
Web
Applications
with Elm

Functional Programming for the Web
—
Wolfgang Loder

www.allitebooks.com

http://www.allitebooks.org

Web Applications
with Elm

Functional Programming for the Web

Wolfgang Loder

www.allitebooks.com

http://www.allitebooks.org

Web Applications with Elm: Functional Programming for the Web

ISBN-13 (pbk): 978-1-4842-2609-4 ISBN-13 (electronic): 978-1-4842-2610-0
https://doi.org/10.1007/978-1-4842-2610-0

Library of Congress Control Number: 2018954229

Copyright © 2018 by Wolfgang Loder

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please email editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484226094. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Wolfgang Loder
Vienna, Austria

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2610-0
http://www.allitebooks.org

iii

Chapter 1: Introduction��� 1

Theory ��� 2

What Can We Use Elm For? ��� 3

Games ��� 4

Single-Page Applications (SPAs) ��� 5

Graphics �� 7

Embedded ��� 9

What Can’t We Do with Elm? ��� 9

Who Is This Book For? ��� 10

Required Software �� 10

Structure of This Book �� 11

Chapter 2: Getting Started �� 13

Installation �� 13

Global Installation �� 15

Local Installation ��� 16

Running a Docker Container ��� 18

Editors and IDEs �� 23

Atom �� 24

Emacs �� 24

IntelliJ �� 24

LightTable �� 25

Sublime ��� 25

Table of Contents
About the Author �� vii

About the Technical Reviewer ��� ix

www.allitebooks.com

http://www.allitebooks.org

iv

Vim �� 25

Visual Studio Code ��� 26

Obligatory Hello World��� 26

Deployment ��� 30

Option 1: All-in-One ��� 30

Option 2: Custom Web Page �� 32

Option 3: Integration �� 33

What We Have Learned ��� 35

Chapter 3: Elm Primer �� 37

Elm Platform ��� 37

Elm Style Guide ��� 38

Elm Language ��� 42

Basic Language Features �� 43

Elm as a Functional Language �� 54

Elm as a Type-safe Language �� 75

Elm as a Modular Language �� 83

What We Learned �� 84

Chapter 4: Tooling and Libraries ��� 85

REPL �� 85

Development Process ��� 90

Scaffolding �� 91

Building ��� 93

Switch Elm Versions �� 94

Debugging ��� 94

Standard Libraries��� 96

Data Types and Structures ��� 98

Revisiting Maybe ��� 115

JSON �� 118

What We Learned �� 120

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 5: Elm Architecture and Building Blocks �� 121

Elm Architecture Overview �� 124

model ��� 124

init ��� 127

update ��� 130

view ��� 133

subscriptions ��� 136

Conclusion ��� 137

Code Organization ��� 137

Rendering �� 139

Graphics �� 141

Styling ��� 143

Inline Styles ��� 144

External CSS �� 145

CSS Framework ��� 147

User Input �� 148

JavaScript Interfacing ��� 150

Server Communication ��� 154

HTTP �� 154

WebSockets ��� 159

What We Learned �� 160

Chapter 6: Putting It All Together ��� 161

Building a Single-Page Application ��� 161

Pizza Cut—The Application ��� 161

Design ��� 163

Alternative Specification and Design ��� 165

Implementation ��� 165

Testing ��� 184

Table of ConTenTs

vi

Beyond Elm Web Applications ��� 186

Desktop Applications ��� 187

CLI�� 191

What We Learned �� 195

Chapter 7: Where to Go from Here �� 197

When Is a Programming Language and Platform Successful? ��� 198

Language Progression �� 198

Community �� 200

Commercial Usage �� 200

The Future ��� 200

Conclusion �� 201

 Index ��� 203

Table of ConTenTs

vii

About the Author

Wolfgang Loder has been programming software since the

1980s. He successfully rejected all calls to fill management

roles and remained hands-on until now. His journey went

from assembler and C to C++ and Java to C# and F# and

JavaScript, from Waterfall to Agile, from Imperative to

Declarative, and other paradigm changes too numerous

to list and remember. For most of his career Wolfgang

was a contracting enterprise developer, a field where

the introduction of “new” languages, frameworks, and

concepts is very slow. Once he decided to develop his own products he was free of

such constraints and ventured into all sorts of paradigms, be it NoSQL or functional,

evaluating all the latest ideas, crazy or not. In other words, he has fun developing

software. Wolfgang was born in Vienna and lives in Austria.

ix

About the Technical Reviewer

Aleks Drozdov is an architect, team lead, and software

engineer with more than 20 years of experience in analysis,

design, and implementation of complex information

systems using Lean Architecture and Agile methodologies.

He has extensive practical knowledge in service-oriented

technologies; distributed and parallel systems; relational,

non-relational, and graph databases; data search, and

analytics. Aleks likes to learn new technologies and isn’t

afraid of starting a new project in a new field. He is spending

his time designing and implementing digital preservation

systems and exploring the field of machine learning and artificial intelligence. In his free

time, he likes to read history books, take long walks, play guitar, and spend time with his

grandkids.

1
© Wolfgang Loder 2018
W. Loder, Web Applications with Elm, https://doi.org/10.1007/978-1-4842-2610-0_1

CHAPTER 1

Introduction
In 2012, the first versions of a new functional language were published. It was based on

Haskell and was called Elm; it was mentioned here and there as one of the upcoming

programming languages for the web.

A few years later, I came across the term reactive programming. At that time

Facebook’s React framework was becoming the latest hype, and similar frameworks

were popping up in the user-interface development space. Reactive user interfaces are

nothing new—they were researched before graphical interfaces were mainstream.

I became interested in knowing more about how this decades-old paradigm was being

applied to modern web-based user interfaces.

One topic and search result led to another, and soon the name Evan Czaplicki1 came

up. He had written a thesis about functional reactive programming (FRP) and created the

Elm language to implement the ideas in the thesis. At that stage—about version 0.14—the

Elm platform was very basic, but many developers could see the potential.

My research of the reactive paradigm coincided with a project I was doing at that

time, a digital asset repository. The implementation of the project’s back end was the

base for the book Erlang and Elixir for Imperative Programmers.2 That project also

needed a web client, and I was thinking: What a good chance to use Elm for a real-life

project!

I have used Elm in several projects now, most of them internal applications for

companies that appreciate the quick turnaround from design to implementation and do

not need extravagant user interfaces with the latest style frameworks. What they need,

though, are applications that do what they are supposed to do without having runtime

errors at the most inconvenient times. And Elm is delivering just that.

1 https://twitter.com/czaplic
2 http://www.apress.com/gp/book/9781484223932

https://twitter.com/czaplic
http://www.apress.com/gp/book/9781484223932

2

Fast forwarding to 2018, Evan Czaplicki has changed the architecture of Elm to

make it “easier to learn and use”3 and also to further emphasize concurrency. This

was a change in version 0.17. At the time of writing this book, version 0.18 is the latest

implementation of Elm.

Elm is not complete, but it is used in production, and the community is getting

bigger. Whether Elm can get into the mainstream is not yet clear, but it certainly can

carve out a niche in the very competitive world of front-end development.

This chapter will give you a taste of Elm. It is not a presentation of the syntax or the

tools, which we will get to in subsequent chapters. It rather describes where the language

is coming from and demonstrates what can be done with it.

At the end of the chapter, you—the reader—will have a basic idea of Elm as a

programming platform, and hopefully you will be excited to dive deeper into the details.

 Theory
Even if the creator of Elm says that it is not about functional reactive programming

anymore, but rather about concurrency, it is worth having a quick look at the history of

the reactive idea that dates back to the 1980s.

Any software program deals with the following scenario:

• A computer program has to process a stream of data.

• Data travels in an asynchronous way.

• Events are defined by time and data.

• A computer program has to react to events.

In addition, the programming of user interfaces has to cover the following:

• Users define events, for example by moving a pointer on the screen

with a mouse.

• Users need to have a visible reaction to their actions.

Programming patterns and operating systems handle the preceding points by forcing

the stream of data into a synchronous data flow. For example, we can use queues to save

data and then deal with it sequentially. The time dimension of an event is not lost, but

response time to an event can be anything from immediate to never.

3 http://elm-lang.org/blog/farewell-to-frp

Chapter 1 IntroduCtIon

http://elm-lang.org/blog/farewell-to-frp

3

Problems occur when events affect data that other event handlers can access at the

same time. We call this data the state of the program. Programmers are familiar with

the problems of concurrency in imperative languages, either from having to deal with

it themselves or from listening to stories told by fellow developers. Programming with

functional languages is declarative programming: we say what we need and let the

language and its libraries do the work. It makes programming easier and also more joyful.

From the preceding description we see why concurrency is an important—perhaps

the most important—part of Elm. Making the programming of concurrent processes

easier for the developer by pushing the handling of it into the platform has the added

effect of reducing possible runtime errors.

Over the years, Elm has undergone changes to make first reactive and then

concurrent concepts easier to apply. The language and platform as a whole have

certainly advanced well since the first release. There is still some pain when newer

versions introduce breaking changes, not only in the language, but also in the

architecture.

In particular, both interfacing with JavaScript and event handling changed over time

and made it necessary to reimplement existing code or learn new ways of implementing

certain features. This book uses version 0.18, and I can say that the language has

matured well. There are still pitfalls when integrating Elm into a website or debugging

Elm applications, which we will get to later in this book.

At the time of writing, version 0.19 is developed. It is not clear when this version will

go live, but it is expected sometime in 2018. In any case, we can expect more breaking

changes as the Elm platform evolves.

 What Can We Use Elm For?
When you see Elm and other frameworks and platforms competing in the same space,

you may ask yourself the following:

• Why use Elm?

• Why learn Elm and then create JavaScript?

• Why use pure functional programming?

• Is there any advantage to using Elm?

Chapter 1 IntroduCtIon

4

The answers to these and similar questions are dependent on your own

circumstances and requirements. The following paragraphs—and in fact the whole

book—are based on my opinion, formed after experiencing Elm. I am positive that Elm

is useful, but I am not so biased that I don’t see the problems with the language and

platform as they are at the time of writing this book.

So, what is Elm good for? Short answer: It is good for any web application that

has interactions with its users. This is a very wide definition that puts almost all web

applications into Elm’s domain. Note that I am talking of web applications—websites

with static content are not in that bucket. Of course, it is possible to use the Elm platform

for those as well, but other languages and frameworks may be more useful. In Chapter 6

we will see if we can use Elm beyond web applications.

The diagram in Figure 1-1, which certainly is not exhaustive, shows some of the

application types developers are using Elm for.

Figure 1-1. What is Elm used for?

Let’s go through this list to see examples.

 Games
Some of the first public examples of the use of Elm were, not surprisingly, browser-based

games. For a long time, the Elm website had a Mario example prominently displayed

on the examples page (see Figure 1-2). It disappeared after some time, probably for

copyright reasons. Nevertheless, the idea that the combination of reactive and concurrent

is good for a game is correct.

Chapter 1 IntroduCtIon

5

The example is available here.4 In a bit more than one hundred lines the program lets

Mario walk, stand, and jump. It is basic but shows how the platform, with its language

and libraries, helps to develop in a few lines an application that reacts to key input.

Beware the example uses a deprecated feature called signal, which was
superseded by a replacement feature called subscription. an implementation for
version 0.18 is available here.5

 Single-Page Applications (SPAs)
Single-page applications are perhaps the most common type of application that Elm

is used for, although there are not too many known such applications in production—

emphasis on “known,” as there may be many applications we just don’t know about

that use Elm. My own applications are examples of “unknown” applications. They were

implemented for specific customers and will likely never be available in the public

space. Nevertheless, the architecture and the language of Elm assist in implementing

applications that are less error prone than pure JavaScript implementations.

4 http://elm-lang.org:1234/examples/mario
5 https://github.com/avh4/elm-mario

Figure 1-2. Example Mario game

Chapter 1 IntroduCtIon

http://elm-lang.org:1234/examples/mario
https://github.com/avh4/elm-mario

6

The following screenshot (Figure 1-3) shows some forms of a “Pizza Order” app. It is

from an example I was writing to help me evaluate a commercial JavaScript framework

for styling and features.

Figure 1-3. Example forms

Chapter 1 IntroduCtIon

7

Figure 1-4. Example Elm logo

This app makes heavy use of interfacing with JavaScript, which is not always

necessary, but on the other side it is good to know it can be done.

What remains to be seen in the future is whether complicated applications can be

done with Elm as well. My own experience shows that one runs against a wall from time

to time or has to implement wrapper code in JavaScript. It is possible to move from SPAs

to multi-page applications, though.

 Graphics
The Elm platform provides powerful graphics libraries. One example of their capabilities

is the Mario game. Another example is the Elm logo pictured in Figure 1-4.

Chapter 1 IntroduCtIon

8

This logo can be created using the SVG library with the code shown in Figure 1-5.

Figure 1-5. Example logo source code

Compiling the Elm code and running it results in an SVG tag on the website

(see Figure 1-6).

Figure 1-6. Example logo SVG tag

Chapter 1 IntroduCtIon

9

 Embedded
Developers who want to introduce Elm may have difficulty getting approval from project

managers. One way, as described on the Elm website, is to start by embedding small

applications in existing websites.

Elm code can be compiled into JavaScript files, which can then be imported to an

HTML page with the usual script tags. There is no issue with either embedding several

compiled Elm files or using one file several times on a page. The only downside is that

the Elm runtime will be embedded several times. It is not too big, but it would still be a

waste of bandwidth.

Also, the embedded Elm applications have to be self-contained regarding state.

Communication between them is only possible via JavaScript code and by interfacing

with that code. Obviously, we may run into the concurrency problems that Elm tries

to solve in the first place when we have to update the state of those embedded Elm

applications.

 What Can’t We Do with Elm?
After all the positive examples in the preceding paragraphs, we should now discuss what

we can’t do with Elm. Again, I must provide the disclaimer that I am writing this book

with version 0.18 in mind.

It is not completely true to say that there are requirements we can’t implement with

Elm, because we can do everything by interfacing with external JavaScript code on a

website. Doing implementations this way is probably not in the spirit of Elm, and it also

defies some of the strong points of Elm, like type safety and a compiler that makes sure

certain functions are implemented before running the application.

By interfacing with external JavaScript we lose certain advantages. The result may

be to reimplement features inside the Elm platform. Whether or not this makes sense

is another question. Styling may be easier, but using a framework with enhanced

component features forces the developer to write interface wrappers with their own

models that can then be transferred into the Elm application.

Another problem with Elm is that it does not have any lifecycle hooks. Elm is not

only a language, but also a runtime environment and more. A lifecycle hook into the Elm

runtime would help to integrate it with third-party JavaScript libraries, but then we are

discussing the question of interfacing again.

Chapter 1 IntroduCtIon

10

For example, when Elm renders the page and we want to run JavaScript on an

element, we can’t because the JavaScript code will not be called immediately during the

render process. There are workarounds, as we will see later, but it could be easier.

Something else we can’t do with Elm is embed it into console tools or use it on the

server. This may be supported in the future, although it is not clear how far away this

future is or if it is even something that should be added. Elm is not a general-purpose

language, and having features like server rendering may break its clean architecture.

When describing all these problems we should not forget that Elm was created to do

web applications—especially SPAs—and it is doing this well. As developers, we always

want to push to the edges, of course.

 Who Is This Book For?
This book is an introduction to programming Elm applications. It gives an overview

of the language and shows how Elm can be used for web applications and beyond.

I assume that most readers of this book are developers and know one or more

programming languages but don’t know much more about Elm than the examples on

the Elm website.6

It helps if you know the basics of JavaScript, especially if you want to interface with

existing JavaScript libraries. You don’t need to know functional programming, however.

After reading the book, you should have the knowledge needed to dive deeper into

the Elm platform with more advanced learning material. Some developers even start

learning Haskell and use learning Elm as an introduction to Haskell.

 Required Software
The only requirement for this book is a computer that is running any of the big three

operating systems (Linux, Mac OS, Windows). We will install everything necessary to

develop Elm applications, and also discuss plug-ins for your favorite editor or IDE.

6 http://elm-lang.org/examples

Chapter 1 IntroduCtIon

http://elm-lang.org/examples

11

Note elm is open source. If you want to compile your own version, you will
have to set up a haskell environment on your computer. the easiest way is to
use a docker container that has haskell installed in it and take it from there. I did
it on Mac oS without a container and did not have problems, as I followed this
information7 in elm’s repository.

All source code will be available for readers of this book to download.

 Structure of This Book

Chapters 2 to 4 will provide a primer of the language and the platform’s tools and

libraries. It won’t be enough to be able to write big applications, but it is a start.

Chapter 2 will also set up our development environment. We will install Elm and

prepare our favorite editor for Elm programming.

In Chapter 5 we will dive deeper into the building blocks of applications. After

explaining the Elm architecture, we will discuss certain features non-trivial web

applications need, like styling, forms, security, or access to third-party APIs. Since Elm

has its own runtime it needs to interface with regular JavaScript code, which we will look

into in this part of the book as well.

Chapter 6 will try to look beyond web applications and discuss how and if the Elm

platform can be used for desktop applications or on the back end.

In Chapter 7 we will have a look at what the future may bring for Elm.

Figure 1-7. Book Overview

7 https://github.com/elm-lang/elm-platform

Chapter 1 IntroduCtIon

https://github.com/elm-lang/elm-platform

13
© Wolfgang Loder 2018
W. Loder, Web Applications with Elm, https://doi.org/10.1007/978-1-4842-2610-0_2

CHAPTER 2

Getting Started
In Chapter 1 we saw examples of Elm applications and also had a glimpse into what can

be achieved with the Elm platform. Those applications either used Elm on its own or

integrated Elm with JavaScript libraries and frameworks.

Our goal is to develop applications like the ones featured in this book. Before we can

enjoy the fun of doing this, we first have to invest some time in learning the basics of the

Elm platform. This book gives a comprehensive introduction to the Elm platform on

which you can base the implementation of your first Elm applications.

In this chapter, we will look at the following topics:

• Installing the Elm platform

• Deciding on an editor and installing a plugin for the Elm language

• Getting a first look at the Elm language

• Deciding how to deploy an Elm application

• Organizing the source code of an application for easier development

We will just handle the basics in this chapter; more advanced topics will be discussed

in Chapter 4.

 Installation
We have to install the Elm platform to get started. This does not mean that we have to

install a runtime as in other systems like Java or .Net. The Elm platform is self-contained

without runtime dependencies. Of course, since Elm compiles to JavaScript we will need

a browser and a JavaScript engine to run the compiled Elm application.

To use the Elm platform, we just have to get the tools onto our computer that

compile Elm code, install packages our code depends on, and run the compiled code on

a development server.

14

Note The Elm platform supports all modern browsers. It seems that there is
no known lower bounds for Chrome, Firefox, Opera, or Safari, also helped by
the effective update process of these browsers, which keeps the browsers and
JavaScript engines on the latest version. Internet Explorer before version 9 does
not work—but it can’t be considered modern.

The Elm Guide1 provides links to installers for Mac OS and Windows. Alternatively,

it is possible to install the platform with npm. Node is a prerequisite to work with tools

of the Elm platform, and npm2 is installed together with Node,3 which itself has several

installation options on all major platforms. Most probably readers of this book have

Node installed anyway.

The installation using npm is an operating system–independent way and is valid for

Mac OS, Windows, and Linux. We will focus on this option in this book.

Note Make sure that the node installation does not need elevated administrator
rights to run (su/sudo on Mac or Linux); otherwise, you will get errors when
running Elm platform tools.

Once npm is on the computer and verified to work we can install the Elm platform,

either locally in a project or globally on the development computer. If we don’t want to

install the Elm platform on the physical machine at all, we can use a Docker image.

Tip Another package manager is yarn,4 which works with npm and other
package formats and has some advanced features compared to npm. Some
example projects in the downloadable source code use yarn, but throughout the
book we will use only npm.

1 https://guide.elm-lang.org/get_started.html
2 https://docs.npmjs.com/
3 https://nodejs.org/en/download/
4 https://yarnpkg.com/

ChApTEr 2 GETTInG STArTEd

https://guide.elm-lang.org/get_started.html
https://docs.npmjs.com
https://nodejs.org/en/download
https://yarnpkg.com

15

 Global Installation
A global installation of the Elm platform can be done with the preceding mentioned

installers, which you can download from the Elm website, but as mentioned before we

are focusing on npm. The shell command shown in Listing 2-1 installs the Elm platform.

Listing 2-1. Install Elm with npm

$ npm install -g elm

The option -g tells npm to install the package globally. The Elm package we

download from the npm repository is created during the publishing process of the Elm

platform, so it will be up-to-date with the latest stable version and will have the same

version as the operating system–specific installers.

After running the npm installation, we can check if the Elm platform is set up by

simply running the command elm on the command line (Listing 2-2).

Listing 2-2. Run elm

$ elm

Elm Platform 0.18.0 - a way to run all Elm tools

Usage: elm <command> [<args>]

Available commands include:

 make Compile an Elm file or project into JS or HTML

 package Manage packages from <http://package.elm-lang.org>

 reactor Develop with compile-on-refresh and time-travel debugging

 repl A REPL for running individual expressions

The output of the command in the preceding listing has lines omitted for brevity, but

we can see the most important information. The installed version of the Elm platform

provides four commands. We will use all these commands in the following chapters, so

we won’t explain them in detail now. At this moment, we just want to make sure that the

Elm platform is installed and can be run.

The caveat is that running the command elm does not prove that the Elm platform

tools are actually working. The basic elm command calls other tools to do its tasks, so we

need to call at least one other tool to make sure.

ChApTEr 2 GETTInG STArTEd

16

We can test our installation by calling the tool elm-repl from the command line.

You can use either elm repl or elm-repl. The elm command with option repl calls the

program with the dash in it. See Listing 2-3.

Listing 2-3. Run elm-repl

$ elm-repl

---- elm-repl 0.18.0 --

 :help for help, :exit to exit, more at <https://github.com/elm-lang/elm- repl>

> _

If you see an output similar to that in the listing—your version number may be

different—then your installation of the Elm platform was successful.

Tip On some Linux systems you may get an error when running elm-repl. Most
likely this has to do with a missing dependency called libtinfo that needs to be
installed manually from the Linux distribution repository. On all Linux distributions
the installed version of node may not be the latest. If you get an error about
“haskell sandbox” or similar, upgrade to the latest node version. For Elm version
0.18.x I have successfully used node versions 6.9.x and 7.x.

With the installation finished and at least partially validated, we have the Elm

platform available on our computer. Since this is a global installation we can run the

command elm and the Elm platform tools from a command line in any directory on our

computer.

 Local Installation
The global installation of the Elm platform has its advantages, but it is not always the

desired solution. Often, there is a need to install the Elm platform locally in a project.

The platform is evolving rapidly, and changes from one version to the next may break the

code of an existing application.

My own setup is to have the latest version globally installed; for example, the latest

development version. For some projects, I can use a local version of the Elm platform or

a Docker container.

ChApTEr 2 GETTInG STArTEd

17

Caution If you use the installers from the Elm website, the Elm platform will
always be installed globally.

To install the Elm platform in the directory of an Elm project, we can run the

following command, which is similar to the global installation but without the -g flag

(Listing 2-4).

Listing 2-4. Install Elm in a Project

npm install --save elm

This will install the Elm platform in the default directory for node packages, named

node_modules, in the directory we ran the preceding command from. The directory

node_modules will be created automatically if it does not yet exist, but you must have a

file package.json with at least an empty root level ({}), otherwise npm fails with an error.

The section dependencies will be updated with the Elm package dependency.

Instead of having the Elm platform as a normal dependency, it is better to indicate

that it is only needed for development. See Listing 2-5.

Listing 2-5. Install Elm as dev Dependency

npm install --save-dev elm

The preceding command will add Elm to the section devDependencies. This is only

important if the project source code is installed by other developers who do not want to

have a local Elm version because their global version is correct. They can then use

npm install -production to install only normal project dependencies.

Tip The package manager yarn not only installs a package without the
file package.json already created in the installation directory, but it also
automatically creates this file and adds a dependency section with the installed
Elm package as a dependency. The packages are installed as usual in the directory
node_modules.

ChApTEr 2 GETTInG STArTEd

18

A local installation is not without problems if we also have a global Elm installation.

For example, we can’t type simply elm, because this would run the global version. We

have to use the correct path for the desired Elm version. To help us type less, we can

define scripts in package.json (see Listing 2-6).

Listing 2-6. Scripts in package.json

"scripts": {

 "c": "node_modules/.bin/elm make src/main.elm --output elm.js",

 "cw": "node_modules/.bin/elm make src/main.elm --output elm.js --warn",

 "r": "node_modules/.bin/elm repl"

}

With these few lines added, we can now invoke the command npm run c and it

will compile the file main.elm using the local Elm version. Similarly, npm run cw will

write out warnings when compiling, and npm run r will open the local elm-repl. These

options will become clearer when we discuss the compilation and deployment of our

projects later in this chapter.

 Running a Docker Container
If we don’t want to install the Elm platform on our computers, we could run a Docker

container. The Docker system needs to be installed, but there are easy installation

options for Mac OS,5 Windows,6 and Linux distributions; for example, Ubuntu.7 The

new installers for Mac OS and Windows have the advantage that no additional virtual-

machine environment like VirtualBox needs to be installed and run. The needed virtual

machines are included in the Docker installation.

On Docker Hub, several Elm containers can be found.8 They can easily be

downloaded and installed into the Docker system, but many developers like to have

more control and want to create their own container configurations. Listing 2-7 shows a

simple Dockerfile that creates a Docker image that runs the Elm platform.

5 https://docs.docker.com/engine/installation/mac/
6 https://docs.docker.com/engine/installation/windows/
7 https://docs.docker.com/engine/installation/linux/ubuntulinux/
8 https://hub.docker.com/search/?i&page=1&q=elm

ChApTEr 2 GETTInG STArTEd

https://docs.docker.com/engine/installation/mac
https://docs.docker.com/engine/installation/windows
https://docs.docker.com/engine/installation/linux/ubuntulinux
https://hub.docker.com/search/?i&page=1&q=elm

19

Listing 2-7. Dockerfile Elm Image

FROM haskell:7.10.2

MAINTAINER Wolfgang Loder <wolfgang.loder@googlemail.com>

ENV ELM_VER=master

RUN apt-get update && apt-get install -y \

 curl \

 git \

 libtinfo-dev \

 nodejs

ENV PATH /opt/Elm-Platform/$ELM_VER/.cabal-sandbox/bin:$PATH

WORKDIR /opt

RUN curl \

 https://raw.githubusercontent.com/elm-lang/ \

 elm-platform/master/installers/BuildFromSource.hs

 > BuildFromSource.hs

RUN runhaskell BuildFromSource.hs $ELM_VER

EXPOSE 8000 8000

ENTRYPOINT ["elm"]

This image is based on the official Haskell image and builds the Elm platform, which

is written in Haskell, from source code. The source can be found on GitHub,9 and in

this example we use the master branch, which is the latest version. It is also possible to

define a specific version by supplying a tag like 0.17.0.

Note For current Elm versions, the supported haskell version is 7.10.2, which
is not the latest version. If you previously installed a haskell image in your
docker system before, it may be an incorrect version. So don’t be surprised if the
preceding docker command downloads a nearly 1 GB file during the creation of
the Elm platform image.

9 https://github.com/elm-lang/elm-platform

ChApTEr 2 GETTInG STArTEd

https://github.com/elm-lang/elm-platform

20

With a working Docker installation on our computer, we can create our image. First,

we need to open a command-line interface in the directory where our Dockerfile is

saved. Then, we can run the following command, which will pick up the Dockerfile in

the current directory; note the dot argument to indicate the directory (Listing 2-8).

Listing 2-8. Create Docker Container

docker build -t elmexposed:1.0 .

A new image called elmexposed with the tag 1.0 will be created. The name hints

at the fact that it can be used like a global installation of the Elm platform, but it is not

interactive in the sense that it provides a bash prompt.

The best way to invoke Elm commands in the container is to set an alias in the CLI

with the docker run command. Another important startup option is to set a working

directory on our machine to bind it to the container as well. In addition, we will expose

a port from the container so we can test the Elm application. The following command,

formatted for readability, sets the alias (Listing 2-9).

Listing 2-9. Run Docker Image

alias elmex='docker run

 -it

 -v $(pwd):/Hello-World

 -w /Hello-World

 -p 8000:8000

 -e "HOME=/tmp"

 --rm elmexposed:1.0'

We call the alias elmex so it does not interfere with the Elm installation on our

computer. The directory of our example, Hello-world—see the downloadable code—is

bound to the container and is used as the working directory. For this to work we have to

run the command in the Hello-world directory to set pwd to the correct value.

When we run elm reactor, Docker will forward every response on port 8000 in the

container to port 8000 on the computer that hosts the container. Vice versa, all requests

on port 8000 on our computer will be forwarded to the container. In our browser, we will

see the expected Hello World string displayed as if we were running elm-reactor on our

physical computer.

ChApTEr 2 GETTInG STArTEd

21

It seems a little bit complicated to build the Elm platform from scratch when creating

our elmexposed Docker image. Not only does it take some time, but the image itself is

quite big.

There is a way to expose Elm by creating a Docker image via an npm installation, as

we discussed before (Listing 2-10).

Listing 2-10. Dockerfile: Elm Installation with npm

FROM ubuntu:latest

MAINTAINER Wolfgang Loder <wolfgang.loder@googlemail.com>

RUN apt-get update && apt-get install -y \

 apt-utils \

 curl \

 git \

 libtinfo-dev \

 build-essential

RUN curl -sL https://deb.nodesource.com/setup_7.x | sudo -E bash -

RUN sudo apt-get install -y nodejs

RUN npm install -g elm

EXPOSE 8000 8000

This configuration uses the latest official Ubuntu distribution, installs Node, and

installs the package elm with npm using the same command we discussed earlier. It also

exposes port 8000 from the container.

As before, we create the image with docker build, and this time we give our image

the name elminteractive (Listing 2-11).

Listing 2-11. Run Elm with Docker

docker build -t elminteractive:1.0.

The difference from elmexposed is that we can create an interactive container with

this image and get a bash prompt (Listing 2-12).

Listing 2-12. Interactive Docker Elm Container

docker run -it elminteractive:1.0

ChApTEr 2 GETTInG STArTEd

22

Now we can run any valid command on the Ubuntu system container—for example,

elm –version—to see if the Elm platform was successfully installed.

We can also create a container that is attached to a directory on our computer and

use the Elm platform as if it were installed on our physical computer. Listing 2-13 shows

a bash session compiling the Hello World example. We define the directory and the port

when we start the docker image.

Listing 2-13. Interactive Docker Elm Container with Local Directory

$ docker run -it -p 8000:8000 -v $(pwd):/Hello-World elminteractive:1.0

root@30bf0211b4fd:/# ls

 Hello-World bin boot dev etc home lib lib64 media mnt opt proc

 root run sbin srv sys tmp usr var

root@30bf0211b4fd:/# cd Hello-World

root@30bf0211b4fd:/Hello-World# ls

 StandaloneIndex.html elm-package.json elm-stuff elm.js helloworld.html

 helloworld.js index.html main.elm

root@30bf0211b4fd:/Hello-World# elm make main.elm --output helloworld.js

 Success! Compiled 37 modules.

 Successfully generated helloworld.js

root@30bf0211b4fd:/Hello-World# elm reactor -a 0.0.0.0

 elm-reactor 0.17.1

 Listening on http://0.0.0.0:8000/

^C

 Shutting down...

root@30bf0211b4fd:/Hello-World# exit

$ _

After running the docker run command in the Hello-World directory of our computer

with the preceding options we get a bash prompt. With ls we list the directories and see

that the Hello-World directory is available. Changing the directory into it and listing the

files, we see all the files and directories right in the container bash prompt.

The next step is to compile main.elm with the usual make command. Then, we run

elm-reactor. The option -a sets the server address. This may not be necessary, but Mac

OS, which I used, does not recognize localhost when ports are exposed from a Docker

ChApTEr 2 GETTInG STArTEd

23

container. This is why we set the address to 0.0.0.0. The port is the default port 8000 we

exposed in the Dockerfile.

On our computer, we run http://0.0.0.0:8000/Hello-World/index.html and get

the string Hello World rendered.

