
www.allitebooks.com

http://www.allitebooks.org

Yocto for Raspberry Pi

Create unique and amazing projects by using the
powerful combination of Yocto and Raspberry Pi

Pierre-Jean Texier
Petter Mabäcker

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Yocto for Raspberry Pi

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1170616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78528-195-2

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Pierre-Jean TEXIER
Petter Mabäcker

Copy Editor
Madhusudan Uchil

Reviewers
Burt Janz
Dave (Jing) Tian
Helmi ROMDHANI
Pierre FICHEUX

Project Coordinator
 Judie Jose

Commissioning Editor
Amarabha Banerjee

Proofreader
Safis Editing

Acquisition Editor
Meeta Rajani

Indexer
Hemangini Bari

Content Development Editor
Rashmi Suvarna

Production Coordinator
Shantanu N. Zagade

Technical Editor
Mohit Hassija

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors
Pierre-Jean TEXIER is an embedded Linux engineer at Amplitude Systèmes (a pioneer in
the marketing of Ytterbium femtosecond lasers) since 2014, where he maintains a custom
SoC called i.MX6 with the Yocto Project (meta-fsl-arm), which is made by a French
company, EUKREA.

He is a graduate of ESTEI school at Bordeaux, where he studied for 3 years to become an
embedded Linux engineer.

He is a big supporter of the world of free software and the embedded world. His
knowledge includes C/C++, Yocto, Linux, Bash, and kernel development, but he is also open
to trying new things and testing new technologies.

Firstly, I want to thank my patient wife for her support during my writing sessions. I also give
thanks my parents and my brother; without them, this book possibly would not have happened. I
would also like to thank all of the mentors that I’ve had over the years—mentors such as Cyril
SAGONERO, Sylvain LE HENAFF, Pierre BORDELAIS, Vincent POULAILLEAU, Fabrice
BONNET, Jean-Claude PERESSINOTTO, and Pierre AUBRY. Without learning from these
teachers, there is not a chance I could be doing what I do today. To finish, I would like to thank Eric
MOTTAY, the CEO of Amplitude Systèmes; Luca TESTA, the head of the electronics team at
Amplitude Systèmes for his trust; and Hitesham WOODHOO, Alexandre GAMONET, Kevin
PINTO, and Guillaume MACHINET for all the discussions about the Raspberry Pi during coffee
breaks.

www.allitebooks.com

http://www.allitebooks.org

Petter Mabäcker is a senior software developer specializing in embedded Linux systems.
For the past 8 years, he has been working with embedded Linux professionally. Currently,
Petter works as a Scrum Master and senior software developer at Ericsson AB.
Additionally, his knowledge includes C/C++, shell scripting, Yocto Project (including
BitBake and OpenEmbedded), Scrum, and Git.

In 2013, Petter started the small business Technux, which he runs as a side project in parallel
with his duties at Ericsson. Some of the focus areas of the business are open source
embedded Linux projects, such as the Yocto Project, together with different projects that
involve the Raspberry Pi. As part of the work with Technux, Petter works as a contributer to
the Yocto Project (including the Raspberry Pi BSP layer, known as meta-raspberrypi).

I would like to give special thanks to my beloved family for letting me spend the time needed to
finalize this book besides all my other duties.

About the Reviewers
Burt Janz has been involved with computing systems since he assembled his first
microcomputer in the US Navy in 1975. Starting with the development of device drivers
and low-level interfaces on *nix systems in the early 1980s, Mr. Janz has been writing
complex software products for over 30 years. His expertise stretches from the design and
implementation of low-level operating system internals and device drivers to complex
applications for embedded and handheld devices and government and enterprise-level
systems.

A 1988 graduate with high honors in BSCS from Franklin Pierce College, he was an adjunct
professor at Daniel Webster College for 11 years in their evening-based Continuing
Education program, developing embedded and enterprise-level software during the day.
His curricula of instruction included courses from a basic introduction to computers to
programming languages (C/C++/Java) to networking theory and network programming,
database theory and schema design, artificial intelligence systems. Along the way, Mr. Janz
has written magazine articles and other technical commentaries as well as having been
involved with one of the first over-the-counter Linux distributions (Yggdrasil, in 1994).

Mr. Janz has designed complete embedded and enterprise-level software system
architectures as a lead architect and has led teams from the requirements and design phases
of new products through to completion and delivery to customers. He has experience with
x86, 68xxx, PPC, ARM, and SPARC processors and continues to write kernel threads and
kmods, open firmware device trees, drivers for new and proprietary hardware, FPGA I/P
core interfaces, applications, libraries, and boot manager code. He may be contacted directly
by email at bhjanz@ccsneinc.com or burt.janz@gmail.com or via LinkedIn.

Dave (Jing) Tian is a PhD student and a security researcher at the Computer & Information
Science & Engineering (CISE) department of the University of Florida. He is a founding
member of the SENSEI center and the Florida Institute for Cybersecurity. His research
involves system security, embedded systems, trusted computing, and compilers. He has an
interest in Linux kernel hacking, compiler hacking, and machine learning. He also spent a
year on AI and machine learning direction and taught Python and operating system classes
at the University of Oregon. Before that, he worked as a software developer at the Linux
Control Platform (LCP) group at Alcatel-Lucent (former Lucent Technologies) R&D
department for around 4 years. He holds BS and ME degrees in EE from China. He can be
reached via his blog (h t t p : / / d a v e j i n g t i a n . o r g) and e-mail
(root@davejingtian.org).

mailto:bhjanz@ccsneinc.com
mailto:burt.janz@gmail.com
http://davejingtian.org
mailto:root@davejingtian.org

Thanks to the authors, who have done a good job, and the editors, who made this book
perfect and offered me the opportunity to review such a nice book.

Helmi ROMDHANI is an embedded HW/SW engineer. He graduated from the national
engineering school of Sousse, Tunisia. His primary job is at Tunisian Embedded Systems,
which specializes in the research, development, prototyping, and installation of embedded
systems. He specializes in embedded telecommunication field, especially in developing
embedded software for residential gateways. He frequently works with embedded
platforms (Raspberry Pi and Arduino), Linux, shell, Yocto, Python, C# (.Net), Android,
databases (MySQL), web services, and Proteus Isis (PCB design).

Any contact is welcome at helmiromdhany@gmail.com.

I would like to thank all my family for their support, encouragement, and love, especially
my mother, Salha, and my father, Mokhtar.

Pierre FICHEUX is currently the CTO at Open Wide Ingénierie, a software service company
specializing in open source technologies.

Pierre is also a teacher and manager of the GISTRE (Génie Informatique des Systèmes
Temps Réel et Embarqués) specialty at EPITA, a famous French school of computer science.

He’s also an author of four editions of Linux Embarqué, Eyrolles , a French reference book
about building embedded Linux systems.

mailto:helmiromdhany@gmail.com

www.PacktPub.com
eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents
Preface 1

Chapter 1: Meeting the Yocto Project 7
The Yocto Project 7

Understanding the build system 8
The core components 10

What is Poky? 11
The Chief – BitBake 12
OpenEmbedded-Core 14
Exploring metadata 16

Yocto Project – workflow 17
Summary 18

Chapter 2: Building our First Poky Image for the Raspberry Pi 19
Installing the required packages for the host system 19

Poky on Ubuntu 20
Poky on Fedora 21
Downloading the Poky metadata 21
Downloading the Raspberry Pi BSP metadata 22
The oe-init-build-env script 25
Editing the local.conf file 26
Editing the bblayers.conf file 26

Building the Poky image 27
Choice of image 27
Running BitBake 29
Creating an SD card 30

Booting the image on the Raspberry Pi 31
Summary 32

Chapter 3: Mastering Baking with Hob and Toaster 33
Hob 33

Preparing the environment for Hob 33
Running Hob 34
Configuring recipes and packages 40
Building the image 42

Exploring Toaster 44

[ii]

Installing the required packages for the host system 44
Running Toaster 44
Running BitBake 45
Running the web interface 46

Summary 46
Chapter 4: Understanding BitBake 47

BitBake 47
Metadata 48

Configuration 48
Classes 48
Recipes 49

Parsing metadata 49
Preferences and providers 50
Dependencies 50
Fetching 51

The local file fetcher 51
The HTTP fetcher 52
The Git fetcher 52

Understanding BitBake's tasks 53
Summary 55

Chapter 5: Creating, Developing, and Deploying on the Raspberry Pi 56
Software development kits (SDKs) 56

A generic SDK – meta-toolchain 58
image.bb -c populate_sdk 58
The Qt SDK – meta-toolchain-qt 59
The Qt5 SDK – meta-toolchain-qt5 60
Cross-compilation – an example 60

Configuration of the SDK environment 60
List of tools 61
Compilation 61

Raspberry Pi and a package manager 62
Package format availablility 62
Choosing a package format 63
Installing and updating a package on the target 64
RPM packages 64

Installing manually 64
Installing automatically 64

IPK packages 67
Installing manually 67

[iii]

Installing automatically 67
Our application – an introduction 68
Our application – creating the recipe 70

The recipe explained 71
Summary 73

Chapter 6: Working with External Layers 74
Introducing layers 74
The basic concepts of layers 75

Theory 75
The software layer 77

README and COPYING 77
The classes folder 78
The conf folder 78
The recipes-* directory 79

The machine (BSP) layer 79
Adding external layers to the Raspberry Pi 81
Summary 82

Chapter 7: Deploying a Custom Layer on the Raspberry Pi 83
Creating the meta-packt_rpi layer with the yocto-layer script 83
Adding gpio-packt to meta-packt_rpi 86
Patching gpio-packt 88

Generating the patch 88
Adding the patch to the recipe file 88

Creating the raspberry-packt-image.bb image 90
Creating the environment 90
Modifying the recipe file 91

Deploying the raspberry-packt-image.bb image 93
Summary 93

Chapter 8: Diving into the Raspberry Pi's Peripherals and Yocto Recipes 94
The SPI bus 94

The spi-tools project 95
Inclusion in the meta-oe layer 96
Baking spi-tools 97
Testing on the Raspberry Pi 98

spi-config 98
spi-pipe 99

Conclusion 100
The i2c bus 100

[iv]

The Wii Nunchuck 102
The Nunchuck connector 103

The Raspberry Pi connection 104
The Nunchuck's protocol 104

Encryption 105
Requesting sensor data 105

Testing the i2c connection 106
Creating the Nunchuck application 107
Integrating with meta-packt_rpi 107
Creating the Nunchuck recipe 108
Testing the Nunchuck application 109
V4L presentation 109
Video support 109
v4l-utils integration 110

Summary 111
Chapter 9: Making a Media Hub on the Raspberry Pi 112

Project description – CPU temperature monitoring 112
Overview 113
Hardware/software requirements 113

Creating the main application 113
server.js 114
index.html 114

Creating the Yocto/OE environment 115
Modifying the image 115
Creating the recipe file 115

Explanation 117
Autostarting – the init file 118

Explanation 119
Autostarting – the recipe file 120
Explanation 121

Deploying raspberry-packt-image 121
Testing the application 122
The future of this project 123
Summary 123

Chapter 10: Playing with an LCD Touchscreen and the Linux Kernel 124
The Linux kernel 124

The Linux kernels versus the Raspberry Pi Linux kernel 125
Getting started with the Linux kernel 126

Configuring the kernel in Yocto 129

[v]

Configuring the kernel with LCD support 130
The Raspberry Pi device tree 131
Configuring the touchscreen from the kernel perspective 132

Setting up an LCD display for the Raspberry Pi using the Yocto
Project 134

The Raspberry Pi 7 touchscreen 134
The PiTFT 2.8 resistive touchscreen 136

Developing applications and using them on an LCD display 138
Developing a custom application using Qt 139

Summary 142
Chapter 11: Contributing to the Raspberry Pi BSP Layer 143

Open source 143
Contributing to open source projects 144
Exploring Git 144

What is Git? 145
Working with Git 145

Contributing to the Yocto Project 151
Contributing to meta-raspberrypi 152

Setting up your Git repository 153
Creating your commit 154
Sending changes to the community 156
Follow-up 157
Practical example – sending a custom tool upstream 158

Summary 160
Chapter 12: Home Automation Project - Booting a Custom Image 161

Home automation using a Raspberry Pi 161
Material required for the project 162

Setting up the base for the project 163
Creating a new layer 163
Customizing the image recipe 163
Building and booting the image 164

Creating the server side 167
Creating a packet list for your image 174

Setting up a customized package list 174
Start using a customized package list in meta-packt-iot 175

Putting it all together 176
Serial and SSH connections to the Raspberry Pi 176

Controlling the relay using the Raspberry Pi 179
Controlling the lamp using the Raspberry Pi 182

[vi]

Turning on/off the lamp from a smartphone 185
Extra – using a Raspberry Pi with an LCD as the client 186
Summary 188

Index 189

Preface
This book will cover everything from creating your customized image for the Raspberry Pi
to implementing a small home automation project using the Yocto Project and the
Raspberry Pi as the base.

