Website
Scraping
with Python

Using BeautifulSoup and Scrapy

Gabor LaszIo Hajba

ApPress’

http://www.allitebooks.org

Website Scraping
with Python

Using BeautifulSoup
and Scrapy

Gabor Laszl6 Hajba

Apress’

vww . allitebooks.con

http://www.allitebooks.org

Website Scraping with Python

Gébor Laszl6 Hajba
Sopron, Hungary

ISBN-13 (pbk): 978-1-4842-3924-7 ISBN-13 (electronic): 978-1-4842-3925-4
https://doi.org/10.1007/978-1-4842-3925-4

Library of Congress Control Number: 2018957273
Copyright © 2018 by Gabor Laszlé Hajba

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green

Development Editor: James Markham

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484239247.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-3925-4
http://www.allitebooks.org

To those who are restless, like me,
and always want to learn something new.

vww . allitebooks.con

http://www.allitebooks.org

Table of Contents

About the AUtNOF ... ———————— Xi
About the Technical REVIEWErccussseensrsssssnnsssssssssssssssssssssssssnnnsssss Xiii
Acknowledgments.......cccccurmsssssssmssnmmmsmssssssssssssnssessssssssssnnnnsssssssssssnnnnns XV
Introduction.........cociiieememmnnnninnsssss s —————————— Xvii
Chapter 1: Getting Started.........cccusmmminnnemnmmnsennmnnsssnmmssssn———————" 1
WEDSItE SCrAPINGcvvverrerrererrerere s s e s e e s sa s e s aesa e e nae s 1
Projects for Website SCrapingcoovvvvrierevnsnienens s sese s sesessenes 2
Websites Are the BottENeckK..........coucvvvevnisennse s sessenens 3
TOOIS iN THIS BOOKccceverrecirerierie st se s s sr s s s 3
Preparation ... s 4
Terms and RODOTS.........ccocrverieeneriirir e s e e s nae s 5
Technology of the WeDSIte..........ccccververiririnnrcrcer s 7
Using Chrome Developer TOOIScccvvverereenersersersesessersessessssessessessssessessensens 8

Tool ConSIdErationsccoucrrerneninesern e saeens 12
Starting t0 COUR ..o 13
Parsing robots.Xt ... ———— 13
Creating a Link EXTractorccccccvvvevrecnncc st se e 15
EXtracting IMages.......cccucereinininennsinsse s s 17
SUMIMANY.....eieeeeceree e e s se e s s e re e e e e 18

\4

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 2: Enter the Requirementscccevssemmnmnsssssnnmsssssssssssssnnnns 19
The ReqUIrEMENTS.......cocceeecr e 20
Preparation ... e 21

Navigating Through “Meat & fishFish”c.cccrininininininnrne e, 23
Outlining the Application............cccvivninrnn s 31
Navigating the WebSIteccucvreirnnnnnrnsess e 32

Creating the Navigationc.cccvvrnneneninsesnsesse s 33

The requests LiDrary........cccoevernennesss s sessesens 36

SWiItching 10 reqUESTS......cccvecerccrrr s 37

Putting the Code TOgether ... 38
SUMMANY....ceitieiresere e n e p e e 39

Chapter 3: Using Beautiful Soup.......ccccussemmmnsssennmmssssnnnsnssssssnsnssssnnnnnnd 1

Installing BEAULITUl SOUPcvevreverieriere st rersere s se e se s sresessessesnens 4
Simple EXAMPIES ..ot st 42
Parsing HTML TeXI......cccoiirrsreners s ses e snes 42
Parsing Remote HTML ... ses e 44
Parsing @ File........ccccvvercereerercirsir e rer s s 45
Difference Between find and find_all...........cccooeornvnnnennesnnserrcnereenne 45
EXtracting All LINKScccoerervriirre s s e sse e se e s s 45
Extracting All IMAQES.......ceccerververrererrirres s s s s e e 46
Finding Tags Through Their Attributes ..., 46
Finding Multiple Tags Based on Propertycccccvvvvinvnnnneniensensenssesessenns 47
Changing Content........c.coivvririerenr s s sa e sne s 48
Finding COMMENTS......cccvierereriereresrssereresss s s e sessessessessssessessesassessessesaes 52
Converting a Soup t0 HTML TEXT.......cccvierererrerieresessessese s sessessessesessessessees 53
Extracting the Required Informationccccovvrvnininncncnn e 53
Identifying, Extracting, and Calling the Target URLS..........ccccocvvrvererenseniernenns 54
Navigating the Product Pagescccccvveverrirsensesercerses s s 56

TABLE OF CONTENTS

Extracting the Information.........ccccvvrvninnninins 58
UNFOreseen ChANGEScocvververerreversersesessssessessessessssessessessssessessessesssssssesseses 63
Exporting the Data ..o 65
TO BV b p s 66
TO JSON ... nn e e e nn s 73
To a Relational Databaseccovererenernsereneneree e 76
To an NOSQL Databasecccvvrremnmrerermssssesesesssssssese e sesssssssssesens 83
Performance IMprovements ... ssesnens 85
Changing the Parser ... s 86
Parse Only What's Needed...........ccoovcnirinnnnsnicns s sessesnns 87
Saving While WOrking........cccoveevrenrnscrncsere e ses s e ssssesessesessesesessesens 88
Developing on @ Long RUN ... 90
Caching Intermediate Step ReSUIScccovvvrvriinncncn e 90
Caching Whole WEDSILES.........ccccerernrrininnninsinse s 91
Source Code for this Chapter ... 95
SUMMANY....ceitieernesrrre s r e e s n e nr e e 95

Chapter 4: USing SCrapycuucermrsssssnnsssssssssssssssssssssssssssssssssssnsssssnnnnsss3 7

INSTAIING SCrAPY ..vvverrerreririere s s s ae s se s s s e e s e saesaess e e nsesaees 98
Creating the Projectcccoceerecvnerns e 98
Configuring the ProjeCt ... 100
L= 10T 10 (0T SRR 102
MiIAAIEBWAIE.........coereeerreerereere s 102
PIPEIINE ...t 103
=] 1] TSRS 104
L LTI (0] S 104
Implementing the Sainsbury SCrapercoccvvvvniesnncnnes e 106
What'’s This allowed_domains ADOUL?..........ccceveriniiniinsinssnssses e 107
Preparation........ccoccvinnesinsen s e 108

TABLE OF CONTENTS

def parse(Self, FESPONSE)ccvvvcerreeririrrr e 110
Navigating Through Categoriesccccvrerererrersersessnsessersessesessessessessesessessens 112
Navigating Through the Product Listings........c.cccevvrrinvnnnnininsenseenenienens 116
Extracting the Data...........cccccvvrinninininin e e 118
Where t0 Put the Data?..........ccoovvnnnnscssnssses e 123
RUNNINg the SPIET.....cccvevererrere s rere e sre s e e ssesnens 127
EXporting the RESUILS.......ccceveeercerere e 133
TO BVt s bbb 134

TO JSON ... bbb e e 135

TO DALADASES ..o 137
Bring YOUr OWN EXPOILETccvvveruerrererseressessssessessessssessessessessssessessessesensensens 143
Caching With SCrapycccccvrivrierrcr e e 153
Storage SOIULIONSccoveeerercrrerrc e 154

(07 T 1 Lo o] 1T T 156
Downloading IMAQESccoeriinirircrirrre e 158
Using Beautiful Soup With SCrapy........ccccvevrrrrrnnenesenesnseseseses s 161
[0 o T OSSR 162
(A Bit) Advanced Configurationccccveeriennnnsninesnsensese s sessessens 162
LOG_LEVEL ...t ssss s s s e ss s ssssssssanas 163
CONCURRENT_REQUESTScocerertrrirerenis s sse e s e s e ssssessessesnes 164
DOWNLOAD_DELAY.....cccerertertrrereresessere et sesse e ssssesessessssessessesssssssessessens 164
AULOENrOtHING......cceeerecerese e ———— 165
COOKIES_ENABLEDcoeitriererierinserese s sese e ses e ssesassessessessssessensesnes 166
SUMMAIY.c.ueiteirerere e s s e s s e e s e s s sae e e e e e s aese e e e e s aesae e e e naenaees 167
Chapter 5: Handling JavaScript........cccccmmusmmmssmmmsssssmssssssssssssssssnsnas 169
Reverse ENGINEEIiNg.......c.ooorererernererereseseressese s ses e se e seenes 169
Thoughts on Reverse ENgiNEering..........ccovoererrencrersererenersesesenesessesesessesenns 172
1T 172

viii

TABLE OF CONTENTS

3] 0] 2T £ RS 172
RS o o 173

A DynamiC EXAMPIE.......ccceririeriierererser e sses e sesses s s ssesssesnessesnens 176
Integration With SCIapycccvrerererrrieniesrsersere s ses e saesessesaesnes 177
Adapting the basic SPIErccvcvvriererrrrrere e 179
What Happens When Splash Isn’t RUNNING?.........ccccvvvevnnnsenienenessensenens 183

RS 111111 R 183

B3 T=] T 1] RS 183
PrereqUISITES ...cvevveverieriee e rerrer e s e s s 184
BaSIC USAQE......cevverriririirrierirersie s s e s s s s s ss e s s sn e s s 185
Integration With SCrapycccvrerernrrienieneserserese s s s s seesessesaesnes 186

RS 11111 189
Solutions for Beautiful SOUPcccvvcerninncnnsrn e 189
SPIASH....ce e ———————— 190

R T=] 1] 11T 191

RS 111111 192
SUMMAIY..c..citiiiire e e e e s e e R p e e e nne s 192
Chapter 6: Website Scraping in the Cloudccccccmmrrrrnnsssssnnnnnnnnnns 193
SCrapy ClOUd.........cccorieireerre e e e e 193
Creating @ ProjECt........coucvvcernesinssersse s 194
Deploying YOUr SPIerccvvveriserrnesereser s se s s snssenens 195
Start and Wait.........coccoveeernnesnesnnesersse s s s snens 196
Accessing the Data...........ccovevnenenesennssnese s 198
AP ————————————————— 200
LimMItationS......ccoveeereceresers s 202
SUMMANY ..ot se s nn e nra s 203

ix

TABLE OF CONTENTS

PYINONANYWREIE ...t s s 203
The EXample SCriPL.......cccvirirerrrerrere s s ssssessesessessssessessesssssssessessens 203
PythonAnywhere Configurationcceveevvrerveriesssensensesesessessesessssessensens 204
Uploading the SCHPL.......ccccvvvririerr s snes 204
RunNing the SCHIPL.....ccccviivrirrerr s s sse e sseenens 206
This Works Just Manually..........c.ccerrererennnieniesssensessesesessessessesessssessessens 207
Storing Data in @ DAtabase?.........cccvvvverierrnnsenese s sees 210
RS 111111 R 214

What About Beautiful SOUP?ceeveveererrerereresrereressssesesse e sessessessesssssssessesees 214

SUMMANY..c..citiiiire e e s e e b s r e e e s ae e e e e nne s 216

INA@X..ueeeiiienssssnnssssnnsssssnsssssnsssssnsssssnnssssnnssssnnsnssnnnnssnnnnssnnsnssnnnnssnnnnnnns 219

About the Author

Gabor Laszl6 Hajba is a Senior Consultant

at EBCONT enterprise technologies, who
specializes in Java, Python, and Crystal. He

is responsible for designing and developing
customer needs in the enterprise software
world. He has also held roles as an Advanced
Software Engineer with Ziihlke Engineering,
and as a freelance developer with Porsche
Informatik. He considers himself a workaholic,

(hard)core and well-grounded developer,
pragmatic minded, and freak of portable apps
and functional code.

He currently resides in Sopron, Hungary
with his loving wife, Agnes.

About the Technical Reviewer

Chaim Krause is an expert computer
programmer with over thirty years of
experience to prove it. He has worked as a lead
tech support engineer for ISPs as early as 1995,
as a senior developer support engineer with
Borland for Delphi, and has worked in Silicon
Valley for over a decade in various roles,
including technical support engineer and

developer support engineer. He is currently
a military simulation specialist for the US Army’s Command and General
Staff College, working on projects such as developing serious games for
use in training exercises.

He has also authored several video training courses on Linux topics
and has been a technical reviewer for over twenty books, including iOS
Code Testing, Android Apps for Absolute Beginners (4ed), and XML
Essentials for C# and .NET Development (all Apress). It seems only natural
then that he would be an avid gamer and have his own electronics lab
and server room in his basement. He currently resides in Leavenworth,
Kansas with his loving partner, Ivana, and a menagerie of four-legged
companions: their two dogs, Dasher and Minnie, and their three cats,
Pudems, Talyn, and Alaska.

xiii

Acknowledgments

Many people have contributed to what is good in this book. Remaining
errors and problems are the author’s alone.

Thanks to Apress for making this book happen. Without them, I'd have
never considered approaching a publisher with my book idea.

Thanks to the editors, especially Jill Balzano and James Markham.
Their advices made this book much better.

Thanks to Chaim Krause, who pointed out missing technical
information that may be obvious to me but not for the readers.

Last but not least, a big thank you to my wife, Agnes, for enduring the
time invested in this book.

I hope this book will be a good resource to get your own website
scraping projects started!

Introduction

Welcome to our journey together exploring website scraping solutions

using the Python programming language!
As the title already tells you, this book is about website scraping with
Python. I distilled my knowledge into this book to give you a useful manual

if you want to start data gathering from websites.

Website scraping is (in my opinion) an emerging topic.

I expect you have Python programming knowledge. This means I won’t

clarify every code block I write or constructs I use. But because of this,

you're allowed to differ: every programmer has his/her own unique coding

style, and your coding results can be different than mine.

This book is split into six chapters:

1.

Getting Started is to get you started with this book:
you can learn what website scraping is and why it
worth writing a book about this topic.

Enter the Requirements introduces the
requirements we will use to implement website
scrapers in the follow-up chapters.

Using Beautiful Soup introduces you to Beautiful
Soup, an HTML content parser that you can use to
write website scraper scripts. We will implement

a scraper to gather the requirements of Chapter 2
using Beautiful Soup.

xvii

INTRODUCTION

4. Using Scrapy introduces you to Scrapy, the (in my

opinion) best website scraping toolbox available

for the Python programming language. We will use
Scrapy to implement a website scraper to gather the
requirements of Chapter 2.

Handling JavaScript shows you options for how
you can deal with websites that utilize JavaScript to
load data dynamically and through this, give users
a better experience. Unfortunately, this makes basic
website scraping a torture but there are options that
you can rely on.

Website Scraping in the Cloud moves your scrapers
from running on your computer locally to remote
computers in the Cloud. I'll show you free and paid
providers where you can deploy your spiders and
automate the scraping schedules.

You can read this book from cover to cover if you want to learn the

different approaches of website scraping with Python. If you're interested

only in a specific topic, like Scrapy for example, you can jump straight to

Chapter 4, although I recommend reading Chapter 2 because it contains

the description of the data gathering task we will implement in the vast
part of the book.

xviii

CHAPTER 1

Getting Started

Instead of installation instructions, which follow later for each library, we
will dive right into deep water: this chapter introduces website scraping in
general and the requirements we will implement throughout this book.

You may expect a thorough introduction into website scraping, but
because you are reading this book I expect you already know what website
scraping is and you want to learn how to do it with Python.

Therefore, I'll just give you a glance at the topic and jump right into the
depths of creating a script that scrapes websites!

Website Scraping

The need to scrape websites came with the popularity of the Internet,
where you share your content and a lot of data. The first widely known
scrapers were invented by search engine developers (like Google or
AltaVista). These scrapers go through (almost) the whole Internet, scan
every web page, extract information from it, and build an index that you
can search.

Everyone can create a scraper. Few of us will try to implement such a
big application, which could be new competition to Google or Bing. But
we can narrow the scope to one or two web pages and extract information
in a structured manner—and get the results exported to a database or
structured file (JSON, CSV, XML, Excel sheets).

© Gabor Lészl6 Hajba 2018
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_1

CHAPTER 1 GETTING STARTED

Nowadays, digital transformation is the new buzzword companies use
and want to engage. One component of this transformation is providing
data access points to everyone (or at least to other companies interested
in that data) through APIs. With those APIs available, you do not need to
invest time and other resources to create a website scraper.

Even though providing APIs is something scraper developers won't
benefit from, the process is slow, and many companies don’t bother creating
those access points because they have a website and it is enough to maintain.

Projects for Website Scraping

There are a lot of use cases where you can leverage your knowledge of
website scraping. Some might be common sense, while others are extreme
cases. In this section you will find some use cases where you can leverage
your knowledge.

The main reason to create a scraper is to extract information from a
website. This information can be a list of products sold by a company,
nutrition details of groceries, or NFL results from the last 15 years. Most of
these projects are the groundwork for further data analysis: gathering all
this data manually is a long and error-prone process.

Sometimes you encounter projects where you need to extract data
from one website to load it into another—a migration. I recently had a
project where my customer moved his website to WordPress and the
old blog engine’s export functionality wasn’t meant to import it into
WordPress. I created a scraper that extracted all the posts (around
35,000) with their images, did some formatting on the contents to use
WordPress short codes, and then imported all those posts into the new
website.

A weird project could be to download the whole Internet! Theoretically
itis not impossible: you start at a website, download it, extract and follow
all the links on this page, and download the new sites too. If the websites

CHAPTER 1 GETTING STARTED

you scrape all have links to each other, you can browse (and download)
the whole Internet. I don’t suggest you start this project because you won't
have enough disk space to contain the entire Internet, but the idea is
interesting. Let me know how far you reached if you implement a scraper
like this.

Websites Are the Bottleneck

One of the most difficult parts of gathering data through websites is that
websites differ. I mean not only the data but the layout too. It is hard to
create a good-fit-for-all scraper because every website has a different
layout, uses different (or no) HTML IDs to identify fields, and so on.

And if this is not enough, many websites change their layout
frequently. If this happens, your scraper is not working as it did previously.
In these cases, the only option is to revisit your code and adapt it to the
changes of the target website.

Unfortunately, you won't learn secret tricks that will help you create a
scraper that always works—if you want to write specialized data extractors.
I will show some examples in this book that will always work if the HTML

standard is in use.

