
www.allitebooks.com

http://www.allitebooks.org

Web Application Development
with R Using Shiny

Harness the graphical and statistical power of R and
rapidly develop interactive user interfaces using the
superb Shiny package

Chris Beeley

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Web Application Development with R Using Shiny

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1151013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-447-4

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Chris Beeley

Reviewers
Neependra Khare

Ram Narasimhan

Hernán G. Resnizky

Acquisition Editor
Kevin Colaco

Commissioning Editor
Shaon Basu

Technical Editors
Aparna Chand

Dennis John

Project Coordinator
Suraj Bist

Proofreader
Joanna McMahon

Indexers
Monica Ajmera Mehta

Tejal R. Soni

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Chris Beeley is an Applied Researcher working in healthcare in the UK. He
completed his PhD in Psychology at the University of Nottingham in 2009 and now
works with Nottinghamshire Healthcare NHS Trust providing statistical analysis
and other types of evaluation and reporting using routine data generated within
the Trust. Chris has a special interest in the use of regression methods in applied
healthcare settings, particularly forensic psychiatric settings, as well as in the
collection, analysis, and reporting of patient feedback data.

Chris has been a keen user of R and a passionate advocate of open-source tools
within research and healthcare settings since completing his PhD. He has made
extensive use of R (and Shiny) to automate analysis and reporting for new patient
feedback websites. This was funded by a grant from the NHS Institute for Innovation
and made in collaboration with staff, service users, and carers within the Trust,
particularly individuals from the Involvement Center.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

I would like to thank all the staff, service users, and carers at the Involvement Center
in Nottinghamshire Healthcare NHS Trust, not only for welcoming me and believing
in me but also for making my work meaningful. Helping to better understand and
communicate with our service users and carers is the reason why I get out of bed in
the morning and work long hours on the website. The book was made much easier
with the thought that it might help transform healthcare for everyone's benefit.

I'd like to give a massive thank you to the whole R world, the R core team, the people
at RStudio, Joe Cheng, Winston Chang, Hadley Wickham (what was life like before
ggplot2?) and all the people I've had so much help from over the years, on mailing
lists, forums, blog posts, and wherever else I've found you. Everyone who believes in
free and open source believes that by cooperating and sharing we can build a better
world, and this is a profound message not just in the world of software, but globally
everywhere. I could never hope to give back as much to this community as I've taken
already, but I promise to try.

I would also like to thank my wife and son who helped me remember that there's
more to life than coding and work, and are, in general, the complete opposite of
writing a book about an R package.

About the Reviewers

Neependra Khare has around 9 years of experience in the IT industry. He has
worked as a SysAdmin, support engineer, and a filesystem developer. Currently
he is working with Red Hat as Principal Software Engineer.

As a data enthusiast, he uses R and Shiny to do the analysis and publish
visualizations. More can be found out about him on his website at
www.neependra.net.

Ram Narasimhan works in the Data Science group at GE Global Research. He
has worked in applied data analysis for over 15 years, including working as a
data consultant in multiple verticals (transportation, manufacturing, and supply
chain) where his tools of choice were Python and R. He created and managed a
data analytics team for United Airlines in Chicago. He has a Master's in Industrial
Engineering and a Doctorate in Operations Research.

Hernán G. Resnizky is an experienced Sociologist and Data Analyst with a
Masters degree in Data Mining from the University of Buenos Aires. He currently
works for Despegar.com, the leading online tourism agency in Latin America,
and has previously worked for other top-level companies, such as Microsoft and
Ipsos. Currently, Hernán is focused on working with R, covering not only the Data
Analysis stage but also Data Extraction, Processing, and Visualization. In his blog,
www.hernanresnizky.com (also known as My Data Atelier), you can find commented
material regarding R and Data Analysis in general.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

I would like to dedicate this book to my dad who always believed in me.
I hope I'm still making him proud.

Table of Contents
Preface	 1
Chapter 1: Installing R and Shiny and Getting Started!	 5

Installing R	 6
The R console	 6
Code editors and IDEs	 7

Simple and well-featured	 7
Complex and extensible	 8

Learning R	 8
Getting help	 8
Loading data	 9
Dataframes, lists, arrays, and matrices	 10
Variable types	 12
Functions	 13
Objects	 13

Base graphics and ggplot2	 14
Bar chart	 14
Line chart	 15

Installing Shiny and running the examples	 17
Summary	 19

Chapter 2: Building Your First Application	 21
Program structure	 21

ui.R of minimal example	 22
server.R of minimal example	 24

Optional exercise	 25
Widget types	 26
Google Analytics application	 28

The UI	 28
Data processing	 32

Table of Contents

[ii]

Reactive objects	 33
Outputs	 35
A note on the application code	 38
Optional exercise	 38

Summary	 39
Chapter 3: Building Your Own Web Pages with Shiny	 41

Running the applications and code	 41
Shiny and HTML	 42
Custom HTML links in Shiny	 42

ui.R	 42
server.R	 44

server.R – data preparation	 44
server.R – server definition	 46

Minimal HTML interface	 47
index.html	 48
server.R	 50

JavaScript and Shiny	 52
ui.R	 52
server.R	 54

jQuery	 56
index.html – body	 56
server.R	 57
jQuery	 58

Exercise	 60
Summary	 61

Chapter 4: Taking Control of Reactivity, Inputs, and Outputs	 63
Showing and hiding elements of the UI	 64

Giving names to tabPanel elements	 64
Reactive user interfaces	 67

Reactive user interface example – server.R	 68
Reactive user interface example – ui.R	 68

Advanced reactivity	 68
Using reactive objects and functions efficiently	 69
Controlling the whole interface with the submitButton() function	 70
Controlling specific inputs with the isolate() function	 70
Running reactive functions over time	 72

More advanced topics in Shiny	 73
Finely controlling inputs and outputs	 74
Reading client information and GET requests in Shiny	 75
Custom interfaces from GET strings	 76

Table of Contents

[iii]

Animation	 78
Advanced graphics options	 79

Downloading graphics	 80
Downloading and uploading data	 81
Summary	 82

Chapter 5: Running and Sharing Your Creations	 83
Sharing with the R community	 83

Sharing over GitHub	 84
Introduction to Git	 84
Sharing applications using Git	 84
Sharing using .zip and .tar	 85

Sharing with the world	 86
Glimmer	 86
Shiny Server	 86
Browser compatibility	 87

Summary	 87
Index	 89

Preface
Harness the graphical and statistical power of R, and rapidly develop interactive and
engaging user interfaces using the superb Shiny package which makes programming
for user interaction simple. R is a highly flexible and powerful tool for analyzing and
visualizing data. Shiny is the perfect companion to R, making it quick and simple
to share analysis and graphics from R that users can interact with and query over
the Web. Let Shiny do the hard work and spend your time generating content and
styling, not writing code to handle user inputs. This book is full of practical examples
and shows you how to write cutting-edge interactive content for the Web, right from
a minimal example all the way to fully styled and extendible applications.

What this book covers
Chapter 1, Installing R and Shiny and Getting Started!, is an introduction to R and
Shiny, with advice on using R, picking a code editor, making your first graphics,
and a first look at example Shiny applications.

Chapter 2, Building Your First Application, covers the basic structure of a Shiny
program, simple widgets and layout functions, and serves as an introduction to
reactive programming in Shiny.

Chapter 3, Building Your Own Webpages Pages with Shiny, covers producing custom
web content with Shiny, from styling with HTML and CSS to turbo-charging with
JavaScript and jQuery.

Chapter 4, Taking Control of Reactivity, Inputs, and Outputs, covers advanced Shiny
features, such as showing and hiding elements of the UI, reactive UIs, using client
data in your applications, and handling custom data and graphics.

Chapter 5, Running and Sharing Your Creations, shows how to share Shiny
applications with fellow R users as well as with the whole world, quickly
and simply over the Web.

Preface

[2]

What you need for this book
All the software discussed in this book is free and open source, and can be
downloaded easily for Windows, OS X, and Linux.

Who this book is for
You need no previous experience with R, Shiny, HTML, or CSS to begin using this
book, although you will need at least a little previous experience with programming
in a different language.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

A block of code is set as follows:

 output$reacDomains <- renderUI({

 domainList = unique(as.character(passData()$networkDomain))

 selectInput("subDomains", "Choose subdomain", domainList)

 })

Code words in text are shown as follows: "They should be named server.R and
ui.R."

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You can
see the function names (checkboxGroupInput and checkboxInput) as numbered
entries on the left-hand side panel".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[3]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Preface

[4]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Installing R and Shiny
and Getting Started!

If you have heard about R, you probably know that it's free and open source and
well on its way to becoming a preeminent tool for statisticians and data scientists.
You may be aware that there are over 4000 user-contributed packages available for R,
which help users with tasks as diverse as computational chemistry, physics, finance,
clinical trials, medical imaging, psychometrics, machine learning, statistical methods,
and extremely powerful and flexible statistical graphics.

The Shiny package is a free contributed package to R that makes it incredibly easy
to deliver interactive data summaries and queries to end users through any modern
web browser. Shiny comes with a variety of widgets for rapidly building user
interfaces and does all of the heavy lifting in terms of setting up interactive user
interfaces. The default styling of a Shiny application is clean and effective, however
Shiny is very extensible and it is easy to integrate Shiny applications with your own
web content using HTML and CSS. JavaScript and jQuery can also be used to further
extend the scope of Shiny applications.

This book will show you how to build your own web interfaces with Shiny, right
from starting with R to integrating them with your own websites. In this chapter,
we are going to learn the following:

•	 Install R, choose an IDE, and have a look at the power and flexibility of R
•	 Run some examples within R and learn a bit of the R language
•	 Look at resources to help you learn more about R and Shiny
•	 Install Shiny, and run and browse the examples

Installing R and Shiny and Getting Started!

[6]

R is a big subject and this is a brief tour. So if you get a little lost along the way, don't
worry. This chapter is really all about getting started and helping you recognize
some of the languages and data structures you will come across later. You can come
back to this chapter once you have got the basics of Shiny and want to start delving a
bit deeper; and as you write more and more R code, it will all start to sink in.

Installing R
R is available for Windows, OS X, and Linux at http://cran.r-project.org. The
source code is also available at the same address. It is also included in many Linux
package management systems. Linux users are advised to check before downloading
from the web. Details on installing from source or binary for Windows, OS X, and
Linux are all available at http://www.cran.r-project.org/doc/manuals/R-
admin.html.

The R console
Windows and OS X users can run the R application to launch the R console. Linux
and OS X users can also run the R console straight from the terminal by typing R.

In either case, the R console will look as shown in the following screenshot:

R will respond to your commands right from the terminal. Let's have a go:

> 2 + 2

[1] 4

http://cran.r-project.org/
http://www.cran.r-project.org/doc/manuals/R-admin.html
http://www.cran.r-project.org/doc/manuals/R-admin.html

Chapter 1

[7]

The [1] tells you that R returned one result, in this case, 4:

> print("Hello world!")

[1] "Hello world!"

Multiples of pi:

> 1:10 * pi

[1] 3.141593 6.283185 9.424778 12.566371 15.707963 18.849556

[7] 21.991149 25.132741 28.274334 31.415927

This example illustrates vector-based programming in R. 1:10 generates the
numbers 1 to 10 as a vector, and each is then multiplied by pi, returning another
vector, the elements each being pi times larger than the original. Operating on
vectors is an important part of writing simple and efficient R code. As you can see,
R again numbers the values it returns at the console, with the seventh value being
21.99.

Before we leave the console, let's have a quick look at some of the graphics capability
within R:

> demo(graphics)

Or:

> demo(persp)

Code editors and IDEs
The Windows and OS X versions of R both come with built-in code editors which
allow code to be edited, saved, and sent to the R console. Choice of code editors and
IDEs is a highly personal decision and if you are just starting out with R, you would
best be advised to try a few before settling on one. Following are some choices in this
area, available for all the three platforms except where specified otherwise.

Simple and well-featured
These are ideal for beginners:

•	 Notepad ++ with the NppToR plugin (Windows only): This supports code
highlighting, execution of blocks of code, and a few other useful features

•	 RKWard: This includes data editing, data import, and package management

Installing R and Shiny and Getting Started!

[8]

•	 Tinn-R (Windows only): This supports some other languages as well as
LaTeX, and includes project management functions

•	 RStudio: It is very well-featured (and my personal favorite), with project
management and version control (including support for Git), viewing of
data and graphics, code-completion, package management, and many
other features

Complex and extensible
These are ideal for those who are already using other text editors and IDEs. The
following plugins are available for R:

•	 Emacs with the Emacs Speaks Statistics plugin: Emacs is favored
by many for its level of extensibility and support for, well, everything
(programming languages, markup languages, project management,
e-mail, and even web browsing)

•	 Vim with the Vim-R plugin: Like Emacs, Vim is a highly extensible
package which supports many programming and markup languages
and is extremely powerful

•	 Eclipse with the StatET plugin: It is a very well-featured and extensible
IDE for R, Java, HTML, and many others

Learning R
There are almost as many uses of R as there are people using it. It is not possible
to cover all your specific needs within this book. However, it is likely that you
may wish to use R to process, query, and visualize data, such as sales figures,
satisfaction surveys, concurrent users, sporting results, or whatever type of
data your organization processes. The next chapters will concentrate on Google
Analytics data downloaded from the Application Programming Interface (API),
but for now, let's just have a look at the basics.

Getting help
There are many books and online materials covering all the aspects of R. The name R
can make it difficult to come up with useful web-search hits (substituting CRAN for
R can sometimes help); nonetheless, searching for R tutorial does give useful results.
Some useful resources include the following:

An excellent introduction to the syntax and data structures in R can be found at
http://goo.gl/M0RQ5z.

http://goo.gl/M0RQ5z

Chapter 1

[9]

You can watch videos on using R from Google at http://goo.gl/A3uRsh.

Quick-R provides a lot of useful code and examples that can be found at
http://www.statmethods.net/.

At the R console, typing ? followed by the function name (for example, ?help)
brings up help materials, and the command ??help will bring up a list of potentially
relevant functions from the installed packages.

Subscribing to and asking questions on the R-help mailing list at http://www.r-
project.org/mail.html allows you to communicate with some of the leading
figures in the R community as well as many other talented enthusiasts. Do read the
posting guide and research your question before you ask any questions because
contributors to the list are often busy and can be unforgiving of poor questions.

There are two Stack Exchange communities which can provide further help that
can be accessed at http://stats.stackexchange.com/ (for questions on statistics
and visualization with R) and http://stackoverflow.com/ (for questions on
programming with R).

Loading data
The simplest way to load data into R is probably using a comma separated value
(.csv) spreadsheet file, which can be downloaded from many data sources, and
loaded and saved in all spreadsheet software (such as Excel or LibreOffice). The
read.table() command imports data of this type by specifying the separator as a
comma, or there is a function specifically for .csv files, read.csv():

> analyticsData <-

 read.table("C:\\Mydocuments\\Data\\Analytics.csv",

 sep = ",")

Or:

> analyticsData <-

 read.csv("C:\\Mydocuments\\Data\\Analytics.csv")

Note that unlike in other languages, R uses <- as well as = for assignment. Assignment
can be made the other way using ->. The result of this is that y can be told to hold
the value of 4 in this way y <- 4 or like this 4 -> y. There are some other, more
advanced, things that can be done with assignment in R, but don't worry about them
now. Just write code using the assignment operator as shown in the previous example
and you'll be just like the natives that you come across on forums and blog posts.

http://goo.gl/A3uRsh
http://www.statmethods.net/
http://www.statmethods.net/
http://www.r-project.org/mail.html
http://stats.stackexchange.com/
http://stats.stackexchange.com/
http://stackoverflow.com/

Installing R and Shiny and Getting Started!