The book will start by introducing you to the Yocto Project and presenting the Raspberry Pi
platform. With this information in place, you will learn how to integrate the Yocto Project
with the Raspberry Pi. Throughout the book, you will learn everything from how to
develop a custom application to using a Wii nunchuck and configuring an LCD touchscreen
for the Raspberry Pi using the Yocto Project. The book will end with a practical chapter,
which will summarize all that you learned throughout the book by creating a home
automation project.

What this book covers
Chapter 1, Meeting the Yocto Project, introduces the basic concept of the Yocto Project. It
will discuss history of the Yocto Project, OpenEmbedded Core, Poky, and BitBake.

Chapter 2, Building our First Poky Image for the Raspberry Pi, teaches you how to create your
first image for the Raspberry Pi using the Yocto Project and how to run it.

Chapter 3, Mastering Baking with Hob and Toaster, teaches you how to use the user-friendly
interfaces Hob and Toaster.

Chapter 4, Understanding BitBake, provides you with a deeper understanding of BitBake.

Chapter 5, Creating, Developing, and Deploying on the Raspberry Pi, teaches you how to
integrate a custom application with the Raspberry Pi. This will include learning how to
generate an SDK for cross-compiling applications.

Chapter 6, Working with External Layers, takes you through how layers work and how to
integrate external layers with our Raspberry Pi projects.

Preface

[2]

Chapter 7, Deploying a Custom Layer on the Raspberry Pi, explores how to generate a custom
layer with different tools that the Yocto Project offers.

Chapter 8, Diving into the Raspberry Pi's Peripherals and Yocto Recipes, teaches you how to
handle the SPI and i2C buses of the Raspberry Pi through the Yocto Project. You will also
learn how to create your own recipe for custom applications.

Chapter 9, Making a Media Hub on the Raspberry Pi, goes through how to deploy custom
applications in order to make an embedded media hub, which can be used to, for example,
monitor CPU temperature. The solution will require HTML5 and Node.js to set up the web
interface required for remotely monitoring temperature.

Chapter 10, Playing with an LCD Touchscreen and the Linux Kernel, teaches you some basics
about the Linux kernel and how to configure it to support various LCD touchscreens.
Further on, the chapter explains how to set up the Yocto Project to run graphical
applications or a window system on a Raspberry Pi using an LCD touchscreen.

Chapter 11, Contributing to the Raspberry Pi BSP Layer, teaches you how to contribute to
the meta-raspberrypi layer.

Chapter 12, Home Automation Project – Booting a Custom Image, is the final chapter of the
book, in which we summarize all that we learned throughout the book. This is done by
creating a home automation project.

What you need for this book
A Linux workstation with a supported host system (see h t t p : / / w w w . y o c t o p r o j
e c t . o r g / d o c s / c u r r e n t / r e f - m a n u a l / r e f - m a n u a l . h t m l # d e t a i l e d - s u p p o r

t e d - d i s t r o s)
Packages required for the host system (see h t t p : / / w w w . y o c t o p r o j e c t . o r g / d o
c s / c u r r e n t / r e f - m a n u a l / r e f - m a n u a l . h t m l # r e q u i r e d - p a c k a g e s - f o r - t h e

- h o s t - d e v e l o p m e n t - s y s t e m)
The required versions of Git, tar, and Python (see h t t p : / / w w w . y o c t o p r o j e c t .
o r g / d o c s / c u r r e n t / r e f - m a n u a l / r e f - m a n u a l . h t m l # r e q u i r e d - g i t - t a r - a n

d - p y t h o n - v e r s i o n s)

http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#required-git-tar-and-python-versions
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#required-git-tar-and-python-versions
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#required-git-tar-and-python-versions

Preface

[3]

Who this book is for
This book is intended for embedded software students, embedded Linux engineers, and
embedded systems enthusiasts competent with the Raspberry Pi (or another ARM
platform) who want to discover the Yocto Project.

This book is the ideal way to become proficient and broaden your knowledge in order to
apply it to your embedded development.

If you are looking for a book to help you develop on the Raspberry Pi and the Yocto Project,
this book is the one you need.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, path
names, dummy URLs, user input, and Twitter handles are shown as follows: "To run a task,
BitBake will first look for an environment variable called do_ <task name>, which will
contain the task code to execute (in Python or a shell)."

A block of code is set as follows:

LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "6" BBPATH = "${TOPDIR}" BBFILES ?= "" BBLAYERS ?= " \
/home/packt/RASPBERRYPI/poky/meta \
/home/packt/RASPBERRYPI/poky/meta-yocto \
/home/packt/RASPBERRYPI/poky/meta-yocto-bsp \
"BBLAYERS_NON_REMOVABLE ?= " \
/home/packt/RASPBERRYPI/poky/meta \
/home/packt/RASPBERRYPI/poky/meta-yocto \
"

Any command-line input or output is written as follows:

$ modprobe spidev

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Adding a layer is very
simple. We just have to click on the Layers button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / Y o c t o - f o r - R a s p b e r r y - P i. We also have other code bundles from our rich
catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s /
d o w n l o a d s / Y o c t o f o r R a s p b e r r y P i _ C o l o r I m a g e s . p d f.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/YoctoforRaspberryPi_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/YoctoforRaspberryPi_ColorImages.pdf
http://www.packtpub.com/submit-errata

Preface

[6]

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Meeting the Yocto Project

In this chapter, we will discover the Yocto Project and its main principles. All the concepts
used throughout the book will be introduced here. We will discuss the history of the Yocto
Project, the build system, Poky, OpenEmbedded-Core, BitBake, metadata, and the Yocto
Project workflow.

The Yocto Project
The Yocto Project is an umbrella project covering a fairly wide gamut of embedded Linux
technologies. It is not a Linux distribution, as explained on the Yocto Project website:

“The Yocto Project is an open source collaboration project that provides templates, tools
and methods to help you create custom Linux-based systems for embedded products
regardless of the hardware architecture.”

Sponsored by the Linux Foundation, the Yocto Project is more than a build system. It
provides tools, processes, templates and methods so that developers can rapidly create and
deploy products for embedded devices(the Raspberry Pi, Beagleboard, Nitrogen6x,
SAMA5D3, Olinuxino, and so on) or QEMU. The two main components that make up the
Yocto Project are:

Poky: This is the build system (the reference distribution).
BitBake: This is the scheduler. It is a tool based on the Gentoo distribution.

Meeting the Yocto Project

[8]

Around November 2010, the Linux Foundation announced that this entire work would
continue under the banner of the Yocto Project as a project sponsored by the Linux
Foundation (with Richard Purdie, Fellow of the Linux Foundation, as Architect). It was then
established that the Yocto Project and OpenEmbedded would coordinate on a core set of
package metadata called OE-Core, combining the best of both Poky and OpenEmbedded
with an increased use of layering for additional components.

Understanding the build system
As mentioned before, we are in the world of build systems with the Yocto Project. A build
system enables you to:

Compile or cross-compile applications
Package applications
Test output binaries and ecosystem compatibility
Deploy generated images

To perform these steps, several tools exist. These are some of them:

Buildroot (http://buildroot.uclibc.org/)
LTIB (http://ltib.org/)
OpenWRT (https://openwrt.org/)
Yocto/OpenEmbedded (https://www.yoctoproject.org/)

http://buildroot.uclibc.org/

Meeting the Yocto Project

[9]

For example, Buildroot is a set of makefiles for automated generation in embedded systems.
It supports compiling the bootloader (U-Boot, for example), kernel (zImage or bzImage),
and basic controls through BusyBox and third-party applications. Buildroot works on
various architectures, such as ARM, x86, and MIPS. For further information, refer to the full
documentation in English at https://buildroot.org/docs.html.

“Buildroot is a tool maintained in part by a French company that specializes in embedded
Linux development called Free Electrons”

Buildroot is a much more simplistic approach than the one we will discover through this
book on the Yocto Project. Buildroot is rather dedicated to firmware generation, while
Yocto/OpenEmbedded is oriented towards distribution. Buildroot offers 700 recipes
compared to the Yocto Project, which offers over 8000.

Meeting the Yocto Project

[10]

The core components
The core components (other available tools are optional) of the Yocto Project are:

BitBake
OpenEmbedded-Core
Poky
The BSP layer (meta-raspberry, meta-fsl-arm, meta-ti, meta-intel, meta-sunxi, and
so on)

The following diagram shows all the layers that we will discover through this book. We will
study all the tools through various examples, allowing better comprehension.

Meeting the Yocto Project

[11]

What is Poky?
Poky is the reference Yocto Project distribution. It contains some of basic components (called
the build system) of OpenEmbedded and a set of metadata for creating embedded
distributions for a number of targets. It is platform independent and performs cross-
compiling using the BitBake tool (a task scheduler), OpenEmbedded-Core, and a default set
of metadata, as shown in the following figure. It provides the mechanism to build and
combine thousands of distributed open source projects.

The Poky build system is poised to become the reference in the industrial world as evinces
by industry leaders such as Wind River, Intel, Montavista, and Mentor Graphics.

Meeting the Yocto Project

[12]

Angstrom (http://www.angstrom-distribution.org/) is another
distribution based on OpenEmbedded-Core. You might consider
Angstrom and Poky to be close cousins, because Poky is also based on
OpenEmbedded-Core.

The Chief – BitBake
BitBake, the build engine, is a task scheduler (like GNU Make) which parses several scripts
(shell and Python, for example).

Once the environment is built, BitBake will execute the task that has been requested. If no
task is provided, BitBake will run the default task, called build.

To run a task, BitBake will first look for an environment variable called do_ <task name>,
which will contain the task code to execute (in Python or a shell). So, to compile a Yocto
recipe, use the code contained in the do_compile variable.

In short, from the information contained in the recipes (or metadata), it downloads the
sources of projects from the Internet, a local directory, or a version-control system (such as
Git), and then builds in the order determined by the dependency graph generated
dynamically. Finally, it installs binaries, generates the corresponding package, and builds
the final image, which can be installed on the target (Raspberry Pi for us).

Meeting the Yocto Project

[13]

The following picture shows how BitBake works:

Meeting the Yocto Project

[14]

OpenEmbedded-Core
The OpenEmbedded-Core metadata collection (meta in the following diagram) provides the
engine of the Poky build tool. It is designed to provide the core features (several recipes). It
provides support for six different processor architectures (ARM, x86, x86-64, PowerPC,
MIPS, and MIPS64), supporting only QEMU-emulated machines.

Meeting the Yocto Project

[15]

The organization of OpenEmbedded-Core is depicted here:

Meeting the Yocto Project

[16]

This layer includes different recipes, which describe how to fetch, configure, compile and
package applications and images.

For the rest of the book, we will mix this layer with the BSP layer of the
Raspberry Pi, meta-raspberrypi.

Exploring metadata
Metadata, which is composed of a mix of Python and shell script text files (.conf, .bb,
.bbclass, and .inc), provides a tremendously flexible system. Metadata refers to the
build instructions themselves as well as the data used to control what things get built and to
affect how they are built. The metadata also includes commands and data used to indicate
which versions of software are used and where they are obtained from. Poky uses this to
extend OpenEmbedded-Core and includes two different layers, which are another metadata
subset. Here are their details:

* meta-yocto: This layer provides the default and supported distributions, visual
branding, and metadata tracking information (maintainers, upstream status, and
so on)
* meta-yocto-bsp: This layer, on top of it, provides the hardware reference board
support (BSP) for use in Poky

We will discover metadata in depth through Chapter 4, Understanding the BitBake tool.

Meeting the Yocto Project

[17]

Yocto Project – workflow
The following diagram represents the Yocto Project development environment at a high
level in order to present the cross-compilation framework:

Let's look at what the components in the diagram stand for:

* User Configuration: This is metadata you can use to control the build process.
* Metadata layers: These are various layers that provide software, machine, and
distribution metadata.
* Source files: These contain upstream releases, local projects, and source control
management (Git, SVN, and so on).

Meeting the Yocto Project

[18]

* Build system: These are processes under the control of BitBake. This block
expands on how BitBake fetches source files, applies patches, completes
compilation, analyzes output for package generation, creates and tests packages,
generates images, and generates cross-development tools.
* Package feeds: These are directories containing output packages (RPM, DEB, or
IPK), which are subsequently used in the construction of an image or SDK
produced by the build system. These feeds can also be copied and shared using a
web server or other means to facilitate extending or updating existing images on
devices at runtime if runtime package management is enabled.
* Images: These are images produced by the development process (the pieces that
compose the operating system, such as the kernel image, bootloader, and rootfs).
* Application development SDK: These are cross-development tools that are
produced along with an image or separately with BitBake.