Tools in This Book

In this book you will learn the basic tools you can use in Python to do your
website scraping. You will soon realize how hard it is to create every single
piece of a scraper from scratch.

But Python has a great community, and a lot of projects are available
to help you focus on the important part of your scraper: data extraction.
I will introduce you to tools like the requests library, Beautiful Soup, and
Scrapy.

CHAPTER 1 GETTING STARTED

The requests library is a lightweight wrapper over the tedious task of
handling HTTP, and it emerged as the recommended way:

The Requests package is recommended for a higher level HT'TP
client interface.

— Python 3 documentation

Beautiful Soup isa content parser. It is not a tool for website scraping
because it doesn’t navigate pages automatically and it is hard to scale. But
it aids in parsing content, and gives you options to extract the required
information from XML and HTML structures in a friendly manner.

Scrapy is a website scraping framework/library. It is much more
powerful than Beautiful Soup, and it can be scaled. Therefore, you can
create more complex scrapers easier with Scrapy. But on the other side,
you have more options to configure. Fine-tuning Scrapy can be a problem,
and you can mess up a lot if you do something wrong. But with great power
comes great responsibility: you must use Scrapy with care.

Even though Scrapy is the Python library created for website
scraping, sometimes I just prefer a combination of requests and
Beautiful Soup because it is lightweight, and I can write my scraper in a
short period—and I do not need scaling or parallel execution.

Preparation

When starting a website scraper, even if it is a small script, you must
prepare yourself for the task. There are some legal and technical
considerations for you right at the beginning.

In this section I will give you a short list of what you should do to be
prepared for a website scraping job or task:

1. Do the website’s owners allow scraping? To find out,
read the Terms & Conditions and the Privacy Policy
of the website.

CHAPTER 1 GETTING STARTED

2. Canyou scrape the parts you are interested in? See
the robots. txt file for more information and use a
tool that can handle this information.

3. What technology does the website use? There are free
tools available that can help you with this task, but
you can look at the website’s HTML code to find out.

4. What tools should I use? Depending on your task
and the website’s structure, there are different paths
you can choose from.

Now let’s see a detailed description for each item mentioned.

Terms and Robots

Scraping currently has barely any limitations; there are no laws defining
what can be scraped and what cannot.

However, there are guidelines that define what you should respect.
There is no enforcing; you can completely ignore these recommendations,
but you shouldn't.

Before you start any scraping task, look at the Terms & Conditions and
Privacy Policy of the website you want to gather data from. If there is no
limitation on scraping, then you should look at the robots. txt file for the
given website(s).

When reading the terms and conditions of a website, you can search
for following keywords to find restrictions:

e scraper/scraping
o crawler/crawling
e bot

o spider

. program

CHAPTER 1 GETTING STARTED

Most of the time these keywords can be found, and this makes your
search easier. If you have no luck, you need to read through the whole legal
content and it is not as easy—at least I think legal stuff is always dry to read.

In the European Union there’s a data protection right that has been
live for some years but strictly enforced from 2018: GDPR. Keep the
private data of private persons out of your scraping—you can be held
liable if some of it slips out into public because of your scraper.

robots.txt

Most websites provide a file called robots.txt, which is used to tell web
crawlers what they can scrape and what they should not touch. Naturally, it
is up to the developer to respect these recommendations, but I advise you
to always obey the contents of the robots. txt file.

Let’s see one example of such a file:

User-agent: *

Disallow: /covers/

Disallow: /api/

Disallow: /*checkval

Disallow: /*wicket:interface

Disallow: ?print view=true

Disallow: /*/search

Disallow: /*/product-search

Allow: /*/product-search/discipline

Disallow: /*/product-search/discipline?*facet-subj=
Disallow: /*/product-search/discipline?*facet-pdate=
Disallow: /*/product-search/discipline?*facet-type=category

The preceding code block is from www.apress.com/robots.txt. As
you can see, most content tells what is disallowed. For example, scrapers
shouldn’t scrape www.apress.com/covers/.

6

http://www.apress.com/robots.txt
http://www.apress.com/covers/

CHAPTER 1 GETTING STARTED

Besides the Allow and Disallow entries, the User-agent can be
interesting. Every scraper should have an identification, which is provided
through the user agent parameter. Bigger bots, created by Google and Bing,
have their unique identifier. And because they are scrapers that add your
pages to the search results, you can define excludes for these bots to leave
you alone. Later in this chapter, you will create a script which will examine
and follow the guidelines of the robots.txt file with a custom user agent.

There can be other entries in a robots.txt file, but they are not
standard. To find out more about those entries, visit
https://en.wikipedia.org/wiki/Robots_exclusion_standard.

Technology of the Website

Another useful preparation step is to look at the technologies the targeted
website uses.

There is a Python library called builtwith, which aims to detect the
technologies a website utilizes. The problem with this library is that the last
version 1.3.2was released in 2015, and it is not compatible with Python 3.
Therefore, you cannot use it as you do with libraries available from the PyPI.!

However, in May 2017, Python 3 support has been added to the
sources, but the new version was not released (yet, I'm writing this in
November 2017). This doesn’t mean we cannot use the tool; we must
manually install it.

First, download the sources from https://bitbucket.org/
richardpenman/builtwith/downloads/. If you prefer, you can clone the
repository with Mercurial to stay up to date if new changes occur.

After downloading the sources, navigate to the folder where you
downloaded the sources and execute the following command:

pip install .

'PyPI - the Python Package Index

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://bitbucket.org/richardpenman/builtwith/downloads/
https://bitbucket.org/richardpenman/builtwith/downloads/

CHAPTER 1 GETTING STARTED

The command installs builtwith to your Python environment and you
can use it.

Now if you open a Python CLI, you can look at your target site to see
what technologies it uses.

>>> from builtwith import builtwith

>>> builtwith("http://www.apress.com")
{'javascript-frameworks': ['AngularJS', 'jQuery'],
"font-scripts': ['Font Awesome'], 'tag-managers':
['CGoogle Tag Manager'], 'analytics': ['Optimizely']}

The preceding code block shows which technologies Apress uses for
its website. You can learn from Angular]S that if you plan to write a scraper,
you should be prepared to handle dynamic content that is rendered with
JavaScript.

builtwith is not a magic tool, it is a website scraper that downloads
the given URL; parses its contents; and based on its knowledge base,
it tells you which technologies the website uses. This tool uses basic
Python features, which means sometimes you cannot get information
in the website you are interested in, but most of the time you get enough

information.

Using Chrome Developer Tools

To walk through the website and identify the fields of the requirements, we
will use Google Chrome’s built-in DevTools. If you do not know what this

tool can do for you, here is a quick introduction.

The Chrome Developer Tools (DevTools for short), are a set of
web authoring and debugging tools built into Google Chrome.

The DevTools provide web developers deep access into the
internals of the browser and their web application. Use the
DevTools to efficiently track down layout issues, set JavaScript
breakpoints, and get insights for code optimization.

CHAPTER 1 GETTING STARTED

As you can see, DevTools give you tools to see inside the workings of
the browser. We don’t need anything special; we will use DevTools to see
where the information resides.

In this section I will guide us with screenshots through the steps
I usually do when I start (or just evaluate) a scraping project.

Set-up

First, you must prepare to get the information. Even though we know
which website to scrape and what kind of data to extract, we need some
preparation.

Basic website scrapers are simple tools that download the contents of
the website into memory and then do extraction on this data. This means
they are not capable of running dynamic content just like JavaScript, and
therefore we have to make our browser similar to a simple scraper by
disabling JavaScript rendering.

First, right-click with your mouse on the web page and from the menu
select “Inspect,” as shown in Figure 1-1.

Back

Reload

Save as... Ctrl+S
Print... Ctrl+P
Cast...

Translate to English

View page source

Inspect [} Ctrl+Shift+l

Figure 1-1. Starting Chrome’s DevTools

CHAPTER 1 GETTING STARTED

Alternatively, you can press CTRL+SHIFT+I in Windows or 38+{+I on a

Mac to open the DevTools window.
Then locate the settings button (the three vertically aligned dots, as

shown in Figure 1-2.) and click it:

[w ﬂ Elements Console Sources Network Performance Memory Application Security Audits P X
v vels ¥

© top Filte Default levels bockside O O O OO

3
Hide console drawer Esc
Search all files Ctrl + Shift + F
Open file Ctrl+P
Mare tools >
Shortcuts
Help >

Figure 1-2. The Settings menu is located under the three dots

Alternatively, you can press F1 in Windows.
Now scroll down to the bottom of the Seftings screen and make sure

Disable JavaScript is checked, as shown in Figure 1-3.

10

CHAPTER 1

Settings Preferences

Preferences IJ Record heap allocation stack traces
Workspace [Hide chrome frame in Layers view

Blackboxing @ Show native functions in JS Profile

Devices

Throttling Console

Shortcuts) Hide network messages

1) Selected context only
J User messages only

L) Log XMLHttpRequests

L) Show timestamps

W Autocomplete from history
| Enable custom formatters

\J Preserve log upon navigation
Extensions

Link handling:

Debugger
& Disable JﬁaScript

| Disable async stack traces

DevTools

L) Auto-open DevTools for popups

Restore defaults and reload

Figure 1-3. Disabling JavaScript

GETTING STARTED

Now reload the page, exit the Settings window, but stay in the inspector
view because we will use the HTML element selector available here.

11

CHAPTER 1 GETTING STARTED

Note Disabling JavaScript is necessary if you want to see how your
scraper sees the website.

Later in this book, you will learn options how to scrape websites that
utilize JavaScript to render dynamic content.

But to fully understand and enjoy those extra capabilities, you must
learn the basics.

Tool Considerations

If you are reading this book, you will write your scrapers most likely with
Python 3. However, you must decide on which tools to use.

In this book you will learn the tools of the trade and you can decide
on your own what to use, but now I'll share with you how I decide on an
approach.

If you are dealing with a simple website—and by simple, I mean
one that is not using JavaScript excessively for rendering—then you
can choose between creating a crawler with Beautiful Soup +
requests or use Scrapy. If you must deal with a lot of data and want
to speed things up, use Scrapy. In the end, you will use Scrapy in 90%
of your tasks, and you can integrate Beautiful Soup into Scrapy and
use them together.

If the website uses JavaScript for rendering, you can either reverse
engineer the AJAX/XHR calls and use your preferred tool, or you can reach
out to a tool that renders websites for you. Such tools are Selenium and
Portia. I will introduce you to these approaches in this book and you can
decide which fits you best, which is easier for you to use.

12

CHAPTER 1 GETTING STARTED

Starting to Code

After this lengthy introduction, it is time to write some code. I guess you
are keen to get your fingers “dirty” and create your first scrapers.

In this section we will write simple Python 3 scripts to get you started
with scraping and to utilize some of the information you read previously in
this chapter.

These miniscripts won’t be full-fledged applications, just small demos
of what is awaiting you in this book.

Parsing robots.txt

Let’s create an application that parses the robots. txt file of the target
website and acts based on the contents.

Python has a built-in module that is called robotparser, which
enables us to read and understand the robots.txt file and ask the parser if
we can scrape a given part of the target website.

We will use the previously shown robots. txt file from Apress.com.

To follow along, open your Python editor of choice, create a file called
robots.py, and add the following code:

from urllib import robotparser
robot parser = robotparser.RobotFileParser()

def prepare(robots txt url):
robot parser.set url(robots txt url)
robot_parser.read()

def is allowed(target url, user agent="*"):
return robot parser.can fetch(user agent, target url)

13

CHAPTER 1 GETTING STARTED

if _name_ == "' main_ ':
prepare('http://www.apress.com/robots.txt")

print(is_allowed('http://www.apress.com/covers/"))
print(is_allowed('http://www.apress.com/gp/python"'))

Now let’s run the example application. If we have done everything right
(and Apress didn’t change its robot guidelines), we should get back False
and True, because we are not allowed to access the covers folder, but there
is no restriction on the Python section.

> python robots.py
False
True

This code snippet is good if you write your own scraper and you don’t
use Scrapy. Integrating the robotparser and checking every URL before
accessing it helps you automate the task of honoring the website owners’
request what to access.

Previously, in this chapter, I mentioned that you can define user agent-
specific restrictions in a robots. txt file. Because I have no access to the
Apress website, I created a custom entry on my own homepage for this
book and this entry looks like this:

User-Agent: bookbot
Disallow: /category/software-development/java-software-
development/

Now to see how this works. For this, you must modify the previously
written Python code (robots.py) or create a new one to provide a user
agent when you call the is_allowed function because it already accepts a
user agent as argument.

from urllib import robotparser

robot_parser = robotparser.RobotFileParser()

14

CHAPTER 1 GETTING STARTED

def prepare(robots txt url):
robot parser.set url(robots txt url)
robot parser.read()

def is allowed(target url, user agent="*"):
return robot parser.can fetch(user agent, target url)

if _name__ == "' main_ ':
prepare('http://hajba.hu/robots.txt")

print(is_allowed('http://hajba.hu/category/software-
development/java-software-development/", 'bookbot'))

print(is_allowed('http://hajba.hu/category/software-
development/java-software-development/', 'my-agent'))

print(is_allowed('http://hajba.hu/category/software-
development/java-software-development/', 'googlebot'))

The preceding code will result in the following output:

False
True
True

Unfortunately, you cannot prevent malicious bots from scraping
your website because in most cases they will ignore the settings in your
robots. txt file.

Creating a Link Extractor

After this lengthy introduction, it is time to create our first scraper, which
will extract links from a given page.

This example will be simple; we won’t use any specialized tools for
website scraping, just libraries available with the standard Python 3
installation.

15

CHAPTER 1 GETTING STARTED

Let’s open a text editor (or the Python IDE of your choice). We will
work in a file called 1ink_extractor.py.

from urllib.request import urlopen
import re

def download page(url):
return urlopen(url).read().decode('utf-8")

def extract links(page):
link regex = re.compile('<a[*>]+href=["\"](.*?)["\"']",
re.IGNORECASE)
return link regex.findall(page)

if _name_ ==" main_"':
target url = 'http://www.apress.com/'
apress = download page(target url)
links = extract links(apress)

for link in links:
print(link)

The preceding code block extracts all the links, which you can find at
the Apress homepage (on the first page only). If you run the code with the
Python command link_extractor.py, you will see a lot of URLs that start
with a slash (/) without any domain information. This is because those are
internal links on the apress.com website. To fix this, we could manually
look for such entries in the links set, or use a tool already present in the
Python standard library: urljoin.

from urllib.request import urlopen, urljoin
import re

def download page(url):
return urlopen(url).read().decode('utf-8")

16

CHAPTER 1 GETTING STARTED

def extract links(page):
link regex = re.compile('<a[">]+href=["\"](.*?)["\']",
re.IGNORECASE)
return link regex.findall(page)

if _name__ == "'_ main_"':
target _url = 'http://www.apress.com/'
apress = download page(target url)
links = extract links(apress)

for link in links:
print(urljoin(target_url, link))

As you can see, when you run the modified code, this new method
adds http://www.apress.comto every URL that is missing this prefix,
for example http://www.apress.com/gp/python, butleaves others like
https://twitter.com/apress intact.

The previous code example uses regular expressions to find all the
anchor tags (<a>) in the HTML code of the website. Regular expressions
are a hard topic to learn, and they are not easy to write. That’s why we
won'’t dive deeper into this topic and will use more high-level tools, like
Beautiful Soup, in this book to extract our contents.

Extracting Images

In this section we will extract image sources from the website. We won't
download any images yet, just lay hands on the information about where
these images are in the web.

Images are very similar to links from the previous section, but they are
defined by the tag and have a src attribute instead of an href.

With this information you can stop here and try to write the extractor
on your own. Following, you'll find my solution.

17

http://www.apress.com
http://www.apress.com/gp/python
https://twitter.com/apress

CHAPTER 1 GETTING STARTED

from urllib.request import urlopen, urljoin
import re

def download page(url):
return urlopen(url).read().decode('utf-8")

def extract image locations(page):
img regex = re.compile('<img[~>]+src=["\"](.*?)["\"']",
re.IGNORECASE)

return img regex.findall(page)

if name_ ==" main_"':
target url = 'http://www.apress.com/'
apress = download page(target url)
image locations = extract image locations(apress)

for src in image locations:
print(urljoin(target url, src))

Ifyou take a close look, I modified just some variable names and the
regular expression. I could have used the link extractor from the previous
section and changed only the expression.

Summary

In this chapter you've gotten a basic introduction to website scraping and
how to prepare for a scraping job.

Besides the introduction, you created your first building blocks for
scrapers that extracted information from a web page, like links and image
sources.

As you may guess, Chapter 1 was just the beginning. There is a lot more
coming up in the following chapters.

You will learn the requirements for which you must create a scraper,
and you will write your first scrapers using tools like Beautiful Soup and
Scrapy. Stay tuned and continue reading!

18

CHAPTER 2

Enter the
Requirements

After the introductory chapter, it is time to get you started with a real
scraping project.

In this chapter you will learn what data you must extract throughout
the next two chapters, using Beautiful Soup and Scrapy.

Don’t worry; the requirements are simple. We will extract information
from the following website: https://www.sainsburys.co.uk/.

Sainsbury’s is an online shop with a lot of goods provided. This makes
a great source for a website scraping project.

I'll guide you to find your way to the requirements, and you'll learn
how I approach a scraping project.

Sainsbury’s five well for fess

Happy Halloween « HAPPY +
T e ok HALLOWEEN

SOMA Craapy recipa ideas

Find what you're looking for

Sainsburys.co.uk uses cookies to enhance your experience.,
W s cockies 1 give yos the best anline experience. By eontiuing In e our aebsile, youTe agroeing 1o ou yae of Coskies m ————
Figure 2-1. The landing page of Sainsbury'’s at Halloween 2017

© Gabor Lészl6 Hajba 2018 19
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_2

https://www.sainsburys.co.uk/

CHAPTER 2 ENTER THE REQUIREMENTS

The Requirements

If you look at the website, you can see this is a simple web page with a lot of
information. Let me show you which parts we will extract.

One idea would be to extract something from the Halloween-themed
site (see Figure 2-1. for their themed landing page). However, this is not an
option because you cannot try this yourself; Halloween is over when you
read this—at least for 2017, and I cannot guarantee that the future sales will
be the same.