[10]

Either of the previous code examples will assign the contents of the Analytics.
csv file to a dataframe called analyticsData, with the first row of the spreadsheet
providing the variable names. A dataframe is a special type of object in R which is
designed to be useful for the storage and analysis of data.

Dataframes, lists, arrays, and matrices
Dataframes have several important features which make them useful for data analysis:

•	 Rectangular data structures: In general, the pieces of data will read down the
rows (for example, consecutive dates in June) and each variable (for example,
unique visitors or time spent on the site) for these cases will read across the
columns. A mix of datatypes is supported. A typical dataframe might include
variables containing dates, numbers (integer or float), and text.

•	 Subsetting and variable extraction can be easily done. R provides a lot of
built-in functionality to select rows and variables within a dataframe.

•	 Many functions include a data argument which makes it very simple to pass
dataframes to functions, and process only those variables and cases that are
relevant, which makes for cleaner and simpler code

We can inspect the first few rows of the dataframe using the head(analyticsData)
command as shown in the following screenshot:

As you can see, there are four variables within the dataframe: one contains dates,
two are integer variables, and the last is a numeric variable. There is more about
variable types in R following.

Variables can be extracted from dataframes simply using the $ operator:

> analyticsData$pageViews

 [1] 836 676 940 689 647 899 934 718 776 570 651 816

[13] 731 604 627 946 634 990 994 599 657 642 894 983

[25] 646 540 756 989 965 821

Chapter 1

[11]

Or using []:

> analyticsData[, "pageViews"]

Note the use of the comma with nothing before it to indicate that all the rows
are required. If a subset of rows were required, it could be achieved through the
following command line:

> analyticsData[1:10,"pageViews"]

[1] 836 676 940 689 647 899 934 718 776 570

In the same way, leaving a blank space after the comma returns all the variables:

> analyticsData[1:3,]

Dataframes are a special type of list. Lists can hold many different types of data,
including lists. As with many datatypes in R, their elements can be named, which
can be very useful for writing code that is easy to understand. Let's make a list of the
options for dinner, with drink quantities expressed in milliliters.

In the following example, please note the use of the c() function which is used to
produce vectors and lists by giving their elements separated by commas. R will
pick an appropriate class for the return value: string for vectors that contain strings,
numeric for those that only contain numbers, logical for boolean values, and so on:

> dinnerList <- list("Vegetables" =

 c("Potatoes", "Cabbage", "Carrots"),

 "Dessert" = c("Ice cream", "Apple pie"),

 "Drinks" = c(250, 330, 500)

)

Indexing is similar to that of dataframes (which are, after all, special instances of a
list). They can be indexed by number as shown in the following command lines:

> dinnerList[1:2]

$Vegetables

[1] "Potatoes" "Cabbage" "Carrots"

Installing R and Shiny and Getting Started!

[12]

$Dessert

[1] "Ice cream" "Apple pie"

This returns a list. Returning an object of the appropriate class is achieved using
[[]]:

> dinnerList[[3]]

[1] 250 330 500

In this case, a numeric vector is returned. They can be indexed by name also:

> dinnerList["Drinks"]

$Drinks

[1] 250 330 500

Note that this also returns a list.

Matrices and arrays, unlike dataframes, only hold one type of data and make use of
square brackets for indexing. Thus, the command analyticsMatrix[, 3:6] returns
all the rows from the third to the sixth column; analyticsMatrix[1, 3] returns just
the first row of the third column; and analyticsArray[1, 2,] returns the first row
of the second column across all the elements within the third dimension.

Variable types
R is a dynamically typed language and so you are not required to declare the type of
your variables. It is worth knowing, of course, about the different types of variables
that you might read or write using R. The different types of variables can be stored
in a variety of structures, such as vectors, matrices, and dataframes, although some
restrictions apply as detailed previously (for example, matrices must contain only
one variable type). Declaring a variable with at least one string will produce a vector
of strings (in R, the character datatype):

> c("First", "Third", 4, "Second")

[1] "First" "Third" "4" "Second"

Declaring a variable with just numbers will produce a numeric vector:

> c(15, 10, 20, 11, 0.4, -4)

[1] 15.0 10.0 20.0 11.0 0.4 -4.0

R includes a logical datatype also:

> c(TRUE, FALSE, TRUE, TRUE, FALSE)

[1] TRUE FALSE TRUE TRUE FALSE

Chapter 1

[13]

A datatype exists for dates as well and is often a problem for beginners:

> as.Date(c("2013/10/24", "2012/12/05", "2011/09/02"))

[1] "2013-10-24" "2012-12-05" "2011-09-02"

The use of the factor datatype tells R of all the possible values of a categorical
variable, such as gender or species:

> factor(c("Male", "Female", "Female", "Male", "Male"),

 levels = c("Female", "Male")

[1] Male Female Female Male Male

Levels: Female Male

Functions
As you grow in confidence with R, you will wish to begin writing your own functions.
This is achieved very simply and in a manner quite reminiscent of many other
languages. You will undoubtedly wish to read more about writing functions in R in
a fuller treatment, but just to give you an idea, here is a function called sumMultiply
which adds together x and y and multiplies that value by z:

sumMultiply <- function(x, y, z){

 final = (x+y) * z

 return(final)

}

Objects
There are many special object types within R designed to make it easier to analyze
data. Functions in R can be polymorphic, that is, they can respond to different
datatypes in different ways in order to produce the output that the user desires.
For example, the plot() function in R responds to a wide variety of datatypes and
objects, including single dimension vectors (each value of y plotted sequentially) and
two dimensional matrices (producing a scatterplot), as well as specialized statistical
objects such as regression models and time series data. In the latter case, plots
specialized for these purposes are produced.

As with the rest of this introduction, don't worry if you haven't written functions
before, or don't understand object concepts and aren't sure what all this means. You
can produce great applications without understanding all these things, but as you
work more and more with R, you will start wanting to learn in more detail about
how R works and how experts produce R code. This introduction is designed to give
you a jumping-off point to learn more about how to get the best out of R (and Shiny).

Installing R and Shiny and Getting Started!

[14]

Base graphics and ggplot2
There are a lot of user-contributed graphics packages in R that can produce some
wonderful graphics. You may wish to have a look for yourself at the CRAN task
view that can be found at http://cran.r-project.org/web/views/Graphics.
html. We will have a very quick look at two approaches: base graphics, so called
because it is the default graphical environment within a vanilla install of R; and
ggplot2, a highly popular user-contributed package produced by Hadley Wickham
which is a little trickier to master than base graphics but can rapidly produce a wide
range of graphical data summaries. We will cover two graphs familiar to all: the bar
chart and the line chart.

Bar chart
Useful when comparing quantities across categories, bar charts are very simple to
use in base graphics, particularly when combined with the table() command. We
will use the mpg dataset which comes with the ggplot2 package; it summarizes
different characteristics of a range of cars. First, let's install the ggplot2 package. You
can do this straight from the console:

> install.packages("ggplot2")

You can also use the built-in package functions in IDEs, such as RStudio or RKWard.
We will need to load the package every time we wish to use this dataset or the
ggplot2 package itself. We need to give the following command at the console:

> library(ggplot2)

We will use the table() command to count the number of each type of car featured
in the dataset:

> table(mpg$class)

This returns a table object (another special object type within R) that contains a
frequency count for each type of car as seen in the following screenshot:

Producing a bar chart of this object is achieved through the following command line:

> barplot(table(mpg$class), main = "Base graphics")

http://cran.r-project.org/web/views/Graphics.html
http://cran.r-project.org/web/views/Graphics.html

Chapter 1

[15]

The barplot() function takes a vector of frequencies. When they are named, as in
the previous example (the table() command returns the named frequencies in the
table form), the names are automatically included on the x-axis. The defaults for this
graph are rather plain. Explore ?barplot and ?par to learn more about fine-tuning
your graphics.

We have already loaded the ggplot2 package in order to use the mpg dataset, but if
you have shut down R in between these two examples, you will need to reload it by
the following command line:

> library(ggplot2)

The same graph is produced in ggplot2 in the following way:

> ggplot(data = mpg, aes(x = class)) + geom_bar() +

 ggtitle("ggplot2")

This ggplot call shows the three fundamental elements of ggplot calls: the use of
a dataframe (data = mpg), the setting up of aesthetics (aes(x = class)) which
determines how variables are mapped onto axes, colors, and other visual features;
and the use of + geom_xxx(). A ggplot call sets up the data and aesthetics, but does
not plot anything. Functions such as geom_bar() (there are many others, see ??geom)
tell ggplot what type of a graph to plot, as well as taking optional arguments, for
example, geom_bar() optionally takes a position argument which defines whether
the bars should be stacked, offset, or stretched to a common height to show
proportions instead of frequencies.

These elements are the key to the power and flexibility that ggplot2 offers. Once
the data structure is defined, ways of visualizing it can be added and taken away
easily, not only in terms of the type of graphic (bar, line, scatter) but also the scales
and co-ordinate system (log10, polar co-ordinates), and statistical transformations
(smoothing data, summarizing over spatial co-ordinates). The appearance of plots
can be easily changed with pre-set and user-defined themes, and multiple plots can
be added in layers (that is, adding to one plot) or facets (that is, drawing multiple
plots with one function call).

Line chart
Line charts are most often used to indicate change, particularly over a period of time.
This time we will use the longley dataset, featuring economic variables between
1947 and 1962:

> plot(x = 1947 : 1962, y = longley$GNP, type = "l",

 xlab = "Year", main = "Base graphics")

Installing R and Shiny and Getting Started!

[16]

The x axis is given by 1947 : 1962, which enumerates all the numbers between 1947
and 1962, and the type = "l" argument specifies the plotting of lines. For other
graphs, you may prefer to specify p for just drawing each individual datapoint, or b
for drawing both datapoints and lines.

The ggplot call looks a lot like it did in the case of the bar chart except with an x and
y dimension in the aesthetics this time:

> ggplot(longley, aes(x = 1947 : 1962, y = GNP)) + geom_line() +

 xlab("Year") + ggtitle("ggplot2")

Base graphics and ggplot versions of the bar chart are shown in the following
screenshot for the purpose of comparison:

Chapter 1

[17]

Installing Shiny and running the
examples
RKWard, RStudio, and other GUIs include package management functions which
can be used to install Shiny, or else it can be very easily installed by typing install.
packages("shiny") at the console.

Let's run some of the examples:

> library(shiny)

> runExample("01_hello")

Your web browser should launch and display the following:

The previous graph shows the frequency of a set of random numbers drawn from a
statistical distribution known as the normal distribution, and the slider allows users
to select the size of the draw from 0 to 1000. You will notice that when you move the
slider, the graph gets updated automatically. This is a fundamental feature of Shiny,
which makes use of a reactive programming paradigm. Put simply, this is a type of
programming which uses reactive expressions that keep track of the values on which
they are based that can change (known as reactive values) and update themselves
whenever any of their reactive values change. So, in this example, the function that
generates the random data and draws the graph is a reactive expression, and the
number of random draws which it makes is a reactive value on which the expression
depends. Thus whenever the number of draws changes, the function re-executes.

You can find more information on this example, as well as a comprehensive tutorial
for Shiny at http://rstudio.github.io/shiny/tutorial/.

http://rstudio.github.io/shiny/tutorial/

Installing R and Shiny and Getting Started!

[18]

Notice the layout and style of the web page. Shiny is based on the twitter bootstrap
theme by default. However, you are not limited by the styling at all and can build the
whole UI using a mix of HTML, CSS, and Shiny code.

Let's look at an interface made with bare-bones HTML and Shiny. Note that
in this and all the subsequent examples, we're going to assume that you run
library(shiny) at the beginning of each session. You don't have to run it before
each example but just at the beginning of each R session. So, if you have closed R and
come back, do run it at the console. If you can't remember whether you have already
done so, run it again to be sure; it won't do any harm:

> runExample("08_html")

And here it is in all its customizable glory:

Chapter 1

[19]

This time there are a few different statistical distributions to pick from, and a different
method for selecting the number of observations. By now, you should be looking at the
web page and imagining all the possibilities that exist to produce your own interactive
data summaries and styling them just how you want, quickly and simply. By the end
of the next chapter, you will have made your own application with the default UI, and
by the end of the book, you will have gained complete control over the styling and be
pondering about where else you can go.

There are a lot of other examples included within the Shiny library. Just type
runExample() at the console to be provided with the list.

To see some really powerful and well-featured Shiny applications, have a look at
the showcase available at http://www.rstudio.com/shiny/showcase/.

Summary
In this chapter, we learned how to install R and explored the different options for
GUIs and IDEs, and looked at some examples of the graphical power of R. We also
learned a little about the data structures of R and looked at some basic visualization
code. Finally, we installed Shiny, ran the examples included in the package, and got
introduced to a couple of basic concepts within Shiny.

In the next chapter, we will go on to build our own Shiny application using the
default UI.

http://www.rstudio.com/shiny/showcase/

Building Your First Application
In the previous chapter we've looked at R, learned some of its basic syntax, and
seen some examples of the power and flexibility that R and Shiny offer. This
chapter introduces the basics of Shiny. In this chapter we're going to build our own
application to interactively query results from the Google Analytics API. We will
cover the following topics:

•	 Basic structure of a Shiny program
•	 Selection of simple input widgets (checkboxes and radio buttons)
•	 Selection of simple output types (rendering plots and returning text)
•	 Selection of simple layout types (page with sidebar and tabbed output panel)
•	 Handling reactivity in Shiny

Program structure
In this chapter, in just a few pages, we're going to go from the absolute basics
of building a program to interactively query data downloaded from the Google
Analytics API. Let's get started by having a look at a minimal example of a Shiny
program. The first thing to note is that Shiny programs are the easiest to build and
understand using two scripts, which are kept within the same folder. They should be
named server.R and ui.R. Throughout this book, all code will have a commented
server.R and ui.R header to indicate which code goes in which file.

Building Your First Application

[22]

ui.R of minimal example
The ui.R file is a description of the UI and is often the shortest and simplest part of
a Shiny application. Note the use of the # character, which marks lines of code as
comments that will not be run, but which are for the benefit of humans producing
the code:

###################################
minimal example – ui.R
###################################

library(shiny) # load shiny at beginning at both scripts

shinyUI(pageWithSidebar(# standard shiny layout, controls on the
 # left, output on the right

 headerPanel("Minimal example"), # give the interface a title
 sidebarPanel(# all the UI controls go in here

 textInput(inputId = "comment", # this is the name of the
 # variable- this will be
 # passed to server.R

 label = "Say something?", # display label for the
 # variable

 value = "" # initial value
)
),

 mainPanel(# all of the output elements go in here
 h3("This is you saying it"), # title with HTML helper
 textOutput("textDisplay") # this is the name of the output
 # element as defined in server.R
)
))

To run a Shiny program on your local machine you just need to do the following:

1.	 Make sure that server.R and ui.R are in the same folder.
2.	 Make this the R's working directory (using the setwd() command, for

example setwd("~/shinyFiles/minimalExample")).
3.	 Load the Shiny package (library(shiny)).
4.	 Type runApp() at the console.

Chapter 2

[23]

runApp() with the name of a directory within works just as well, for example,
runApp("~/shinyFiles/minimalExample"). Just remember that it is a directory
and not a file that you need to point to.

Let's have a detailed look at the file. We open by loading the Shiny package. You
should always do that in both server.R and ui.R files. The first instruction,
shinyUI(pageWithSidebar(... tells Shiny that we are using the vanilla UI layout,
which places all the controls on the left-hand side and gives you a large space on the
right-hand side to include graphs, tables, and text. All of the UI elements are defined
within this instruction.