Summary
This first chapter provided an overview on how the Yocto Project works, the core
components that form it, such as Poky, OpenEmbedded-Core, and BitBake, and how they
work within the Yocto Project.

In the next chapter, we will practice the workflow of the Yocto Project with different steps
to download, configure, and prepare the Poky build environment in order to generate our
first Poky image for the Raspberry Pi.

2
Building our First Poky Image

for the Raspberry Pi
In this chapter, we will try to understand the basic concepts of the Poky workflow. Using
the Linux command line, we will proceed with the different steps required to download,
configure, and prepare the Poky Raspberry Pi environment and generate an image that can
be used by the target.

Installing the required packages for the host
system
The steps necessary for the configuration of the host system depend on the Linux
distribution used. Indeed, it is advisable to use one of the Linux distributions maintained
and supported by Poky. This is to avoid wasting time and energy in setting up the host
system. Currently, the Yocto Project is supported on the following distributions:

Ubuntu 12.04 (LTS)
Ubuntu 13.10
Ubuntu 14.04 (LTS)
Fedora release 19 (SchrÃ¶dinger's Cat)
Fedora release 21
CentOS release 6.4
CentOS release 7.0
Debian GNU/Linux 7.0 (Wheezy)
Debian GNU/Linux 7.1 (Wheezy)

Building our First Poky Image for the Raspberry Pi

[20]

Debian GNU/Linux 7.2 (Wheezy)
Debian GNU/Linux 7.3 (Wheezy)
Debian GNU/Linux 7.4 (Wheezy)
Debian GNU/Linux 7.5 (Wheezy)
Debian GNU/Linux 7.6 (Wheezy)
openSUSE 12.2
openSUSE 12.3
openSUSE 13.1

Even if your distribution is not listed here, it does not mean that Poky will
not work, but the outcome is not guaranteed. Throughout this book, you
will be presented with instructions for using Poky with the Ubuntu
distribution. If you want more information about the supported Linux
distributions, you can visit this link:
h t t p : / / w w w . y o c t o p r o j e c t . o r g / d o c s / c u r r e n t / r e f - m a n u a l / r e f - m

a n u a l . h t m l.

Poky on Ubuntu
The following list shows you the packages required for Poky by function, given a supported
Ubuntu or Debian Linux distribution:

Download tools: wget and git-core
Decompression tools: unzip and tar
Compilation tools: gcc-multilib, build-essential, and chrpath
String-manipulation tools: sed and gawk
Document-management tools: texinfo, xsltproc, docbook-utils, fop, dblatex, and
xmlto
Patch-management tools: patch and diffstat

To summarize, here is the command to type on a headless system:

$ sudo apt-get install gawk wget git-core diffstat unzip
texinfo gcc-multilib build-essential chrpath

http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html

Building our First Poky Image for the Raspberry Pi

[21]

Poky on Fedora
If you want to use Poky on Fedora, you just have to type this command line:

$ sudo yum install gawk make wget tar bzip2 gzip python unzip
perl patch diffutils diffstat git cpp gcc gcc-c++ glibc-devel
texinfo chrpath ccache perl-Data-Dumper perl-Text-ParseWords
perl-Thread-Queue socat

Downloading the Poky metadata
After having installed all the necessary packages, it is time to download the source from
Poky. This is done through the Git tool:

$ git clone git://git.yoctoproject.org/poky (branch master)

Building our First Poky Image for the Raspberry Pi

[22]

Another method involves directly downloading a tar.bz2 file from this
repository:
h t t p s : / / w w w . y o c t o p r o j e c t . o r g / d o w n l o a d s

To avoid all hazardous and problematic manipulations, it is strongly recommended to create
and switch to a specific local branch:

$ cd poky
$ git checkout daisy -b work_branch

Downloading the Raspberry Pi BSP metadata
At this stage, we only have the base of the reference system (Poky) and we have no support
for the Broadcom BCM SoC. Basically, the BSP proposed by Poky only offers the following
targets:

$ ls meta/conf/machine/*.conf
beaglebone.conf
edgerouter.conf
genericx86-64.conf
genericx86.conf
mpc8315e-rdb.conf

In addition, there are those provided by OE-Core:

$ ls meta/conf/machine/*.conf
qemuarm64.conf
qemuarm.conf
qemumips64.conf
qemumips.conf
qemuppc.conf
qemux86-64.conf
qemux86.conf

Detailed steps to download the code bundle are mentioned in the Preface
of this book. Please have a look.
The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u
b . c o m / P a c k t P u b l i s h i n g / Y o c t o - f o r - R a s p b e r r y - P i. We also have
other code bundles from our rich catalog of books and videos available at
h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check them out!

https://www.yoctoproject.org/downloads
https://github.com/PacktPublishing/Yocto-for-Raspberry-Pi
https://github.com/PacktPublishing/Yocto-for-Raspberry-Pi
https://github.com/PacktPublishing/

Building our First Poky Image for the Raspberry Pi

[23]

In order to generate a compatible system for our target, we will spend more time in this stage and download
the specific layer (BSP Layer) to the Raspberry PI:

$ git clone git://git.yoctoproject.org/meta-raspberrypi

If you want to learn more about git scm, you can visit the official
website:
h t t p : / / g i t - s c m . c o m /

http://git-scm.com/

Building our First Poky Image for the Raspberry Pi

[24]

Now, we can verify that we have the configuration metadata for our platform (the
rasberrypi.conf file):

$ ls meta-raspberrypi/conf/machine/*.conf
raspberrypi.conf

The following screenshot shows the meta-raspberypi folder:

Building our First Poky Image for the Raspberry Pi

[25]

The examples and code presented in this and the following chapters use Yocto Project
version 1.7 and Poky version 12.0. For reference, the code name is Dizzy.

Now that we have our environment freshly downloaded, we can proceed with the
initialization of our environment and the configuration of our image through various
configuration files.

The oe-init-build-env script
As can be seen in the screenshot before last, the Poky directory contains a script named oe-
init-build-env. This is a script for the configuration/initialization of the build environment.
It is not intended to be executed but must be the sourced. Its job, among others, is to
initialize a certain number of environment variables and place itself in the build directory
specified in the argument. The script must be run as follows:

$ source oe-init-build-env [build-directory]

Here, build-directory is an optional parameter for the name of the directory where the
environment is set (for example, we can use several build directories in a single Poky source
tree). In case it is not specified, it defaults to build. The build-directory folder is the
place where we perform builds. But, in order to standardize the steps, we will use the
following command throughout the book to initialize our environment:

$ source oe-init-build-env rpi-build
Shell environment set up for builds.
You can now run 'bitbake <target>'
Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
adt-installer
meta-ide-support
You can also run generated qemu images with a command like
'runqemu qemux86'

When we initialize a build environment, it creates a directory (the conf directory) inside
rpi-build. This folder contains two important files:

local.conf: This contains parameters to configure Bitbake's behavior.
bblayers.conf: This lists the different layers that Bitbake takes into account in
its implementation. The list is assigned to the BBLAYERS variable.

Building our First Poky Image for the Raspberry Pi

[26]

Editing the local.conf file
The rpi-build/conf/local.conf file is a file that can configure every aspect of the build
process. It is through this file that we can choose the target machine (the MACHINE variable),
the distribution (the DISTRO variable), the type of package (the PACKAGE_CLASSES
variable), and the host configuration (PARALLEL_MAKE, for example). The minimal set of
variables we have to change from the default is the following:

BB_NUMBER_THREADS ?= "${@oe.utils.cpu_count()}"
PARALLEL_MAKE ?= "-j ${@oe.utils.cpu_count()}"
MACHINE ?= raspberrypi MACHINE ?= "raspberrypi"

The BB_NUMBER_THREADS variable determines the number of tasks that BitBake will
perform in parallel (these are tasks under Yocto; we're not necessarily talking compilation).
By default, in build/conf/local.conf, this variable is initialized with
${@oe.utils.cpu_count()}, corresponding to the number of cores detected on the host
system (/proc/cpuinfo).

The PARALLEL_MAKE variable corresponds to the -j to make option to specify the number
of processes that GNU Make can run in parallel on a compilation task. Again, it is the
number of available cores that defines the default value used.

The MACHINE variable is where we determine the target machine we wish to build for the
Raspberry Pi (defined in the .conf file; in our case, it's raspberrypi.conf).

Editing the bblayers.conf file
Now we still have to add the specific layer to our target. This will have the effect of making
recipes from this layer available to our build. Therefore, we should edit the
build/conf/bblayers.conf file:

LAYER_CONF_VERSION is increased each time build/conf
/bblayers.conf
changes incompatibly
LCONF_VERSION = "6" BBPATH = "${TOPDIR}" BBFILES ?= ""
BBLAYERS ?= " \
/home/packt/RASPBERRYPI/poky/meta \
home/packt/RASPBERRYPI/poky/meta-yocto \
/home/packt/RASPBERRYPI/poky/meta-yocto-bsp \
"BBLAYERS_NON_REMOVABLE ?= " \
/home/packt/RASPBERRYPI/poky/meta \
/home/packt/RASPBERRYPI/poky/meta-yocto \
"

Building our First Poky Image for the Raspberry Pi

[27]

Add the following line:

LAYER_CONF_VERSION is increased each time build/conf
/bblayers.conf
changes incompatibly
LCONF_VERSION = "6" BBPATH = "${TOPDIR}" BBFILES ?= ""
BBLAYERS ?= " \
/home/packt/RASPBERRYPI/poky/meta \
/home/packt/RASPBERRYPI/poky/meta-yocto \
/home/packt/RASPBERRYPI/poky/meta-yocto-bsp \
/home/packt/RASPBERRYPI/poky/meta-raspberrypi \
"BBLAYERS_NON_REMOVABLE ?= " \
/home/packt/RASPBERRYPI/poky/meta \
/home/packt/RASPBERRYPI/poky/meta-yocto \
 "

Naturally, you have to adapt the absolute path (/home/packt/RASPBERRYPI here)
depending on your own installation.

Building the Poky image
At this stage of development, let's have a look at the available images and certified
compatible for our platform (.bb files).

Choice of image
Poky provides several pre-designed image recipes that we can use to build our own binary
image. We can check the list of available images by running the following command from
the poky directory:

$ ls meta*/recipes*/images/*.bb

All the recipes provide images that are, in essence, sets of unpacked and configured
packages, generating a filesystem that we can use on actual hardware (for further
information about different images, you can visit
(http://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#r
ef-images).

http://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#ref-images
http://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#ref-images

Building our First Poky Image for the Raspberry Pi

[28]

Next, here's a brief representation of available images:

We can add the layers proposed by meta-raspberry to all of these layers:

$ ls meta-raspberrypi/recipes-core/images/*.bb
rpi-basic-image.bb
rpi-hwup-image.bb
rpi-test-image.bb

rpi-hwup-image.bb: This is an image based on core-image-minimal.
rpi-basic-image.bb: This is an image based on rpi-hwup-image.bb with
some added features (a splash screen).
rpi-test-image.bb: This is an image based on rpi-basic-image.bb and
includes some packages present in meta-raspberrypi.

We will choose one of these three recipes for the rest of this chapter. Note that these files
(.bb) describe recipes, like all the others. These are organized logically, and here, we have
the ones for creating an image for the Raspberry Pi.

Building our First Poky Image for the Raspberry Pi

[29]

Running BitBake
At this point, we need to start BitBake, the build engine, which will parse all the recipes
that contain the image you pass as a parameter (for our first example, we can take rpi-
basic-image):

$ bitbake rpi-basic-image
Loading cache: 100%
|##
###
###################| ETA: 00:00:00
Loaded 1352 entries from dependency cache.
NOTE: Resolving any missing task queue dependencies
Build Configuration:
BB_VERSION = "1.25.0"
BUILD_SYS = "x86_64-linux"
NATIVELSBSTRING = "Ubuntu-14.04"
TARGET_SYS = "arm-poky-linux-gnueabi"
MACHINE = "raspberrypi"
DISTRO = "poky"
DISTRO_VERSION = "1.7"
TUNE_FEATURES = "arm armv6 vfp"
TARGET_FPU = "vfp"
meta
meta-yocto
meta-yocto-bsp =
"master:08d3f44d784e06f461b7d83ae9262566f1cf09e4"
meta-raspberrypi =
"master:6c6f44136f7e1c97bc45be118a48bd9b1fef1072"
NOTE: Preparing RunQueue
NOTE: Executing SetScene Tasks
NOTE: Executing RunQueue Tasks

Once launched, Bitbake begins by browsing all the files (.bb, .bbclass) that the
environment provides access to and storing the information in a cache.

While the parser of Bitbake is parallelized, the first execution will always be longer (only by
about a few seconds) because it has to build the cache. However, subsequent executions will
be almost instantaneous because Bitbake load the cache. As we can see from the previous
command, before executing the task list, Bitbake displays a trace that details the versions
used (target, version, OS, and so on). And finally, Bitbake starts the execution of the tasks
and displays the progress.