Therefore, you will extract information on groceries. To be more
specific, you will gather nutrition details from the “Meat & fish”
department.

For every entry, which has nutrition details, you extract the following
information:

e Name of the product

e URL of the product

o Item code

e Nutrition details per 100g:
o Energy in kilocalories
e Energy in kilojoules
o Fat
o Saturates
e Carbohydrates

o Total sugars

e Starch
o Fibre

e Protein
o Salt

20

CHAPTER 2 ENTER THE REQUIREMENTS

o Country of origin

o Price per unit

e Unit

e Number of reviews
o Average rating

This looks like a lot, but do not worry! You will learn how to extract this
information from all the products of this department with an automated
script. And if you are keen and motivated, you can extend this knowledge
and extract all the nutrition information for all the products.

Preparation

As I mentioned in the previous chapter, before you start your scraper
development, you should look at the website’s terms and conditions, and
the robots.txt file to see if you can extract the information you need.

When writing this part (November 2017), there was no entry on scraper
restrictions in the terms and conditions of the website. This means, you
can create a bot to extract information.

The next step is to look at the robots. txt file, found at
http://sainsburys.co.uk/robots.txt.

PUBLIC IP _ADDR__ - Internet facing IP Address or
Domain name.

User-agent: *

Disallow: /webapp/wcs/stores/servlet/OrderItemAdd
Disallow: /webapp/wcs/stores/servlet/OrderItemDisplay
Disallow: /webapp/wcs/stores/servlet/OrderCalculate
Disallow: /webapp/wcs/stores/servlet/QuickOrderCmd
Disallow: /webapp/wcs/stores/servlet/InterestItemDisplay

21

http://sainsburys.co.uk/robots.txt

CHAPTER 2

Disallow:
Disallow:
Disallow:
Disallow:

Disallow:
Disallow:

Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:

Disallow:
Disallow:

ENTER THE REQUIREMENTS

/webapp/wcs/stores/servlet/ProductDisplaylargeImageView
/webapp/wcs/stores/servlet/QuickRegistrationFormView
/webapp/wcs/stores/servlet/UserRegistrationAdd
/webapp/wcs/stores/servlet/
PostCodeCheckBeforeAddToTrolleyView
/webapp/wcs/stores/servlet/Logon
/webapp/wcs/stores/servlet/
RecipesTextSearchDisplayView
/webapp/wcs/stores/servlet/PostcodeCheckView
/webapp/wcs/stores/servlet/ShoppinglListDisplay
/webapp/wcs/stores/servlet/gb/groceries/get-ideas/
advertising
/webapp/wcs/stores/servlet/gb/groceries/get-ideas/
development
/webapp/wcs/stores/servlet/gb/groceries/get-ideas/
dormant

/shop/gb/groceries/get-ideas/dormant/
/shop/gb/groceries/get-ideas/advertising/
/shop/gb/groceries/get-ideas/development

Sitemap: http://www.sainsburys.co.uk/sitemap.xml

In the code block you can see what is allowed and what is not, and this

robots.txt is quite restrictive and has only Disallow entries but this is for

all bots.

What can we find out from this text? For example, you shouldn’t create

bots that order automatically through this website. But this is unimportant

for us because we only need to gather information—no purchasing. This

robots.txt file has no limitations on our purposes; we are free to continue

our preparation and scraping.

22

CHAPTER 2 ENTER THE REQUIREMENTS

What would limit our purposes? Good question. An entry in the
robots.txt referencing the “Meat & fish” department could limit
our scraping intent. A sample entry would look like this:

User-agent: *
Disallow: /shop/gb/groceries/meat-fish/
Disallow: /shop/gb/groceries/

But this won’t allow search engines to look up the goods Sainsbury’s
is selling, and that would be a big profit loss.

Navigating Through “Meat & fishFish”

As mentioned at the beginning of this chapter, we will extract data from
the “Meat & fish” department. The URL of this part of the website is
www.sainsburys.co.uk/shop/gb/groceries/meat-fish.

Let’s open the URL in our Chrome browser, disable JavaScript,
and reload the browser window as described in the previous chapter.
Remember, disabling JavaScript enables you to see the website’s HTML
code as a basic scraper will see it.

While I am writing this, the website of the department looks like
Figure 2-2.

23

http://www.sainsburys.co.uk/shop/gb/groceries/meat-fish

CHAPTER 2 ENTER THE REQUIREMENTS

Hutowoan Chintmirs Frul & vogeéstks Moot & fsh Doy Chlod Ruwy Froon Food cupbonrd Diks. M & ooty Rty & Lok
b o

L
Vst & s Already a custoamer?

Mook yo rogestoract® Regisker Mo

Pew Cusiomer?

o yous perstcnedo I chack wo dolvet
your ava

]

Don't miss
Herta Frankfurters

. dm o conee 5 el Wt Do st
Voria Frankfuners

Figure 2-2. The “Meat & fish” department’s page inspected with
Chrome’s DevTools

For our purposes, the navigation menu on the left side is interesting. It
contains the links to the pages where we will find products to extract. Let’s
use the selection tool (or hit CTRL-SHIFT-C) and select the box containing
these links, as shown in Figure 2-3.

Lo i] SRR
e - am
- i -
Mot et reeoere 47 Raglster Now
ot & ey » THE ORGIMAL
ot »
e i . i o - 5 How customer?
e -
a3 et B S5 :r;‘ posiood 10 Chack we doelives in
ot e
i
e [creck postcoce]
o
Dont miss

S

Herta Frankfurters @ trgorant Informatian

T e Db A ek

C200, @i0e o7 creene & class Hot Dog wih
Harta Frankbhuters

S At L R
ety

= -aTm

Figure 2-3. Selecting the navigation bar on the left

Now we can see in the DevTools that every link is in a list element
(<1i> tag) of an unordered list (), with class categories departments.
Note down this information because we will use it later.

24

CHAPTER 2 ENTER THE REQUIREMENTS

Links, which have a little arrow pointing to the right (>), tell us they
are just a grouping category and we will find another navigation menu
beneath them if we click them. Let’s examine the Roast dinner option, as
shown in Figure 2-4.

Top sellers Beef b
Roast dinner > Chicken

Chicken & turkey Duck

Beef Gammaon

Fish & seafood Lamb

Bacon & sausages Pork

Ham, deli meats & dips Gravy & sauce

Pork & gammon Yorkshire puds, stuffing & sides

Mince Vegetables

Lamb

Duck, game & venison
Ready to cook

Taste the Difference & organic

Figure 2-4. The “Roast dinner” submenu

Here we can see that the page has no products but another list with
links to detailed sites. If we look at the HTML structure in DevTools, we can
see that these links are again elements of an unordered list. This unordered
list has the class categories aisles.

Now we can go further into the Beef category, and here we have
products listed (after a big filter box), as shown in Figure 2-5.

25

CHAPTER 2 ENTER THE REQUIREMENTS

E} Sort by: (Favourites First ~)
Perpage [36 v) 12
© offer

Sainsbury’s 21 Day Matured Sainsbury's 21 Day Matured
British Fatted Medium Beef British or Insh Beef Roasting
Sainsbury's 30 Day Matured Roasting Jeint Joint, Large
British Beef Roasting Joint
Large, Taste the Difference
Save £3.00: Was £12.00 Now
£9.00 £11.500kg £11.50kgq £8.00ka £8.00/kg
Price shown is the maximum Price shown is the maximum
£9.00lkg £9.00xa price for the weight range price for the weight range
Price shown is the maximum indicated indicated
price for the weight range
indicated Likg-129kg/€1484 W 15kg-172kg /€1376 ¥)
12kg-153kg/£1377 ¥) 1 1 Add
1 m Reviaws (T) Reviews (58)

Figure 2-5. Products in the “Beef” category

@ 1mportant I

Alcohol promotions av
customers serviced fr
stores may differ from
browsing our site. Fle
full range of promotion

Here we need to examine two things: one is the list of products; the

other is the navigation.

If the category contains more products than 36 (this is the default
count to show on the website), the items will be split into multiple pages.
Because we want to extract information on all products, we must navigate

through all those pages. If we select the navigation, we can see it is again

an unordered list of the class pages, as shown in Figure 2-6.

26

CHAPTER 2 ENTER THE REQUIREMENTS

e me_pmgemmm— e mmemei mmemges pmmmp
method get >l fFOrm>
¥ <ul class="pages"> == 5@
P <1i class="previous">.</1li>
h P <1i class="current”>..</1i>
P <lir.
¥<li class="next">
® <a href="https://ww.sainsburys.co.uk/shop/CategoryDisplay?
pageSize=36&searchTe..
stld=&categoryld=289463&langld=44&beginIndex=36&storeld=19151¢
promotionld=">.
<fli>
<ful>

Figure 2-6. Unordered list with the class “pages”

From those list elements, we are interested in the one with the right-
pointing arrow symbol, which has the class next. This tells us if we have a
next page we must navigate to or not.

Now let’s find the link to the detail page of the products. All
the products are in an unordered list (again). This list has the class
productlLister gridView, as shown in Figure 2-7.

& = o (ronimee - ED
g 5e mrn t Doy Mt Samburys 21 Duy Matuvd
Lotk e S0t R Dol Pt S NEY] S ——

Sowmbarrys 30 Dy Slatrind Romting ot et | =

Eriw Bt Rossing Joat et
Lage. Taste T Dederaace

S £3 50 W £17.00 Nowr _

o £ 580711 kg €8 ek 7 00y -

fL P w1 e s [T r— e b e
siiton L Frcn K o gt s T o o gt T
ncaed L

Fres st an sy

Figure 2-7. Selecting the product list from the DevTools

Every product is in a list element with the class gridItem. If we open up
the details of one of those products we can see where the navigation link
is: located in some divs and an h3. We note that the last div has the class
productNameAndPromotions, as shown in Figure 2-8.

27

CHAPTER 2 ENTER THE REQUIREMENTS

Sarvtarys 10 Do Mamend .
4 el Hramieg ot

[ST S —

Figure 2-8. Selecting the product’s name

Now we reached the level of the products, and we can step further and
concentrate on the real task: identifying the required information.

Selecting the Required Information

We will discover the elements where our required information resides,
based on the product shown in Figure 2-9.

Sainsbury's 30 Day 0,000k £0 001
Matured British Beef 00k 20 000
Roasting Joint ";fz :‘;;{“;;a‘s_::fg;’:zf’g‘:"
Large, Taste the indicated
Difference

izkgasikg €13 W

Save £3.00: Was £1200

Now £900 :

Revisws (30)
llem code. 74806 3 Tweet
TR AT
Description 3

Taste the Difference British beef roasting joint - Topside or Toprump
or Siverside (large)

Nutrition

(COOKED AS PER INSTRUCTIONS)

ENERGY
876kJ .
210kcal

Figure 2-9. The detailed product page we will use for the example

28

CHAPTER 2 ENTER THE REQUIREMENTS

Now that we have the product, let’s identify the required information.

As previously, we can use the select tool, locate the required text, and read

the properties from the HTML code.

The name of the product is inside a header (h1), which is inside a div

with the class productTitleDescriptionContainer.

The price and the unit are in a div of the class pricing. The price itself

is in a paragraph (p) of the class pricePerUnit; the unitis in a span of the

class pricePerUnitUnit.

Extracting the rating is tricky because here we only see the stars for
the rating, but we want the numeric rating itself. Let’s look at the image’s

HTML definition, as shown in Figure 2-10.

Sainsbury's 30 Day
Matured British Beef
Roasting Joint
Large, Taste the

Difference
Save £3.00: Was £1200

Now £900 1
[~ -]

Figure 2-10. The image’s HTML code

We can see the location of the image is inside a 1label of class

numberOfReviews and it has an attribute, alt, which contains the decimal

value of the averages of the reviews. After the image, there is the text

containing the number of the reviews.
The item code is inside a paragraph of class itemCode.

29

CHAPTER 2 ENTER THE REQUIREMENTS

The nutrition information, as shown in Figrue 2-11, is inside a table
of class nutritionTable. Every row (tr) of this table contains one entry
of our required data: the header (th) of the row has the name and the
first column (td) contains the value. The only exception is the energy
information, because two rows contain the values but only the first one
the header. As you will see, we will solve this problem too with some
specific code.

Table of Nutritional Information

(cooked as per Per % based on RI for Average
instructions) 100g Adult
Energy 876kJ -
210kcal 11%
Saturates 5.6g 28%
Mono unsaturates 5.8g0 -
Carbohydrate <0.5g -
Fibre <0.59 -
Protein 25.29 50%
salt 0.25g 4%

RI= Reference Intakes of an average adult (8400kJ / 2000kcal)

Figure 2-11. The nutrition table

The country of origin, as shown in Figure 2-12, is inside a paragraph of
a div of class productText. This field is not unique: every description is in
aproductText div.This will make the extraction a bit complicated, but
there is a solution for this too.

30

CHAPTER 2 ENTER THE REQUIREMENTS

“Countey of Ordginc/bd

Country of Origin [
Produced in Unied Kingdom, Backed i Usited Kngdom. Produced
using Enfish Beef

Produced da United Kingdon, Pocked in Unized Kingden. Prodaced
wairg British Beef”
Ip

<l

Figure 2-12. Selecting the “Country of Origin” in Chrome’s DevTools

Even though we must extract many fields, we identified them easily
in the website. Now it is time to extract the data and learn the tools of the
trade!

Outlining the Application

After the requirements are defined and we’ve found each entry to extract, it
is time to plan the applications structure and behavior.

If you think a bit about how to approach this project, you will start with
big-bang, “Let’s hammer the code” thinking. But you will realize later that
you can break down the whole script into smaller steps. One example can
be the following:

1. Download the starting page, in this case the
“Meat & fish” department, and extract the links to
the product pages.

2. Download the product pages and extract the links to
the detailed products.

3. Extract the information we are interested in from the

already downloaded product pages.
4. Export the extracted information.

And these steps could identify functions of the application we are
developing.

31

CHAPTER 2 ENTER THE REQUIREMENTS

Step 1 has a bit more to offer: if you remember the analysis with
DevTools you have seen, some links are just a grouping category and you
must extract the detail page links from this grouping category.

Navigating the Website

Before we jump into learning the first tools you will use to scrape website
data, I want to show you how to navigate websites—and this will be another
building block for scrapers.

Websites consist of pages and links between those pages. If you
remember your mathematic studies, you will realize a website can be
depicted as a graph, as shown in Figure 2-13.

< T e

AN e

TR santunssetam sch beet et stk xZew

Figure 2-13. The navigation path

Because a website is a graph, you can use graph algorithms to navigate
through the pages and links: Breadth First Search (BFS) and Depth First
Search (DFS).

32

CHAPTER 2 ENTER THE REQUIREMENTS

Using BFS, you go one level of the graph and gather all the URLs
you need for the next level. For example, you start at the “Meat & fish”
department page and extract all URLs to the next required level, like
“Top sellers” or “Roast dinner.” Then you have all these URLs and go to
the Top sellers and extract all URLs that lead to the detailed product pages.
After this is done, you go to the “Roast dinner” page and extract all product
details from there too, and so on. At the end you will have the URLSs to all
product pages, where you can go and extract the required information.

Using DFS, you go straight to the first product through “Meat & fish,”
“Top sellers,” and extract the information from its site. Then you go to the
next product on the “Top sellers” page and extract the information from
there. If you have all the products from “Top sellers” then you move to
“Roast dinner” and extract all products from there.

If you ask me, both algorithms are good, and they deliver the same
result. I could write two scripts and compare them to see which one is
faster, but this comparison would be biased and flawed.*

Therefore, you will implement a script that will navigate a website, and
you can change the algorithm behind it to use BFS or DFS.

If you are interested in the Why? for both algorithms, I suggest you
consider Magnus Hetland’s book: Python Algorithms.?

Creating the Navigation

Implementing the navigation is simple if you look at the algorithms,
because this is the only trick: implement the pseudo code.

OK, I'was a bit lazy, because you need to implement the link extraction
too, which can be a bit complex, but you already have a building block
from Chapter 1 and you are free to use it.

'Read more on this topic here: www.ibm.com/developerworks/library/
j-jtp02225/index.html

Zwww . apress.com/gp/book/9781484200568

33

https://www.ibm.com/developerworks/library/j-jtp02225/index.html
https://www.ibm.com/developerworks/library/j-jtp02225/index.html
https://www.apress.com/gp/book/9781484200568

CHAPTER 2 ENTER THE REQUIREMENTS

def extract links(page):
if not page:
return []
link regex = re.compile('<a[*>]+href=["\"](.*?)["\"']",
re.IGNORECASE)
return [urljoin(page, link) for link in link regex.
findall(page)]

def get links(page url):
host = urlparse(page url)[1]
page = download page(page url)
links = extract links(page)
return [link for link in links if urlparse(link)[1] == host]

The two functions shown extract the page, and the links still point to
the Sainsbury’s website.

Note If you don’t filter out external URLs, your script may never
end. This is only useful if you want to navigate the whole WWW to see
how far you can reach from one website.

The extract links function takes care of an empty or None page.
urljoin wouldn’t bleat about this but re.findall would throw an
exception and you don’t want that to happen.

The get_links function returns all the links of the web page that
point to the same host. To find out which host to use, you can utilize the
urlparse function,® which returns a tuple. The second parameter of this
tuple is the host extracted from the URL.

*https://docs.python.org/3/1library/urllib.parse.html

34

https://docs.python.org/3.libraty/urllib.parse.html

CHAPTER 2 ENTER THE REQUIREMENTS

Those were the basics; now come the two search algorithms:

def depth first search(start url):
from collections import deque
visited = set()
queue = deque()
queue.append(start url)
while queue:
url = queue.popleft()
if url in visited:
continue
visited.add(url)
for link in get_links(url):
queue.appendleft(link)
print(url)

def breadth first search(start url):
from collections import deque
visited = set()
queue = deque()
queue.append(start_url)
while queue:
url = queue.popleft()
if url in visited:
continue
visited.add(url)
queue.extend(get links(url))
print(url)

If you look at the two functions just shown, you will see only one
difference in their code (hint: it’s highlighted): how you put them into the
queue, which is a stack.