By creating Docker images and containers we can have several Elm platform

versions on our computer without having to install anything globally or in a project. It is

up to the developer as to which option is preferred. In the end, they all lead to having the

Elm platform available for development.

 Editors and IDEs
No matter which option we choose for installing the Elm platform, we will need an editor

or an IDE to write code.

Developers working with Java Virtual Machine or .Net languages are used to IDEs

with extensive support for various development tasks, such as the following:

• Intellisense

• Autocompletion

• Refactoring, like changing symbol names

• Jumping to definitions and symbols

• Formatting code

• Debugging support

• Integration of tools

Newer languages like Elixir or Elm do not provide the luxury of a full-blown IDE,

but there are plugins for editors available that achieve some of the tasks just listed. The

following sections list some of the most popular editors and their plugin options.

Tip Before installing a plugin you should check if it can handle the Elm platform
version you are running.

The following list is in alphabetical order, not in order of preference.

ChApTEr 2 GETTInG STArTEd

24

 Atom
There are quite a few plugins available for Atom that target the Elm platform. The one

listed here incorporates other plugins for a complete experience.

• Plugin Name: Elmjutsu

• Link: atom.io/packages/elmjutsu

• Features: syntax highlighting, autocomplete, go to (definition,

symbol, usage), rename (symbol)

• Comments: This plugin helps with writing code only; it does not have

an integration with the Elm platform tools.

 Emacs
The listed plugin is the only one at the moment supporting Elm. There is a FlyCheck

support for Elm available (github.com/bsermons/flycheck-elm), but it has not been

updated for a while, so it does not support the latest language version at the time of

writing.

• Plugin Name: elm-mode

• Link: github.com/jcollard/elm-mode

• Features: syntax highlighting, autocomplete (via elm-oracle and

company), intelligent indentation, integration with Elm platform

tools and elm-format.

 IntelliJ
The plugin works with IntelliJ Community Edition and other IDEs.

• Plugin Name: elm-plugin

• Link: plugins.jetbrains.com/plugin/8192

• Features: syntax highlighting, autocomplete, syntax parser, go to

(declaration), rename refactoring, brace matching, highlighting

unresolved references, spellchecking.

ChApTEr 2 GETTInG STArTEd

http://github.com/bsermons/flycheck-elm
http://github.com/jcollard/elm-mode
http://jetbrains.com/plugin/8192

25

 LightTable
LightTable is an editor that is not used as often as others in this list, but the plugin

described here is one of the best I have experienced.

• Plugin Name: elm-light

• Link: github.com/rundis/elm-light

• Features: syntax highlighting, autocomplete, linting and for some

errors, inline docs, find usages, module browser, go to (definition),

integration with elm-repo, elm-reactor, and elm-format

• Comments: Extensive manual available at rundis.gitbooks.io/

elm- light- guide/content/.

 Sublime
This plugin is compatible with sublime 2 and 3.

• Plugin Name: Elm Package Support

• Link: packagecontrol.io/packages/Elm%20Language%20Support

• Features: syntax highlighting, autocomplete, integration with

elm- repl and elm-make

• Comments: The integration with elm-repo requires the installation of

another plugin (SublimeREPL).

 Vim
The plugin has very good integration with the Elm platform tools and includes an option

to run unit tests from within the editor.

• Plugin Name: elm-vim

• Link: github.com/ElmCast/elm-vim

• Features: syntax highlighting, autocomplete, automatic indentation,

linting, integration with elm-repl, elm-make, elm-format, and

elm- test.

ChApTEr 2 GETTInG STArTEd

http://github.com/rundis/elm-light
http://github.com/ElmCast/elm-vim

26

 Visual Studio Code
The plugin is under active development and intends to add features like refactoring.

• Plugin Name: elm

• Link: github.com/sbrink/vscode-elm

• Features: syntax highlighting, autocomplete, error highlighting,

function information, integration with elm-repl, elm-reactor, and

elm-format

Note In this and the following chapters I will not refer to specific editor plugins,
but I will use a CLI to invoke commands.

The editor support for the Elm platform is not yet great, but it is improving steadily.

Which editor you use depends on your individual preferences. Also, editor performance

and feature sets change over time, and it makes sense to retry editors even when you

have rejected them previously.

 Obligatory Hello World
After installing the Elm platform and deciding on an editor, we are ready to write a first

Elm program. As is tradition, we have to implement a Hello World program in Elm. Let’s

do this now to test the Elm platform installation and our editors.

Create a directory called Hello-World on your computer and then create a file with

the name main.elm. Insert the statements shown in Listing 2-14.

Listing 2-14. Hello World in Elm

module Hello exposing (..)

import Html exposing (text)

main : Html.Html msg

main =

 text "Hello World"

ChApTEr 2 GETTInG STArTEd

http://github.com/sbrink/vscode-elm

27

These few lines of code will render Hello World, which is achieved with the line text

"Hello World". The word text refers to a function of the same name in the package

Html. We don’t care at this moment what text will be compiled into, we just know that

the argument Hello World will be printed on the web page. Presumably the compilation

will result in a span tag or similar.

The first line of the code defines a module with the name Hello that exports

(exposes) all the functions defined in the module. The import statement tells the

compiler that we want to use the text function from the module Html. The line main:

Html.Html msg is a type annotation and explains which types the arguments and return

result of the function main are.

This code will be much clearer after working through the next two chapters, where

we will get to know Elm as a language and a platform.

Note Compiler or transpiler? Both terms refer to transforming one language
into another language. Which term to use depends on the similarity of the two
languages. For example, transforming TypeScript into JavaScript is usually seen as
transpiling because the two languages are very close to each other and JavaScript
can even be mixed with TypeScript in the same file. We could discuss whether
Elm is significantly different from JavaScript or not. Many including myself believe
it is, so we are using the term compiling throughout the book when we mean
transforming Elm into JavaScript.

The next step is to compile the Elm program into JavaScript. We open a command

line in the Hello-World directory and run the command shown in Listing 2-15, assuming

that we are using a global installation of Elm.

Listing 2-15. Run elm-make

$ elm-make main.elm

 Some new packages are needed. Here is the upgrade plan.

 Install:

 elm-lang/core 4.0.5

 elm-lang/html 1.1.0

 elm-lang/virtual-dom 1.1.1

ChApTEr 2 GETTInG STArTEd

28

 Do you approve of this plan? [Y/n]

 Starting downloads...

 - elm-lang/virtual-dom 1.1.1

 - elm-lang/html 1.1.0

 - elm-lang/core 4.0.5

 Packages configured successfully!

 Success! Compiled 31 modules.

 Successfully generated index.html

This simple command is doing a lot of work in the background. We just ask to make

a JavaScript version of the file main.elm, but other tasks need to be done first before the

code can be compiled.

The first time that elm-make runs it will generate a generic elm-package.json file if it does

not yet exist and then ask if we are happy to download a few Elm packages. These packages

will be copied into a directory created by elm-make with the name elm-stuff and then be

compiled. Then, main.elm will be compiled as well, and a file index.html will be generated.

The elm-package.json file is similar to the package.json file we use with Node. It

lists the dependencies we have in our project and a few other key–value pairs to define

information about the project. See Listing 2-16.

Listing 2-16. Generated elm-package.json

{

 "version": "1.0.0",

 "summary": "helpful summary of your project, less than 80 characters",

 "repository": "https://github.com/user/project.git",

 "license": "BSD3",

 "source-directories": [

 "."

],

 "exposed-modules": [],

 "dependencies": {

 "elm-lang/core": "5.0.0 <= v < 6.0.0",

 "elm-lang/html": "2.0.0 <= v < 3.0.0"

 },

 "elm-version": "0.18.0 <= v < 0.19.0"

}

ChApTEr 2 GETTInG STArTEd

29

The directory elm-stuff (Figure 2-1) contains both compiled packages (packages)

and all the files created during compilation (build-artifacts).

Figure 2-1. Directory elm-stuff

There is also an exact-dependencies file in the elm-stuff directory that lists all the

packages with names and versions that were downloaded during the make process.

ChApTEr 2 GETTInG STArTEd

30

Tip If you get strange errors during compilation that you can’t explain, it usually
helps to delete the directory elm-stuff and run make again. It will re-create all
packages, and then the compilation will most probably succeed.

After successful compilation we are now ready to launch the application with

elm-reactor (Listing 2-17).

Listing 2-17. Run elm-reactor

$ elm-reactor

 elm-reactor 0.18.0

 Listening on http://localhost:8000/

A local server will start at port 8000, and opening the URL http://localhost:8000/

index.html in a browser will display Hello World.

Now we know not only that Elm is installed on our machine, but also that Elm files

compile and run in a browser.

 Deployment
Once an application has been implemented, compiled, and—in our simple example—

manually tested in elm-reactor, it is time to deploy the compiled Elm application to a

web server. There are three options available to us.

 Option 1: All-in-One
This is the standard option, which we used in the Hello World example. By default,

elm-make takes the name of the Elm source-code file to be compiled and does not need

any other arguments. A file with the default name index.html will be created with our

compiled source code.

Our Hello World program is only a few lines of Elm code, but the created HTML file

has more than 7900 lines and a size of 183 KB. This seems like a lot, but we need to keep

in mind that each compiled Elm program is running on top of a runtime that includes

code for any package we use.

ChApTEr 2 GETTInG STArTEd

31

Note At the moment, the Elm compiler does not offer tree-shaking to remove
not-needed code or dead code. It may be implemented in future versions of the
Elm platform.

Looking at index.html reveals that the last line is the important and only markup

(Listing 2-18).

Listing 2-18. Generated index.html (excerpt)

 </script>

 </head>

 <body>

 <script type="text/javascript">Elm.Hello.fullscreen()</script>

 </body>

</html>

We do not print the whole file, so the first lines in the listing close any open HTML

tags. In the body tag, a script is defined that calls our Elm module Hello. All the lines

before are necessary to make this simple call happen and are pure JavaScript. They

define an object Elm that knows our module as object Hello (remember our module

definition), which defines several functions, among them fullscreen(). The object Elm

was created during compilation of the Elm code.

Calling elm-make without additional arguments besides the code file gets us started,

but no further. If we don’t like the name index.html we can call elm- make in such a way

that the HTML file is created with a different name (Listing 2-19).

Listing 2-19. Create Custom Name HTML File

elm-make main.elm --output helloworld.html

This command will create the file helloworld.html. This changes the name only; the

content is the same as in the previous index.html.

Most probably you want to link to your CSS files or just embed the Elm application

into an existing web page. This is what Option 2 is for.

ChApTEr 2 GETTInG STArTEd

32

 Option 2: Custom Web Page
We start by creating a JavaScript file instead of an HTML page. The command is similar

to the previous elm-make command, only the output flag is set to a file with the suffix js

(Listing 2-20).

Listing 2-20. Make JavaScript File

elm-make main.elm --output helloworld.js

The output of this command is a JavaScript file with the name helloworld.js. The

big difference from the HTML file is that it does not have any markup; it is a JavaScript

file, after all.

The advantage of creating a JavaScript file is that we can now link to it from any

HTML file. A basic markup example to do this is shown in Listing 2-21.

Listing 2-21. Standalone HTML Page

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 <script>

 if (typeof module === 'object') {

 window.module = module; module = undefined;

 }

 </script>

 <script src="./helloworld.js"></script>

 <script>if (window.module) module = window.module;</script>

 <script type="text/javascript">Elm.Hello.fullscreen()</script>

 </body>

</html>

The way to link to helloworld.js is a bit unusual. A normal link in the header would

suffice for now, but this way works both in browsers and with module systems like

CommonJS.

ChApTEr 2 GETTInG STArTEd

33

Another advantage of creating a JavaScript file and linking to it is that we can minify

the resulting JavaScript code. Google’s Closure Compiler10 is a Java executable that can

be used from the command line. The zipped download has an executable with a long

name that includes version and date information, so we renamed the file to cc.jar.

The command in Listing 2-22 assumes that the compiler (cc.jar) can be accessed from

anywhere and that we are in the directory of the AllBasics example.

Listing 2-22. Closure Compiler

$ java -jar cc.jar --js allbasics.js \

 > /tmp/elm.js && mv /tmp/elm.js elm.js

We define elm.js as an input file, and after minification we overwrite it with the

same name. The result is that the file size shrinks from 76 KB to 26 KB. You may get a

warning about unreachable code. Other experiments with the closure compiler achieved

file-size shrinks from 183 KB to 62 KB when, for example, the HTML package was

imported.

Note not every JavaScript file created by the Elm compiler can be used with the
closure compiler, and you might get errors. The method to analyze the JavaScript
code is only a workaround. The next versions of Elm will have tree shaking—the
removal of unused code, especially in libraries—built into the Elm compiler.

We can run our custom page with either the minified or the not minified JavaScript

file and get the same result, as expected. The statement Elm.Hello.fullscreen() still

expands the Elm application across the full width of our browser window.

What happens if we want to use our Elm application only in a part of our page, not

fullscreen? We simply use Option 3.

 Option 3: Integration
The previous two options saw a JavaScript file created and linked to from a custom

HTML page. Now, we want to take the Hello World application, which is just a short text,

and display it in a div element on our custom page.

10 https://developers.google.com/closure/compiler/

ChApTEr 2 GETTInG STArTEd

https://developers.google.com/closure/compiler

34

The following simple web page links to the JavaScript we create with elm-make, but

attaches it to an HTML element, in our case a div (see Listing 2-23).

Listing 2-23. Embedded Elm Application

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 <script>

 if (typeof module === 'object')

 {window.module = module; module = undefined;}

 </script>

 <script src="./elm.js"></script>

 <script>if (window.module) module = window.module;</script>

 <div>

 Element before the embedded Elm app

 </div>

 <div id="elm-main"></div>

 <div>

 Element after the embedded Elm app

 </div>

 <script>

 var elmDiv = document.getElementById('elm-main');

 var elmApp = Elm.Hello.embed(elmDiv)

 </script>

 </body>

</html>

The script sections to link to elm.js are the same as before. The embedding

happens in the script section after we have defined some div tags. One of those has

the ID elm-main, and so we search for the element with that ID. Then, we call the

function Elm.Hello.embed(elmDiv) with the DOM element reference of the div with

the ID elm-main as argument.

Instead of the function fullscreen we call the function embed, which is defined in

JavaScript in the object Hello.

ChApTEr 2 GETTInG STArTEd

35

We save the HTML file with the name embedded.html in the directory Hello-World

and can test it with elm-reactor. The browser will render what is shown in Figure 2-2.

Figure 2-2. Embedded Elm application

As expected, all the div tags are rendered, and the embedded Hello module displays

Hello World in the tag we defined.

Embedding compiled Elm modules opens up opportunities to introduce Elm slowly

into existing web applications. The same module can be integrated several times, or

several modules can be integrated on one or more pages.

Note If we embed a module more than once then it will always include the Elm
runtime in the module. At the moment, there is no official way to link to the Elm
runtime only once.

 What We Have Learned
This chapter got us set up with the following:

• We have the Elm platform installed, either on our computer or run as

a Docker container.

• Our preferred editor has a plugin to make coding with the Elm

language easier.

• We saw a simple Hello World program and learned how to compile it

and test it in the browser with the built-in server.

• At the end of the chapter, we saw different ways to integrate a

compiled Elm project into a web application.

In the next chapter, we will finally learn the Elm language.

ChApTEr 2 GETTInG STArTEd

37
© Wolfgang Loder 2018
W. Loder, Web Applications with Elm, https://doi.org/10.1007/978-1-4842-2610-0_3

CHAPTER 3

Elm Primer
In the first chapter, we saw several Elm application examples. This chapter will provide a

deeper look into Elm and is all about the language and standard libraries.

I recommend you read this chapter in sequence because the language explanations

build from easier features to more advanced features.

 Elm Platform
Elm is not only a language, but also a platform with which to create web applications. It

has tools and a runtime that is necessary in order to run an Elm application derived from

Elm code. When we compile even a small application like the Hello World example from

Chapter 2, the Elm compiler creates a JavaScript file with the code of the application, and

it also integrates needed runtime functions and any other library code that is used. For

example, it includes the Html package that has, among others, a function text to display

text on a web page.

Tip As mentioned before, the Elm platform is written in Haskell, with occasional
part implementations in Elm. All source code can be found on GitHub.1 It is not
necessary to understand the Haskell code, but it may be of interest to see what is
behind the Elm platform surface.

We already encountered elm-make in Chapter 2 when we created a simple Hello

World program. When we run the command elm make it will call internally elm-make to

create an executable form of a project. Executable in this context means a JavaScript file

that can be interpreted by a JavaScript engine.

1 https://github.com/elm-lang

https://github.com/elm-lang

38

As the name make suggests, the tool does more than just compile. It also checks

the validity of the configurations in elm-package.json and the status of packages. With

several command-line arguments available, elm make can be configured at runtime for

various scenarios.

The following overview lists the other tools of the Elm platform that help with the

development process:

• elm-package — This is Elm’s package manager, similar to npm. The

Elm platform maintains a package repository.2 At the moment, the

tool can’t handle local packages, which is one of the reasons one can

find packages that are out of date or unfinished. This will hopefully

change in the future. In the meantime, there are workarounds

available to trick Elm into believing that a package was downloaded

by manipulating files in the directory elm-stuff. Overall, the package

manager works as expected and handles version problems well. For

example, if there is no version of a package matching the used Elm

language version, elm-package will throw an error.

• elm-reactor — This is an interactive web application that can run

and compile Elm code. It has debug options that have changed over

time. During development it is not always necessary to run the

elm- reactor, because the compiled code is just JavaScript, which

can be embedded in any HTML page and run on any local server—or

even in the browser from a file if it is run in such a way that browser

restrictions do not kick in.

• elm-repl — This is the read–eval–print loop tool that allows

interactive programming. It is perfect for trying small examples and

has some configuration options.

 Elm Style Guide
The creator of Elm is very clear about how he envisions Elm code should be written.

It may not be what you are used to from other languages or would like yourself, but a

consistent coding style makes it easier to read code from somebody else or to maintain

2 http://package.elm-lang.org/

CHAptEr 3 Elm prImEr

http://package.elm-lang.org

39

code later. To make this task easier, we want to format our code while writing it without

thinking too much about the intricacies of the formatting rules. The style guide can be

found on the Elm website,3 and discussions about it can be found in the Discourse group

Elm Discuss.4

Some editors with Elm plugins, as discussed in Chapter 2, may have code formatting

already built in. Most of them rely on elm-format,5 which can also be run from the

command line. If you don’t want the integration in an editor, you can install elm-format

locally in a project. The plugins can format the code either when saving or on demand,

but not all common editors support all options. The elm-format GitHub website has a

table with information about editor integrations and installation instructions.

The formatting tool is in alpha, and at the time of writing there are issues open that

may make the formatting fail or format in a way you don’t want. When you find an issue,

just report it—there are many contributors working on this project, and the issue will

likely be resolved in the next release. The tool can be built from source as well, but you

will need to have a working Haskell installation on your computer.

Tip By default, the formatting tool overwrites the source code file if you answer
yes when prompted, so be careful and check the formatted output or invoke it
with the option --output FILE. the argument FILE gives the name of a file the
formatted code should be written to. Another useful option is --elm- version
VERSION to define the version of the platform the code file is supposed to support.
there is also the option --stdin, which reads from the stdin device and outputs
on the stdout device.

Have a look at the following Elm code (Listing 3-1). It is not formatted in a particular

way, but rather written in a way that developers coming from other languages may prefer

or in their own individual style.

3 http://elm-lang.org/docs/style-guide
4 https://discourse.elm-lang.org
5 https://github.com/avh4/elm-format

CHAptEr 3 Elm prImEr

http://elm-lang.org/docs/style-guide
https://discourse.elm-lang.org
https://github.com/avh4/elm-format

40

Note the code in the listing compiles but does not make much sense otherwise;
for example, the functions update and view are not hit. this example’s sole
purpose is to show formatting for different language features.

Listing 3-1. Non-formatted Source Code

module Hello exposing (..)

import Html exposing (div, input, text, form, button)

import Html.Events exposing (onClick, onInput)

import String

type Msg = Change String | Check | Suggest (List String)

main =

 text "Hello World"

update msg model =

 case msg of

 Change m -> (m, Cmd.none)

 _ -> ("", Cmd.none)

view model =

 div [][input [onInput Change] [],

 button [onClick Check] [text "Check"],

 div [] [text (String.join ", " model.suggestions)]

]

We run elm-format in a shell with the command elm-format main.elm --yes,

assuming that our code file is saved in the current directory, has the name main.elm, and

elm-format was installed globally. The option --yes means that we say automatically yes

to all prompts.

The formatting tool will run and—in our case—will overwrite main.elm with the

formatted version. To create a file without overwriting the original file we could invoke

the command elm-format main.elm --output formatted.elm. This will create the file

formatted.elm in the current directory.

CHAptEr 3 Elm prImEr

41

Let’s have a look at the formatted file in Listing 3-2.

Listing 3-2. Formatted Source Code

module Hello exposing (..)

import Html exposing (div, input, text, form, button)

import Html.Events exposing (onClick, onInput)

import String

type Msg

 = Change String

 | Check

 | Suggest (List String)

main =

 text "Hello World"

update msg model =

 case msg of

 Change m ->

 (m, Cmd.none)

 _ ->

 ("", Cmd.none)

view model =

 div []

 [input [onInput Change] []

 , button [onClick Check] [text "Check"]

 , div [] [text (String.join ", " model.suggestions)]

]

Immediately, we notice that the line number has increased by 50 percent. Between

declarations are two empty lines; also, statements in the case expression are separated

by one empty line. The most controversial rule of the guideline is the formatting of the

function view. The leading comma style is unusual for developers coming from C#,

Java, or even JavaScript, although there are discussions in the Node.js and JavaScript

community to introduce this style. For Haskell developers this style is not unusual and is

used to separate list and similar items.

CHAptEr 3 Elm prImEr

42

Elm’s style rules are based on easier maintenance, easy readability, and clean diffs.

In this book we adhere to the style guide except for deleting additional empty lines or

formatting code to keep it compact for easier reading.

 Elm Language
Elm as a language can be seen from different angles. The main purpose of the language

and the platform is to create web applications. Elm is not a general-purpose language,

and it is difficult and sometimes impossible to break out of the web constraints.

In general, we can define Elm as shown in Figure 3-1.

Elm is a functional, typed, and modular language. In addition to these points, Elm

has basic features, like other languages have, that make it possible to write expressions

or control the program flow. Some parts of the language as discussed here are defined in

Haskell code to define the structure of the language. Other parts are written in Elm itself

and can be found in the core library.6 Additional types and functionality are found in

library modules that can be imported as needed. The core library is automatically loaded

and is part of the JavaScript runtime that is created during compilation.

Note this chapter is based on Elm version 0.18, which introduced a few
breaking changes compared to previous versions. Example code on websites or
blog posts can be outdated if not updated to the latest version, and the syntax may
differ from the examples in this book.

6 https://github.com/elm-lang/core

Figure 3-1. Elm language

CHAptEr 3 Elm prImEr

https://github.com/elm-lang/core

43

In the following pages, we will use the preceding classification—functional, modular,

typed—to give an overview of the language.

Code examples are either taken from a code module called AllBasics.elm or were

directly edited in elm-repl. All repl lines starting with > are input, and the output is

formatted with an indentation to make it easier to read. The module AllBasics is in the

source code in the directory Basics.

 Basic Language Features
The basic language features in Elm provide ways to express operations on values using

operators and control how these expressions are integrated in the statement flow of an

implementation.

Note many of the following examples need the example Elm file called
allbasics.elm that is provided with this book. to use functions and types in
that file, navigate to its location, run elm repl, and then in the rEpl type import
AllBasics exposing (..). missing libraries will be downloaded, and then the
Elm code will be compiled into a temporary JavaScript file.

 Operators

The Elm language provides operators we are used to from other languages. It also has

some more unconventional operators, at least if you are not familiar with Haskell.

Arithmetic Operators

Arithmetic operators work with numeric values and return a numeric value. They are all

binary and take two operands. See Listing 3-3.

Listing 3-3. Arithmetic Operators

> 1.0 + 2 -- addition

 3 : Float

> 2 - 1.0 -- subtraction

 1 : Float

CHAptEr 3 Elm prImEr

44

> 1 * 3.1 * 2 -- multiplication

 6.2 : Float

> 6.0 / 2 -- floating-point division

 3 : Float

> 4 / 2 -- floating-point division

 2 : Float

> 3 // 2 -- integer division

 1 : Int

> 2 ^ 8 -- exponentiation

 256 : number

> 3 % 2 -- modulo

 1 : Int

The arithmetic operators take either an integer or a float, except for the specialized

division operators for float and integer and the modulo operator, which only makes

sense with integer values.

The floating-point division will always return a float value, no matter which type the

operands are. The integer division discards the remainder as expected, but the similarity

of the operators / and // may lead to unexpected behavior if the developer is not careful.

Bitwise Operators

Bitwise operators take two integer values and return an integer value. See Listing 3-4.

Listing 3-4. Bitwise Operators

> import Bitwise exposing (..)

> and 255 128 -- bitwise and

 128 : Int

> or 255 128 -- bitwise or

 255 : Int

> Bitwise.xor 255 128 -- bitwise xor

 127 : Int

The calling of bitwise operators is different than we have seen with the arithmetic

operator examples. They are both functions, but one is called infix, the other one prefix.

We will look at the differences and declaration options for each later in this chapter.

CHAptEr 3 Elm prImEr

45

If you try the examples in elm-repl you have to import the module Bitwise first.

Still, the operator xor has a name conflict with a function of the same name in the

module Basics, so we have to call xor fully qualified with the module name prefixed.

Logical Operators

Logical operators take two Boolean arguments and return a Boolean result.

See Listing 3-5.

Listing 3-5. Logical Operators

> p1 = Calzone

 Calzone : AllBasics.Pizza

> p2 = Margherita

 Margherita : AllBasics.Pizza

> p1 == QuattroStagione && p2 == Margherita

 False : Bool

> p1 == Calzone && p2 == Margherita

 True : Bool

> p1 == QuattroStagione || p2 == Margherita

 True : Bool

> p1 == Calzone || p2 == Margherita

 True : Bool

> not (p1 == Calzone) && p2 == Margherita

 False : Bool

> not (p1 == Calzone) || p2 == Margherita

 True : Bool

These operators should not be mixed up with the bitwise operators, especially

coming from other languages, where, for example, the word and is used for logical

comparisons.

Comparison Operators

Comparison operators take two comparable types and return a Boolean value. We will

discuss comparable types later in this chapter. Basically, they are standard number and

string types on their own or in lists and tuples. See Listing 3-6.

CHAptEr 3 Elm prImEr

46

Listing 3-6. Comparison Operators

> p1 = "Calzone"

 "Calzone" : String

> p2 = "Margherita"

 "Margherita" : String

> p1 == "Calzone"

 True : Bool

> p1 /= "Calzone"

 False : Bool

> p1 < p2

 True : Bool

> p1 <= p2

 True : Bool

> p1 > p2

 False : Bool

> p1 >= p2

 False : Bool

Comparisons work as in other languages. The notion of comparable in Elm is not yet

fixed, so it may be possible that custom types can be made comparable in the future.

Functional Operators

Functional operators will become relevant when we discuss functions. They are used to pipe

or compose functions. Listing 3-7 defines two functions for multiplying and adding numbers.

We want to combine calls of these functions for given arguments and use pipe operators.

Listing 3-7. Pipe Operators

-- AllBasics

addNumbers : List number -> number

addNumbers list =

 List.foldr (+) 0 list

multiplyNumbers : number -> number -> number

multiplyNumbers value multiplicator =

 value * multiplicator

CHAptEr 3 Elm prImEr

47

-- elm-repl

import AllBasics exposing (..)

> addNumbers [1,2] |> multiplyNumbers 3

 9 : number

> multiplyNumbers 3 <| addNumbers [1,2]

 9 : number

The first example uses the forwarding pipe operator. First, we calculate the

addition—in our example, adding number items of a list—and then we pass the result

to the function multiplyNumbers as the first argument. The functions will be evaluated

from left to right.

The second example in the listing does the same thing, but by using the backward

pipe operator the functions will be evaluated from right to left. The usage of any of these

operators leads to the same result.

Composition operators work in a different way, but achieve similar results. See

Listing 3-8.

Listing 3-8. Composition Operators

-- allbasics.elm

addNumbers : List number -> number

addNumbers list =

 List.foldr (+) 0 list

multiplyNumbers : number -> number -> number

multiplyNumbers value multiplicator =

 value * multiplicator

-- elm-repl

> fleft = addNumbers >> multiplyNumbers

 <function:_user$project$Repl$fleft> : List number -> number -> number

> fleft [1,2,3] 2

 12 : number

> fright = multiplyNumbers << addNumbers

 <function:_user$project$Repl$fright> : List number -> number -> number

> fright [1,2,3] 2

 12 : number

CHAptEr 3 Elm prImEr

48

The type annotations give a hint of what is happening. The original function

addNumbers takes a list of numbers and returns a number. The original function

multiplyNumbers takes two numbers and returns the result as a number.

When we use the composition operators >> or << we compose a new function that

takes a list of numbers and another number as the multiplier and delivers the result as a

number.

Again, we can compose from the left or from the right; the resulting function has the

same signature.

Special Operators

Another operator is the concatenation operator ::. Its purpose is to add elements to a

list. See Listing 3-9.

Listing 3-9. Concatenation

type Pizza = Calzone | Margherita | QuattroStagione

addPizza : List Pizza -> Pizza -> List Pizza

addPizza l p =

 p :: l

firstPizza : List Pizza -> Maybe Pizza

firstPizza l =

 case l of

 head :: tail ->

 Just head

 [] -> Nothing

> firstPizza []

 Nothing : Maybe.Maybe AllBasics.Pizza

> firstPizza <| addPizza [Margherita] Calzone

 Just Calzone : Maybe.Maybe AllBasics.Pizza

> firstPizza [Margherita]

 Just Margherita : Maybe.Maybe AllBasics.Pizza

CHAptEr 3 Elm prImEr

49

The function addPizza takes a list and an element and adds it as the first element.

With the piping operator we can then send the resulting list to the function firstPizza.

It uses Maybe—see later—to return either Nothing in case the list is empty or the first

element of the list.

The :: in the case expression pattern matches the list argument. If there is at least

one element, head will return this element, and tail is the rest of the list, but it can also

be empty if there is only one element.

The operator ++ concatenates two arguments if they are appendable; see later in the

chapter when we discuss types to see what appendable means in Elm. See Listing 3-10.

Listing 3-10. Add to List

addPizzaOrdered : List Pizza -> List Pizza -> List Pizza

addPizzaOrdered l p =

 l ++ p

> addPizzaOrdered [Margherita] [Calzone]

 [Margherita,Calzone] : List AllBasics.Pizza

The function addPizzaOrdered simply adds two lists and returns one list with all

elements of those two initial lists.

 Control Structures

We need some structures to control the flow of statements in functions. In fact, there

are only three control structures. You may miss for or while. As in other functional

languages, these are expressed with recursive functions.

If

The if statement takes expressions that return a Boolean value and branches into

statements depending on that value. These expressions can only evaluate to True or

False; Elm does not have the notion of “truthiness.”7 See Listing 3-11.

7 https://en.wikipedia.org/wiki/Truthiness

CHAptEr 3 Elm prImEr

https://en.wikipedia.org/wiki/Truthiness

50

Listing 3-11. If

type Pizza = Calzone | Margherita | QuattroStagione

choosePizzaIf : Pizza -> String

choosePizzaIf p =

 if p == Calzone then

 "Pizza chosen: " ++ toString p

 else if p == Margherita then

 "Pizza chosen: " ++ toString p

 else

 "We don't serve this pizza"

This example has three branches and prints out the argument value. We see here the

++ operator again, which is used to concatenate two strings. We have a final else branch,

which looks to be unnecessary. Let’s omit it, compile again, and see what happens.

See Listing 3-12.

Listing 3-12. If without else

choosePizzaIf p =

 if p == Calzone then

 "Pizza chosen: " ++ toString p

 else if p == Margherita then

 "Pizza chosen: " ++ toString p

To our surprise, we get an error. Normally, Elm compiler messages are quite useful,

but in this case it is not clear at first glance what is needed. The clue lies in the phrase

You are missing some stuff. It is the else branch that is needed. Every if needs an else.