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
mmcblk0 179:0 0 3,7G 0 disk
├─mmcblk0p1 179:1 0 20M 0 part /media/packt/raspberrypi
└─mmcblk0p2 179:2 0 108M 0 part /media/packt/f075d6df-d8b8-4e85-
a2e4-36f3d4035c3c

Building our First Poky Image for the Raspberry Pi

[31]

Booting the image on the Raspberry Pi
We now come to what is surely the most anticipated moment of this chapter: the moment
where we boot our Raspberry Pi with a fresh Poky image.

You just have to insert your SD card into a slot, connect the HDMI cable to your monitor,
and connect the power supply (it is also recommended to used a mouse and keyboard to
shut down the device, unless you plan on just pulling the power and possibly corrupting
the boot partition).

After connecting the power supply, you should see the Raspberry Pi splash screen:

The login for the Yocto/Poky distribution is root.

Building our First Poky Image for the Raspberry Pi

[32]

Summary
In this chapter, we learned the steps required to set up Poky and get our first image built.
We ran that image on the Raspberry Pi, which gave us a good overview of the available
capabilities.

In the next chapter, you will be introduced to Hob, which provides a human-friendly
interface for Bitbake. We will use it to build an image and customize it further. After that,
you will be introduced to another tool, Toaster, which is a web interface for Bitbake.

3
Mastering Baking with Hob and

Toaster
In this chapter, we will explore two powerful tools included in the Yocto Project. In the first
part of the chapter, we will speak about Hob, which is a graphical interface for BitBake. In
the second part, we will work with Toaster, a web interface that enables you to follow the
advanced parts of the build with a simple browser (such as Firefox).

Hob
In order to explore Hob, we will, through this section, sweep through the different essential
steps for its proper functioning.

Preparing the environment for Hob
As in Chapter 2, Building our First Poky Image for the Raspberry Pi, the first step is to
initialize the environment. Recall this command:

$ source oe-init-build-env rpi-build

Once the command is launched, the terminal will be redirected to the rpi-build directory.

Mastering Baking with Hob and Toaster

[34]

Running Hob
Now that we have initialized all the variables required to build, we can start the Hob
interface with this command:

$ hob

Once you run this command, Hob will try to parse the configuration files (local.conf and
bblayers.conf) in order to find the metadata available to create the image. After this step,
you will see the interface launch screen, as shown here:

Mastering Baking with Hob and Toaster

[35]

Now, we can choose the desired machine from the list offered by Hob. Select the
raspberrypi machine.

The machine option you choose corresponds to the MACHINE variable in
the local.conf file.

You will see the following progress screen:

Mastering Baking with Hob and Toaster

[36]

Adding a layer is very simple. We just have to click on the Layers button, as shown in this
screenshot:

After choosing the target machine, we need to choose he image that we want to create.

Mastering Baking with Hob and Toaster

[37]

Like in Chapter 2, Building our First Poky Image for the Raspberry Pi, we will select rpi-basic-
image for our example:

Mastering Baking with Hob and Toaster

[38]

The next step (if you want to modify the default configuration) is to select advanced
configuration options by clicking on Advanced configuration, as shown in the following
two screenshots. These options could be image types (such as cpio.gz, ext2.bz2, and
ext3.gz) or package formats (IPK, DEB, or RPM).

Mastering Baking with Hob and Toaster

[39]

At this point, we can build the final image by clicking on the Build Image button. If you
want to modify the recipe of an image, you just have to click on the Edit Image Recipe
button.

Mastering Baking with Hob and Toaster

[40]

Configuring recipes and packages
You can see the list of included recipes in Hob in the following screenshot:

Mastering Baking with Hob and Toaster

[41]

As you can see, it is easy to add or remove recipes for the configuration of our image by
selecting or deselecting them. If you click on the recipe name, you can see details such as its
version and license. The next step is to click on the Build packages button. Once you do
this, you will see the following screen:

Here, you will see a list of selected packages and can know the value of the estimated image
size (in the top-right corner) and decide to remove some applications in order to generate a
smaller image. It is also possible to see the number of selected packages and the size of the
selected packages.

Mastering Baking with Hob and Toaster

[42]

BitBake resolves all dependencies from the selected packages, including
any required additional packages.

Building the image
As you can imagine, the last step consists of building our image (by clicking on Build
image). Hob tracks the progress of the construction, as shown in this screenshot:

Mastering Baking with Hob and Toaster

[43]

You will see this screen when the build has completed:

On this screen, Hob displays a summary of the build. It is possible to go to the directory
where the files have been generated (rpi- build/tmp/deploy/images/raspberrypi/),
and you can also view the log of the build process.

Mastering Baking with Hob and Toaster

[44]

After that, we can create a bootable SD card with our Hob Image for the Raspberry Pi:

$ sudo dd if=rpi-basic-image-edited-20150221-135730-raspberrypi.rpi- sdimg
of=/dev/sdX bs=1M

At this point, we just have to put the SD card into the Raspberry Pi, turn on the board, and
play with it.

Exploring Toaster
Toaster is a web interface for BitBake. The Yocto Project website describes it as follows:

“Toaster is an Application Programming Interface (API) and web-based interface to the
OpenEmbedded build system, which uses BitBake. Currently, Toaster collects and presents
information about your builds, which you can navigate and query using a web browser”

Installing the required packages for the host
system
In order to use Toaster correctly on your preferred Linux distribution, you need to install
Django and South:

$ sudo pip install django==1.6
$ sudo pip install South==0.8.4

The pip command makes it easy to install Python modules, in the same
way you install packages in a Linux distribution.

Running Toaster
Now that our system is ready to use Toaster, we only have to run it using the following
command in order to launch the service:

$ source toaster start

Mastering Baking with Hob and Toaster

[45]

This will give you the following output:

The system will start. Syncing... Creating tables ... Installing custom SQL
... Installing indexes ... Installed 0 object(s) from 0 fixture(s) Synced:
> django.contrib.staticfiles > django.contrib.humanize > south Not synced
(use migrations): - orm - bldcontrol (use ./manage.py migrate to migrate
these) Running migrations for orm: - Nothing to migrate. - Loading initial
data for orm. Installed 0 object(s) from 0 fixture(s) Starting webserver
Webserver address: http://0.0.0.0:8000/ Bitbake server address: 0.0.0.0,
server port: 54693 Successful start.

We now have our web interface available at http://0.0.0.0:8000/.

Running BitBake
At the moment, Toaster doesn't support configuration through the interface (Future releases
of Toaster will add build-running and build-customization capabilities). Toaster collects
and presents information about your builds, which you can navigate and query using a web
browser. So, we have to manually start BitBake to monitor the progress of build. As in
Chapter 2, Building our First Poky Image for the Raspberry Pi , we can launch the build
process using the following command:

$ bitbake rpi-basic-image

The build process will progress as follows:

Loading cache: 100%
|##
###
###################| ETA: 00:00:00 Loaded 1352 entries from dependency
cache. NOTE: Resolving any missing task queue dependencies Build
Configuration: BB_VERSION = "1.25.0" BUILD_SYS = "x86_64-
linux" NATIVELSBSTRING = "Ubuntu-14.04" TARGET_SYS = "arm-poky-
linux-gnueabi" MACHINE = "raspberrypi" DISTRO = "poky"
DISTRO_VERSION = "1.7" TUNE_FEATURES = "arm armv6 vfp" TARGET_FPU
= "vfp" meta meta-yocto meta-yocto-bsp =
"master:08d3f44d784e06f461b7d83ae9262566f1cf09e4" meta-raspberrypi =
"master:6c6f44136f7e1c97bc45be118a48bd9b1fef1072" NOTE: Preparing RunQueue
NOTE: Executing SetScene Tasks NOTE: Executing RunQueue Tasks

http://0.0.0.0:8000/
http://0.0.0.0:8000/

Mastering Baking with Hob and Toaster

[46]

Running the web interface
Now that we have launched BitBake, we can monitor the progress of the process (the build
process), as shown in the following screenshot. Note that the best way to open the Toaster
interface is to navigate to it (using hyperlinks).

Toaster is still in the development phase; it is likely to become a worthy replacement of
Hob. Indeed, the development team wants to make BitBake fully configurable via the web
interface.

Summary
In this chapter, we discovered how to use user-friendly interfaces such as Hob and Toaster.
We learned the different capabilities of these tools (configuration and functionality). It is
worth noting that these tools allow better flexibility for development teams.

In the next chapter, we will learn the main role played by BitBake within the Yocto Project.
We will discover the different tasks that enable us to generate packages for our image.

4
Understanding BitBake

In this chapter, we will initially explore the metadata (the basic concept) and recipes that are
used by Poky (the dependencies among them). We will then look at the different ways in
which BitBake downloads source code. We will end this chapter by presenting the tasks
used by BitBake to get to the creation of the root filesystem image.

BitBake
As presented in Chapter 1, Meeting the Yocto Project, BitBake is a task scheduler (like GNU
Make) that parses shell and Python scripts. The code parsed generates and runs tasks
(configure, compile, and so on), which are basically sets of steps ordered according to the
code's dependencies.

Here are some points taken directly from the BitBake user manual:

BitBake executes tasks according to the provided metadata, which builds up the
tasks. Metadata is stored in recipe (.bb), configuration (.conf), and class
(.bbclass) files and provides BitBake with instructions on what tasks to run and
the dependencies between those tasks.
BitBake includes a fetcher library for obtaining source code from various places,
such as source control systems or websites.

Understanding BitBake

[48]

The instructions for each unit to be built (such as a piece of software) are known
as recipe files and contain all the information about the unit (dependencies,
source file locations, checksums, description, and so on).
BitBake includes a client/server abstraction, can be used from a command line or
as a service over XMLRPC, and has several different user interfaces.

Metadata
The metadata used by BitBake can be in several distinct forms; they are as follows:

Configuration (.conf) files
Recipes (.bb and .bbappend files)
Classes (.bbclass files)
Include (.inc) files

Configuration
Configuration files, which are denoted by the .conf extension, define various
configuration variables that govern the project's build process. These files fall into several
areas that define machine configuration options, distribution configuration options,
compiler tuning options, general common configuration options, and user configuration
options.

Classes
Class files, which are denoted by the .bbclass extension, contain information that is
useful to share between metadata files. The BitBake source tree currently comes with one
class metadata file called base.bbclass. You can find this file in the classes directory.
The base.bbclass file is special since it is always included automatically for all recipes
and classes. This class contains definitions for standard basic tasks such as fetching,
unpacking, configuring (empty by default), compiling (runs any makefile present),
installing (empty by default), and packaging (empty by default). These tasks are often
overridden or extended by other classes added during the project development process.

Understanding BitBake

[49]

Recipes
BitBake recipes, which are denoted by the .bb file extension (for example,
bcm2835_1.38.bb), are the most basic metadata files. These recipe files provide BitBake
with the following information:

Descriptive information about the package
The version of the recipe
Existing dependencies
Where the source code resides
Whether the source code requires any patches
How to compile the source code
Where on the target machine to install the package being compiled

Parsing metadata
The first thing BitBake does is parse base configuration metadata (.conf files). Base
configuration metadata consists of the bblayers.conf file to determine what layers
BitBake needs to recognize, all necessary layer.conf files (one from each layer), and
bitbake.conf. The data itself is of various types:

Recipes: These contain details about particular pieces of software.
Class data: This provides an abstraction of common build information (for
example, how to build a Linux kernel).
Configuration data: This provides machine-specific settings, policy decisions, and
so forth. Configuration data acts as the glue that binds everything together.

The layer.conf files are used to construct key variables such as BBPATH and BBFILES.
BBPATH is used to search for configuration and class files under the conf/ and class/
directories, respectively. BBFILES is used to find recipe files (.bb and .bbappend). If there
is no bblayers.conf file, it is assumed that the user has set the BBPATH and BBFILES
variables directly in the environment.

Next, the bitbake.conf file is searched using the BBPATH variable that was just
constructed. The bitbake.conf file may also include other configuration files using the
include or require directives.

https://github.com/agherzan/meta-raspberrypi/blob/master/recipes-devtools/bcm2835/bcm2835_1.38.bb
http://www.yoctoproject.org/docs/1.6/bitbake-user-manual/bitbake-user-manual.html#var-BBPATH

Understanding BitBake

[50]

Preferences and providers
Once BitBake has realized the “parsing” step (analyzing all the recipes), it must know how
to build the target. It starts by looking through the PROVIDES variable set in the recipe files.
The default PROVIDES value for a recipe is its name (PN).