35

CHAPTER 2 ENTER THE REQUIREMENTS

The requests Library

To implement the script successfully, you must learn a bit about the
requests library.

I really like the extendedness of the Python core library, but sometimes
you need libraries developed by members of the community. And the
requests library is one of those.

With basic Python urlopen you can create simple requests and
corresponding data, but it is complex to use. The requests library adds
a friendly layer above this complexity and makes network programming
easy: it takes care of redirects, and can handle sessions and cookies for you.
The Python documentation recommends it as the tool to use.

Again, I'won’t give you a detailed introduction into this library, just the
necessary information to get you going. If you need more information, look
at the project’s website.*

Installation

You, as a “Pythonista,” already know how to install a library. But for the
sake of completeness I include it here.

pip install requests

Now you are set up to continue this book.

Getting Pages

Requesting pages is easy with the requests library: requests.get(url).
This returns a response object that contains basic information, like
status code and content. The content is most often the body of the website

you requested, but if you requested some binary data (like images or
sound files) or JSON, then you get that back. For this book, we will focus on
HTML content.

‘Requests: HTTP for Humans: http://docs.python-requests.org/en/master/

36

http://docs.python-requests.org/en/master/

CHAPTER 2 ENTER THE REQUIREMENTS

You can get the HTML content from the response by calling its text
parameter:

import requests
r = requests.get("http://www.hajba.hu")
if r.status _code == 200:
print(r.text[:250])
else:
print(r.status_code)

The preceding code block requests my website’s front page, and if the
server returns the status code 200, which means OK, it prints the first 250
characters of the content. If the server returns a different status, that code
is printed.

You can see an example of a successful result as follows:

<!DOCTYPE html>
<html lang="en-US">
<head>

<meta property="og:type" content="website" />

<meta property="og:url" content="http://hajba.hu/2017/10/26/
red-hat-forum-osterreich-2017/" />

<meta name="twitter:card" content="summary large image" />

With this we are through the basics of the requests library. As I
introduce more concepts of the library later in this book, I will tell you
more about it.

Now it is time to skip the default url1lib calls of Python 3 and change
to requests.

Switching to requests

Now it is time to finish the script and use the requests library for
downloading the pages.

37

CHAPTER 2 ENTER THE REQUIREMENTS

By now you know already how to accomplish this, but here is the code
anyway.

def download page(url):
try:
return requests.get(url).text
except:
print('error in the url', url)

I surrounded the requesting method call with a try-except block
because it can happen that the content has some encoding issues and we
get an exception back that kills the whole application; and we don’t want
this because the website is big and starting over would require too much
resources.’

Putting the Code Together

Now if you put everything together and run both functions with 'https://
www. sainsburys.co.uk/shop/gb/groceries/meat-fish/" as starting url,
then you should get a similar result to this one.

starting navigation with BFS
https://www.sainsburys.co.uk/shop/gb/groceries/meat-ftish/
http://www.sainsburys.co.uk
https://www.sainsburys.co.uk/shop/gb/groceries
https://www.sainsburys.co.uk/shop/gb/groceries/favourites
https://www.sainsburys.co.uk/shop/gb/groceries/great-offers

starting navigation with DFS
https://www.sainsburys.co.uk/shop/gb/groceries/meat-fish/

°I'll share a writing secret with you: I encountered six exceptions caused by
encoding problems when I created the code for this chapter, and one was in the
“Meat & fish” department.

38

https://www.sainsburys.co.uk/shop/gb/groceries/meat-fish/
https://www.sainsburys.co.uk/shop/gb/groceries/meat-fish/

CHAPTER 2 ENTER THE REQUIREMENTS

http://www.sainsburys.co.uk/accessibility
http://www.sainsburys.co.uk/shop/gb/groceries
http://www.sainsburys.co.uk/terms
http://www.sainsburys.co.uk/cookies

If your result is slightly different, then the website’s structure changed
in the meantime.

As you can see from the printed URLs, the current solution is
rudimentary: the code navigates the whole website instead of focusing
only on the “Meat & fish” department and nutrition details.

One option would be to extend the filter to return only relevant links,
but I don'’t like regular expressions because they are hard to read. Instead
let’s go ahead to the next chapter.

Summary

This chapter prepared you for the remaining parts of the book: you’ve met
the requirements, analyzed the website to scrape, and identified where in
the HTML code the fields of interest lay. And you implemented a simple
scraper, mostly with basic Python tools, which navigates through the
website.

In the next chapter you will learn Beautiful Soup, a simple extractor
library that helps you to forget regular expressions, and adds more features
to traverse and extract HTML-trees like a boss.

39

CHAPTER 3

Using Beautiful Soup

In this chapter, you will learn how to use Beautiful Soup, a lightweight
Python library, to extract and navigate HTML content easily and forget
overly complex regular expressions and text parsing.

Before I let you jump right into coding, I will tell you some things about
this tool to familiarize yourself with it.

Feel free to jump to the next section if you are not in the mood
for reading dry introductory text or basic tutorials; and if you don’t
understand something in my later approach or the code, come back here.

Ifind Beautiful Soup easy to use, and it is a perfect tool for handling
HTML DOM elements: you can navigate, search, and even modify a
document with this tool. It has a superb user experience, as you will see in
the first section of this chapter.

Installing Beautiful Soup

Even though we both know you can install modules into your Python
environment, for the sake of completeness let me (as always in this book)
add a subsection for this trivial but mandatory task.

pip install beautifulsoup4

The number 4 is crucial because I developed and tested the examples
in this book with version 4.6.0.

© Gabor Lészl6 Hajba 2018 41
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_3

CHAPTER 3 USING BEAUTIFUL SOUP

Simple Examples

After a lengthy introduction, it is time to start coding now, with simple
examples to familiarize yourself with Beautiful Soup and try out some
basic features without creating a complex scraper.

These examples will show the building blocks of Beautiful Soup and
how to use them if needed.

You won’t scrape an existing site, but instead will use HTML text
prepared for each use case.

For these examples, I assume you've already entered from bs4 import
BeautifulSoup into your Python script or interactive command line, so
you have Beautiful Soup ready to use.

Parsing HTML Text

The very basic usage of Beautiful Soup, which you will see in every
tutorial, is parsing and extracting information from an HTML string.

This is the basic step, because when you download a website, you send
its content to Beautiful Soup to parse, but there is nothing to see if you
pass a variable to the parser.

You will work most of the time with the following multiline string:

example html =
<html>

<head>
<title>Your Title Here</title>

</head>

<body bgcolor="#ffffff">

<center>

</center>

<hr/>

42

CHAPTER 3 USING BEAUTIFUL SOUP

Link Name is a link to
another nifty site

<h1>This is a Header</h1>

<h2>This is a Medium Header</h2>

Send me mail at <a href="mailto:support@yourcompany.
com">support@yourcompany.com.

<p>This is a paragraph!</p>

<p>

This is a new paragraph!

<i>This is a new sentence without a paragraph break, in bold
italics.</i>

<a>This is an empty anchor

</p>

<hr/>

</body>

</html>

To create a parse tree with Beautiful Soup, just write the
following code:

soup = BeautifulSoup(example html, "html.parser"')

The second argument to the function call defines which parser to use.
If you don’t provide any parser, you will get an error message like this:

UserWarning: No parser was explicitly specified, so I'm
using the best available HTML parser for this system
("html.parser"). This usually isn't a problem, but if you
run this code on another system, or in a different virtual
environment, it may use a different parser and behave
differently.

43

CHAPTER 3 USING BEAUTIFUL SOUP

The code that caused this warning is on line 1 of the file
<stdin>. To get rid of this warning, change code that looks
like this:

BeautifulSoup(YOUR_MARKUP)
to this:
BeautifulSoup(YOUR_MARKUP, "html.parser")

This warning is well defined and tells you everything you need
to know. Because you can use different parsers with Beautiful Soup
(see later in this chapter), you cannot assume it will always use the same
parser; if a better one is installed, it will use that. Moreover, this can lead to
unexpected behavior, for example, your script slows down.

Now you can use the soup variable to navigate through the HTML.

Parsing Remote HTML

Beautiful Soup is notan HTTP client, so you cannot send URLs to it to do
extraction. You can try it out.

soup = BeautifulSoup('http://hajba.hu’, 'html.parser')
The preceding code results in a warning message like this one:

UserWarning: "http://hajba.hu" looks like a URL. Beautiful Soup
is not an HTTP client. You should probably use an HTTP client
like requests to get the document behind the URL, and feed that
document to Beautiful Soup.

To convert remote HTML pages into a soup, you should use the
requests library.

soup = BeautifulSoup(requests.get('http://hajba.hu’).text,
"html.parser"')

44

CHAPTER 3 USING BEAUTIFUL SOUP

Parsing a File

The third option to parse content is to read a file. You don’t have to read
the whole file; it is enough for Beautiful Soup if you provide an open file
handle to its constructor and it does the rest.

with open('example.html') as infile:
soup = BeautifulSoup(infile , "html.parser"')

Difference Between find and find_all

You will use two methods excessively with Beautiful Soup: find and
find all.

The difference between these two lies in their function and return
type: find returns only one—if multiple nodes match the criteria, the first is
returned; None, if nothing is found. find_all returns all results matching
the provided arguments as a list; this list can be empty.

This means, every time you search for a tag with a certain id, you can
use Tind because you can assume that an id is used only once in a page.
Alternatively, if you are looking for the first occurrence of a tag, then you can
use find too. If you are unsure, use find_all and iterate through the results.

Extracting All Links

The core function of a scraper is to extract links from the website that lead
to other pages or other websites.

Links are in anchor tags (<a>), and where they point to is in the href
attribute of these anchors. To find all anchor tags that have an href
attribute, you can use following code:

links = soup.find all('a', href=True)
for link in links:
print(1link["href'])

45

CHAPTER 3 USING BEAUTIFUL SOUP

Running this code against the previously introduced HTML, you get
the following result:

http://somegreatsite.com
mailto:support@yourcompany.com

The find_all method call includes the href=True argument. This
tells Beautiful Soup to return only those anchor tags thaat have an href
attribute. This gives you the freedom to access this attribute on resulting
links without checking their existence.

To verify this, try running the preceding code, but remove the
href=True argument from the function call. It results in an exception
because the empty anchor doesn’t have an href attribute.

You can add any attribute to the find_all method, and you can search
for tags where the attribute is not present too.

Extracting All Images

The second biggest use case for scrapers is to extract images from websites
and download them or just store their information, like where they are
located, their display size, alternative text, and much more.

Like the link extractor, here you can use the find_all method of the
soup, and specify filter tags.

images = soup.find all('img', src=True)

Looking for a present src attribute helps to find images that have
something to display. Naturally, sometimes the source attribute is added
through JavaScript, and you must do some reverse engineering—but this is
not the subject of this chapter.

Finding Tags Through Their Attributes

Sometimes you must find tags based on their attributes. For example,
we identified HTML blocks for the requirements in the previous chapter
through their class attribute.

46

CHAPTER 3 USING BEAUTIFUL SOUP

The previous sections have shown you how to find tags where an
attribute is present. Now it’s time to find tags whose attributes have certain
values.

Two use cases dominate this topic: searching by id or class attributes.
soup.find('p', id="first")
soup.find all('p', class ='paragraph')

You can use any attribute in the find and find_all methods. The only
exception is class because it is a keyword in Python. However, as you can

see, you can use class_ instead.
This means you can search for images, where the source is clouds. jpg.

soup.find('img', src="clouds.jpg")

You can use regular expressions too to find tags that are of a specific
type, and their attributes qualify them through some condition. For
example, all image tags that display GIF files.

soup.find('img', src=re.compile('\.gif$"))

Moreover, the text of a tag is one of its attributes too. This means you
can search for tags that contain a specific text (or just a fragment of a text).

soup.find_all('p', text='paragraph')
soup.find all('p', text=re.compile('paragraph'))

The difference between the two preceding examples is their result.
Because in the example HTML there is no paragraph that contains only the
text “paragraph’, an empty list is returned. The second method call returns
a list of paragraph tags that contain the word “paragraph.”

Finding Multiple Tags Based on Property

Previously, you have seen how to find one kind of tag (<p>,) based
on its properties.

47

CHAPTER 3 USING BEAUTIFUL SOUP

However, Beautiful Soup offers you other options too: for example,
you can find multiple tags that share the same criteria. Look at the next
example:

for tag in soup.find all(re.compile('h')):
print(tag.name)

Here, you search for all tags that start with an h. The result would be
something like this.

html
head
hr
h1
h2
hr

Another example would be to find all tags that contain the text
“paragraph.”

soup.find all(True, text=re.compile('paragraph'))

Here you use the True keyword to match all tags. If you don’t provide
an attribute to narrow the search, you will get back a list of all tags in the
HTML document.

Changing Content

I rarely use this function of Beautiful Soup, but valid use cases exist.
Therefore I think you should learn about how to change the contents of
a soup. Moreover, because I don’t use this function a lot, this section is
skinny and won't go into deep details.

48

CHAPTER 3 USING BEAUTIFUL SOUP

Adding Tags and Attributes

Adding tags to the HTML is easy, though it is seldom used. If you add a tag,
you must take care where and how you do it. You can use two methods:
insert and append. Both work on a tag of the soup.

insert requires a position where to insert the new tag, and the new tag
itself.

append requires only the new tag to append the new tag to the parent
tag’s end on which the method is called.

Because the soup itself is a tag, you can use these methods on it too,
but you must take care. For example, try out the following code:

h2 = soup.new_tag('h2")
h2.string = 'This is a second-level header’
soup.insert(o, h2)

Here you want to insert the new tag, h2, into the soup at first place. This
results in the following code (I omitted most of the HTML):

<h2>This is a second-level header</h2><html>

Alternatively, you can change the 0 to a 1, to insert the new tag at the
second position. In this case, your tag is inserted at the end of the HTML,
after the </html> tag.

soup.insert(1, h2)
This results in
</html><h2>This is a second-level header</h2>

For the two methods just shown, there are convenience methods too:
insert before, insert after.

The append method appends the new tag at the end of the tag. This
means it behaves like the insert_after method.

soup.append(soup.new_tag('p'))

49

CHAPTER 3 USING BEAUTIFUL SOUP
The preceding code results in the following:
</html><p></p>

The only difference is that the insert_after method is not
implemented on soup objects, just on tags.

Anyway, with these methods you must pay attention where you insert
or append new tags into the document.

Adding attributes to the tags is easy. Because tags behave like
dictionaries, you can add new attributes the way you add keys and values
to dictionaries.

soup.head['style'] = 'bold’

Even though the preceding code doesn’t affect the rendered output, it
added the new attribute to the head tag.

<head style="bold">

Changing Tags and Attributes

Sometimes you don’t want to add new tags but want to change existing
content. For example, you want to change the contents of paragraphs to
be bold.

for p in soup.find all('p', text=True):
p.string.wrap(soup.new tag('b"))

If you would like to change the contents of a tag that contains some
formatting (like bold or italic tags), but you want to retain the contents, you
can use the unwrap function.

soup = BeautifulSoup('<p> This is a new paragraph!</p>")
p = soup.p.b.unwrap()
print(soup.p)

50

CHAPTER 3 USING BEAUTIFUL SOUP

Another example would be to change the id or the class of a tag. This
works the same way as with adding new attributes: you can get the tag
from the soup, and change the dictionary values.

for t in soup.findAll(True, id=True):
t['class'] = "withid'
print(t)

The preceding example changes (or adds) the class withid to all tags
that have an id attribute.

Deleting Tags and Attributes

If you want to delete a tag, you can use either extract() or decompose()
on the tag.
extract() removes the tag from the tree and returns it, so you can use
it in the future or add it to the HTML content at a different position.
decompose() deletes the selected tag permanently. No return values,
no later usage; it is gone forever.

print(soup.title.extract())
print(soup.head)

Running the preceding code example with the example HTML of this
section results in the following lines:

<title>Your Title Here</title>
<head>

</head>
Alternatively, you can change extract() to decompose().

print(soup.title.decompose())
print(soup.head)

51

CHAPTER 3 USING BEAUTIFUL SOUP

Here, the result changes only in the first line where you don’t get back
anything.

None
<head>

</head>

Deletion doesn’t only work for tags; you can remove attributes of
tags too.

Imagine, you have tags that have an attribute called display, and you
want to remove this display attribute from each tag. You can do it the
following way:

for tag in soup.find all(True, display=True):
del tag['display']

If you now count the occurrences of tags having a display attribute,
you will get 0.

print(len(soup.find all(True, display=True)))

Finding Comments

Sometimes you need to find comments in HTML code to reverse-engineer
JavaScript calls, because sometimes the content of a website is delivered in
a comment and JavaScript renders it properly.

for comment in soup.find all(text=lambda text:isinstance
(text, Comment)):
print(comment)

The preceding code finds and prints contents of all comments. To
make it work, you need to import Comments from the bs4 package too.

52

CHAPTER 3 USING BEAUTIFUL SOUP

Converting a Soup to HTML Text

This is one of the easiest parts for Beautiful Soup because as you may
know from your Python studies, everything is an object in Python, and
objects have a method __str__ that returns the string representation of
this object.

Instead of writing something like soup. _str () every time, this
method is called every time you convert the object to a string—for example
when you print it to the console: print(soup).

However, this results in the same string representation as you provided
in the HTML content. Moreover, you know, you can do better and provide
a formatted string.

That's why Beautiful Soup has the prettify method. Per default, this
method prints the pretty formatted version of the selected tag-tree. Yes,
this means you can prettify your whole soup or just a selected subset of the
HTML content.

print(soup.find('p").prettify())

This call results in (soup was created using the HTML from the
beginning of this section)

<p>
This is a new paragraph!
</p>

Extracting the Required Information

Now it is time to prepare your fingers and keyboard because you are about
to create your first dedicated scraper, which will extract the required
information, introduced in Chapter 2, from the Sainsbury’s website.

All the source code shown in this chapter can be found in the file called
bs_scraper.py in the source codes of this book.

53

CHAPTER 3 USING BEAUTIFUL SOUP

However, I suggest, you start by trying to implement each functionality
yourself with the tools and knowledge learned from this book already.
I promise, it is not hard—and if your solution differs a bit from mine, don’t
worry. This is coding; every one of us has his/her style and approach. What
matters is the result in the end.