See Listing 3-13.

Listing 3-13. If Syntax Error

-- SYNTAX PROBLEM -- allbasics.elm

I need whitespace, but got stuck on what looks like a new declaration. You are

either missing some stuff in the declaration above or just need to add some

spaces here:

CHAptEr 3 Elm prImEr

51

I am looking for one of the following things:

 whitespace

Detected errors in 1 module.

The if control structure is not so much used in normal named functions, but more

in anonymous functions.

Case

The case statement is the bread and butter of programming in Elm and other functional

languages. It relies on pattern matching to determine which expression to evaluate.

The following example (Listing 3-14) does exactly the same thing as what the first

(Listing 3-11) if example does.

Listing 3-14. Case

type Pizza = Calzone | Margherita | QuattroStagione

choosePizza : Pizza -> String

choosePizza p =

 case p of

 Calzone

 -> "Pizza chosen: " ++ toString p

 Margherita

 -> "Pizza chosen: " ++ toString p

 _

 -> "We don't serve this pizza"

We also see that all possible patterns need to be covered, similar to if-else. If we

do not provide the last pattern with the underscore _, the compiler will complain. The

underscore is a wildcard in this case and means that all other patterns should match this

condition.

The case structure is used in many examples; you will encounter it often.

Let-In

The Let-In structure can be compared to assignment statements. The following very

simple function returns a tuple. See Listing 3-15.

CHAptEr 3 Elm prImEr

52

Listing 3-15. Let-In

type Pizza = Calzone | Margherita | QuattroStagione

pizzaOrders : (Pizza, number)

pizzaOrders =

 let

 p = Calzone

 n = 5

 in

 (p,n)

The values for the returned tuple are calculated in the function. The let is like a

block for defining local variables that can then be used in in.

Note As with the other structures discussed in this chapter, let–in is an
expression and can be used in any place expressions are allowed. In Elm we use
a programming style that constructs bigger expressions from smaller expressions.
Almost every function is then built from a big expression. Exceptions are, for
example, constant functions.

 Prefix and Infix Operators

We have seen that some operators can be called like we are used to in mathematics.

Others have to be called like a function.

They are both functions, of course, but they are implemented in different ways; for

example, the arithmetic operator + (Listing 3-16).

Listing 3-16. Arithmetic Operator +

-- AllBasics.elm

(+) : number -> number -> number

(+) =

 Native.Basics.add

CHAptEr 3 Elm prImEr

53

We see that the function is declared as (+). This means that it can be used with an

infix call, but can also be called as a normal function. See Listing 3-17.

Listing 3-17. Call Arithmetic Operator +

> 1 + 2.0 -- infix

 3 : Float

> (+) 1 2.0 -- prefix

 3 : Float

First, we call the + operator as an infix operator. Then, we call + in a prefix way. The

function name is (+) in this case; the arguments are passed after the name, and the

result is the same as in the infix case.

Note the use of infix operators with this syntax comes from Haskell. You can
read more about the pros and cons in the Haskell wiki.8

We can define our own infix functions as well. It is not recommended to define new

operators for public packages, but it is possible (Listing 3-18).

Listing 3-18. New Infix Operator

(++*) : List number -> number -> number

(++*) l m =

 case l of

 [] -> 0

 _ -> List.foldr (+) 0 l * m

This cryptic-looking function takes a list of numbers and a multiplier. It then

calls List.foldr (+) 0 l, which adds all the numbers in the list. The result will be

multiplied by the multiplier. The first line is a type annotation, and we will look at this a

little bit later in this chapter. In Chapter 4 we will look at library modules like List.

We can call our new operator in two ways, as we saw with the + operator.

See Listing 3-19.

8 https://wiki.haskell.org/Use_of_infix_operators

CHAptEr 3 Elm prImEr

https://wiki.haskell.org/Use_of_infix_operators

54

Listing 3-19. Call New Infix Operator

> import AllBasics exposing (..)

> (++*) [1,2] 3

9 : number

> [1,2] ++* 3

9 : number

Both calls work as expected and yield the same result with the same arguments. The

import on the first line is necessary to tell elm-repl where the new operator is defined.

Note In previous versions of Elm it was possible to use backticks to call any
binary function infix; for example, 1 anybinfunc 2. this functionality was
replaced by using other operators or making an ordinary function call.

 Elm as a Functional Language
The definition of a functional language is hard to pin down. Many times, discussions about

this will involve arguments about pure and impure. Often, functional languages may have

features of other paradigms embedded. For example, Scala and F# are certainly considered

functional languages, but they also allow imperative or object-oriented constructs.

What we can say for sure is that the main feature of a functional language is that

functions are first-class citizens. A function can be seen in mathematical terms as a map

of input values to output values; it has no other effects than this mapping. When we call

such a function we know that nothing else happens to any data outside of this function.

As we have mentioned, Elm is rooted in Haskell, so it is no surprise that Elm is

a functional language with all the features normally associated with the functional

paradigm.

 Functions

The basis of Elm applications are functions, and almost everything is a function. We will

see that even types define functions—in that case, constructors.

We have already seen simple function definitions and have used functions when we

looked at operators. Roughly, functions can be divided into named and anonymous types.

CHAptEr 3 Elm prImEr

55

Named Functions

Named functions are defined with a name that can be used to later call it (Listing 3-20).

Listing 3-20. Named Function

readMarkdownFile name =

 getChapter name

This function with the name readMarkdownFile has one parameter and calls in its

body another function (getChapter) with the argument it was passed. Both functions are

named and can be called from any module that knows about the functions.

The declaration of a function is similar to in other languages (Figure 3-2).

Function names start with a lowercase character and then usually continue with

camel case, as in the example readMarkdownFile. Parameters are optional, but if used

they have names starting with a lowercase character. The keyword that makes this

declaration a function declaration is the equal sign =.

The function body is—most of the time—an expression, like the call of a function or

a program flow-control construct like let-in or case. Functions that return a constant

value can be used to define constants at compile time (Listing 3-21).

Listing 3-21. Constant Function

alwaysReturn42 =

 42

How does the compiler know if a function we call exists? The short answer is that

we have to import a module. This only works if we have installed the package with the

needed module in our project.

Figure 3-2. Function declaration

CHAptEr 3 Elm prImEr

56

Once we import a module we can use all functions that are exported (exposed) from

the imported module. We will discuss the modularity of Elm later, so let this be a quick

explanation.

Anonymous Functions

Anonymous functions are defined inline without a name. In other languages they may

be called lambda or delegate.

The most important use case for anonymous functions is to pass them as arguments

to other functions or to get them returned as a result of a function call.

The following example defines the function getPizzaOrders, which takes one

argument of type Pizza and a second argument of type function. This function takes a

Pizza as argument and returns a number (Listing 3-22).

Listing 3-22. Anonymous Functions

-- allbasics.elm

getPizzaOrders : Pizza -> (Pizza -> number) -> (Pizza, number)

getPizzaOrders p calcfunction =

 let

 n = calcfunction p

 in

 (p,n)

-- elm-repl

> getPizzaOrders Calzone (\p -> if p == Calzone then 5 else 0)

(Calzone,5) : (AllBasics.Pizza, number)

We can call getPizzaOrders with an anonymous function as the second argument.

The definition of such a function starts with a backlash and defines the argument, and

the -> tells the compiler that the following expression is the body of the function. In our

case, this is a simple if construction.

An anonymous function can take more than one argument. We will see examples

later in the book.

CHAptEr 3 Elm prImEr

57

Function Composition

Normally, functions in Elm are called with the name followed by the arguments, without

parentheses or commas to separate the arguments. Sometimes it is necessary to chain

together function calls, where the argument of one function is the return value of

another function.

The initial thought is to write the calls down as they appear. The example gets the

Pizza type from a string and then calls the function pizzaLeft to determine how many

pizzas are left for ordering. See Listing 3-23.

Listing 3-23. Functions for Composition

type Pizza = Calzone | Margherita | QuattroStagione

getPizzaFromString : String -> Maybe Pizza

getPizzaFromString p =

 case p of

 "Calzone"

 -> Just Calzone

 "Margherita"

 -> Just Margherita

 "Quattro Stagione"

 -> Just QuattroStagione

 _

 -> Nothing

pizzaLeft : Maybe Pizza -> number

pizzaLeft p =

 case p of

 Just Calzone

 -> 10

 _

 -> 0

When we call the functions with pizzaLeft getPizzaFromString "Calzone"

we get an error because the compiler gets confused with the number of arguments.

See Listing 3-24.

CHAptEr 3 Elm prImEr

58

Listing 3-24. Composing Functions—Error

> pizzaLeft getPizzaFromString "Calzone"

-- TYPE MISMATCH --------------------------------------- repl-temp-000.elm

The 1st argument to function `pizzaLeft` is causing a mismatch.

4| pizzaLeft getPizzaFromString "Calzone"

 ^^^^^^^^^^^^^^^^^^

Function `pizzaLeft` is expecting the 1st argument to be:

 Maybe Pizza

But it is:

 String -> Maybe Pizza

Hint: It looks like a function needs 1 more argument.

-- TYPE MISMATCH --------------------------------------- repl-temp-000.elm

Function `pizzaLeft` is expecting 1 argument, but was given 2.

4| pizzaLeft getPizzaFromString "Calzone"

Maybe you forgot some parentheses? Or a comma?

One way to fix this is to use parentheses (Listing 3-25).

Listing 3-25. Piping Functions with Parentheses

> pizzaLeft (getPizzaFromString "Calzone")

 10 : number

This compiles now, but we have a much better solution baked into the language:

function pipe operators. We already mentioned them in the discussion about operators.

When we use these operators we don’t need parentheses and still get the expected result.

See Listing 3-26.

Listing 3-26. Piping Functions with Operator

> pizzaLeft <| getPizzaFromString "Calzone"

 10 : number

> getPizzaFromString "Calzone" |> pizzaLeft

 10 : number

This code looks much cleaner and also expresses the intent. The left-to-right

operator is a little clearer, but it is a matter of context and preferences as to which one

should be used.

CHAptEr 3 Elm prImEr

59

Polymorphic Functions

So far we have seen examples of functions that have a specified type as parameter.

Sometimes, however, we want to have more generic functions. See Listing 3-27.

Listing 3-27. Polymorphic Function

firstListItem : List a -> Maybe a

firstListItem l =

 List.head l

The type annotation says that we expect a list of any type and return the first item of

the list. If there is no first item it will return the value Nothing to indicate no valid result.

We can run this function with any type. See Listing 3-28.

Listing 3-28. Calling a Polymorphic Function

import AllBasics exposing (..)

> firstListItem [1,2,3]

 Just 1 : Maybe.Maybe number

> firstListItem ["1","2","3"]

 Just "1" : Maybe.Maybe String

> firstListItem []

 Nothing : Maybe.Maybe a

In elm-repl we get the values with their types indicated. As promised, Maybe is a type

we will discuss soon. It says, we are not sure about a value; in our case, we are not sure

about the return value. This is why passing an empty list as an argument returns a value

of Nothing—there is no item in the list and therefore no first item.

We said we can pass in any type as a list item, so we use a custom type we have

defined (Listing 3-29).

Listing 3-29. Calling a Generic Function with a Custom Type

-- in AllBasics:

type alias ComposedType =

 {

 x: Int,

 y: Int,

CHAptEr 3 Elm prImEr

60

 keypressed: Bool

 }

> import AllBasics exposing (..)

> ct = ComposedType 1 1 True

 { x = 1, y = 1, keypressed = True } : AllBasics.ComposedType

> firstListItem [ct,ct]

 Just { x = 1, y = 1, keypressed = True }

 : Maybe.Maybe AllBasics.ComposedType

We pass a list with custom type values as arguments and get the first item returned,

as expected. We will come back to type definitions and type annotations a little bit later

in this chapter.

The polymorphic function in our example made use of the module List, which

handles generic values. The next example (Listing 3-30) defines a function that takes a

Maybe of any type and converts the value to a string. The core module function toString

is polymorphic itself.

Listing 3-30. Calling a Generic Function with a Custom Type

anyToString : Maybe a -> String

anyToString arg =

 case arg of

 Just arg -> toString arg

 Nothing -> "no value"

In the case expression we have either a valid value—the Just part—or a Nothing

value. In that case, we print out a message. Running this function in elm-repl results in

the output seen in Listing 3-31.

Listing 3-31. Calling a Generic Function with a Custom Type

> import AllBasics exposing (..)

> anyToString (Just (42))

 "42" : String

> anyToString <| Just (42)

 "42" : String

> anyToString <| Just 42

 "42" : String

CHAptEr 3 Elm prImEr

61

> anyToString <| Just "42"

 "\"42\"" : String

> anyToString Nothing

 "no value" : String

The first call to anyToString uses parentheses. Without this the compiler would

complain that we are passing two arguments to the function. Since Just is a constructor

and thus a function, we can use the function pipe operator as described in the earlier

section about operators.

Higher Order Functions

A higher order function is a function that takes other functions as arguments or returns a

function. The concept derives from lambda calculus in mathematics, but it can be used

without understanding the underlying theory. See Listing 3-32.

Listing 3-32. Higher Order Function—Lambda

callFunction : (a -> b) -> a -> b

callFunction func arg =

 func arg

callWithFunc : number

callWithFunc =

 callFunction (\n -> n*n) 5

callWithValue : number

callWithValue =

 let

 f = \n -> n*n

 in

 callFunction f 5

The example defines callFunction, which takes a function and an argument of any

type. Its body just calls the function with the argument.

We can call this function with an anonymous function either directly or by assigning

it to a variable and sending the variable to callFunction.

CHAptEr 3 Elm prImEr

62

When we composed functions earlier, we used an anonymous function to calculate

the pizza orders, but we can use a named function as well. See Listing 3-33.

Listing 3-33. Higher Order Function—Named Function

-- allbasics.elm

getPizzaOrders : Pizza -> (Pizza -> number) -> (Pizza, number)

getPizzaOrders p calcfunction =

 let

 n = calcfunction p

 in

 (p,n)

calculatePizzaOrders : Pizza -> number

calculatePizzaOrders p =

 if p == Calzone then

 5

 else

 0

-- elm-repl

> getPizzaOrders Margherita calculatePizzaOrders

(Margherita,0) : (AllBasics.Pizza, number)

We just pass the function getPizzaOrders as an argument and get the expected

result. Of course, as with the anonymous function, the named function must adhere to

the function signature required.

Curried and Partial Functions

Currying is a technique that was made popular by the mathematician Haskell Curry in

the 1960s. The essence is to create functions with arity 1 (that means one argument)

from functions with arity greater than 1 (that means multiple arguments).

The language Haskell not surprisingly supports currying automatically, so all

functions have only one argument.

The example in Listing 3-34 shows the function multiplyNumbers with two

arguments and the function doubler that calls multiplyNumbers with a constant

multiplier and takes one argument as its value.

CHAptEr 3 Elm prImEr

63

Listing 3-34. Currying

multiplyNumbers : number -> number -> number

multiplyNumbers multiplicator value =

 multiplicator * value

doubler : number -> number

doubler =

 multiplyNumbers 2

When we run these two functions we see that the function doubler is just a shortcut

with a constant argument (Listing 3-35).

Listing 3-35. Call Curried Function

> multiplyNumbers 2 21

 42 : number

> doubler 21

 42 : number

This is what happens (Figure 3-3):

It is important to know that internally the same process is done when we just run

multiplyNumbers 2 21. First, the function with the first argument will be defined as an

internal function, and then that function will be run with the second argument. The

result is exactly the same, and this process is completely transparent to the consumer of

the function.

Figure 3-3. Currying

CHAptEr 3 Elm prImEr

64

Functions in Elm are left-to-right associative, and they are processed in such a way

that eventually every function evaluated takes one argument and returns one result.

When we manually create a curried function we need to be careful to get the

argument types right. The function addMultiplyNumbersListFirst (Listing 3-36) takes

a list of numbers as the first argument and a multiplier that works on the sum of all

numbers in the list as the second. The function doubler should curry that function and

hold the multiplier constant.

Listing 3-36. Currying Argument Position

-- allbasics.Elm

addNumbers : List number -> number

addNumbers list =

 List.foldr (+) 0 list

addMultiplyNumbersListFirst : List number -> number -> number

addMultiplyNumbersListFirst list m =

 addNumbers list * m

-- elm-repl

> doubler = addMultiplyNumbersListFirst 2

-- TYPE MISMATCH --------------------------------------- repl-temp-000.elm

The argument to function `addMultiplyNumbersListFirst` is causing a

mismatch.

5| addMultiplyNumbersListFirst 2

 ^

Function `addMultiplyNumbersListFirst` is expecting the argument to be:

 List number

But it is:

 number

The error message we get while compiling tells us about the type mismatch. The

number 2 is interpreted as a list, but it is of type number. The solution to this problem

is to flip the arguments, and luckily there is a function in the standard library that does

exactly that: flip. See Listing 3-37.

CHAptEr 3 Elm prImEr

65

Listing 3-37. Flip

> addMultiplyNumbersListFirst

 <function> : List number -> number -> number

> flip addMultiplyNumbersListFirst

 <function> : number -> List number -> number

> doubler = flip addMultiplyNumbersListFirst 2

 <function> : List number -> number

> doubler [1,2,3]

 12 : number

The function flip changes the order of the arguments, which allows us to define

doubler as before. The original function addMultiplyNumbersListFirst is not changed,

of course. With flip we created a new unnamed function and combined it with the

number 2 to become a new function.

What happens if we have more than two arguments? The function

multiplyAndConcatenate has three arguments in the next example (Listing 3-38). It adds

the numbers of the list and multiplies the result by the multiplier. Then, it converts the

resulting number to a string and concatenates it with another string.

Listing 3-38. Flip with Three Arguments

addNumbers : List number -> number

addNumbers list =

 List.foldr (+) 0 list

multiplyAndConcatenate : List number -> number -> String -> String

multiplyAndConcatenate list multi s =

 toString (addNumbers list * multi) ++ s

> multiplyAndConcatenate [1,2,3] 2 ""

 "12" : String

> f = flip multiplyAndConcatenate

 <function> : number -> List number -> String -> String

> doubler = f 2

 <function> : List number -> String -> String

CHAptEr 3 Elm prImEr

66

> doubler [1,2,3] ""

 "12" : String

> doubler [1,2,3] "List values doubled"

 "12 List values doubled" : String

When we flip the arguments, only the first two arguments are flipped. This helps

us to define another function doubler. First, we define the function f, which takes the

same three arguments, but with the first two in reverse order. Then, we create a partial

function from f and keep the multiplier constant as 2. With that done, we can now call

our doubler function d with two arguments: the list of numbers and the string. As a side

note, do not use function names like f or d in production code—the next developer

reading your code will be grateful.

This example looks very much constructed, and honestly it is. I was looking through

my code and could not find many examples with three arguments. The few I found did

not have different argument types, so were not right to show flipping arguments. When

I write functions I keep them very simple, and if more than two arguments are used it is

better to wrap them in a structured type.

Note Curried functions and partial functions are not the same, but they are
related. Currying means to create functions with one argument and return one
result. partial functions have more than one argument and return one result. So, we
can argue that a curried function is a partial function, but not vice versa.

We can mix currying and composition to define functions as well. We have already

used some of the functions in the following example. The function multiplyNumbers

just takes two numbers and returns the product, and doubler holds the multiplier

constant at 2.

We want to add all the numbers in a list and pass it to doubler. Instead of creating a

new function, we compose existing ones (Listing 3-39).

Listing 3-39. Currying with Composition

-- allbasics.elm

addNumbers : List number -> number

addNumbers list =

 List.foldr (+) 0 list

CHAptEr 3 Elm prImEr

67

multiplyNumbers : number -> number -> number

multiplyNumbers multiplicator value =

 value * multiplicator

doubler : number -> number

doubler =

 multiplyNumbers 2

-- elm-repl

> adddoubleleft = addNumbers >> doubler

 <function:_user$project$Repl$adddoubleleft> : List number -> number

> adddoubleleft [1,2,3]

 12 : number

> adddoubleright = doubler << addNumbers

 <function:_user$project$Repl$adddoubleright> : List number -> number

> adddoubleright [1,2,3]

 12 : number

The functions adddoubleleft and adddoubleright only differ in their use of the

composition operator; the result is the same. We compose a function with addNumbers

and doubler to create a function that takes a list of numbers and returns the result as

a number. Neither multiplyNumbers nor the derived function doubler know anything

about lists; their arguments are just piped in from a different function. The consumer of

the adddouble functions is not aware of the composition at all.

 Immutable Data

All values in Elm are immutable. After a value is defined it cannot be changed, and there

is no way around it. The example function immutableTest tries to redefine the symbol a.

The compiler does not agree with it as we expect (Listing 3-40).

Listing 3-40. Immutable Data

-- allbasics.elm

immutableTest =

 let

 a = 120

 a = addNumbers [1,2,3]

CHAptEr 3 Elm prImEr

68

 in

 a

-- elm-repl

-- DUPLICATE DEFINITION ------------------------------------ allbasics.elm

There are multiple values named `a` in this let-expression.

98| a = addNumbers [1,2,3]

 ^

Search through this let-expression, find all the values named `a`, and

give each of them a unique name.

Caution Unfortunately, elm-repl lets you redefine symbols. typing in a = 120
will define a with the constant 120. If you type then a = addNumbers [1,2,3]
then a will have the result of the function call.

Data structures are immutable as well. For example, when we change a value in a

list a new list will be created and returned. The original list will not be altered. All this

contributes to side effect–free applications. When an argument is passed, there is no way

that the value of the argument will have been changed.

 State

The Elm platform is created for web applications. HTTP, the underlying protocol, is

stateless, and so should be the web applications. On the other side, the rise of client-only

applications in browsers causes a demand for state.

Elm—as a functional language with immutable data—does not support global state,

but similar to actor models, which pass messages, a state can be wrapped in message

models.

The model passed around in an Elm application has to cater to the state of modules

and also for a global state that is not attached to just one module. The following example

(Listing 3-41) shows two types that define various values.

CHAptEr 3 Elm prImEr

69

Listing 3-41. State

type alias Event =

 { timestamp: Int

 , eventname: String

 }

type alias Model =

 { xpos : Int

 , ypos : Int

 , numbertones: Int

 , backgroundimage: String

 , events: List Event

 }

The type Event is a global state that is passed into the type Model. Every module that

has an event to add to the list can do this. In a real situation we want to minimize the

message footprint, so most likely we would persist the event list on a regular basis.

We will examine the Elm architecture and how it supports models and messages in

Chapter 5.

 Recursion

In the section about control structures we mentioned that functional programming uses

recursive functions instead of loops.

The following code (Listing 3-42) shows a function that returns a string that is a

substitution for a token found with a regex expression. The argument poslist is a list of

those tokens. The function replaceText is similar, as it just replaces string in a string

passed as an argument and returns a new string. Other functions that are called from this

function are not shown. See Listing 3-42.

Listing 3-42. Recursion

replace : List String -> String -> String

replace poslist markdown =

 case poslist of

 [] -> (markdown)

CHAptEr 3 Elm prImEr

70

 first :: rest ->

 let

 newmd = replaceText first (getsubstitution first) markdown

 in

 replace rest newmd

Iterating through a list always follows the same pattern. If the list is not empty, we get

the first element (first), process it, and then call the same function recursively with the

rest of the list (rest).

In our example, processing the element in poslist means to get a new string. We

process this string markdown by passing it to another function, replaceText, and use the

returned value. The rest of our initial input list calls the return function recursively until

the list is empty. When the list is empty, the string with the replacements is returned as

the result of the function.

Many JavaScript engines do not implement tail-call elimination, but the Elm

compiler optimizes tail-recursive calls as much as possible. For certain deep recursions

the stack can still grow too large and cause runtime problems. The Elm platform

provides the module Trampoline that helps in this situation.

 Pattern Matching and Deconstructing

Pattern matching in its simplest form means to check data for an exact pattern. It is

common in functional programming and shows its full power when the data checked is

the AST (Abstract Syntax Tree). Then, languages like Elixir can extend the language with

macros that manipulate the AST or allow overloaded functions.

Deconstructing is related to pattern matching, but it is restricted to certain types.

Values are extracted from the type and bound to symbols like a variable.

Values

The example in Listing 3-43 is a simplified version of the recursive function we looked

at before. The case construct uses pattern matching to determine which expression to

evaluate. In our code, the argument markdown is returned when the list poslist is empty.

In all other cases, it returns an empty string. The underscore can always be used when

we are not interested in a pattern- matched value.

CHAptEr 3 Elm prImEr

71

Listing 3-43. Pattern Matching—Values

replace : List String -> String -> String

replace poslist markdown =

 case poslist of

 [] ->

 (markdown)

 _ ->

 ""

Tuples

The function getPizzaTupleAsString receives a tuple with elements of type Pizza and

returns a string. To get the string presentations of the tuple elements, we first need to

get the elements as values. The expression (pz1, pz2) = t takes the tuple and matches

each element to the local symbols pz1 and pz2. These can then be used to get the string

with the standard library function toString. See Listing 3-44.

Listing 3-44. Pattern Matching—Tuples

type Pizza = Calzone | Margherita | QuattroStagione

getPizzaTupleAsString : (Pizza, Pizza) -> String

getPizzaTupleAsString t =

 let

 (pz1, pz2) = t

 in

 toString pz1 ++ "," ++ toString pz2

Lists

Lists work in a way similar to tuples, but with a different syntax—the () is replaced by [].

There is a big difference, though. The implementation in Listing 3-45 causes a compile

error.

CHAptEr 3 Elm prImEr

72

Listing 3-45. Pattern Matching—Lists

getPizzaListAsString : List Pizza -> String

getPizzaListAsString l =

 let

 [pz1, pz2] = l

 in

 toString pz1 ++ "," ++ toString pz2

{-- PARTIAL PATTERN -- allbasics.elm

The pattern used here does not cover all possible values.

244| [pz1, pz2] = l

You need to account for the following values:

 []

 _ :: []

 _ :: _ :: _ :: _

Switch to a `case` expression to handle all possible patterns.

-}

Tuples can’t be empty, but lists can be, and they can have one element or many. The

compiler forces us to implement code for all these possibilities and also tells us to use a

case construct. See Listing 3-46.

Listing 3-46. Pattern Matching—Tuples

type Pizza = Calzone | Margherita | QuattroStagione

getPizzaListAsString : List Pizza -> String

getPizzaListAsString l =

 case l of

 [pz1,pz2] ->

 toString pz1 ++ "," ++ toString pz2

 [pz1] ->

 toString pz1

 pz1 :: pz2 :: _ ->

 toString pz1 ++ "," ++ toString pz2 ++ " ... and more"

 [] ->

 "List empty"

CHAptEr 3 Elm prImEr

73

The code compiles, but has one problem, which is directly related to Elm’s desire to

not cause runtime errors. If the list we pass as an argument has more than two or three

elements, we have to implement all these cases to get the concatenated string we want as

a result. The wildcard, as indicated in the compiler error text in Listing 3-45, would not

work, because we don’t want to ignore the values.

If we think about the problem, we see that our implementation algorithm is not

correct. We have to use a recursive function—either a custom implementation or, better

yet, a standard library function like foldl (see Chapter 4).

Records

We have seen records before when encountering types. They define key–value pairs

where values don’t need to be of only one type. In our example, all values are of type

Pizza, though. Pattern matching records works like it does with tuples. We only need to

ensure that the symbols we use for the pattern- matched values have exactly the same

names as the ones we defined in the record. See Listing 3-47.

Listing 3-47. Pattern Matching—Records

type Pizza = Calzone | Margherita | QuattroStagione

getPizzaRecordAsString : { a | pz1 : Pizza, pz2 : Pizza } -> String

getPizzaRecordAsString r =

 let

 {pz1, pz2} = r

 in

 toString pz1 ++ ", " ++ toString pz2

If we call with a record that has an invalid key we get an error message (Listing 3-48).

Listing 3-48. Pattern Matching—Records Error

> getPizzaRecordAsString {pz1 = Calzone, pz2= Margherita }

 "Calzone, Margherita" : String

> getPizzaRecordAsString {pz1 = Calzone, p= Margherita }

-- TYPE MISMATCH -- repl- temp- 000.elm

The argument to function `getPizzaRecordAsString` is causing a mismatch.

7| getPizzaRecordAsString {pz1 = Calzone, p= Margherita }

 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

CHAptEr 3 Elm prImEr

74

Function `getPizzaRecordAsString` is expecting the argument to be:

 { a | ..., pz2 : ... }

But it is:

 { ..., p : ... }

Hint: The record fields do not match up. Maybe you made one of these typos?

 pz2 <-> pz1

Types

We can pattern match union types as well. The example in Listing 3-49 defines a type

with an integer as additional information. We will examine types in Elm in the next

section.

In the case construct we get this additional value and thus can work with it. Again,

the value is a local value, while the original value is immutable.

Listing 3-49. Pattern Matching—Types

-- allbasics.elm

type Pizza

 = Calzone Int

 | Margherita Int

 | QuattroStagione Int

getPizzaOrders : Pizza -> Int

getPizzaOrders p =

 case p of

 Calzone n -> n

 Margherita n -> n

 QuattroStagione n -> n

-- elm-repl

> p = Calzone 5

Calzone 5 : AllBasics.Pizza

> getPizzaOrders p

5 : Int

CHAptEr 3 Elm prImEr

75

 Elm as a Type-safe Language
Programming languages can be roughly divided in two groups: the first one has dynamic

typing and the second has static typing. There are more divisions within these groups,

but they are not relevant for our discussion.

Dynamic typing means that variables can hold values of any type, and its

interpretation depends on the context. Examples of dynamically typed languages

include Ruby, JavaScript, and Elixir. Some dynamically typed languages may check the

types at runtime or alternatively during code analysis before deployment, but normally

incorrect interpretations will be detected at runtime and may cause exceptions if

problems were not detected during tests.

Users of Elm say that they have not experienced runtime errors. This has to do with

type checks during the compilation of Elm code. Types are inferred during compilation

or by interpreting type annotations. Elm is a statically typed language.

 Types

Elm has types that are similar to those from other languages, but also types that need a

bit more explanation and are either connected to ideas of functional languages or the

Elm platform itself.

Primitives

The type number can be either Float or Int. Conversions are performed automatically

depending on the operator. For example, the division of two integers with / returns a

float. See Listing 3-50.

Listing 3-50. Numbers

> 1

 1 : number

> 1.0

 1 : Float

> 5 / 2

 2.5 : Float

> 5 // 2

 2 : Int

CHAptEr 3 Elm prImEr

76

Strings are defined with a double quote " and characters with a single quote '. They

cannot be concatenated without conversion functions, which we will see when we

discuss basic standard libraries in Chapter 4. See Listing 3-51.

Listing 3-51. Strings and Chars

> "Hello"

"Hello" : String

> 'H'

'H' : Char

Comparable Types

Comparison operators like >= or < work with comparable types. These are defined as

numbers, characters, strings, and lists, as well as tuples of those. On both sides of the

comparison, the comparable types must be the same. See Listing 3-52.

Listing 3-52. Comparable Types

> 1 > 2.0

 False : Bool

> 1.0 < 2.0

 True : Bool

> 'a' < 'z'

 True : Bool

> "a" < "z"

 True : Bool

> "Hello" > "World"

 False : Bool

> (1,2) > (0,3)

 True : Bool

> ['1','2'] < ['3','1']

 True : Bool

Appendable Types

The ++ operator works with appendable types. These are defined as strings and lists of

any type that is allowed to be an element of a list. See Listing 3-53.

CHAptEr 3 Elm prImEr

77

Listing 3-53. Appendable Types

> "a" ++ "b"

 "ab" : String

> [1,2] ++ [1,2]

 [1,2,1,2] : List number

Structured Data

The basic structured data types in Elm are List, Tuple, and Record. List has several

derived data types like Dict Array and Set, which are defined in the standard library

(see Chapter 4).

Lists

Lists define values of the same type. Mixing the value types will throw a compile error.

See Listing 3-54.