PN represents the name of the recipe; PR, the revision of the recipe; and
PV, the version of the recipe. For example, when using the recipe rpio-
gpio_0.5.9.bb, here is what the values will be:

${PN} = rpi-gpio

${PV} = 0.5.9

Sometimes, a target might have multiple providers. A common example is virtual/kernel,
which is provided by each kernel recipe (check out meta-
raspberrypi/tree/master/recipes-kernel/linux for further information). Each
machine often selects the best kernel provider by using a line similar to the following in the
machine configuration file. If we look into this following file (meta-
raspberrypi/conf/machine/include/rpi-default-providers.inc), we can see
some variables:

RaspberryPi BSP default providers
PREFERRED_PROVIDER_virtual/kernel = ""linux-raspberrypi""
PREFERRED_PROVIDER_u-boot = ""u-boot-rpi""

In this case, we have selected the required U-Boot version and kernel for our Raspberry Pi.

Dependencies
In order to satisfy dependencies, the recipes must declare what they need to have available
during the build process.

BitBake use a special mechanism that allows us to list the build-time dependencies and then
checks whether all of the rules are satisfied before the build step. For example, if you work
with canutils (http://pengutronix.de/software/socket-
can/download/canutils/), you have to set this following variable:

DEPENDS = "libsocketcan"

http://www.yoctoproject.org/docs/1.6/bitbake-user-manual/bitbake-user-manual.html#var-PROVIDES
http://www.yoctoproject.org/docs/1.6/bitbake-user-manual/bitbake-user-manual.html#var-PN
https://github.com/agherzan/meta-raspberrypi
https://github.com/agherzan/meta-raspberrypi
https://github.com/agherzan/meta-raspberrypi/tree/master/conf
https://github.com/agherzan/meta-raspberrypi/tree/master/conf/machine
https://github.com/agherzan/meta-raspberrypi/tree/master/conf/machine/include
http://pengutronix.de/software/socket-can/download/canutils/
http://pengutronix.de/software/socket-can/download/canutils/

Understanding BitBake

[51]

In this example, CANUTILS needs libsocketcan; therefore, BitBake will start by building the
libsocketcan package (and installing the headers into rootfs) before building canutils and
linking.

When an application depends on something to run, it is called a runtime dependency (these
are packages necessary on the target in order to guarantee proper functioning). In this case,
we don't need to set the DEPENDS variable but the RDEPENDS variable in a recipe in order to
inform BitBake.

Fetching
The mechanism used by BitBake to fetch source code is internally called the fetcher
backend. There are several fetcher backends supported, which can be configured to align
user requirements and optimize source code fetching.

BitBake supports several protocols for remote file downloads. The most commonly used are
http://, https://, and git://. When BitBake executes the do_fetch task in a recipe, it
checks the contents of SRC_URI. We will discover, through the various fetchers, how to
proceed based on our need.

The local file fetcher
The local file fetcher submodule handles URLs that begin with file://. The filename you
specify within the URL can either be an absolute or relative path to a file. For example, with
a file called my_source_file.c, we must write the SRC_URI attribute's content like this:

SRC_URI = "file://my_source_file.c"

Understanding BitBake

[52]

The HTTP fetcher
The HTTP fetcher obtains files from web servers. Internally, the fetcher uses the wget
utility.

In this example, we will use the bcm2835 library. With this submodule, we will retrieve the
tar.gz file of this library:

SRC_URI = "http://www.open.com.au/mikem/bcm2835/bcm2835-${PV}.tar.gz"

The Git fetcher
One of the most commonly used source control management systems in use is Git. BitBake
has solid support for it, and the Git backend is used when the do_fetch task is run and
finds a git:// URL at the SRC_URI variable. Here is an example featuring a utility
developed by Christophe Blaess. It is a simple command-line tool to help with the use of
Linux spidev devices.

SRCREV = "cc6a41fdcec60610703ba6db488c621c64952898"

This variable contains the reference to the commit that the version control system will use as
a basis. In the case of Git, it is the the commit hash.

SRC_URI = "git://github.com/cpb-/spi-tools.git;protocol=git"

When the SRCREV variable points to a hash not available in the master
branch, we need to use the branch=<branch name> parameter, as
follows: SRC_URI =
git://myserver/myrepo.git;branch=mybranch. In the cases when
the hash used points to a tag that is not available in a branch, we need to
use the nobranch=1 option, as follows: SRC_URI =
"git://myserver/myrepo.git;nobranch=1".

For further information about the SRC_URI parameter's values, go to
http://www.yoctoproject.org/docs/1.6/bitbake-user-manual/bitbake-user-m

anual.html#var-SRC_URI for some examples.

http://www.yoctoproject.org/docs/1.6/bitbake-user-manual/bitbake-user-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.6/bitbake-user-manual/bitbake-user-manual.html#var-SRC_URI

Understanding BitBake

[53]

Understanding BitBake's tasks
The bitbake command is the primary interface to the BitBake tool. This chapter presents
the bitbake command syntax and provides several execution examples.

For example, if you want to build a specific recipe, run the following command:

$ bitbake <recipe>

BitBake runs a set of scheduled tasks. When we wish to run a specific task, we can use the
following command:

$ bitbake <recipe> -c <task>

If you want to clean a specific package (spitools, for example), you just have to run this:

$ bitbake spitools -c clean

To list the tasks defined for a recipe, we can use the following command:

$ bitbake <recipe> -c listtasks

Here is a description of BitBake tasks:

do_fetch: The first step when building a recipe is fetching the required source.
This is done using the fetching backend feature we discussed previously. It is
important to point out that fetching source or a file does not mean it is a remote
source. In fact, every file required during the recipe build must be fetched so that
it is made available in the WORKDIR directory.

All downloaded content is stored in the download folder (the DL_DIR
variable), so all external source code is cached to avoid redownloading it
every time we need the same source.

do_unpack: The natural subsequent task after the do_fetch task is do_unpack.
It is responsible for unpacking source code or checking the requested revision or
branch in case the referenced source uses an SCM system.

Understanding BitBake

[54]

do_patch: Once the source code has been properly unpacked, BitBake initiates the
process of adapting it. This is done by the do_patch task. Every file fetched by
do_fetch that has the .patch extension is assumed to be a patch to be applied.
This task applies the list of required patches.

The process of applying a patch uses the S variable, which points to the
source code. The default value used for S is ${WORKDIR}/${PN}-${PV},
and it is used for the do_patch, do_configure, do_compile, and
do_install tasks.

do_configure, do_compile, and do_install: The do_configure, do_compile,
and do_install tasks are performed in this order. Some recipes may omit one
task or another. It is important to note that the environment variables defined in
the tasks are different from one task to another.

Tasks vary a lot from one recipe to another. Poky provides a rich
collection of predefined tasks in the classes, which ought to be used
when possible. For example, when the Autotools class is inherited by a
recipe, it provides a known implementation for the do_configure,
do_compile, and do_install tasks.

do_package: The do_package task splits the files installed by the recipe into
logical components, such as debugging symbols, documentation, and libraries.
The do_package task ensures that files are split up and packaged correctly.

One of the most common uses of Poky is the generation of the root filesystem. The rootfs
image should be seen as a ready-to-use root filesystem for a target. The rootfs is basically
a directory with the desired packages installed. The list of packages to be installed into
rootfs is defined by a union of packages listed by IMAGE_INSTALL and the packages
included by IMAGE_FEATURES.

After do_rootfs has finished, the generated image file is placed
in <build-dir>/tmp/deploy/image/raspberrypi/.

We will learn more about the process and its contents in Chapter 5, Creating, Developing,
and Deploying on the Raspberry Pi.

Understanding BitBake

[55]

Summary
In this chapter, we discovered most of BitBake's functionalities. We also learned how
BitBake works in order for us to generate some packages for our Raspberry Pi.

In the next chapter, we will learn how to develop within the Yocto Project. We will write
recipes, create SDKs, and more.

5
Creating, Developing, and

Deploying on the Raspberry Pi
In this chapter, we will cover the basic concept of Yocto/OE in order to integrate a custom
application with the Raspberry Pi. We will learn how to generate an SDK for a cross-
compiling application. We'll also discuss package management.

After that, we will create our own application and recipe in order to deploy it on the
Raspberry Pi through the Yocto Project.

Software development kits (SDKs)
An SDK is a set of tools we can use outside Yocto/OE. These tools generally include a
compiler, linker, debugger, libraries, and external headers. This set of compilation tools is
called a toolchain. With the Raspberry Pi (or other embedded platforms), the toolchain is
often composed of crosstools, which are tools executed on one architecture that produce a
binary for use in another architecture.

Creating, Developing, and Deploying on the Raspberry Pi

[57]

The following figure depicts the process of cross-compilation:

The Yocto/OE build system can be used to generate a cross-compilation toolchain and
matching sysroot folder for a target system.

The sysroot folder contains the shared libraries, headers, and utilities
that are used in the process of building recipes,

With this build system, there are several ways of generating an SDK that conforms to our
Raspberry Pi platform.

Creating, Developing, and Deploying on the Raspberry Pi

[58]

A generic SDK – meta-toolchain
The meta-toolchain recipe will build a toolchain that matches the Raspberry Pi platform and
a basic sysroot (generic SDK) that does not match our target root filesystem. However, this
toolchain can be used to build software such as the U-Boot bootloader, the Linux kernel, or
simple applications that do not need a sysroot folder. We can generate this toolchain with
the following command:

$ source oe-init-build-env rpi-build
$ bitbake meta-toolchain

Once it has been built, we can install it like this:

$ cd poky/rpi-build/tmp/deploy/sdk
$./poky-eglibc-x86_64-meta-toolchain-qt5-armv6-vfp-toolchain- 1.7.1.sh

image.bb -c populate_sdk
The populate task is the best and recommended way of building a toolchain matching the
Raspberry Pi platform with a sysroot folder matching our target root filesystem. We can
generate this toolchain with the following command:

$ bitbake rpi-basic-image.bb -c populate_sdk

We can install it with these commands:

$ cd tmp/deploy/sdk
$./poky-eglibc-x86_64-meta-toolchain-qt-armv6-vfp-toolchain-1.7.1.sh

Creating, Developing, and Deploying on the Raspberry Pi

[59]

The following figure is a summary of the populate task, taken directly from the Yocto
Project Manual
(http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#sd
k-dev-environment):

The Qt SDK – meta-toolchain-qt
The meta-toolchain-qt toolchain is just an extension of meta-toolchain and includes
support for compiling Qt applications (graphical or non-graphical). We can generate this
toolchain with the following command:

$ bitbake meta-toolchain-qt

http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#sdk-dev-environment
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#sdk-dev-environment

Creating, Developing, and Deploying on the Raspberry Pi

[60]

Once it has been built, we can install it with these commands:

$ cd tmp/deploy/sdk
$./poky-eglibc-x86_64-meta-toolchain-qt-armv6-vfp-toolchain-1.7.1.sh

The Qt5 SDK – meta-toolchain-qt5
This toolchain is just an extension of meta-toolchain-qt, including support for compiling
Qt5 applications. We can generate it with the following command:

$ bitbake meta-toolchain-qt5

Once it has been built, we can install it with these commands:

$ cd tmp/deploy/sdk
$./poky-eglibc-x86_64-meta-toolchain-qt5-armv6-vfp-toolchain- 1.7.1.sh

The SDK can be designed for use on a 32-bit or 64-bit Linux distribution, and that depends
on the host architecture in which the SDK is generated. The selection is made by setting the
SDKMACHINE variable (in conf/local.conf), which can take i686 or x86_64 as values,
like this, for example:

SDKMACHINE? = "X86_64"

Cross-compilation – an example
In order to validate the proper functioning of our toolchain, we can try to compile an
application.

Configuration of the SDK environment
The first thing to do is source the environment variable for our toolchain. Use either of these
commands:

$ source /opt/poky/1.7.1/environment-setup-armv6-vfp poky-linux-
gnueabi
$. ./opt/poky/1.7.1/environment-setup-armv6-vfp poky-linux-gnueabi

Creating, Developing, and Deploying on the Raspberry Pi

[61]

List of tools
After this, our toolchain is in our system PATH variable, and we can take a look at all of the
tools in the toolchain:

$ arm-poky-linux-gnueabi-arm-poky-linux-gnueabi-addr2line arm-poky-linux-
gnueabi-elfedit arm-poky-linux-gnueabi-gcc-ranlib arm-poky-linux-gnueabi-
ld.bfd arm-poky-linux-gnueabi-readelf
arm-poky-linux-gnueabi-ar arm-poky-linux-gnueabi-g++ arm-poky-linux-
gnueabi-gcov arm-poky-linux-gnueabi-nm arm-poky-linux-gnueabi-size
arm-poky-linux-gnueabi-as arm-poky-linux-gnueabi-gcc arm-poky-linux-
gnueabi-gdb arm-poky-linux-gnueabi-objcopy arm-poky-linux-gnueabi-strings
arm-poky-linux-gnueabi-c++filt arm-poky-linux-gnueabi-gcc-ar arm-poky-
linux-gnueabi-gprof arm-poky-linux-gnueabi-objdump arm-poky-linux-gnueabi-
strip
arm-poky-linux-gnueabi-cpp arm-poky-linux-gnueabi-gcc-nm arm-poky-linux-
gnueabi-ld arm-poky-linux-gnueabi-ranlib

We can find our compiler (arm-poky-linux-gnueabi-gcc or arm-poky-linux-
gnueabi-g++ for C++ applications), our debugger (arm-poky-linux-gnueabi-gdb),
some binary tools (GNU Binary Utilities), and so on.