Identifying, Extracting, and Calling the Target
URLs

The first step in creating the scraper is to identify the links that lead us
to product pages. In Chapter 2 we used Chrome’s DevTools to find the
corresponding links and their locations.

Those links are in an unordered list (), which has the class
categories departments. You can extract them from the page with
following code:

links = []
ul = soup.find('ul', class_='categories departments')
if ul:
for 1i in ul.find all('1li'):
a = li.find('a', href=True)
if a:
links.append(a["href'])

You now have the links that lead to pages listing products, each
showing 36 at most.

However, some of these links lead to other groupings, which can lead
to a third layer of grouping before you reach the product pages, just as you
can see in Figure 3-1.

54

Top sellers

Roast dinner

Chicken & turkey
Beef

Fish & seafood

Bacon & sausages
Ham, deli meats & dips
Pork & gammon
Mince

Lamb

Duck, game & venison

Ready to cook

CHAPTER 3 USING BEAUTIFUL SOUP

All chicken Gravy, stock & sauces

All turkey Yorkshire puddings, stuffing &
sides

Chicken essentials

Stir fry sauces
Organic, free range & comn fed

BBQ sauce & marinades
Breast & fillet
Whole birds
Thighs
Drumsticks & wings
Breaded & Kiev
Ready to cook

Cooked chicken & turkey

Sauces, marinades & >

Yorkshire puddings
Taste the Difference & organic

Figure 3-1. Three layers of navigation

The navigation goes from “Chicken & turkey” to “Sauces, marinades &

Yorkshire puddings,” which leads to the third layer of links.

Therefore, your script should be able to navigate such chains too and

get to the product listings.

product pages = []
visited = set()
queue = deque()
queue.extend(department links)
while queue:
link = queue.popleft()
if link in visited:
continue
visited.add(1link)
soup = get page(link)

ul = soup.find('ul', class ='productLister gridView')

55

CHAPTER 3 USING BEAUTIFUL SOUP

if ul:
product pages.append(link)
else:
ul = soup.find('ul', class ='categories shelf")
if not ul:
ul = soup.find('ul', class ='categories aisles')
if not ul:
continue

for 1i in ul.find all('1i'):
a = li.find('a', href=True)
if a:
queue.append(a["href'])

The preceding code uses the simple Breadth First Search (BFS) from
the previous chapter to navigate through all the URLs until it finds the
product lists. You can change the algorithm to Depth First Search(DFS);
this results in a logically cleaner solution because if your code finds a URL
that points to a navigation layer, it digs deeper until it finds all the pages.

The code looks first for shelves (categories shelf), which are the last
layer of navigation prior to extracting categories aisles. This is because
if it would extract aisles first and because all those URLSs are already visited,
the shelves and their content will be missing.

Navigating the Product Pages

In Chapter 2 you have seen that products can be listed on multiple pages.
To gather information about every product, you need to navigate between
these pages.

If you are lazy like me, you might come up with the idea to use the filter
and set the product count to 108 per page, just like in Figure 3-2.

56

CHAPTER 3 USING BEAUTIFUL SOUP

« Filter your list Clear fillers

ﬂ =) Sort by: (Favourites First v Per page| 108 1
Figure 3-2. Filter set to show 108 results

Even though this is a good idea, it can happen that a category holds at
least 109 products—and in this case, you need to navigate your script.

products = []
visited = set()
queue = deque()
queue.extend(product pages)
while queue:
product page = queue.popleft()
if product_page in visited:
continue
visited.add(product page)
soup = get page(product page)
if soup:
ul = soup.find('ul', class ='productlLister gridView')
if ul:
for 1i in ul.find all('li', class ='gridItem'):
a = li.find('a", href=True)
if a:
products.append(a["href'])
next_page = soup.find('li’, class _="next")
if next_page:
a = next_page.find('a', href=True)
if a:
queue.append(a["href'])

The preceding code block navigates through all the product lists and
adds the URLs of the product sites to the list of products.

57

CHAPTER 3 USING BEAUTIFUL SOUP

I used a BFS again, and a DFS would be OK too. The interesting thing is
the handling of the next pages: you don’t search for the numbering of the
navigation but consecutively for the link pointing to the next page. This
is useful for bigger sites, where you have umpteen-thousand pages. They
won't be listed on the first site.

Extracting the Information

You arrived at the product page. Now it is time to extract all the
information required.

Because you already identified and noted the locations in Chapter 2,
it will be a simple task to wire everything together.

Depending on your preferences, you can use dictionaries, named
tuples, or classes to store information on a product. Here, you will create
code using dictionaries and classes.

Using Dictionaries

The first solution you create will store the extracted information of
products in dictionaries.

The keys in the dictionary will be the fields’ names (which will be later
used as a header in a CSV [Comma Separated Value], for example), the
value the extracted information.

Because each product you extract has a URL, you can initialize the
dictionary for a product as follows:

product = {'url': url}

I could list here how to extract all the information required, but I will
only list the tricky parts. The other building blocks you should figure out
yourself, as an exercise.

"Unless you are lucky. Once I encountered a site where all the links to the remaining
pages were there in the HTML code but had been hidden with some JS-magic.

58

CHAPTER 3 USING BEAUTIFUL SOUP

You can take a break, put down the book and try to implement the
extractor. If you struggle with nutrition information or product origin,
you will find help below.

If you are lazy, you can go ahead and find my whole solution later in
this section or look at the source code provided for this book.

For me, the most interesting and lazy part is the extraction of the
nutrition information table. It is a lazy solution because I used the table
row headings as keys in the dictionary to store the values. They match
the requirements, and therefore there is no need to add custom code that
reads the table headers and decides which value to use.

table = soup.find('table', class ='nutritionTable")
if table:
rows = table.findA11l('tr")
for tr in rows[1:]:
th = tr.find('th', class ='rowHeader")
td = tr.find('td")
if not th:
product['Energy kcal'] = td.text
else:
product[th.text] = td.text

Extracting the product’s origin was the most complicated part, at
least in my eyes. Here you needed to find a header (<h3>) that contains
a specific text and then its sibling. This sibling holds all the text but in a
sheer format, which you need to make readable.

product origin header = soup.find('h3’,
class_='productDataltemHeader', text='Country of Origin')

59

CHAPTER 3 USING BEAUTIFUL SOUP

if product_origin_header:
product_text = product origin_header.find next sibling
('div', class_='productText")
if product_text:
origin info = []
for p in product text.find all('p'):
origin_info.append(p.text.strip())
product['Country of Origin'] = '; '.join
(origin_info)

After implementing a solution, I hope you’ve got something similar to
the following code:

Extracting product information into dictionaries
product_information = []
visited = set()
for url in product_urls:
if url in visited:
continue
visited.add(url)
product = {'url': url}
soup = get page(url)
if not soup:
continue # something went wrong with the download
hi = soup.find('h1")
if hi1:
product['name'] = hi.text.strip()

pricing = soup.find('div', class ='pricing")
if pricing:
p = pricing.find('p', class_='pricePerUnit")
unit = pricing.find('span', class ='pricePerUnitUnit')
if p:
product['price'] = p.text.strip()

60

CHAPTER 3 USING BEAUTIFUL SOUP

if unit:
product['unit'] = unit.text.strip()

label = soup.find('label', class ='numberOfReviews")
if label:
img = label.find('img', alt=True)
if img:
product['rating'] = img['alt'].strip()
reviews = reviews_pattern.findall(label.text.strip())
if reviews:
product['reviews'] = reviews[0]

item code = soup.find('p', class ="'itemCode")
if item code:
item codes = item_code_pattern.findall(item code.text.
strip())
if item codes:
product['itemCode'] = item codes[0]

table = soup.find('table', class ='nutritionTable'")
if table:

rows = table.findAl1l('tr")

for tr in rows[1:]:

th = tr.find('th', class ='rowHeader")
td = tr.find('td")
if not th:

product['Energy kcal'] = td.text
else:

product[th.text] = td.text

product origin header = soup.find('h3",
class_='productDataltemHeader', text='Country of Origin')
if product origin header:
product_text = product origin header.find next_
sibling('div', class_='productText")

61

CHAPTER 3 USING BEAUTIFUL SOUP

if product_text:
origin info = []
for p in product text.find all('p'):
origin info.append(p.text.strip())
product['Country of Origin'] = '; '.join(origin_ info)

product_information.append(product)

As you can see in the preceding code, this is the biggest part of the
scraper. But hey! You finished your very first scraper, which extracts
meaningful information from a real website.

What you have probably noticed is the caution implemented in
the code: every HTML tag is verified. If it does not exist, no processing
happens; it would be a disaster and the application would crash.

The regular expressions to extract item codes and review counts is
again a lazy way. Even though I am not a regex guru, I can create some
simple patterns and use them for my purposes.

reviews pattern = re.compile("Reviews \((\d+)\)")
item code pattern = re.compile("Item code: (\d+)")

Using Classes

You can implement the class-based solution similarly to the dictionary-
based one. The only difference is in the planning phase: while using a
dictionary you don’t have to plan much ahead, but with classes, you need
to define the class model.

For my solution, [used a simple, pragmatic approach and created two
classes: one holds the basic information; the second is a key-value pair for
nutrition details.

I don’t plan to go deep into OOP? concepts. If you want to learn more,
you can refer to different Python books.

200P: object-oriented programming

62

CHAPTER 3 USING BEAUTIFUL SOUP

As you already know, filling these objects is different too. There are
different options for how to solve such a problem,® but I used a lazy version
where I access and set every field directly.

Unforeseen Changes

While implementing the source code yourself, you may have found some
problems and needed to react.

One of such changes could be the nutrition table. Even though we
scrape one website, the rendering is not the same for all pages. Sometimes
they display different elements or different styles. Moreover, sometimes
the nutrition table contains different values than in the requirements, just
like in Figures 3-3 and 3-4.

Table of Nutritional Information

(cooked on the hob) per 100g % adult RI per 100g adult RI
Energy kJ 865 - 8400
Energy keal 206 10% 2000
Fat 71g 10% 709
of which
- saturatesl"\’ 2.9g 15% 20g
- mono-unsaturates 39g - -
- polyunsaturates 0.3g - =
Carbohydrate <0.5g <1% 260g
of which sugars <0.5g <1% 90g
Fibre <0.5g -
Protein 3559 71% 509
salt 1.359 23% 6g

RI = Reference Intakes of an average adult (8400k1/2000kcal)

Figure 3-3. A different kind of nutrition table

3For example, the Builder or Factory patterns, a constructor with all arguments.

63

CHAPTER 3 USING BEAUTIFUL SOUP

Table of Nutritional Information

per 100g per slice % adult RI per slice adult RI
Energ¥ kJ 505 141 - 8400
Energy kcal 120 33 2% 2000
Fat 2.4g 0.7g 1% 709
of which
- saturates 1.1g 0.3g 2% 20g
- mono-unsaturates 11g 0.3g - -
- polyunsaturates <0.1g <0.1g - -
Carbohydrate =0.5g <0.5g <1% 2609
of which
- sugars =0.5g <0.5g <1% 90g
- starch <0.5g <0.5g - -
Fibre <0.5¢g <0.5¢g . -
Protein 24 4qg 6.8g 14% 509
Salt 1.00g 0.28g 5% 6g

RI = Reference Intakes of an average adult (84001/2000kcal)

Figure 3-4. A third type of nutrition table

What to do in such cases? Well, first, mention to your customer (if you
have any) that you've found tables that contain nutrition information but
in different details and format. Then think out a solution that is good for
the outcome, and you don'’t have to create extra errands in your code to let
it happen.

In my case, I went with the easiest solution and exported all I could
from those tables. This means my results have fields that are not in the
requirements and some can be missing, like Total sugars. Moreover,
because the sublist of fats and carbohydrates has awkward dashes before
each entry, or there are rows that contain only the text “of which,”

I adjusted the preceding code a bit to handle these cases.

64

CHAPTER 3 USING BEAUTIFUL SOUP

table = soup.find('table', class ='nutritionTable")
if table:
rows = table.findAll('tr")
for tr in rows[1:]:
th = tr.find('th', class_='rowHeader')
td = tr.find('td")
if not td:
continue
if not th:
product['Energy kcal'] = td.text
else:
product[th.text.replace('-', ").strip()] = td.text

The exceptional case of Energy and Energy kcal (if not th)in the
preceding code is fixed automatically in tables, which provide labels for
every row.

Such changes are inevitable. Even though you get requirements and
prepare your scraping process, exceptions in the pages can occur.
Therefore, always be prepared and write code that can handle the
unexpected, and you don’t have to redo all the work. You can read
more about how | deal with such thing later in this chapter.

Exporting the Data

Now that all information is gathered, we want to store it somewhere
because keeping it in memory does not have much use for our customer.
In this section, you will see basic approaches to how you can save your
information into a CSV or JSON file, or into a relational database, which
will be SQLite.
Each subsection will create code for the following export objects:
classes and dictionaries.

65

CHAPTER 3 USING BEAUTIFUL SOUP

To CSV

A good old friend to store data is CSV. Python provides built-in
functionality to export your information into this file type.

Because you implemented two solutions in the previous section,
you will now create exports for both. But don’t worry; you will keep both
solutions simple.

The common part is the csv module of Python. It is integrated and has
everything you need.

Quick Glance at the csv Module

Here you get a quick introduction into the csv module of the Python standard
library. If you need more information or reference, you can read it online.*

I will focus on writing CSV files in this section; here I present the
basics to give you a smooth landing on the examples where you write the
exported information into CSV files.

For the code examples, | assume you did import csv.

Writing CSV files is easy: if you know how to write files, you are almost
done. You must open a file-handle and create a CSV writer.

with open('result.csv', 'w') as outfile:
spamwriter = csv.writer(outfile)s

The preceding code example is the simplest example I can come up
with. However, there are a lot more options to configure, which sometimes
will be important for you.

*https://docs.python.org/3/library/csv.html

°I have to admit, every time I write CSV files I use spamwriter as my variable’s
name. I guess this gives me a global understanding on what’s happening.

66

https://docs.python.org/3/library/csv.html

CHAPTER 3 USING BEAUTIFUL SOUP

o dialect: With the dialect parameter, you can specify
formatting attributes grouped together to represent
a common formatting. Such dialects are excel (the
default dialect), excel tab, or unix_dialect. You can
define your own dialects too.

e delimiter: If you do/don’t specify a dialect, you can
customize the delimiter through this argument. This
can be needed if you must use some special character
for delimiting purposes because comma and escaping
don’t do the trick, or your specifications are restrictive.

o quotechar: As its name already mentions, you can
override the default quoting. Sometimes your texts
contain quote characters and escaping results in
unwanted representations in MS Excel.

e quoting: Quoting occurs automatically if the writer
encounters the delimiter inside a field’s value. You can
override the default behavior, and you can completely
disable quoting (although I don’t encourage you to do
this).

e lineterminator: This setting enables you to change the
character at the line’s ending. It defaults to '\r\n' but
in Windows you don’t want this, just '\n".

Most of the time, you are good to go without changing any of these
settings (and relying on the Excel configuration). However, I encourage
you to take some time and try out different settings. If something is wrong
with your dataset and the export configuration, you'll get an exception
from the csv module—and this is bad if your script already scraped all the
information and dies at the export.

67

CHAPTER 3 USING BEAUTIFUL SOUP

Line Endings

If you're working in a Windows environment like T do most of the time, it is
arecommended practice to set the line ending for your writer. If not, you
will get unwanted results.

with open('result.csv', 'w') as outfile:
spamwriter = csv.writer(outfile)
spamwriter.writerow([1,2,3,4,5])
spamwriter.writerow([6,7,8,9,10])

The preceding code results in the CSV file in Figure 3-5.

Eresultcsvﬂ]l
i, 2,3,4,5
3 6,7,8,9,10
4
5

Figure 3-5. The CSV file with too many empty lines

To fix this, set the lineterminator argument to the writer’s creation.

with open('result.csv', 'w') as outfile:
spamwriter = csv.writer(outfile, lineterminator='\n'")
spamwriter.writerow([1,2,3,4,5])
spamwriter.writerow([6,7,8,9,10])

Headers

What are CSV files without a header? Useful for those who know what to
expect in which order, but if the order or number of columns changes, you
can expect nothing good.

68

CHAPTER 3 USING BEAUTIFUL SOUP

Writing the header works the same as writing a row: you must do it
manually.

with open('result.csv', 'w') as outfile:
spamwriter = csv.writer(outfile, lineterminator='\n")
spamwriter.writerow(['average', 'mean’', 'median’', 'max’,
"sum'])
spamwriter.writerow([1,2,3,4,5])
spamwriter.writerow([6,7,8,9,10])

This results in the CSV file of Figure 3-6.

= resultcsv E3 |
1 average,mean,median,max, sum
2 1,2,3,4,5
2 6,7,8,9,10
-

Figure 3-6. CSV file with header

Saving a Dictionary

To save a dictionary, Python has a custom writer object that handles this
key-value pair object: the DictWriter.

This writer object handles mapping of dictionary elements to lines
properly, using the keys to write the values into the right columns.
Because of this, you must provide an extra element to the constructor of
DictWriter: the list of field names. This list determines the order of the
columns; and Python raises an error if a key is missing from the dictionary
you want to write.

If the order of the result doesn’t matter, you can easily set the field
names when writing the results to the keys of the dictionary you want to
write. However, this can lead to various problems: the order is not defined;
itis mostly random on every machine you run it on (sometimes on the
same machine too); and if the dictionary you choose is missing some keys,
then your whole export is missing those values.

69

CHAPTER 3 USING BEAUTIFUL SOUP

How to overcome this obstacle? For a dynamic solution, you can
calculate the union® of all keys over all the resulted dictionaries. This
ensures you won't encounter errors like the following:

ValueError: dict contains fields not in fieldnames:
'Monounsaturates', 'Sugars’

Alternatively, you can define the set of headers to use beforehand. In
this case, you have power over the order of the fields, but you must know
all the fields possible. This is not easy if you deal with dynamic key-value
pairs just like the nutrition tables.