Listing 3-54. List

> ["Calzone", "Margherita", "QuattroStagione"]

 ["Calzone","Margherita","QuattroStagione"] : List String

> []

 [] : List a

> "Calzone" :: ["Margherita", "QuattroStagione"]

 ["Calzone","Margherita","QuattroStagione"] : List String

> [1, "a"] -- ERROR

-- TYPE MISMATCH --------------------------------------- repl- temp- 000.elm

The 1st and 2nd entries in this list are different types of values.

5| [1, "a"]

Tuples

Tuples are defined in a similar way to lists, but they have a constructor. The second

definition in Listing 3-55 tells the compiler to construct a tuple with three elements and

passes the values as arguments to the constructor function. Tuples do not need to have

the same value types.

CHAptEr 3 Elm prImEr

78

Listing 3-55. Tuple

> ("Calzone", Calzone, 5)

 ("Calzone",Calzone,5) : (String, Pizza, number)

> (,,) "Calzone" Calzone 5

 ("Calzone",Calzone,5) : (String, Pizza, number)

Records

Records have key–value pairs as elements without the restriction that elements need

to have the same type. Key names must start with a lowercase character and must be

unique within a record.

Values can be accessed with a dot notation. Key names not in the record which are

tried to be accessed with the dot will throw a compiler error.

Updating a record value returns a new record. The original record is not changed.

See Listing 3-56.

Listing 3-56. Record

> p = {name = "Calzone",order = 5, pizza = Calzone}

 { name = "Calzone", order = 5, pizza = Calzone }

 : { name : String, order : number, pizza : AllBasics.Pizza }

> p.name

 "Calzone" : String

> p.order

 5 : number

> p.pizza

 Calzone : AllBasics.Pizza

> pupdated = { p | order = 8 }

 { name = "Calzone", order = 8, pizza = Calzone }

 : { name : String, pizza : AllBasics.Pizza, order : number }

> p.order

 5 : number

> pupdated.order

 8 : number

CHAptEr 3 Elm prImEr

79

 Type Definitions

In the preceding sections we discussed built-in types. Elm lets us define custom types as

well, although in a different way than in other mainly imperative languages. In addition,

the language knows types that add features to custom types.

Union Types

The name union type comes from the fact that several types are defined in one larger

type. Elm calls the defined types tags, and the union type as such is a tagged union. Each

tag is like a constructor and can have parameters. All names start with an uppercase

character.

We saw the following example when we discussed pattern matching and did not

explain the “additional information.” As it is a constructor, it makes sense that the tag

can have arguments passed into it. The name of the type—Pizza—is only used in type

annotations (see later). We construct a new instance of a Pizza type by calling the tag

function with an argument that can be a constant, a constant from a variable, or an

expression. See Listing 3-57.

Listing 3-57. Union Type

-- allbasics.elm

type Pizza

 = Calzone Int

 | Margherita Int

 | QuattroStagione Int

-- elm-repl

> Calzone 5

 Calzone 5 : AllBasics.Pizza

> n = 12

 12 : number

> Calzone n

 Calzone 12 : AllBasics.Pizza

> Calzone (n*3)

 Calzone 36 : AllBasics.Pizza

CHAptEr 3 Elm prImEr

80

 Type Aliases

We could define our data model with basic types and pass the values as arguments to

functions. When we discussed partial functions and currying we saw the importance of

having fewer parameters. With type aliases we can create more complex types, which

also helps to make type annotations easier to read.

Basically, a type alias is a record with key–value pairs, as we have seen before, and

the type name always starts with an uppercase character. Models in the Elm architecture

are defined with this type. See Listing 3-58.

Listing 3-58. Type Alias

type alias Event =

 { timestamp: Int

 , eventname: String

 }

type alias Model =

 { xpos : Int

 , ypos : Int

 , numbertones: Int

 , backgroundimage: String

 , events: List Event

 }

Maybe

In JavaScript and other languages, a null value may be returned by functions, often

causing runtime errors. In Elm we have Maybe, which can represent values that exist or

do not exist. The type Maybe is a union type itself, with the members Just a and Nothing.

The latter is the equivalent of null in other languages. Just means that there is a valid

value, and it is the argument to the Just constructor that returns a Maybe.

Remember the pattern-matching examples? When we pattern match a union

type with a parameter we get the argument in a pattern-matched clause. This is what

the example function anyToString uses. If there is a valid value it returns the value

converted to a string; otherwise, it returns a string with a message. See Listing 3-59.

CHAptEr 3 Elm prImEr

81

Listing 3-59. Maybe

anyToString : Maybe a -> String

anyToString arg =

 case arg of

 Just arg -> toString arg

 Nothing -> "no value"

This is just a quick look at Maybe. We will discuss it more in Chapter 4.

Constants

There is no type Constant in Elm, but we can define one with a constant function.

Whenever we need the constant value we can call the function. See Listing 3-60.

Listing 3-60. Constant

returnOnly42 =

 42

 Type Annotations

Type annotations in Elm are optional, but it is not recommended that you leave them

out. Compiling code with the elm-make option --warn will print out missing annotations

that can then be copied into the code file.

How can we read type annotations? It always starts with the name of the function

and a colon :, which means “has type.” If there are no arguments, a type name will follow

next and end the type annotation. If there are arguments, the type names are listed

followed by an arrow ->. Types like functions, tuples, or records have a special syntax.

It is not too difficult to read those, so soon you will be able to read the type annotations

without problems. See Listing 3-61.

Listing 3-61. Type Annotation

varassign_to_tuple : (String, number)

addMultiplyNumbers : number -> List number -> number

addPizza : List Pizza -> Pizza -> List Pizza

getPizzaRecordAsString : { a | pz1 : Pizza, pz2 : Pizza } -> String

CHAptEr 3 Elm prImEr

82

We have already seen most of the examples, so they will look familiar. The function

varassign_to_tuple takes no argument and returns a tuple.

 Unit Type

We saw that we can define polymorphic functions by providing not a type name, but

rather a type variable. The following example (Listing 3-62) shows that we can do the

same with types. We define EventDescription with the type of attachment unspecified.

We can now create this type with different types for attachment; for example, as a list

of strings. The function getEventAttachment specifies this in the type annotation and

works with the defined record.

If we don’t want to use attachment, we can assign the unit type () to it. This

indicates that there is no value available. To use this record we can define the same in

the function type annotation. This is one example where the type annotation should be

written because the compiler will not infer what we want to do.

Listing 3-62. Unit Type

-- allbasics.elm

type alias EventDescription a =

 { title : String

 , text : String

 , attachment : a

 }

getEventAttachment : EventDescription (List String) -> List String

getEventAttachment ev =

 ev.attachment

getEventDescriptionUnitType : EventDescription () -> String

getEventDescriptionUnitType ev =

 ev.title

-- elm-repl

> ev = {title="title",text = "text", attachment = ["a","b"]}

 { title = "title", text = "text", attachment = ["a","b"] }

 : { attachment : List String, text : String, title : String }

CHAptEr 3 Elm prImEr

83

> getEventAttachment ev

 ["a","b"] : List String

> ev2 = {title="title",text = "text", attachment = ()}

{ title = "title", text = "text", attachment = () }

 : { attachment : (), text : String, title : String }

> getEventDescriptionUnitType ev2

"title" : String

 Elm as a Modular Language
Elm uses modules to separate functions and create a namespace. These modules can be

compiled as packages and then published. A package is a module like any other, but has

different documentation requirements.

 Modules

A module is defined with the keyword module, with the name following, along with the

exposing keyword with a list of all functions that should be exported from the module.

If we don’t want to list the functions, we can use (..) to export everything.

See Listing 3-63.

Listing 3-63. Module

module AllBasics exposing (..)

module AllBasics exposing (addNumbers, addMultiplyNumbers)

 Imports

In several examples we have imported modules. The keyword import tells the compiler

which module we need. The module name is followed by the keyword exposing, with

the list of functions, as in the module declaration. We can import everything with (..),

but it makes sense to indicate exactly which functions to use, otherwise all the compiled

code of the module will have to be copied to the JavaScript file.

CHAptEr 3 Elm prImEr

84

Importing requires choosing one of the following three options:

• With exposing: We can use unqualified functions; e.g., addNumbers.

• Without exposing: We have to use qualified names; e.g., AllBasics.

addNumbers.

• With alias, like import AllBasics as AB. Then, we use the qualified

name AB.addNumbers. See Listing 3-64.

Listing 3-64. Module Imports

import AllBasics exposing (..)

import AllBasics exposing (addNumbers)

import Html exposing (text)

import AllBasics

import AllBasics as AB

 What We Learned
This chapter had a lot of information in it, as follows:

• We saw what the Elm platform offers us.

• We looked at code adhering to the Elm style guide.

• We learned the basics of the Elm language from different points of

view: functional, typed, and modular.

In the next chapter, we will examine the tools available on the Elm platform and have

a look at some of the basic standard libraries.

CHAptEr 3 Elm prImEr

85
© Wolfgang Loder 2018
W. Loder, Web Applications with Elm, https://doi.org/10.1007/978-1-4842-2610-0_4

CHAPTER 4

Tooling and Libraries
In the previous two chapters, we set up our development environment and learned

the basics of the Elm language. Now, we want to explore the tooling the Elm platform

provides and get an overview of standard libraries.

This chapter will cover the following topics:

• How to test small code snippets with the REPL

• Ways to get a head start on a project with scaffolding

• How we can build our project

• An overview of standard libraries that come with the Elm platform

 REPL
It seems that any platform needs to have an REPL (read-eval-print-loop) nowadays, or it

is not taken seriously. It is certainly a matter of preference whether a developer uses an

REPL or not. This tool is very useful for exploring the language and standard or third-

party libraries.

We already used the Elm REPL to learn aspects of the language in the previous two

chapters. Now, we want to explore more options and use cases.

We can start elm-repl with the elm command (Listing 4-1).

Listing 4-1. elm-repl

$ elm repl

---- elm-repl 0.18.0 ---

 :help for help, :exit to exit, more at <https://github.com/elm-lang/elm- repl>

--

> _

86

As with other Elm command-line commands, a program is called in the background.

In this case it is elm-repl. We could run this executable directly and would get the same

results.

We see a banner with version information and a hint about two commands we can

use from within elm-repl to get help or exit. The prompt in the last line indicates that

the REPL is ready to receive commands. If we type in the command :help, we see what’s

shown in Listing 4-2.

Listing 4-2.

> :help

General usage directions: <https://github.com/elm-lang/elm-repl#elm-repl>

Additional commands available from the prompt:

 :help List available commands

 :flags Manipulate flags sent to elm compiler

 :reset Clears all previous imports

 :exit Exits elm-repl

The command :flags can be used to manipulate compiler flags in the REPL. In

version 0.18 there is only one flag allowed (--src-dir). This defines a directory that can

be used for source code we use in the REPL; otherwise, it just uses the project directory

we are starting elm-repl from and uses the elm-project.json file located there.

So, what can we do with elm-repl? We can use expressions with the operators

discussed in Chapter 3, we can define functions and types, and we can import modules.

The expressions in Listing 4-3 look familiar from Chapter 3, where we used similar

expressions learning the language.

Listing 4-3.

> s1 = "hello world"

 "hello world" : String

> l1 = List.range 1 4

 [1,2,3,4] : List Int

> s2 = s1 ++ " " ++ toString pi

 "hello world 3.141592653589793" : String

> 42 + pi - 1

 44.1415926535898 : Float

Chapter 4 tooling and libraries

87

All the preceding examples can be typed into elm-repl without importing additional

modules. Some functions and modules are part of elm-core and are automatically

imported and immediately available; see later in this chapter which modules and

functions are available from the start. We can also define functions and types in

elm-repl (Listings 4-4 and 4-5).

Listing 4-4.

> multiplyNumbers value multiplicator = value * multiplicator

 <function> : number -> number -> number

> returnOnly42 = 42

 42 : number

> multiplyNumbers returnOnly42 42

 1764 : number

Listing 4-5.

> type Pizza = Calzone | Margherita

> type alias Pos = { x:Int, y:Int}

Usage of the REPL gets a little bit more complicated if several modules are defined as

dependencies. What happens if we want to use a function that is unknown to elm-repl?

In the example in Listing 4-6 we want to get the length of a string.

Listing 4-6.

> length "string"

-- NAMING ERROR -- repl- temp- 000.elm

Cannot find variable `length`

3| length "string"

 ^^^^^^

Maybe you want one of the following?

 List.length

> String.length "string"

-- NAMING ERROR -- repl- temp- 000.elm

Cannot find variable `String.length`.

3| String.length "string"

 ^^^^^^^^^^^^^

Chapter 4 tooling and libraries

88

No module called `String` has been imported.

> import String

> String.length "string"

 6 : Int

The compiler does not know exactly what we want, but the hints give us the impression

there may be a String.length available, although List.length is suggested. Eventually,

we get the correct hint to import a module. We do so, and the expression is finally working.

Note as we will see later, string is implemented as a list; therefore, we get
List.Length as the first suggestion.

When we type an expression in elm-repl or import a module, the source code is

implemented into a temporary module. We can import our own modules and change it

while elm-repl is running. It will pick up the changes and recompile.

Not all features of the language are available in elm-repl. For example, it does not

understand type annotations, and definitions of operators did not work in the Elm

platform version I used for this book as well (Listing 4-7).

Listing 4-7.

> f : Int -> Int \

| f n = n

 -- SYNTAX PROBLEM ------------------------------------ repl- temp- 000.elm

 A single colon is for type annotations. Maybe you want :: instead? Or

maybe you

 are defining a type annotation, but there is whitespace before it?

 5| f : Int -> Int

 Maybe <http://elm-lang.org/docs/syntax> can help you figure it out.

> f n = n

 <function:_user$project$Repl$f> : a -> a

The compiler detects that a type annotation is intended, but can’t resolve what we

write. The backlash at the end of the line tells elm-repl that we want to type in multiple

lines and that the text should only be evaluated once we press Enter without a backlash

at the end of the line.

Chapter 4 tooling and libraries

89

In the last line we see a type annotation returned that shows a strange name. This is

the name of the module that the REPL has created. Every function must be defined in

a module, and in the REPL the creation of a temporary module is done automatically.

When we exit elm-repl all definitions of the session will be lost.

Defining functions in the REPL is working, and we will get a type annotation

returned. Being unable to evaluate type annotations is not a problem unless we have or

want to specify exactly what types we expect as arguments (Listing 4-8).

Listing 4-8.

> (++*) list multiplicator = 42

 -- SYNTAX PROBLEM ------------------------------------- repl- temp- 000.elm

 I ran into something unexpected when parsing your code!

 5| ++*

 ^

 I am looking for one of the following things:

 an expression

 whitespace

This operator definition is an abbreviated example from allbasics.elm. It seems

that elm-repl does not recognize the parentheses and throws an error. This and the

preceding problem may have been fixed in the version you are using.

We have just seen a multiline example. The following code (Listing 4-9) defines a

function over several lines that can be called in the REPL from that point on. As mentioned

before, this function definition is local to elm-repl and is lost when exiting with :exit.

Listing 4-9.

> varassign_to_tuple = \

| let \

| s1 = "hello world" \

| s2 = 42 \

| in \

| (s1,s2)

 ("hello world",42) : (String, number)

Chapter 4 tooling and libraries

90

The REPL—as is the language—is very picky with whitespace. For example, in the

preceding code the let and in need to be aligned on the same column and indented.

This is not a big problem in an editor, but makes typing longer functions into elm-repl

cumbersome.

Overall, Elm’s REPL is sufficient for testing expressions or small functions. It is more

powerful when we import our modules to test some of our functions manually. This

is the approach we took in the previous chapter to learn Elm. Once we apply the Elm

architecture and build web applications, the REPL is not a good way to test anymore.

In any case, elm-repl is not a replacement—nor is it meant to be—for in-depth

testing. It’s a tool for trying out ideas or getting to know the functions of a module that

may be used in an application. It serves well up to a point in the development process.

 Development Process
Developing an Elm application involves several tools from the Elm platform and beyond

(Figure 4-1).

Figure 4-1. Elm development process

Chapter 4 tooling and libraries

91

In the center of the process are the Elm code files. In the diagram, we have only one

file displayed, but every non-trivial application will have more than one. We will touch

on code organization in Chapter 5.

The code files are compiled with elm-make and manually tested in elm-repl and

elm-reactor. We format the code with elm-format and run unit tests with elm-test. The

output of the compilation is a JavaScript file that can be run in a web server.

On the left side of the diagram we see a list of tools that are supporting this process.

What many of them—and all in the diagram—have in common is that they are Node.js

tools, which emphasizes the integration of the Elm platform into that ecosystem. The

next two sections have more information about those tools.

 Scaffolding
When we start a project we may want to get a head start with pre-built project skeletons

that support building the projects and debugging them. The Elm platform does not

provide a scaffolding tool. Simple applications are not too difficult to set up, but if we

want a little bit more then we have to organize our code better than simply having

everything in one file or even one directory.

Searching for Elm scaffolding solutions reveals several attempts by the Elm

community to bootstrap a project. Some are written in Python, some in Haskell, and

many in JavaScript.

One of the most used scaffolding tools for web applications is Yeoman.1 The tool

itself is a framework for generators; at the moment there are more than 7,000 generators

in the database. Not all are updated regularly, and many won’t work with the latest

versions of frameworks, but the rest add up to an impressive number.

We can find a few Elm generators, but again not all of them were updated to handle

the latest version. Nevertheless, let’s try one and go through the process of setting up a

new project. I assume you have set up Yeoman on your computer.

Note in listing 4-10 we are using Yeoman in the current directory. to avoid
overwriting files, create a new directory, change into it, and then run the following
commands.

1 http://yeoman.io/

Chapter 4 tooling and libraries

http://yeoman.io

92

Listing 4-10.

$ npm install generator-elm

$ yo elm .

<ascii art omitted>

Going to create project in folder: ~/Projects/bookcompanion-elm/Scaffolding

? Project name? Scaffolding

>

 create

 (omitted)

Starting downloads...

 ● elm-lang/virtual-dom 2.0.4

 ● elm-lang/html 2.0.0

 ● elm-lang/core 5.1.1

Packages configured successfully!

 Project generated

 1. Start dev server: npm start

 2. Visit <http://localhost:3000>

 3. Make changes to src/Main.elm

The installation of the generator takes a while and installs several Node packages in

the Yeoman folder. Generating a new project goes through downloading about 250 MB of

Node packages and then compiles the project. There is only one option for the project

name in this generator.

This generator uses webpack to build the application. It provides all necessary scripts

in package.json and also sets up the configuration file webpack.config.js. A readme

file explains the steps to build and run the application. The provided code file is a simple

Hello World example that implements all parts of the Elm architecture in one file.

Most of the time scaffolding solutions are opinionated and force the user to use

certain tools. The concepts come from JavaScript development and use its tools. In this

section, we created a project that uses *webpack^ for building; the next section looks at

other solutions.

Chapter 4 tooling and libraries

93

 Building
When we develop an Elm application we want to automate as much as possible, as

follows:

• Compile changed files automatically.

• Build distribution files.

• Invoke tools easily.

• Run a web server with the compiled files.

• Support JavaScript frameworks and CSS creation.

Luckily, we can use the same tools the JavaScript web community has created. Apart

from Webpack2 mentioned in the previous section, we also have Gulp3 and Grunt4 available.

All the previously mentioned tools require configurations and use many other Node

packages to do their jobs. If you just want to watch Elm files and compile them when they

have changed, a more lightweight solution would be Chokidar5 or Chokidar-cli.6 The

following script (Listing 4-11) can be integrated into the scripts section in package.json.

Listing 4-11.

"watch": "chokidar '**/*.elm' -c 'elm make allbasics.elm

 --output elm.js --warn' --initial"

Whenever a file changes, the main file allbasics.elm and dependent files will be

compiled with the --warn option. The tool has many more options and is used by other

build tools, like the aforementioned Gulp or Webpack.

This is not the place to go much deeper into the configuration of the different build

tools, which would almost require a small book of its own. A development team will use

what they are comfortable with. Build tools working together with scaffolding and editor

plugins are the key to successfully implementing Elm applications that are bigger than a

simple Hello World.

2 https://webpack.github.io/
3 https://www.npmjs.com/package/gulp-elm
4 https://www.npmjs.com/package/grunt-elm
5 https://github.com/paulmillr/chokidar
6 https://github.com/kimmobrunfeldt/chokidar-cli

Chapter 4 tooling and libraries

https://webpack.github.io
https://www.npmjs.com/package/gulp-elm
https://www.npmjs.com/package/grunt-elm
https://github.com/paulmillr/chokidar
https://github.com/kimmobrunfeldt/chokidar-cli

94

 Switch Elm Versions
At the moment there is no official solution for switching versions of the Elm platform.

The rapid development of Elm makes it necessary to have different projects use different

Elm platform versions.

There are workarounds with local and global installations as described in Chapter 2.

As the name says, they are workarounds, and it would be nice to have a switch tool baked

into the platform.

 Debugging
The Elm platform prides itself on having no runtime errors because of the language

design and application compilation. At least, this is the information we get from

companies that have actually used Elm in production.

Sometimes we want to know what is going on in our application when we run it in

a browser. The Elm platform development is still working on a solution to achieve the

debugging of a reactive application in the browser. There were solutions before7 that are

on hold now.

One way to “look” into an application is to print information out. We’ve done this for

decades, and the method is still used; for example, in JavaScript. Functional languages

like Elm and asynchronous programs don’t lend themselves easily to employing this.

Therefore, we find in the Elm core libraries the module Debug, but the warning in the

documentation is to not use it in production.

The first function in the following example—debuggerTestString—uses log

to print out debug information on the console. From the perspective of functional

programming, this is not a pure function but rather a side effect. The second function—

debuggerTestCrash—crashes the application with a custom message. See Listing 4-12.

Listing 4-12.

import Debug exposing (..)

debuggerTestString : String -> Int

debuggerTestString s =

 length (log "s" s)

7 http://debug.elm-lang.org/

Chapter 4 tooling and libraries

http://debug.elm-lang.org

95

debuggerTestCrash =

 crash "Not implemented"

When we run these functions in elm-repl, we get the output seen in Listing 4-13.

Listing 4-13.

> debuggerTestString "Hello"

 s: "Hello"

 5 : Int

> debuggerTestCrash

 Error: Ran into a `Debug.crash` in module `AllBasics` on line 11

 The message provided by the code author is:

 Not implemented

Printing out debug information is not always possible. When we run the application

in the browser, we need a direct look into the state of the application. The following

screenshot is from a test page of a simple game framework (Figure 4-2). The line at the

top of the page displays the state whenever the values are updated. Updates are triggered

when the mouse position changes.

Chapter 4 tooling and libraries

96

The overlay window titled Debugger shows the state changes as well. The difference

is that we can export all the states to a file and import one for later use to bring the

application into the exact state we want to show—perhaps an error state. We can also

click on one state change and resume from there.

Debugging Elm applications is not easy. We hope to get more tools in the future as

the Elm platform evolves.

 Standard Libraries
A programming language is only one part of a platform. Without tools and libraries it

is very difficult if not impossible to create applications in a productive way. The Elm

platform is geared toward web applications, so it is no surprise that many packages

created with the Elm language are handling exactly this task.

Figure 4-2. Elm reactor debugger

Chapter 4 tooling and libraries

97

This section is titled “Standard Libraries,” so a developer coming from other

languages may think that there is one module that includes what may be called a

standard library. Due to the platform being in development, there are a few places to

look for such a library.

The following diagram (Figure 4-3) has an overview of the packages I am considering

as constituting a first version of the Elm standard library.

There are more packages in the mentioned repositories, as the diagram only shows

the most important and also the regularly updated packages. Some of the packages from

other repositories might transit into the official elm-lang repository in later Elm platform

versions.

The packages shown in Listing 4-14 are imported by default; therefore, no implicit

import statement is necessary.

Figure 4-3. Elm standard library

Chapter 4 tooling and libraries

98

Listing 4-14.

import Basics exposing (..)

import Debug

import List exposing (List, (::))

import Maybe exposing (Maybe(Just, Nothing))

import Result exposing (Result(Ok, Err))

import Platform exposing (Program)

import Platform.Cmd exposing (Cmd, (!))

import Platform.Sub exposing (Sub)

As you can see, not all functions of imported modules are exposed. For example,

List only exposes the constructor and the concatenation operator ::.

In the following section, we will take a deeper look into some packages, while others

will be discussed in Chapter 5. We start with data types and structures.

 Data Types and Structures

 String
Functions in the library String are similar to other languages’ libraries. The examples

show constructing and manipulating strings (Listing 4-15).

Listing 4-15.

> import String exposing (..)

> reverse "Calzone"

 "enozlaC" : String

> length "Calzone"

 7 : Int

> repeat 5 "C"

 "CCCCC" : String

> isEmpty ""

 True : Bool

> cons 'C' "alzone"

 "Calzone" : String

> uncons "CCalzone"

 Just ('C',"Calzone") : Maybe.Maybe (Char, String)

Chapter 4 tooling and libraries

99

> fromChar 'C'

 "C" : String

> append "C" "alzone"

 "Calzone" : String

> concat ["C","alzone"]

 "Calzone" : String

> split "/" "Calzone/Margherita"

 ["Calzone","Margherita"] : List String

> join "/" ["Calzone","Margherita"]

 "Calzone/Margherita" : String

> words "Calzone Margherita / QuatroStagione"

 ["Calzone","Margherita","/","QuatroStagione"] : List String

> lines "Calzone\nMargherita"

 ["Calzone","Margherita"] : List String

Most examples are easy to understand. Interesting are cons and uncons. The first

function constructs a new string by adding a character to the beginning of a string. The

signature is Char ➤ String ➤ String, so it is not possible to add a character type at the

end. The string can be empty, but the character must be valid, although it can be a space.

A space and an empty string create a string with a blank (Listing 4-16).

Listing 4-16.

> import String exposing (..)

> cons ' ' ""

 " " : String

The function uncons splits a string into a head and a tail, where the head is a character.

The result is a Maybe. A non-empty string will return a tuple of type Just with a character

and a string. If we have only one element in a string as in the following example the tuple

will still have two elements. An empty string will return Nothing. See Listing 4-17.

Listing 4-17.

> import String exposing (..)

> uncons ""

 Nothing : Maybe.Maybe (Char, String)

> uncons "1"

 Just ('1',"") : Maybe.Maybe (Char, String)

Chapter 4 tooling and libraries

100

This function is useful for pattern matching; for example, to capitalize a string as in

the community package string-extra. Listing 4-18 shows the code from the community

package.

Listing 4-18.

{-| Change the case of the first letter of a string to either uppercase or

lowercase, depending of the value of `wantedCase`. This is an internal

function for use in `toSentenceCase` and `decapitalize`.

-}

changeCase : (Char -> Char) -> String -> String

changeCase mutator word =

 uncons word

 |> Maybe.map (\(head, tail) -> (cons (mutator head) tail))

 |> Maybe.withDefault ""

toSentenceCase : String -> String

toSentenceCase word =

 changeCase (toUpper) word

When we run toSentenceCase it will change the first character no matter how many

words are in the string. The private function changeCase—it is not exported—uses uncons

on the string we pass in to get head and tail. Then, it uses cons to create a new string with

the changed head character and the tail. If the passed-in string (word) is empty it returns

an empty string as well, defined by the default value for Maybe.

We have encountered Maybe before and will learn later in this chapter what Maybe

functions like map and default can do.

Listing 4-19 shows the output of toSentenceCase with different arguments.

Listing 4-19.

> toSentenceCase "first"

 "First" : String

> toSentenceCase "FIRST"

 "FIRST" : String

> toSentenceCase "First"

 "First" : String

> toSentenceCase "first word"

 "First word" : String

Chapter 4 tooling and libraries

101

Programs often have to process strings by slicing them or searching to see whether

other strings are contained within them. The String library has the usual functions to

achieve these tasks. Some names may be a bit different, like dropLeft and dropRight.

As in other languages, string indexes start with 0. See Listing 4-20.

Listing 4-20.

> slice -3 7 "Calzone"

 "one" : String

> left 3 "Calzone"

 "Cal" : String

> right 3 "Calzone"

 "one" : String

> dropLeft 4 "Calzone"

 "one" : String

> dropRight 3 "Calzone"

 "Calz" : String

> contains "one" "Calzone"

 True : Bool

> startsWith "one" "Calzone"

 False : Bool

> endsWith "one" "Calzone"

 True : Bool

> indexes "one" "Calzone"

 [4] : List Int

String conversions like trim or pad work in Elm as expected. Type conversions like

toInt and toFloat are interesting (Listing 4-21).

Listing 4-21.

> toInt "1"

 Ok 1 : Result.Result String Int

> toInt "C"

 Err "could not convert string 'C' to an Int" : Result.Result String Int

> Result.withDefault 0 (toInt "C")

 0 : Int

Chapter 4 tooling and libraries

102

> String.toFloat "1"

 Ok 1 : Result.Result String Float

> toList "Calzone"

 ['C','a','l','z','o','n','e'] : List Char

> fromList ['C','a','l','z','o','n','e']

 "Calzone" : String

> toUpper "Calzone"

 "CALZONE" : String

> toLower "CALZONE"

 "calzone" : String

> pad 10 '-' "Calzone"

 "--Calzone-" : String

> padLeft 10 '-' "Calzone"

 "---Calzone" : String

> padRight 10 '-' "Calzone"

 "Calzone---" : String

> trim " Calzone"

 "Calzone" : String

> trim " Calzone "

 "Calzone" : String

> trimLeft " Calzone "

 "Calzone " : String

> trimRight " Calzone "

 " Calzone" : String

Type conversions return a Result type, which we will also mention later in the

section about Maybe. Other languages may throw an exception or return null or

some arbitrary code like -1. Returning a type like Return that can be pattern matched

improves the code. If the result is correct it returns an Ok value, with the value having a

type like int or float.

To avoid having to deal with Ok and Err we can use Result.withDefault, provide

a default value like 0 in the preceding example, and get a value of the type we wanted

returned. Of course, by using this method we would fall back to some arbitrary value to

indicate failure.

Chapter 4 tooling and libraries

103

Strings in Elm can also be manipulated with higher-order functions, as in the

following code snippet (Listing 4-22). Those functions like map look like the list

counterparts we will discuss in the next section and remind us again that strings are

actually implemented as lists.

Listing 4-22.

-- allbasics.elm

charToUpper : Char -> String -> String

charToUpper c s =

 s ++ (fromChar c |> toUpper)

-- elm-repl

> filter (\c -> c == 'z') "Calzone"

 "z" : String

> map (\c -> if c == 'z' || c == 'n' then '?' else c) "Calzone"

 "Cal?o?e" : String

> any (\c -> c == 'z') "Calzone"

 True : Bool

> all (\c -> c == 'z') "Calzone"

 False : Bool

> foldl charToUpper "" "Calzone"

 "CALZONE" : String

> foldr charToUpper "" "Calzone"

 "ENOZLAC" : String

We define a function charToUpper that takes a character and a string, converts the

character to an uppercase string, and appends it to the string we provide as argument.

The fromChar c |> toUpper expression has to convert the character to a string first, because

toUpper has a string as input. The function fromChar is defined in the library String.

The Elm String library has—as other functional languages and libraries do—fold

functions, also known as reduce functions, aggregate functions, or similar. These

functions take as arguments a function to process each element, a start data structure

(also called an accumulator), and the data structure that should be processed. In our

case, accumulator and default data are strings, and the processing function is the

aforementioned charToUpper. We can use them to process the string from the left or

right side, so foldr charToUpper "" "Calzone" will return "ENOZLAC".

Chapter 4 tooling and libraries

104

The other examples in the preceding listing also take functions to process the string

we pass in. We are using anonymous functions or lambdas to define the processing

functions for filter and map. The functions any and all take lambdas as well, but they

are commonly called predicates.

 List

Lists, in particular ones implemented as linked lists, are used often in functional languages.

LISP or Scheme are obvious examples. Developers programming with imperative languages

also use lists, although arrays that have random access to elements are sometimes preferred.

The Elm library List has many functions we are used to from other languages. The

examples in Listing 4-23 mostly use strings as list elements.

Listing 4-23.