Compilation
Now, we can compile our first application with the external toolchain:

$ ${CC} -o hello_world_packt hello_world_packt.c
$ file hello_world_packthello_world_packt: ELF 32-bit LSB executable, ARM,
EABI5 version 1 (SYSV), dynamically linked (uses shared libs), for
GNU/Linux 2.6.32, BuildID[sha1]=1c2b89895d89b1868884295756214d609748f2c2,
not stripped

Creating, Developing, and Deploying on the Raspberry Pi

[62]

Raspberry Pi and a package manager
The basic building block of the Yocto Project is the generation of packages; therefore, it is
possible to include a package manager to our Yocto distribution (similar to a Linux
distribution, for example). Indeed, after the generation of the image (refer Chapter 2), it
contains no package manager, so this means that our image is not updateable (similar to a
firmware, for example).

The inclusion of a package manager in our distribution is done through this variable, if
adding it to conf/local.conf:

EXTRA_IMAGE_FEATURES += "package-management"

If adding to a recipe file (such as rpi-basic-image.bb), use this instead:

IMAGE_FEATURES += "package-management"

With this addition, we have now an image with a package manager that is more flexible,
updateable, and more industrial. Here's how to install a package with the opkg package
manager:

$ opkg install package_name.ipk

Package format availablility
Bitbake (the task scheduler) supports the following package formats:

RPM: Originally used by Red Hat due to its name, Red Hat Package Manager, it is now
used by other distributions (openSUSE, for example).

DEB: The Debian package format is used by Debian and derivate distributions such as
Ubuntu.

Creating, Developing, and Deploying on the Raspberry Pi

[63]

IPK: This stands for Itsy Package Management System (originally of the handhelds.org
project). It is a lightweight package management system designed for embedded systems
(such as the Gumstix platform: http://gumstix.org/add-software-packages.html).
OpenEmbedded-Core, and as a consequence Poky, uses the opkg package manager to
support the IPK format.

If you are an Android enthusiast, you can make an analogy with the APK
package format.

Choosing a package format
Support for the formats is provided using a set of classes (package_rpm, package_deb,
and package_ipk). The choice of the package formats depends very much on project
needs. Factors to consider include the following:

Memory footprint
Resource usage,
Speed of installation

By default, Poky uses the RPM (Red Hat Package Manager) package
format.

The selection of package format is done through the PACKAGE_CLASSES variable in the
conf/local.conf file.

Type this to include the RPM package format:

PACKAGE_CLASSES ?= "package_rpm"

Type this to include the DEB package format:

PACKAGE_CLASSES ?= "package_deb"

http://gumstix.org/add-software-packages.html

Creating, Developing, and Deploying on the Raspberry Pi

[64]

Type this to include the IPK package format:

PACKAGE_CLASSES ?= "package_ipk"

It is possible to specify several package formats but, to build images,
Bitbake searches based on the first package format in the
PACKAGE_CLASSES variable: PACKAGE_CLASSES ?= “package_rpm
package_deb package_ipk”

Installing and updating a package on the target
Now that we have covered package formats, we will see how to integrate them with the
Raspberry Pi.

RPM packages
With RPM packages, it is possible to use (after copying it to the target) RPM or SMART
utilities to install packages on the Raspberry Pi.

Installing manually
To manually install RPM packages, use one of these commands:

$ rpm -ivh package_name.rpm
$ smart install package_name.rpm

Installing automatically
During the development and debugging phases, it may be worthwhile for the developer to
update the packages (binaries) on the target (Raspberry Pi) without having to handle many
Linux commands.

Creating, Developing, and Deploying on the Raspberry Pi

[65]

The first step consists of creating the package index in our repository (in order to use
package feeds):

$ source oe-init-build-env rpi-build
$ bitbake package-index

After that, we can install a web server (such as lighttpd):

$ sudo apt-get install lighttpd

By default, the document root specified in the /etc/lighttpd/lighttpd.conf
configuration file is /var/www/:

$ tree /var/www/
/var/www/
html
amod.png
formulaire.html
index.html
logo.png
play_48.png
index.lighttpd.html
1 directory, 6 files

So, we only need a symlink to our package feed:

$ mkdir /var/www/rpi-deploy
$ ln -s rpi-build/tmp/deploy/rpm /var/www/rpi-deploy/rpm

At this point, you need to restart the lighttpd server:

$ sudo /etc/init.d/lighttpd restart

On the Raspberry Pi, we need to inform smart of every package database we want to use.
For example, for the all directory in rpi-deploy/rpm, we will need to issue this
command:

$ smart channel --add all type=rpm-md baseurl=http://<server-ip> /rpi-
deploy/rpm/all

Creating, Developing, and Deploying on the Raspberry Pi

[66]

Now that our environment is in place, we can query and update packages from the
Raspberry Pi's root filesystem with the following commands:

$ smart update
$ smart query <package_name>
$ smart install <package_name>
$ smart query -installed

Here's an example of removing a package from the Raspberry Pi (the Monkey web server):

$ smart remove monkey
Updating cache..
###
######################## [100%]
Computing transaction...
Removing packages (1):
monkey-1.5.4-r0@armv6-vfp
479.4kB will be freed. Confirm changes? (Y/n): Y
Committing transaction...
Preparing...###
#################################### [0%]
Stopping Monkey HTTP Server: stopped /usr/bin/monkey (pid 1448)
monkey
Output from monkey:(0%)
warning: /etc/monkey/sites/default saved as
/etc/monkey/sites/default.rpmsave
warning: /etc/monkey/plugins/logger/logger.conf saved as
/etc/monkey/plugins/logger/logger.conf.rpmsave
warning: /etc/monkey/plugins.load saved as /etc/monkey/plugins.load.rpmsave
1:Removing monkey
###
######################## [100%]
Removing any system startup links for monkey ...
/etc/rc0.d/K70monkey /etc/rc1.d/K70monkey /etc/rc2.d/S70monkey
/etc/rc3.d/S70monkey /etc/rc4.d/S70monkey /etc/rc5.d/S70monkey
/etc/rc6.d/K70monkey Saving cache...

More information and a user manual for the smart utility can be found at
https://labix.org/smart/.

https://labix.org/smart/

Creating, Developing, and Deploying on the Raspberry Pi

[67]

IPK packages
With IPK packages, it is possible to use (after copy the package to the target) OPKG utilities
to install the package on the Raspberry Pi.

Installing manually
To manually install an IPK package, use this command:

$ opkg install package_name.ipk

Installing automatically
For the management of IPK packages, it is easy to create a package repository on our
development workstation.

The first step is to add to conf/local.conf the following variable:

FEED_DEPLOYDIR_BASE_URI = http://<server-ip>:9999/ http://<server-
ip>:9999/

Thus, our image will include all references to our package repository on our web server
based on busybox (httpd), which is listening on port 9999.

The second step is to create the package index on our repository:

$ source oe-init-build-env rpi-build
$ bitbake package-index

Apart from this, just create a web server listening on port 9999. The base directory will be
the one where IPK packages are built. To make it easier to use the utility to connect
busybox, use httpd(h t t p : / / w i k i . o p e n w r t . o r g / d o c / h o w t o / h t t p . h t t p d). It is also
possible to use Apache, Nginx, or lighttpd. We can launch the httpd server with the
following command:

$ cd rpi-build/tmp/deploy/ipk
$ busybox httpd -p 9999

http://wiki.openwrt.org/doc/howto/http.httpd

Creating, Developing, and Deploying on the Raspberry Pi

[68]

To verify the proper operation of our package repository server, simply type opkg update
from the Raspberry Pi:

$ opkg update
$ Downloading http://192.168.132.1:9999/....

For further information, do not hesitate to visit
http://www.yoctoproject.org/docs/current/dev-manual/dev-m

anual.html#using-runtime-package-management.

Our application – an introduction
Now that we've covered how to generate the SDK for our platform and how to integrate
package in our Yocto image, we will, through an example, develop an application with the
general purpose input output (GPIO) pins of the Raspberry Pi and then create a recipe to
integrate our application with the final image.

The idea is to develop an application that, through the GPIO pins, lights an LED and
monitors a push button.

Here is the schematic diagram, realized with Fritzing (http://fritzing.org/home/):

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-runtime-package-management
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-runtime-package-management

Creating, Developing, and Deploying on the Raspberry Pi

[69]

Thus, we can, from the Linux user space, light the LED or monitor the push button through
GPIO 4 of the Raspberry Pi (pin 7 of the main connector).

We can test the following C application:

static int parse_opts(int argc, char *argv[])
int long_index = 0;
int opt;
static struct option option[]
{"Ied", required_argument, NULL, '1'
{"help", no_argument, NULL, 'h'
{"button", no_argument, NULL, 'b'
{"version", no_argument, NULL, 'v'
{0, 0, 0, 0
while ((opt = getopt_long(argc, argv, "Izbhv", option, &1ong_index)) >= 0)
switch(opt)
case 'h':
display_he1p(argv[0]);
exit(EXIT_SUCCESS);
case 'v':
fprintf(stderr, "\n%s - %s\n\n", project, VERSION);
exit(EXIT_SUCCESS);
case '1':
printf("Led Mode\n");
printf("Set gpio%d to %d\n",GPIO_PIN,atoi(optarg));
Set gpio4 to out mode
set_out(GPIO_PIN,atoi(optarg));
break;
case 'b':
printf("Button Mode\n");
Set gpio4 to in mode
set_in(GPIO_PIN);
wait_bp_state();
break;
default:
fprintf(stderr,"[ERROR] %s: Bad option. -h for he1p\n", argv[0]);
exit(EXIT_FAILURE);
return 0;

Creating, Developing, and Deploying on the Raspberry Pi

[70]

You can download it from the code bundle for this book.

We can try compiling our application with our SDK with the following command and send
it to the Raspberry Pi:

$ source /opt/poky/1.7.1/environment-setup-armv6-vfp poky-linux- gnueabi
$ ${CC} gpio_example.c -o gpio_example

Our application – creating the recipe
Now that our application is functional, we can create our recipe.

The first step is to create the file; for example, we can choose gpio-packt_0.1.bb.

gpio-packt represents the name of the package (the PN variable).
0.1 represents the version number of the recipe (the PV variable).
.bb represents the file extension (Bitbake).

The second step consists of placing the source code in a local repository, like this:

$ mkdir gpio-packt
$ cp /home/packt/gpio-example.c files/
$ ls gpio-packt
gpio-example.c

The recipe must be placed next to the gpio-packt directory, as shown here:

$ ls
gpio-packt/ gpio-packt.bb

Creating, Developing, and Deploying on the Raspberry Pi

[71]

After that, we can fill out our recipe like this:

DESCRIPTION = "gpio example"
LICENSE="GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL-
2.0;md5=801f80980d171dd6425610833a22dbe6"

PR = "r0"

SRC_URI = "file://gpio_example.c"

do_compile() {
 ${CC} ${CFLAGS} ${LDFLAGS} ${WORKDIR}/gpio_example.c -o
 gpio_example
}

do_install() {
 install -m 0755 -d ${D}${bindir}
 install -m 0755 ${S}/gpio_example ${D}${bindir}
}

The recipe explained
Let's look at the various parts of the preceding recipe.

DESCRIPTION contains the description of the application. This information is used when the
packet is generated so that the user can have this information through the package
manager.

LICENSE contains the program license (GPLv2 in this example).

The LIC_FILES_CHKSUM variable contains checksums of the license text in the recipe source
code. Poky uses this to track changes in the license text of the source code files.

PR contains the revision of the recipe used to build the package.

SRC_URI determines what files and source code are needed and where that source code
should be obtained from (in this case, from the gpio-packt folder).

Creating, Developing, and Deploying on the Raspberry Pi

[72]

The do_compile() method will generate our binary that will be deployed on the
Raspberry Pi.

The do_install() method will install our binary in the tree in the same way as installed
on Raspberry Pi (in this case, the binary will be placed in /usr/bin).

