a designed artifact encompassing design decisions about

scope, generalizations, abstractions and aggregations, relationships and

presentation. Again, visualization is a great tool for understanding and for

communication.

For the physical level we have various use cases of the resolver

functions. We look at some of the requirements in chapters toward the end

of the book. We describe some considerations, which can influence the

resolver functionality, but we are not giving specific code examples, such

as JavaScript or similar.

But let us start at the top. A good way to get going is to try to

understand and scope the subject area.

 Getting an Overview
If you don’t know the scope already, you need to get an overview of a

subject area that you are creating a schema for.

Figure 3-1 shows an overview of some business concepts in a car

dealership.

Chapter 3 GettinG Started

15

Notice how the upper levels tend to be classifications and other

hierarchies. The levels in the middle are the core business objects engaged

in the business processes.

The concepts at the lowest level are, interestingly enough, all business

events or other records, some of which are the snapshot type (like

inventory on a given date).

Figure 3-1. Car dealership concepts overview

Chapter 3 GettinG Started

16

Such an overview will give you a head start on the API, so spend a few

hours on creating one on a whiteboard, have other business people review

it, and let it guide the rest of your schema-definition activities.

You can also consider building an overview bottom up from the data

sources. Frequently a combination of top down and bottom up gives you

what you need.

Note that the concepts on the lowest level are actually the value chain

of the business—starting with budget morphing into procurement and

then to inventory and sales. (And later to maintenance and to profitability

calculations.)

Obviously, there should be no “islands”—everything should be

connected to something.

You can learn a lot more about concept-level analysis and design in my

book entitled Graph Data Modeling for NoSQL and SQL,1 2016, Technics

Publications (visit https://technicspub.com/graph-data-modeling/).

Notice the high degree of connectedness of even a simple business

operation such as a car dealership. Clearly graph representation is the way

to go, and GraphQL developers can learn a lot from such high-level maps,

which today are called “enterprise knowledge graphs”.

Once you get into looking at field properties, the schema data design

will become clearly visible, because concepts, which carry properties, are

business objects, whereas concepts without properties are probably just

abstractions, which you may wish to get rid of, or describe with properties,

as appropriate.

Note that even though you should try to map the enterprise (on a

high-level concept map), you should not take too many, or too big, steps.

In fact, recent developments in the GraphQL community encourage a

stepwise approach and reuse of existing schema parts together with freshly

developed schema parts. We will return briefly to this (schema stitching

and schema binding) in a later chapter.

1 https://technicspub.com/graph-data-modeling/

Chapter 3 GettinG Started

https://technicspub.com/graph-data-modeling/
https://technicspub.com/graph-data-modeling
https://technicspub.com/graph-data-modeling/

17

We are looking at defining GraphQL schemas and APIs. The physical

gofers are hidden in resolver functions and we will mention them in the

last part of this book.

Our focus is on both the business aspects of meaning of content and

also on the structural aspects of related data.

To be precise, what we are looking for is:

• Meaning

• Structure

This is why graph visualization is the universal key to looking at

structured information.

It is fair to say that the visual parts of this book propose the property

graph modeling style as the best design pattern for GraphQL schemas.

Chapter 3 GettinG Started

19© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_4

CHAPTER 4

An Email Example
The GraphQL Schema is a data graph containing related concepts in a

network, organized as a directed graph. In a way, you could say that the

GraphQL approach makes everything look like a graph! (Which is actually

the case, anyway.)

This makes the so-called property graph approach to graph

visualization a powerful opportunity for the GraphQL Schema designer.

We will work from a simple email graph data model. First let’s get an

overview of the basic concepts of email (as defined in the Internet Message

Format standard called RFC 5322). See Figure 4-1.

Figure 4-1. Email concepts overview

20

Figure 4-1 is loyal to the terminology actually used in the Internet

standard. This gives rise to issues, if you try to build a classic, normalized

data model from this, which we discuss shortly.

Notice that some relationships are one-to-one (for example, Originator

from Address), whereas other are many-to-many (e.g., Keyword tags

Message). There are also some one-to-many relationships. We will come

back to this issue, but please make a mental note of this:

**Caveat: Relationship cardinalities matter, because although GraphQL

is a directed graph paradigm, the set of possible queries within a GraphQL

Schema is a subset of sub-graphs all originating as sub-trees from the root

query. **

Descoping a little bit: This email subject area is a bit complex, so let’s

skip the business of resending messages for now.

Let’s move on to describe the scope of the GraphQL data scope in the

form of a detailed property graph, as shown in Figure 4-2.

Figure 4-2. Email as a property graph

Chapter 4 an email example

21

Notice that Figure 4-2 adds little property boxes to the concept model.

This is a compact way of describing structure and content in the same

diagram. This makes the diagram a true property graph model. (You can

learn much more about property graphs in my book entitled Graph Data

Modeling for NoSQL and SQL,1 2016, Technics Publications. See https://

technicspub.com/graph-data-modeling/.)

To recap, the circles are concepts, which are the nodes of the graph.

A message, for example, is a concept, and it is part of several relationships,

such as the originator (who sent the message) or “in reply to” (which

other message is replying to). The properties can be attached to concepts

(nodes) and/or relationships (edges of the graph).

The notation uses arrowheads for cardinalities. In Figure 4-2, you find

one-to-one, one-to-many, and many-to-many relationships. For a brief

explanation of property graphs,2 see http://bit.ly/2hMNYvE.

In the GraphQL context, the property graph is useful for representing

the structure of the schema:

• Nodes are types (object types, interface types, and union

types)

• Relationships represent the connections between types

• Properties are the fields of the types (scalars or lists)

Note as a matter of fact, if you are willing to “forget” some of
the business concepts (like “Originator” and “Destination,” you can
reduce the model to be more compact. See Figure 4-3.

1 https://technicspub.com/graph-data-modeling/
2 http://bit.ly/2hMNYvE

Chapter 4 an email example

https://technicspub.com/graph-data-modeling/
https://technicspub.com/graph-data-modeling
https://technicspub.com/graph-data-modeling
http://bit.ly/2hMNYvE
https://technicspub.com/graph-data-modeling/
http://bit.ly/2hMNYvE

22

notice that in the compact version shown in Figure 4-3, there are
more m:m relationships. a logical model like that (yes, logical models
may include m:m) is problematic with SQl source, but makes good
sense in a graph database.

Note that in property graphs, the relationships are named. This is

important because those names are part of the business semantics, and

by visualizing them, it is much easier to review and discuss the meaning

imposed by the structure. Graphcool offers a @relation directive for getting

the names of the relationships into the schema. This is a very good idea.

The property graph representation is considerably more compact

than the “boxes and arrows” method found in most diagramming

approaches. In the GraphQL space, there is a tool called GraphQL

Voyager3 (https://apis.guru/graphql-voyager/). The Voyager is based

3 https://apis.guru/graphql-voyager/

Figure 4-3. Email property graph simplified

Chapter 4 an email example

https://apis.guru/graphql-voyager
https://apis.guru/graphql-voyager/

23

on a standard data model diagramming library, which is in the “boxes and

arrows” style. Getting a solid grip on the structure across, say, five or eight

object types is not easy. The property graph representation is much more

compact and has been successful over the last 15 years, and it comes out

of the Nordics. Neo4J,4 based in Malmö, invented the property graph

model as a data model, and they are now a leading player in the graph

database segment worldwide. The property graph style proposed here was

designed by the author in his 2016 book on Graph Data Modeling for SQL

and NoSQL.5

At this point, we have dealt with schema visualization, and that makes

GraphQL pretty and good:

• Alignment with business terminology and definitions

(structure and content fields)

• Understanding complex schemas, structured as graphs

Expressed in the GraphQL Schema Definition Language (SDL), the

(non-compacted) email data model could be specified along these lines:

 1 #

 2 # Email Graph Data Model

 3 #

 4 # GraphQL Schema

 5 #

 6 # Based on Internet Message Format RFC5322, but simplified

somewhat

 7 #

 8 # Copyright Thomas Frisendal, 2017

 9 #

10

4 https://neo4j.com/
5 https://technicspub.com/graph-data-modeling/

Chapter 4 an email example

https://technicspub.com/graph-data-modeling/
https://technicspub.com/graph-data-modeling/
https://neo4j.com/
https://technicspub.com/graph-data-modeling/

24

11 scalar Datetime

12 scalar AddrSpec

13 enum destination_role {

14 To

15 Cc

16 Bcc

17 }

18

19 enum originator_role {

20 From

21 Sender

22 Reply to

23 }

24

25 type Address {

26 id: ID!

27 display_name: String

28 address_spec: AddrSpec!

29 address_from: Originator! @relation(name: "From")

30 address_sender: Originator @relation(name: "Sender")

31 address_reply_to: Originator @relation(name: "ReplyTo")

32 destination_to: [Destination] @relation(name: "To")

33 destination_cc: [Destination] @relation(name: "Cc")

34 destination_bcc: [Destination] @relation(name: "Bcc")

35 }

36

37 type Originator {

38 id: ID!

39 origin_date: Datetime!

40 originator_role: originator_role!

41 message: [Message!] @relation(name: "Originator")

42 address_from: Address! @relation(name: "From")

Chapter 4 an email example

25

43 address_sender: Address @relation(name: "Sender")

44 address_reply_to: Address @relation(name: "ReplyTo")

45 }

46

47 type Destination {

48 id: ID!

49 destination_role: destination_role!

50 received_date: Datetime!

51 message: Message! @relation(name: "Destination")

52 address_to: [Address]! @relation(name: "To")

53 address_cc: [Address] @relation(name: "Cc")

54 address_bcc: [Address] @relation(name: "Bcc")

55 }

56

57 type Message {

58 id: ID!

59 subject: String

60 comments: String

61 originator: Originator! @relation(name: "Originator")

62 destinations: [Destination]! @relation(name:

"HasDestination")

63 referencing: [Message] @relation(name: "Referencing")

64 in_reply_to: [Message] @relation(name: "InReplyTo")

65 keywords: [Keyword] @relation(name: "Tags")

66 }

67

68 type Keyword {

69 id: ID!

70 keyword: String! @isUnique

71 messages: [Message] @relation(name: "Tags")

72 }

73

Chapter 4 an email example

26

74 type Query {

75 messages(limit: Int = 20): [Message]!

76 }

77

78 schema {

79 query: Query

80 }

Note that this example uses the Graphcool-invented schema directive

@relation, which, not the least, names the relationships. This is a feature

that I strongly recommend.

Also note that the schema code is not complete and will probably

give syntax errors if you try to use it directly. GraphQL platforms do have

extensions of their own. This example, when used on Graphcool, has

issues with underscores and missing @model directives, for example. On

the other hand, a subset of this example was used with Neo4j as a basis for

a new graph database, without problems.

Also note that the property graph diagram is many times easier to read

and understand than the schema definition syntax!

Let’s see what kinds of issues this design could contain.

Chapter 4 an email example

27© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_5

CHAPTER 5

Business Meaning
The meaning part is really owned by the business. The business folks

have the privilege of deciding on their terminology. Applications or

microservices are business facing and should talk the language of the

business. That goes for the data content as well.

 Data Names in the API Matter
Since many physical data stores may be schema-free or schema-on-read,

where the “schema” is inferred when reading the data, we need a layer

of presentation to business users, using business terms. That layer is our

GraphQL API.

Even more challenging is that much of the (big) data that people want

to analyze is more or less machine generated or system generated. Again,

this calls for a user-facing data terminology layer toward the business

environment. Finally, even in integration projects, standardizing business

names is necessary to obtain acceptance in the business user community.