> List.isEmpty ["C","a","l","z","o","n","e"]

 False : Bool

> List.length ["C","a","l","z","o","n","e"]

 7 : Int

> List.reverse ["C","a","l","z","o","n","e"]

 ["e","n","o","z","l","a","C"] : List String

> member "o" ["C","a","l","z","o","n","e"]

 True : Bool

> range 2 10

 [2,3,4,5,6,7,8,9,10] : List Int

> List.repeat 5 "C"

 ["C","C","C","C","C"] : List String

> "C" :: ["a","l","z","o","n","e"]

 ["C","a","l","z","o","n","e"] : List String

> List.append ["C","a","l"] ["z","o","n","e"]

 ["C","a","l","z","o","n","e"] : List String

> List.concat [["C","a","l"],["z","o","n","e"]]

 ["C","a","l","z","o","n","e"] : List String

> intersperse "and" ["Calzone","Margherita"]

 ["Calzone","and","Margherita"] : List String

> intersperse "/" (List.concat [["C","a","l"],["z","o","n","e"]])

 ["C","/","a","/","l","/","z","/","o","/","n","/","e"] : List String

Chapter 4 tooling and libraries

105

One function that deals with integers is range, which takes two integers as start

and end values and returns a list with the range specified. If end is greater than start an

empty list is returned.

The functions append and concat both create one list from the passed-in arguments.

The difference is that append takes exactly two lists and concat takes a list of lists to put

into one list. The function intersperse puts a specified string between all members of

the provided list.

Tip You may have noticed that sometimes we use the fully qualified name for
functions. this is, for example, true for functions in the libraries List and String
because they have the same name. if you import List, exposing everything, then
no namespace needs to be used, but if you have the library String imported as
well, you need to use the fully qualified name. if you import and expose exactly the
functions from the libraries you want to use then you could avoid name conflicts.

The most important tasks for dealing with lists are sorting and searching. Before that,

we may need to split lists into sublists with fewer elements. The head and tail functions

shown in the example in Listing 4-24 are important for the implementation of recursive

algorithms. The functions take and drop create sublists for further processing.

Listing 4-24.

> head ["C","a","l","z","o","n","e"]

 Just "C" : Maybe.Maybe String

> tail ["C","a","l","z","o","n","e"]

 Just ["a","l","z","o","n","e"] : Maybe.Maybe (List String)

> take 4 ["C","a","l","z","o","n","e"]

 ["C","a","l","z"] : List String

> drop 4 ["C","a","l","z","o","n","e"]

 ["o","n","e"] : List String

> sort ["C","a","l","z","o","n","e"]

 ["C","a","e","l","n","o","z"] : List String

> unzip [("Calzone",5),("Margherita",2)]

 (["Calzone","Margherita"],[5,2]) : (List String, List number)

Chapter 4 tooling and libraries

106

With sort we can process lists of comparable elements like strings or numbers. If we

want to write our own comparison function we can use sortWith as in Listing 4-25.

The following examples also show functions that work on all elements of a list,

similar to a for-each loop in imperative languages, mostly fold and map functions.

Listing 4-25.

> List.filter (\s -> s == "z") ["C","a","l","z","o","n","e"]

 ["z"] : List String

> sortBy String.toLower ["C","a","l","z","o","n","e"]

 ["a","C","e","l","n","o","z"] : List String

> partition (\s -> s > "n") ["C","a","l","z","o","n","e"]

 (["z","o"],["C","a","l","n","e"]) : (List String, List String)

> List.map (\s -> toUpper s) ["C","a","l","z","o","n","e"]

 ["C","A","L","Z","O","N","E"] : List String

> List.map2 (++) ["C","a","l","z"] ["o","n","e"]

 ["Co","an","le"] : List String

> List.map2 (*) [4,5,10] [2,2,2]

 [8,10,20] : List number

> filterMap (\n -> if n > 21 then Just n else Nothing) [5,56,13,2,49]

 [56,49] : List number

> List.indexedMap (,) ["Calzone","Margherita","Quattro Stagione"]

 [(0,"Calzone"),(1,"Margherita"),(2,"Quattro Stagione")] : List (Int,

String)

> List.foldl (::) [] ["C","a","l","z","o","n","e"]

 ["e","n","o","z","l","a","C"] : List String

> List.foldr (::) [] ["C","a","l","z","o","n","e"]

 ["C","a","l","z","o","n","e"] : List String

> sum [5,56,13,2,49]

 125 : number

> product [5,56,13,2,49]

 356720 : number

> maximum ["C","a","l","z","o","n","e"]

 Just "z" : Maybe.Maybe String

> minimum ["C","a","l","z","o","n","e"]

 Just "C" : Maybe.Maybe String

Chapter 4 tooling and libraries

107

> List.all (\s -> s > "a") [C","a","l","z","o","n","e"]

 False : Bool

> List.any (\s -> s > "a") ["C","a","l","z","o","n","e"]

 True : Bool

> scanl (::) [] ["C","a","l","z","o","n","e"]

 [[],["C"],["a","C"],["l","a","C"],["z","l","a","C"],["o","z","l","a","C"],

 ["n","o","z","l","a","C"],["e","n","o","z","l","a","C"]]

 : List (List String)

> sortWith (\s1 s2 -> GT) ["C","a","l","z","o","n","e"]

 ["e","n","o","z","l","a","C"] : List String

> concatMap (\s -> s :: ["0"]) ["C","a","l","z","o","n","e"]

 ["C","0","a","0","l","0","z","0","o","0","n","0","e","0"] : List String

The map function with a number shows how many lists can be passed as arguments.

One argument means that all elements of one list will be processed, while more

arguments mean that all lists will be combined by applying the passed-in function to the

elements of the list and then creating one resulting list.

Interesting are functions like maximum or sum that use mapping functions to provide

predefined tasks. It is also worth noting that some of these functions always return a

result, others sometimes a Maybe. For example, sum, with an empty list passed in, will

return 0. The function minimum does not have a default value, so it has to return a Maybe

if an empty list is passed in. If elements are not comparable, the compilation of the code

will fail.

The functions all and any invoke a function that is passed as an argument to all

elements and behave like logical and or. Either all elements (and) or any element (or) of

a list return true for the predicate function and thus return true for the whole list.

Lists are the base for the implementation of other data structures, as we will see in

the following sections.

 Array

Arrays are similar to lists, with the big advantage that due to their implementation

elements can be accessed via indices. The Elm platform uses a tree implementation,

while other language libraries—for example .Net—use arrays as implementation for a

data structure that is called list.

Chapter 4 tooling and libraries

108

The similarity to lists can be seen when we look at the functions in the library that are

almost the same compared to List, with the big exception of manipulating arrays with

indices. See Listing 4-26.

Listing 4-26.

> empty

 Array.fromList [] : Array.Array a

> Array.repeat 5 "C"

 Array.fromList ["C","C","C","C","C"] : Array.Array String

> initialize 5 (\s -> "C")

 Array.fromList ["C","C","C","C","C"] : Array.Array String

> arr = Array.fromList ["C","a","l","z","o","n","e"]

 Array.fromList ["C","a","l","z","o","n","e"] : Array.Array String

> Array.isEmpty arr

 False : Bool

> Array.length arr

 7 : Int

> push "5" arr

 Array.fromList ["C","a","l","z","o","n","e","5"] : Array.Array String

> Array.append (Array.fromList ["Calzone"]) (Array.fromList ["Margeritha"])

 Array.fromList ["Calzone","Margeritha"] : Array.Array String

> Array.toList arr

 ["C","a","l","z","o","n","e"] : List String

> toIndexedList arr

 [(0,"C"),(1,"a"),(2,"l"),(3,"z"),(4,"o"),(5,"n"),(6,"e")]

 : List (Int, String)

> get 0 arr

 Just "C" : Maybe.Maybe String

> arr2 = Array.set 0 "Hawai" arr

 Array.fromList ["Hawai"] : Array.Array String

> get 0 arr

 Just "C" : Maybe.Maybe String

> get 0 arr2

 Just "Hawai" : Maybe.Maybe String

Chapter 4 tooling and libraries

109

> arr3 = Array.set 2 "Hawai" arr

 Array.fromList ["C"] : Array.Array String

> get 3 arr

 Nothing : Maybe.Maybe String

We create arrays from lists directly or use functions like initialize. Once we have

an array, we can manipulate it with append, but we also have functions that work with

inidices.

The functions get and set expect as arguments an index number. Both work

with indices out of range and do not throw a runtime error, as we know from other

programming languages. The behavior of set is a bit unusual because it returns the

original array and assigns it, although there was clearly something else intended. The

array arr3 in the preceding example tries to manipulate the array arr and passes the

number 2 as the argument. The returned array is the original arr.

If we pass a wrong index to get we receive Nothing as this function always returns a

Maybe.

Other manipulation functions return parts of an array. See Listing 4-27.

Listing 4-27.

> arr = Array.fromList ["C","a","l","z","o","n","e"]

 Array.fromList ["C","a","l","z","o","n","e"] : Array.Array String

> Array.slice 0 4 arr

 Array.fromList ["C","a","l","z"] : Array.Array String

> Array.slice -3 7 arr

 Array.fromList ["o","n","e"] : Array.Array String

The function slice takes start and end indices, where the end index is not included

in the result. Even the start can be negative, which requires a little brain acrobatics to

figure out the expected result. See Listing 4-28.

Listing 4-28.

> arr = Array.fromList ["C","a","l","z","o","n","e"]

 Array.fromList ["C","a","l","z","o","n","e"] : Array.Array String

> Array.map (\e -> String.toUpper e) arr

 Array.fromList ["C","A","L","Z","O","N","E"] : Array.Array String

Chapter 4 tooling and libraries

110

> Array.filter (\e -> e > "n") arr

 Array.fromList ["z","o"] : Array.Array String

> Array.foldl (\e l -> String.toUpper e :: l) [] arr

 ["E","N","O","Z","L","A","C"] : List String

> Array.foldr (\e l -> String.toUpper e :: l) [] arr

 ["C","A","L","Z","O","N","E"] : List String

> Array.indexedMap (*) (Array.fromList [11,22,31])

 Array.fromList [0,22,62] : Array.Array Int

> Array.indexedMap (+) (Array.fromList [11,22,31])

 Array.fromList [11,23,33] : Array.Array Int

Arrays can also be manipulated with functions that are known from List, like map or

fold. IndexedMap needs a bit more information because it is not immediately obvious

what is happening. The function takes a lambda—in our case, multiplication—and

creates another array by applying the function to the index of an element and its value.

The first index is 0, so the multiplication returns 0 as well. If we pass addition as the

manipulation function we get as the first value the elements’ value of 11 plus 0.

We used simple functions in our examples, but with more sophisticated functions

it is possible, for example, to create an array of tuples or other similar data structures.

Of course, this only makes sense if the index numbers of the array’s elements contain

information about the elements.

 Dict

Dictionaries are used to create key–value pairs. Other languages might call them hashes

or similar. They all store keys of one type and relate them to values of one type. The

elements are unordered and are accessed via keys. In Elm all keys must be of the type

comparable. See Listing 4-29.

Listing 4-29.

> Dict.empty

 Dict.fromList [] : Dict.Dict k v

> d = singleton "Margherita" 3

 Dict.fromList [("Margherita",3)] : Dict.Dict String number

> Dict.fromList [("Calzone",8),("Calzone",4)]

 Dict.fromList [("Calzone",4)] : Dict.Dict String number

Chapter 4 tooling and libraries

111

> insert "Calzone" 12 d

 Dict.fromList [("Calzone",12)] : Dict.Dict String number

> update "Calzone" (\v -> Just 12) d

 Dict.fromList [("Calzone",12)] : Dict.Dict String number

> remove "Calzone" d

 Dict.fromList [] : Dict.Dict String number

> Dict.isEmpty d

 False : Bool

> Dict.member "Calzone" d

 True : Bool

> Dict.get "Margherita" ds

 Just 3 : Maybe.Maybe number

> Dict.get "Calzone" ds

 Nothing : Maybe.Maybe number

As is the case with other data structures, dictionaries are based on Elm’s list

implementation. This is why we see as the result of almost all functions in our examples

Dict.fromList. Most functions in Dict are straightforward to understand. A bit

surprising is the name of the function singleton, which creates a dictionary with a

single key–value pair. Our minds are used to thinking of the pattern Singleton, which is

used to create only a single instance of a type.

We see that internally dictionaries are lists of tuples, with one tuple consisting of

two elements—key and value. This internal representation is transparent for the user

because most functions take simple type arguments. Only if we want to use Dict.

fromList ourselves will we have to create a list of tuples.

When we update a dictionary, we pass the key and a function that checks the value of

the pair element: (-> Just 12). It needs to match against a Maybe because, again, there

is possibly no default value defined. See Listing 4-30.

Listing 4-30.

> d = Dict.fromList [("Calzone",8),("Margherita",4)]

 Dict.fromList [("Calzone",8),("Margherita",4)] : Dict.Dict String number

> ds = singleton "Quattro Stagione" 0

 Dict.fromList [("Quattro Stagione",0)] : Dict.Dict String number

> Dict.toList d

 [("Calzone",8),("Margherita",4)] : List (String, number)

Chapter 4 tooling and libraries

112

> keys d

 ["Calzone","Margherita"] : List String

> values d

 [8,4] : List number

> union d ds

 Dict.fromList [("Calzone",8),("Margherita",4),("Quattro Stagione",0)]

 : Dict.Dict String number

> diff d (Dict.fromList [("Calzone",6),("Quattro Stagione",1)])

 Dict.fromList [("Margherita",4)] : Dict.Dict String number

> intersect d (Dict.fromList [("Calzone",6),("Quattro Stagione",1)])

 Dict.fromList [("Calzone",8)] : Dict.Dict String number

With the functions union, diff, and intersect we can create a dict from dicts.

Important to know is that in the functions union and intersect the preference is

given to the first dict. The preceding example shows that there are the same keys but

with different values in the dicts we pass as arguments. The resulting dict contains the

element with the value of the first dict. This may lead to difficult-to-find errors when the

order of the dict arguments is not guaranteed.

The following examples show the fold and map functions we have seen in other data

structures as well, and they work in the same manner. However, map does not return

the original values of a key–value pair, but rather a pair of the key and a Boolean value

indicating if the mapping function that works on the value succeeded or not.

See Listing 4-31.

Listing 4-31.

> d = Dict.fromList [("Calzone",8),("Margherita",4)]

 Dict.fromList [("Calzone",8),("Margherita",4)] : Dict.Dict String number

> Dict.map (\k v -> v < 5) d

 Dict.fromList [("Calzone",False),("Margherita",True)] : Dict.Dict String Bool

> Dict.partition (\k v -> v < 5) d

 (Dict.fromList [("Margherita",4)],Dict.fromList [("Calzone",8)])

 : (Dict.Dict String number, Dict.Dict String number)

> Dict.partition (\k v -> v < 3) d

 (Dict.fromList [],Dict.fromList [("Calzone",8),("Margherita",4)])

 : (Dict.Dict String number, Dict.Dict String number)

Chapter 4 tooling and libraries

113

> Dict.filter (\k v -> v < 5) d

 Dict.fromList [("Margherita",4)] : Dict.Dict String number

> Dict.filter (\k v -> k < "F") d

 Dict.fromList [("Calzone",8)] : Dict.Dict String number

> Dict.foldl (\k v acc -> acc ++ String.toUpper k) "" d

 "CALZONEMARGHERITA" : String

> Dict.foldr (\k v acc -> acc ++ String.toUpper k) "" d

 "MARGHERITACALZONE" : String

> Dict.foldl (\k v acc -> acc + v) 0 d

 12 : number

> Dict.foldr (\k v acc -> acc + v) 0 d

 12 : number

A special map function is partition, which applies a predicate to all elements and

keeps the one that returns true in one dict and the rest in another dict. Both dicts are

returned in a tuple.

 Set

Sets are similar to lists, but their values must be unique. We can create a set from a list,

although duplicates will be removed to keep the values unique. Elements of sets are

comparables, and when we create from a list the elements will also be ordered.

In Listing 4-32 we define a set with the name s2 from a list of strings. Note that

one duplicate element is removed, and the rest is ordered. The set with the name s1 is

created from a tuple, which is a comparable as well.

Listing 4-32.

> Set.empty

 Set.fromList [] : Set.Set a

> Set.fromList ["Margherita", "Margherita", "Calzone"]

 Set.fromList ["Calzone","Margherita"] : Set.Set String

> st = singleton "Calzone"

 Set.fromList ["Calzone"] : Set.Set String

> s = Set.fromList ["Calzone","Margherita"]

 Set.fromList ["Calzone","Margherita"] : Set.Set String

Chapter 4 tooling and libraries

114

> Set.singleton ("Quattro Stagione", 5)

 Set.fromList [("Quattro Stagione",5)] : Set.Set (String, number)

> Set.size s

 2 : Int

> Set.isEmpty s

 False : Bool

> f = Set.member "Calzone"

 <function> : Set.Set String -> Bool

> f s

 True : Bool

> Set.toList s

 ["Calzone","Margherita"] : List String

> s1 = insert (0, "Element 1") empty

 Set.fromList [(0,"Element 1")] : Set.Set (number, String)

> s1

 Set.fromList [(0,"Element 1")] : Set.Set (number, String)

> s2 = Set.fromList ["Margherita", "Margherita", "Calzone"]

 Set.fromList ["Calzone","Margherita"] : Set.Set String

As we have seen in other data structures, almost every function in Set uses fromList

to achieve its tasks. Also, if we want to see what the set with the name s1 is, we again get

a fromList with a tuple list. See Listing 4-33.

Listing 4-33.

> s = Set.fromList ["Calzone","Margherita"]

 Set.fromList ["Calzone","Margherita"] : Set.Set String

> Set.insert ("Quattro Stagione") s

 Set.fromList ["Calzone","Margherita","Quattro Stagione"] : Set.Set String

> Set.remove "Calzone" s

 Set.fromList ["Margherita"] : Set.Set String

> Set.union s (Set.fromList ["QuattroStagione"])

 Set.fromList ["Calzone","Margherita","QuattroStagione"] : Set.Set String

> Set.union s (Set.fromList ["QuattroStagione","Calzone"])

 Set.fromList ["Calzone","Margherita","QuattroStagione"] : Set.Set String

Chapter 4 tooling and libraries

115

> Set.intersect s (Set.fromList ["QuattroStagione","Calzone"])

 Set.fromList ["Calzone"] : Set.Set String

> Set.diff s (Set.fromList ["QuattroStagione","Calzone"])

 Set.fromList ["Margherita"] : Set.Set String

Sets have all the functions we have seen already, and these functions work in almost

the same way. If we pass to union sets with the same element, only one will appear in the

returned set to adhere to the uniqueness requirement of sets.

Also, functions like map, fold, and partition are available in Set and work like their

counterparts in other data structures, as we can see in Listing 4-34.

Listing 4-34.

> s = Set.fromList ["Calzone","Margherita"]

 Set.fromList ["Calzone","Margherita"] : Set.Set String

> Set.map (\e -> String.toUpper e) s

 Set.fromList ["CALZONE","MARGHERITA"] : Set.Set String

> Set.filter (\e -> e < "F") s

 Set.fromList ["Calzone"] : Set.Set String

> Set.partition (\e -> e < "F") s

 (Set.fromList ["Calzone"],Set.fromList ["Margherita"])

 : (Set.Set String, Set.Set String)

> Set.foldl (\e1 e2 -> (String.toUpper e1) ++ " " ++ e2) "" s

 "MARGHERITA CALZONE " : String

> Set.foldr (\e1 e2 -> (String.toUpper e1) ++ " " ++ e2) "" s

 "CALZONE MARGHERITA " : String

This concludes the discussion of basic data structures in Elm. Additional functions for

these data structures can be found in elm-community packages; for example, list- extra has

more than 80 functions that cover all aspects of list creation and manipulation. If the vanilla

functions are not sufficient, it is a good idea to look into the elm-community packages.

 Revisiting Maybe
We have seen Maybe a few times now, but have never defined it properly. It is used for

values that may or may not exist and is similar to null in other languages, but not quite the

same. Maybe—itself a union type—wraps the value of a type and returns well-defined tags.

Chapter 4 tooling and libraries

116

Maybe is useful when we define arguments we don’t need or when we don’t know if

there is a valid value in an argument. See Listing 4-35.

Listing 4-35.

getPizzaFromString : String -> Maybe Pizza

getPizzaFromString p =

 case p of

 "Calzone"

 -> Just Calzone

 "Margherita"

 -> Just Margherita

 "Quattro Stagione"

 -> Just QuattroStagione

 _

 -> Nothing

The function getPizzaFromString can’t reliably return a value of type Pizza because

it does not know what the input string contains. This function implements the factory

pattern8 in a simple way. If the input is not known to the function it returns Nothing. See

Listing 4-36.

Listing 4-36.

> getPizzaFromString "Calzone"

 Just Calzone : Maybe.Maybe AllBasics.Pizza

> getPizzaFromString ""

 Nothing : Maybe.Maybe AllBasics.Pizza

> getPizzaFromString "Unknown Pizza"

 Nothing : Maybe.Maybe AllBasics.Pizza

So, how do we get the value of a Maybe? Apart from pattern matching, as in the

examples in the previous chapter, we can use the helper function withDefault

(Listing 4-37).

8 https://en.wikipedia.org/wiki/Factory_method_pattern

Chapter 4 tooling and libraries

https://en.wikipedia.org/wiki/Factory_method_pattern

117

Listing 4-37.

-- type Pizza = Calzone | Margherita | QuattroStagione | UnknownPizza

> Maybe.withDefault UnknownPizza (getPizzaFromString "")

 UnknownPizza : AllBasics.Pizza

> Maybe.withDefault UnknownPizza (getPizzaFromString "Pizza with no name")

 UnknownPizza : AllBasics.Pizza

We are using the type Pizza as in our previous examples. Note that we have defined

a tag UnknownPizza that will indicate an invalid value, similar to what Maybe defines with

Nothing. Whatever we then throw at getPizzaFromString it will handle it and return

Nothing. The function withDefault lets us define a default value that is returned in case

of Nothing; in our case, that is UnknownPizza. This gives us a direct value without having

to deal with Just and Nothing.

Sometimes we want to apply a function to a Maybe result. The example in Listing 4-38

applies the function choosePizza on a result of the function firstPizza and then

returns the result as a string with the help of withDefault.

Listing 4-38.

> Maybe.withDefault "UnknownPizza" \

 (Maybe.map choosePizza (firstPizza [Calzone, Margherita]))

 "Pizza chosen: Calzone" : String

> Maybe.withDefault "UnknownPizza" (Maybe.map choosePizza (firstPizza []))

 "UnknownPizza" : String

What is happening here? Let’s dissect the preceding one-liners. Listing 4-39 displays

the signatures of relevant functions to follow the explanation easier.

Listing 4-39.

-- firstPizza : List Pizza -> Maybe Pizza

> firstPizza [Calzone, Margherita]

 Just Calzone : Maybe.Maybe AllBasics.Pizza

-- choosePizzaIf : Pizza -> String

-- Maybe.map : (a -> b) -> Maybe a -> Maybe b

> Maybe.map choosePizza (firstPizza [Calzone, Margherita])

 Just "Pizza chosen: Calzone" : Maybe.Maybe String

Chapter 4 tooling and libraries

118

The function firstPizza returns a Maybe. This is necessary because the passed-in

list could be empty, and there is no first element in the list. The function choosePizza

takes a type Pizza as argument, so we need to use map to apply the function to the

previous result. Of course, the previous result is a Maybe type, and the mapped function

does not know anything about that type, so the mapping function only has to apply

choosePizza to a valid Just value. In any case, the result is another Maybe—in this case

a Maybe String—and we need to resolve with withDefault to get the string value we

want.

The example could be enhanced by using partial functions. Note that parentheses

are necessary to tell the compiler what we intend to do. Without this we would get

compiler errors about the number of arguments. See Listing 4-40.

Listing 4-40.

> mapChoosePizza = Maybe.map choosePizza

 <function> : Maybe.Maybe AllBasics.Pizza -> Maybe.Maybe String

> defaultUnknownPizza = Maybe.withDefault "UnknownPizza"

 <function> : Maybe.Maybe String -> String

> defaultUnknownPizza (mapChoosePizza (firstPizza [Calzone, Margherita]))

 "Pizza chosen: Calzone" : String

The purpose of Maybe is to prevent null exceptions as we know them from other

programming languages. What it does not reduce are the checks for valid values. Once a

Maybe is in a function pipeline, this type is propagated until it can be resolved. A similar

type in Elm core is Result, which is used for computational functions and returns either

Ok with a value or Err with an error message.

 JSON
So far we have discussed basic data types that exist in the standard library. When

we create a web app, sooner or later we will run into the situation where we want to

exchange data with JavaScript code or with external servers. The way to do this is to

communicate via JSON objects.

Elm has Json.Encode and Json.Decode libraries to handle conversions of models

into JSON and back. They are not the easiest libraries to understand, but once you have

done some work with them they will be easier to handle. The community has created

helper functions to deal especially with decoding on a higher level.

Chapter 4 tooling and libraries

119

The following code defines two types, with Event embedded in the model as a list.

We create an instance of Event and then create an instance of Model (Listing 4-41).

Listing 4-41.

type alias Event =

 { timestamp: Int

 , eventname: String

 }

type alias Model =

 { xpos : Int

 , ypos : Int

 , numbertones: Int

 , backgroundimage: String

 , events: List Event

 }

ev = {timestamp = 12345, eventname = "eventname"}

m = { xpos = 0, ypos = 0, numbertones = 1,

 backgroundimage = "bg.png", events = [ev]}

> o = [("xpos",Json.Encode.int m.xpos)]

 [("xpos",0)] : List (String, Json.Encode.Value)

> j = encode 0 (object o)

 "{\"xpos\":0}" : String

> decodeString (field "xpos" Json.Decode.int) j

 Ok 0 : Result.Result String Int

Once we have defined the data we can start encoding some or all fields of a type.

There are two JSON packages, and for encoding we use JSON.Encode. In the expression

[("xpos",Json.Encode.int m.xpos)] we create a list with one tuple—in fact, a dict.

The key is the name of the field “xpos”, and for the value we are interested in the field

xpos in the model instance m.

Applying encode 0 (object o) then returns the JSON string from the list we just

created.

Chapter 4 tooling and libraries

120

The other way to extract a value from a JSON string involves methods in JSON.

Decode. In the preceding example we use decodeString—string means we are

decoding a string—and extract the value of type int we previously encoded. The method

returns a Result type to indicate success or failure.

This is just a short introduction to the JSON libraries. As you can see, it is not

straightforward to use them. We will encounter JSON processing much more in

Chapter 6 when we discuss a full example of a web application with Elm.

 What We Learned
This chapter introduced us to the built-in REPL, and we looked at the development

process and the tools in the Elm platform that support us. The overview of library

packages was just that, an overview, but hopefully it gave you an idea of the power of the

Elm platform.

In the next chapter, we will learn about the Elm architecture and more standard

libraries that support this architecture.

Chapter 4 tooling and libraries

121
© Wolfgang Loder 2018
W. Loder, Web Applications with Elm, https://doi.org/10.1007/978-1-4842-2610-0_5

CHAPTER 5

Elm Architecture
and Building Blocks
This chapter is about the Elm architecture, which is the standard way to create

applications with the Elm platform. We will learn what this architecture pattern is, how

we can implement it, and how our code can be organized for easy development and

maintenance.

Once we understand the architecture, we can look at building blocks, like styling or

HTTP requests, we can use to create our applications.

Note This chapter uses code examples from the application PizzaOrder we
describe in the next chapter. The code can be found in the downloads for this book
in the folder PizzaOrder.

The Elm architecture lies at the heart of the Elm platform. It is a simple but powerful

architecture similar to the Model-View-Controller concept that is used in many other

frameworks and platforms. The advantage of the Elm architecture is that important

wiring is done in the background. This makes it a little bit difficult at first to understand

what is going on, but once the concept is clear we see that it reduces code in our

application significantly.

The following diagram (Figure 5-1) displays all important parts of the Elm

architecture.

122

The code in the inner shape is dependent on the Elm runtime in the outer shape.

The function main is the entry point into the application and binds all parts together as

in Listing 5-1.

Listing 5-1.

main : Program Never Model Msg

main =

 program

 { init = init

 , view = view

 , update = update

 , subscriptions = subscriptions

 }

Main calls a function program from the package HTML and passes key–value pairs

as parameters. Key names like init are given and mandatory, but the key values—

the names of our implementation functions—can be any name as far as the function

signature is met. Most developers leave the function names as shown in the listing.

For example, the function init has the following type definition: init : (model,

Cmd msg). It does not take any parameters and returns a tuple. We will get more into

these definitions in the following paragraphs.

Figure 5-1. Elm architecture overview

ChapTer 5 elm arChiTeCTure and Building BloCks

123

We pass references to the functions for init, subscriptions, update, and view.

When we run our application, main will be invoked, and the Elm runtime will wire up

the code of the application with the relevant code in the runtime. This runtime consists

of JavaScript functions that are bound to our compiled code to make things work. So,

we can say that the functions in main are callbacks that are called at certain times by the

runtime.

We can define main as we just did, but there is one other important option. We may

want to pass arguments when we start the application. In our HTML page we can have

the JavaScript code shown in Listing 5-2.

Listing 5-2.

let elmapp = Elm.PizzaOrder.fullscreen({

 initialnumber: 10

 });

These lines of code call the application, tell it to go full screen, and pass in one

argument with the name initialnumber and the value 10.

To make this happen, we need to change our main function. Our first version has in

its signature Never, which tells the Elm runtime to ignore the second argument to the

type Program. So, we change the function main and use programWithFlags instead of

program. See Listing 5-3.

Listing 5-3.

main : Program (Maybe Flags) Model Msg

main =

 programWithFlags

 { init = init

 , view = view

 , update = update

 , subscriptions = subscriptions

 }

We just tell the Elm runtime to expect flags. It is a Maybe type because the passed in

JavaScript object could be empty.

ChapTer 5 elm arChiTeCTure and Building BloCks

124

Note The native Javascript code in the package core called Platform.js
checks if there are flags defined or not. if we use program and have a flag
defined we will get a runtime error in Javascript. The same happens if we use
programWithFlags and do not provide a flag.

We will see in the section about init later in this chapter how to handle flags and use

them to configure our application at initialization.

 Elm Architecture Overview
Let’s examine all parts of the Elm architecture we have to implement to make the

architecture work.

Note The examples that follow use functions and types from the file
allbasic.elm, which we already used in Chapter 3.

 model
A model represents the state we use in our application. The model is passed from

function to function, and its values are updated in our code. The following model is

from a simple game and contains values for mouse positions (x,y), the name of the

background image (backgroundimage), and the number of stones in the game (stones).

All those values are simple types; size, however—indicating the dimensions of the

window—uses a type Size that is imported from the module Window. See Listing 5-4.

Listing 5-4.

type alias Model =

 { x : Int

 , y : Int

 , stones: Int

 , backgroundimage: String

 , size: Size

 }

ChapTer 5 elm arChiTeCTure and Building BloCks

125

Not all models will be as simple as this example, but many times it is sufficient.

A more complicated model is shown in Listing 5-5.

Listing 5-5.

type alias PizzaOrder =

 { number: String

 , pizza: String

 , toppings: List String

 , size: String

 }

type alias Customer =

 { name: String

 , address: String

 , telephone: String

 , ordered: List PizzaOrder

 , selected: PizzaOrder

 , time: String

 , amount: Float

 }

type alias NestedModel =

 { temporder: Customer

 , orders: List PizzaOrder

 , currenttime: String

 }

We see lists and nested types in the preceding model, which is similar to relational

data models. Such models work, although code to access type fields is more complicated

than for simpler models.

Before we use any of our models in an application, it is a good idea to initialize them.

As always in Elm, we are using a function to achieve this; in this case, the initializing

functions for both models return a constant value. See Listing 5-6.

ChapTer 5 elm arChiTeCTure and Building BloCks

126

Listing 5-6.

initialModel: Model

initialModel =

 { x = 0

 , y = 0

 , stones = 5

 , backgroundimage = "bg.jpg"

 , size = Size 0 0

 }

initialNestedModel : NestedModel

initialNestedModel =

 NestedModel (Customer "" "" "" []

 (PizzaOrder "1" "" [] "")

 "" 0.00)

 [] ""

Note The function initialNestedModel was formatted to fit for printing. For
a successful compilation, all parameters should be on one line, but multiple lines
may work with your editor.