The next line, headerPanel(), gives the application a title. The next two instructions
perform the main UI setup, with sidebarPanel() setting up the application controls
and mainPanel() setting up the output area. sidebarPanel() will usually contain
all of the input widgets, in this case there is only one: textInput(). textInput()
is a simple widget that collects text from a textbox that users can interact with using
the keyboard. The arguments are pretty typical among most of the widgets and are
as follows:

•	 inputId: This argument names the variable so it can be referred to in the
server.R file

•	 label: This argument gives a label to attach to the input so users know
what it does

•	 value: This argument gives the initial value to the widget when it is
set up—all the widgets have sensible defaults for this argument, in this
case, it is a blank string, ""

When you are starting out, it can be a good idea to spell out the default arguments
in your code until you get used to which function contains which arguments. It
also makes your code more readable and reminds you what the return value of the
function is (for example, value = TRUE would suggest a Boolean return).

The final function is mainPanel(), which sets up the output window. You can
see I have used one of the HTML helper functions to make a little title h3("...").
There are several of these functions designed to generate HTML to go straight on
the page; type ?p at the console for the complete list. The other element that goes in
mainPanel() is an area for handling reactive text generated within the server.R
file—that is, a call to textOutput() with the name of the output as defined in
server.R, in this case, "textDisplay".

Building Your First Application

[24]

The finished interface looks similar to the following screenshot:

If you're getting a little bit lost, don't worry. Basically Shiny is just setting up a
framework of named input and output elements; the input elements are defined in
ui.R and processed by server.R, which then sends them back to ui.R that knows
where they all go and what types of output they are.

server.R of minimal example
Let's look now at server.R where it should all become clear:

######################################
minimal example - server.R
######################################

library(shiny) # load shiny at beginning at both scripts

shinyServer(function(input, output) { # server is defined within
 # these parentheses

 output$textDisplay <- renderText({ # mark function as reactive
 # and assign to
 # output$textDisplay for
 # passing to ui.R

 paste0("You said '", input$comment, # from the text
 "'. There are ", nchar(input$comment), # input control as
" characters in this." # defined in ui.R
)
 })
})

Chapter 2

[25]

Let's go through line by line again. We can see again that the package is loaded first
using library(shiny). Note that any data read instructions or data processing that
just needs to be done once, will also go in this first section (we'll see more about this
as we go through the book). shinyServer(...{...}) defines the bit of Shiny that's
going to handle all the data. On the whole, two types of things go in here. Reactive
objects (for example, data) are defined, which are then passed around as needed (for
example, to different output instructions), and outputs are defined, such as graphs.
This simple example contains only the latter. We'll see an example of the first type in
the next example.

An output element is defined next with output$textDsiplay <-
renderText({..}). This instruction does two basic things: firstly, it gives the output
a name (textDisplay) so it can be referenced in ui.R (you can see it in the last part
of ui.R). Secondly, it tells Shiny that the content contained within is reactive (that is,
to be updated when its inputs changes) and that it takes the form of text. We cover
advanced concepts in reactive programming with Shiny in a later chapter. There
are many excellent illustrations of reactive programming at the Shiny tutorial pages
http://rstudio.github.io/shiny/tutorial/#reactivity-overview.

The actual processing is very simple in this example. Inputs are read from ui.R by
the use of input$..., so the element named in ui.R as comment (go and have a look
at ui.R now to find it) is referenced with input$comment.

The whole command uses paste0() to link strings with no spaces (equivalent to
paste(..., sep = "")), picks up the text the user inputted with input$comment,
and prints it along with the number of characters within it (nchar()) and some
explanatory text.

That's it! Your first Shiny application is ready. Using these very simple building
blocks you can actually make some really useful and engaging applications.

Optional exercise
If you want to have a practice before we move on, take the existing code and modify
it so that the output is a plot of a user-defined number of observations, with the text
as the title of the plot. The plot call should look like the following:

hist(rnorm(XXXX), main = "YYYY")

In the preceding line of code XXXX is a number taken from a function in ui.R that
you will add (sliderInput() or numericInput()) and YYYY is the text output
we already used in the minimal example. You will also need to make use of
renderPlot(), type ?renderPlot in the console for more details.

Building Your First Application

[26]

So far in this chapter we have looked at a minimal example, learned about the basic
commands that go in the server.R and ui.R files. Thinking about what we've
done in terms of reactivity, the ui.R file defines a reactive value, input$comment.
The server.R file defines a reactive expression, renderText(), that depends on
input$comment. Note that this dependence is defined automatically by Shiny.
renderText() uses an output from input$comment, so Shiny automatically connects
them. Whenever input$comment changes, renderText() will automatically
run with the new value. The extra credit exercise gave two reactive values to the
renderPlot() call, and so, whenever either changes, renderPlot() will rerun. In
the rest of this chapter we will look at an application that uses some slightly more
advanced reactivity concepts, and by the end of the book, we will have covered all
the possibilities that Shiny offers and when to use them.

Widget types
Before we move on to a more advanced application, let's have a look at the main
widgets that you will make use of within Shiny. I've built a Shiny application that
will show you what they all look like, as well as showing their outputs and the type
of data they return. To run it, just enter the following command:

> runGist(6571951)

This is one of several built-in functions of Shiny that allow you to run code hosted on
the Internet. Details about sharing your own creations and other ways are discussed
in Chapter 5, Running and Sharing Your Creations. The finished application looks like
the following:

Chapter 2

[27]

You can see the function names (checkboxGroupInput and checkboxInput)
as numbered entries on the left-hand side panel; for more details, just type
?checkboxGroupInput at the console.

If you're curious about the code, it's available at https://gist.github.com/
ChrisBeeley/6571951.

Building Your First Application

[28]

Google Analytics application
Now that we've got the basics, let's build something useful. We're going to build an
application that allows you to interactively query data from the Google Analytics
API. There is no room within this book to discuss registering for and using the
Google Analytics API; however, you will very likely wish to make use of the
wonderful rga package if you want to get your own Analytics data into R. This
package provides an interface between the API and R; at the time of writing, it is still
in development and cannot be downloaded using standard package management.
Instructions for downloading, installing, and using rga can be found at https://
github.com/skardhamar/rga.

To keep things simple, we will concentrate on data from a website that I worked on.
We'll also use a saved copy of the data that is loaded into the application the first
time it runs. A full production of the application could obviously query the API
every time it launched or on a daily or weekly basis, depending on how many users
you expected (the API limits the number of daily queries from each application).
Note that we would not query the API as part of a reactive expression unless there
was a clear need for the application to be constantly up-to-date, because it would
use a lot of the allocated queries, as well as making the program run a lot more
slowly. In practice, this means the query, just like the data load function used in the
following code, would be given at the top of the server.R file, outside of the call
to shinyServer({...}). It will be launched each time the application is run (or it
is trivially simple to write code that ensures this only occurs once per day with the
results stored until the application is launched on the next day).

If you like any of the analysis that we come up with or want to extend it, you can
always import your own Analytics data and load it in, as here, or query the API
online if you want the application to be simple for others to use. All the data and
code is hosted on GitHub and can be downloaded from http://github.com/
ChrisBeeley/GoogleAnalytics.

The UI
If you can, download and run the code and data (the data goes in the same folder
as the code) so you can get an idea of what everything does. If you want to run the
program without copying the actual data and code to your computer (copying data
and code is preferable, so you can play with it), just use another function for sharing
and running applications (we will discuss this in Chapter 5, Running and Sharing Your
Creations):

> runGitHub("GoogleAnalytics", "ChrisBeeley")

Chapter 2

[29]

In simple terms, the program allows you to select a date and time range and then
view a text summary, or a plot of monthly or hourly figures. There are three tabbed
windows in the output region where users can select the type of output they want
(Summary, Monthly figures, and Hourly figures).

The data is from a health service (known locally as NHS) website, so users might be
interested to show data that originates from domains within the NHS and compare
it with data that originates from all other domains. There is an option to add a
smoothed line to the graph, and three types of data are available: number of unique
visitors, bounce rate (how many users leave the site after the first page they land on),
and the average amount of time users spend on the site.

The following screenshot shows it in action:

As in many Shiny applications, ui.R is by far the simpler of the two code files and is
as follows:

###################################
Google Analytics - ui.R
###################################

library(shiny)

shinyUI(pageWithSidebar(

 headerPanel("Google Analytics"),

Building Your First Application

[30]

 sidebarPanel(

 dateRangeInput(inputId = "dateRange",
 label = "Date range",
 start = "2013-04-01",
 max = Sys.Date()
),

dateRangeInput() gives you two nice date widgets for the user to select a start and
end point. As you can see, it's given a name and a label as usual; you can specify
the start and end date (as done here, don't use the default behavior which gives the
current system date) as well as a maximum date (manually given Sys.Date(), that
is the system date, as used in this case). There are a lot of other ways to customize,
such as the way the date is displayed in the browser, whether the view defaults to
months, years, or decades, and others. Type ?dateRangeInput in the console for
more information:

 sliderInput(inputId = "minimumTime",
 label = "Hours of interest- minimum",
 min = 0,
 max = 23,
 value = 0,
 step = 1),

sliderInput(), used in the extra credit exercise in this chapter, gives you a
graphical slider that can be used to select numbers. Here the minimum, maximum,
initial value, and step between values are all set (0 and 23 hours, with a step of 1,
which is how Google Analytics returns the hour variable); again, for more details
type ?sliderInput in the console:

 sliderInput(inputId = "maximumTime",
 label = "Hours of interest- maximum",
 min = 0,
 max = 23,
 value = 23,
 step = 1),

 checkboxInput(inputId = "smoother",
 label = "Add smoother?",
 value = FALSE),

Chapter 2

[31]

checkboxInput() very simply gives you a tick box that returns TRUE when ticked
and FALSE when unticked. This example includes all the possible arguments, giving
it a name and label and selecting the initial value:

 checkboxGroupInput(inputId = "domainShow",
 label = "Show NHS and other domain
 (defaults to all)?",
 choices = list("NHS users" = "NHS",
 "Other" = "Other")
),

checkboxGroupInput() returns several checkboxes and is useful when users need
to make multiple selections. Of note in this example is the use of a list to specify the
options. This allows the display value (given to the user on the UI) and the return
value (given to R for processing) to be different. Note the way elements in a list
are named; it's quite a simple syntax: list("First name" = "returnValue1",
"Second name" = "returnValue2"). You can see that this allows nicely formatted
labels (with spaces in natural English) to be used in the label and computer-speak
(camel case variable names with no spaces) to be used in the return value:

 radioButtons(inputId = "outputType",
 label = "Output required",
 choices = list("Visitors" = "visitors",
 "Bounce rate" = "bounceRate",
 "Time on site" = "timeOnSite"))

radioButtons(), amazingly, will give you radio buttons. This allows the selection
of one thing and one thing only from a list. Again, because a named list is used, an
optional (...selected = ...) argument can be used to determine the default
selection, otherwise the first value is used as the default:

),
 mainPanel(
 tabsetPanel(
 tabPanel("Summary", textOutput("textDisplay")),
 tabPanel("Monthly figures", plotOutput("monthGraph")),
 tabPanel("Hourly figures", plotOutput("hourGraph"))
)
)
))

Building Your First Application

[32]

Probably the most unfamiliar part of this code is the use of tabsetPanel(). This
allows multiple frames of output to be shown on the screen and selected by the
user, as is common in GUIs that support tabbed frames. Note that processing is only
carried out for the currently selected tab; invisible tabs are not updated behind the
scenes but rather when they are made active. This is useful to know where some or
all tabs require significant data processing.

The setup is very simple, with a call to tabsetPanel() containing several calls
to tabPanel() in which each of the tabs is defined with a heading and a piece of
output, as defined in server.R.

Data processing
As you write more and more complex programs, it's the server.R file that will
become the largest because this is where all the data processing and output goes on,
and even where some of the functions that handle advanced UI features live. Instead
of going through all of the code line by line, as we did before, we're going to look at
the chunks in order and talk about the kinds of things that are done in each section in
typical Shiny applications.

The first chunk of code looks like the following:

######################################
Google Analytics - server.R
######################################

library(shiny)
library(plyr)
library(ggplot2)

load("analytics.Rdata") # load the dataframe

This chunk is run once every time the application is launched. This is where all the
data preparation will take place. In this example, it is very simple, and once the
relevant R packages are loaded, the whole dataframe is loaded in ready for use.
Sometimes you will be able to do all of your data processing "offline" and load the
data in, being fully prepared in this way. Sometimes, however, you may rely on a
spreadsheet that changes on the server regularly, or, as in this case, you may wish
to query the Google API. In cases like these, this is the place to do the data cleaning
and preparation necessary to run the R code with the dataset. The code to do that is
outside the scope of this section, but it suffices to say that as you get more confident
with R, you will be analyzing more and more complex datasets and you will find it
useful to do more data preparation within this section.

Chapter 2

[33]

Reactive objects
The next section is contained within the reactive part contained within the
shinyServer({...}) call. Up until now this section has just contained a list of
output commands that produce the output ready to fill the allocated spaces in ui.R.
In the next chunk we're going to look at another way of managing your analysis.
Sometimes you want to prepare a reactive dataset once and then pass it around the
program as needed. This might be because you have tabbed output windows (as in
this case) that use the same dataset and you don't want to write and maintain code
that prepares the data according to the values of reactive inputs within all three
functions. There are other times when you want to control the processing of data
because it is time-intensive or it might make an online query (such as in the case of
a "live" Google Analytics application that queries data live in response to reactive
inputs). The way that you can take more control over data processing from reactive
inputs, rather than distributing it through your output code, is to use reactive objects.
A reactive object, like a reactive function, changes when its input changes. Unlike a
reactive function, it doesn't do anything, but is just a data object (dataframe, number,
list, and so on) that can be accessed by other functions. Let's have a look at an
example:

prep data once and then pass around the program

passData <- reactive({

Some of the R code will be a little unfamiliar to you, but for now just concentrate
on what the program is actually doing. The first thing to note is that, unlike
previous examples, we are not making a call such as output$lineGraph
<- renderPlot({...}) or output$summaryText <- renderText({...}).
Instead, we are marking whatever is inside the call as reactive by enclosing it in
reactive({...}). This generates a reactive object called passData. This can
be accessed just like any other dataframe like this: passData() (for the whole
dataframe) or passData()$variableName (for a variable), or passData()[, 2:10]
(for the second to the tenth variable). Note the brackets after passData.

 analytics <- analytics[analytics$Date %in%
 seq.Date(input$dateRange[1],
 input$dateRange[2], by = "days"),]

Building Your First Application

[34]

This command selects the dates that the user is interested in using the vector of two
dates within input$dateRange as defined in ui.R. Note that the first of these dates
is selected with input$dateRange[1] and the second with input$dateRange[2].
One of the nice things about this widget is it ensures users can only select logical
values, that is, they can only select start dates that occur before end dates, and end
dates that occur after start dates. Have a go and see. This keeps your code simpler
because you know that only valid values will be returned (selection of the same date
is possible, so your code will need to handle that case):

 analytics <- analytics[analytics$Hour %in%
 as.numeric(input$minimumTime):
 as.numeric(input$maximumTime),]

This next instruction restricts the data to the requested time period. In this case,
the user can select "wrong" values for the minimum and maximum time, with the
maximum value being lower than the minimum value, because this part is made of
two separate widgets. It doesn't affect the data extract in this case; the code will just
match the sequence 10, 9, 8, 7, 6, instead of the sequence 6, 7, 8, 9, 10, so
the data object is exactly the same. In a different application, you may need to check
for the validity of the input or control the UI, so invalid selections are not possible.
We will discuss the second possibility later on in the book:

 if(class(input$domainShow)=="character") {
 analytics <- analytics[analytics$Domain %in%
 unlist(input$domainShow),]

 }

And finally, the last statement restricts the data to either the NHS domain or the non-
NHS domain according to user preference. The if(){...} statement checks to see
if the user has made a selection before it subsets the data (an empty selection returns
NULL, whereas any other selection will return an object of class character—a string,
so that's what the code checks for). Quite often you will have to make sure that your
code works with all the return types of the UI, or checks for valid input, whichever
makes for the cleanest and simplest code:

 analytics

 })

We finish with the simple analytics instruction, which simply means "give
passData the object analytics, which we've now defined as reactive based on the
inputs in this instruction".