Names include object type names (e.g., originator), property names

(e.g., display name of the address), and relationship names (e.g., cc).

Relationship names are important because they are also used to infer

the type of the relationship (dependency). Action verbs indicate activity

on business objects, whereas weak verbs like “has” etc. indicate ordinary

functional dependencies between an identifier of a business object type

and its properties.

28

Relationships are bidirectional, as shown in Figure 5-1.

For those reasons, names matter. However, I tend only to write the

name coming from the parent. That is the “originator” in this case, since

left-to-right ordering is applied (Western cultural conventions).

What is important is that some linking phrases (the names of

relationships) contain verbs, and verbs imply that an “actor” makes

something happen. In other words, the relationship denotes something,

which is more than a plain property depending on the identity of

something. This makes the target a candidate for being identified as a

business object type.

Names should be backed up by solid definitions (as comments or

descriptions) wherever there is risk of ambiguity. Definitions of core

business concepts last a long time and reach many people. This means

that they should not only be precise and to the point, they should also

communicate well and be easy to remember.

Names should be as specific as they can get. For example, avoid using

Address if what you are talking about is Destination Address.

Note that GraphQL has a nice, simple way to support subtyping by way

of defined interfaces. In the email example, we could consider setting up

Originator and Destination as interfaces, both implementing a Contact

type. It would look like the following.

First as the two types:

 1 type Originator {

 2 id: ID!

 3 origin_date: Datetime!

Figure 5-1. Read from right to left or vice versa

Chapter 5 Business Meaning

29

 4 message: : [Message!] @relation(name: "Originator")

 5 address_from: Address! @relation(name: "From")

 6 address_sender: Address @relation(name: "Sender")

 7 address_reply_to: Address @relation(name: "ReplyTo")

 8 }

9

10 type Destination {

11 id: ID!

12 destination_role: destination_role!

13 received_date: Datetime!

14 message: Message! @relation(name: "Destination")

15 address_to: [Address]! @relation(name: "To")

16 address_cc: [Address] @relation(name: "Cc")

17 address_bcc: [Address] @relation(name: "Bcc")

18 }

And here is an interface construct:

 1 interface Contact {

 2 id: ID!

 3 }

 4

 5 type Originator implements Contact {

 6 origin_date: Datetime!

 7 message: [Message!] @relation(name: "Originator")

 8 address_from: Address! @relation(name: "From")

 9 address_sender: Address @relation(name: "Sender")

10 address_reply_to: Address @relation(name: "ReplyTo")

11 }

12

13 type Destination implements Contact {

14 destination_role: destination_role!

15 received_date: Datetime!

Chapter 5 Business Meaning

30

16 message: Message! @relation(name: "Destination")

17 address_to: [Address]! @relation(name: "To")

18 address_cc: [Address] @relation(name: "Cc")

19 address_bcc: [Address] @relation(name: "Bcc")

20 }

We did not use interfaces in our email design, because the overlap

between the two are minimal. However, interface names should also be

valid business names.

The quality of the content of the API results depends on the business

semantics and on the actual data delivered by the API. We dealt with the

structure and the terminology in the property graphs, so next we need to

handle the actual data content properly. However, remember that meaning

and content go together. If you change the semantics, then you may have

to refactor the data.

Note Do name checks of the content of the property graph(s)
together with some subject area experts to get the semantics
sorted out.

In cases of mismatch between business terminology and the data

names in the databases, somebody will have to do something at the

resolver level. More about that later.

 Finding Standard Data Structures
Another thing to think about before you set up the schema is standard

patterns. Many areas of various kinds of business activities and ditto

objects have already been defined as best practice data models.

Chapter 5 Business Meaning

31

For example, a Company Location property seems to be a bit under-

designed. Locations are geographical addresses, which are business

addresses. There are several best practices out there for many general

object types. See for example schema.org or various national or

international standards.

How can we detect that something is missing about, for example,

company locations? One indicator could be that the precise linking

phrase contains an action verb: located at. Action verbs tend to denote

relationships between object types, not between objects and their

properties.

So, looking for standard patterns is another check to do before

releasing your schema.

 Establishing Identity and Uniqueness
The days of analyzing functional dependencies, looking for candidate keys,

and so on, are now behind us. But we still need to deal with identity and

uniqueness. Since the GraphQL schema is a directed graph, identity and

uniqueness of nodes must happen at the schema level.

What is the issue? The trouble is that we—as humans—do not really

care a lot about uniqueness. What is in a name, anyway? We all know that

James Brown can refer to a large number of individuals. The trick that we

use, is to add context like “Yes, you know, James Brown, the singer, the

godfather of soul”. So, when it really matters, context is the definite answer.

But if a node represents a person called James Brown, we will look at the

context to try to infer who we are talking about.

Fortunately, we are in a connected graph (the schema), which means

that we should look at the immediate vicinity and infer identity and

uniqueness from there.

Identity is functionally derived from uniqueness, which sets the

context.

Chapter 5 Business Meaning

32

Another way of putting it is that identity is really the scope of what the

properties apply to (see Figure 5-2).

Received Date shares scope with Destination Role and both are driven

by the identity of Destination. For now, it suffices to say that we need to

establish a reliable identity of Destination. (This used to be called “finding

the primary key”.)

Uniqueness is the matter of identifying what, on the business level,

makes an identity unique.

Yes, the Destination is uniquely defined by the combination of

Message and Address (whatever their identities are defined as). Enforcing

uniqueness is also an important task in the design of an API schema.

(Previously this was the realm of “foreign keys”.)

Figure 5-2. Identity is driven by uniqueness

Chapter 5 Business Meaning

33

There are no good reasons for adding visual icons or special markers,

because the uniqueness is implied by the structure. But I did highlight in

bold Address Spec, Message ID, and Keyword (the property) since they are,

by a business definition, unique.

In conclusion, identity determines the scope of a property (e.g.,

Received Date applies to Destination) and uniqueness determines the

business-level criteria for ensuring uniqueness in the interface (e.g.,

Destinations must be unique across the combination of the identities

of Address and Message). Note that so far we are talking business level.

In most cases, these issues are likely to have been solved by way of IT-

generated “surrogate keys” in the databases.

At least in northern Europe (where I am from), using assigned

identification numbers such as social security numbers is not generally

advisable. They are not guaranteed to stay unique and to persist. Inventing

new “natural identities” can be very practical for us in IT, right? We have

been the ones driving that trend over the years. Business people do not

object too much, and at times they can see why such keys are practical.

Here are some rules for finding uniqueness and identities in the

diagrams:

• The uniqueness of an object is determined by the

relationships coming to it from the concepts that are

higher up.

• The identity of an object is thus the combined identities

of the referencing concepts.

• Properties, on the other hand, share the identity of the

object that they are depending on, which is the defining

criteria of a property.

Chapter 5 Business Meaning

34

So, using these simple, visual inspection methods, we can conclude

the context and hence the uniqueness of each object type, at the business

level:

Object Type Uniqueness

address address spec

Originator address spec, Message iD, originator_role

Destination address spec, Message iD, destination_role

Message Message iD

Keyword Keyword iD, Message iD

Let’s recap the identity and uniqueness issues:

Uniqueness is the business-level rules to determine the uniqueness of

the instance of data. Frequently, this is a combination of business-level

“keys” such as ticket number, line number, employee number, postal

code, product number, and so forth. Identity is the combined result of the

uniqueness of participating types. An order line, for example, is unique

for the combination of order number (from the Order type) and order line

number (from the Order Line type). In most IT systems, identity is ensured

by way of a unique ID field (the primary key in relational databases) or

other kinds of surrogate keys. Obviously, ID conflicts across multiple

source databases must be resolved. Also note that the downstream

requirements of the GraphQL API data may set distinct requirements of

the API’s delivery of identity and uniqueness.

Mismatches may be fixed at the resolver layer. More about that later on

when we look at connecting the database to the API.

Establishing the business meaning and its rules is obviously important.

Equally important is to design good ways to facilitate navigation of the

business flow, which is what we look at next.

Chapter 5 Business Meaning

35© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_6

CHAPTER 6

Presenting
the Business Flow
 Presenting the Keys
In order for applications and business users to get easy access to the

network of objects and events that mirror the business flow, we need to

think in terms of navigation of the network. This starts with the issue of

making identification easy.

Clearly the many concatenated identity components on the business

side (uniqueness rules) are not practical. As API designers, we are allowed

to invent things. One category of creatable things is known as “keys”.

Working with large concatenated keys, for example, is really not very

practical. We much prefer the preciseness of unique, simple (one variable)

fields. This was first established in 1976 (in an early object oriented

context). It soon came to rule the world of primary and foreign keys under

the name “surrogate key”. It turns out that business-level keys seldom

are single-level fields, unless developers building IT solutions define

them. Think account numbers, item numbers, postal codes, and the like.

And even if reasonably precisely defined concepts were used, they were

not always guaranteed to stay unique over a longer period of time. Item

numbers, for instance, could be reused over time.

36

Note There are some important scope considerations in the
discussion of keys and IDs.

Many database designs include system-generated keys of the
surrogate key kind. These can most likely be reused as “Xxxxxx ID”
identity fields in your API design, which is good. The scope of such
keys are at the database-instance level, but the surrogate keys may
well have been carried over into data warehouse tables and the like.

GraphQL supports “ID” as a scalar type. The scope of such an ID field
is within that object type within that application (server), and the ID is
mainly for getting data out of the cache. They are unique within that
scope, but not more than that.

How will a solution-level data design of email enhanced with system-
assigned keys look?

Figure 6-1 is a solution-level property graph and it includes an
identifier (Xxxxxxx**Id) in italics for each object type. The purpose
of the identifier is to serve as a simple, persistent, unique identifier
of the instances of the object. (That is the nature of a surrogate key.)
Note that “Message ID” was already in the system (by definition, in
the Internet Message Format standard).

If there is no surrogate key scheme in place, and if the data scope
needs to be larger than the application, such as for data-level
integration purposes downstream, then you are looking at a data
architecture design issue.

CHAPTer 6 PreseNTING THe BusINess FLow

37

Keys can be dealt with at the resolver level. More about that later.

 Presenting State Changes
Sometimes you have to handle state changes in the interface. Here we are

talking about business state changes. In the financial world, for example,

buy/sell transactions in securities are being raised up through a hierarchy

that looks something like this:

• Considered

• Planned

• Agreed (done deal)

• Preliminarily booked

• Settled

• Finally accounted for

Figure 6-1. Identities added as key fields (ID)

CHAPTer 6 PreseNTING THe BusINess FLow

38

(This is a bit more complex in real life.) The issue is that the same

transaction exists in different versions throughout its lifecycle. Date and

time are necessary to keep track of that.

In our email example, we would probably have to materialize (in the

API) whether the message was resent (and when).

“Making data look pretty” is clearly something that can be done at the

resolver level. More about that later.

 Presenting Versions of Data
This brings us to versions on the data level. (And not on the metadata level,

such as schema changes.)

Not only in data warehouses, but certainly also in other kinds of

applications, version control is a requirement. Generally the requirements

are on the level of these:

• Which version is the current one?

• What is the starting point and ending point of a given

version (with date and or time precision)?

• When did this version come into existence?

Sometimes backdated corrections are necessary. It could be, for example,

correcting a price, which was found to be wrong, at a later point in time.

Keeping two versions depends on accounting practices and possibly also

legislative requirements. Be sure to understand what the situation is in your

context.