The following table lists some paths used by Bitbake:

base_bindir /bin

base_sbindir /sbin

base_libdir /lib

datadir /usr/share

sysconfdir /etc

servicedir /srv

bindir /usr/bin

sbindir /usr/sbin

libdir /usr/lib

includedir /usr/include

Now that we have our recipe, we can include it in the image. To do this, we must put all
files in the main tree. We will create a folder within meta-raspberrypi/recipes-
devtools, as shown here:

$ cd meta-raspberrypi/recipes-devtools
$ mkdir gpio-packt-book

In order that Bitbake find our recipe, we can put the different files in this folder, like this:

$ cd gpio-packt-book
$ mv /home/packt/gpio-packt.bb
$ mv /home/packt/gpio-packt

The last step consists of integrating our recipe with the image. To do this, we can add the
following variable to the conf/local.conf file:

IMAGE_INSTALL_append += " gpio-packt"

Creating, Developing, and Deploying on the Raspberry Pi

[73]

Now, we can launch Bitbake, and then test our program on the Raspberry Pi:

$ bitbake rpi-basic-image

The following commands to be executed on the Raspberry Pi.

You can test the LED with these commands:

$ gpio_example led=1 (set gpio4 to 1)
$ gpio_example led=0 (set gpio4 to 0)

You can use this command to test the button:

$ gpio_example --button
Button was pressed !

Summary
In this chapter, we learned how to generate an SDK for the Raspberry Pi and how to
manage packages, and we discovered how to deploy a custom application on the Raspberry
Pi.

In the next chapter, you will be introduced to the layer concept, and you'll discover how to
integrate another layer inside your environment of Yocto and Raspberry Pi.

6
Working with External Layers

Throughout this chapter, we will discover the basic concept of external layers and
understand layer types and how they are built (by priority, name, and so on). We will also
discuss about the Qt5 and web server layers.

After that, we will integrate an external layer to our build and test it on the Raspberry Pi.

Introducing layers
A layer is just a collection of recipes and/or configuration that can be used on top of
Yocto/OE-Core.

The advantage of using an environment such as Yocto/OE (the Poky reference system)
comes from the fact that this project handles a lot of metadata (definition files (.conf) of the
machine (Raspberry Pi), classes, and recipes (.bb)) that covers everything from simple
applications (gpio-packt) to graphics applications such as OpenGLES, EFL, or Qt.

The main motivation of using layers is to organize the long list of providers better and still
make sure users may be able to pick only the required or desired provider. It is also a way
of providing customizable source code that can be used for any architecture or modified in
the way the user needs.

Working with External Layers

[75]

The other advantage is that we can choose all the layers required for each project (from the
most basic to the most complex). We can modify them to be consistent with our architecture
(ARM for the Raspberry Pi), but a layer can be reused on another architecture (PowerPC),
and is it a big advantage in the industrial world (minimal effort is required when changing
the architecture).

In addition, instead of redeveloping layers, always check whether the work has been done
by others. It takes less time to download a layer providing a package we need and to add an
append file (.bbapend); if some modifications are required, then you have to make them
from scratch. To summarize, layers are added when needed.

You can find the different available layers at the following link:

http://layers.openembedded.org/layerindex/branch/master/layers/

The basic concepts of layers
Let's dive into the basic concepts of layers:

Theory
A layer, in the technical sense of the term, has some properties. They are as follows:

Name: This usually starts with the string meta- (mandatory for better
comprehension).
Priority: This is the value used by BitBake to decide which recipe to use and the
order in which the .bbappend files should be joined. It means that if two layers
include the same recipe (.bb) file, the one with the higher priority is used.

For example, a layer with a priority value set to 6 has a higher chance of its
recipe being used than one with a priority value set to 5.

http://layers.openembedded.org/layerindex/branch/master/layers/

Working with External Layers

[76]

Furthermore, each layer is listed according to its functionality on this page:

http://layers.openembedded.org/layerindex/branch/master/layers/

The software layer: This layerprovides software families that can be used on any
architecture (x86_64, ARM, PPC, MIPS, and so on). For example, we have meta-
java (for Java support), meta-efl (for the Enlightenment environment), meta-qt5
(Qt support), meta-webserver (provides support for building web servers), meta-
browser, and so on.
Miscellaneous: If your layer doesn't fall into any other category, you can choose
this type; however, there shouldn't be too many miscellaneous layers-it may be
an indication that the purpose isn't well defined or that you should consider
splitting the layer.
Machine (BSP): These are layers specific to a machine (such as meta-raspberrypi,
meta-fsl-arm, and meta-ti). They contain machine configuration files and recipes
to configure packages for the machines.
Distribution: These are layers adding a distribution to the environment (such as
meta-ivito add in-vehicle infotainment (IVI) support, meta-angstrom, and so on).

At this stage, we know how the layers are distributed within the Yocto Project. Now, we
will see how these layers are composed.

Working with External Layers

[77]

The software layer
For this example, we will take as an example the meta-qt5 layer. This layer has a directory
tree, as follows:

pjtexier@amplitude:~ $ ls -l meta-qt5/
total 28
drwxrwxr-x 2 pjtexier pjtexier 4096 avril 22 19:20 classes
drwxrwxr-x 3 pjtexier pjtexier 4096 avril 22 19:20 conf
-rw-rw-r-- 1 pjtexier pjtexier 1035 avril 22 19:20 COPYING.MIT
drwxrwxr-x 2 pjtexier pjtexier 4096 avril 22 19:20 licenses
-rw-rw-r-- 1 pjtexier pjtexier 1189 avril 22 19:20 README
drwxrwxr-x 4 pjtexier pjtexier 4096 avril 22 19:20 recipes-devtools
drwxrwxr-x 10 pjtexier pjtexier 4096 avril 22 19:20 recipes-qt

README and COPYING
Inside this directory, there are two important files; they are as follows:

README: This file specifies mostly the outer layers that depend on the target
layer, any configuration instructions, the address to send patches to, and contact
details of the maintainers.

This layer depends on the following:

URI: git://github.com/openembedded/oe-core.git
branch: master
revision: HEAD

URI: git://github.com/openembedded/meta-oe.git
layers: meta-ruby
branch: master
revision: HEAD

When building stuff like qtdeclarative, qtquick, qtwebkit, make sure
thatyou have required PACKAGECONFIG options enabled in qtbase build, see
qtbase.inc for detail.Send pull requests to openembedded-
devel@lists.openembedded.org with '[meta-qt5]' in the subject'

When sending single patches, please using something like:
'git send-email -M -1 --to openembedded- devel@lists.openembedded.org --
subject-prefix=meta-qt5][PATCH'You are encouraged to fork the mirror on
github[1] to share your patches. This is preferred for patch sets
consisting of more than one patch. Other services like gitorious,
repo.or.cz or self hosted setups are of course accepted as well, 'git
fetch <remote>' works the same on all of them. We recommend github because

Working with External Layers

[78]

it is free, easy to use, has been proven to be reliable and has a really

good web GUI.1. h t t p s : / / g i t h u b . c o m / m e t a - q t 5 / m e t a - q t 5 /

Main layer maintainers:
Martin 'JaMa' Jansa <martin.jansa@gmail.com>
Otavio Salvador <otavio@ossystems.com.br>

COPYING: This file contains licensing information (MIT license in this case).

The classes folder
The classes folder holds .bbclass files. Here is a sample classes folder:

pjtexier@amplitude:~ $ ls -l classes/
total 24
-rw-rw-r-- 1 pjtexier pjtexier 1721 avril 22 19:20 cmake_qt5.bbclass
-rw-rw-r-- 1 pjtexier pjtexier 2001 avril 22 19:20
populate_sdk_qt5.bbclass
-rw-rw-r-- 1 pjtexier pjtexier 7633 avril 22 19:20
qmake5_base.bbclass
-rw-rw-r-- 1 pjtexier pjtexier 219 avril 22 19:20 qmake5.bbclass
-rw-rw-r-- 1 pjtexier pjtexier 1935 avril 22 19:20
qmake5_paths.bbclass

The conf folder
The conf folder should provide configuration (.conf) files. The layer.conf file inside
this folder contains some important variables, for example, the variable concerning the
priority (BBFILE_PRIORITY):

Define the priority for recipes (.bb files) from this layer,
choosing carefully how this layer interacts with all of the
other layers.
BBFILE_PRIORITY_qt5-layer = "7"

To verify the priority value, we can use the following command:

$: bitbake-layers show-layers

https://github.com/meta-qt5/meta-qt5/

Working with External Layers

[79]

The recipes-* directory
The recipes-* directory contains some recipes. For example, in the meta-qt5 layer, we
have recipes-qt, which include some metadata (such as Qt5).

The machine (BSP) layer
For this presentation, we will take the example of the BSP layer specific to our hardware:
the meta-raspberrypi BSP layer. This directory (folder) should contain a file list similar to
the following:

pjtexier@amplitude:~ $ ls -l meta-raspberrypi/ classes
conf
custom-licenses
recipes-bsp
recipes-core
recipes-devtools
recipes-graphics
recipes-kernel
recipes-multimedia
COPYING.MIT
README

When we use a BSP layer, there are some differences. The first is in the conf folder. Now,
we have a new folder inside this directory, which is machine.

This folder contains some configuration files to handle our specific hardware (Raspberry Pi
and Raspberry Pi 2 among others). For example, there is an important file (rpi-base.inc)
located at:

machine

* raspberry.conf (configuration file for Raspberry Pi)

* raspberry2.conf (configuration file for Raspberry Pi2)

Include

* rpi-base.inc

Working with External Layers

[80]

The rpi-base.inc file looks like this:

include conf/machine/include/rpi-default-settings.inc
include conf/machine/include/rpi-default-versions.inc
include conf/machine/include/rpi-default-providers.inc

SOC_FAMILY = "rpi"
include conf/machine/include/soc-family.inc

IMAGE_FSTYPES ?= "tar.bz2 ext3 rpi-sdimg"

SERIAL_CONSOLE = "115200 ttyAMA0"

XSERVER = " \
 xserver-xorg \
 xf86-input-evdev \
 xf86-input-mouse \
 xf86-input-keyboard \
 xf86-video-fbdev \
 "

Really supported starting from linux-raspberrypi 3.18.y only
KERNEL_DEVICETREE ?= " \
 bcm2708-rpi-b.dtb \
 bcm2708-rpi-b-plus.dtb \
 bcm2709-rpi-2-b.dtb \
 \
 ds1307-rtc-overlay.dtb \
 hifiberry-amp-overlay.dtb \
 hifiberry-dac-overlay.dtb \
 hifiberry-dacplus-overlay.dtb \
 hifiberry-digi-overlay.dtb \
 iqaudio-dac-overlay.dtb \
 iqaudio-dacplus-overlay.dtb \
 lirc-rpi-overlay.dtb \
 pcf8523-rtc-overlay.dtb \
 pps-gpio-overlay.dtb \
 w1-gpio-overlay.dtb \
 w1-gpio-pullup-overlay.dtb \
 "
KERNEL_IMAGETYPE ?= "Image"

MACHINE_FEATURES = "kernel26 apm usbhost keyboard vfat ext2 screen
touchscreen alsa bluetooth wifi sdio"

Raspberry Pi has no hardware clock
MACHINE_FEATURES_BACKFILL_CONSIDERED = "rtc"

Working with External Layers

[81]

MACHINE_EXTRA_RRECOMMENDS += " kernel-modules"

Set Raspberrypi splash image
SPLASH = "psplash-raspberrypi"

IMAGE_BOOT_FILES ?= "bcm2835-bootfiles/*
${KERNEL_IMAGETYPE};${SDIMG_KERNELIMAGE}"

It is in this file that we set some essential variables, including the following:

SERIAL CONSOLE specifies the speed and device for the serial console to attach
to. It is passed to the kernel as a console parameter, for example, 115200 ttyAM0.
IMAGE FSTYPES specifies the format of the root filesystem images to be created.
KERNEL IMAGETYPE specifies the type of kernel image to build (uImage or
zImage).

If you want to know more about the BSP layer, you can visit
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.

html.

Adding external layers to the Raspberry Pi
Now that we know how a layer works, we can add an existing external layer to our
environment. To do this, we'll be working with meta-webserver
(http://layers.openembedded.org/layerindex/branch/master/layer/meta-web
server/) in order to include the famous web server, Monkey (h t t p : / / m o n k e y - p r o j e c t .
c o m /).