Chapter 2

[35]

Outputs
Finally, the outputs are defined. Let's look first at the code that produces the first tab
of output, monthly totals:

 output$monthGraph <- renderPlot({

 graphData <- ddply(passData(), .(Domain, Date), numcolwise(sum))

The first instruction prepares the data using the user contributed package plyr (as
with ggplot2, we have Hadley Wickham to thank for this package). This package is
incredibly useful, but can be a little hard to understand at first. For now, just note
that this instruction takes a dataframe as an input and then produces column sums
based on unique combinations of domain and date. In this case, this means summing
over the hours for each date or summing over the dates for each hour. This is the
monthly graph, so we need to sum over the hours for each date. Instead of having 1
A.M. on the 21st, 2 A.M. on the 21st, 3 A.M. on the 21st, and so on, we just add them
all up and have the totals for the 21st, the 22nd, and so on:

 if(input$outputType == "visitors"){

 theGraph <- ggplot(graphData,
 aes(x = Date, y = visitors, group = Domain, colour = Domain))
 + geom_line() + ylab("Unique visitors")

 }

 if(input$outputType == "bounceRate"){

 theGraph <- ggplot(graphData,
 aes(x = Date, y = bounces / visits * 100, group = Domain,
 colour = Domain)) +
 geom_line() + ylab("Bounce rate %")

 }

 if(input$outputType == "timeOnSite"){

 theGraph <- ggplot(graphData,
 aes(x = Date, y = timeOnSite / visits, group = Domain,
 colour = Domain)) +
 geom_line() + ylab("Average time on site")

 }

Building Your First Application

[36]

Following this we have three if({...}) statements that correspond to the three
values of the radio button: total visitors, bounce rate, and time on site. Each of
these instructions sets up a ggplot graph with the same parameters:

•	 Date on the x axis
•	 Grouping variable distinguished by color for the domain (this will draw a

separate line for each domain and color them differently)
•	 A call to geom_line() to tell ggplot that we want a line graph

The only parameter that changes is y. This is the variable that will be shown on the
graph, and is either equal simply to visitors (that is, number of visitors), bounces
/ visits * 100 (that is, the percentage of visitors who leave after the first page), or
timeOnSite / visits (that is, the total time on site divided by the number of visits,
to give the mean time on the site) and the ylab("...") argument that labels the y
axis appropriately. Note that we have still not printed the graph anywhere, we are
just setting it up.

 if(input$smoother){

 theGraph <- theGraph + geom_smooth()

 }

We can go on with the setup now with this instruction that checks to see if the
user requested a smoothing line and, if they did, add one to the graph with
geom_smooth().

 print(theGraph)

 })

Finally, we give the instruction to print() the graph. This is always necessary in
ggplot-based graphics in Shiny, whether you have built up the graph in a separate
variable or just given one instruction on one line. Don't forget this! It's a very
common cause of problems, as you will no doubt notice if you spend any time on
forums or mailing lists. Many newcomers make this mistake. The hourly graph is
built up and outputted in exactly the same way, except using the hour variable in
place of the date variable:

 output$hourGraph <- renderPlot({

 graphData = ddply(passData(), .(Domain, Hour), numcolwise(sum))

 if(input$outputType == "visitors"){

Chapter 2

[37]

 theGraph <- ggplot(graphData,
 aes(x = Hour, y = visitors, group = Domain,
 colour = Domain)) +
 geom_line() + ylab("Unique visitors")

 }

 if(input$outputType == "bounceRate"){

 theGraph <- ggplot(graphData,
 aes(x = Hour, y = bounces / visits * 100, group = Domain,
 colour = Domain)) +
 geom_line() + ylab("Bounce rate %")

 }

 if(input$outputType == "timeOnSite"){

 theGraph <- ggplot(graphData,
 aes(x = Hour, y = timeOnSite / visits, group = Domain,
 colour = Domain)) +
 geom_line() + ylab("Average time on site")

 }

 if(input$smoother){

 theGraph <- theGraph + geom_smooth()

 }

 print(theGraph)

 })

Finally, the component that handles the text output runs as follows:

 output$textDisplay <- renderText({
 paste(
 length(seq.Date(input$dateRange[1], input$dateRange[2],
 by = "days")),
 " days are summarised. There were", sum(passData()$visitors),
 "visitors in this time period."
)
 })

Building Your First Application

[38]

You will be familiar with the paste() command by now; the first function within the
paste() call produces a vector of dates between the two specified in the UI and then
finds its length using, unsurprisingly, the length() command.

A note on the application code
Please note that, as at many points in this book, some of the decisions made around
the server.R file were made to keep the code understandable and would not be
used in a full application. The monthly and hourly graphics were drawn separately
and each contained a data processing instruction at the beginning. A full application
would do neither of these things. All data processing would be done in the first
reactive call—producing either a list of two dataframes, one for each, or one larger
frame that would feature values for both datasets. This makes the code easier to
understand and maintain.

Further, although we have included two separate graph instructions and put them
in different tabs, a full application would use one set of code that could handle both
examples. Doing this requires a moderate level of proficiency with R. The code will
be shorter, clearer, and easier to maintain, but more difficult to read and understand
here if you are new to R.

Optional exercise
The Google Analytics application is reasonably intuitive and well featured (it doesn't,
admittedly, compare all that favorably with Google's own offering!). However, as
with the server.R code, some of the decisions around the UI setup were made for
simplicity for the purposes of this book, to avoid flooding you with new widgets
and ways of handling inputs in the second chapter. You may like to pause here and
take a bit of time to update the code with some of the other UI elements Shiny offers
to make the application function a bit more intuitive. Have a browse through the
documentation yourself (?shiny) or make use of the following:

•	 numericInput(): This function gives both a textbox and a selection box to
allow users to select a numeric value.

•	 selectInput(): This function allows a user to select one or multiple items
from a list.

•	 textInput(): This function is not that useful in this case, but you can
have some fun parsing its output with as.numeric() and using that as a
numerical input

You will need to look at the return types for each of the widgets and make sure that
the server.R code will accept them and, if not, change the code so that it will.

Chapter 2

[39]

Those with some experience with R will no doubt be itching to fix the server.R
file to clear up the issues outlined in the previous section. This will mainly sharpen
your R skills and will also give you practice in some of the basics of scoping,
classing, and passing data in a Shiny application. So if you feel up to it, have a go
with this code too.

Summary
In this chapter we have covered a lot of ground. We've seen that Shiny applications
are generally made up of two files: server.R and ui.R. We've learned what each
part of the code does, including setting up ui.R with the position and type of inputs
and outputs, and server.R with the data processing functions, outputs, and any
reactive objects that are required.

The optional exercises have given you a chance to experiment with the code files in
this chapter, varying the output types, using different widgets, and reviewing and
adjusting their return values as appropriate. In addition, we've learned about the
default layouts in Shiny, pageWithSidebar(), mainPanel(), and tabsetPanel().

We've also learned about reactive objects and discussed when you might use reactive
objects. There's more on finely controlling reactivity later in the book.

In the next chapter we're going to learn how to integrate Shiny with your own
content, using HTML, CSS, and JavaScript.

Building Your Own Web
Pages with Shiny

So, we've built our own application to query our site's data on Google Analytics.
We've learned about the basic setup of a Shiny application and seen a lot of the
widgets. It will be important to remember the majority of this basic structure
because we are going to cover a lot of different territories in this chapter and, as
a consequence, we won't have a single application at the end, like we did in the
previous chapter. Instead, we will have lots of bits and pieces that you can use to
start building your own content. Building one application with all of these different
concepts would create several pages of code and it would be difficult to understand
which part does what. As you go through the chapter, you might want to rebuild
the Google Analytics application, or another of your own if you have one, using
each of the concepts. If you do this, by the end you will have a beautifully styled and
interactive application that you really understand. Or you might like to just browse
through and pick out the things that you are particularly interested in; you should
be able to understand each section on its own. Let's get started now. We are going to
cover the following areas:

•	 Customizing Shiny applications, or whole web pages, using HTML
•	 Styling your Shiny application using CSS
•	 Turbo-charging your Shiny application with JavaScript and jQuery

Running the applications and code
For convenience, I have gathered together all the applications in this chapter. The
link to the live versions as well as source code and data on my website can be found
at http://chrisbeeley.net/website/shinybook.html. If you can, run the live
version first, and then browse the code as you go through each example.

http://chrisbeeley.net/website/shinybook.html

Building Your Own Web Pages with Shiny

[42]

Shiny and HTML
It might seem quite intimidating to customize the HTML in a Shiny application, and
you may feel that by going under the hood, it would be easy to break the application
or ruin the styling. You may not want to bother rewriting every widget and output in
HTML just to make one minor change to the interface.

In reality, Shiny is very accommodating, and you will find that it will quite happily
accept a mix of Shiny and HTML code produced by you using Shiny helper
functions, and the raw HTML written by you. So you can style just one button, or
completely build the interface from scratch and integrate it with some other content.
I'll show you all of these methods and provide some hints about the type of things
you might like to do with them. Let's start simple by including some custom HTML
in an otherwise vanilla Shiny application.

Custom HTML links in Shiny
This application makes use of data downloaded from a website I use a lot in my
daily work, Patient Opinion (www.patientopinion.org.uk/). Patient Opinion lets
users of health services tell their stories, and my organization makes extensive use
of it to gather feedback about our services and improve them. This application uses
data downloaded from the site and allows users to see the rate at which stories are
posted that relate to different parts of the organization. On Patient Opinion, a custom
HTML button will take the users straight from the application and onto the search
page for that service area.

ui.R
Let's take a look at the ui.R first:

#################################
custom HTML output - ui.R
#################################

library(shiny)

shinyUI(pageWithSidebar(

 headerPanel("Patient Opinion posts by area"),

 sidebarPanel(

 radioButtons("area", "Service area",

Chapter 3

[43]

 c("Armadillo", "Baboon",
 "Camel", "Deer", "Elephant"),
 selected = "Armadillo")
),

 mainPanel(
 h3("Total posts"),
 HTML("<p>Cumulative totals over time</p>"),
 plotOutput("plotDisplay"),
 htmlOutput("outputLink")
)
))

Hopefully, you should remember the h3("...") function and all the other helper
functions from the previous chapter. Just type ?p at the console for the full list. I have
also included the HTML() function which marks text strings as HTML, avoiding the
HTML escaping, which would otherwise render this on the screen verbatim.

The other new part of this file is the htmlOutput() function. This, like the HTML()
function, prevents HTML escaping and allows you to use your own markup, but this
time for text passed from server.R. Here's the final interface:

Building Your Own Web Pages with Shiny

[44]

server.R
There are only a couple of new commands from Shiny in this example, so let's
sharpen our R skills while we are here. The server.R file in this example, unlike
many of the others in the book, deliberately does a lot of data management and
clean-up at the top, before the reactive code. In this case, of course, I could have
cleaned the data first and then loaded the clean data in the example. However,
usually you will not have this luxury, either because results are loaded online from
an API, or because your users will drop their own spreadsheets into the application
folder, or some other reason such as this. So, let's look at a more realistic example
and put aside Shiny commands for the moment.

server.R – data preparation
Let's look at the data preparation code first:

#######################################
custom HTML output - server.R
#######################################

library(shiny)
library(ggplot2)

load the data- keeping strings as strings

PO <- read.csv("PO.csv", stringsAsFactors = FALSE)

create a new variable to hold the area in and fill with blanks

PO$Area <- NA

find posts that match service codes and label them
with the correct names

PO$Area[grep("RHARY", PO$HealthServices, ignore.case=TRUE)] <-
 "Armadillo"

PO$Area[grep("RHAAR", PO$HealthServices, ignore.case=TRUE)] <-
 "Baboon"

PO$Area[grep("715", PO$HealthServices, ignore.case=TRUE)] <-
 "Camel"

PO$Area[grep("710i", PO$HealthServices, ignore.case=TRUE)] <-

Chapter 3

[45]

 "Deer"

PO$Area[grep("700", PO$HealthServices, ignore.case=TRUE)] <-
 "Elephant"

create a postings variable to add together for a
cumulative sum- give it 1

PO$ToAdd <- 1

remove all missing values for Area
(since they will never be shown)

PO <- PO[!is.na(PO$Area),]

API returns data in reverse chronological order- reverse it

PO <- PO[nrow(PO):1,]

produce cumulative sum column

PO$Sum <- ave(PO$ToAdd, PO$Area, FUN = cumsum)

produce a date column from the data column in the spreadsheet

PO$Date <- as.Date(substr(PO$dtSubmitted, 1, 10),
 format = "%Y-%m-%d")

After loading the Shiny package and any other packages that are necessary, a comma
delimited spreadsheet (.csv) is loaded with the read.csv() command. You may
often want to use stringsAsFactors = FALSE. Factor is a special class in R which
is useful for statistical applications. A full discussion on the properties of the factor
class is rather outside the scope of this book. For now, it is sufficient to say that if you
have any strings in your spreadsheet that you want to treat as strings (for example,
extracting characters, coercing other variable types such as date, and so on), do
ensure that you import them as strings and not as factors as done in the previous
example. If you want to use factors for certain particular variables (particularly for
ggplot2 which can require factors for some arguments), you can always coerce them
later on. Data preparation proceeds as follows:

•	 A new variable is created and filled with R's missing data value, NA. The
missing data value is of great use in a lot of R code; here we are using it so
that we can easily discard all the datapoints that fail to match to areas.

Building Your Own Web Pages with Shiny

[46]

•	 The subset operator [] is then used with the grep() command (familiar
to Unix-like OS users and which returns the positions of a character vector
matching a search string). This marks all the rows of the newly created empty
variable that matches each service code with a name that is meaningful to the
end users.

•	 A helper variable ToAdd is then given a value of 1 for all the rows. This will
be used to calculate the cumulative total of posts for each area.

•	 PO[!is.na(PO$Area),] is used to return all the rows of the dataset that do
not have missing values for the area variable (that is, failed to match). !is.
na(x) is a useful function that returns the positions of all the non-missing
values of x.

•	 The API for the website returns the data in reverse chronological order, so
it is flipped over using the row indices nrow(PO):1, that is, a sequence of
integers starting at the number of rows of the data and going down to 1.

•	 The ave() function is used to return the cumulative sum (cumsum) for each
grouping (PO$Area).

•	 The date string (which has the time appended) is shrunk to the correct size
using substr() and coerced to R's date class using as.Date(). The date class
can often trip up newcomers, so it is worth having a good read of ?as.Date().
Coercing a character string and not a factor, and ensuring that you specify the
format of the string properly, should get you over the common pitfalls.

Again, don't worry too much if you don't follow all of the R code. Learning R is
really a book in itself. I've included it here to help you get used to the kind of things
that you might want to do, and to show you the commonly used shortcuts and
pitfalls for beginners. Let's have a look at the server.R file.

server.R – server definition
This file produces a plot of the cumulative totals of postings and produces a nicely
formatted HTML button ready to post straight into the UI:

shinyServer(function(input, output) {

 output$plotDisplay <- renderPlot({

 # select only the area as selected in the UI

 toPlot = PO[PO$Area == input$area,]

 print(
 ggplot(toPlot, aes(x = Date, y = Sum)) + geom_line()

Chapter 3

[47]

)

 })

 output$outputLink <- renderText({

 # switch command in R as in many other programming languages

 link <- switch(input$area,
 "Armadillo" =
 "http://www.patientopinion.org.uk/services/rhary",
 "Baboon" =
 "http://www.patientopinion.org.uk/services/rhaar",
 "Camel" =
 "http://www.patientopinion.org.uk/services/rha_715",
 "Deer" =
 "http://www.patientopinion.org.uk/services/rha_710i",
 "Elephant" =
 "http://www.patientopinion.org.uk/services/rha_700"
)

 # paste the HTML together

 paste0('<form action="', link, '"target="_blank">
 <input type="submit" value="Go to main site">
 </form>')
 })
})

You can see the subsetting again carried out with our old friend [] and a ggplot()
call in the plot function. Just remember to wrap it in print() (as done in the
previous chapter).