If you are into versioning, you should consider chains of events. (The next

event following this version of this transaction is XXXXX on date YYYYMMDD,

for example.) Graphs are excellent for modeling and implementing that. You

might also be interested in prior event chains. (The event that preceded this

version of this transaction is XXXXX on date YYYYMMDD, for example.) See the

discussion about resolving this in a later chapter.

CHAPTer 6 PreseNTING THe BusINess FLow

39© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_7

CHAPTER 7

Content Matters
 Housekeeping Proper
A recommended best practice is to keep order in your housekeeping—the

accountant way, of course. Keep track of who did what and when.

It is a good idea to keep track of things like the following for all object

types:

• Who created this record?

• When was the record created?

• Who changed this record the last time?

• When was the date and time of the last change?

• How was this record loaded?

• When was the record loaded?

• What was the source system of the record?

• What are the versioning control dates (from and to)?

• And more…

If such metadata is available in the data sources, I am sure that there

are many people out there who would benefit greatly from having them

available in the API. Some of this information may be added at the resolver

level.

40

 Scalar Data Types
When should we worry about data types?

If you have not done so already, now is the time to think about the

API- level data types. The GraphQL simple scalar types are given

beforehand. Just prepare yourself for surprises. You want to consider

precision and representation of large numbers needing high precision.

With regard to dates and timestamps, you have to define your own custom

types. If there are advanced business needs, you need to know this. Refer

to the following section on handling time.

The physical data types are not likely going to be the same, but

hopefully they are compatible (and mappable in resolver functions).

The same goes for type conversions.

 Presenting Dates and Times
Date and time are some of the tough challenges in databases, and indeed

also in GraphQL. GraphQL is a relatively new framework and it is evolving.

At the time of writing, Date can be implemented as a custom scalar type

(DIY). There are a number of GitHub projects developing good stuff in

this area. See for example GraphQL ISO Date1 at https://github.com/

excitement-engineer/graphql-iso-date.

Dates and times obey some slightly irregular international rules set for

the management of time zones, as you know. They are not systematic in

the sense that they can be easily derived from the value of the field.

Time zones are indeed difficult to handle. Calendars are somewhat easier,

but still subject to a lot of national and cultural variations. If you take a plain

vanilla U.S. calendar from the month of February, you will notice that there

are two special days that do not apply outside of the United States. Valentine’s

Day is slowly finding its way into Europe, but there is no Presidents’ Day.

1 https://github.com/excitement-engineer/graphql-iso-date

Chapter 7 Content Matters

https://github.com/excitement-engineer/graphql-iso-date
https://github.com/excitement-engineer/graphql-iso-date
https://github.com/excitement-engineer/graphql-iso-date

41

If your data model is required to support global operations, you might

need at least four variables on everything:

• Local date (pure)

• Local time (no date involved)

• Global date (pure)

• Global time (set to GMT, for example)

See more details about resolving date and time in the resolver chapters.

 Using Custom Schema Directives
Date formatting is a good use case for custom schema directives. Ben

Newman has a good blog post entitled “Reusable GraphQL Schema

Directives2,” (https://dev-blog.apollodata.com/reusable-graphql-

schema-directives-131fb3a177d1), which goes into quite some detail

about how to implement those.

Here I will just give you a feel for what it looks like (in Ben Newman’s

blog post).

First, define a directive with a default format and an argument:

1 directive @formattableDate(

2 defaultFormat: String = "mmmm d, yyyy"

3) on FIELD_DEFINITION

4

5 scalar Date

6

7 type Query {

8 today: Date @formattableDate

9 }

2 https://dev-blog.apollodata.com/reusable-graphql-schema-directives-
131fb3a177d1

Chapter 7 Content Matters

https://dev-blog.apollodata.com/reusable-graphql-schema-directives-131fb3a177d1
https://dev-blog.apollodata.com/reusable-graphql-schema-directives-131fb3a177d1
https://dev-blog.apollodata.com/reusable-graphql-schema-directives-131fb3a177d1
https://dev-blog.apollodata.com/reusable-graphql-schema-directives-131fb3a177d1

42

The directive can be incorporated into a schema and used with

different formats:

 1 import { graphql } from "graphql";

 2 import { makeExecutableSchema } from "graphql-tools";

 3

 4...const schema = makeExecutableSchema({

 5 typeDefs,

 6 schemaDirectives: {

 7 formattableDate: FormattableDateDirective

 8 }

 9 });

10

11 graphql(schema, `query { today }`).then(result => {

12 // Logs with the default "mmmm d, yyyy" format:

13 console.log(result.data.today);

14 });

15

16 graphql(schema, `query {

17 today(format: "d mmm yyyy")

18 }`).then(result => {

19 // Logs with the requested "d mmm yyyy" format:

20 console.log(result.data.today);

21 });

As said, Ben Newman’s blog post has all the details that you need to

implement this.

Chapter 7 Content Matters

43

 Design Is Decisions
Never forget that API schema modeling is about design! Design means

making decisions that impact the business quality of the solution.

Obviously there is a dilemma between:

• Supporting the business processes at hand/the

business questions in demand (now and in the future)

• Keeping it simple

Strive for a balanced solution between scope and simplicity.

Visualizing the design decisions will make your world more simple.

Since we design for the business, in the end, the decisions are up to the

business!

Let’s move on to the structural matters.

Chapter 7 Content Matters

45© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_8

CHAPTER 8

Getting the Structure
Right
 Which Objects and Which Relationships?
The structure of the data model is, of course, built on the object types and

the relationships, which we have already discussed.

But more general issues arise from picking the right objects.

We do have some generally applicable tools in our tool belt, as follows:

• Abstraction, generalization, and specialization

(aka aggregation)

• Classification and typing

• Lifecycle dependencies and versioning

• Recognizing hierarchies

There are also some problem areas to be aware of:

• One-to-one relationships

• Many-to-many relationships and nested object types

• Trees (hierarchies of different kinds)

46

One of your best helpers is a good concept model with meaningful

linking phrases (names of the dependencies). Creating the model on

a whiteboard is often enough. Remember that concepts relate to other

concepts in a sentence-like (subject/predicate/object) manner, such as

Customer-places-Order.

The verbs in those little sentences tell you a lot about the structure.

Is the target just a property or not? The inclusion of “is” or “has” indicate

a property. Or is it a full-blown relationship between business objects?

“Places” indicates a full-blown relationship, because it implies a process

that transforms one state of the business to another state.

 GraphQL Schema Stitching, Making
a Patchwork
GraphQL is moving toward becoming a patchwork of federated servers

working together. The new capabilities are called:

• Schema stitching

• Schema delegation

• Schema binding

The discussion quickly becomes technical. Instead, let’s focus on the

overall consequences.

Basically those new features allow you to:

• Make distributed queries, which get consolidated

results from a set of GraphQL schemas/servers.

• Make integrations between your own schema and

somebody else’s schemas, either at the schema level or

at the level of resolvers.

Chapter 8 GettinG the StruCture riGht

47

GraphQL has a high level of “self consciousness” thanks to its

introspection functionality, and it is strongly typed. This means that the

integrations can benefit from having remote servers introspecting one

another to determine who can answer what within a query. This also opens

up the possibility for publicly available GraphQL APIs (and there are already

some of those). So, GraphQL aspires to take the lead in the open data space,

which has been dominated by the W3C stack and SPARQL endpoints.

Sashko Stubailo has a nice blog post1 at https://dev-blog.

apollodata.com/graphql-schema-stitching-8af23354ac37 and a

GitHub repository for the most simple level, schema stitching,2 as shown in

Figure 8-1.

What happens in this patchwork is that two queries are being stitched

together:

• The event

• The weather forecast

1 https://dev-blog.apollodata.com/graphql-schema-stitching-8af23354ac37
2 https://github.com/stubailo/schema-stitching-demo

Figure 8-1. Schema stitching demo from Stubailo

Chapter 8 GettinG the StruCture riGht

https://dev-blog.apollodata.com/graphql-schema-stitching-8af23354ac37
https://dev-blog.apollodata.com/graphql-schema-stitching-8af23354ac37
https://github.com/stubailo/schema-stitching-demo
https://dev-blog.apollodata.com/graphql-schema-stitching-8af23354ac37
https://github.com/stubailo/schema-stitching-demo

48

They are in two separate servers, but they know each other’s URLs.

That way they can do the integration.

See the Apollo documentation3 (https://www.apollographql.com/

docs/graphql-tools/schema-stitching.html) for more details.

The consequences are clear:

• You should investigate whether someone else already

created (parts of) an API, which you can take advantage of.

• You should not try to solve everything at the same time.

Instead, take a patchworking approach.

• You should cooperate and share within your working

scope so that everybody contributes to the GraphQL

API space of which you are a part.

Combined with the fact that there are also tools for generating mockup

data from a GraphQL schema, you have rich possibilities for applying

iterative development and parallel development of frontend and backend.

But, having a roadmap and having a high-level concept map of the major

anticipated object types is a great help.

 Presenting Relationships and Missing
References
You need to know whether the type of a relationship is that of:

• One-to-one or zero/one to zero/one

• Zero/one to zero/many

• Zero/many to zero/many

3 https://www.apollographql.com/docs/graphql-tools/schema-stitching.html

Chapter 8 GettinG the StruCture riGht

https://www.apollographql.com/docs/graphql-tools/schema-stitching.html
https://www.apollographql.com/docs/graphql-tools/schema-stitching.html
https://www.apollographql.com/docs/graphql-tools/schema-stitching.html

49

The first alternative can be visualized as connections without

arrowheads, as shown in Figure 8-2.

The second alternative can be visualized as connections with an

arrowhead in the “many” end, as shown in Figure 8-3.

The third type of relationship (many-to-many) can be visualized as a

connection with arrowheads in both ends, as shown in Figure 8-4.

I do not recommend visualizing the starting or ending point as being

capable of being “empty,” simply because this functionality varies across

data stores. Nevertheless, missing references do occur. Look at tags, for

example. Some messages are not tagged and some keywords are not used

to tag anything.

Figure 8-2. One/zero to one

Figure 8-3. One/zero to zero/many

Figure 8-4. Many to many

Chapter 8 GettinG the StruCture riGht

50

Resolving missing information, such as outer join situations, must be

handled at the resolver level.

 Presenting the Right Level of Detail
Abstraction is the strongest weapon in your arsenal. Abstraction works like

layers, as shown in Figure 8-5.

So you can generalize originator addresses and destination addresses

to be just addresses. Or you can specialize addresses into being originators

and destinations.

Note Moving up a to a higher level layer is generalization;
specialization is working your way down into more and more detail.

Generalization make things more broadly useful while at the same

time losing some details.

Figure 8-5. Generalization versus specialization

Chapter 8 GettinG the StruCture riGht

51

Specialization, on the other hand, gets you more detail, and—

consequently—more complexity. Ask your business experts what they

really want and need. (Normally they want a bit more than they need,

because they fear that this is the only chance of getting it.)

In fact, the compacted version of the email property graph was a

generalization, as shown in Figure 8-6.

We have generalized Originator and Destination out of explicit

existence. However, the roles they play—“from” “to” and so on—are

maintained as relationships in the schema.

Another useful way to reduce referential complexity is to use

classification, which is related to specialization. We could have had a

concept of “message type” to indicate whether a message is high priority,

as shown in Figure 8-7.

Figure 8-6. Generalization for simplification

Chapter 8 GettinG the StruCture riGht

52

Obviously this can be simplified by pushing the Priority property

down to the Message level.

Sometimes you may run into unusual data structures, which can be

handled in different manners.

Remember always aim at keeping complexity down.

One of the problems with the normalization approach in relational

data modeling is that it leads to a plentitude of tables. Some of the tables

only serve as placeholders for relationships.