There are two ways available to us to create a custom type in code. As we saw in

Chapter 3, these types are basically records. Therefore, we can just define keys and their

values.

Another way is to use a constructor without specifying the names of keys. In this

case, the order of fields must be preserved; otherwise, compiler errors will result.

The first function initialModel uses the more verbose form, which makes clear

which key has what value. The function initialNestedModel uses the constructor and

passes values as parameters. Nested models are separated with parentheses to indicate

to the compiler which value belongs to which key.

Initialization functions are useful to initialize the model at the start of the application

and give it default values.

A model can be as complicated as you like, but in practice it is better to keep it as flat

as possible. Restrictions in pattern matching make the latter easier to handle, as we will

see when we discuss the update function.

ChapTer 5 elm arChiTeCTure and Building BloCks

127

 init
The init function initializes the model with the function we implemented earlier and

can also invoke a command. This is a description that hides the fact that there is a lot

going on in the Elm runtime when we run init.

A command is part of a bigger group called effects. It is helpful to keep in mind that

effects are in fact data that tell the Elm runtime what we want to do in a declarative

way. Other data in this group are HTML declarations and subscriptions. When the Elm

runtime receives the effect declaration it works on it to make the effect real; for example,

by rendering markup or calling other functions in our application.

Many times, the init function will look like Listing 5-7.

Listing 5-7.

init : (Model, Cmd Msg)

init =

 (initialModel, Cmd.none)

We just initialize the application’s model and nothing else. The call Cmd.none simply

passes an empty list to the Elm runtime. As we have mentioned before, init returns a

tuple of a model and a command. The message parameter Msg is defined in our code; we

will see an example in the section about update.

Sometimes we want to initialize a model’s key with a value that can only be obtained

by running a function that reaches outside our application; for example, to a database

or to the computer system we are running the application on. In our case, we want to

initialize the key currenttime with the actual time the application runs (see Listing 5-8).

Listing 5-8.

init : (Model, Cmd Msg)

init =

 (initialNestedModel, Task.perform CurrentTime Time.now)

This expression is hard to understand at first glance. The reason that it is written like

this has to do with side effects.

ChapTer 5 elm arChiTeCTure and Building BloCks

128

Note elm is a functional language, so side effects can’t be handled directly. The
diagram in Figure 5-2 shows the generic concept of how elm handles side effects.

Note Think of the elm platform runtime—which is the Javascript we looked at
previously when we discussed the output of the elm compiler—as code that can
handle everything Javascript can process without having any problem with side
effects. The elm application code tells the runtime that a side-effect task should
be performed. The runtime processes this request and sends back an action
command. The (compiled) elm code then reacts to the command.

So, what happens in the preceding expression? We declare our intention to get the

current time and create a task to perform that request. We also tell the runtime what to

do once it has the result—that is, sending the command message CurrentTime. This way,

the side-effect call is separated from the application and the state of the application is

protected.

We have previously shown in this chapter how to use a main function with flags as

the entry point into our application. The init function needs to change to handle those

flags.

First, we need to change our model to be able to save our flag values. In our case, we

just create a custom type Flags with one field, called initialnumber. See Listing 5-9.

Figure 5-2. Side Effects in Elm

ChapTer 5 elm arChiTeCTure and Building BloCks

129

Listing 5-9.

type alias Flags =

 { initialnumber : Int

 }

initialModel: Model

initialModel =

 { x = 0

 , y = 0

 , stones = 5

 , backgroundimage = "bg.jpg"

 , size = Size 0 0

 , flags: Flags

 }

We use the type Flags to tell Elm which types and values to expect from JavaScript.

We also change the signature of the init function because we expect a parameter from

the Elm runtime to be passed into our function. See Listing 5-10.

Listing 5-10.

init : Maybe Flags -> (Model, Cmd Msg)

init flags =

 let

 initialstate =

 case flags of

 Maybe.Just flags ->

 {initialModel | flags = (Flags flags.initialnumber)}

 Nothing ->

 initialModel

 in

 (initialstate , Task.perform CurrentTime Time.now)

The parameter flags is a Maybe type, so we need to check if it has a value, and then

we can initialize our model. If we use more than one flag, we must be sure that all flags

are provided and that all flags have the right type. The compiler can’t check at compile

ChapTer 5 elm arChiTeCTure and Building BloCks

130

time, but the runtime will throw an error if there are mismatches like wrong types, too

many, or too few flags.

Whatever we have to initialize in our application, the init function just passes data to

the runtime; it does not process this data and is not called later as the application runs.

 update
At the heart of the Elm architecture lies the update function. With the model we are

passing not only data to our application functions, but also messages. Those messages—

also called actions or commands—are implemented in the function that is passed to the

update key in init, and all possible messages are declared as union types.

It is not necessary to call the message type Msg, but most applications use that name

to make it easier to read the code. See Listing 5-11.

Listing 5-11.

type Msg

 = AddOrder

 | ConfirmOrder

 | CancelOrder

 | CurrentTime Time

 | NoOp

The elements of Msg look like an enumeration, but this hides that they can have

parameters, as in the example CurrentTime. It is better to think of union types as

members of functions. The type Msg usually declares all messages that can be passed to

update.

The update function takes a message of type Msg and the Model as parameters and

returns the same tuple as the init function does. An implementation looks like

Listing 5-12.

Listing 5-12.

update : Msg -> NestedModel -> (Model, Cmd Msg)

update msg model =

 case msg of

 NoOp ->

 (model, Cmd.none)

ChapTer 5 elm arChiTeCTure and Building BloCks

131

 AddOrder ->

 let

 t = model.temporder

 to = model.temporder.ordered

 t_ = {t | ordered = t.selected :: to}

 p = toFloat ((List.length t_.ordered)) * G.SinglePrice

 m = Model {t_ | time = model.currenttime, amount = p} model.

orders model.currenttime

 itemlist = calculateOrder model.temporder.selected

 in

 (m, updateLists itemlist)

 CurrentTime time ->

 let

 t = model.temporder

 currentplus = addMinutes (((List.length t.ordered)+1)*1)

(fromTimestamp time)

 s = toString (DT.hour currentplus) ++ ":" ++ toString (DT.minute

currentplus)

 in

 ({model | currenttime = s}, Cmd.none)

Note some implementation was omitted for brevity. if you try to compile the code
as it is with the type Msg that we discussed before, the compiler will throw errors if
not all messages are dealt with in the case expression.

The case expression looks for the message and runs code according to it. In

our example, we have to deal with a nested model, so the code is a little bit more

complicated. With a flat model we can just have one line and update the model with

the value we get as a parameter; in this case, we have to get the nested model and then

update.

ChapTer 5 elm arChiTeCTure and Building BloCks

132

Tip The expression (model,Cmd.none) in the NoOp clause can be written
as model ! []. The infix operator ! takes a model and a list of messages and
returns the tuple as needed in the update function as the return value. The
advantage is that later a command can simply be added to the list without any
other changes.

Some developers are implementing a catch-all clause to avoid compilation errors

during development. See Listing 5-13.

Listing 5-13.

case msg of

 _ ->

 (model, cmd.none)

Make sure to delete the catch-all clause before testing for production or deploying

to production to avoid difficult-to-trace errors. A better way is to use the Debug module

defined in the package core. See Listing 5-14.

Listing 5-14.

case msg of

 _ ->

 Debug.crash "Not implemented"

With this line in place the application crashes and tells us that something is not (yet)

implemented.

If we do not want to crash the application, we can use Debug.log with a string as

the message and a value of any type. The message and the value will be printed in the

developer console during runtime.

The Elm runtime calls update when one of the message types is invoked, either directly

in code or in a user-interface element. If there are commands declared in the returned

tuple of update it will run it; otherwise, it will pass the model to the function view.

ChapTer 5 elm arChiTeCTure and Building BloCks

133

 view
The function view is the place where we declare all our markup. This function takes

a model as parameter and returns a DOM element—or node—which can have other

elements nested.

We do not write HTML markup in view but rather call functions like div or button.

Each of these functions takes two parameters: a list of attributes and an list of nodes. See

Listing 5-15.

Listing 5-15.

view : Model -> Html Msg

view model =

 div [class "container"] [

 div [class "jumbotron", style [("background-color","lightblue")]] [

 h1 [] [text "Pizza Ordering System"]

 , span [style [("font-size","1.4em")]] \

 [text "Example for Syncfusion Blog. First published "]

 , a [href "#", style [("font-size","1.4em")]] [text "here."]

]

]

This example shows a lot of information. We have a div at root level, another nested

div with an h1, a span, and a link. Some of them have attributes like class or style,

some call as node content the Html.text function, which takes a string as a parameter

and creates a text node.

The Elm platform compiles the view function and creates markup. This process is

similar to other frameworks, either server side or client side.

Note You always need exactly one wrapper div at root level. Without it the code
will not compile. it is not possible to have a list of nodes at root. The definition of
the view function clearly says this, but it is easy to forget in the heat of coding.

ChapTer 5 elm arChiTeCTure and Building BloCks

134

It is easy to see that these view functions quickly get out of hand so that it is difficult

to see what is going on or to see which element is nested where. We can create smaller

functions for parts of the markup and compose these function in view. Listing 5-16

creates an unordered list.

Listing 5-16.

renderList : List PizzaOrder -> Html msg

renderList l =

 ul[]

 (List.map (\item -> li [] [text item.pizza]) l)

We get a list as the parameter, and with List.map we create for each item an li

element. All these elements are attached to a ul node that is returned from the function.

In view we simply call the renderList function and pass in the appropriate map from

the model. See Listing 5-17.

Listing 5-17.

div [id "orderlist"] [

 renderList model.orders

]

The output of renderList is a node and is added to the div. This composition of

functions is very powerful and lets us implement view in a way that can be maintained

and tested easier than having everything in one big function.

You may have noticed that the function view returns Html msg. What does this

mean? First, msg is in fact a placeholder for any type. We saw this in Chapter 3, but it is

worth mentioning here because it is the source of some confusion.

Note We see placeholders like msg in many places. They express an intent but
are not necessarily meant to name an existing type. For example, model means
that a defined model is supposed to be used, although we can name our models in
any way as long as they start with an uppercase character. sometimes, it would be
better to use only a for placeholders to avoid confusion.

ChapTer 5 elm arChiTeCTure and Building BloCks

135

The parameter msg also means that we can pass something to our nodes. Of course,

a message is meant, as we defined before. Assume a button that should run some code

when updated. Let’s create a button that sends the message AddOrder when clicked

(Listing 5-18).

Listing 5-18.

div [class "pull-right", style [("padding-top","15px")]] [

 button [id "addtoorder", onClick AddOrder, class ("btn btn-default"

 ++ (defineAddOrderButtonState model.temporder.selected))]

 [text "Add to Order"]

]

The button defines in its attribute list the event callback onClick with the message

AddOrder. The runtime will call our update function whenever that button is clicked.

Then, the code in the appropriate case expression will update the model, and the

runtime will again call view to render the page.

This way, we can use user input to change the state of the application, and thus

the state of markup elements. The code in the AddOrder branch of update could, for

example, set a model key with a value that disables the button. We don’t need to do the

call explicitly, just invoke a value change in our model.

The expression defineAddOrderButtonState model.temporder.selected is doing

exactly that. It is a call to a helper function (Listing 5-19).

Listing 5-19.

defineAddOrderButtonState : PizzaOrder -> String

defineAddOrderButtonState selected =

 case String.isEmpty selected.pizza of

 True -> " disabled"

 False -> ""

When a given predicate is met, the button will have the style class disabled attached

and will not be clickable.

This dynamic behavior, together with the wiring in the background by the Elm

runtime, is the power of the Elm platform.

ChapTer 5 elm arChiTeCTure and Building BloCks

136

 subscriptions
Subscriptions are part of event handling in Elm. They are not necessary for small

applications, although almost every more-complex application will have to use them.

The following example (Listing 5-20) defines that we are interested in Keyboard

events and want to subscribe to them.

Listing 5-20.

type alias Model =

 { k : Int

 }

type Msg

 = Key Keyboard.KeyCode

subscriptions : Model -> Sub Msg

subscriptions model =

 Keyboard.downs Key

update : Msg -> Model -> (Model, Cmd Msg)

update msg model =

 case msg of

 Key code ->

 ({model | k = code } , Cmd.none)

The package Keyboard needs to be installed and imported to make this example

work. We define a key k in the model and a message Key. The type KeyCode is an alias for

an integer and is passed to our code when we subscribe to the downs event.

Our subscription function defines that we want to subscribe to the downs event, and

then our update function with the message Key is called. In update we simply update

our model with the key code. In a view, we could then display the value of the key code

on the screen. Or, in the update function that handles the Key message, we could pass

another command to the runtime that would then be run immediately; for example, to

move an icon or sprite on the screen.

Subscriptions and commands look similar, and in fact they have one fact in common:

they both are data. As commands are produced by the update function, subscriptions

are produced by the Elm runtime. The subscription function is similar to the update

function in that it handles messages.

ChapTer 5 elm arChiTeCTure and Building BloCks

137

We can subscribe to several events at once and will use this later in this chapter

when we talk about user input.

 Conclusion
In the previous sections we described the implementation of necessary callbacks for

the Elm runtime when using the Elm architecture. It seems difficult to understand at

first, but once we realize that many tasks are just running in the background without our

intervention and we simply declare what we want the runtime to do, it will be clearer

how it all works together.

 Code Organization
So far in our simple examples we have had only one directory where all our files

were saved. How can we organize an Elm application if there are many files and

configurations involved? How can we organize our code to adhere to the Elm

architecture?

The simplest way is to have all parts of the application in one file (Figure 5-3).

Here we have one file—main.elm—and access all functions and the model from

within this file. Many examples you see will adhere to this structure.

Everything a little bit more complex will have separated files for the parts of the Elm

architecture; otherwise, maintaining the code requires a lot of searching and scrolling.

Figure 5-4 shows a file structure with more than one file.

Figure 5-3. Simple structure

ChapTer 5 elm arChiTeCTure and Building BloCks

138

All the files in this figure are Elm code files except Material, which indicates a

package that implements Material Design Lite for Elm.

This example is certainly extreme in separating all concerns. In fact, there are also

folders called init, model, update, and view with corresponding files in them. All these

folders are in a folder src where there is also main.elm.

A compilation with such a structure is done with elm-make src/main.elm. In main.

elm and in other files we don’t need to change import statements to tell the compiler

where files can be found. It will find them as long as we specify the correct source

directories in elm-package.json. See Listing 5-21.

Listing 5-21.

...

"source-directories": [

 "src/model",

 "src/update",

 "src/view",

 "src/init"

]

...

Figure 5-4. Complex structure

ChapTer 5 elm arChiTeCTure and Building BloCks

139

If you use scaffolding templates, they may have their own view of the “proper”

directory structure. There is no official directory structure. Some developers also

experiment with separating by features, with init, update, and view files in each feature

folder.

In any case, whatever structure you choose, stick to it across your projects to make

your and your team colleagues’ lives easier.

 Rendering
As we described before, Elm is a platform for creating web applications. The packages

that support building HTML are therefore very interesting for any developer using the

Elm platform.

This section introduces the Html packages. We have already seen some of the

methods in other examples. We remember that Html functions are used in the view

function of our application, but also in all helper functions we build to make the view

function easier to read.

Listing 5-22 shows a minimal view with a root div and one div with a header, a span,

and a link.

Listing 5-22.

div [class "container"] [

 div [class "jumbotron", style [("background-color","lightblue")]] [

 h1 [] [text "Pizza Ordering System"]

 , span [style [("font-size","1.4em")]] [text "Example"]

 , a [href "#", style [("font-size","1.4em")]] [text "link text"]

]

]

Every tag in the listing is a function that is defined in the package Html. The attributes

we see, like style and href, are defined in Html.Attributes.

The Html package has many helper functions that implement the most common

HTML tags. All those functions take a list of attributes and a list of child nodes and return

a node. Thus, tags can be nested, as we see in the example.

The tags div, h1, span, and a are all helper functions and are all in the list of the root

div. The function text is a so-called primitive that takes a string and no attributes. Its

output is plain text, which is escaped if necessary.

ChapTer 5 elm arChiTeCTure and Building BloCks

140

Plain text is great, but we want to do more—for example, render a list. If we have in

our model a list—in our example, a list of PizzaOrder—we can create the helper function

shown in Listing 5-23.

Listing 5-23.

renderList : List PizzaOrder -> Html msg

renderList l =

 ul[class "pizzalist"]

 (List.map (\item -> li []

 [span [class "pizzalistitem"] [text item.pizza]) l)

This function returns Html msg as functions in the Html package, so we can use it

in the view function without changes. This is possible because we use one of the Html

functions, ul. The parameter l is a list, and we just map over it, and in the closure we

create an li tag for each element in the list.

To use the function, we just call it in the view function with the relevant type from

our model as parameter. See Listing 5-24.

Listing 5-24.

div [class "container"] [

 h3 [] [text "Pizza List"]

 , renderlist model.pizzalist

]

So far, we have used common attributes like class, style, and href. There are many

attribute functions defined in the package Html.Attributes, and it makes sense to look

through the documentation to see if a certain attribute is already defined.

What happens if we want to use a custom attribute? For example, many JavaScript

third-party libraries are using attributes like data or v-for. We can use the attribute

function as in Listing 5-25.

Listing 5-25.

renderList : List PizzaOrder -> Html msg

renderList l =

 div[] [

 ul[attribute "v-if" ""]

ChapTer 5 elm arChiTeCTure and Building BloCks

141

 li [attribute "v-for" "item in items"] [text "{{ item.name }}"]

 , p [attribute "v-else" ""] [text "No items found"]

]

This is similar to the preceding example Listing 5-23 and uses the framework vue.js

for rendering on the client. It is a rather contrived example, but shows the use of custom

attributes.

Elm uses a Virtual DOM implementation to provide the functionality we saw in

the view function. Similar to React1, the Elm runtime manipulates an in-memory DOM

and sends the changes to the browser. The package virtual-dom is mostly a native

implementation, which means that parts are written in JavaScript.

There is no reason to use the virtual-dom package directly. The packages Html

and Svg are higher-level APIs and make the declarative approach we have seen in the

examples easily possible.

 Graphics
We can tell Elm to render not only text, but also images and graphics. The simplest is

to display an image. We can use a helper function the same way we use them for other

HTML tags. See Listing 5-26.

Listing 5-26.

div [class "logotext mb-0"] [

 img [src "/static/images/pizza-icon.png", class "logo"] []

 , text "Pizza Cut"

]

As with all helper functions in the package Html, the function img takes attributes

and a child node list. In the example, we see one of the attributes that is only valid in

certain functions, src.

It is also possible to use CSS to display images (Listing 5-27).

1 https://reactjs.org/docs/getting-started.html

ChapTer 5 elm arChiTeCTure and Building BloCks

https://reactjs.org/docs/getting-started.html

142

Listing 5-27.

.container {

 margin: 1em auto;

 max-width: 800px;

 height: 600px;

 background-image: url('assets/bg.jpg');

}

Then, we can use this class in our Elm code in the function view. See Listing 5-28.

Listing 5-28.

div [class "container"] []

The browser will display the image as the background of the div we defined in Elm.

Of course, this method can be used with HTML tags without Elm in exactly the same way.

More interesting is to use the canvas element of HTML5 and draw graphics directly

in the browser. This is a more low-level method and is supported in the Elm platform

very well.

The following example (Listing 5-29) simply draws a rectangle and fills it with a color.

All the functions in the listing can be found in the package evancz/elm-graphics.

Listing 5-29.

div [] [

 toHtml <|

 container 400 400 middle <|

 collage 400 400 [

 rect 300 300

 |> filled (rgb 60 100 60)

]

]

The code makes heavy use of pipe operators to make the flow of computation more

visible. The toHtml function transforms the internal presentation of the graphics into

HTML that can be displayed in a browser.

The container function creates a wrapper element for the canvas, which is defined

with the collage function. The collage defines width and height and takes a list of

ChapTer 5 elm arChiTeCTure and Building BloCks

143

shape elements, like rectangles, polygons, and more. There are many functions in the

package to manipulate those shapes. It also contains functions to render text and style it.

The declarative approach of the graphics package is powerful and can be used to

create shapes interactively. Sometimes more scalable graphics or visualizations are

needed, and this is where the package elm/svg comes in.

We saw an example of SVG in the first chapter. Elm’s logo is defined as SVG, and

the code is open sourced. Similar to HTML, all SVG functions take as parameters a list

of attributes and a list of child nodes. The root node is built with the function svg. See

Listing 5-30.

Listing 5-30.

main =

 svg

 [version "0.9", x "0", y "0", viewBox "0 0 323.141 322.95"

]

 [rect

 [fill "#7FD13B", x "192.99", y "107.392", width "107.676",

height "108.167"

 , transform "matrix(0.7071 0.7071 -0.7071 0.7071 186.4727

-127.2386)"

]

 []

]

Creating SVG graphics requires studying the element reference to be able to create

meaningful graphics. The Elm package implements these elements, and it will be

necessary to create libraries on top of it for specialized graphics like visualizations.

 Styling
Any non-trivial web application will have two features that go beyond simple HTML:

• JavaScript methods

• CSS styling

ChapTer 5 elm arChiTeCTure and Building BloCks

144

We will handle the first point later in this chapter; for now, we want to talk about

styling. Generally, we have a three options to style our Elm application:

• Inline styles

• External CSS file

• Using a CSS framework

There is another option: using helper functions similar to the Html package. This

approach has the advantage of having types that can be checked by the compiler. The

disadvantage in an enterprise development environment is that designers won’t touch

Elm code. This leaves typed CSS helper functions for projects where the developer styles

the application or where the time and effort to transfer CSS into Elm code is not seen as a

negative.

 Inline Styles
The helper function style is used in the view function to define inline styles. It is an

attribute and takes a list of string tuples as arguments. See Listing 5-31.

Listing 5-31.

div [style [("padding-left", "30px")]] [

 h2 [style [("margin-top", "0px")]] [text "All Orders"]

 , div [id "orders"] [

 ul [] [

 renderlist model.orders

]

]

]

The tuple list has elements with two strings, the first one being the key for the style,

the second being the value. It is obvious that more style values will make the code

eventually unreadable.

We could create helper functions for the styles to make the code in the function view

easier to read. See Listing 5-32.

ChapTer 5 elm arChiTeCTure and Building BloCks

145

Listing 5-32.

wrapperdivStyle : Attribute msg

wrapperdivStyle =

 style

 [("padding-left", "30px")]

header2Style : Attribute msg

header2Style =

 style

 [("margin-top", "0px")]

Then, we can write the example as in Listing 5-33.

Listing 5-33.

div [wrapperdivStyle] [

 h2 [header2Style] [text "All Orders"]

 , div [id "orders"] [

 ul [] [

 renderlist model.orders

]

]

]

Whether the inline styles are written directly or are used with a helper function does

not change the fact—as we said about typed CSS libraries—that designers won’t be able

to change styles easily.

Inline styles are a bad practice and should not be used at all. It is sometimes

handy to just put a style attribute into the code to test something out, but they should

be externalized as soon as the test is done. It may be a good idea to have an optional

compiler warning printed out if it encounters a style attribute.

 External CSS
In web development, external CSS files are best practice and should be used for all Elm

projects.

ChapTer 5 elm arChiTeCTure and Building BloCks

146

Testing or debugging our Elm application with elm reactor will see the external

CSS only if we provide our own HTML file. We discussed how to do this in Chapter 2 and

called this file Standalone HTML page. If we use this file again, we just need to add a link

to our CSS file in the header. See Listing 5-34.

Listing 5-34.

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet" href="static/css/pizzaorder.css" />

 </head>

 <body>

 <script>

 if (typeof module === 'object') {

 window.module = module; module = undefined;

 }

 </script>

 <script src="./helloworld.js"></script>

 <script>if (window.module) module = window.module;</script>

 <script type="text/javascript">Elm.Hello.fullscreen()</script>

 </body>

</html>

With the standalone HTML file in place, we can then define the styles from the

external file in our code with class attributes. See Listing 5-35.

Listing 5-35.

div [class "wrapperdivStyle"] [

 h2 [class "header2Style"] [text "All Orders"]

 , div [id "orders"] [

 ul [] [

 renderlist model.orders

]

]

]

ChapTer 5 elm arChiTeCTure and Building BloCks

147

External CSS files don’t provide type checking but are better suited for teamwork

with developers and designers. Also, testing and style prototyping can be done with

browser-based developer tools, which will improve turnaround.

 CSS Framework
Most web projects don’t build up styling from scratch; they use a framework. One of the

most popular frameworks is Bootstrap.2 Linking to Bootstrap is like using an external CSS

file. See Listing 5-36.

Listing 5-36.

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet" href="static/css/bootstrap.min.css">

 <link rel="stylesheet" href="static/css/pizzaorder.css" />

 </head>

 <body>

 <script>

 if (typeof module === 'object') {

 window.module = module; module = undefined;

 }

 </script>

 <script src="./helloworld.js"></script>

 <script>if (window.module) module = window.module;</script>

 <script type="text/javascript">Elm.Hello.fullscreen()</script>

 </body>

</html>

We again use the standalone HTML page and add the link for the Bootstrap CSS file.

We leave the project CSS file in for special styles or overwrites of Bootstrap styles. We can

access all styles again with class attributes. See Listing 5-37.

2 https://getbootstrap.com/

ChapTer 5 elm arChiTeCTure and Building BloCks

https://getbootstrap.com

148

Listing 5-37.

div [class "container"] [

 div [class "jumbotron jumbobg"]] [

 h1 [] [text "Pizza Ordering System"]

]

]

Bootstrap styles in the example are container and jumbotron; jumbobg comes from

the project styles file.

Using CSS frameworks makes development easier in most projects and—as with

external CSS files—separates styling from the code in the Elm application that handles

events and state.

 User Input
In a previous section we discussed subscriptions to events. When a user presses a key or

uses the mouse, an event will be created, and our code can handle this external event if

subscribed to it.

Such events are not the only way to interact with an Elm application. The user can

click on buttons, table rows, and similar. Those interactions will create internal events

that are handled by the update function. See Listing 5-38.

Listing 5-38.

button [id "addtoorder", onClick AddOrder, class ("btn btn-default")]

 [text "Add to Order"]

The button in the example says that in case of a click event (onClick) the command

AddOrder should be invoked.

Events are defined in the package Html.Events. Another example is onSubmit for

forms, which we will see in code in the next chapter. There is also a function on that can

be used to define custom events if there is a need for it.

We have seen in the section update in this chapter that commands are handled by

the function update. When an onClick event occurs—the user presses the button—the

Elm runtime knows that the message AddOrder should be sent to the application.

ChapTer 5 elm arChiTeCTure and Building BloCks

149

Two other user-input events were already mentioned, key input and mouse input.

They are handled differently than the onClick event with the subscription mechanism.

See Listing 5-39.

Listing 5-39.

type Msg

 = Position Int Int

 | Key Keyboard.KeyCode

 | Resize Size

subscriptions : Model -> Sub Msg

subscriptions model =

 Sub.batch

 [Mouse.moves (\{x, y} -> Position x y)

 , Keyboard.downs Key

 , Window.resizes Resize

]

The example shows one new feature regarding subscriptions. We can subscribe to

several events at once by sending a list of subscriptions to Sub.Batch. The events we

subscribe to in the example are defined in the packages elm-lang/keyboard, elm-lang/

mouse, and elm-lang/window. Defined in the packages are several functions we can use

to subscribe to events. These functions also determine which arguments will be passed

to our messages in case of an event.

We define in our type Msg the messages that will be passed to our update function.

See Listing 5-40.

Listing 5-40.

update : Msg -> Model -> (Model, Cmd Msg)

update msg model =

 case msg of

 Position x y ->

 ({model | x = x, y = y} , Cmd.none)

ChapTer 5 elm arChiTeCTure and Building BloCks

150

 Key code ->

 ({model | k = code } , Cmd.none)

 Resize size ->

 ({ model | size = size }, Cmd.none)

When the update function receives the messages from the subscribed events it

simply updates the model. The application this code was taken from then displays the

information in a status bar. See Listing 5-41.

Listing 5-41.

div [] [

 p [class "background-header"] [Html.text ("Model: " ++ toString

model)]

]

Subscriptions for user-interaction events are powerful and easy to implement. They

are an elegant way to process side effects in a functional language.

 JavaScript Interfacing
Any non-trivial Elm application will sooner or later need to interact with application-

external JavaScript code. It is certainly possible to implement everything in Elm if

enough time is available, but it is easier to use existing and tested code.

We used Bootstrap for styling, and it makes sense to also use the JavaScript

components of this framework.

As before, we have to change our standalone HTML page (Listing 5-42).

Listing 5-42.

<!DOCTYPE html>

<html>

 <head>

 <script src="static/js/jquery-3.3.1.slim.min.js"></script>

 <script src="static/js/bootstrap.min.js"></script>

ChapTer 5 elm arChiTeCTure and Building BloCks

151

 <link rel="stylesheet" href="static/css/bootstrap.min.css">

 <link rel="stylesheet" href="static/css/pizzaorder.css" />

 </head>

 <body>

 <script>

 if (typeof module === 'object') {

 window.module = module; module = undefined;

 }

 </script>

 <script src="./helloworld.js"></script>

 <script>if (window.module) module = window.module;</script>

 <script type="text/javascript">Elm.Hello.fullscreen()</script>

 </body>

</html>

Interfacing with JavaScript means that a pipeline is needed between the Elm

code and the JavaScript code in the browser. The mechanism is similar to the one we

described for events. See Figure 5-5.

We can send data to JavaScript with ports and subscribe to it in the JavaScript code,

or we can subscribe to data that is sent from JavaScript code to Elm code. In both cases,

we get the data encoded, decoded, and type checked by the Elm runtime.

Ports are defined with the keyword port. Depending on if they are sending or

retrieving data, the signature is slightly different. See Listing 5-43.

Figure 5-5. Interfacing

ChapTer 5 elm arChiTeCTure and Building BloCks

152

Note ports must be defined in a module that is marked with port module
PizzaOrderUpdate exposing (..). it is recommended that only one module
in an application be a port module.

Listing 5-43.

port setSize : (String -> msg) -> Sub msg

port updateLists : List String -> Cmd msg

type Msg

 = InputSize String

subscriptions : Model -> Sub Msg

subscriptions model =

 Sub.batch ([

 setSize InputSize

])

The keyword port defines a function and parameters for the function. If it sends data

to JavaScript it creates a command that is listened to in JavaScript code. If it listens for

data it creates a subscription. In this case, we need to define a subscription in the Elm

code with a corresponding message as well.

In the JavaScript code, we subscribe to updatelists. See Listing 5-44.

Listing 5-44.

var elmapp = Elm.PizzaOrder.fullscreen();

elmapp.ports.updateLists.subscribe(function(itemlist) {

 $(document).ready(function(){

 // do something with the data

 });

});

The Elm compiler creates functions for port functions defined in Elm code, which

we can use in our JavaScript code on the client. The function subscribe takes a callback

as an argument that runs whenever we send data.

ChapTer 5 elm arChiTeCTure and Building BloCks

153

Note The $(document).ready in the preceding example makes sure that
updates are only done when everything is loaded. This is dependent on the
framework used.

From Elm code, we send data to JavaScript by issuing a command (Listing 5-45).

Listing 5-45.

-- in update

-- helper function calculateOrder omitted

AddOrder ->

 let

 itemlist = calculateOrder model.temporder.selected

 in

 (m, updateLists itemlist)

The Elm runtime knows that updateLists is a port and forwards the data to the

callback in the JavaScript code. If the JavaScript code wants to send data it uses the

function send. See Listing 5-46.

Listing 5-46.

...

change: function (args) {

 elmapp.ports.setSize.send(args.value.toString());

}

The example shows a callback function from a textbox in the event of changed

text. It gets the value from the textbox and sends it as a string to the Elm code. Since

we subscribed to this event, a command will be created that is handled in the update

function. See Listing 5-47.

ChapTer 5 elm arChiTeCTure and Building BloCks

154

Listing 5-47.