The HTML button is created very easily using the switch() command, and paste0()
which concatenates strings with no spaces. With that, our newly created object
output$ouputLink is ready to be sent straight to the UI and included as raw HTML.

Minimal HTML interface
Now that we have dipped our toes into HTML, let's build a (nearly) minimal
example of an interface entirely in HTML. To use your own HTML in a Shiny
application, create the server.R file as you normally would. Then, instead of
a ui.R file, create a folder called www and place a file called index.html inside
this folder. This is where you will define your interface.

Building Your Own Web Pages with Shiny

[48]

index.html
Let's look at each chunk of index.html in turn:

<!----------------------------->
<!--Minimal example- HTML UI -->
<!----------------------------->

<html>

<head>
 <title>HTML minimal example</title>
 <script src="shared/jquery.js" type="text/javascript"></script>
 <script src="shared/shiny.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="shared/shiny.css"/>
 <style type = "text/css">
 body {
 background-color: #ecf1ef;
 }

 #navigation {
 position: absolute;
 width: 300px;
 }

 #centerdoc {
 max-width: 600px;
 margin-left: 350px;
 border-left: 1px solid #c6ec8c;
 padding-left: 20px;
 }
 </style>

</head>

The <head> section contains some important setup for Shiny, loading the JavaScript
and jQuery scripts which make it work, as well as a stylesheet for Shiny. You will
need to add some CSS of your own unless you want every element of the interface
and output to be displayed as a big list down the screen, and the whole thing to look
very ugly. For simplicity, I've added some very basic CSS in the <head> section; you
could, of course, use a separate CSS file and add a link to it just as shiny.css
is referenced.

Chapter 3

[49]

The body of the HTML contains all the input and output elements that you want to
use, and any other content that you want on the page. In this case, I've mixed up a
Shiny interface with a picture of my cats, because no web page is complete without
a picture of a cat! Have a look at the following code:

<body>

 <h1>Minimal HTML UI</h1>

 <div id = "navigation">

 <p>
 <label>Title for graph:</label>

 <textarea name="comment" rows = "4"
 cols = "30">My first graph</textarea>
 </p>

 <p>
 <label>What sort of graph would you like?</label>

 <input type="radio" name="graph"
 value="1" title="Straight line" checked>Linear

 <input type="radio" name="graph" value="2"
 title="Curve" >Quadratic

 </p>

 <label>Here's a picture of my cats</label>

 <img src="cat.jpg" alt="My cats"
 width="300" height = "300">

 </div>

 <div id = "centerdoc">

 <div id="textDisplay" class="shiny-text-output"></div>
 <br/ >

 <div id="plotDisplay" class="shiny-plot-output"
 style="width: 80%; height: 400px"></div>

 </div>

</body>

</html>

Building Your Own Web Pages with Shiny

[50]

There are three main elements: a title and two <div> sections, one for the UI and one
for the output. The UI is defined within the navigation <div>, which is left aligned.
Recreating Shiny widgets in HTML is pretty simple and you can also use HTML
elements that are not given in Shiny. Instead of replacing the textInput() widget
with <input type="text"> (which is equivalent), I have instead used <textarea>,
which allows more control over the size and shape of the input area.

The radioButtons() widget can be recreated with <input type = "radio">. You
can see that both get a name attribute, which is referenced in the server.R file as
input$name (in this case, input$comment and input$graph). Another advantage
of using your own HTML is you can add tooltips; I have added these to the radio
buttons using the title attribute.

The output region is set up with two <div> tags: one which is named textDisplay
and picks up output$textDisplay as defined in server.R; and the other which is
named plotDisplay and picks up output$plotDisplay from the server.R file. In
your own code, you will need to specify the class as shown in the previous example,
as either shiny-text-output (for text), shiny-plot-output (for plots), or shiny-
html-output (for tables or anything else that R will output as HTML). You will need
to specify the height of plots (in px, cm, and so on) and can optionally specify width
either in absolute or relative (%) terms.

Just to demonstrate that you can throw anything in there that you like, there's a
picture of my cats underneath the UI. You will, of course, have something a bit more
sophisticated in mind. Add more <div> sections, links, pictures and just whatever
you like.

server.R
Let us have a quick look at the server.R file:

##
minimal example for HTML- server.R
##

library(shiny)

shinyServer(function(input, output) {

 output$textDisplay <- renderText({

 paste0("Title:'", input$comment,

Chapter 3

[51]

 "'. There are ", nchar(input$comment),
 " characters in this."
)
 })

 output$plotDisplay <- renderPlot({

 par(bg = "#ecf1ef") # set the background color

 plot(poly(1:100, as.numeric(input$graph)), type = "l",
 ylab="y", xlab="x")

 })

})

Text handling is done as before. You'll notice that the renderPlot() function
begins by setting the background color to the same as the page itself (par(bg =
"#ecf1ef") and for more graphical options in R, see ?par). You don't have to do
this, but the graph's background will be visible as a big white square if you don't.
The next chapter will tell you how to draw your graph as a png and handle the
transparency yourself.

The actual plot itself uses the poly() command to produce a set of numbers from a
linear or quadratic function according to the user input (that is, input$graph). Note
the use of as.numeric() to coerce the value we get from the radio button definition
in index.html from a string to a number. This is a common source of error in Shiny
code and you must remember to keep track of how variables are stored, whether
as lists, strings, or other variable types; and either coerce them into place (as done
here), or coerce them all in one go using a reactive function. The latter option can be
a good idea to make your code less fiddly and buggy, since it removes the need to
keep track of variable types in every single function you write. There is more about
defining your own reactive functions and passing data around a Shiny instance in
the next chapter. The type ="l" argument returns a line graph, and the xlab and
ylab arguments give labels to the x and y axes.

Building Your Own Web Pages with Shiny

[52]

The following screenshot shows the finished article:

JavaScript and Shiny
With Shiny, JavaScript, and jQuery, you can build pretty much anything you
can think of; moreover, Shiny and jQuery will do a lot of the heavy lifting which
means fairly minimal amounts of code will be required. We are going to have a
look at another couple of toy examples. Firstly, we will look at using JavaScript to
manipulate the inputs of a Shiny application, and then at using jQuery to manipulate
the outputs. Please note that these examples do not represent the best practice in
coding as they do not make the best use of CSS, HTML, or jQuery. They are just there
to demonstrate the principles and show you how easy it is. In your own applications,
you will need to make use of HTML, JavaScript (and/or jQuery), and CSS in the
most appropriate and efficient way.

ui.R
This example also includes more examples related to including custom HTML without
writing the whole thing out in HTML yourself. Let's have a look at the ui.R file:

###
Animating text with JavaScript- ui.R
###

Chapter 3

[53]

library(shiny)

shinyUI(pageWithSidebar(
 headerPanel("Text based animations"),

 sidebarPanel(
 h3("Let's animate something!"), # heading helper
 p("Please enjoy the
 animation responsibly"), # paragraph helper
 tags$textarea(id="textArea", # tags$XX for
 "Please enter text here"), # generating HTML
 tags$input(type = "button",
 id = "animate",
 value = "Animate!",
 onClick = "buttonClick()") # reference to JS
),

 mainPanel(
 tags$canvas(id="myCanvas", # graphical output area
 width="500",
 height="250"),
 includeHTML("textSend.js"), # include JS file
 textOutput("textDisplay")
)
))

There are two things in this file that you haven't seen before. The first
is the tags$xxx() function which will generate HTML for you. The
tags$textarea(id="textArea", "Please enter text here") call generates the
following:

<textarea id="textArea" class="shiny-bound-input">Please enter text
here</textarea>.

Similarly, the whole tags$input(...) call generates the following:

<input type="button" id="animate" value="Animate!"
onclick="buttonClick()">.

The second thing that you haven't seen before is the includeHTML() function. This
allows you to link to a file that contains a lot of HTML (in this case, a JavaScript
definition), rather than cluttering up your ui.R with it. You could very well include
plain HTML using this function.

Building Your Own Web Pages with Shiny

[54]

server.R
The server.R file is unchanged from our original minimal example:

##
Animating text with JavaScript - server.R
##

library(shiny)

shinyServer(function(input, output) {

 output$textDisplay <- renderText({ # handle Shiny
 # text function
 paste0("You said '", input$textArea,
 "'. There are ", nchar(input$textArea),
 " characters in this."
)
 })
})

Of course, you can do much more processing than this if you wish. The JavaScript
file contains no surprises, and functions just as it does in any other web application:

<script type="text/javascript">

function buttonClick(){

 // get and set up the drawing canvas

 var c=document.getElementById("myCanvas");
 var ctx=c.getContext("2d");
 ctx.font="30px Arial";

 // get the text from the UI

 var text = document.getElementById("textArea").value;

 // set up positional variables

 var textX = 150;
 var textY = 1;

 // define move function

Chapter 3

[55]

 function move(){

 ctx.clearRect(0, 0, c.width, c.height);
 ctx.fillText(text, textX, textY * 5);

 if(textY++ < 40){

 setTimeout(move, 25); // delay between frames
 }
 }

 move(); // call function
}

</script>

We won't look in detail at the JavaScript because that is rather out of the scope of this
discussion. The important things to note are the first code chunk, which picks up the
drawing canvas we drew in the ui.R file and sets it up; and the second code chunk,
which picks up the input from the textarea that we defined in ui.R. The rest of the
code just draws the text on the screen and then animates it so that it falls down the
frame. Here is the screenshot that displays it:

You will, I am sure, wish to produce something a little more sophisticated than this!

Building Your Own Web Pages with Shiny

[56]

jQuery
For the ultimate quick and clean code, let's add some jQuery. We are going to add
mouseover row highlighting (that is, coloring in the rows of a table when the mouse
pointer is on them) for a table from Shiny (this can be done in CSS, of course, but this
is just an example) and allow the user to bold individual cells by clicking on them, as
well as producing a pop-up information box about the dataset.

index.html – body
We'll skip the head for now and look at the body of the index.html file:

<body>
 <h1>jQuery example</h1>

 <div id = "navigation">

 <label for="dataSet">Select dataset</label>
 <select id="dataSet">
 <option value="iris" selected="selected">
 Iris data</option>
 <option value="USPersonalExpenditure">
 Personal expenditure data</option>
 <option value="CO2">CO2 data</option>
 </select>

 </div>

 <div id = "centerdoc">

 <div id="datatext" class="shiny-text-output"></div>

 <div id="hiddentext" style = "text-indent: 100%;
 white-space: nowrap; overflow: hidden"
 class="shiny-text-output">
 </div>

 <div id="dataset" class="shiny-html-output"></div>

 </div>

</body>

Chapter 3

[57]

The interface, as you can see, allows users to select one of three datasets which
are included in R. There are two outputs that are visible, which are some text
followed by a table that will be specified within the server.R file (you can see
them in the previous code snippet, the <div> sections with id = "datatext" and
id = "dataset"). A further <div> section (with id = "hiddentext") allows R to
generate some text, so make it available to jQuery but without displaying it on the
screen until the user requests it. Let's now look at the server.R file.

server.R
Following is the server.R file:

library(shiny)

shinyServer(function(input, output) {

 output$dataset <- renderTable({

 theData = switch(input$dataSet,
 "iris" = iris,
 "USPersonalExpenditure" =
 USPersonalExpenditure,
 "CO2" = CO2)

 head(theData)

 })

 output$datatext <- renderText({

 paste0("This is the ", input$dataSet, " dataset")

 })

 output$hiddentext <- renderText({

 paste0("Dataset has ", nrow(switch(input$dataSet,
 "iris" = iris,
 "USPersonalExpenditure" =
 USPersonalExpenditure,
 "CO2" = CO2)), " rows")

 })
})

Building Your Own Web Pages with Shiny

[58]

The function within renderTable() quite simply takes the string sent from the
interface and returns the dataset within R with the same name. It then displays the
first few rows of the dataset using head(), which is returned as an HTML table.
There are two calls made to renderText(), as can be seen. The first returns a text
string describing which dataset has been selected. The second returns a description
of the number of rows in the dataset. This will be hidden from the user and is only
accessible via jQuery. Before we go into detail, here is the finished interface:

As you can see in the previous screenshot, the first row is highlighted. This is
achieved through a mouseover (which works on any row). The third value of
Sepal.Length is in bold and this is achieved through a mouse click. Double
clicking on the text above the table brings up a message about the dataset, as
shown in the following screenshot:

This, of course, is the text that we generated and hid, as we saw in the server.R and
index.html files. Let's look at the jQuery to do this.

jQuery
Like before, you can keep the jQuery code wherever you like: in a text file, verbatim
in the <head> of your html, or using a call to includeHTML() from a ui.R file. As
usual, wrap your code in the following manner:

$(document).ready(function(){
 ...
})

Chapter 3

[59]

Please have a look at the piece of code in standard jQuery:

 $('tr').mouseover(function(){
 $(this).css('background-color', 'yellow');
 });

This will not work because your output will be redrawn, and so you will need
to access all the elements that will be drawn as well as those that already are.
Rewrite the previous code in the following manner (it is a piece of code from
Joe Cheng of RStudio):

$(document).on("mouseover", "tr", function(evt) {
 $(this).css('background-color', 'yellow');
})

The previous is the mouseover code that handles row highlighting, and following
is the mouseout code to put it back to normal once the pointer leaves:

$(document).on("mouseout", "tr", function(evt) {
 $(this).css('background-color', 'transparent');
});

Applying bold effects to individual cells is achieved through the following code
snippet. As you can see, the function starts by clearing bold formatting from all
the cells (in case a different cell has already been highlighted by the user) and then
bolds the cell that has been clicked:

$(document).on("click", "td", function(evt) {
 $('td').css('font-weight', 'normal');
 $(this).css('font-weight', 'bold');
})

Lastly, the following code snippet describes a function that listens for a double-click
on the text that describes the dataset, and then gives more information about the
data, which we have placed on the screen and hidden:

$(document).on("dblclick", "#datatext", function(evt) {
 alert($('#hiddentext').text());
})

As with the JavaScript example, none of these functions are going to win any prizes
for UI design, but they do hopefully illustrate some general things that are very easy
to accomplish. Following are some examples of things you might like to try in your
own applications:

•	 Click to expand sets of rows in large tables

Building Your Own Web Pages with Shiny

[60]

•	 Custom highlighting of table cells within a user-set range (note that
this can be done without jQuery, using pure Shiny code, but it is more
difficult this way)

•	 Mouseover help text to provide additional documentation for a
Shiny application

Exercise
If you haven't already been tempted, now is definitely a good time to have a go
at building your own application with your own data. The next chapter covers
advanced topics in Shiny and, though you are welcome to plough on, a little practical
experience with the functions will stand you in good stead for the next chapter. If
you're interested in sharing your creations right away, feel free to jump to Chapter 5,
Running and Sharing Your Creations.

How you go about building your first application will very much depend on
your previous experience and what you want to achieve with Shiny, but as with
everything in life, it is better to start simple. Start with the minimal example given in
the previous chapter and put in some data that's relevant to you. Shiny applications
can be hard to debug (compared to interactive R sessions, at least), so in your early
forays, keep things very simple. For example, instead of drawing a graph, start with
a simple renderText() call and just print the first few values of a variable. This
will, at least, let you know that your data is loading okay and the server and UI are
communicating properly. Always make sure that any code you write in R (graphs,
tables, data management, and so on) works in a plain interactive session, before you
put it into a Shiny application!