One such scenario is multiple type relationships, which, at times, seem

to be logical.

Let us have a look at a 3-way relationship.

Addresses can be used as destinations and destinations can be

described as of three roles: to, cc, and bcc. Basically this is a ternary

relationship with three participating concepts.

In fact, there is almost always a real business object behind a many-to-

many relationship. In multidimensional (data warehouse) modeling, there

is a construct called the “factless fact,” meaning a fact table without any

Figure 8-7. Priority as a type or a property

Chapter 8 GettinG the StruCture riGht

53

information other than the foreign keys to the dimensions. Such a table is

the mother of all relationships, and in fact (pun intended), even factless

facts most often have properties (measures), once you start looking for

them. See Figure 8-8.

Another good way to visualize this ternary relationship is using the

property graph models’ capability of having properties on relationships.

This works well if your final destination is a property graph database

such as Neo4J4 or the like. See Figure 8-9.

4 http://www.neo4j.com

Figure 8-8. Resolving a 3-way relationship using a “bridge object type”

Figure 8-9. Role as a property of the relationship

Chapter 8 GettinG the StruCture riGht

http://www.neo4j.com/

54

However, if your data store is a SQL database, you will most likely have

the three business object types implemented as three tables. In my opinion

the representation of three object types is fair and to the point. Roles do

exist and using such classifications on “bridge tables” in a many-to-many

relationship is a good idea.

Come to think of it, another common use of properties on the

relationship level is “weight”. It signifies, for instance, participation or part-

ownership or similar partial measures. That can certainly be implemented

as a property on the edge in a property graph, but in most peoples’ minds,

a “participation” business object type would make a lot of sense. This

brings us back to finding something substantial more often than not in a

many-to-many relationship, as in the previous example.

Note in GraphQL schemas, relationships—either simple name-
name references or the Graphcool schema directive @relation—
are non-information bearing. this leaves you with the option of using
a specialized object type to carry the properties, which describe the
relationship. this is a resolver issue.

Another odd fellow is the one-to-one relationship. Between object

types and their properties there are always one-to-one relationships, also

known as dependencies. But one-to-one relationships do happen between

business object types. Not that often, however. The examples all tend to be

more in the business rules space than in the data model realm. Figure 8-10

shows one, which we have seen before.

Figure 8-10. Only one from originator

Chapter 8 GettinG the StruCture riGht

55

Having only one “from” address per originator seems to me to be

a business decision made in the the legacy design of Internet email

messages. A message where the originator is a group of “from” addresses is

perfectly conceivable.

However, it is worth checking whether the relationship is information

bearing. That could be the case, like in the previous example. It is

conceivable that “in reply to” carries a date, and that the resulting API

design should be different.

This, by the way, once again confirms the assumption that most of the

time many-to-many relationships are information bearing constructs.

In general, both nodes and relationships can (should) have “names”

(formally called labels for nodes and types for relationships), just like

concepts and their relationships have in Figure 8-10.

Relationships are directed, which is visualized by the arrowheads.

Both nodes and relationships may be associated with properties,

which are key/value pairs, such as Color:Red. On the data model level, we

call the key a property name.

Note the labeled property graph model is the most flexible general
purpose data model paradigm that we have today.

The important things are the names and the structure (the nodes and

the relationships). The properties supplement the solution structure by

way of adding content. Properties are also basically just labels, but they can

signify “identity” (the general idea of a key on the data model level).

Finally, self-references are also visiting data models from time to

time. Figure 8-11 shows a double example. Messages may refer to another

message, either in reference to or in reply to.

Chapter 8 GettinG the StruCture riGht

56

When you later traverse such self-references with a GraphQL query,

you should understand the resulting tree structure. It is probably best to

use GraphiQL5 to get a feel for it, by playing with the schema.

You should also be quite certain that a self-reference is not really

information bearing in any way. Quite frequently relationships like that carry

a start date and an end date. This could call for a separate little object type,

having a name that reflects the periodicity of the relationship, having the two

dates as properties. More about this on the resolver level in a later chapter.

Are you struggling with understanding data structures? Draw a little

property graph—that will help!

 Good Relationships
Relationships are key to getting the structure right. Even simple (one-to- many)

relationships have some considerations. Part of the idea of using concepts and

relationships analysis is that you should pay attention to the linking phrase

between concepts (the label on the relationship arrow). If you get those names

right, the structure and meaning are bound to be more correct.

5 https://github.com/graphql/graphiql

Figure 8-11. Two self-references

Chapter 8 GettinG the StruCture riGht

https://github.com/graphql/graphiql

57

Look at the property graph (with named relationships) in Figure 8-12.

Good, inter-object relationships are based on action verbs. In this

example, the verbs represent localization (City is the location of Supplier)

and supply chain (Supplier supplies SupplierPart and Part is to be

supplied by SupplierPart). SupplierPart is really an instance of a

many-to-many relationship between Suppliers and Parts. The name

SupplierPart seems a bit constructed and not really coming straight from

business terminology. The challenge is that we have information on the

relationship. SupplierPart carries a Qty (and in reality at least a date of

the supply). Figure 8-13 shows it as a many-to-many design.

Figure 8-12. Named relationships

Chapter 8 GettinG the StruCture riGht

58

In general, things and events should not be placed on relationships.

In some (most) graph databases, it is permitted. This works well with

properties, which characterize the relationship, such as weight, ownership

percentage, and so on.

One might argue that ownership percentage, for example, is a property

of an entity called ownership part, which is a relational “bridge” table

helping to implement a M:M relationship between owners and properties.

This is mostly a business decision. If the business folks do not recognize

the concept of an ownership part, the story ends there.

Frequently (not always), a “bridging thing” can be named, and it

will, most often, carry information, as in the supplier-parts example. Be

careful here—constructed object types must have meaningful names and

definitions, which the business can relate to. On the other hand, if you do

not have a graph database, you are forced (at least in SQL) to materialize

the “bridge table” and place the information owned by the relationship

there.

Figure 8-13. Supplier parts many:many model

Chapter 8 GettinG the StruCture riGht

59

In graph database sources, M:M is perfectly fine. We discuss that in the

resolver discussions later.

What are the consequences for the GraphQL API? The results are tree

structures. In the simple supplier parts example, there are basically two

ways the tree can be constructed, as shown in Figure 8-14.

Figure 8-14. Supplier parts possible trees

Chapter 8 GettinG the StruCture riGht

60

The question is, which resolver function should produce the

information on the M:M relationship? In this case it is QTY, and it can be

produced either together with Supplier or together with Part. That is

not very flexible across the board. It you choose to materialize the M:M

SupplierPart as an object type of its own at the schema level, you have the

highest possible degree of flexibility.

Objects/events are always nodes, which may be role-playing and state-

changing. Are new states new nodes? It depends on the type of business.

Sometimes a new state introduces new information about the object

type/event, and in that case the choice is between two object types versus

additional properties. Ask the business experts what they think is the most

natural way to represent this.

In general, M:M relationships are a challenge and must be handled,

because what GraphQL queries expose are tree structures (hierarchical)

with no information on the relationships as such.

Be careful with information residing on a relationship. You cannot

do that in GraphQL, so you may have to invent a new object type for

that purpose. The same goes for many-to-many. Be careful when you

traverse them in the queries. If the schema is not correct, or if the data has

redundancies, you risk creating Cartesian products and “queries from hell”.

This is further discussed under resolvers, later.

Remember: Visualization is your competent servant when you’re

exploring “strange” data.

Chapter 8 GettinG the StruCture riGht

61© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_9

CHAPTER 9

From Graph to Trees
 Structure Design at the API Level
The schema definitions are on the server side. What you see at the

application side is being exposed as a result of the schema design.

The GraphQL list modifier is an easy way to generate a sub-branch of

the result tree. In our Email example, we have plenty of lists. For example,

the keywords tagging a message:

keywords: [Keyword] @relation(name: "Tags")

Lists can handle nulls, which are syntactically visualized in GraphQL:

• The data can be null: [Keyword]

• The data cannot be null: [Keyword!]

• The list cannot be null: [Keyword!]!

Another GraphQL construct that can be useful in complex situations is

the union.

Remember the design challenge about contacts having interfaces

versus not having a contact as a type? Unions can help build a

consolidated list of contacts (originators and destinations):

Union Contacts = Originator | Destination

62

However, since the contributing object types may not be completely

compatible, you may need to use inline fragments in the query:

 1 {

 2 SearchResult {

 3 ... on Originator {

 4 origin_date

 5 }

 6 ... on Destination {

 7 received_date

 8 }

 9 }

10 }

Refer to the GraphQL documentation1 at http://graphql.org/learn/

for more information.

In the context of this book, you must remember that we are building

a scope for result trees sharing a root query (per schema) in the

GraphQL API.

1 http://graphql.org/learn/

Chapter 9 From Graph to trees

http://graphql.org/learn
http://graphql.org/learn/

63

 Positioning the Graph for Generation
of Trees
Figure 9-1 shows the email data model from before.

Figure 9-1. Our email property graph once again

This data model is a directed graph, and it can be traversed in any

direction (using graph technologies, but not GraphQL). GraphQL must

result in a tree for each and every query.

Note that the graph shown in Figure 9-2 is also a property graph—now

just a “Banzai” version of the schema graph, and a twisted one at that.

Much depends on what your root query looks like. It determines

the perspective of the possible queries. A schema should be serving a

particular application’s needs.

Chapter 9 From Graph to trees

64

You can have multiple fields in your root query. You can also have

multiple schemas in your configuration. The schema-stitching possibility

enables you to merge schemas, essentially bringing the root fields together

in the combined root query. Refer to the GraphQL documentation for

more information.

If queries in a particular schema should all start at the originator level,

because that is what the application needs, then we can construct API

query result trees according to this pattern, as shown in Figure 9-2.

Figure 9-2. Having originator as the root of a query

Chapter 9 From Graph to trees

65

This implies that address-level or keyword-level properties, for

example, will be redundantly available in the trees, since they must be

denormalized into a lower level or, alternatively, into a GraphQL list

construct.

Property graphs are highly relevant to GraphQL developers. They ease

the analysis of the data at hand significantly, and they help organize the

resulting API schema and query structures.

Having done this, we have also dealt with:

• Correct exposure of the structure of the relationships

inherent in the exposed data (query result).

• Handling traversals of many-to-many relationships in

order to produce a result tree (both schema and query

result).

The visualization is an intuitively understandable (pretty good)

representation of business and application terminology that can be

discussed with business folks.

An easy way to get an overview of the query scope is to turn and twist

the application graph data model so that it visualizes the result tree scope

in a top-down, left-to-right manner (see Figure 9-3).

Chapter 9 From Graph to trees

66

Note that a branch of the tree can traverse the M:M relationship in one

direction only.

If another application perspective should be on messages with certain

tags sent by someone to certain destinations, the result tree visualization

could look like Figure 9-4.

Figure 9-3. Pulling originator to the top

Chapter 9 From Graph to trees

67

The tree, which can be derived, is rooted in the keyword and will

deliver, keyword after keyword, all the messages having been tagged with

that keyword. For each such message, all originators will be listed with

their respective addresses and all destinations.

Navigating the graph data model can also be eased by way of visually

“lassoing” individual sub-trees (hierarchies). This will give you a feel for

which result trees can be constructed.

In other words, denormalization and duplication are your good

friends. In the case of GraphQL, the data lives in the API, i.e., in the cache

at runtime.