Asyou see, for both options you must create the list (set) of possible
headers before you write your CSV file. You can do this by iterating through
all product information and put the keys of each into a set, or you can add
the keys in the extraction method to a global set.

Exporting to a CSV file looks like this.

with open('sainsbury.csv', 'w') as outfile:
spamwriter = csv.DictWriter(outfile, fieldnames=get field
names (product_information), lineterminator="\n")
spamwriter.writeheader()
spamwriter.writerows(product information)

I hope your code is like this one. As you can see, I used an extra
method to gather all the header-fields. However, as mentioned earlier,
use the version that fits you better. My solution is slower because I iterate
multiple times over the rows.

Saving a Class

The problem with using a class when working with a data-set like we get as
we scrape Sainsbury’s products is that we have no idea how the item will
look in the end. That’s because the nutrition tables can vary between two

SSet theory: https://en.wikipedia.org/wiki/Union_(set_theory)
70

https://en.wikipedia.org/wiki/Union_(set_theory)

CHAPTER 3 USING BEAUTIFUL SOUP

products. To overcome this obstacle, you could write a key-normalization
function that tries to map different keys of the product to one, and you can
use this to map to the right property of your class. But this is a hard task
and it won't fit into the scope of this book. Therefore, we will stick with the
basic information we defined in the previous chapter and create a class
based on that information.

class Product:
def init (self, url):

self.url = url
self.name = None
self.item code = None
self.product_origin = None
self.price per unit = None
self.unit = None
self.reviews = None
self.rating = None
self.energy kcal = None
self.energy kj = None
self.fat = None
self.saturates = None
self.carbohydrates = None
self.total sugars = None
self.starc = None
self.fibre
self.protein = None
self.salt = None

None

Even with this structure, you will need a minimal key-mapping from
the table to the properties of the Product class. This is because there are
some properties that need to be filled with values from the table that have
a different name, for example total sugars will get the value from the
field Total Sugars.

71

CHAPTER 3 USING BEAUTIFUL SOUP

Now with the class ready, let’s modify the scraper to use Products
instead of a dictionary. To save some space, I will only include the first few
lines of the changed function.

def extract product information(product urls):
product_information = []
visited = set()
for url in product urls:
if url in visited:
continue
visited.add(url)
product = Product(url)
soup = get page(url)
if not soup:
continue
h1 = soup.find('h1")
if h1:
product.name = hi.text.strip()

As you can see, the code didn’t change much; I highlighted the parts
that are different. And you must modify your code in a similar fashion to
fill the class’ fields.

Now it is time to save the class to CSV. Without much fuss, here is my
solution.

def write results to csv(filename, rows):
with open(filename, 'w') as outfile:
spamwriter = csv.DictWriter(outfile, fieldnames=get
field names(rows), lineterminator="\n")
spamwriter.writeheader()
spamwriter.writerows(map(lambda p: p.__dict__, rows))

72

CHAPTER 3 USING BEAUTIFUL SOUP
And here is the get_field names function.

def get field names(product information):
return set(vars(product information[0]).keys()))

Using the get_field names method seems like a bit of overwork. If you
feel like it, you can add the function’s body instead of the method call, or
create a method in the Product class that returns you the field names.

Again, this approach results in a nonpredictable order of columns
in your CSV file. To ensure the order between runs and computers, you
should define a fixed list for the fieldnames and use it for the export.

Another interesting code part is using the dict method of the
Product class. This is a handy built-in method to convert the properties of
an instance object to a dictionary. The vars built-in function works like the
__dict__ function and returns the variables of the given instance object as
a dictionary.

To JSON

An alternative and more popular way to hold data is as JSON files.
Therefore, you will create code blocks to export both dictionaries and
classes to JSON files.

Quick Glance at the json module

This will be a quick introduction too. The json module of the Python

standard library is huge, and you can find more information online.”
As in the CSV section, I'll focus on writing JSON files because the

application writes the product information into JSON files.

| assume you did import json for the examples in this section.

"https://docs.python.org/3/1library/json.html

73

https://docs.python.org/3/library/json.html

CHAPTER 3 USING BEAUTIFUL SOUP

Writing a JSON object to a file is as easy as it is with CSV, if not easier.
You can simply tell the json module to write its contents to the given
file-handle.

with open('result.json', 'w') as outfile:
json.dump([{'average':12, 'median': 11}, {'average': 10,
'median': 10}], outfile)

The preceding example writes the content (two dictionaries in a list) to
the result. json file.

You can have some more control over the results. Because JSON
objects in Python are most often dictionaries, you cannot guarantee the
order of the keys in which they appear in the exported file. If you care
about this (to have a consistent representation between runs), then you
can set the sort_keys argument of the dump method to True. This will sort
the dictionaries by their keys before writing them to the output.

with open('result.json', 'w') as outfile:
json.dump([{'average':12, 'median': 11}, {'average': 10,
'median’: 10}],outfile, sort_keys=True)

Moreover, this is everything you need to know for now about writing
data to JSON files.

Saving a Dictionary

As you have read in the previous section, writing results to JSON is easy,
even easier than with CSV. Not just because JSON files are dictionaries
(or lists of dictionaries), but also you don’t have to care about the keys in
the dictionary: if something is missing it won’t bother the export. Sure,
if you try to import the file’s contents, then you must check if the current
JSON object has the key you want to extract.

with open('sainsbury.json', 'w') as outfile:
json.dump(product_information, outfile)

74

CHAPTER 3 USING BEAUTIFUL SOUP

The preceding code saves the list filled with product information into
the designated JSON file.

Saving a Class

Saving a class to a JSON file is not a trivial task, because classes are not
your typical object to save into a JSON file.

Let’s jump right into the code and write the method for exporting the
results to a JSON file like the dictionary solution.

def write results to json(filename, rows):
with open(filename, 'w') as outfile:
json.dump(rows, outfile)

Now if you run the scraper and arrive at the export method call, you
will get an error like this one.

TypeError: Object of type 'Product’' is not JSON serializable

The message tells you everything: an instance of the Product class is
not serializable. To overcome this little obstacle, let’s use our trick learned
while exporting Product instances to a CSV file.

def write results to json(filename, products):
with open(filename, 'w') as outfile:
json.dump(map(lambda p: p.__dict__, products), outfile)

This is not the final solution because a map isn’t serializable either; we
have to wrap it to an iterable.

def write results to json(filename, rows):
with open(filename, 'w') as outfile:
json.dump(list(map(lambda p: p. dict , rows)),
outfile)

75

CHAPTER 3 USING BEAUTIFUL SOUP

To a Relational Databhase

Now you will learn how to connect to a database and write data into it.
For the sake of simplicity, all the code will use SQLite because it doesn’t
require any installation or configuration.

The code you will write in this section will be database agnostic; you
can port your code to populate any relational database (MySQL, Postgres).
The data you extracted in this chapter (and you will see throughout

this book) doesn’t need a relational database because it has no relations
defined. Iwon’t go into deeper detail on relational databases because

my purpose is to get you going on your way to scraping, and many clients
need their data in a MySQL table. Therefore, in this section, you will see
how you can save the extracted information into an SQLite 3 database. The
approach is similar to other databases. The only difference is that those
databases need more configuration (like username, password, connection
information), but there are plenty of resources available.

The first step is to decide on a database schema. One option is to
put everything in a single table. In this case, you will have some empty
columns, but you don’t have to deal with dynamic names from the
nutrition table. The other approach is to store common information
(everything but the nutrition table) in one table and reference a second
table with the key-value pairs.

The first approach is good when using dictionaries in the way this
chapter uses them, because there you have all entries in one dictionary
and it is hard to split the nutrition table from the other content. The second
approach is good for classes, because there you already have two classes
storing common information and the dynamic nutrition table.

Sure, there is a third approach: set the columns in stone and then
you can skip the not needed/unknown keys, which result from different
nutrition tables across the site. With this, you must take care of error
handling and missing keys—but this keeps the schema maintainable.

76

CHAPTER 3 USING BEAUTIFUL SOUP

To keep the example simple, I'm going with this third approach. The
expected fields are defined in Chapter 2, and you can create a schema
based on this list.

CREATE TABLE IF NOT EXISTS sainsburys (
item code INTEGER PRIMARY KEY,
name TEXT NOT NULL,
url TEXT NOT NULL,
energy kcal TEXT,
energy kjoule TEXT,
fat TEXT,
saturates TEXT,
carbohydrates TEXT,
total sugars TEXT,
starch TEXT,
fibre TEXT,
protein TEXT,
salt TEXT,
country_of origin TEXT,
price_per unit TEXT,
unit TEXT,
number of reviews INTEGER,
average_rating REAL

This DDL is SQLite 3; you may need to change it according to what
database you're using. As you can see, we create the table only if it does not
exist. This avoids errors and error handling when running the application
multiple times. The primary key of the table is the product code. URL and
product name cannot be null; for the other attributes you can allow null.

The interesting code comes when you add entries to the database.
There can be two cases: you insert a new value, or the product is already in
the table and you want to update it.

77

CHAPTER 3 USING BEAUTIFUL SOUP

When you insert a new value, you must make sure the information
contains every column by name, and if not, you must avoid exceptions. For
the products of this chapter you could create a mapper that maps keys to
their database representation prior to saving. I won’t do this, but you are
free to extend the examples as you wish.

When updating, there is already an entry in the database. Therefore,
you must find the entry and update the relevant (or all) fields. Naturally, if
you work with a historical dataset, then you don’t need any updates, just
inserts.

With SQLite, you can have both solutions in one query.

INSERT OR REPLACE INTO sainsburys

values (2, 2, 2,2, 2,2, 2,2, 2,2, 2,2,2,2,2,2,2,2)

Insert or replace solves the problem of identifying already existing
entries in the database and updating them separately. Naturally, this
solution works only for items where you have a fixed ID derived from
the information to store in the database. If you use dynamically created
technical IDs, then you need to figure out a way to find the corresponding
entry in the database and update it, unless you want historical data stored
in your database.

def save to sqlite(database path, rows):
global connection
connection = _ connect(database path)
__ensure_table()
for row in rows:
__save_row(row)
__close_connection()

def _ connect(database):
return sqlite3.connect(database)

78

CHAPTER 3 USING BEAUTIFUL SOUP

def _ close connection():
if connection:
connection.close()

def _ensure table():
connection.execute(table_ddl)

def _ save row(row):
connection.execute(sqlite insert, (

row.get('item code'), row.get('name'), row.get('url'),
row.get('Energy kcal'), row.get('Energy'),
row.get('Fat'), row.get('Saturates'), row.
get('Carbohydrates'), row.get('Total Sugars'),
row.get('Starch'),
row.get('Fibre'), row.get('Protein'), row.get('Salt'),
row.get('Country of Origin'), row.get('price'),
row.get('unit'), row.get('reviews'),
row.get('rating')))

The preceding code is a sample example to save the entries in the
database.

The main entry point is the save_to_sqlite function. The database_
path variable holds the path to the target SQLite database. If it doesn’t
exist, the code will create it for you. The rows variable contains the
data-dictionaries in a list.

The interesting partis the __save_row function. It saves a row, and as
you can see, it requires a lot of information on the object you want to save.
I use the get method of the dict class to avoid Key Errors if the given key

is not present in the row to persist.

79

CHAPTER 3 USING BEAUTIFUL SOUP

If you are using classes, I suggest you look at peewee,® an ORM? tool
that helps you map objects to the relational database schema. It has built-in
support for MySQL, PostgreSQL, and SQLite. In the examples, I will use
peewee too because I like the tool.!°

Here you can find a quick primer to peewee, where we will save data
gathered into classes to the same SQLite database schema as previously.

To get started, you have to adapt the Product class; it has to extend the
peewee.Model class, and the fields have to be peewee field types.

from peewee import Model, TextField, IntegerField, DecimalField

class ProductOrm(Model):
url = TextField()
name = TextField()
item_code = IntegerField
product origin = TextField()
price per unit = TextField()
unit = TextField()
reviews = IntegerField()
rating = DecimalField
energy kcal = TextField()
energy kj = TextField()
fat = TextField()
saturates = TextField()
carbohydrates = TextField()
total sugars = TextField()
starch = TextField()
fibre = TextField()
protein = TextField()
salt = TextField()

8https://github.com/coleifer/peewee
0Object-relational mapping

9] have worked since 2007 with ORM tools, and I like the idea, but some queries
can become quite complex.

80

https://github.com/coleifer/peewee

CHAPTER 3 USING BEAUTIFUL SOUP

This structure enables you to use the class later with peewee and store
the information using ORM without any conversion. I named the class
ProductOrm to show the difference from the previously used Product class.

To save an instance of the class, you simply must adapt the functions of
the previous section.

We still must ensure that the database connection is open, and the
target table exists. To do this, we utilize the functions we know, and which
peewee has to offer.

import peewee
from product import ProductOrm

def save to sqlite(database path, rows):
This function saves all entries into the database
:param database path: the path to the SQLite file. If not
exists, it will be created.
:param rows: the list of ProductOrm objects elements to
save to the database
__connect(database_path)
__ensure_table()
for row in rows:
row.save()

def _ connect(database):
ProductOrm. meta.database = peewee.SqliteDatabase(database)

def _ensure table():
ProductOrm.create_table(True)

Here you can see that using peewee offers a slick version of saving. The
database connection must be provided to the Model we use, and to adapt
it dynamically, you have to access a protected field while you connect to

81

CHAPTER 3 USING BEAUTIFUL SOUP

the database. Alternatively, if you don’t want to provide the target database
dynamically, you could define it in the ProductOrm class too.

import peewee

class ProductOrm(Model):
url = TextField()
name = TextField()
item_code = IntegerField
product origin = TextField()
price per unit = TextField()
unit = TextField()
reviews = IntegerField()
rating = DecimalField
energy kcal = TextField()
energy kj = TextField()
fat = TextField()
saturates = TextField()
carbohydrates = TextField()
total sugars = TextField()
starch = TextField()
fibre = TextField()
protein = TextField()
salt = TextField()

class Meta:
database = peewee.SqliteDatabase('sainsburys.db")

Any way you proceed, you can use peewee to take over all the action of
persisting the data: creating the table and saving the data.

To create the table, you must call the create_table method on the
ProductOrm class. With the True parameter provided, this method call
will ensure that your target database has the table and if the table isn’t
there, it will be created. How will the table be created? This is based

82

CHAPTER 3 USING BEAUTIFUL SOUP

on the ORM model provided by you, the developer. peewee creates the
DDL information based on the ProductOrm class: text fields will be TEXT
database columns,and IntegerField fields will generate an INTEGER
column.

And to save the entity itself, you must call the save method on the
instantiated object itself. This removes all knowledge from you about the
name of the target table, which parameters to save in which column, how
to construct the INSERT statement... And this is just great if you ask me.

To an NoSQL Database

It would be a shame to forget about modern databases, which are state of
the art. Therefore, in this section, you will export the gathered information
into a MongoDB.

If you are familiar with this database and followed along with my
examples in this book, you already know how I will approach the solution:
I will use previous building blocks. In this case, the JSON export.

An NoSQL database is a good fit because most of the time they are
designed to store documents that share few or no relations with other
entries in the database—at least they shouldn’t do it excessively.

Installing MongoDB

Unlike SQLite, you must install MongoDB on your computer to get it
running.

In this section, I won’t go into detailed instructions on how to install
and configure MongoDB; it is up to you, and their homepage has very good
documentation,!! especially for Python developers.

I assume for this section you installed MongoDB and the Python
library: PyMongo. Without this, it will be hard for you to follow the code
examples.

"https://docs.mongodb.com/getting-started/python/

83

https://docs.mongodb.com/getting-started/python/

CHAPTER 3 USING BEAUTIFUL SOUP

Writing to MongoDB

As previously, I will focus only on writing to the target database because
the scraper stores information but won’t read any entries from the
database.

Writing to an NoSQL database like MongoDB is easier because it
doesn’t require a real structure and you can put everything into it as you
wish. Sure, it would be ridiculous to do such things; we need structure to
avoid chaos. However, theoretically, you can just jam everything into your
database.

Saving the “basic” dictionary to the MongoDB database works straight
out of the box. Because the database stores objects as they are, you don'’t
have to do any conversions. And you can reuse the code for saving to a
JSON file. Yes, even for classes.

import pymongo

connection = None
db = None

def save to database(database name, products):
global connection
__connect(database_name)
for product in products:
__save(product)
__close_connection()

def _ save(product):
db["sainsburys'].insert one(product.__dict__)

def _ connect(database):
global connection, db
connection = pymongo.MongoClient()
db = connection[database]

84

CHAPTER 3 USING BEAUTIFUL SOUP

def _ close connection():
if connection:
connection.close()

My version is like the SQL-version. I open the connection to the
provided database and insert each product into the MongoDB database.
To get the JSON representation of the product, Iuse the _dict__ variable.

If you want to insert a collection into the database, use insert_many
instead of insert_one.

If you are interested in using a library like peewee just for MongoDB
and ODM (Object-Document Mapping), you can take a look at
MongoEngine.

Performance Improvements

If you put the code of this chapter together and run the extractor, you will
see how slow it is.

Serial operations are always slow, and depending on your network
connection, it can be slower than slow. The parser behind Beautiful Soup
is another point where you can gain some performance improvements, but
this is not a big boost. Moreover, what happens if you encounter an error
right before finishing the application? Will you lose all data?

In this section, I'll try to give you options for how you can handle such
cases, but it is up to you to implement them.

You could create benchmarks of the different solutions in this section,
but as mentioned earlier in this book, it makes no sense because the
environment always changes, and you cannot ensure that your scripts run
in exactly the same conditions.

85

CHAPTER 3 USING BEAUTIFUL SOUP

Changing the Parser

One way to improve Beautiful Soup is to change the parser that it uses to
create the object model out of the HTML content.
Beautiful Soup can use the following parsers:

e html.parser
o 1xml (install with pip install 1xml)
o html51ib (install with pip install html51ib)

The default parser, which is already installed with the Python standard
library, is html.parser—as you have already seen in this book.

Changing the parser doesn’t give such a speed boost that you will see
the difference right away, just some minor improvements. However, to see
some flawed benchmarking, I added a timer that starts at the beginning
of the script and prints the time needed to extract all the 3,005 products
without writing them to any storage.