Probably the most helpful and simple debugging technique is to use cat() to print
to the R console. There are two main reasons why you should do this. The first is
to put in little messages to yourself, for example, cat("This branch of code
executed"). The second is to print the properties of R objects if you are having
problems relating to data structure, size, or type. cat(str(x)) is particularly useful
and will print a summary of any kind of R object, whether it is a list, a dataframe, a
numeric vector, or anything else.

The other useful method is a standard method of debugging in R, browser(), which
can be put anywhere in your code. As soon as it is executed, it halts the application
and enters the debug mode (see ?browser).

Chapter 3

[61]

Once you have the application working, you can start to add custom HTML using
Shiny's built-in functions or rewrite ui.R into index.html. The choice here really
depends on how much HTML you want to include. Although, in theory, you can
create very large HTML interfaces in Shiny using .html files referenced by the
includeHTML() command, you will end up with a rather confusing list of markups
scattered across different files. Rewriting to raw HTML is likely to be the easier
option in most cases. If you are already proficient in JavaScript and/or jQuery, then
you may like to have a go at using them with a Shiny application. If not, you can
leave this for now or perhaps just modify the code included in this chapter to see
whether you can get different and interesting effects.

Summary
This chapter has put quite a heap of tools in your Shiny toolbox. You have learned
how to use custom HTML straight from a minimal ui.R UI setup, and how to build
the whole thing from scratch using HTML and CSS. You have also looked at some
data management and cleaning in R, and at some examples of Shiny applications
using JavaScript and jQuery. Hopefully, by now, you should have made your own
application, whether in pure Shiny or with your own HTML markup, and perhaps
experimented with JavaScript/jQuery. In the next chapter, we are going to learn
more about higher control over Shiny applications, including controlling reactivity,
scoping and passing variables, and a variety of input/output functions.

Taking Control of Reactivity,
Inputs, and Outputs

So far in this book we've mastered the basics of Shiny by building our own Google
Analytics (GA) application, as well as looked at how to style and extend Shiny
applications using HTML, CSS, and JavaScript. In this chapter we are going to
extend our toolkit by learning about advanced Shiny functions. These allow you to
take control of the fine details of your application, including the interface, reactivity,
data, and graphics.

In order to do this, we're going to go back to the Google Analytics application and
totally upgrade it, making it much smoother, more intuitive, and well-featured.
The finished code and data for this advanced GA application can be found at
https://github.com/ChrisBeeley/GoogleAnalyticsAdvanced.

In this chapter we will do the following:

•	 Learn how to show and hide parts of the interface
•	 Change the interface reactively
•	 Finely control reactivity so functions and outputs run at the appropriate time
•	 Use URLs and reactive Shiny functions to populate and alter the selections

within an interface
•	 Upload and download data to and from a Shiny application
•	 Use custom graphics and animations in Shiny

Taking Control of Reactivity, Inputs, and Outputs

[64]

Showing and hiding elements of the UI
We'll start easy with a simple function that you are certainly going to need if
you build even a moderately complex application. Those of you who have been
doing extra credit exercises and/or experimenting with your own applications
will probably have already wished for this or, indeed, have already found it.
conditionalPanel() allows you to show/hide UI elements based on other
selections within the UI. The function takes a condition (in JavaScript, but the form
and syntax will be familiar from many languages) and a UI element, and displays
the UI only when the condition is true. This is actually used a couple of times in the
advanced GA application and indeed in all the applications I've ever written of even
moderate complexity. The following is a simpler example (from ui.R, of course,
in the first section, within sidebarPanel()), which allows users who request a
smoothing line to decide what type they want:

conditionalPanel(
 condition = "input.smoother == true",
 selectInput("linearModel", "Linear or smoothed",
 list("lm", "loess"))
)

As you can see, the condition appears very R/Shiny-like, except with the "."
operator familiar to JavaScript users in place of "$", and with "true" in lower case.
This is a very simple but powerful way of making sure that your UI is not cluttered
with irrelevant material.

Giving names to tabPanel elements
In order to further streamline the UI, we're going to hide the hour selector when the
monthly graph is displayed and the date selector when the hourly graph is displayed.
The difference is illustrated in the following screenshot with side-by-side pictures,
hourly figures UI on the left-hand side and monthly figures on the right-hand side:

Chapter 4

[65]

In order to do this, we're going to have to first give the tabs of the tabbed output
names. This is done as follows (with the new code in bold):

tabsetPanel(id ="theTabs",
 tabPanel("Summary", textOutput("textDisplay"),
 value = "summary"),
 tabPanel("Monthly figures",
 plotOutput("monthGraph"), value = "monthly"),
 tabPanel("Hourly figures",
 plotOutput("hourGraph"), value = "hourly")
)

As you can see, the whole panel is given an ID (theTabs), and then each tabPanel
is also given a name (summary, monthly, and hourly). They are referred to in the
server.R file very simply as input$theTabs. Let's have a quick look at a chunk of
code in server.R that references the tab names; this code makes sure that we subset
based on date only when the date selector is actually visible, and by hour only when
the hour selector is actually visible. Our function to calculate and pass data now
looks like the following (new code again bolded):

passData <- reactive({

 if(input$theTabs != "hourly"){

 analytics <- analytics[analytics$Date %in%

Taking Control of Reactivity, Inputs, and Outputs

[66]

 seq.Date(input$dateRange[1], input$dateRange[2],
 by = "days"),]

 }

 if(input$theTabs != "monthly"){

 analytics <- analytics[analytics$Hour %in%
 as.numeric(input$minimumTime) :
 as.numeric(input$maximumTime),]

 }

 analytics <- analytics[analytics$Domain %in%
 unlist(input$domainShow),]

 analytics

})

As you can see, subsetting by month is carried out only when the date display
is visible (that is, when the hourly tab is not shown), and vice versa.

Finally, we can make our changes to ui.R to remove parts of the UI based on
tab selection:

conditionalPanel(
 condition = "input.theTabs != 'hourly'",
 dateRangeInput(inputId = "dateRange",
 label = "Date range",
 start = "2013-04-01",
 max = Sys.Date()
)
),

conditionalPanel(
 condition = "input.theTabs != 'monthly'",
 sliderInput(inputId = "minimumTime",
 label = "Hours of interest- minimum",
 min = 0,
 max = 23,
 value = 0,

Chapter 4

[67]

 step = 1
),

 sliderInput(inputId = "maximumTime",
 label = "Hours of interest- maximum",
 min = 0,
 max = 23,
 value = 23,
 step = 1)
)

Note the use in the latter example of two UI elements within the same
conditionalPanel() call; it is worth noting that it helps you keep your
code clean and easy to debug.

Reactive user interfaces
Another trick you will definitely want up your sleeve at some point is a reactive user
interface. This enables you to change your UI (for example, the number or content
of radio buttons) based on reactive functions. For example, consider an application
that I wrote related to survey responses across a broad range of health services in
different areas. The services are related to each other in quite a complex hierarchy,
and over time, different areas and services respond (or cease to exist, or merge,
or change their name...), which means that for each time period the user might be
interested in, there would be a totally different set of areas and services. The only
sensible solution to this problem is to have the user tell you which area and date
range they are interested in and then give them back the correct list of services that
have survey responses within that area and date range.

The example we're going to look at is a little simpler than this, just to keep from
getting bogged down in too much detail, but the principle is exactly the same and
you should not find this idea too difficult to adapt to your own UI. We are going
to imagine that your users are interested in the individual domains from which
people are accessing the site, rather than just have them lumped together as the NHS
domain and all others. To this end, we will have a combo box with each individual
domain listed. This combo box is likely to contain a very high number of domains
across the whole time range, so we will let users constrain the data by date and only
have the domains that feature in that range return. Not the most realistic example,
but it will illustrate the principle for our purposes.

Taking Control of Reactivity, Inputs, and Outputs

[68]

Reactive user interface example – server.R
The big difference is that instead of writing your UI definition in your ui.R file, you
place it in server.R, and wrap it in renderUI(). Then all you do is point to it from
your ui.R file. Let's have a look at the relevant bit of the server.R file:

 output$reacDomains <- renderUI({

 domainList = unique(as.character(passData()$networkDomain))

 selectInput("subDomains", "Choose subdomain", domainList)

 })

The first line takes the reactive dataset that contains only the data between the dates
selected by the user and gives all the unique values of domains within it. The second
line is a widget type we have not used yet which generates a combo box. The usual
id and label arguments are given, followed by the values that the combo box can
take. This is taken from the variable defined in the first line.

Reactive user interface example – ui.R
The ui.R file merely needs to point to the reactive definition as shown in the
following line of code (just add it in to the list of widgets within sidebarPanel()):

uiOutput("reacDomains")

You can now point to the value of the widget in the usual way, as input$subDomains.
Note that you do not use the name as defined in the call to renderUI(), that is,
reacDomains, but rather the name as defined within it, that is, subDomains.

Advanced reactivity
Now that we've warmed up a bit, let's discuss reactivity in a bit more detail.
As we've already learned, reactive functions and objects automatically take
dependencies on their inputs. We've also seen that it's often a good idea to use
reactive objects rather than just output functions because data objects can be created
once and then passed around to different output functions. We're now going to
discuss, in a bit more detail, the use of reactive objects in Shiny as well as special
functions within it to control reactivity. There is more about reactivity and some
very helpful diagrams on the Shiny tutorial pages at http://rstudio.github.io/
shiny/tutorial/#reactivity-overview.

Chapter 4

[69]

The default behavior, as we have seen throughout the book, handles quite a lot of
different applications. However, sometimes the default behavior will be slow or
confusing for users of your application, or will result in code that is hard to write
or maintain or even just not useful. Along with using reactive objects within Shiny,
there are special functions that you can use to take control of inputs and outputs to
Shiny applications. I'll summarize them briefly and then show a use case for each one
within the Google Analytics application.

The submitButton() and isolate() functions are both used in cases where
data is slow to get or process. In essence, they allow you to control when Shiny
processes information from a dependency. So, for example, if your data processing
instruction takes 10 seconds to run, users won't mind waiting a few times, but they
don't want to wait every time they click on a button. The submitButton() controls
the whole interface, and no reactive processing is carried out until it has been
pushed by the user. The isolate() function is a little more subtle than this and
allows you to prevent reactive objects and functions from forming dependencies
on individual inputs. Essentially, it prevents a costly rerun of data processing or
output every time irrelevant changes are made on the UI and gives a smoother
experience for your user.

Another weapon in your reactivity arsenal is invalidateLater(), which allows you
to make an object reactive, not on the basis of user inputs but rather on the passing
of time. An obvious example would be a financial information application, which is
refreshed every minute on a server to which the application has access. The outputs
can be kept up-to-date even when the user is not interacting with the application
using the invalidateLater() function.

Let's have a closer look at each of these methods in turn.

Using reactive objects and functions
efficiently
As we've already seen, using a reactive object is a good idea to save from having to
maintain several chunks of code that all do the same thing (typically, prepare your
data based on user inputs). Another time you might want to use reactive objects is
if your reactive function is inefficient or slow. Sometimes a reactive object is a good
idea if you have a lot of complicated inputs that need coercing to different variable
types; it's easier to produce a nice, clean, simple R object with all the correct variable
types in it than to write lots of horrible as.character(input$variable) calls all
over the place and remember in what variable type everything is.

Taking Control of Reactivity, Inputs, and Outputs

[70]

So, for example, I did some fiddling with the output of the widgets to build the
widget browser presented in Chapter 2, Building Your First Application, in order to fit
all the different output types in one column (browse back to Chapter 2 to have a look,
use runGist(6571951) to run the application, or refer to https://gist.github.
com/ChrisBeeley/6571951 for the code). This was fine for this one example, but if I
had needed the output elsewhere in the application again, I certainly would not like
to write and maintain code to remake it from the inputs every time. It is much easier
to just build the object once, place it in a reactive object, and then call on it wherever
you need it.

Controlling the whole interface with the
submitButton() function
This is easily the simplest approach to dealing with a lot of the problems that you
might encounter with slow reactive functions. The submitButton() function allows
you to include a button on your UI which ensures that no functions run at all until
the button is clicked. The same reactive dependencies are taken by output functions,
so the programming is just as simple, but the users can take their time selecting the
right inputs before the long computation for the outputs begins. Place the following
into a UI definition:

submitButton(text = "Produce output")

That's it! Although a wonderfully simple method, in some circumstances it
would be overkill, and takes away the feeling of interactivity even when the user
is making minor changes to the output (the title of a graph, for example). Shiny
does give you finer control than this, should you need it. This is achieved with the
isolate() function.

Controlling specific inputs with the isolate()
function
The isolate() function allows you to take particular parts of the input and break
the dependency that they would otherwise form with reactive functions. For
example, you might wish your call to the Google Analytics API to be reactive so
that it is kept constantly up-to-date. However, you do not want to make a request
to the API every time something tiny changes because it will slow down the whole
application waiting for the results to download and putting them into the right
format to be analyzed. In this case, you might wish to have the data re-download
every time the user changes the hours that they are interested in (which suggests an
interest in real-time data), but not every time they do anything else, such as change
the date range or whether they want the "NHS" or "Other" domain.

Chapter 4

[71]

In order to do this we will set up another data function that downloads data from the
API every time.

We did not cover using the Google Analytics API in detail in Chapter 2, Building Your
First Application, and won't here either because it can be a bit fiddly to use and will
distract from what we are doing. This code makes use of the rga package mentioned
in Chapter 2, Building Your First Application and will re-download the data every
time the user changes their hourly range. Note that my username and password
have been replaced with XXXX, you can get your own user details from the Google
Analytics website. Note also that this code is not included on the GitHub because it
requires the username and password to be present in order for it to work:

open a connection in the preamble to the application
rga.open(instance = "ga", where="ga.rga",
 client.id = "XXXX.apps.googleusercontent.com",
 client.secret = "XXXX")
download a copy at application startup

analytics <- ga$getData(XXXX, batch = TRUE,
 start.date = "2013-05-01",
 metrics = "ga:visitors, ga:visits,
 ga:bounces, ga:timeOnSite",
 dimensions = "ga:dateHour, ga:networkDomain",
 sort = "", filters = "", segment = "")

define the shinyServer()
shinyServer(function(input, output){
...

 hourlyData <- reactive({

 # download fresh data from server
 analytics <- ga$getData(XXXX, batch = TRUE,
 start.date = "2013-05-01",
 metrics = "ga:visitors, ga:visits,
 ga:bounces, ga:timeOnSite",
 dimensions = "ga:dateHour, ga:networkDomain",
 sort = "", filters = "", segment = "")

 # form a dependency on input$minimumTime and input$maximumTime
 analytics <- analytics[analytics$Hour %in%
 as.numeric(input$minimumTime) :
 as.numeric(input$maximumTime),]

Taking Control of Reactivity, Inputs, and Outputs

[72]

avoid dependency on data and domain
 analytics <- isolate({
 analytics[analytics$Date %in% seq.Date(input$dateRange[1],
 input$dateRange[2], by = "days"),]

 analytics <- analytics[analytics$Domain %in%
 unlist(input$domainShow),]

 })

 analytics

 })
… # rest of shinyServer({}) call

This is a somewhat contrived example, of course, because you now have two copies
of the data in the application, one right up to the minute and one downloaded
when the application started up. It does illustrate the basic point of isolating slow
or otherwise expensive code in order to keep your application responsive where it
needs to be.

Running reactive functions over time
If your users want to be kept really up-to-the-minute with the Google Analytics data,
data can be downloaded pretty much in real-time with the invalidateLater()
command. The invalidateLater() command causes reactive functions to re-execute
after a certain period of time has elapsed. Note that the invalidateLater() function
takes a session argument. This is used in some of Shiny's advanced functions. Simply
give the shinyServer() call a session argument (shinyServer(function(input,
output, session){) and then add in the argument wherever necessary in the rest
of your code. The documentation (which can be found by entering ?shiny at the
console—as a reminder, accessing help files this way is represented in this book simply
as ?shiny, ?ggplot, and so on) will make clear which functions require a session
argument. It seems likely that more will be added beyond the current version of Shiny,
which is 0.60 at the time of writing.