Figure 9-4. Result tree having keyword as root

Chapter 9 From Graph to trees

68

Note one the strong points of GraphQL is based on just that: having
a tree-structure carefully self-defined and available in the caches of a
distributed application leads to better performance and less blocking.

So, no problems in exposing redundant data, and for some physical

data stores, it is a necessity. Obviously the tree-based denormalization

result could contain the following:

• Data: The selected leaf-node data (selected properties

in the schema design).

• Navigation fields: The intermediate and top-level

node properties, which include identity keys and

intermediate levels of classification hierarchies and the

like. This is for convenience.

It is important that you include all the necessary intermediate and top-

level keys. Otherwise, you will not be able to uniquely identify each level in

the result.

Mapping already denormalized structures (in NoSQL stores, for

example) to GraphQL should normally be possible and relatively easy to

do in most cases, but changing the serialization order is not for the faint-

hearted.

You can also consider using repeating groups of columns. Sometimes

there are not too many in a 1:M relationship, so repeating fields could work

well and are supported by GraphQL lists.

In general, mapping from a solution data model expressed as a

graph to query results expressed as trees is pretty straightforward.

Your visualizations will help you get good at doing that, which you will

appreciate once your schema graph is large.

Producing correct result trees is a big part of the resolver requirements,

which is what we look at in the next chapter.

Chapter 9 From Graph to trees

69© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_10

CHAPTER 10

Resolving Legacy
SQL Data Issues
Using GraphQL with a new, empty data store is the easy way. In many

cases, the database schema and resolvers (if needed) can be generated or

inferred from the GraphQL schema.

If you plan to use GraphQL with existing databases, you should mind

your steps, as illustrated in Figure 10-1.

70

Having been active in the data warehouse community for years, I know

the SQL database “jungle” well. Applying GraphQL to this bewildering

legacy of SQL data is the context for this chapter. Expect some surprises as

you cross the bridge.

Figure 10-1. The bridge to GraphQL crossing river legacy

Chapter 10 resolving legaCy sQl Data issues

71

There are additional tools you may use, such as:

• Object-relational mappers (ORMs) (such as Sequelize

at http://docs.sequelizejs.com/, for example1)

• SQL generators (such as join-monster, at https://

github.com/stems/join-monster/blob/master/

README.md for example2)

I do not have practical experience with any of them; you will have to

build your own. Both of them look good from their websites, and they do

have some customers. I am bit skeptical about the ORMs. Seems to me that

you have to build another schema, just for the sake of the mapping. That

can potentially amount to quite a few hours spent, I think.

In the following example, I expect that your platform can build

resolver functions, which can contain or issue (almost unrestricted) SQL

commands.

Let’s walk through the specific legacy issues in the same order as we

presented the general issues earlier.

 Data Names
More often than not, you will have to map the physical column and table

names to the business facing terminology of the GraphQL types. This is

annoying and takes some time.

Wait! Maybe somebody has already done parts of that work? It could

be in reporting or data warehouse contexts, and it could be SQL views and/

or ETL-jobs that contain the mappings. Look around. I am a fan of SQL

views, so if you need the mapping, do it in views, which are reusable. If the

underlying database schema changes, you can, to some extent, continue

1 http://docs.sequelizejs.com
2 https://github.com/stems/join-monster/blob/master/README.md

Chapter 10 resolving legaCy sQl Data issues

http://docs.sequelizejs.com/
https://github.com/stems/join-monster/blob/master/README.md
https://github.com/stems/join-monster/blob/master/README.md
https://github.com/stems/join-monster/blob/master/README.md
http://docs.sequelizejs.com/
https://github.com/stems/join-monster/blob/master/README.md

72

to support the views’ result sets without impacting the GraphQL schemas.

Using views may also give you a better opportunity to exploit “automatic

mapping” between GraphQL and the source views.

Using Select * is not a good idea, because data models do change,

and they are typically extended with new columns and occasional changes

in physical data types. So this is actually another good argument for using

views to insulate your API even more from the physical data.

 Identity, Uniqueness, and Keys

Note Many sQl database designs include system-generated
keys of the surrogate key kind. these can most likely be reused as
Xxxxxx ID identity fields in your api design, which is good. the
scope of such keys is typically at the database instance level, but
the surrogate keys may have been carried over into data warehouse
tables and the like. graphQl supports “iD” as a scalar type. the
scope of such a graphQl iD field is within that object type within that
application (server), and the iD is mainly for getting data out of the
cache. they are unique within that scope, but not more than that.

Uniqueness in the databases is not controlled in the same way as the

business-level uniqueness rules are defined. Typically a row in a table

should be unique across several components in a concatenated string of

business keys. The keys, in turn, frequently represent a hierarchy such as

Customer/Order/Orderline/Product and more.

Identity is the matter of what controls the uniqueness in the database.

Most often it is a single “surrogate key” field guaranteeing the uniqueness

of the orderline, for example. In principle, surrogate keys should not carry

information other than the identity of the row. But that is not always the case.

Chapter 10 resolving legaCy sQl Data issues

73

In mainstream data modeling the last 20-30 years, the use of surrogate

keys is widespread. Clever people have added another purpose to them:

The issue of identifying the nonexistent! (I am not going to get into a

SQL NULL-discussion, because SQL NULLs are generally no good.) What

many applications nowadays rely on is that the ID (the key) equaling 0

(zero, not null) is the representation of the nonexistent instance at the

other end of the join. That means, of course, that there should exist a row

in the database table referred to in the join, which has "Id" = 0. Those

rows typically contain default values. The issue here is to avoid the use of

SQL outer joins, which would otherwise be required. Look out for “zero

records”. See Figure 10-2.

If there is no surrogate key in a table, then the primary key must be

examined. Often primary keys are information bearing, which is to be

avoided. Even social security numbers and the ilk may change over time.

Some item numbers may be reused after some time of inactivity and so

forth.

Figure 10-2. A first in class zero record

Chapter 10 resolving legaCy sQl Data issues

74

Using a GraphQL schema directive might be a good way to generate

globally unique object identifiers, if you need to do so.

 States, Versions, and Housekeeping
States (business states, for example Planned, Ordered, Delivered, and

Archived) are not always modeled explicitly in elderly data models. They

can be rather easy to generate by way of a SQL CASE construct, either in

a resolver function or in an underlying view. Business people love them

because they are looking for state information all the time.

Versions are the same story, really. Ideally, most business needs can be

met with the simple construct of three new concepts:

• Valid From Date (could be 1900-01-01 for unknown

historic dates)

• Valid To Date (could be 2099-12-31 for unknown future

dates)

• Current Version (a flag string containing “Yes” or “No”

for example).

But, if the legacy data are not persisted with versions, you will have to

look for old versions in a data warehouse or a data vault database. If they

are not there, you cannot satisfy that business need without further ado. If

you can get the funding for that, you could look at time series paradigms,

including key/value stores and graph databases for solving the persistence

of versioned data.

Other housekeeping data can include (where applicable):

• UserId of the user who created the record

• CreationDate of the record

• UserId of the user who changed this record the

last time

Chapter 10 resolving legaCy sQl Data issues

75

• ChangeTimeStamp of the date and time of the last

change

• Identification of the batch process that loaded this

record

• LoadTimeStamp when the record was loaded

• Name of the source system of the record (if this record

is not the golden record)

• And more

Look for states, versions, and other housekeeping data in the reporting

and data warehouse parts of your organization. Somebody may have done

the hard work already.

 Scalar Data Types
The type system of GraphQL is meant to be coercive, and the server will do

its best to deliver according to the specified data type in the schema. That

could involve truncating a floating point value to an integer value, if that is

what it takes to stay “within the contract”. But there will still be a need for

transformations at the resolver level. Check your data.

Another issue is the matter of “prettifying” your data. A three-digit

integer can be a product category code, but it must be accompanied by a

textual description. Many users will not know the code values by heart.

The GraphQL type system is extensible in the newest working draft of

the GraphQL schema specification. It is going to be interesting to see how

it develops in the next year or so.

Chapter 10 resolving legaCy sQl Data issues

76

 Date and Time
IT has struggled with date and time since the 1960s.

Let’s start at the bottom. Date and time are mixed into a variety of data

types in many data stores and DBMS products. Some of the types can be:

• Pure date

• Date and time in one property

• Time in its own property

Be careful about which server you pull the date and time information.

Much depends on the settings of those servers and database instances.

Another issue is handling missing dates. If you want to avoid

SQL_NULLs (and who doesn’t?), you could define default low and high

dates, which are supplied whenever a date (or time-of-day) is missing.

Sometimes we record future dates on records, which have happened now,

but where the future event is still to happen in a couple of years’ time

(budgets, for example). Not very elegant modeling, but it happens. You

may end up having to define a “future undefined date” (a default high date

that you choose).

In the data warehousing world, a date/calendar dimension is a given

requirement. But for the same reasons as the reporting and analytics

need to know about calendars (such as public holidays or banking days),

ordinary applications need to keep track of several properties of dates and

sometimes also of time of days. Be prepared.

 Naming Relationships
As pointed out earlier in this book, the relationship names are important

for conveying the meaning of the structure of the data. So, at the GraphQL

Schema level, I recommend that you use the Graphcool @relation

directive to convey that structural information.

Chapter 10 resolving legaCy sQl Data issues

77

At the resolver level, you have the job of figuring out how to do a join

that satisfies the relationship. This could be a foreign key constraint (if

you are lucky). It could also be two columns in two distinct tables with the

same name. Or it could be inferred from an index on the target table (one

or more columns). Or, you just either have to know or you have to use data

profiling to find inter-table dependencies in the data.

 Relationship Types
 One-to-One Relationships
These are sometimes one-to-none relationships and sometimes one-to-

one. In the first case, the default properties of the missing instance should

be handled by the resolver. There are normally good business reasons for

maintaining the divide between the two, and if the resolver can produce

that, then that is what you must do.

 One/Zero to Zero/Many Relationships
Again, if the relationship is empty (for example, a customer without

orders), the tree stops here. I think it might be prettier to stop with “Not

available” instead of nothing (a null).

 Self References
Let’s take the example of Manager is and Manages (the view from the

manager side).

• Manager is is a one-to-one relationship where the upper

end may be empty (employees without a manager).

• Manages is a one/zero to zero/many relationship

(remember that a manager may not have any

employees at this time, and no, this does not support

matrix organizations).

Chapter 10 resolving legaCy sQl Data issues

78

Depending on the root, you may have to generate redundant data for

the Manager is relationship.

 Many-to-Many Relationships
This is where you need a large cache. You have to duplicate redundant

information such that the tree structure of the result set is maintained.

Recall the supplier/parts, as shown in Figure 10-3.

What are the consequences for the GraphQL API? The results are tree

structures. In the simple supplier parts example, there are basically two

ways the tree can be constructed, as shown in Figure 10-4.

Figure 10-3. Supplier/parts many:many model

Chapter 10 resolving legaCy sQl Data issues

79

The question is, which resolver function should produce the

information on the M:M relationship?

In this case it is QTY, and it can be produced together with Supplier or

together with Part. That is not very flexible across the board. If you choose

to materialize the M:M SupplierPart as an object type of its own at the

schema level, you have the highest possible degree of flexibility.

Figure 10-4. Supplier parts possible trees

Chapter 10 resolving legaCy sQl Data issues

80

 Missing Information
Handling missing information things is close to being business rules

driven. I generally prefer to treat such things in a functional layer (like a

resolver function) on top of the source data model. The resolvers need to

resolve the missing information.

At this level, the matters should be handled in a way that matches the

capabilities of the platform.