InputSize size ->

 let

 t = model.temporder

 m = Model {t | ordersize = size} model.orders model.currenttime

 in

 (m, Cmd.none)

JavaScript interfacing in Elm uses patterns that are used in Elm code–only functions

as well, which makes it easier to understand and implement.

Every data exchange with external sources like JavaScript code or HTTP requests can

affect the state of the application if not restricted and handled carefully. It is still possible

to crash an Elm application with external data, but the Elm runtime does its best to

minimize the probability of failure.

 Server Communication
Elm applications don’t live on an island, but need to exchange data with sources that live

outside Elm.

This section will discuss ways to exchange data with external servers. These may be

REST servers or functions in a serverless environment over HTTP or exchange over other

protocols like WebSocket.

To achieve communication with servers we need two things:

• We have to handle asynchronous requests and responses without

blocking our application.

• We need a way to call services over HTTP.

The Elm platform provides functions for both HTTP requests and WebSockets. It also

has a type Task defined in elm-lang/core that can be used to chain together HTTP requests.

 HTTP
The package elm-lang/http has functions to create and send requests. Whatever HTTP

verb we use, we always have to send a request to a URL and process the response in our

update function.

ChapTer 5 elm arChiTeCTure and Building BloCks

155

The signature for the http.send function needs some explanation. See Listing 5-48.

Listing 5-48.

send : (Result Error a -> msg) -> Request a -> Cmd msg

The function takes two parameters. The first is a function that wraps the result of

the send operation in a message. This result can be a failure or a success. The second

describes an HTTP request and can be of any type. In Elm code, we would write the

expression shown in Listing 5-49.

Listing 5-49.

Http.send ImageName (Http.getString "http://localhost:8080")

The first parameter is one of our messages we define in the union type with the name

Msg or similar. The second parameter is a function call to a given URL. When the result of

the getString request is received, the message ImageName will be sent to the update for

processing.

The preceding explanation left out some important details we will discuss in the

following sections.

 GET

The simplest request is to get string data from a server and process it. We have just seen

this code in a more generic form, but the following example (Listing 5-50) is how it

would be done in an application.

Listing 5-50.

getImageName : Int -> Cmd Message

getImageName id =

 let

 url = urlImage ++ (toString id)

 in

 Http.send ImageName <| Http.getString url

This function first creates a dynamic URL with an image ID as argument and

then uses this URL to get the name of the image. Instead of passing the request as an

argument, we pipe the result into the send function.

ChapTer 5 elm arChiTeCTure and Building BloCks

156

The message ImageName is then sent to the update function (Listing 5-51).

Listing 5-51.

ImageName (Ok imagename) ->

 ({model | imagename = imagename}, Cmd.none)

ImageName (Err d) ->

 case d of

 Http.BadPayload s _ ->

 ({model | status = "Error getting image name: " ++ s}, Cmd.none)

 _ ->

 ({model | status = "Error getting image name"}, Cmd.none)

We remember that the function send wraps the result in a message and can indicate

that the request either failed or was successful. This is why we need to implement both

cases.

The Ok case is straightforward, and in this case we just update the model. The Err case

checks if there is more information as to why the request failed. Http.BadPayload is one of

a few defined error types. In the first argument, we get a status code with which we update

the model. This example ignores the second argument, which is the body of the response.

We also ignore other error types and only set a generic failure status in the model.

Normally, we will try to retrieve more complicated data than a string. To do this we

will use the more general function get. See Listing 5-52.

Listing 5-52.

getImagesList : Cmd Message

getImagesList =

 let

 url = urlImage

 in

 Http.send Image <| Http.get url decodeImage

This code is similar to the earlier code when we retrieved the image name string,

but there is one big difference. The get function needs a decoder function, in our case

decodeImageList. We need to tell Elm which data we expect and how to get from the

response body data to the Elm type. See Listing 5-53.

ChapTer 5 elm arChiTeCTure and Building BloCks

157

Listing 5-53.

Image (Result Http.Error ImageEntity)

type alias ImageEntity =

 { id: Int

 , url: String

 , name: String

 }

 decodeImage : Decoder ImageEntity

 decodeImage =

 map 3 ImageEntity

 (field "id" int)

 (field "url" string)

 (field "name" string)

We briefly looked at JSON decoders and encoders earlier in this book. This decode

function looks difficult to grasp at first, but it makes sense once we explain it.

We want to get the metadata for one image. This data is retrieved from a server, and

we will get JSON data in the response body. We know which Elm type (ImageEntity) this

JSON data should represent. So, we take the raw data from the response and process it

with the function decodeImage. This function only knows how to transform data from

JSON to an Elm type.

The function map3 in the preceding example combines several decoders—in our

example they are all string decoders—and creates a type of Decoder ImageEntity. The

number at the end of map indicates how many decoders can be combined. The map*

functions run from map1 to map8, so JSON data with more fields must be handled in a

different way.

The decoder function is like a template for http.get. At the end, the message Image

is sent with an argument of type ImageEntity if the decoding has been successful.

The preceding example produces only one entity; if we want to create a list we can do

so with the expression in Listing 5-54.

ChapTer 5 elm arChiTeCTure and Building BloCks

158

Listing 5-54.

decodeImageList : Decoder (List ImageListEntry)

decodeImageList =

 map 3 ImageListEntry

 (field "id" int)

 (field "name" string)

 (field "creator" string)

 |> Decode.list

The difference from the single entity is that we create a list of entities with the

function Decode.list. This function can also be used to transform a list element in one

entity; for example, (field "contributorlist" (list string)).

 POST

Posting data to a server from the Elm application is done similar to receiving data

(Listing 5-55).

Listing 5-55.

 Http.send ImageMetaData <|

 Http.post "http://localhost:8080/images" Http.emptyBody (list

string)

The preceding example posts an empty body to the local server and provides

a decoder for the response body. Most of the time this simplified solution with the

function post is not used in favor of the more generic request function (Listing 5-56).

Listing 5-56.

 Http.request

 { method = "POST"

 , headers = []

 , url = "http://localhost:8080/images"

 , body = jsonBody (encoderImage ImageEntity)

 , expect = expectJson decodeImage

 , timeout = Nothing

 , withCredentials = False

ChapTer 5 elm arChiTeCTure and Building BloCks

159

 }

 encoderImage : ImageEntity -> Encode.Value

 encoderImage image =

 Encode.object

 [("id", Encode.int image.id)

 , ("url", Encode.string image.url)

 , ("name", Encode.string image.name)

]

This version has many more options and will be used for other requests in the next

section as well. The example creates a request body with JSON data. To send the correct

data we have to encode the Elm type.

Encoding is a similar pattern to decoding. The encoded value is built up by

combining encoders for different types. The resulting value can then be passed to

jsonbody.

We assume in this example that the server returns the sent image in the response

body, perhaps with the field id updated to the value corresponding to the database

entry. This is why we have to tell the request to expect JSON data and why we also

provide the decoder we used before to decode the response body.

The function request can also be used for other HTTP verbs like PUT or PATCH or for

advanced features like multi-part bodies or authorization request headers.

 WebSockets
Apart from HTTP requests, connections to a server can also be done via the WebSocket

protocol. Of course, this requires a server that understands the protocol.

WebSockets can be used for interactive or multi-user applications where data is

pushed to the clients dynamically and asynchronously.

Clients subscribe to incoming data (“events”) from the server—a pattern that

reminds us of previous event subscriptions from having discussed user interactions

or JavaScript interfacing. And, indeed, in Elm WebSockets are implemented as

subscriptions. See Listing 5-57.

ChapTer 5 elm arChiTeCTure and Building BloCks

160

Listing 5-57.

subscriptions : Model -> Sub Msg

subscriptions model =

 WebSocket.listen "ws://localhost/8081" ReceiveMessage

We subscribe to a local WebSocket server (for example, Node.js WebSocket

library3), and our update function will receive a ReceiveMessage message.

See Listing 5-58.

Listing 5-58.

ReceiveMessage str ->

 ({model | ServerMessages = str :: ServerMessages}, Cmd.none)

SendMessage msg ->

 (Model, WebSocket.send "ws://localhost/8081" msg)

In ReceiveMessage we add the message from the server to our message list in the

model.

We also define a message for sending to the WebSocket server with SendMessage.

This may be sent after user input and a click on a button. The Elm implementation of

WebSocket also takes care of queuing messages to the server if the connection is lost.

 What We Learned
This chapter discussed the Elm architecture in detail and how to organize our code. We

also looked at several building blocks for our applications, as follows:

• Rendering

• Styling

• User input

• JavaScript interfacing

• Server communication

It is time now to apply our knowledge and dissect a complete example application.

3 https://github.com/websockets/ws

ChapTer 5 elm arChiTeCTure and Building BloCks

https://github.com/websockets/ws

161
© Wolfgang Loder 2018
W. Loder, Web Applications with Elm, https://doi.org/10.1007/978-1-4842-2610-0_6

CHAPTER 6

Putting It All Together
In this chapter, we will apply the knowledge gained in this book so far to create a single-

page application. We will also look at possible usages of Elm beyond web applications.

 Building a Single-Page Application
A single-page application (SPA) is a web application that loads a single HTML page. It can

be more or less static, or it can have dynamic updates triggered by user interactions.

Most of the work in an SPA happens on the client side. This can be a browser

on a desktop or mobile device, or a wrapper like Electron or another cross-platform

framework. Data processed in the application is transferred to and from backend servers

via protocols like HTTP.

Our example application is an SPA that shows how to use features of the Elm

platform, discussed in previous chapters, and bind them together in one application.

We will use, among others, the following:

• Rendering HTML elements

• Processing user-interaction events

• Styling with a JavaScript library

• HTTP requests

• Handling JSON

 Pizza Cut—The Application
So, what is our example application? It is Pizza Cut. Let’s assume we are tasked with

developing a form for an online pizza order web app. This form is for the internal use

of pizza employees who take orders over the phone. We assume that all orders—once

162

confirmed—will be sent to the kitchen and that the cooks will go ahead and bake the

ordered pizza.

The flow is as shown in Figure 6-1.

When a call comes in we will get two pieces of information—the actual order and the

details of the customer.

Getting the order just involves selecting a pizza and its toppings. The price will be

automatically calculated and displayed. Customer details are name, address, and phone

number.

Once all information has been gathered, a delivery time can be estimated and

displayed.

Figure 6-1. Application overview

Chapter 6 putting it all together

163

Specifications are as follows:

• Select a pizza from a drop-down list. Unavailable pizzas should be

grayed out.

• Once a pizza is chosen, additional toppings can be added, depending

on the selection in the drop-down list.

• The price updates dynamically, depending on pizza and toppings

selected.

• It is possible to choose more than one pizza for each order.

• There are name, address, and phone fields, with validation for the

phone field.

• No order can be submitted if not all fields in the customer form are

filled out.

• Depending on address and pizza selection, an approximate delivery

time will be displayed.

• We assume payment on delivery.

• Submitting the form updates an order list that is displayed in an

additional tab.

• The backend server calculates price and delivery time and processes

the order list.

Our backend server is a web API server implemented with Elixir and Phoenix. On

the client we use Bootstrap 4 to make the UI prettier, and we will also use Bootstrap’s

JavaScript components.

 Design
Keeping the requirements in mind, the design of our application looks like the images in

the following figures. First, the Take Order form looks like Figure 6-2.

Chapter 6 putting it all together

164

At the top left we have all the information regarding the order; at the top right is the

form for a customer’s information. The part below the top forms is updated dynamically,

with the button only showing as enabled when all information is in the form and

validated.

When orders are placed, the second screen shows the order list with delivery times.

This list is supposed to be viewed by managers and the cook. See Figure 6-3.

Figure 6-2. Form—Take Orders

Figure 6-3. Form—Order List

Chapter 6 putting it all together

165

It shows two lists, one for upcoming orders and one for already fulfilled orders. These

lists have only one interactive element, which is the checkbox to indicate that a pizza is

ready. Then, the entry on the left will be moved to the Done list with an updated time.

 Alternative Specification and Design
As with all specifications and designs, there are decisions that could be made in a

different way. Many such decisions were driven by showing certain Elm platform

features as they could be used “in the wild.”

We use the backend for tasks that could be done on the client side, like estimating

delivery times or calculating prices. The idea behind this is that there may be more than

one client feeding data into the backend. This, of course, would affect estimations and

calculations.

Some developers may oppose having tabs be used in our application, which in

some circles is not seen as pure SPA. The simple answer is that we use it to show how

navigation in Elm works.

Using Bootstrap’s JavaScript components may result in opposition from some

developers who like to stay in the Elm platform. There is a good reason for it; for

example, type checking and staying within one paradigm. In real life, project managers

wouldn’t be persuaded by that argument, as they would just want a fast way to go into

production. And, by using third-party JavaScript components we can show JavaScript

interfacing from Elm very well.

 Implementation
Now, our task is to implement the application as it is designed with all the features

listed in the specifications. The implementation will be similar to the design sketches.

In a business environment the designer would certainly make us reimplement the

application until it is exactly like the design, but for this app we assume that similar is

sufficient.

This is a book about Elm, so we won’t go into an explanation of how the backend is

implemented. The backend exposes an API with the following routes:

• /api/orders (POST)

• /api/orders?filter=pending (GET)

Chapter 6 putting it all together

166

• /api/orders?filter=fulfilled (GET)

• /api/estimatetime (GET)

• /api/calculateprice (GET)

Note our backend is not a reSt api and does not want to be. it mixes nouns
and verbs, but it does the job for this example application. the additional query
parameters also give us the chance to discuss custom http requests in elm.

The POST route takes a JSON argument in the body, and all routes return

JSON. Although we do not discuss the backend code, it is available in the code download

of this book.

Our implementation will make use of the Bootstrap 4 libraries. All could be done in

Elm without external CSS or JavaScript files, but this would not be a real-world situation.

Most probably the project you work for has its own standards, design languages, and the

like. The Elm application—which may be only part of a site or even a page—will have to

consider these restrictions.

 Setup

First, we want to set up our project. We will start with an elm-package.json file and

define dependencies (Listing 6-1).

Listing 6-1.

"dependencies": {

 "elm-lang/core": "5.1.1 <= v < 6.0.0",

 "elm-lang/html": "2.0.0 <= v < 3.0.0",

 "elm-lang/http": "1.0.0 <= v < 2.0.0",

 "elm-lang/navigation": "2.0.0 <= v < 3.0.0",

 "elm-lang/keyboard": "1.0.1 <= v < 2.0.0",

 "elm-community/elm-time": "1.0.1 <= v < 2.0.0",

 "elm-community/list-extra": "6.0.0 <= v < 7.0.0",

 "krisajenkins/formatting": "4.2.0 <= v < 5.0.0"

 },

 "elm-version": "0.18.0 <= v < 0.19.0"

Chapter 6 putting it all together

167

Apart from the standard libraries, we use community packages to make dealing with

time and lists easier. For time formatting, we use a package that provides type-safe string

formatting.

Our folder structure is geared toward separation of code into logical folders. See

Figure 6-4.

All code files are in src. The folder static contains CSS files, JavaScript files, and

image assets. Tests for the application are in the folder tests.

The application has very descriptive names for Elm code files to show that this is

possible as well. It is not necessary, but keeps it very clear which modules are imported.

Figure 6-4. Application folder structure

Chapter 6 putting it all together

168

Along with the usual view, update, and model files, there is also a file called

PizzaOrderBusinessLogic with implementations of a few helper functions that deal

with business logic on the client side.

As we are linking to external frameworks, we need to create a standalone HTML page

to start our application. See Listing 6-2.

Listing 6-2.

<!DOCTYPE html>

<html>

 <head>

 <title>Pizzeria - Elm Example</title>

 <script src="static/js/jquery-3.3.1.slim.min.js"></script>

 <script src="static/js/popper.min.js"></script>

 <script src="static/js/bootstrap.min.js"></script>

 <link rel="stylesheet" href="static/css/bootstrap.min.css">

 <link rel="stylesheet" href="static/css/pizzeria.css" />

 < link rel="icon" type="image/png" sizes="32x32" href="static/images/

favicon-32x32.png">

 < link rel="icon" type="image/png" sizes="96x96" href="static/images/

favicon-96x96.png">

 < link rel="icon" type="image/png" sizes="16x16" href="static/images/

favicon-16x16.png">

 <script src="PizzaOrder.js" type="text/javascript"></script>

 </head>

 <body>

 <div id="embeddedelm"></div>

 <script type="text/javascript">

 let elmapp = Elm.PizzaOrder.fullscreen({

 dummyflag: 0

 });

 </script>

 </body>

</html>

Chapter 6 putting it all together

169

We include CSS for Bootstrap 4 and also the necessary JavaScript files for Bootstrap

components. In addition, we keep an application-specific file for styling that goes

beyond Bootstrap or overwrites its styles.

Note the image file links are favicon files for different resolutions and sizes.

When we develop we don’t want to compile or run the application manually. This

is why we create a package.json file to integrate commands in the scripts section and

run it with npm run. We mentioned this method in Chapter 2. See Listing 6-3.

Listing 6-3.

"scripts": {

 "cd": "elm make src/PizzaOrder.elm

 --output PizzaOrder.js --debug --yes",

 "cdw": "elm make src/PizzaOrder.elm

 --output PizzaOrder.js --debug --warn --yes",

 "c": "elm make src/PizzaOrder.elm --output PizzaOrder.js --yes",

 "rp": "elm repl",

 "r": "elm reactor --port 3505",

 "watch": "chokidar '**/*.elm' -c 'elm make src/PizzaOrder.elm

 --output PizzaOrder.js --warn' --initial",

 "watchd": "chokidar '**/*.elm' -c 'elm make src/PizzaOrder.elm

 --output PizzaOrder.js --debug --warn' --initial",

 "tdd": "chokidar '**/*.elm'

 -c 'node_modules/elm-test/bin/elm-test' --initial",

 "inittests": "cd tests; elm package install --yes",

 "t": "node_modules/elm-test/bin/elm-test"

 },

Chapter 6 putting it all together

170

 "devDependencies" : {

 "chokidar-cli": "^1.2.0",

 "elm-test": "^0.18.2"

 }

The main idea is to use chokidar to watch the src folder of the application and then

compile the code. We can compile with or without the debug flag.

In another terminal window, we can run npm run r and open a browser window at

localhost:3505. Alternatively, we can use, for example, live-server1 at the root level of

the application, which updates automatically when an output file like pizzaorder.js or

a CSS file changes.

Included in the scripts is a tdd command that can be run in an additional terminal

window to run tests whenever an Elm code file changes. There are also compile and run

commands to perform these tasks without watching folders and files.

Package.json is also needed to install the community test runner for Elm, elm-test.

There will be more about this in the section “Testing.”

Now that we have explained the setup of our application, we can discuss the main

parts of the implementation and how they work together.

 Model

Our model has two sides, the client side in Elm and the backend side in the backend in Elixir.

The latter communicates directly to the database, in this case a PostgeSQL database.

The backend database implementation is a relational schema while the client Elm

model is kept relatively flat. We decided to have a set of DTOs (data transfer objects) in

Elm to iron out mismatches between client and backend.

The client model looks like Listing 6-4.

Listing 6-4.

type alias PizzaOrder =

 { number: String

 , pizza: String

 , toppings: List String

 , size: String

 }

1 https://www.npmjs.com/package/live-server

Chapter 6 putting it all together

https://www.npmjs.com/package/live-server

171

type alias Customer =

 { name: String

 , address: String

 , telephone: String

 , ordered: List PizzaOrder

 , selected: PizzaOrder

 , time: String

 , amount: Float

 }

type alias Model =

 { temporder: Customer

 , orders: List PizzaOrder

 , currenttime: String

 , flags: Flags

 , page : Page

 , history : List Navigation.Location

 }

The model is nested and has some fields like temporder to keep the state of the

application.

We also define all the messages that will be used in the application. Some of them

we will see in subscriptions to communicate between JavaScript components and the

Elm code, while others are in response to user-interaction events and still others are

application internal. See Listing 6-5.

Listing 6-5.

type Msg

 = NoOp

 | AddOrder

 | ConfirmOrder

 | CancelOrder

 | InputName String

 | InputAddress Strin

 | InputTelephone String

 | InputOrderNumber String

Chapter 6 putting it all together

172

 | InputPizza String

 | InputTopping String

 | RemoveTopping String

 | IncrementQuantity

 | Quantity String

 | CurrentTime Time

 | UrlChanged Navigation.Location

 | NewUrl String

The NoOp message is not necessary but helps during development as a placeholder

for unimplemented commands.

 Navigation

The application uses tabs, so we need a way to switch between those tabs. In Elm we can

use the package elm-lang/navigation to handle “pages” in a single-page application.

All the code to implement navigation can be found in different code files (Listing 6-6).

Listing 6-6.

-- in model

type Page =

 Home

 | Orders

type alias Model =

 {

 -- leaving out some fields...

 , page : Page

 , history : List Navigation.Location

 }

-- in update

 UrlChanged location ->

 { model | page = (getPage location.hash) } ! [Cmd.none]

 NewUrl url ->

 (model, Navigation.newUrl url)

Chapter 6 putting it all together

173

-- helper function

 getPage : String -> Page

 getPage hash =

 case hash of

 "#home" ->

 Home

 "#orders" ->

 Orders

 _ ->

 Home

The Page type is defined for convenience to have a current-page indicator in our

state, and the history field in the model is used for the Back button. In our case, it is not

really necessary, but it is good to have the data in case the application gets changed to a

multi-page application later.

When we use the navigation package, we get a message whenever the URL changes.

The update function in our application handles this in such a way that we change the

state of the application by setting the page field to the page that was requested.

We call the helper function getPage with the hash of the requested URL as argument.

The hash is exactly what we would get from document.location.hash in JavaScript. In

getPage we can define which page is requested and return the correct value from our

union type Page. If there is no recognized hash passed in we always return Home.

How does the Elm runtime know that we should get the message UrlChanged?

The application entry function main needs to be changed. It still calls the same Html.

program or Html.programWithFlags, but we have an additional layer. The navigation

package provides the same functions, and when we call it, it adds the message to the

subscriptions we specify.

Our application uses flags as well, which does not affect the main function regarding

navigation. See Listing 6-7.

Chapter 6 putting it all together

174

Listing 6-7.

main : Program (Maybe Flags) Model Msg

main =

 Navigation.programWithFlags UrlChanged

 { init = init

 , view = view

 , update = update

 , subscriptions = subscriptions

 }

init : Maybe Flags -> Navigation.Location -> (Model, Cmd Msg)

init flags location =

 let

 initialstate =

 case flags of

 Maybe.Just flags ->

 {initialModel | flags = (Flags flags.availableorders), history =

[location] }

 Nothing ->

 initialModel

 in

 (initialstate , Task.perform CurrentTime Time.now)

The second change has to be applied to the init function. Apart from the argument

flags, it also has a location argument. This is necessary so as to have a default page and

a valid location history.

One last thing remains: How do we request a new URL? We do this in the function

view when we click on a tab header.

The following code (Listing 6-8) shows a part of the code in the helper function

renderNavbar for the default tab (home).

Listing 6-8.

renderNavbar : Model -> Html Msg

renderNavbar model =

 case model.page of

 Home ->

Chapter 6 putting it all together

175

 div [] [

 div [class "container-fluid topbar"] [

 nav [id "topbar", class "navbar navbar-expand-lg navbar-light

bg-faded"] [

 div [class "logotext mb-0"]

 [img [src "/static/images/pizza-icon.png",

class "logo"] []

 , text " Pizza Cut"]

 , div [id "navbarNav", class "collapse navbar-collapse"] [

 ul [class "navbar-nav"] [

 li [class "nav-item"] [

 div [class "activetab"] [text "Take Order"]

]

 , li [class "nav-item"] [

 a [class "nav-link inactivetab", href "#orders",

 onClick (NewUrl "/orders")] [text "Orders"]

]

]

]

]

]

]

]

The link with the hash #orders has an onClick event defined and sends a message

NewUrl with the requested URL. The relevant expression in the update function then

calls Navigation.newUrl, which in turn updates the location history and sends the

message UrlChanged.

Navigation in Elm is a good example of the event-driven nature of programming

with the Elm platform. It is a little bit difficult to understand at first when coming from

an imperative-programming background. After a while, the event-driven and declarative

paradigm becomes clear, and we let the Elm runtime do its job.

Chapter 6 putting it all together

176

 Main View

The view in our application is not very complex, but it is still difficult to follow the code

when it is all written in one function. Our main function is therefore very short. See

Listing 6-9.

Listing 6-9.

view : Model -> Html Msg

view model =

 div [] [

 renderNavbar model

 , renderPage model

]

We just tell the Elm runtime to call to render functions. The first one, renderNavbar,

we saw earlier, at least one part of it. The second one, renderPage, has two parts wrapped

in a case expression.

The first case is for the home page, the default tab. See Listing 6-10.

Listing 6-10.

renderPage : Model -> Html Msg

renderPage model =

 case model.page of

 Home ->

 div [class "container-fluid pagebody"] [

 div [class "row"] [

 div [class "col-4 border border-dark rounded mt-3 ml-4 mr-5"][

 div [class "mx-auto titlefixed"] [text "Pizza"]

 , Html.form [] [

 div [class "form-group"] [

 renderPizzaSpinner model

 , renderToppingSelect model.temporder.selected

 , div [class "input-group"] [

Chapter 6 putting it all together

177

 button [class "btn btn-success btn-sm",

 type_ "button",

 onClick AddOrder] [text "ADD TO CUSTOMER ORDER"]

]

]

]

]

 , div [class "col-4 border border-dark rounded mt-3 mr-4"] [

 div [class "mx-auto titlefixed"] [text "Customer"]

 , Html.form [] [

 div [class "form-group"] [

 label [for "firstname"] [text "First Name"]

 , input [id "firstname", class "form-control"] []

]

]

]

]

]

 -- ...

Many Bootstrap CSS classes are used to style the markup. It is organized in two

columns, with a form in each column. Again, two helper functions make the code more

readable.

The function renderPizzaSpinner will be used later in the section form, so we won’t

show it here. The function renderToppingSelect is a form with checkboxes. It calls itself

the helper function renderToppingList to list all toppings for a pizza selection. See

Listing 6-11.

Listing 6-11.

renderToppingSelect : PizzaOrder -> Html Msg

renderToppingSelect p =

 div [class "", id "toppingsselect"] [

 div [class "mx-auto titlefixed-toppings"] [text "TOPPINGS"]

 , renderToppingList p.toppings

]

Chapter 6 putting it all together

178

This implementation of renderToppingList is similar to what we saw in Chapter 5.

We use List.map to create the markup for the list. We also call another function for the

item markup and code. See Listing 6-12.

Listing 6-12.

renderToppingList : List Topping -> Html msg

renderToppingList l =

 (List.map (\item -> renderToppingListItem item) l)

renderToppingListItem : Topping -> Html msg

renderToppingListItem t =

 div [class "form-check"] [

 input [class "form-check-input", type_ "checkbox", value "",

id t.id] []

 , label [class "form-check-label", for t.id] [text t.name]

]

The second tab displays a list of orders. It is not different from the list mapping we

have done before, so we won’t show the code of the function renderOrderList. You can

see it in the downloaded application code. See Listing 6-13.

Listing 6-13.

Orders ->

 div [class "container-fluid pagebody"] [

 text ("Orders for today @ " ++ model.currenttime)

 , div [class "row"] [

 renderOrderList model.orders

]

]

The view code for our application is separated into several functions. For small

applications this is a little more work, but all applications grow in features, and this

separation will make it easier to maintain and enhance the code for the views.

Chapter 6 putting it all together

179

 Forms

Most applications need a form in some way. Login and register forms are obvious

candidates, but we also have search or preferences forms. In any case, we have to define

a model for the form, some validation mechanism if needed, and callbacks in our code

for when the form is submitted.

Forms in Elm are straightforward to implement as long as you are not interfacing

with the outside world. In this section, we will follow one form element through the Elm

code.

Earlier, we saw the spinner element, which was used to adjust the number of a pizza

that will be ordered. The function renderPizzaSpinner provides the markup for this

element.

We have implemented the decrement and increment buttons in different ways to

show both a pure Elm approach and a JavaScript approach. See Listing 6-14.

Listing 6-14.

renderPizzaSpinner : PizzaOrder -> Html Msg

renderPizzaSpinner p =

 div [class "input-group", id "pizzaspinner"] [

 span [class "input-group-btn btn-group-sm"] [

 button [class "btn btn-success", type_ "button",

 attribute "data-action" "decrementQtyPizza"]

 [text "-"]

]

 , input [name "quantity", type_ "text",

 class "form-control text-center",

 value p.quantity, attribute "min" "1"] []

 , span [class "input-group-btn btn-group-sm"] [

 button [class "btn btn-success", type_ "button",

 onClick IncrementQuantity] [text "+"]

]

]

The increment button works by sending the message IncrementQuantity to the

update function. See Listing 6-15.

Chapter 6 putting it all together

180

Listing 6-15.

update : Msg -> Model -> (Model, Cmd Msg)

update msg model =

 case msg of

 IncrementQuantity ->

 let

 t = model.temporder

 s = t.selected

 qu = toString ((Result.withDefault 0 (String.toInt s.quantity))+1)

 s_ = {s | quantity = qu}

 m = Model {t | selected = s_}

 model.orders

 model.currenttime

 model.flags

 model.page

 model.history

 in

 (m, Cmd.none)

The handling code of the message IncrementQuantity needs to first do some

housekeeping and then just updates the quantity in the model for the selected pizza.

Since data in Elm is immutable, we need to create a new PizzaOrder for the field

selected and update the model with it.

What’s interesting is the expression qu = toString ((Result.withDefault 0

(String.toInt s.quantity))+1). Actually, we can be sure that the quantity can be

converted to an integer, but we code here defensively. If the conversion fails it will return

the default value 0.

 Interfacing with JavaScript Components

As previously mentioned, the decrement task of the spinner element is done in

JavaScript. Before we show the code for this, let’s look at all the JavaScript interfacing this

application uses.

There are several subscriptions defined that update the state of the application upon

user interactions. Again, these state updates could be done completely within Elm if

all elements were implemented in Elm. On the other hand, we want to use third-party

Chapter 6 putting it all together

181

JavaScript components, and it would be ineffective in some projects to reinvent the

offered features. See Listing 6-16.

Listing 6-16.

port updateLists : String -> Cmd msg

port setNumber : (String -> msg) -> Sub msg

port setPizza : (String -> msg) -> Sub msg

port setTopping : (String -> msg) -> Sub msg

port removeTopping : (String -> msg) -> Sub msg

port setQuantity : (String -> msg) -> Sub msg

subscriptions : Model -> Sub Msg

subscriptions model =

 Sub.batch ([

 setNumber InputOrderNumber

 , setPizza InputPizza

 , setTopping InputTopping

 , removeTopping RemoveTopping

 ,

])

We won’t get into all the JavaScript code in the file index.html. In fact, the handling

is always similar. The component on the client side either listens to an event from the

Elm code or invokes an event in the Elm code.

The port updateLists goes to the client code. JavaScript code listens to this event

like in Listing 6-17.

Listing 6-17.

elmapp.ports.updateLists.subscribe(function(itemlist) {

 // ...

}

In Elm code, we set off this event in the update function when an order is added

(Listing 6-18).

Chapter 6 putting it all together

182

Listing 6-18.

AddOrder ->

 let

 -- ...

 itemlist = calculateOrder model.temporder.selected

 in

 (m, updateLists itemlist)

The reason we do it like this is that we want to feed the data into a grid component

on the client side.

Coming back to the spinner component, we have the following JavaScript code to

decrement the quantity (Listing 6-19).

Listing 6-19.

$(document).ready(function(){

 $('#pizzaspinner').find('button').on('click', function(){

 let input = $(this).closest('#pizzaspinner').

find('input[name=quantity]');

 if($(this).data('action') === 'decrementQtyPizza') {

 if(input.attr('min') === undefined

 || parseInt(input.val()) > parseInt(input.attr('min'))) {

 input.val(parseInt(input.val(), 10) - 1);

 elmapp.ports.setQuantity.send(input.val().toString());

 }

 }

 });

});

The code relies on two attributes. We defined the button in Elm with one attribute.

See Listing 6-20.