Table 3-1 shows a comparison between the different parsers available
with Beautiful Soup while scraping the 3,005 products of the “Meat & fish”
department.

Table 3-1. Some Execution Speed Comparisons

Parser Entries Time taken (in seconds)

html.parser 3,005 2,347.9281

Ixml 3,005 2167.9156
Ixml-xml 3,006 2457.7533
html51ib 3,005 2,544.8480

Asyou can see, the difference is significant. 1xml wins the game
because it is a well-defined parser written in C, and therefore it can work
extremely fast on well-structured documents.

86

CHAPTER 3 USING BEAUTIFUL SOUP

html51ib is very slow; its only advantage is that it creates valid HTML5
code from any input.

Choosing a parser has trade-offs. If you need speed, | suggest you
install 1xml. If you cannot rely on installing any external modules to
Python, then you should go with the built-in html.parser.

Any way you decide, you must remember: if you change the parser,
the parse tree of the soup changes. This means you must revisit and
perhaps change your code.

Parse Only What’s Needed

Even with an optimized parser, creating the document model of the HTML
text takes time. The bigger the page, the more slowly this model is created.
One option to tune the performance a bit is to tell Beautiful Soup
which part of the whole page you will need, and it will create the object

model from the relevant part. To do this, you can use a SoupStrainer
object.

A SoupStrainer tells Beautiful Soup what parts extract, and the parse
tree will consist only of these elements. This speeds up the process a bit, if
you can narrow down the required information to a smaller portion of the
HTML.

strainer = SoupStrainer(name='ul', attrs={'class':
"productlLister gridView'})

soup = BeautifulSoup(content, 'html.parser', parse_
only=strainer)

The preceding code creates a simple SoupStrainer that limits the
parse tree to unordered lists having a class attribute 'productLister
gridView'—which helps to reduce the site to the required parts—and it uses
this strainer to create the soup.

87

CHAPTER 3 USING BEAUTIFUL SOUP

Because you already have a working scraper, you can replace the soup
calls using a strainer to speed up things.

The following piece of information is hard to find on the Internet:
you can use multiple attributes in the strainer to parse the website. For
example, if you extract the links to product pages, you have three options
based on the level of the current department link:

e Thelinkleads to product pages.
o Thelinkleads to a first-level sublist.
¢ Thelinkleads from a first-level sublist to a second-level sublist.

In this case, you have three different classes but want to create the soup
if any of them is present. You can do something like this:

BeautifulSoup(content, "html.parser', name='ul',
attrs={"'class': ['productlLister gridView',
'categories shelf', 'categories aisles']})

Here, you have listed all three versions of the lists that can happen, and
the soup contains all the relevant information.

A (flawed) benchmark using a hard cache:'? my script gained 100%
speedup (from 158.907 seconds to 79.109 seconds) using strainers.

Saving While Working

If your application encounters an exception while running, the current
version breaks on the spot and all your gathered information is lost.

One approach is to use DFS. With this approach, you go straight down
the target graph and extract the products in the shortest way. Moreover,

?Hard cache: Get all information from the cache, and if there are attempts to
gather anything from the Internet, refuse it. This makes scraping a bit consistent
between runs.

88

CHAPTER 3 USING BEAUTIFUL SOUP

when you encounter a product, you save it to your target medium
(CSV, JSON, relational, or NoSQL database).

Another approach keeps the BFS and applies saving the products as
they are extracted. This is the same approach as using the DFS algorithm.
The only difference is when you reach the products.

Both approaches need a mechanism to restart work, or at least save
some time with skipping already written products. For this, you create a
function that loads the contents of the target file, stores the extracted URLs
in memory, and skips the download of already extracted products.

Staying with the BFS solution of this chapter, you must modify the
extract_product_information function to yield every piece of product
information when it is ready. Then you wrap the call of this method into a
loop and save the results to your target.

Surely, this creates some overhead: you open a file-handle every
time you save a piece, you must take care of saving the entries into a
JSON array, you open and close database connections for every write...
Alternatively, you do opening and closing (file-handle or database
connection) surrounding the extraction. In those cases, you must take
care of flushing/committing the results; if something happens, your
extracted data is saved.

What about try-except? Well, wrapping the whole extracting code
ina try-except block is a solution too, but you must ensure that
you don’t forget about the exceptions that happened and you can get
the missing data later. But such exceptions can happen while you’re
at a main page that leads to detail pages—and from my experience

| know that once you wrap code into an exception handling block, you
will forget to revisit the issues in the future.

89

CHAPTER 3 USING BEAUTIFUL SOUP

Developing on a Long Run

Sometimes you develop scrapers for bigger projects, and you cannot
launch your script after every change because it takes too much time.

Even though this scraper you implemented is short and extracts around
3,000 products, it takes some time to finish—and if you have an error in the
data extraction, it is always time-consuming to fix the error and start over.

In such cases I utilize caching of results of intermediate steps;
sometimes I cache the HTML codes themselves. This section is about my
approach and my opinions.

Because you already have deep Python knowledge, this section is again
an optional read: feel free if you know how to utilize such approaches.

Caching Intermediate Step Results

The first thing I always did when I started working with a basic, self-written
spider just like the one in this example was to cache intermediate step
results.

Applying this approach to this chapter’s code, you export the resulting
URLs after each step into a file and change the application so that it reads
the file of the last step back when it starts and skips the scraping until the
following step.

Your challenge in such cases is to write your code to continue work
where it went down. With intermediate results, this can mean you have
to scrape the biggest part of the websites again because your script died
before it could save all information on products—or it died while it was
about to save the extracted information.

This step is not bad, because you have a checkpoint where you can
continue if you step messes up. But honestly, this requires much extra
work, like saving the intermediate steps and loading them back for each
stage. And because I am lazy and learned a lot while on my development
journey, I use the next solution as the basis for all my scraping tasks.

90

CHAPTER 3 USING BEAUTIFUL SOUP

Caching Whole Websites

A better approach is to cache whole websites locally. This gives better
performance in the long run for rerunning your script every time.

When implementing this approach, I extend the functionality of the
website gathering method to route over a cache: if the requested URL is in
the cache, return the cached version; if it's not present, gather the site and
store the result in the cache.

You can use file-based or database caches to store the websites while
you're developing. In this section you will learn both approaches.

The basic idea for the cache is to create a key that identifies the
website. Keys are unique identifiers, and a web page’s URL is unique too.
Therefore, let’s use this as the key, and the content of the page is the value.

But we have some limitations (Table 3-2): these URLs can get very long,
and some solutions have limitations on the keys, like length or contained
characters.

Table 3-2. Limitations by Operating Systems

Operating File system Invalid filename Maximum filename
system characters length

Linux Ext3/Ext4 / and \0 255 bytes

0S X HFS Plus :and \o 255 UTF-16 code units
Windows NTFS \,/,2,:,% ", > <and | 255 characters

Therefore, I suggest a simple solution: create a hash based on the URL.

Hashes are short and if you choose a good algorithm, you can avoid
collision for a large number of pages. I'll use the hashlib.blake2b hash
function because it is faster than the commonly used hashes (MD5 for
example) and it’s as secure as SHA-3'3. Also, this algorithm generates 128
characters, which is short enough for all three dominating operating systems.

For more information, visit: https://blake2.net/

91

https://blake2.net/

CHAPTER 3 USING BEAUTIFUL SOUP

File-Based Cache

The first approach that comes into the mind of old-school developers
(like me) is to save pages to files. This is the easiest solution because to
write files you don’t need a database, you only write permissions. And
most of the time this is present because you develop your scrapers locally.
For the production run there is no need to cache the website if you run
once. If you do multiple runs, then you must deal with cache invalidation
(look at a later section).

The only things you must implement are three functions: initializing
the cache, retrieving the requested URLs content from the cache, and
saving a URLs content to the filesystem. Because the functionality can be
well encapsulated, I decided to implement my cache as a class. You don’t
need to follow my approach; use a programming style that best fits your
needs and skills (likes).'

Database Cache

An alternative solution is to save the websites into a database. There are
again two options: using a relational database or an NoSQL one. Because
websites are documents, I suggest you try using an NoSQL database. But
for completeness, I'll show you both approaches in this section.

As for the product details, in this section I'll use SQLite 3 as the
relational database. The cache is as simple as the file cache: the class must
load the cache from the database and save new content to the database.
The only difference is that the system in the background is a database.

My approach was the same as with the file-based version: load the
contents of the database into memory and use this cache to return the
contents. That’s because it makes the script much faster!

“Alternatively, to be more consistent, you can create a downloader, which hides
the cache from the users of your code.

92

CHAPTER 3 USING BEAUTIFUL SOUP

| don’t want to create benchmarks here. You must decide for yourself
how you can utilize your memory usage and disk reads. For many
websites, keeping the content in memory is cheap.

I use the same ID generated from the URL because it’s good enough
and makes a good primary key too. Some people rely on technical IDs
(autogenerated, numeric identifiers), but for this website the generated ID
or simply using the URL fits well.

Saving Space

Saving the target website locally can occupy a lot of space. Saving the
Sainsbury’s website with this approach takes 253 MB of space. With
current computers this is not a big thing, but this is only one web page-a
small portion of the whole website. Perhaps you have multiple websites
you scrape and with time the occupied space grows, and you want to save
space. If you don’t want to, then skip this section.

You can save space by compressing the contents of the page either
while using files or a database. This requires only a modification in your
saver and loader methods, and the usage of z1ib. When saving, you should
compress the contents, and when you're reading the file back, you should
decompress it.

Because you're using Python 3 and z1ib requires a bytes-like object to
compress, you must encode and decode the strings.

To compare the difference, my file-based cache requires 253 MB of
space; after I switched to compression, it required only 49 MB. What a
difference!

But every rose has its thorn: saving space requires more computation
time for decompressing the content. On my computer with the currently
saved dataset, the scraper runs 31 seconds slower when decompressing.
This may not sound bad, but proportionally this is 17% more time. But if

93

CHAPTER 3 USING BEAUTIFUL SOUP

you compare this result with the running times with different parsers, then
you saved over 90% of your running time while working on the fine details
of your script. And you don’t overload the website because you run your
script 100 times daily.

Updating the Cache

Another part to take into consideration while developing caches is the
invalidation time. When an entry in a cache is invalid, when should the
parser download it again?

There is no exact answer to this question. You should think about the
website you're scraping and then set a value for the timeout.

For a web shop I'd use one week, but one day at least because the
only thing that can change in a product is its price and its reviews. Other
information will not change so often.

Ifyou look at the example code and the target website of this chapter,
you will come up with the idea to store only product pages in the cache.
Why? If you store all the pages, you don’t get information on new products
added until the page containing the product details is discarded because
of its age. But you won’t navigate away from the product pages, so they are
a good target to cache every time and refresh them once a week—if reviews
don’t matter as much.

The approach of caching is nothing complicated. For file-based
caching you must look at the file’s modification date, and if it is older
than the grace period, you can remove it from the cache (and delete the
file). For databases, you should add the modification timestamp to the
entity you're saving. Then the protocol is the same: if the entry is too
old, delete it and then the scraper does its job and downloads the site
anew.

94

CHAPTER 3 USING BEAUTIFUL SOUP

Source Code for this Chapter

You can find all the code created for this chapter as whole parsers in the

chapter_03 folder of the sources.

basic_scraper.py contains the basic scraper, which
extracts the information into dictionaries. It doesn’t
have any performance tuning, but you can change the
parser used by Beautiful Soup to gain some minor
improvements.

basic_scraper using classes.py contains an
extended version of the basic scraper: it uses classes to
store the extracted information and saves those classes
to an SQLite and a MongoDB datasource.

file_cache.py contains the file-based cache that stores
the downloaded pages on your filesystem. The final
solution uses compression with z1ib and discards old
entries on startup.

downloader.py contains a downloader, which hides the
cache and downloading process from your scraper. You
can transparently switch caches and perhaps do some
combination on the caches too to enable migration
from one cache to another. Feel free to try things out!

Summary

In this chapter you learned a lot, such as how to use Beautiful Soup and

requests together, and you created your first full scraper application,

which gathers the requirements from Chapter 2.

95

CHAPTER 3 USING BEAUTIFUL SOUP

The scraper exported the gathered results into different stores, like
CSV, JSON, and databases.

But every rose has its thorn: you learned about bottlenecks of this
simpler solution, and applied some techniques to make it perform better.
And with this you've learned how complex it can be to write your own
scraper.

And even with such a lengthy chapter, there are some points still
untouched, for example, honoring the robots. txt file. You can extend the
code from this chapter to honor the robots.txt file of the website; you have
the building blocks to do so.

In the next chapter you will learn Scrapy, the website scraping tool for
Python, which leverages these optimizations from your shoulders. The
only things you must do are create the extractor code and configure Scrapy

properly.

96

CHAPTER 4

Using Scrapy

After a lengthy introduction to Beautiful Soup and custom scrapers, it’s
time to look at Scrapy: the website scraping tool for Python.

In my opinion, this is the only viable tool available currently for
Python, which can handle complex scraping tasks out of the box. You
can cache web pages, and add parallelism as you wish; you only need to
configure Scrapy properly and write the extraction code.

In this chapter you will learn how to get the most out of Scrapy for the
majority of your website scraping projects. You will write the Sainsbury’s
extractor, configure Scrapy to create a website-friendly spider, and you will
learn how to apply custom exporting options to the extracted information.

As opposed to the previous chapter, where I introduced Beautiful
Soup at the beginning and you created the project to scrape the Sainsbury’s
website afterward, now you will learn the basics of Scrapy through
implementing the project scraper. Toward the end of this chapter I'll add
more information and insights into the tools that we didn’t use for the
project, but I think it is useful to know if you write your own scrapers in the
future.

Ready? Why not!

© Gabor Lészl6 Hajba 2018 97
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_4

CHAPTER 4 USING SCRAPY

Installing Scrapy

Your first task is to install Scrapy to your Python environment.
To install Scrapy, simply execute

pip install scrapy

And that’s it. With this command you installed all requirements too, so
you're ready to create scraper projects.

Note The developers of Scrapy recommend installing the tool

into a virtual environment. This is a good practice to have a clean
version of your scraping tool; and this hinders you from updating a
dependency of Scrapy to a noncompatible version, which will render
your scraper nonworking.

If you have a hard time installing Scrapy, just read their instructions.

Creating the Project

To get started with Scrapy, you have to create a project. This helps you to
keep order in your files and focus on only one problem. To create a new
project, simply execute the following command:

scrapy startproject sainsburys
This call results in something like this:

New Scrapy project 'sainsburys', using template directory
"c:\\python\\scrapy\\1lib\\site-packages\\scrapy\\templates\\
project', created in:

C:\scraping book\chapter 4\sainsburys

'https://docs.scrapy.org/en/latest/intro/install.html#intro-install

98

https://docs.scrapy.org/en/latest/intro/install.html#intro-install

CHAPTER 4 USING SCRAPY

You can start your first spider with
cd sainsburys
scrapy genspider example example.com

Depending on the OS you use and the location where you have
your projects, the preceding text can vary. However, what matters is the
information about how you can create your first spider.

But before you create your first spider, let’s look at the file structure
created, as shown in Figure 4-1.

scrapy.cfa
tree.txt

sainsburys
items.py
middlewares.py
pipelines.py
settings.py
~_init .py

spiders
__1init .py
~_pycache
- pycache

Figure 4-1. The project structure

The structure should be similar; if not, perhaps something changed in
the new version of Scrapy you are using.

99

CHAPTER 4 USING SCRAPY

Configuring the Project

Before you dive into the code of the main scraper you will implement with
Scrapy, you should configure your project properly. Basic configuration is
required to show you are a “good citizen,” and your spider is a well-raised
tool too.

The basic configuration I suggest you do every time is to add the user
agent and see that the robots. txt file is honored.

Fortunately, the basic project skeleton of Scrapy comes with a
configuration file where most of the settings are set properly or are
commented out but tell you about the option and which values it accepts.
You can find the configuration of the project in the settings.py file.

If you take a look at it, you will see a lot of options added; most of
them are commented out. The default values work perfectly fine for most
scraping projects, but you can tune them if you think it gives you better
performance or you need some more complexity added.

The two properties I always use are

e USER_AGENT
« ROBOTSTXT OBEY

The names of these properties already tell you what they are good for.

For the USER_AGENT, you see a default that consists of the bot’s name
(sainsburys) and an example domain. I change it mostly to a Chrome
agent. You can obtain one through the DevTools of Chrome: you open
the Network tab, load a web page normally in your browser, click on
the request in the Network tab, and copy the value of User Agent in the
Headlers tab of the request. This works even if you are offline.

And to be a good citizen, leave the ROBOTSTXT OBEY on True. With this,
Scrapy takes care of handling the contents of the robots. txt file if one is
present.

100

CHAPTER 4 USING SCRAPY

| suggest you delete all commented-out settings. This will help you in
reading the file later and you see all active configuration at once; you
do not have to scroll through all the lines to see which is commented
out. It is hard even in an IDE with good color coding.

Besides these properties, I suggest you add CONCURRENT REQUESTS = 1.
This reduces the speed of the spider, but while testing, you will run the code
quite a lot and you don’t want to get banned from the website right at the
beginning—or you don’t want the website’s servers to be done just because
you (and 99,999 other readers) run the scraper simultaneously and the
servers cannot handle the load. If you look at the commented code, you'll
find that the default value for this is 16. I'll add a section where I will turn up
the number of parallel requests and will do a flawed microbenchmark.

To summarize: my final settings.py file looks like this:

-*- coding: utf-8 -*-
BOT_NAME = 'sainsburys'

SPIDER_MODULES = ['sainsburys.spiders’]
NEWSPIDER _MODULE = 'sainsburys.spiders'

USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36" \
"(KHTML, like Gecko) Chrome/63.0.3239.84
Safari/537.36'

ROBOTSTXT_OBEY = True
CONCURRENT _REQUESTS = 1

In the preceding code you can see an example of a Windows 10
Chrome user agent string. You don’t have to stick with this: feel free to use
the one from your browser; it won’t make any difference.

101

CHAPTER 4 USING SCRAPY

Now that the basic configuration is done, we can implement the spider
that will do the work for us.