But on the business facing (API) side, I prefer default value schemes

over using NULLs. There are many articles about this, not the least from

the Kimball Group. Basic stuff like the following:

• Keep “dummy” records available and let them

participate in hierarchies and other joins. (If you report

numbers on unknown levels, you will need the Unknown

instance in your aggregate.)

• Use at least the Unknown or Not Specified approach for

missing information.

• Use default low and high dates for missing dates.

• Etc.

 Properties on Relationships
This is not supported in SQL. The closest thing is a helper/bridge table,

which should also materialize as a type on the GraphQL level.

Chapter 10 resolving legaCy sQl Data issues

81© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_11

CHAPTER 11

Using GraphQL
with an Existing
Graph Database
It is of course a relevant question to ask that, since GraphQL is based on

graph thinking, how can we use GraphQL on top of a graph database?

To answer that, we first look at the use case in which an existing graph

database is supported from a GraphQL API. Later we look at a common

use case, whereby a GraphQL API will be used with a new graph database.

Since transformations are based on the language of the DBMS, I use

the language of the Neo4j1 graph platform (see https://neo4j.com/). It is

called Cypher, and it is a very powerful, declarative language. While Neo4j

uses Cypher, the language has been open sourced through the openCypher

project and there are now a number of other projects using Cypher2

(see http://www.opencypher.org/).

1 https://neo4j.com
2 http://www.opencypher.org

https://neo4j.com/
http://www.opencypher.org
https://neo4j.com/
http://www.opencypher.org/

82

 The Neo4j GraphQL Plugin
Neo4j has done a great job of integrating GraphQL into the Neo4j platform.

The easiest way to use it is to use a plugin installed in the Neo4j Desktop

interface.

Will Lyon (working in developer relations at Neo4j) has made an

excellent video explaining everything. It’s called “Using The Neo4j-

GraphQL Plugin With Neo4j Desktop”3 (see https://youtu.be/

J-J90uwugb4).

Basically the plugin enables you to serve a GraphQL endpoint directly

from Neo4j by:

• Generating a GraphQL schema from existing Neo4j

data

• Serving a GraphQL endpoint based on a GraphQL

schema that you supply

• Translating GraphQL to Cypher (on the fly)

• Automatically generating query types for querying with

GraphQL

• Automatically generating mutation types for write

operations from GraphQL

• Exposing Cypher through GraphQL as a @cypher

schema directive

You can also find more information about the plugin in Will Lyon’s

blog post called “Using The Neo4j-GraphQL Plugin In Neo4j Desktop”4

(see https://blog.grandstack.io/using-the-neo4j-graphql-plugin-

in-neo4j-desktop-c8a60aa014d9).

3 https://youtu.be/J-J90uwugb4
4 https://blog.grandstack.io/using-the-neo4j-graphql-plugin-in-neo4j-
desktop-c8a60aa014d9

Chapter 11 Using graphQL with an existing graph Database

https://youtu.be/J-J90uwugb4
https://youtu.be/J-J90uwugb4
https://blog.grandstack.io/using-the-neo4j-graphql-plugin-in-neo4j-desktop-c8a60aa014d9
https://blog.grandstack.io/using-the-neo4j-graphql-plugin-in-neo4j-desktop-c8a60aa014d9
https://blog.grandstack.io/using-the-neo4j-graphql-plugin-in-neo4j-desktop-c8a60aa014d9
https://youtu.be/J-J90uwugb4
https://blog.grandstack.io/using-the-neo4j-graphql-plugin-in-neo4j-desktop-c8a60aa014d9
https://blog.grandstack.io/using-the-neo4j-graphql-plugin-in-neo4j-desktop-c8a60aa014d9

83

 Generating Your First GraphQL Schema
It really is very simple. You install the plugin from the Neo4j Desktop, as

shown in Figure 11-1.

Having installed the plugin, you will want to install the Electron version

of the GraphiQL app5 for browsing and testing. Refer to the video and

the blog post for details about setting up the endpoint and authorization

headers to make the connection (not a big deal).

To generate the schema from the data in the Neo4j database, issue this

command to the Neo4j Desktop:

CALL graphql.idl(null);

5 https://electronjs.org/apps/graphiql

Figure 11-1. Plugin installation from the Neo4j Desktop

Chapter 11 Using graphQL with an existing graph Database

https://electronjs.org/apps/graphiql

84

You may have to transform the existing data to make it fit for

presentation through GraphQL. This depends on the quality of the data

and likewise of the metadata (labels, property names, and relationship

types). In the following sections, we will go through the potential issues.

If you need to do transformations, it is nice to know that the Neo4j-GraphQL

integration includes an @cypher directive, which enables you to do some

graphical things inside the GraphQL schema. Take a look at this example

having embedded @cypher statements as well as type extensions:

 1 type Movie {

 2 title: ID!

 3 released: Int

 4 tagline: String

 5

 6 actors: [Person] @relation(name:"ACTED_IN",

direction:IN)

 7 director: Person @relation(name:"DIRECTED",

direction:IN)

 8 recommendation(first:Int = 3): [Movie]

 9 @cypher(statement:

10 "MATCH (this)<-[r1:REVIEWED]-(:User)-

[r2:REVIEWED]->(reco:Movie)

11 WHERE 3 <= r1.stars <= r2.stars

12 RETURN reco, sum(r2.stars) as

rating

13 ORDER BY rating DESC")

14 }

15 interface Person {

16 name: ID!

17 born: Int

18 }

19 type Actor extends Person {

Chapter 11 Using graphQL with an existing graph Database

85

20 name: ID!

21 born: Int

22

23 movies: [Movie] @relation(name:"ACTED_IN")

24 }

25 type Director extends Person {

26 name: ID!

27 born: Int

28

29 movies: [Movie] @relation(name:"DIRECTED")

30 }

31 type Mutations {

32 directed(movie:ID! director:ID!) : String

33 @cypher(statement:

34 "MATCH (m:Movie {title: $movie}), (d:Person {name:

$director})

35 MERGE (d)-[:DIRECTED]->(m)")

36 }

37 schema {

38 mutations: Mutations

39 }

Note that fields annotated with the @cypher schema directive then

become “computed” fields. This technique allows for some transformation

between how the data is stored in Neo4j and how it is presented in the

GraphQL layer.

The video and the blog post cited in this chapter cover the how-tos

of using GraphQL on top of an existing graph database, as well as on top of

a blank graph database, which is the last subject of this book.

Let’s recast the legacy SQL issues and see how they apply in the context

of an existing Neo4j database.

Chapter 11 Using graphQL with an existing graph Database

86

 Data Names
The Neo4j-GraphQL plugin will derive a GraphQL schema from the

existing graph data. By way of sampling, the integration adds a type for

each Node-Label with all the properties and their types found as fields.

This gives you a much better starting point than a blank slate. However,

much depends on the quality of the existing data model, of course. So, being

a bit cynical, you should expect to spend some time on mapping not-so-

good names to something business facing. The mapping will be done by way

of editing the generated GraphQL schema, e.g., @cypher extensions. Just as

with SQL, you may spend time here, but the time spent should be less than

what would need to be done in SQL. Some SQL databases that I have seen

almost needed an archeologist in order to establish data identities.

 Identity, Uniqueness, and Keys
Neo4j can live without constraints, but you can also have them. Data

profiling6 (see https://neo4j.com/blog/data-profiling-holistic-view-

neo4j/) is rather easy, and you should spend some time double-checking

candidate keys. So, just as with SQL, you may have to spend some time here.

The Neo4j node ID is internal use only. Don’t use internal Neo4j IDs

for long-term entity identification. Future versions of Neo4j might shift

these IDs around for performance purposes. Create your own unique ID

property (ideally with a constraint) for tracking entities.

 States, Versions, and Housekeeping
As with SQL, you might want to spend some time here. One benefit,

though: Neo4j is schema-free, so refactoring the database is much easier

than in SQL.

6 https://neo4j.com/blog/data-profiling-holistic-view-neo4j/

Chapter 11 Using graphQL with an existing graph Database

https://neo4j.com/blog/data-profiling-holistic-view-neo4j/
https://neo4j.com/blog/data-profiling-holistic-view-neo4j/
https://neo4j.com/blog/data-profiling-holistic-view-neo4j/

87

 Scalar Data Types
Neo4j does not have explicit types, but the Neo4j-GraphQL is coercive,

and the proper types will be transmitted by default in most cases. Type

conversion functions are available, though. There might be issues with

string-encoded information, which should be something else (a float, for

example). This may take some time to identify and fix.

 Date and Time
Neo4j does not have any date and time types per se. However, in Neo4j 3.x,

APOC procedure support was added, including procedures for date/

time support7 (see https://neo4j-contrib.github.io/neo4j-apoc-

procedures/#_date_and_time_conversions). This enables you to handle

most conversions from Cypher commands.

Support of temporal functions in Cypher per se arrived in release 3.4.

GraphAware has a library called TimeTree8, which looks interesting, as

shown in Figure 11-2. See https://graphaware.com/neo4j/2014/08/20/

graphaware-neo4j-timetree.html.

7 https://neo4j-contrib.github.io/neo4j-apoc-procedures/#_date_and_
time_conversions

8 https://graphaware.com/neo4j/2014/08/20/graphaware-neo4j-timetree.
html

Chapter 11 Using graphQL with an existing graph Database

https://neo4j-contrib.github.io/neo4j-apoc-procedures/#_date_and_time_conversions
https://neo4j-contrib.github.io/neo4j-apoc-procedures/#_date_and_time_conversions
https://graphaware.com/neo4j/2014/08/20/graphaware-neo4j-timetree.html
https://graphaware.com/neo4j/2014/08/20/graphaware-neo4j-timetree.html
https://neo4j-contrib.github.io/neo4j-apoc-procedures/#_date_and_time_conversions
https://neo4j-contrib.github.io/neo4j-apoc-procedures/#_date_and_time_conversions
https://graphaware.com/neo4j/2014/08/20/graphaware-neo4j-timetree.html
https://graphaware.com/neo4j/2014/08/20/graphaware-neo4j-timetree.html

88

 Naming Relationships
The Neo4j-GraphQL plugin9 will generate GraphQL schema code using the

@relation directive. It looks like this for the ACTED_IN relationship in the

Movie database:

1 type Person { name: String, movies : Movie @relation

(name:"ACTED_IN", direction:OUT)\

2 }

9 https://github.com/neo4j-graphql/neo4j-graphql#schema-from-graph

Figure 11-2. TimeTree from GraphAware

Chapter 11 Using graphQL with an existing graph Database

https://github.com/neo4j-graphql/neo4j-graphql#schema-from-graph

89

As you can see, the Neo4j-GraphQL plugin uses the @relation

directive to encode a relationship type, but also a direction since graphs

are directed in the property graph model.

Again, the quality (business-facing) of the relationship type names will

depend on whodunnit.

 Relationship Types
The Neo4j-GraphQL integration will catch most of what you need.

In a Neo4j graph database, M:M is perfectly fine. However, you will

have to split them into two. If you recall in the Movie example, there is a

M:M in the ACTED_IN relationship. That will give you two relationships

(@relation in GraphQL):

• Movies are the movies that an Actor acted in

• Actors lists the actors in a Movie

You can easily check the cardinalities in Cypher:

1 MATCH (p:Person)-[:WROTE]->(m)<-[:WROTE]-(coPersons:Person)

2 RETURN p, m, coPersons

The path query returns some data, which shows that even the WROTE

relationship (and, as it happens, the DIRECTED relationship) is many-to-

many, as shown in Figure 11-3.