The other argument that invalidateLater() takes is the number of milliseconds
you wish to elapse before the function is called again. We can rewrite the data
function using invalidateLater() in the following manner:

hourlyData <- reactive({

schedule the reactive context to re-execute in 10 seconds

 invalidateLater(10000, session)

Chapter 4

[73]

 # download fresh data from server
 analytics <- ga$getData(XXXX, batch = TRUE,
 start.date = "2013-05-01",
 metrics = "ga:visitors, ga:visits,
 ga:bounces, ga:timeOnSite",
 dimensions = "ga:dateHour,
 ga:networkDomain",
 sort = "", filters = "", segment = "")

use isolate to avoid other dependencies

 analytics <- isolate({

 analytics <- analytics[analytics$Hour %in%
 as.numeric(input$minimumTime) :
 as.numeric(input$maximumTime),]

 analytics <- analytics[analytics$Date %in%
 seq.Date(input$dateRange[1],
 input$dateRange[2], by = "days"),]

 analytics <- analytics[analytics$Domain %in%
 unlist(input$domainShow),]
 })

analytics

})

Note that when you use invalidateLater()you must put all other dependencies
in isolate(), otherwise it will re-execute both when the time elapses or when the
inputs change. Of course, this is another contrived example, it's highly unlikely your
users really want to query the Analytics API every 10 seconds.

More advanced topics in Shiny
The remainder of this chapter will be spent looking at some of the other functions
that Shiny includes that can give your users a smoother and more well-featured
experience.

Taking Control of Reactivity, Inputs, and Outputs

[74]

Finely controlling inputs and outputs
Shiny offers a variety of functions that allow you to directly control the user
interface. You can program functions that take direct control over any of the input
widgets, changing their labels, input range, or current selection, as well as switching
the tabs on a tabsetPanel()-based UI, all using built-in functions. The following
example uses updateCheckboxGroupInput(), which, as its name implies, is used to
update the parameters of a checkboxGroupInput()-based widget. We also need the
observe() function to make it work.

The observe() function is for reactive functions that do not return objects but rather
are run for their effect—controlling parts of the user interface, creating files, and so
on. In this example we are going to use it to control the UI, but don't forget that it can
be used for lots of other purposes.

Let's see how they both work together to achieve the desired effect. In the basic
version of the GA application we made things simple by assuming that if a user
deselected both "NHS" and "Other" users, they wanted results from both returned.
This is okay, but it's not very intuitive. It is far better to just take control of the UI
and ensure that only valid inputs can be selected (perhaps adding some help text so
users do not think the application is bugged). This is achieved very simply for this
checkbox group as follows:

observe({

 if(class(input$domainShow) != "character"){

 updateCheckboxGroupInput(session, "domainShow",
 choices = list("NHS users" = "NHS",
 "Other" = "Other"),
 selected = "NHS users")

 }
})

Note that updateCheckboxGroupInput() also takes a session argument. Other than
that extra detail, the updateCheckboxGroupInput() function is very simple to use
and allows you to completely redraw the widget—so you could, in theory, add or
take away options as well.

For our purposes, we just wish to check to see if the input is valid (invalid in
this case means that both checkboxes are unchecked, which in turn means that
input$domainShow does not return a valid character input), and if it is not, we tell
the application to select the "NHS" checkbox.

Chapter 4

[75]

A nice side effect of controlling the UI like this is that we now don't have to test
elsewhere for valid inputs. So within the reactive function that returns passData()
we can now omit the following:

if(class(input$domainShow)=="character"){
 ...
}

This is because we know the input is always valid because we wrote code that
ensures that it is. Controlling user inputs so that they are always valid can be a useful
way of writing clean and simple code, and letting your users know what is and isn't
possible at the same time.

In the following example we will use observe() again for a more advanced
purpose—controlling the user interface based on the URL which the user uses to
access the server.

Reading client information and GET requests
in Shiny
Shiny includes some very useful functionality that allows you to read information
from a client's web browser, such as information from the URL (including GET
search requests), size of plots in pixels, and so on.

All you need to do, as before, is run shinyServer() with a session argument. This
causes, among other things, an object to be created that holds information about a
client's session called session$clientData.

The exact content of this object will depend on what is open on the screen. The
following objects will always exist:

url_hostname # hostname, e.g. localhost or chrisbeeley.net

url_pathname = # path, e.g. / or /shiny

url_port = # port number (8100 for localhost, can optionally
 # change when hosting, see chapter 5)

url_protocol = # highly likely to be http:

url_search = # the text after the "?" in the URL. In the following
 # example this will read "?person=NHS&smooth=yes".

Taking Control of Reactivity, Inputs, and Outputs

[76]

Different output types will yield different information. Plots will give the following,
among other return values:

output_myplot_height = # in pixels
output_myplot_width = # in pixels

There are many applications to which this information can be put, such as giving
different UIs or default settings to users from different domains, or configuring
graphs and other outputs based on their size (for example, for users who are using
mobile devices or 32" monitors). We're going to look at perhaps the most obvious
and powerful use of client data: the search string.

Custom interfaces from GET strings
In this example we're going to pretend that we have two groups of users who are
going to want very different default reporting options. The NHS staff want to check
the data before they start and are interested in the level of engagement the site
generates. In order to do this, they want to start on the text summary tab and be
given the bounce rate as default.

Members of the public are quite different. They know public money has been spent
on the site and they want to see that there are plenty of visitors. They want to be
taken straight to a graph summarizing the number of visitors over a date range.

We will also make the presence of a smoothing line preset so that we can give it by
default for those who want it and exclude it for those who would be confused by it.

As well as the work with the GET query, the only extra bit we will need here is
a function to change the selected panel from a tabsetPanel(). This is done,
unsurprisingly, using the updateTabsetPanel() command.

Catering for these different needs is very easily done by creating URLs that encode
the preferences and giving them to the different groups. To simplify the code,
we will pretend that, if they are passed at all, the correct number of search terms
are always passed in the correct order. This is a reasonable assumption if you
write the URLs yourself. In a real-world example, the URLs are most likely going
to be generated programmatically from a UI. Correctly parsing them is not too
challenging, but it is not really the focus of the discussion here.

The following are the two URLs we will give out:

•	 feedbacksite.nhs.uk/shiny?person=NHS&smooth=yes

•	 feedbacksite.nhs.uk/shiny?person=other&smooth=no

Chapter 4

[77]

As in the previous example, the code is wrapped in observe() and the first portion
of the code returns the search terms from the URL as a named list:

observe({

 searchString <- parseQueryString(session$clientData$url_search)

 …

Having done this we can then check that a searchString exists (in case other users
land from the default URL) and, if it does, change the settings accordingly. The
updateTabsetPanel() command uses a lot of the concepts we already saw when we
read the tab that was selected. The function takes a session argument, an inputId
argument (the name of the panel), and a selected argument (the name of the tab):

if(length(searchString)>0){ # if the searchString exists

 # deal with first query which indicates the audience
 if(searchString[[1]] == "nhs"){ #for NHS users do the following

 updateCheckboxGroupInput(session, "domainShow",
 choices = list("NHS users" = "NHS",
 "Other" = "Other"),
 selected = "NHS")

 updateRadioButtons(session, "outputType",
 choices = list("Visitors" = "visitors",
 "Bounce rate" = "bounceRate",
 "Time on site" = "timeOnSite"),
 selected= "Bounce rate")

 updateTabsetPanel(session, inputId = "theTabs",
 selected = "summary")

 }

The rest of the code looks like the following:

if(searchString[[1]] == "other"){ # for the public do this
 … # set up interface
 }
 # do they want a smooth?
 if(searchString[[2]] == "yes"){

 updateCheckboxInput(session, inputId = "smoother",
 value = TRUE)

 }

Taking Control of Reactivity, Inputs, and Outputs

[78]

This is clearly a very powerful way to make the experience better for your users
completely transparently. You may wish to spend a bit of time setting up a web
interface in whatever language you like (PHP, JavaScript, and so on) and correctly
parsing the URLs that you generate within Shiny. If you need to handle varying
lengths and names of lists, you will need a few extra commands:

•	 names(theList): This will give you the name of each return value
•	 length(unlist(theList)): This will tell you how long the list is

Animation
Animation is surprisingly easy. The sliderInput() function that you have already
seen, which is used to select the hours of interest within the application, has an
optional animation function that will increment a variable by a set amount every
time a specified unit of time elapses. This allows you to very easily produce a graphic
that animates. In the following example we are going to look at the monthly graph
and plot a linear trend line through the first 20% of the data (0 to 20% of the data).
Then we are going to increment the percentage value that selects the portion of the
data by 5% and plot a linear through that portion of data (5 to 25% of the data).
Then increment again to 10 to 30% and plot another line, and so on. The following
screenshot shows a static image of it:

The GitHub page (https://github.com/ChrisBeeley/GoogleAnalyticsAdvanced)
contains a link to a hosted version of the application so you can see for yourself.

Chapter 4

[79]

The slider input is set up as follows, with an ID, label, minimum value, maximum
value, initial value, step between values, and the animation options, giving the delay
in milliseconds and whether the animation should loop:

sliderInput("animation", "Trend over time",
 min = 0, max = 80, value = 0, step = 5,
 animate=animationOptions(interval=1000, loop=FALSE))

Having set this up, the animated graph code is pretty simple, looking very much like
the monthly graph data except with the linear smooth based on a subset of the data
instead of the whole dataset. The graph is set up as before, and then a subset of the
data is produced on which the linear smooth can be based:

 smoothData <- graphData[graphData$Date %in%
 quantile(graphData$Date,
 input$animation/100, type=1):
 quantile(graphData$Date,
 (input$animation+20)/100, type=1),]

We won't get too distracted by this code, but essentially, it tests to see which of
the whole date range falls in a range defined by percentage quantiles based on the
sliderInput() values. See ?quantile for more information.

Finally, the linear smooth is drawn with an extra data argument to tell ggplot2 to
base the line only on the smaller smoothData object and not the whole range:

theGraph <- theGraph + geom_smooth(data = smoothData,
 method = "lm",
 colour = "black")

Not bad for a few lines of code. We have both ggplot2 and Shiny to thank for how
easy this is.

Advanced graphics options
Although renderPlot() makes it very easy to produce reactive outputs, as we've
seen, it only works with the standard method of outputting graphics in R. Images
from certain packages within R, as well as images created outside of R, will not
be displayed. Helpfully, Shiny includes a function to render all image files within
a Shiny application: renderImage(). The simplest case is where you have a pre-
rendered image that you wish to include. In the server.R file, the renderImage()
call is made, returning a list with the path to the image and optionally the content
type (to save Shiny from having to guess based on the file extension):

output$imageFile <- renderImage({
 list(src = "foo.png", contentType = "image/png")
}, deleteFile = FALSE)

Taking Control of Reactivity, Inputs, and Outputs

[80]

The deleteFile argument is set to false; otherwise the file will be removed after
display. This is intended for when the image is generated within the call. The file is
no longer needed, so it can be deleted after the image is displayed.

Finally, the ui.R just includes the following:

imageOutput("imageFile")

Downloading graphics
The option to download graphics can be added easily using downloadHandler().
Essentially, downloadHandler() has two arguments that both contain functions—
one to define the path to which the download should go, and one that defines what is
to be downloaded. We'll go through the following code from server.R step-by-step:

output$downloadData.trend <- downloadHandler(

 filename <- function() {
 paste("Trend_plot", Sys.Date(),".png",sep="") },

This is the filename() function, and as you can see, it produces a filename Trend_
plot_XX_.png where XX is the current date:

 content <- function(file) {
 png(file, width = 980, height = 400,
 units = "px", pointsize = 12,
 bg = "white", res = NA)

 trend.plot <- myTrend()

 print(trend.plot)

 dev.off()},

This is the content() function, and as you can see, it opens a png device (?png), calls
a reactive function named myTrend(), which draws the graph, prints to the device,
and then closes with a call to dev.off(). You can set up the myTrend() function
very simply; in this case, it is just like the function that draws the graph itself except
instead of being wrapped in renderPlot() to indicate that it is a Shiny output, it is
just defined as a reactive function:

myTrend <- reactive({

 graphData <- ddply(passData(), .(Domain, Date), numcolwise(sum))

Chapter 4

[81]

 … rest of function as in the monthly graph function

})

Lastly the following is given to tell Shiny what type of file to expect:

 contentType = 'image/png')

Note that having made myTrend() a reactive function, you can now use it in a
standard renderPlot() call to draw it on the page like the following:

output$TrendPlot <- renderPlot({

 print(myTrend())

})

As you might have probably realized by now, in a real application, you wouldn't
define the output twice; you would just write the function once, make it reactive, and
then make use of that same function in the renderPlot() and downloadHandler()
functions. As with many of the examples in this book, this code is designed to be
easy to understand and is not realistic in terms of an actual application.

Adding the download button to the ui.R file is simple; the downloadButton()
function takes the name of the download handler as defined in server.R and a label
for the button:

tabPanel("Trend", plotOutput("TrendPlot"),
 downloadButton("downloadData.trend","Download Graph"))

As you can see, I have added the button underneath the graph so users know what
they are downloading.

Downloading and uploading data
Downloading data is done in a very similar fashion, with the downloadHandler()
call looking like the following:

output$downloadData <- downloadHandler(
filename = function(){
 "myData.csv"
}
content = function(file){
 write.csv(passData(), file)
}
)

Taking Control of Reactivity, Inputs, and Outputs

[82]

Uploading data is achieved using the fileInput() function. In the following
example, we will assume the user wishes to upload a comma-separated
spreadsheet (.csv) file. The button is added to ui.R in the following manner:

fileInput("uploadFile", "Upload your own CSV file")

This button allows a user to select their own .csv file and makes a variety of
objects based on the ID (in this case, input$uploadFile$...) available from
server.R. The most useful is input$uploadFile$datapath, which is a path
to the file itself and can be turned into a dataframe using read.csv():

userData <- read.csv(input$uploadFile$datapath)

There are other bits of information about the file available; see ?fileInput for
more details.

Summary
Having finished this chapter, you have now seen most of the functionality within
Shiny. It's a relatively small but powerful toolbox with which you can build a vast
array of useful and intuitive applications with comparatively little effort. In this
respect, ggplot2 is rather a good companion for Shiny because it too offers you
a fairly limited selection of functions with which knowledgeable users can very
quickly build many different graphical outputs.

In this chapter we have looked at fine-tuning the UI using conditionalPanel()
and observe(), and changing your UI reactively. We also looked at managing
slow computations using Shiny's reactivity functions, customizing a user's
experience using client data, custom graphics and animation, and uploading
and downloading data.

In the next chapter we will cover sharing your creations with the R community,
which can be easily achieved using Shiny's built-in functions. We will also look
at sharing your application with the whole world by hosting Shiny on a server.
Both free DIY and paid options are discussed.

Running and Sharing
Your Creations

Having made all of these wonderfully intuitive and powerful applications, you are
quite naturally going to want to show them off. You may wish to share them with
colleagues or members of the worldwide R community. You may wish to share them
with individuals in your department or field who, while not R users, can handle
a little bit of effort to get an application working. Or you may wish to share them
transparently and freely with the whole world by hosting them on a server. Shiny
offers quite a lot of approaches to sharing applications and you'll be glad to hear that
even the most complex should not be too taxing with the right hardware and OS on
your server. In this chapter we will look at the following:

•	 Sharing your work with R users using Gist/GitHub
•	 Using .zip and .tar files locally or over the Internet to share an application
•	 Sharing over the Web using free and paid-for hosting and technologies

from RStudio
•	 Browser compatibility within Shiny

Sharing with the R community
Sharing with the R community is a little easier than with a general audience for
two reasons:

•	 They can run the Shiny package within R and therefore use the Shiny
functions designed to help distribute Shiny packages

•	 They are almost guaranteed to be reasonably knowledgeable about some
of the processes that help you distribute an application, for example,
unzipping directories

Running and Sharing Your Creations

[84]

There are a few ways of sharing with R users running the Shiny package within R, as
summarized in the following sections.