Terminology

While setting the configuration, you have had the option to learn some of
Scrapy’s terminology, like middleweare or pipeline. They are the building
blocks of this scraper, where you can implement your own code and
extend the functionality if it is missing something you need.

Middleware

Middlewares are hooks into Scrapy; this means, you can extend the
already available functionality. There are two types of middlewares in
Scrapy:

¢ Downloader middlewares
e Spider middlewares

As their names already suggest, you can either extend the downloader
(add your own cache, proxy the calls, modify requests prior sending, or
ignore requests, just as a few examples), or the parser functionality (filter
out some responses, handle spider exceptions, call different functions
based on the response, etc.).

For basic scraping there’s no need to write your own middlewares,
because you can get along well with the tools available—and as Scrapy is
evolving, more custom code gets into the standard library.

Middlewares need to be activated in the settings.py file.

DOWNLOADER _MIDDLEWARES = {
'yourproject.middlewares.CustomDownloader': 500

102

CHAPTER 4 USING SCRAPY

SPIDER MIDDLEWARES = {
'yourproject.middlewares.SpiderMiddleware': 211

If you have your middlewares but they don’t seem to work, you might
have forgotten to activate them. Another reason could be that they are
executed at the wrong position: the number you provide as the value in the
dictionary tells Scrapy about the order in which the middleware should be
executed:

o For downloader middlewares, the process request
method is called in increasing order.

o For downloader middlewares, the process_response
method is called in decreasing order.

o For spider middlewares, the process_spider input
method is called in increasing order.

o For spider middlewares, the process_spider_ output
method is called in decreasing order.

Therefore, it can happen that you expect something in the request/
response / input/output, but it was handled by a middleware with a lower/
higher priority.

Pipeline

Pipelines handle the extracted data. This involves cleaning, formatting,
and sometimes exporting the data. Even though Scrapy has built-in
pipelines that export your data in a given format (CSV, JSON-more on
these later in this chapter), sometimes you need to write your own pipeline
to configure the result to meet your (your customers’) expectations.

103

CHAPTER 4 USING SCRAPY

You will write more pipelines than middlewares while you're working
as a pro scraper. Nevertheless, it is not as bad as it might sound. In this
chapter we will create a simple item pipeline to show you how it is done.

Similar to middlewares, you have to activate your pipelines in the
settings.py file.

ITEM PIPELINES = {
'yourproject.pipelines.MongoPipeline': 418

Extension

Extensions are singleton classes that get instantiated once at startup and
contain custom code, which you can use to add some custom functionality
that is not related to downloading or scraping like a middleware does. Such
extensions can be used for logging, or monitoring memory consumption
(these are already built-in extensions).

Extensions can be loaded the same way as middlewares and pipelines
in settings.py.

EXTENSIONS = {
'scrapy.extensions.memusage.CoreStats': 500

Selectors

This is the most important term you will encounter while using Scrapy.
Selectors are the code parts that select certain parts of the HTML. As you
can see, selectors work similar to Beautiful Soup and 1xml but they are
the Scrapy version, and you can use XPath or CSS expressions.

I prefer XPath expressions because I worked for years with XML and XML
transformations; therefore, I know XPath expression well. You are free to
use any approach, but I will stick to XPath.

104

CHAPTER 4 USING SCRAPY

Selectors are objects in Scrapy, and because of this they can be
constructed from a text.

from scrapy.selector import Selector

selector = Selector(text='<html><body><hi>Hello Selectors!</h1>
</body></html>")

print(selector.xpath('//h1/text()").extract()) # ['Hello
Selectors!']

or from a response:

from scrapy.selector import Selector
from scrapy.http import HtmlResponse

response = HtmlResponse(url="http://my.domain.com’,
body="<html><body><hi>Hello Selectors!</h1></body></html>",
encoding="UTF-8")
print(Selector(response=response).css('hi::text').extract()) #
['Hello Selectors!']

However, because selectors are the way to extract data, you can
conveniently access them from your response using

response.xpath()
or
response.css()

And this makes Scrapy a great tool in my opinion: you don’t have to bother
creating selector objects, but use the available convenient method accesses.
Follow the links if you want to read more about CSS selectors® or XPath

expressions.?

“www.w3.0rg/TR/selectors/
*www.w3.0rg/TR/xpath/all/

105

http://www.w3.org/TR/selectors/
http://www.w3.org/TR/xpath/all/

CHAPTER 4 USING SCRAPY

Implementing the Sainsbury Scraper

To start working on the extraction code, you will need a spider generated.
As you have seen in the previous section, where you created and
configured the base of the project, you can do it with the genspider
command. Let’s do it right now. First change the directory to the one
where you generated your bot, and then execute the following command:

scrapy genspider sainsburys 'https://www.sainsburys.co.uk/shop/
gb/groceries/meat-fish/'

When executing the preceding command, you get a strange message:
Cannot create a spider with the same name as your project

Well, if we cannot get a spider with the same name, let’s give it a
different name. My suggestion is a name that is easy to remember for you.
Iuse mostly "basic" because it’s easy to write and I have a basic scraper to
do the extraction for me. The project already has a unique name; and with
basic I can always start my spiders, regardless of the project.

scrapy genspider basic https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish

The response now is different.

Created spider 'basic' using template 'basic' in module:
sainsburys.spiders.basic

With this command, Scrapy added a basic.py file to the project’s
spiders folder. This file will be the base of your spider; here will you
implement the extraction code.

The code looks normal, but if you look thoroughly, you will see that the
start_urls variable looks a bit weird.

start_urls = ["http://https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/']

106

CHAPTER 4 USING SCRAPY

It has an extra http://. This is because of the URL we provided for the
scraper generation. Scrapy is meant to scrape a domain; therefore, you
should provide a domain for the spider creation. However, in the particular
case of the example, we will scrape only a subset of the whole domain
(“Meat & fish”). There are two options:

e You create the spider using only the domain
‘www.sainsburys.co.uk' and add the remaining part
of the URL later to the start_urls (or change the entry
completely).

e yousimply remove the extra "http://" from the
start_urls entry.

What’s This allowed_domains About?

If you looked at the code thoroughly, you have seen there’s a list of allowed
domains. This list is used to give the spider a bound. Without setting the
allowed domains, you could write a script that goes through the Internet
(following every link on the pages it scrapes). For most purposes, you want
to keep your scraping in one domain. However, sometimes you have to
deal with internal or subdomains. In those cases, you can extend this list
manually to fix such “issues.”

And here you should set the domain only. When you generated the
spider, it added the whole URL to this list, but you need something like this:

allowed_domains = ['www.sainsburys.co.uk"]

You can find the source code for an empty project with my default
configuration among the sources for this chapter in the folder
01 _empty project.

107

https://www.sainsburys.co.uk/

CHAPTER 4 USING SCRAPY

Preparation

This section is brief. If you followed along, you have everything configured
and there is no need for any other preparation.
Just a quick checklist to see if you are ready to go:

e You've read the requirements of Chapter 2.
e You've created a Scrapy-project.

* You've configured the project as described in this
chapter.

e You've created a spider.

If anything is missing, take the time to fix it; then you are good to follow
along.

Using the Shell

One function of Scrapy I like to utilize for preparation work is to use its
shell, which gives us an environment to test and prepare code snippets for
extraction. And because the shell behaves just like your spider code will, it
is ideal for creating the building blocks of your application.

With a naive approach (or similar, like we did in the previous chapter),
you’d write a part of your code and run the spider. If there’s an error, you'd
fix the code and rerun the spider. This is OK if the website doesn’t limit
access based on requests. If there’s a limit, you may end up exceeding it
and your spider (and your computer, current IP, whole company network*)
is banned from the website. And, as I have seen, Sainsbury’s runs behind
CloudFlare—you better not send parallel requests to their website!

*Once our client was banned from StackOverflow (SO) for too many requests in a
minute. Around 100 software developers have had a hard time without SO.

108

CHAPTER 4 USING SCRAPY

The Scrapy shell works differently: it downloads your target web page
and you can create your extraction logic on this copy. If you need to move
to another page, you let the shell download it and you are good to write the
next chunk of code.

Starting the shell is easy.

scrapy shell

You can pass along a <url> parameter, which is your target URL.
For this book we will use https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/:

scrapy shell https://www.sainsburys.co.uk/shop/gb/groceries/
meat-fish/

Alternatively, you can also fetch the URL when you open Scrapy’s
shell without any, or with a different URL.

>>> fetch('https://www.sainsburys.co.uk/shop/gb/groceries/
meat-fish/")

Now the shell has downloaded the web page behind the URL. This
means two things: now you have access to the Meat & Fish page’s content
and can try your extractors; and second, you have to download every page
you want to use in the shell. Even though the second point sounds bad, it is
not: getting other pages is made easy in Scrapy and therefore in the shell too.

In the shell you have access to a response object (just like in the parse
method, which we will write later in this chapter), and with this response
you can use the available selectors.

I don’t want to dig very deep into how to use the shell to prepare your
scraper script. Therefore, we will do one example: we get the URLSs to the
next page. This will give you a good start and the feel of using the shell for
further preparation.

109

https://www.sainsburys.co.uk/shop/gb/groceries/meat-fish/
https://www.sainsburys.co.uk/shop/gb/groceries/meat-fish/

CHAPTER 4 USING SCRAPY

As you may remember, the links that lead to the detailed pages can be
found in an unordered list (<ul class="categories departments">). The
list’s elements (<1i>) have an anchor child (<a>), and the value of the href
attribute of these anchors is the URL we are looking for.

To get the list of these URLSs, you can write the following code using XPath:

urls = response.xpath('//ul[@class="categories departments"]/
li/a/@href").extract()

Using CSS selectors, this would look like this:

urls = response.css('ul.categories.departments > 1i >
a::attr(href)').extract()

And that is it. You have all the URLSs that lead to either product listings
of the category or to a site containing more subcategories, just like in the
previous chapter.

I suggest you dig a bit deeper into XPath and CSS selectors for now,
to understand the extractor code that you will write starting with the next
section.

def parse(self, response)

Now we are good to go to write the code in the basic.py file.

The parse method is the core of every spider. This method is called
every time Scrapy downloads a URL, and most of the time you write your
extraction code in this method.

The response argument holds the response from calling the URL. It
can contain the website’s content but sometimes you can get back error
codes, for example, when the website is down or nonexistent.

You can write a whole scraper into the parse method, but I suggest
organizing your code into methods (and actually, this is the suggested
practice of many developers). This helps you in the future to understand
what the code wants to achieve.

110

CHAPTER 4 USING SCRAPY

Therefore, the parse function will be very sparse: it extracts only the
URLs to the category pages (the same from the preparation with the shell),
and initiates the download and parsing of those pages.

from scrapy import Request
some code left out...

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments”]/1i/a/@href").extract()

for url in urls:
yield Request(url, callback=self.parse department

pages)

The preceding code extracts the href attributes of every anchor
element of the list of the desired class. The interesting part is how the
scraping is continued: you yield a new Request object with the target URL
as the first parameter and the callback function that should be called if
the server returns an OK-ish response for the given URL. In this case it will
be the parse_department_pages method of this same class.

There’s an alternative way to get to the next page with writing less code.

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments"]/1i/a")

for url in urls:
yield response.follow(url, callback=self.parse_
department_pages)

Here we use the syntactic sugar of Scrapy: under the hood the same
code is executed, but you don’t have to bother with extracting the exact
reference from the anchor tags. And sometimes you don’t get a fully

111

CHAPTER 4 USING SCRAPY

qualified (absolute) URL in web page links but relative references, and you
have to manually add the host (or use urljoin). By using response.follow
you get this out of the box too. Therefore, I suggest you use this syntax, and
I'll use this in the book too!

Currently, as of version 1.4.0, you have to provide a single URL or Link-
type object to the follow method. I bet that someone will add a method
that accepts a list (for example follow_all) too, because we like make
things easier.

With this, we are done with this section. Let’s move on and see how to
get to the product pages.

At the end of this section, your basic. py file should look like this:

-*- coding: utf-8 -*-
import scrapy

class BasicSpider(scrapy.Spider):
name = 'basic’
allowed_domains = ['www.sainsburys.co.uk"]
start_urls = ["https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/"]

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments"]/1i/a")

for url in urls:
yield response.follow(url, callback=self.parse_
department_pages)

Navigating Through Categories

Your first task is to navigate through the category pages of the Sainsbury’s
website. You have seen in the previous chapter how complex it can get to
find the page where the item details are.

112

CHAPTER 4 USING SCRAPY

As you have seen in the previous chapter, each category’s link can lead
either to the product listing or to a page containing subcategories and their
links, which can lead to either the product listing page or a third page with
sub-subcategories. Fortunately, there is no deeper layering.

In this section we will handle the case wherin your code in the
previous section resulted in a sub- or sub-subcategory page and not the
product detail.

We sent requests with Scrapy in the previous section and told the tool
to handle the responses with the parse_department_pages method.

To implement this method, we have to take care of the three versions of
the response:

e We get a product listing page.
o We get a sub-category page.
e We get a sub-sub-category page.

If the response is a product listing, the idea is to forward the response
to the next section’s method. However, we must take care of triggering the
requests. The resulting block will look like this one:

product grid = response.xpath('//ul[@class="productLister
gridview"]")
if product grid:
for product in self.handle product listings(response):
yield product

In the preceding code, we call the handle_product_listings method
with the response object. We could provide the product grid too (or just
the grid) because we have it already extracted but, as you will see later, we
need the response to navigate between the pages of the product grid.

Then we yield the result, which is the trigger for Scrapy to scrape these
URLs too.

113

CHAPTER 4 USING SCRAPY

The next step is to get through the deeper layers of categories, which
are represented by CSS classes like aisles (class="category aisles")and
shelves (class="category shelves")—justlike in your supermarket.

The trick here is to check if the page’s source contains shelves and if
not, then go for aisles. This is because a page containing shelves contains
aisles too, and if you get the aisles links first you can end up in a never-
ending circle of getting the same pages over and over again if you don’t
use caching. And getting the same pages means slower scraping (actually,
never ending) and a lot of duplicate items in your scraping result.

pages = response.xpath('//ul[@class="categories shelf"]/1li/a")
if not pages:
pages = response.xpath('//ul[@class="categories aisles"]
/1i/a")
if not pages:
here is something fishy
return

for url in pages:
yield response.follow(url, callback=self.parse department

pages)

The preceding code follows the approach mentioned previously: it
looks for shelves and if they are not found, it looks for aisles. If nothing
is found, then we are at a page from which we cannot gather more
information: we have extracted the links to the product listings or there are
no links to aisles or shelves on the page.

At the end of this section, your basic. py file should look something
like this:

-*- coding: utf-8 -*-
import scrapy

class BasicSpider(scrapy.Spider):

114

CHAPTER 4 USING SCRAPY

name = 'basic’

allowed domains = ['www.sainsburys.co.uk']
start_urls = ["https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/"]

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments"]/1i/a")

for url in urls:
yield response.follow(url, callback=self.parse_
department_pages)

def parse_department pages(self, response):
product grid = response.xpath('//ul[@class="product
Lister gridview"]")
if product_grid:
for product in self.handle product listings
(response):
yield product

pages = response.xpath('//ul[@class="categories
shelf"]/1i/a")
if not pages:
pages = response.xpath('//ul[@class="categories
aisles"]/1i/a")
if not pages:
here is something fishy
return

for url in pages:
yield response.follow(url, callback=self.parse_
department_pages)

115

CHAPTER 4 USING SCRAPY

Navigating Through the Product Listings

Now your code leads at some point to a product listing page. In this section
we will navigate through these pages if they have too many elements to
display on one page, and we will request a download for the detailed item
pages.

We are currently in the handle_product listings function.

Let’s start with the item details.

urls = response.xpath('//ul[@class="productLister gridview"]
//1i[@class="gridItem"]//h3/a")
for url in urls:

yield response.follow(url, callback=self.parse product detail)

The preceding code extracts the URLs to the detailed pages, and these
URLs are then returned to the parse_department_pages method where
their scraping is triggered.

next_page = response.xpath('//ul[@class="pages"]/1i
[@class="next"]/a")
if next_page:
yield response.follow(next page, callback=self.handle_
product listings)

This code looks for the link to the next page. If one is found (on
the website, it’s under the > symbol) then it is returned to the parse_
department_pages method. Note here the callback method: Because
we know that we get another page of product listing, we can use the same
method as a callback.

After finishing this section, your basic.py file should look like this:

-*- coding: utf-8 -*-
import scrapy

116

CHAPTER 4 USING SCRAPY

class BasicSpider(scrapy.Spider):
name = 'basic’
allowed domains = ['www.sainsburys.co.uk']
start_urls = ["https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/"]

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments"]/1i/a")

for url in urls:
yield response.follow(url, callback=self.parse_
department_pages)

def parse department pages(self, response):
product grid = response.xpath('//ul[@
class="productLister gridview"]")
if product grid:
for product in self.handle product_
listings(response):
yield product

pages = response.xpath('//ul[@class="categories
shelf"]/1i/a")
if not pages:
pages = response.xpath('//ul[@class="categories
aisles"]/1i/a")
if not pages:
here is something fishy
return

for url in pages:
yield response.follow(url, callback=self.parse_
department_pages)

117

CHAPTER 4 USING SCRAPY

def handle product listings(self, response):
urls = response.xpath('//ul[@class="productlLister
gridview"]//1i[@class="gridItem"]//h3/a")
for url in urls:
yield response.follow(url, callback=self.parse_
product detail)

next_page = response.xpath('//ul[@class="pages"]/1i
[@class="next"]/a")
if next_page:
yield response.follow(next page, callback=self.
handle product 1istings)

Extracting the Data

Now that your code can handle the complex navigation and find the item
details page, it’s time to extract the required information from the website.

We are currently in the parse_product_detail method.

Now it is time to extract all the required information from the item
page. Actually, this process is the same as you did in the previous chapter
(if you coded along): you can use the queries; however, you can save some
lines of code on validating every find or find_all call.

Without talking too much, let’s jump into the code.

If you want, you can put down the book and implement the extraction
logic. It is not hard, and you can use the information from the
previous two chapters to go with.

My solution looks like this (yours may differ):

def parse product detail(self, response):
product _name = res