Chapter 11 Using graphQL with an existing graph Database

90

The data is just for demo purposes. Obviously, in real life, there are

many more cases like these of M:M relationships in the movie context.

 Missing Information
Missing information is handled differently in Neo4j when compared to

SQL. In SQL you use NULL values, but in Neo4j (and most other NoSQL

data types), missing information is simply not there. Take the age of a

person, for example. Age is a property, and if a Person node has no known

age, the Age property is missing on that node.

Figure 11-3. Finding many to many

Chapter 11 Using graphQL with an existing graph Database

91

In GraphQL on the user-facing side, you can have non-nullable fields,

which means that you may have to handle the generation of default values

yourself. Fortunately the @cypher extension can be used for that, as shown

in the sample GraphQL schema.

I do think that NULLs should be avoided and that they can be replaced

by default values according to business specifications.

 Properties on Relationships
In my honest opinion, things and events should not be placed on

relationships. In some (most) graph databases, it is permitted. However,

it works well with properties, which characterize the relationship, such as

weight, ownership percentage, and so on.

One might argue that ownership percentage, for example, is a property

of an entity called ownership share, which is a relational bridge table

helping to implement a M:M relationship between owners and properties.

This is mostly a business decision. If the business folks do not recognize

the concept of an ownership share, the story ends there.

If the introduction of a new business level concept like ownership

share is acceptable, then the relationship surfaces as a new GraphQL

object type having a scalar field representing the percentage. Two new

relationships will emerge. The API designer will have to decide the

traversal path, obviously. Given that the restriction is on the GraphQL

concepts side, this is an acceptable solution.

Chapter 11 Using graphQL with an existing graph Database

93© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9_12

CHAPTER 12

Using GraphQL
with a New Graph
Database
 Design Goals of the Neo4j-GraphQL
Integration
What does a graph solution for a GraphQL API look like?

I can best answer this question by looking at the Neo4j-GraphQL

plugin. Instead of repeating what Will Lyon says in his video, I have

decided to briefly summarize a recent blog post from March 2018, also

by Will Lyon of Neo4j. It’s entitled “Five Common GraphQL Problems

and How Neo4j-GraphQL Aims To Solve Them1” (see https://blog.

grandstack.io/five-common-graphql-problems-and-how-neo4j-

graphql-aims-to-solve-them-e9a8999c8d43).

1 https://blog.grandstack.io/five-common-graphql-problems-and-how-
neo4j-graphql-aims-to-solve-them-e9a8999c8d43

https://blog.grandstack.io/five-common-graphql-problems-and-how-neo4j-graphql-aims-to-solve-them-e9a8999c8d43
https://blog.grandstack.io/five-common-graphql-problems-and-how-neo4j-graphql-aims-to-solve-them-e9a8999c8d43
https://blog.grandstack.io/five-common-graphql-problems-and-how-neo4j-graphql-aims-to-solve-them-e9a8999c8d43
https://blog.grandstack.io/five-common-graphql-problems-and-how-neo4j-graphql-aims-to-solve-them-e9a8999c8d43
https://blog.grandstack.io/five-common-graphql-problems-and-how-neo4j-graphql-aims-to-solve-them-e9a8999c8d43

94

Obviously, there are advantages to using a graph database as a store

for a GraphQL API, as you will see. In the following, Will explains the

ambitions of the GraphQL Neo4j integration:

A few weeks ago, I came across an article from Sacha

Greif 2 on freeCodeCamp titled “Five Common

Problems in GraphQL Apps (And How to Fix

Them)”.3 I thought this was a good overview of some

of problems developers encounter when adopting

GraphQL.

As I read through the list of common problems,

I realized these were some of the same issues

that users had complained about when we were

researching how a Neo4j-GraphQL integration

would look4 (see https://neo4j.com/developer/

graphql/). Ultimately, the design of our

integration aimed to help developers be more

productive when building GraphQL services

backed by Neo4j.

In this post, I would like to revisit each of the

five problems that Sacha points out and show

how Neo4j-GraphQL addresses each of those

issues.

2 https://medium.com/@sachagreif
3 https://medium.freecodecamp.org/five-common-problems-in-graphql-
apps-and-how-to-fix-them-ac74d37a293c

4 https://neo4j.com/developer/graphql/

Chapter 12 Using graphQL with a new graph Database

https://neo4j.com/developer/graphql
https://neo4j.com/developer/graphql
https://medium.com/%40sachagreif
https://medium.freecodecamp.org/five-common-problems-in-graphql-apps-and-how-to-fix-them-ac74d37a293c
https://medium.freecodecamp.org/five-common-problems-in-graphql-apps-and-how-to-fix-them-ac74d37a293c
https://neo4j.com/developer/graphql/

95

 Problem 1: Schema Duplication
Namely, you need one schema for your database, and another
one for your GraphQL endpoint. —Sacha Greif

GraphQL uses a strictly defined schema, which

defines the types available and the entry points for

the API. This schema acts as the specification for

the GraphQL API, and with introspection enables

powerful developer tools such as query completion,

mocking, and documentation generation. However,

standard GraphQL implementations often require

working with a schema for your database and a

schema for your GraphQL API.

To simplify the process of building GraphQL

applications backed by Neo4j, the Neo4j-GraphQL

integration uses the GraphQL schema to infer what

the Neo4j data model should be.

Solution: Use the GraphQL schema to drive the Neo4j database model.

 Problem 2: Server/Client Data Mismatch
Your database and GraphQL API will have different schemas,
which translate into different document shapes. —Sacha Greif

If the backend for your GraphQL service is not a

graph database, then there is some mapping and

translation that must occur to transform the data

from how you model it at the data persistence layer

to the shape of a graph for GraphQL. By using a

graph database as the data layer for our GraphQL

service, we preempt this problem.

Chapter 12 Using graphQL with a new graph Database

96

The Neo4j-GraphQL integration translates any

arbitrary GraphQL request to Cypher,5 the query

language for graphs, and handles the database call

as part of the GraphQL resolver.

Solution: Translate GraphQL to Cypher. (Note: This is done

automatically.)

 Problem 3: Superfluous Database Calls
Imagine a list of posts, each of which has a user attached to it.
You now want to display 10 of these posts, along with the
name of their author. —Sacha Greif

As Sacha points out, for the example above, a typical

GraphQL implementation makes one database

query for the list of posts, then one query per post to

fetch the user. This results in 11 round-trip requests

to the database! This is known as the n+1 query

problem and the common solution is to use a tool

like Dataloader.

We can certainly use Dataloader6 with Neo4j—it is

designed to be data layer agnostic, but with Neo4j-

GraphQL we have the advantage of generating a

single Cypher query for any arbitrary GraphQL

request. This means for any GraphQL request we

make only a single request to the database.

Solution: Translate GraphQL to a single Cypher query. (Note: This is

done automatically.)

5 http://www.opencypher.org
6 https://github.com/facebook/dataloader

Chapter 12 Using graphQL with a new graph Database

http://www.opencypher.org/
https://github.com/facebook/dataloader

97

 Problem 4: Poor Performance
On one hand you want to take full advantage of GraphQL’s
graph traversal features (“show me the authors of the
comments of the author of the post of …” etc.). But on the
other hand, you don’t want your app to become slow and
unresponsive. —Sacha Greif

While it is true that GraphQL enables the expression

of graph traversals like the example above, many

of the database systems responsible for resolving

the data are not optimized for these workloads.

Graph databases like Neo4j are optimized for graph

traversal queries like this. By translating GraphQL

to Cypher, we can take advantage of the powerful

performance benefits of using a graph database

execution engine like Neo4j. Furthermore, GraphQL

lacks the semantics of a database query language

for expressing things like filtering, projects, or

aggregations. Through the use of GraphQL schema

directives, we can use the power of Cypher with

GraphQL to map a GraphQL field to the result of an

arbitrary Cypher query.

Solution: Expose the power of Cypher in GraphQL.

Chapter 12 Using graphQL with a new graph Database

98

 Problem 5: Boilerplate Overdose
This is by no means an issue exclusive to GraphQL apps, but
it’s true that they generally require you to write a lot of similar
boilerplate code. —Sacha Greif

Implementing a typical GraphQL service involves

writing a schema for the GraphQL service, a schema

for the database, resolver functions to fetch the

data, AND mutations for creating and updating

data. Much of this is boilerplate code that can be

generated by inspecting the GraphQL schema.

Solution: Auto-generate Query and Mutation types from GraphQL

schema. See Figure 12-1.

We mentioned previously that resolvers are

implemented automatically by inferring the

database schema from the GraphQL schema,

translating GraphQL to Cypher, and handling the

database call. Additionally, the entry points for the

GraphQL service (Query and Mutation types) are

auto-generated as well, reducing the boilerplate

code necessary to implement a GraphQL service

backed by Neo4j. In addition, first, offset, filter-

fields, ordering for both top-level queries and fields

pointing to other entities are generated.

Chapter 12 Using graphQL with a new graph Database

99

This concludes the post by Will Lyon about the design goals of Neo4j-

GraphQL.

Let’s see it in action!

 Generating Your Neo4j Database
from the GraphQL Schema
Let’s use the email example, which I introduced in earlier chapters of this

book, in Neo4j.

Figure 12-1. Query and Mutation types are generated automatically
when using Neo4j-GraphQL

Chapter 12 Using graphQL with a new graph Database

100

To generate the Neo4j side from the GraphQL schema, you simply

pass the type definitions from the schema to the interface by issuing a

command like this in the Neo4j desktop:

 1 CALL graphql.idl(

 2 'type Address {

 3 id: ID!

 4 display_name: String

 5 address_spec: String!

 6 address_from: Originator! @relation(name: "From")

 7 address_sender: Originator @relation(name: "Sender")

 8 address_reply_to: Originator @relation(name: "ReplyTo")

 9 destination_to: [Destination] @relation(name: "To")

10 destination_cc: [Destination] @relation(name: "Cc")

11 destination_bcc: [Destination] @relation(name: "Bcc")

12 }

13

14 type Originator {

15 id: ID!

16 origin_date: String!

17 originator_role: String!

18 message: [Message!] @relation(name: "Originator")

19 address_from: Address! @relation(name: "From",

direction:"IN")

20 address_sender: Address @relation(name: "Sender",

direction:"IN")

21 address_reply_to: Address @relation(name: "ReplyTo",

direction:"IN")

22 }

23

24 type Destination {

25 id: ID!

Chapter 12 Using graphQL with a new graph Database

101

26 destination_role: String!

27 received_date: String!

28 message: Message! @relation(name: "Destination",

direction:"IN")

29 address_to: [Address]! @relation(name: "To",

direction:"IN")

30 address_cc: [Address] @relation(name: "Cc",

direction:"IN")

31 address_bcc: [Address] @relation(name: "Bcc",

direction:"IN")

32 }

33

 34 type Message {

 35 id: ID!

 36 subject: String

 37 comments: String

 38 originator: Originator! @relation(name: "Originator",

direction:"IN")

39 destinations: [Destination]! @relation(name:

"HasDestination")

40 referencing: [Message] @relation(name: "Referencing")

41 in_reply_to: [Message] @relation(name: "InReplyTo")

42 keywords: [Keyword] @relation(name: "Tags")

43 }

44

45 type Keyword {

46 id: ID!

47 keyword: String!

48 messages: [Message] @relation(name: "Tags",

direction:"IN")

49 }

50 ');

Chapter 12 Using graphQL with a new graph Database

102

Note that I have added directions to the @relations, since Neo4j needs

to know the semantics.

In the Neo4j desktop workbench the result is the display of an internal-

use only metadata document, which describes the GraphQL schema.