Sharing over GitHub
By far, the easiest way of sharing your creations with fellow R users is over GitHub
(github.com). Of course, other R users can also use all the other methods in this
chapter, but this is probably the most frictionless method (short of hosting the
application) for both you and the end user.

Introduction to Git
You will no doubt have heard of Git (git-scm.com—the version control system that
has collaborative sharing features at GitHub) even if you have never used it. Git is a
version control system that can be used locally on your computer or, to get the best
out of it, the version control repository on your computer can be synced online at
GitHub. Hosting of open source code at GitHub is free, and there are paid options
for closed source code. If you don't already use version control, this is an excellent
reason to start. It is a little intimidating for newcomers, but over time, the resources
and tutorials on the site have improved and perhaps one day of head scratching
awaits you. Trust me, that one day will be paid back one hundredfold.

As a diehard Linux enthusiast, it pains me to admit it, but I actually found learning
on Windows easier because they provide a wonderful GUI to get you started (also
on OS X). This is not at all to say that you need to use Windows or should stick with
Windows; I quite happily dropped the GUI and went to the terminal in Linux once
I'd found my feet a bit. It's worth noting also that there are some great GUIs for
Linux too, check your package management system. I didn't find any that supported
beginners quite so well as the official Windows/ OS X versions, though.

Finally, and wonderfully, RStudio itself actually supports Git, and, once you've
installed Git and set up your account, you can pretty much run the whole show from
within RStudio itself. Just install Git, start an RStudio project within a directory and
configure version control within the project options menu.

Sharing applications using Git
Do consult the websites given previously for more details about each of these steps.
Once you've set your Git version control, and paired with an online repository at
GitHub, you can very easily share your creations with anyone running the R and
Shiny package by using the runGitHub() command, which takes as mandatory
arguments the name of the repository and the username.

Chapter 5

[85]

For example, to run the Google Analytics application from Chapter 2, Building Your
First Application, just run the following line of code:

runGitHub("GoogleAnalytics", "ChrisBeeley")

Code and data are both automatically downloaded and run, and with the default
argument (launch.browser = TRUE) used, a browser is launched to view the
application.

If you don't want or need version control and don't need data to be included in the
download, a simpler option is to use Gist, which is also hosted at GitHub at gist.
github.com.

Using Gist is simply a matter of visiting the URL, setting up an account, pasting your
code in, and giving the server.R and ui.R files the correct filenames. You will then
have a URL with which to show others your code. Running this code from the Shiny
package is just a matter of using runGist() with the URL or even just the unique
numeric identifier from the URL:

runGist("https://gist.github.com/ChrisBeeley/6272654")
runGist("6272654")
runGist(6272654)

These are all valid methods of running the minimal example from Chapter 2, Building
Your First Application.

Sharing using .zip and .tar
Probably the next most frictionless method of distributing a Shiny application to
R users is by hosting either a .zip or .tar file of your application either over the
Web or FTP. You will need somewhere to host the file, and then users can run the
application simply using runUrl() in the following manner:

runUrl("http://www.myserver/shinyapps/myshinyapp.zip")

Note that this URL is not real; replace it with the address to your own file.

Of course, you can distribute a .zip file any way you like—your users only need to
unzip and then use runApp() from within the directory just as you do when testing
the application. You could e-mail the file, distribute on a USB drive—any method
you choose. The disadvantages to this method are, firstly, your users have to unzip
the file themselves (although this is unlikely to confuse many R users) and, secondly,
any changes to the application will also need to be distributed manually.

Running and Sharing Your Creations

[86]

Sharing with the world
In most cases, any serious work you do with Shiny will at some point need to be
shared with a non-R user, whether it's a non-technical colleague in your department or
the whole of the Internet. In this case, a bit more of the legwork falls onto you, but you
should still be pleasantly surprised how simple the process is. There are two options
here: set up your own server or get a paid account with RStudio to do it for you.

Glimmer
Glimmer is the name of the server on which RStudio will host your applications for
you (a second server, Spark, has recently been added). At the time of writing, this
service is in beta and is therefore free; there are plans to make it into a paid service
although these are as yet unconfirmed. The only drawbacks at present are that you
may not wish to copy your code and/or data to a third party and you cannot exercise
any control over server uptime, responsiveness, and so on. If in the future it becomes
paid, you will presumably have more guarantees over things such as server uptime
and latency, but of course you will have to pay for it.

Shiny Server
If you don't want to pay and/or don't want to copy your data to RStudio's server,
you can download and install Shiny Server (for Linux only) and do it yourself. Shiny
Server is totally free and open source, which is a great credit to RStudio. They have
a paid enterprise edition in the pipeline which will include a variety of useful things
such as user authentication and launching multiple R processes for each user, but the
free version is, in my experience, stable and well featured. Installation details can be
found at https://github.com/rstudio/shiny-server.

Installation on Ubuntu is embarrassingly easy; even with my limited knowledge of
running Linux servers, I had it up and running on my personal server in less than
an hour. It's run quite happily ever since. Mileage with other distributions will vary,
although judging from forum and blog posts, people have successfully run it on quite a
variety of distributions. Depending on what you are doing with your application, one
thing to be careful of is directory ownership and permissions. For example, one of my
applications produces PDF files for download. This requires making Shiny the owner
of the directory within the application folder which houses the temporary files that
are produced for download, and making the directory writeable. Within a corporate
environment, you may also find that the port Shiny uses is blocked by the firewall—
changing to a different port is simply a matter of editing the configuration file as
detailed on the Shiny Server webpage given previously.

Chapter 5

[87]

Browser compatibility
The last thing that you will need to worry about when sharing your creations with
the world is browser compatibility. On the whole, it's reasonable to assume that
most home users are running Internet Explorer (IE) 9 (or 10) or another reasonably
well-featured and up-to-date browser. However, corporate environments can
be quite different and, even today, they are notorious for using old versions of
Internet Explorer. Clearly, the best solution is to use an up-to-date browser in your
organization, but if this is not possible, it's worth knowing the following.

When you launch a browser locally from your R session, for example, when you are
writing your application, or running someone else's application with the methods
in the earlier part of this chapter, only Internet Explorer 10 is supported. However,
when running over Shiny Server, Explorer 8 and 9 are both supported. In my
organization, the web developers with whom we worked even had success running
over IE7 using various compatibility tweaks; however, this is not simple and is
outside the scope of this chapter.

Summary
In this chapter we have learned several methods for sharing your Shiny applications
with the world. This process is very easy indeed with fellow users of R, and a little
harder with the whole Internet, but however you do it I'm sure you'll agree that
it was relatively painless and worth the effort. In this chapter we have discussed
beginning to use Git and GitHub (and Gist) and using them to share your code and
applications with other R users. We also looked at distributing Shiny applications
manually or over FTP to R users using .zip and .tar files. We covered hosting
solutions to share your application with the whole Internet, including Glimmer and
Shiny Server and future directions for each. Lastly, we discussed compatibility issues
that Shiny has with old versions of Internet Explorer, and when you do, and don't
need to worry about them.

Index
Symbols

A
advanced graphics options

about 79
graphics, downloading 80, 81

advanced reactivity
about 68, 69
interface, controlling with submitButton()

function 70
reactive functions, running over time 72, 73
reactive functions, using 69
reactive objects, using 69
specific inputs, controlling with isolate()

function 70-72
advanced topics, Shiny

about 73
client information, reading 75
custom interfaces, from GET strings 76-78
GET requests, reading 75
inputs, controlling 74
outputs, controlling 74

animation 78, 79
Application Programming Interface (API) 8
applications

sharing, Git used 84, 85
sharing, .tar file used 85
sharing, .zip file used 85

arrays 12
as.numeric() 38
ave() function 46

B
bar charts 14, 15
barplot function 15
browser compatibility

within Shiny 87

C
c() function 11
checkboxGroupInput() method 31
checkboxInput() method 31
client information

reading, in Shiny 75
conditionalPanel() function 64
creations

sharing, over GitHub 84
custom HTML links, in Shiny

about 42
data preparation code 44-46
server definition code 46, 47
server.R file 44
ui.R file 42, 43

D
data

downloading 81
loading, into R 9, 10
uploading 82

dataframes
about 10
features 10
variables, extracting from 10

downloadHandler() function 80

[90]

E
Eclipse 8
elements

displaying, of user interface 64
hiding, of user interface 64

Emacs 8
Emacs Speaks Statistics plugin 8
examples

running, within Shiny 17-19

F
fileInput() function 82
functions 13

G
GET requests

reading, in Shiny 75
ggplot2 14
Git

about 84
used, for sharing applications 84, 85

GitHub
creations, sharing over 84
URL 84

Glimmer 86
Google Analytics 41
Google Analytics application

about 28
code 38
data processing 32
optional exercise 38
outputs 35-38
reactive objects 33, 34
UI 28-31

graphics
downloading 80, 81

grep() command 46

H
headerPanel() 23
HTML

used, for customizing Shiny applications 42

HTML() function 43
htmlOutput() function 43

I
indexing 11
input$comment 26
inputId argument 23
inputs

controlling, with isolate() function 70-72
installation, R 6
installation, Shiny 17
interface

controlling, with submitButton()
function 70

invalidateLater() command 72, 73
invalidateLater() function 69
isolate() function 69, 70

used, for controlling specific inputs 70-72

J
JavaScript

Shiny applications, customizing 52
jQuery 56

L
label argument 23
length() command 38
line charts 15
lists 11

M
mainPanel() function 23
matrices 12
minimal HTML interface

about 47
index.html file 48-50
server.R file 50, 51

N
names

providing, to tabPanel elements 64-67
NHS 29
Notepad ++ with the NppToR plugin 7

[91]

O
objects 13
observe() function 74

P
passData object 33
paste() method 38
Patient Opinion

about 42
URL 42

plot() function 13
png 51
poly() command 51
print() method 36

R
R

about 5, 6
arrays 12
code editors 7
dataframes 10, 11
data, loading 9, 10
functions 13
ggplot2 14
help, obtaining 8, 9
IDEs 7
learning 8
lists 11
matrices 12
objects 13
variable types 12

radioButtons() method 31
R community

applications, sharing with 83
R console 6, 7
reactive functions

running, over time 72, 73
using, effectively 69

reactive object
about 33, 34
using, effectively 69

reactive programming paradigm 17

reactive user interfaces
about 67
server.R example 68
ui.R example 68

renderImage() function 79
renderPlot() function 79
renderText() 26
rga package 28
RKWard 7, 17
RStudio 8, 17, 84
runApp() method 23, 85
runGist() method 85
runGitHub() command 84
runUrl() method 85

S
server.R

of minimal example 24, 25
server.R file 68
Shiny

about 42
advanced topics 73
browser compatibility 87
custom HTML links 42
installing 17
URL, for tutorial pages 68

Shiny applications
customizing, HTML used 42
customizing, JavaScript used 52
customizing, jQuery used 56
running 41

Shiny applications, with JavaScript
server.R file 54, 55
ui.R file 52

Shiny applications, with jQuery
about 56
index.html file 56, 57
jQuery code 58-60
server.R file 57, 58

Shiny package 5
Shiny program

running, on local machine 22, 23
Shiny Server 86
sidebarPanel() function 23, 64

[92]

sliderInput() function 30, 78
Spark 86
StatET plugin 8
submitButton() function 69, 70

used, for controlling interface 70
switch() command 47

T
table() command 14
tabPanel elements

names, providing to 64-67
tar file

used, for sharing applications 85
textInput() 23
Tinn-R 8

U
UI 28, 29
ui.R

of minimal example 22
ui.R file 68
updateCheckboxGroupInput() function 74

updateTabsetPanel() command 76
user interface

elements, displaying 64
elements, hiding 64

V
value argument 23
variables

extracting, from dataframes 10
variable types 12
Vim 8
Vim-R plugin 8

W
widget

types 26, 27

Z
zip file

used, for sharing applications 85

Thank you for buying
Web Application Development

with R Using Shiny

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1.	 Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real life development tasks

2.	 Effectively structure, write, test, and finally
deploy your application

3.	 Add security and optimization features to your
AngularJS applications

4.	 Harness the full power of AngularJS by
creating your own directives

Express Web Application
Development
ISBN: 978-1-84969-654-8 Paperback: 236 pages

Learn how to develop web applications with the
Express framework from scratch

1.	 Exploring all aspects of web development using
the Express framework

2.	 Starts with the essentials

3.	 Expert tips and advice covering all Express
topics

Please check www.PacktPub.com for information on our titles

Learning RStudio for R Statistical
Computing
ISBN: 978-1-78216-060-1 Paperback: 126 pages

Learn to effectively perform R development,
statistical analysis, and reporting with the most
popular RIDE

1.	 A complete practical tutorial for RStudio,
designed keeping in mind the needs of analysts
and R developers alike

2.	 Step-by-step examples that apply the
principles of reproducible research and good
programming practices to R projects

3.	 Learn to effectively generate reports, create
graphics, and perform analysis, and even build
R-packages with RStudio

Web Application Development
with Yii and PHP
ISBN: 978-1-84951-872-7 Paperback: 332 pages

Lean the Yii application development framework
by taking a step-by-step approch to building a Web-
based project tast tracking system from conception
through production depolyment

1.	 A step-by-step guide to creating a modern Web
application using PHP, MySQL, and Yii

2.	 Build a real-world, user-based, database-driven
project task management application using the
Yii development framework

3.	 Start with a general idea, and finish with
deploying to production, learning everything
about Yii inbetween, from "A"ctive record to
"Z"ii component library

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Installing R and Shiny
and Getting Started!
	Installing R
	The R console
	Code editors and IDEs
	Simple and well-featured
	Complex and extensible

	Learning R
	Getting help
	Loading data
	Dataframes, lists, arrays, and matrices
	Variable types
	Functions
	Objects

	Base graphics and ggplot2
	Bar chart
	Line chart

	Installing Shiny and running the examples
	Summary

	Building Your First Application
	Program structure
	ui.R of minimal example
	server.R of minimal example
	Optional exercise

	Widget types
	Google Analytics application
	The UI
	Data processing
	Reactive objects
	Outputs
	A note on the application code
	Optional exercise

	Summary

	Building Your Own Web Pages with Shiny
	Running the applications and code
	Shiny and HTML
	Custom HTML links in Shiny
	ui.R
	server.R
	server.R – data preparation
	server.R – server definition

	Minimal HTML interface
	index.html
	server.R

	JavaScript and Shiny
	ui.R
	server.R

	jQuery
	index.html – body
	server.R
	jQuery

	Exercise
	Summary

	Taking Control of Reactivity, Inputs, and Outputs
	Showing and hiding elements of the UI
	Giving names to tabPanel elements

	Reactive user interfaces
	Reactive user interface example – server.R
	Reactive user interface example – ui.R

	Advanced reactivity
	Using reactive objects and functions efficiently
	Controlling the whole interface with the submitButton() function
	Controlling specific inputs with the isolate() function
	Running reactive functions over time

	More advanced topics in Shiny
	Finely controlling inputs and outputs
	Reading client information and GET requests in Shiny
	Custom interfaces from GET strings

	Animation
	Advanced graphics options
	Downloading graphics

	Downloading and uploading data
	Summary

	Running and Sharing
Your Creations
	Sharing with the R community
	Sharing over GitHub
	Introduction to Git
	Sharing applications using Git
	Sharing using .zip and .tar

	Sharing with the world
	Glimmer
	Shiny Server
	Browser compatibility

	Summary

	Index