Chapter 6 putting it all together

183

Listing 6-20.

button [class "btn btn-success",

 type_ "button",

 attribute "data-action" "decrementQtyPizza"]

 [text "-"]

The attribute data-action has the value of decrementQtyPizza to indicate the action

that should be taken when this button is pressed. The data- attributes are standard

when defining custom data that can be used in JavaScript. In our JavaScript code we only

act on a button if this attribute is set and has a known value.

We also defined the input field with one important attribute. See Listing 6-21.

Listing 6-21.

input [name "quantity", type_ "text",

 class "form-control text-center",

 value model.temporder.selected.quantity,

 attribute "min" "1"] []

The attribute min indicates the minimum input value for this element. In our

JavaScript code we use this value to ensure we do not decrement below this value.

Once we have established that the value needs to be decremented, we do so, and

we also call the Elm code with elmapp.ports.setQuantity.send(input.val().

toString()) to give it the opportunity to update its state. Otherwise, the value would

only be changed on the client side, and a refresh would show the old value.

The subscription says setQuantity Quantity, so when the event setQuantity

arrives the message Quantity is sent. The model is updated, and then the view function

will display the correct value. See Listing 6-22.

Listing 6-22.

Quantity number ->

 let

 t = model.temporder

 s = t.selected

 s_ = {s | quantity = number}

Chapter 6 putting it all together

184

 m = Model {t | selected = s_}

 model.orders

 model.currenttime

 model.flags

 model.page

 model.history

 in

 (m, Cmd.none)

JavaScript interfacing in Elm is straightforward to implement. It should be used

sparingly, if possible, but if there is a need to do it, then there is a way. Attention should

be directed to values coming from JavaScript code. Even with type checks in Elm there is

no guarantee that the value is correct, especially if string types are often used.

Also, JavaScript interfacing needs to have well-tested code on the client side that an

application can rely on; otherwise, even Elm applications can fail at runtime.

 Testing
Tests are part of application development, and the Elm platform provides a framework

for it. We have seen in this book that debugging an Elm application is not always easy.

More unit tests and regression tests need to be incorporated in the development.

The community has provided a test package and also a test runner. All tests are in

their own folders and have their own configurations with special dependencies. See

Listing 6-23.

Listing 6-23.

"dependencies": {

 "elm-community/json-extra": "2.0.0 <= v < 3.0.0",

 "elm-lang/html": "2.0.0 <= v < 3.0.0",

 "mgold/elm-random-pcg": "4.0.2 <= v < 5.0.0",

 "elm-lang/core": "5.0.0 <= v < 6.0.0",

 "elm-community/elm-test": "3.0.0 <= v < 4.0.0",

 "rtfeldman/node-test-runner": "3.0.0 <= v < 4.0.0",

 "elm-lang/http": "1.0.0 <= v < 2.0.0",

 "elm-lang/navigation": "2.0.0 <= v < 3.0.0",

Chapter 6 putting it all together

185

 "elm-lang/keyboard": "1.0.1 <= v < 2.0.0",

 "elm-community/elm-time": "1.0.1 <= v < 2.0.0"

 },

 "elm-version": "0.18.0 <= v < 0.19.0"

The dependencies for our application are not only the test packages, but also

language and library packages that are needed to run the tests. These dependencies also

need to stay in sync with the application dependencies to ensure the compatibility of

tests with the application.

In the root folder of our application we have to install elm-test with npm install

elm-test. We could add the -g flag to install it globally. Then, we run run elm-test

init, and a folder tests is created with a default elm-package.json, a file tests.elm,

and a file main.elm, which is the entry point for running the tests. See Listing 6-24.

Listing 6-24.

port module Main exposing (..)

import Tests

import Test.Runner.Node exposing (run, TestProgram)

import Json.Encode exposing (Value)

main : TestProgram

main =

 run emit Tests.all

port emit : (String, Value) -> Cmd msg

The file main.elm won’t be changed, but the file tests.elm will contain the tests for

our application. We see that the function main calls Tests.all. This is the function in

tests.elm in the module Tests. See Listing 6-25.

Listing 6-25.

module Tests exposing (..)

import Test exposing (..)

import Expect

import Fuzz exposing (list, int, tuple, string)

import String

Chapter 6 putting it all together

186

import PizzaOrderBusinessLogic exposing (..)

import PizzaOrderModel exposing (..)

all : Test

all =

 describe "Pizza Order Test Suite"

 [

 describe "BusinessLogic"

 [test "calculateOrderNumber Default" <|

 \() ->

 Expect.equal 2 (calculateOrderNumber initialModel)

 , test "calculateOrder Model" <|

 \() ->

 Expect.equal "text: 0" (calculateOrderNumber

initialModel)

]

]

Like in other test frameworks, elm-test knows to expect functions, and the tests can

be organized in suites and have descriptions for printing out information during test

runs. The body of a test is implemented with closures.

One special feature in elm-test is the inclusion of fuzzy tests, in other frameworks

also called property tests. Input into functions is randomized, and the tests are run a

minimum of times. This exposes the function to various conditions, and if there is no

failure emerging then the confidence into a positive test is greater.

 Beyond Elm Web Applications
The Elm platform has a central purpose: writing web applications—mostly single-page

applications—with a functional language. So far in this book we have seen that it can do

this well within the constraints of a platform that is evolving and may still change, even

in core functionality, over the next few years.

Learning a new language is time consuming, so the question is legitimate as to

whether Elm can be used to implement projects other than web applications. In the

last few years there has been a trend to bring JavaScript and languages that transpile to

Chapter 6 putting it all together

187

JavaScript to the backend and develop both frontend and backend processes with one

language. Elm is transpiled to JavaScript, so maybe it can be used in the same way.

In the following sections we will examine the possibility of using Elm on desktop,

command-line, and integrating it with other web frameworks.

 Desktop Applications
A few years ago it seemed that desktop applications were a thing of the past. One of the

main reasons for this was that developing for different platforms was and still is too

expensive, either for initial development or maintenance. There were early efforts to

create multi-platform frameworks, the most known among them being Java and Flash.

Neither approach yielded the expected results, so they were not used much outside of

corporations, games or development tools.

A change came with the success of Node.js and faster JavaScript engines. Not only

was it possible to write web applications in JavaScript, but it was also possible to wrap

the whole web application, including a browser, to be executable for different platforms.

When GitHub used this method to create their open source code editor Atom,2 more

developers took advantage of this idea. Eventually, the core of the editor was open

sourced as Electron, which forms the basis for several applications, like Slack and others.

Two of the biggest arguments against Electron apps are the memory footprint and

speed. The memory footprint is especially problematic when more than one Electron

app is running; for example, on a developer machine that may be on the edge with IDEs,

containers, and others in the memory of a machine that may have only 16 GB or even less.

Note electron apps have frameworks included in every app, especially a full
Chromium, which is a runtime environment and is almost an operating system, not
just a web browser. those apps need at least 130 MB but can go up to 1 gB and
more. it is important to know that every webview used in an electron application
uses a new copy of the aforementioned runtime.

Electron exposes some system services of each platform, like file access, and the

JavaScript code in an Electron application communicates with the Electron runtime.

Since Elm is compiled to JavaScript, we can use it to write a desktop application.

2 https://github.com/atom/atom

Chapter 6 putting it all together

https://github.com/atom/atom

188

The source code for this book has an example in the directory Examples/Elm-

Electron. Open a command line in that directory and run the commands in Listing 6-26.

Listing 6-26.

npm install

npm run start

This will start the Electron application with a simple Elm program. Let’s now

examine how we can implement this.

I assume that Electron is installed on your machine. Their website3 has download

links for all platforms to install Electron globally, or you can use the pre-built package in

the npm repository for a local install, as the example does.

First, we have to create a folder for the application and in that create a package.json

file. Listing 6-27 omits some key–value pairs that are not essential for the example.

Listing 6-27.

{

 "scripts": {

 "start": "electron ./app",

 "postinstall": "install-app-deps",

 "pack": "build --dir",

 "dist": "build"

 },

 "devDependencies": {

 "electron": "1.7.10"

 },

 "build": {

 "productName": "Elm-Electron-Example",

 "appId": "elm-electron-example"

 }

}

3 http://electron.atom.io/

Chapter 6 putting it all together

http://electron.atom.io

189

We defined the electron package as a development dependency and added scripts

and build sections. The latter is necessary for Electron to build the application. Scripts

are not really necessary but help with development. I should point out that this way to

set up an Electron application is the bare-bones way. More sophisticated ways involve

setting up a project with a Yeoman generator and also using Gulp for development tasks.

Have a look at the Awesome-Electron4 list.

Our way of organizing the code is to have the root directory as the development

directory and to have an app directory for the actual source code. This implies that

we have a second package.json in the app directory to define values—especially

dependencies—for the application code. See Listing 6-28.

Listing 6-28.

{

 "main": "./index.js"

}

Again, I omitted the non-necessary key–value pairs. It turns out that we have only

one relevant key since there are no dependencies defined. The main key has ./index.js

as the value that tells Electron which code to run when starting. Actually, Electron

defaults to index.js as the entry point of the application, so we would not need to spell

this out in the configuration. It is possible to have any other file name, and then this

entry would be needed.

When we ran the npm start command before, we ran a script with the line shown in

Listing 6-29.

Listing 6-29.

electron ./app

The argument for the call is .app, which passes to the Electron program the directory

in which to look for the main entry point.

A quick remark about the file renderer.js in the app directory. Electron uses more

than one process. The main* process is the one that runs the main script—in our case,

the code in index.js. This process then creates renderer processes for each web page

that is used in the application. These GUI processes are sandboxed and cannot share

4 https://github.com/sindresorhus/awesome-electron

Chapter 6 putting it all together

http://github.com/sindresorhus/awesome-electron

190

data between them, except by communication with the main process or by using HTML5

features like local storage.

So, how do we get the Elm code into Electron? It is the same as running an Elm

application in any other browser. Our main process tells the Electron runtime to create

a browser window and render index.html. Listing 6-30 shows the code to create the

browser in index.js.

Listing 6-30.

function createWindow () {

 mainWindow = new BrowserWindow({width: 1024, height: 780})

 mainWindow.loadURL(`file://${__dirname}/Index.html`)

 mainWindow.on('closed', function () {

 mainWindow = null

 })

}

app.on('ready', createWindow)

When the Electron runtime calls the ready callback it runs the function

createWindow. This function creates a browser window and loads the file index.html.

See Listing 6-31.

Listing 6-31.

<!DOCTYPE html>

<html>

 <head></head>

 <body>

 <script>if (typeof module === 'object')

 {window.module = module; module = undefined;}

 </script>

 <script src="./elm.js"></script>

 <script>if (window.module) module = window.module;</script>

 <script type="text/javascript">Elm.GamesFramework.fullscreen()</script>

 </body>

</html>

Chapter 6 putting it all together

191

We know the contents of this file from previous examples. The code file elm.js is

the one we create in whatever Elm project we want to use. We could have more than one

page, with the code coming from different Elm applications, but Electron works best as a

single-page application.

How do we use Electron’s API calls, like getting the contents of a file? We use ports as

we would in a web application in a non-wrapped browser. So, it is easily possible to wrap

an existing Elm application and distribute it as an Electron app.

 CLI
Wouldn’t it be nice to use our knowledge of Elm to write small utilities that could

be invoked from the command line? Elm compiles to JavaScript, but also needs its

runtime and libraries. The resulting code file—as we saw in previous explanations—is

a few hundred KB big depending on the used libraries, but this is not a problem on the

desktop. Our task is to find a way to call Elm functions that were compiled into JavaScript

from JavaScript outside Elm.

 Node

My first idea was to use Node and create a Node CLI application, similar to Electron.

The first problem with this approach is that the Elm runtime needs to be started.

In early versions this was possible without browser integration, but the runtime is now

more restrictive. The idea behind this is that the Elm platform is a web application

platform and is not thought of as a general-purpose platform. Also, calling from outside

into Elm-based functions may cause some problems with types, as we know. The

compilation can check the Elm code, but it is not possible to check outside arguments

without a resource-expensive analyzing process at runtime.

The second problem is that the asynchronous Elm runtime collides with the

asynchronous event handling of Node when no web server is used. With a web server

this is not a problem, but it goes against the idea of a CLI program.

The idea is to call the following function (Listing 6-32) in Elm from a Node function.

Chapter 6 putting it all together

192

Listing 6-32.

module ShellScript exposing (..)

someFunction : String

someFunction =

 "Hi from an Elm function"

This is just a placeholder function to test the concept. We want to call this function

from a Node script and display the returned string in the console. We already know that

it is not possible to call it directly, but we can use ports as in the Electron application.

The only question is, how do we get a browser window that we don’t want to display? We

could use jsdom,5 a DOM implementation for Node.

The idea was good, but it does not work. With jsdom I could embed a page with the

JavaScript compiled by Elm, but the Node code could not communicate with the code in

the embedded page. In any case, even if it had worked, the whole solution is too much of

a hack to be viable.

The conclusion is that, at the moment, we cannot use Elm with Node to create a CLI

application.

 REPL

We don’t need to give up on our task—to use an Elm application from the command

line—because we have the REPL. Unfortunately we cannot run elm-repl with a

parameter to say which module we want to import, but we can work around this.

The idea explained in this section came from a small Perl script that helps keep text

and code examples in sync.

It takes a regular expression pattern and replaces every positive found, like

example-1-0, with the file contents of a file that has the name of the positive

(example-1-0).

If we wanted to transfer this one-line script—which is available in the download—to

Elm and look for packages to use, we would immediately see a big problem. With the

current version of Elm it is not possible to read or write files. Well, we will still implement

the replacement, but we have to get the input markdown text from a module, and we will

output to the console.

5 https://github.com/tmpvar/jsdom

Chapter 6 putting it all together

http://github.com/tmpvar/jsdom

193

The module FixCode does the regular expression search and replacement

(Listing 6-33).

Listing 6-33.

module FixCode exposing (..)

import Chapters exposing (..)

import ShellScriptLib exposing (..)

import CodeExamples exposing (..)

defaultPattern : String

defaultPattern = "example-[0-9]-[0-9][0-9].(txt|elm|json|js|html)"

replaceExampleCode : String -> String

replaceExampleCode markdown =

 let

 md = readMarkdownFile markdown

 poslist = getPositivesListDefaultPattern md

 in

 replace poslist md

replace : List String -> String -> String

replace poslist markdown =

 case poslist of

 [] ->

 (markdown)

 first :: rest ->

 let

 newmd = replaceText first (getsubstitution first) markdown

 in

 replace rest newmd

readMarkdownFile: String -> String

readMarkdownFile name =

 getChapter name

Chapter 6 putting it all together

194

getPositivesListDefaultPattern : String -> List String

getPositivesListDefaultPattern text =

 getPositivesList

 defaultPattern

 text

getsubstitution : String -> String

getsubstitution positive =

 getCodeExample positive

Since we can’t read from a file, we have to read from a module, which is done with

the functions getChapter and getCodeExample. We are not printing these two functions,

because all they do is return text that will be substituted.

The function replace in the preceding listing is a recursive function processing the

list of all positives and printing out the resulting string in the console. Unfortunately, no

file can be written at this moment.

The module ShellScriptLib contains the functions that deal with the regular

expressions. The pattern example-[0-9]-[0-9][0-9].(txt|elm|json|js|html) is

passed in as argument to replaceText, which calls the Regex.replace function in the

package elm-lang/core. See Listing 6-34.

Listing 6-34.

module ShellScriptLib exposing (..)

import Regex exposing (..)

import List exposing (..)

replaceText : String -> String -> String -> String

replaceText pattern substitution text =

 text |>

 Regex.replace All (regex (pattern)) (_ -> substitution)

getPositivesList : String -> String -> List String

getPositivesList pattern text =

 map.match <| find All (regex pattern) text

In getPositivesList we apply the closure that finds a pattern in a text and create a

list of strings to be processed as positives later.

Chapter 6 putting it all together

195

This finishes our discussion of Elm beyond web applications. There will be more

to discover when the Elm platform matures and workarounds for some problems we

encountered in this section can be found.

 What We Learned
This chapter discussed some aspects of a full Elm application. We saw the specifications

and design of the application and got deeper into implementation aspects like the

following:

• Setup

• Creating a model

• Navigation

• Views

• JavaScript interfacing

• Testing

We also took a look at whether we could use Elm for more than web applications, like

the following:

• Desktop applications

• Command-line utilities

This book gave an introduction into the Elm platform. In the last chapter, we will see

where Elm might go in the future.

Chapter 6 putting it all together

197
© Wolfgang Loder 2018
W. Loder, Web Applications with Elm, https://doi.org/10.1007/978-1-4842-2610-0_7

CHAPTER 7

Where to Go from Here
This book has given you an introduction into building web applications with the Elm

platform. Now you know the basics of Elm and have seen some of the most important

libraries at work in code examples. As mentioned in the first chapter, there is much more

to learn to make the Elm platform productive for bigger projects.

We have only scratched the surface of the platform. The Elm language has more to

offer than what we have discussed, such as the following:

• Multi-module applications

• Handling state changes between modules

• Encoding and decoding complicated JSON

• Optimizing function parameters for piping

• Type constructors

• Implementing features like authentication and validation in Elm

• Implementing functional patterns

In this list we have not even mentioned those functions in the standard library we

did not discuss in this book, nor some of the many helpful community libraries.

Elm is an evolving language and platform, and so are standard and community

libraries. One of the biggest features in Elm is static typing. More and more packages

are created to provide type-safe integrations for JavaScript libraries or CSS patterns like

Material Design.

198

 When Is a Programming Language and Platform
Successful?
Based on discussions with other developers over the years, it seems that there are a few

criteria to make a programming language popular and thus successful, as follows:

• Advantage over existing stacks

• Enhancing developer productivity

• Easy to learn

• Easy-to-maintain code

• Glamour and appeal by offering a different approach to existing

languages

• Reducing complexity

Certainly the Elm platform has a few of these points ticked off: enhancing

productivity, appeal, and reducing complexity. Of course, the learning curve may be

higher if you are coming from an imperative language paradigm or a mixed paradigm

like the one JavaScript implements. Elm is functional, but once learned it makes

development easier.

Not everything is rosy, though. Especially as an enterprise developer, you need to

have good arguments to convince management to use the Elm platform. We need to

keep in mind that Elm is in the alpha stage of development. It may have gained a good

amount of attention, but the platform still has a way to go. This needs to be taken into

consideration when recommending Elm to management.

 Language Progression
The Elm language is changing on a regular basis, and the version number indicates that

with versions numbered way below the golden 1.0 release. Along with the language,

libraries and concepts are also changing. We explained in this book that the Elm

architecture went through a development process. The same applies to the standard

libraries.

Chapter 7 Where to Go from here

199

When you look into online discussions about Elm you will see several feature

requests that are regularly mentioned, as follows:

• Tree shaking and dead-code elimination

• Module functors

• Type classes

• Union types as keys in Dict

• Higher-kinded polymorphism

I am aware that this book is for beginners of the language—probably also for

beginners in functional programming. So, terms like functors or type classes may not

make much sense. They make clear, though, that there is a big interest from functional

programmers, especially those developing with or having knowledge of Haskell. We

mentioned it before: sometimes Elm is like an entry step into studying Haskell. It is not

a Haskell Light, but it takes many ideas from it and is, of course, implemented in Haskell

itself.

The most probable feature of the preceding list that will be implemented soon is

tree shaking. We have mentioned that for every embedded Elm application we have to

supply all the runtime and any library the Elm code is accessing. So, if we embed three

Elm applications in a web page, we will have to download three times the runtime. At the

moment, all of the runtime and all of the libraries are in the JavaScript file the Elm code

compiles to.

Other languages and frameworks provide some sort of tree shaking, which means

that untouched code will be deleted from the final executable. For example, we can do

this in JavaScript with WebPack.1

A feature beyond tree shaking would be to have a runtime that the compiled Elm

code can link to. This would make caching in the browser and avoiding unnecessary

HTTP requests easier.

In all these discussions about features, we should not forget that Elm was initially a

language for rendering graphics in a browser and then evolved into a framework to make

single-page applications and the rendering of their markup more effective and error

free by using static typing. Elm was not supposed to be a multi-purpose language or a

complicated framework like others in the web development realm.

1 https://webpack.js.org/guides/tree-shaking/

Chapter 7 Where to Go from here

https://webpack.js.org/guides/tree-shaking

200

 Community
Every programming language depends on the community of developers who use the

language and often develop new concepts not imagined by the language creators.

Languages and frameworks heavily backed by big companies did not always use the

power of developer communities. For example, it took Microsoft a long time to open

their .NET framework up and accept contributions from outside the company. Similarly,

in the Java world languages on top of the JVM are thriving almost more than the original

language; for example, Scala or Clojure. In the functional world, the emerging language

Elixir had a similar effect on the Erlang VM.

Elm’s community is very active and interested in bringing the platform forward.

Sometimes this may be against the plans of the language creator, but eventually the

different interests will come together for the good of the platform.

 Commercial Usage
The big question is if the Elm platform is ready for commercial use. Some companies

are using it for their applications or at least for a part of their applications. There is an

unknown number of other companies that use Elm for internal or customer applications

as well.

The preferred way to introduce Elm into a project is to do it slowly and just for

parts of a website. This may be one way to integrate Elm into an application and having

management agree, because the risk of failure is minimized.

Another criteria for commercial usage is to be able to maintain the code. Finding

Elm developers is not easy, especially experienced ones. This may be an obstacle, as is

the long time between Elm platform releases and the lack of possible fixes and patches

for existing versions.

 The Future
Like everyone else, I don’t have a crystal ball to look into the future, so the following

thoughts are best guesses. Examples in the JavaScript community have shown that

fashions change quickly. Not long ago, Angular was the most loved framework, but then

suddenly Reactive has taken over almost completely. Is it the backing of Facebook or the

Chapter 7 Where to Go from here

201

slow development and breaking changes and concepts of Angular 2? Is it the preferred

use of Typescript in Angular 2? Or is it the reactive concept?

The Elm platform has great potential. Although it is good that the hype is restricted,

Elm needs to have clear roadmaps and at least some deadlines for upcoming features.

Otherwise, developers will use Elm for pet projects, but without clear planning they

won’t be able to commit for bigger projects.

 Conclusion
We have arrived at the end of this book. I hope you take it as an appetizer and will keep

the Elm platform in mind when you have to choose a language and framework for your

next project.

Chapter 7 Where to Go from here

203
© Wolfgang Loder 2018
W. Loder, Web Applications with Elm, https://doi.org/10.1007/978-1-4842-2610-0

Index

A
Angular, 200
Anonymous functions, 56
Appendable types, 76
Arithmetic operators, 43
Arrays, 107–110
Atom, 24

B
Bitwise operators, 44
Bootstrap, 147–148

C
Case statement, 51
Commercial usage, 200
Community, 200
Comparable types, 76
Comparison operators, 45–46
Composition operators, 47–48
Concatenation operator, 48
Constant function, 55
CSS framework, 147–148
Currying

addMultiplyNumbersListFirst, 64
argument position, 64
composition, 66–67
function doubler, 63–64
flip, 64–66
multiplyNumbers, 62–63

D
Debugging, 94–96
Deployment

custom web page, 32–33
HTML file, 31
index.html, 30–31
integration, 33–35

Desktop applications
Electron apps

createWindow, 190
development directory, 189
directory Examples/

Elm-Electron, 188
GUI processes, 189
index.js, 189–190
npm start command, 189
package.json file, 188

multi-platform frameworks, 187
Node.js and JavaScript, 187

Development process
building, 93
code files, 91
Elm platform, 90
scaffolding, 91–92
switching versions, 94

Dictionaries, 110–113
Docker container

create, 20
Dockerfile Elm image, 19
elm-reactor, 22

https://doi.org/10.1007/978-1-4842-2610-0

204

Hello-World directory, 22
installation options, 18
interactive, 21
local directory, 22
npm installation, 21
run Docker image, 20

Dynamic typing, 75

E
Editors and IDEs

Atom, 24
development tasks, 23
Emacs, 24
IntelliJ, 24
LightTable, 25
Sublime, 25
Vim, 25
Visual Studio Code, 26

Elm
application types, 4
concurrency, 3
console tools, 10
embedded, 9
event handlers, 3
frameworks and platforms, 3
games, 4–5
graphics, 7–8
Haskell, 10
JavaScript and event handling, 3
lifecycle hooks, 9
logo, 7

source code, 8
SVG tag, 8

mainstream, 2
operating systems, 10
overview, 11

programming patterns
and operating systems, 2

requirements, 9
SPAs, 5
user interfaces, 2
web applications, 4

Elm architecture
code organization

complex structure, 138
elm-package.json, 138
graphics, 141–143
Material Design Lite, 138
rendering, 139–141
simple structure, 137

JavaScript interface
callback function, textbox, 153
data exchange, 154
HTML page, 150
ports, 151–152
updatelists, 152–153

Model-View-Controller concept, 121
overview, 121–122
runtime

commands, 136
HTML page, 123
init, 127–129
function main, 122
model, 124–126
programWithFlags, 123
subscriptions, 136
update, 130–132
view, 133–135

server communication
(see Server communication)

styling (see Styling)
user input, 148–150

Elm installation
global, 15–16

Docker container (cont.)

Index

205

local
dev dependency, 17
scripts, package.json, 18
project, 17

platform, 13–14
Elm platform

elm-package, 38
elm-reactor, 38
elm-repl, 38
Haskell, 37
Hello World program, 37
JavaScript file, 37

Emacs, 24
External CSS, 145, 147

F, G
Functional language

deconstructing, 70
immutable data, 67
pattern matching

(see Pattern matching)
recursion, 69–70
state, 68–69

Functional operators
composition

operators, 47–48
pipe operators, 46

Functional reactive
programming (FRP), 1

Functions
anonymous, 56
composition, 57–58
currying (see Currying)
declaration, 55
definition, 54
higher order, 61–62
named, 55–56

partial, 66
polymorphic, 59–61

Fuzzy tests, 186

H
Higher order functions, 61–62

I
If statement, 49–50
Inline styles, 144–145
IntelliJ, 24

J, K
JSON libraries, 118–120

L
Language

classification, 42–43
control structures

case, 51
if, 49–50
Let-In, 51

functions (see Functions)
imported modules, 83–84
modules, 83
operators (see Operators)
progression, 198–199
type-safe (see Type-safe language)

LightTable, 25
List library, 104–107
Logical operators, 45

M
Mario game, 4–5

Index

206

N
Named functions, 55–56
Node CLI application, 191–192

O
Obligatory Hello World

create, 26
elm-package.json file, 28
elm-reactor, 30
directory elm-stuff, 29
package Html, 27
run elm-make, 27

Operators
arithmetic, 43
bitwise, 44
comparison, 45–46
functional, 46, 48
logical, 45
prefix and infix, 52–54
special, 48–49

P, Q
Partial function, 66
Pattern matching

lists, 71, 73
records, 73
tuples, 71–72
types, 74
values, 70

Pipe operators, 46
Pizza Cut

application overview, 162
backend, 165
design

order list, 164
Take Order

form, 163–164
specification, 165

forms, 179–180
JavaScript components

attributes, 182–183
decrement,

quantity, 182
setQuantity, 183
update function, 181
port updateLists, 181

main view
Bootstrap CSS, 177
home page, 176, 177
main function, 176
renderOrderList, 178
renderToppingList, 178
renderToppingSelect, 177

model
client model, 170
NoOp message, 172
PostgeSQL database, 170
user-interaction events, 171

navigation
elm-lang/navigation, 172
Html.programWithFlags, 173
main function, 173
Page type, 172–173
renderNavbar, 174

POST route, 166
set up

elm-package.json file and
dependencies, 166

folder structure, 167
HTML page, 168

Index

207

npm run, 169
package.json file, 169–170

specifications, 163
testing, 184–186

Pizza Order app, 6
Polymorphic functions, 59–61
Primitives, 75–76
Programming language, 198
Property tests, 186

R
Reactive programming, 1
Read-eval-print-loop (REPL)

allbasics.elm, 89
description, 85
elm-repl, 85–86
expressions, 86
function definition, 89
functions and types, 87
string length, 87
testing expressions, 90
type annotations, 88–89

S
Server communication

GET, 155–158
HTTP, 154–155
POST, 158–159
WebSockets, 159–160

Sets, 113–115
Single-page applications (SPAs)

CLI
Node, 191–192
REPL, 192–194

data processing, 161
desktop

(see Desktop applications)
JavaScript, 7
Pizza Cut (see Pizza Cut)
Pizza Order app, 6
production, 5

Special operators, 48–49
Standard libraries

arrays, 107–110
Dict, 110–113
JSON, 118–120
lists, 104–107
Maybe, 115–118
packages, 97
sets, 113–115
string, 98–104

Style guide
elm-format, 39
formatted source code, 41
formatting tool, 39
leading comma, 41
non-formatted

source code, 40
Styling

CSS framework, 147–148
external CSS, 145, 147
HTML, 143
inline, 144–145

Sublime, 25

T
Type-safe language

annotations, 81
appendable, 76

Index

208

comparable types, 76
dynamic typing, 75
primitives, 75–76
structured data

lists, 77
records, 78
tuples, 77

type aliases
Constants, 81
Maybe, 80

union type, 79
unit type, 82

U
Union types, 79
Unit type, 82
User input, 148–150

V
Vim, 25
Visual Studio Code, 26

W, X, Y, Z
WebSockets, 159–160

Type-safe language (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Theory
	What Can We Use Elm For?
	Games
	Single-Page Applications (SPAs)
	Graphics
	Embedded

	What Can’t We Do with Elm?
	Who Is This Book For?
	Required Software
	Structure of This Book

	Chapter 2: Getting Started
	Installation
	Global Installation
	Local Installation

	Running a Docker Container
	Editors and IDEs
	Atom
	Emacs
	IntelliJ
	LightTable
	Sublime
	Vim
	Visual Studio Code

	Obligatory Hello World
	Deployment
	Option 1: All-in-One
	Option 2: Custom Web Page
	Option 3: Integration

	What We Have Learned

	Chapter 3: Elm Primer
	Elm Platform
	Elm Style Guide
	Elm Language
	Basic Language Features
	Operators
	Arithmetic Operators
	Bitwise Operators
	Logical Operators
	Comparison Operators
	Functional Operators
	Special Operators

	Control Structures
	If
	Case
	Let-In

	Prefix and Infix Operators

	Elm as a Functional Language
	Functions
	Named Functions
	Anonymous Functions
	Function Composition
	Polymorphic Functions
	Higher Order Functions
	Curried and Partial Functions

	Immutable Data
	State
	Recursion
	Pattern Matching and Deconstructing
	Values
	Tuples
	Lists
	Records
	Types

	Elm as a Type-safe Language
	Types
	Primitives
	Comparable Types
	Appendable Types
	Structured Data
	Lists
	Tuples
	Records

	Type Definitions
	Union Types

	Type Aliases
	Maybe
	Constants

	Type Annotations
	Unit Type

	Elm as a Modular Language
	Modules
	Imports

	What We Learned

	Chapter 4: Tooling and Libraries
	REPL
	Development Process
	Scaffolding
	Building
	Switch Elm Versions

	Debugging
	Standard Libraries
	Data Types and Structures
	String
	List
	Array
	Dict
	Set

	Revisiting Maybe
	JSON

	What We Learned

	Chapter 5: Elm Architecture and Building Blocks
	Elm Architecture Overview
	model
	init
	update
	view
	subscriptions
	Conclusion

	Code Organization
	Rendering
	Graphics

	Styling
	Inline Styles
	External CSS
	CSS Framework

	User Input
	JavaScript Interfacing
	Server Communication
	HTTP
	GET
	POST

	WebSockets

	What We Learned

	Chapter 6: Putting It All Together
	Building a Single-Page Application
	Pizza Cut—The Application
	Design
	Alternative Specification and Design
	Implementation
	Setup
	Model
	Navigation
	Main View
	Forms
	Interfacing with JavaScript Components

	Testing

	Beyond Elm Web Applications
	Desktop Applications
	CLI
	Node
	REPL

	What We Learned

	Chapter 7: Where to Go from Here
	When Is a Programming Language and Platform Successful?
	Language Progression
	Community
	Commercial Usage
	The Future
	Conclusion

	Index