The Neo4j-GraphQL plugin contains some useful procedures for

working with GraphQL in Neo4j. One of the important ones is about

visualizing the GraphQL schema as a graph data model, as shown in

Figure 12-2.

Figure 12-2. Visualizing the GraphQL schema as a graph data
model

Chapter 12 Using graphQL with a new graph Database

103

This lets you review the structure of the physical graph model.

Corrections can be made on the GraphQL level, and the schema can be

reprocessed.

Finally, by opening the GraphiQL GraphQL browser, we can see the

GraphQL schema documentation. So, by now we are ready to query and

mutate the data in the Neo4j graph database via the GraphQL API, as

shown in Figure 12-3.

Figure 12-3. Using GraphiQL to query and manipulate the graph
data in Neo4j

Chapter 12 Using graphQL with a new graph Database

104

Using a Neo4j graph database as the underlying data store gives you

a head start on your GraphQL project. Write your schema, tell it to Neo4j,

and you are ready to enter data and query it by way of GraphQL.

 Neo4j-GraphQL Resources
A good place to start getting involved with GraphQL and Neo4j is this

previously cited article (by Will Lyon), entitled “Using The Neo4j-GraphQL

Plugin In Neo4j Desktop”.7 It guides you through all necessary steps.

There is a JavaScript variant of the Neo4j-GraphQL integration. The

neo4j-graphql-js NPM package8 is available at https://www.npmjs.com/

package/neo4j-graphql-js. The JavaScript version of the Neo4j-GraphQL

integration is designed to work with all JavaScript GraphQL server

implementations.

You can learn more about the neo4j-graphql and GRANDstack projects

here:

• GRANDstack.io:9 All things related to building

applications using GRANDstack (GraphQL, React, Apollo,

and Neo4j Database). See http://grandstack.io/.

• Neo4j and GraphQL developer page:10 Overview of ways

to use GraphQL with Neo4j. See https://neo4j.com/

developer/graphql/.

• Using Neo4j-GraphQL Procedures:11 Interacting with

the Neo4j-GraphQL plugin. See https://github.com/

neo4j-graphql/neo4j-graphql#procedures.

7 https://blog.grandstack.io/
using-the-neo4j-graphql-plugin-in-neo4j-desktop-c8a60aa014d9

8 https://www.npmjs.com/package/neo4j-graphql-js
9 http://grandstack.io
10 https://neo4j.com/developer/graphql/
11 https://github.com/neo4j-graphql/neo4j-graphql#procedures

Chapter 12 Using graphQL with a new graph Database

https://www.npmjs.com/package/neo4j-graphql-js
https://www.npmjs.com/package/neo4j-graphql-js
https://www.npmjs.com/package/neo4j-graphql-js
http://grandstack.io
https://neo4j.com/developer/graphql
https://neo4j.com/developer/graphql
https://github.com/neo4j-graphql/neo4j-graphql#procedures
https://github.com/neo4j-graphql/neo4j-graphql#procedures
https://blog.grandstack.io/using-the-neo4j-graphql-plugin-in-neo4j-desktop-c8a60aa014d9
https://blog.grandstack.io/using-the-neo4j-graphql-plugin-in-neo4j-desktop-c8a60aa014d9
https://www.npmjs.com/package/neo4j-graphql-js
http://grandstack.io/
https://neo4j.com/developer/graphql/
https://github.com/neo4j-graphql/neo4j-graphql#procedures

105

• Neo4j-GraphQL GitHub organization:12 Find the code

and docs for Neo4j-GraphQL integrations here. See

https://github.com/neo4j-graphql.

• neo4j-graphql-cli:13 A command-line tool for quickly

spinning up a GraphQL API using Neo4j-GraphQL on

Neo4j Sandbox. See https://www.npmjs.com/package/

neo4j-graphql-cli.

• The Neo4j Slack Channel:14 A command-line tool for

quickly spinning up a GraphQL API using Neo4j-

GraphQL on Neo4j Sandbox. See https://www.neo4j.

com/slack.

12 https://github.com/neo4j-graphql
13 https://www.npmjs.com/package/neo4j-graphql-cli
14 https://www.neo4j.com/slack

Chapter 12 Using graphQL with a new graph Database

https://github.com/neo4j-graphql
https://www.npmjs.com/package/neo4j-graphql-cli
https://www.npmjs.com/package/neo4j-graphql-cli
https://www.neo4j.com/slack
https://www.neo4j.com/slack
https://github.com/neo4j-graphql
https://www.npmjs.com/package/neo4j-graphql-cli
https://www.neo4j.com/slack

107© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9

 AFTERWORD

Summary
Delivering high-quality APIs with good business value is perfectly possible

and repeatable, provided you keep these 10 pieces of advice in mind:

• Design for the business—stay within its scope and

definitions

• Understand the business concepts and their properties

• Name all relationships

• Understand all relationships and design the schema

accordingly

• Pay special attention to cardinalities

• Get identities and uniqueness right

• Realize that design is a series of decisions, so you need

to talk with the stakeholders

• Be very careful with many-to-many relationships

• Consider using data profiling or similar machine

assistance in understanding the data

• Draw those concept and property graph diagrams!

The GraphQL approach has many benefits that seasoned data

professionals will admire. It has a good potential of being a long-lasting

thing; self-describing, structured result sets are good for everybody. The

https://doi.org/10.1007/978-1-4842-3904-9

108

legacy technologies for interfacing with data were as good as they could be

at the time they came about, but that is not good enough today. GraphQL

is still young, but maturing, and everyone can benefit from having graph

visualizations in there. The same goes for a visual, interactive version of

GraphIQL, for end-users!

Oh, and remember: Information is based on trust, and if business

people do not trust or understand the data presented to them, they will stop

using it!

Be prepared to do the additional work, if necessary, based on

circumstances. Make sure that what you deliver is visual and pretty. Then

you are good to go.

This book is an ongoing project. Feedback is appreciated. Send an

email to the author1 at info@graphdatamodeling.com.

1 mailto:info@graphdatamodeling.com

AFTERWORD SummARy

109© Thomas Frisendal 2018
T. Frisendal, Visual Design of GraphQL Data,
https://doi.org/10.1007/978-1-4842-3904-9

Index

A, B
Business flow

API designers, 35
business-level keys, 35
database designs, 36
key fields, 37
network of objects and events, 35
state changes, 37
versions, 38

Business meaning
API matter, 27
applications/microservices, 27
data names, 27
establishing identity and

uniqueness, 31
finding standard data

structures, 30

C
Company Location property, 31
Content matters

custom schema directives, 41
date and time, 40
design, 43
housekeeping, 39
scalar data types, 40

Cypher, 81

D
Data model structure

Customer-places-Order, 46
generalization vs.

specialization, 50
inter-object relationships, 57
linking phrase, 56
many-to-many relationship,

52, 54, 57
objects/events, 60
one-to-one relationships, 54
originator, 55
patchwork, 46
properties, 55
property graph, 51–52, 57
property of relationship, 53
self-references, 56
supplier parts, 59
ternary relationship, 52–53
tools, 45
type of relationship, 48
use of properties, 54

E, F
Email

data graph, 19
Graphcool, 26

https://doi.org/10.1007/978-1-4842-3904-9

110

Internet standard, 20
nodes, 21
overview, 19
property graph, 19–22
relationships, 20

G, H, I, J, K, L, M
GitHub, 2
Graph

GraphQL list modifier, 61
inline fragments, 62
keywords, 61
list of contacts, 61

Graphcool, 26
Graph database

boilerplate overdose, 98
@cypher statements, 84, 85
data names, 86
date and time, 87
identity, uniqueness and

keys, 86
missing information, 90
naming relationships, 88
Neo4j database, 100
Neo4j desktop, 83
Neo4j-GraphQL

integration, 93–94
Neo4j GraphQL plugin, 82
Neo4j-GraphQL resources, 104
poor performance, 97
properties on relationships, 91
relationship types, 89

scalar data types, 87
schema duplication, 95
server/client data mismatch, 95
states, versions and

housekeeping, 86
superfluous database calls, 96
transformations, 81

GraphQL data
business processes, 15–16
car dealership concepts, 14–15
concepts, 7
data content, 5
data modeling, 13
data structures, 4
design, 1
diagramming style, 8
logical and physical models,

13–14
meaning of content, 17
one-liner explanations, 8–9
one-step approach, 13
syntax elements, 10–11
user-defined extensions, 10
variety of purposes, 9

GraphQL Voyager, 22

N
Nordics, 23

O
Object-relational mappers

(ORMs), 71

Email (cont.)

Index

111

P, Q, R
Property graph, 20–22

S
Schema Definition Language

(SDL), 23–26
SQL data issues

data names, 71
data warehouse community, 70
date and time, 76
functional layer, 80
identity, uniqueness and

keys, 72
Kimball Group, 80
naming relationships, 76
properties on relationships, 80
relationship types

many-to-many
relationships, 78

one-to-one relationships, 77

one/zero to zero/many
relationships, 77

self references, 77
scalar data types, 75
states, versions and

housekeeping, 74
tools, 71

T, U, V, W, X, Y, Z
Trees

address-level/keyword-level
properties, 65

email data
model, 62–63

originator, 64, 66
property graph, 63, 65
root, 67
tree-based

denormalization, 68

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Visual Design of GraphQL Data
	What Is GraphQL and Why Is Design Important?
	Issues with Defining Data Structures in GraphQL
	Issues with Data Content in GraphQL

	Chapter 2: GraphQL Concepts
	Chapter 3: Getting Started
	Which Design Levels?
	Getting an Overview

	Chapter 4: An Email Example
	Chapter 5: Business Meaning
	Data Names in the API Matter
	Finding Standard Data Structures
	Establishing Identity and Uniqueness

	Chapter 6: Presenting the Business Flow
	Presenting the Keys
	Presenting State Changes
	Presenting Versions of Data

	Chapter 7: Content Matters
	Housekeeping Proper
	Scalar Data Types
	Presenting Dates and Times
	Using Custom Schema Directives
	Design Is Decisions

	Chapter 8: Getting the Structure Right
	Which Objects and Which Relationships?
	GraphQL Schema Stitching, Making a Patchwork
	Presenting Relationships and Missing References
	Presenting the Right Level of Detail
	Good Relationships

	Chapter 9: From Graph to Trees
	Structure Design at the API Level
	Positioning the Graph for Generation of Trees

	Chapter 10: Resolving Legacy SQL Data Issues
	Data Names
	Identity, Uniqueness, and Keys
	States, Versions, and Housekeeping
	Scalar Data Types
	Date and Time
	Naming Relationships
	Relationship Types
	One-to-One Relationships
	One/Zero to Zero/Many Relationships
	Self References
	Many-to-Many Relationships

	Missing Information
	Properties on Relationships

	Chapter 11: Using GraphQL with an Existing Graph Database
	The Neo4j GraphQL Plugin
	Generating Your First GraphQL Schema
	Data Names
	Identity, Uniqueness, and Keys
	States, Versions, and Housekeeping
	Scalar Data Types
	Date and Time
	Naming Relationships
	Relationship Types
	Missing Information
	Properties on Relationships

	Chapter 12: Using GraphQL with a New Graph Database
	Design Goals of the Neo4j-GraphQL Integration
	Problem 1: Schema Duplication
	Problem 2: Server/Client Data Mismatch
	Problem 3: Superfluous Database Calls
	Problem 4: Poor Performance
	Problem 5: Boilerplate Overdose

	Generating Your Neo4j Database from the GraphQL Schema
	Neo4j-GraphQL Resources

	Afterword: Summary
	Index