As you know, the first step consists of modifying our conf/bblayers.conf file in order to
add the path of the layer, as follows:

LAYER_CONF_VERSION is increased each time
build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "6"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \
 /home/packt/RASPBERRYPI/poky/meta \
 /home/packt/RASPBERRYPI/poky/meta-yocto \
 /home/packt/RASPBERRYPI/poky/meta-yocto-bsp \
 /home/packt/RASPBERRYPI/poky/meta-raspberrypi \

http://monkey-project.com/
http://monkey-project.com/
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://layers.openembedded.org/layerindex/branch/master/layer/meta-webserver/
http://layers.openembedded.org/layerindex/branch/master/layer/meta-webserver/

Working with External Layers

[82]

 /home/packt/RASPBERRYPI/poky/meta-openembedded/meta-webserver \

 "
BBLAYERS_NON_REMOVABLE ?= " \
 /home/packt/RASPBERRYPI/poky/meta \
 /home/packt/RASPBERRYPI/poky/meta-yocto \

Now that we have included the layer so that BitBake can parse it, we can create our image
with this command:

$ bitbake rpi-basic-image

At the end of the compilation/generation process, we can boot our Raspberry Pi and verify
proper operation. To do this is very simple because we can just launch our favorite browser
and type this in the address bar:

http://ip_address_of_rpi/2001

Now, we have an embedded web server on our Raspberry Pi. It is possible to create many
projects using a simple web server (by upgrading firmware to make it fast) CGI,
HTML5/JavaScript applications, applications with mpeg-streamer, and so on).

Summary
In this chapter, we discovered the main principle of the layers inside the Poky distribution.
We learned how a layer works, how to integrate an external layer to our Raspberry Pi
projects, and how to generate a custom image.

We'll discuss layers in the next chapter as well, but we'll create our custom layer in order to
integrate it to an image for the Raspberry Pi.

7
Deploying a Custom Layer on

the Raspberry Pi
In this chapter you will learn how to generate a custom layer with the different tools the
Yocto Project offers. First of all, you'll discover how to generate a layer; then, you will
integrate a recipe to the layer. In addition, to finish this chapter, we will generate a custom
image. Reading this chapter will enable you to better organize your source code within the
Yocto Project.

Creating the meta-packt_rpi layer with the
yocto-layer script
To create our custom layer, we can use two different methods:

Manually: create the directory (meta-*) and create the layer configuration file
(conf/layer.conf)
* Use the yocto-layer script provided by the Poky environment

To gain flexibility and avoid mishandling, we'll use the second option. To use it, we must
initially source all variables to gain access through our shell in the yocto-layerscript,
as shown in the following command:

$ source oe-init-build-env rpi-build

Deploying a Custom Layer on the Raspberry Pi

[84]

Now that our environment is set up, we have access to the yocto-layer script, and so, we
can begin the process of creating the layer.

Note that this script (yocto-layer) creates the layer in the current directory by default.
That is why we must place it at the root of our environment:

$ cd /where/you/want/to/stored/your/layer

We can now launch the script using the following command:

$ yocto-layer create <layer_name> -o <dest_dir>

The meta-string is automatically prepended to the layer name.

For our example,we will call our layer meta-packt_rpi. Here is the command:

$ yocto-layer create packt_rpi
Please enter the layer priority you'd like to use for the layer: [default:
6]
Would you like to have an example recipe created? (y/n) [default: n] y
Please enter the name you'd like to use for your example recipe: [default:
example] example-packt
Would you like to have an example bbappend file created? (y/n) [default:
n] y
Please enter the name you'd like to use for your bbappend file: [default:
example] example-packt
Please enter the version number you'd like to use for your bbappend file
(this should match the recipe you're appending to): [default: 0.1]
New layer created in meta-packt_rpi.
Don't forget to add it to your BBLAYERS (for details see meta-
packt_rpi\README).

Deploying a Custom Layer on the Raspberry Pi

[85]

We have, through this script, generated our own layer, meta-packt_rpi, and inside this
layer is a sample recipe, an example of bbappend file, and so on. An example of our
generated layer is shown in the following command:

$ tree meta-packt_rpi/
meta-packt_rpi/
├── conf
│ └── layer.conf
├── COPYING.MIT
├── README
├── recipes-example
│ └── example
│ ├── example-packt-0.1
│ │ ├── example.patch
│ │ └── helloworld.c
│ └── example-packt_0.1.bb
└── recipes-example-bbappend
└── example-bbappend
├── example-packt-0.1
│ └── example.patch
└── example-packt_0.1.bbappend

If we want to install our layer, we just have to integrate the absolute path inside the
bblayers.conf file, as it says in the README file:

I. Adding the packt_rpi layer to your build
===
In order to use this layer, you need to make the build system aware of it.

Assuming the packt_rpi layer exists at the top-level of your
yocto build tree, you can add it to the build system by adding the
location of the packt_rpi layer to bblayers.conf, along with any
other layers needed. e.g.:

 BBLAYERS ?= " \
 /path/to/yocto/meta \
 /path/to/yocto/meta-yocto \
 /path/to/yocto/meta-yocto-bsp \
 /path/to/yocto/meta-packt_rpi \
 "

Deploying a Custom Layer on the Raspberry Pi

[86]

We can add our layer to our bblayers.conf file:

LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "6"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \
/home/packt/RASPBERRYPI/poky/meta \
/home/packt/RASPBERRYPI/poky/meta-yocto \
/home/packt/RASPBERRYPI/poky/meta-yocto-bsp \
/home/packt/RASPBERRYPI/poky/meta-raspberrypi \
/home/packt/RASPBERRYPI/poky/meta-openembedded/meta-webserver \
/home/packt/RASPBERRYPI/poky/meta-packt_rpi "
BBLAYERS_NON_REMOVABLE ?= " \
/home/packt/RASPBERRYPI/poky/meta \
/home/packt/RASPBERRYPI/poky/meta-yocto \

After this, our layer is fully integrated with the Yocto Project, and so, it can be parsed by
BitBake (the meta scheduler).

For further information, you can read the official documentation at
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manua

l.html#yocto-project-layers.

Adding gpio-packt to meta-packt_rpi
To test this layer, we will integrate the application developed in Chapter 5, Creating,
Developing, and Deploying on the Raspberry Pi (gpio-packt). This will allow us to implement
our layer step by step so that it is completely reusable for various projects. The hierarchy of
your layer should look like this with the inclusion of this recipe:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#yocto-project-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#yocto-project-layers

Deploying a Custom Layer on the Raspberry Pi

[87]

$ tree meta-packt_rpi/
meta-packt_rpi/
├── conf
│ └── layer.conf
├── COPYING.MIT
├── README
├── recipes-custom
│ └── gpio-packt
│ ├── gpio-packt
│ │ └── gpio-example.c
│ └── gpio-packt.bb
├── recipes-example
│ └── example
│ ├── example-packt-0.1
│ │ ├── example.patch
│ │ └── helloworld.c
│ └── example-packt_0.1.bb
└── recipes-example-bbappend
 └── example-bbappend
 ├── example-packt-0.1
 │ └── example.patch
 └── example-packt_0.1.bbappend

As with any other extra package for our image, the build system needs to be aware that you
want to includegpio-packt. For this purpose, edit your /conf/local.conf configuration
file and add the following line to the bottom:

IMAGE_INSTALL_append = " gpio-packt"

This line tells the build system to include the gpio-packt package when creating the final
image. If for some reason the variable already exists, just append the gpio-packt package
name at the end, like this:

IMAGE_INSTALL_append = " app1 app2 gpio-packt"

Deploying a Custom Layer on the Raspberry Pi

[88]

Now, if we want to test it, we can launch BitBake with the following command and then test
our program on the Raspberry Pi:

$ bitbake rpi-basic-image

Patching gpio-packt
Now that we've seen how to integrate our recipe (gpio-packt) to the previously created
layer (meta-packt_rpi), we will see how to create a patch to the gpio-packt recipe.

Generating the patch
The first step is to create the .patch file. Use the following commands to create a backup of
the original file:

$ cd meta-pack_rpi/recipe-custom/gpio_packt
$ cp gpio-packt/gpio-example.c gpio-packt/gpio-example.orig

Now, we can modify our main source code (gpio-example.c):

$ sed -i 's/Button Mode/Button Mode!/' gpio-packt/gpio-example.c

We have now changed our source file like we wanted to; the next step is to create our patch
file with the diff command:

$ diff -u gpio-packt/gpio-example.orig gpio-packt/gpio-example.c > gpio-
packt/fix.patch

Now that we have our .patch file, we need to update our principal source file:

$ mv gpio-packt/gpio-example.orig gpio-packt/gpio-example.c

Adding the patch to the recipe file
Be careful, because even if we have generated our .patch file, for now, it is still not visible
because it has been entered in the SRC_URI variable. Here is the complete recipe,updated to
take the patch into account:

DESCRIPTION = "gpio example"
LICENSE="GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL-
2.0;md5=801f80980d171dd6425610833a22dbe6"

Deploying a Custom Layer on the Raspberry Pi

[89]

PR = "r0"
SRC_URI = "file://gpio_example.c \
file://fix.patch\
"
do_compile() {
 ${CC} ${CFLAGS} ${LDFLAGS} ${WORKDIR}/gpio_example.c -o
gpio_example
}

do_install() {
 install -m 0755 -d ${D}${bindir}
 install -m 0755 ${S}/gpio_example ${D}${bindir}
}

If we take a look at the hierarchy of our layer, this is what we will see:

$ tree meta-packt_rpi/
meta-packt_rpi/
├── conf
│ └── layer.conf
├── COPYING.MIT
├── README
├── recipes-custom
│ └── gpio-packt
│ ├── gpio-packt
│ │ ├── fix.patch
│ │ └── gpio-example.c
│ └── gpio-packt.bb
├── recipes-example
│ └── example
│ ├── example-packt-0.1
│ │ ├── example.patch
│ │ └── helloworld.c
│ └── example-packt_0.1.bb
 └── recipes-example-bbappend
 └── example-bbappend
 ├── example-packt-0.1
 │ └── example.patch
 └── example-packt_0.1.bbappend

http://example-packt_0.1.bb

Deploying a Custom Layer on the Raspberry Pi

[90]

Now, we can launch BitBake to test our new recipe with the following command:

$ bitbake rpi-basic-image

Creating the raspberry-packt-image.bb
image
Through out this chapter, our aim was to create a layer that can be reused in any
environment. We'll see how to create our own image to be more dependent on images
provided by the meta-raspberrypi BSP layer. There's no need to worry, because to
create an image, we just need to make a recipe file.

Creating the environment
To separate the recipes of our layer, we will position our image recipe in a layer called
recipe-core, where we will create our raspberry-packt-image.bb recipe file. Here
are the results of our layer after creating it:

$ tree meta-packt_rpi/
meta-packt_rpi/
├── conf
│ └── layer.conf
├── COPYING.MIT
├── README
├── recipes-core
│ └── images
│ ├── raspberry-packt-image.bb
├── recipes-custom
 └── gpio-packt
│ ├── gpio-packt
│ │ ├── fix.patch
│ │ └── gpio-example.c
│ └── gpio-packt.bb
├── recipes-example
│ └── example
│ ├── example-packt-0.1
│ │ ├── example.patch
│ │ └── helloworld.c
│ └── example-packt_0.1.bb
└── recipes-example-bbappend
 └── example-bbappend
 ├── example-packt-0.1

http://example-packt_0.1.bb

Deploying a Custom Layer on the Raspberry Pi

[91]

 │ └── example.patch
 └── example-packt_0.1.bbappend

Modifying the recipe file
To better manage our image, there's nothing better than to learn from the basic images
contained in the meta-raspberrypi layer.

You can visit the main GitHub repository at
https://github.com/agherzan/meta-raspberrypi/blob/master/

recipes-core/images/rpi-hwup-image.bb.

Here is a basic example—our own image–compliant Raspberry Pi, including our own
recipe:

Base this image on core-image-minimal
include recipes-core/images/core-image-minimal.bb
DESCRIPTION = "Image for raspberry-pi"
IMAGE_FEATURES += "ssh-server-dropbear splash"
Include modules in rootfs
IMAGE_INSTALL += " \
 kernel-modules \
 gpio-packt
 "

The IMAGE_INSTALL variable groups the related packages that generate our root filesystem.
For further information, you can refer to the official documentation
(http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-IM
AGE_INSTALL).

Another variable that can be interesting, IMAGE_FEATURES, allows you to handle
predefined packages (dev, debug, and so on). You can find more information by
reading the official documentation:

https://github.com/agherzan/meta-raspberrypi/blob/master/recipes-core/images/rpi-hwup-image.bb
https://github.com/agherzan/meta-raspberrypi/blob/master/recipes-core/images/rpi-hwup-image.bb
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-IMAGE_INSTALL
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-IMAGE_INSTALL

Deploying a Custom Layer on the Raspberry Pi

[92]

For example, in our example (raspberry-pack-image.bb), we used several
packages through IMAGE_FEATURES, such as splash and ssh-server-dropbear.

We have also used this variable (in Chapter 5, Creating, Developing, and Deploying on the
Raspberry Pi) in conf/local.conf in order to add the package-management package
(with EXTRA_IMAGE_FEATURES).

Another example of IMAGE_FEATURES is if we want to work with the integration of the
Eclipse IDE, we have to add the following package to the conf/local.conf file:

IMAGE_FEATURES += "eclipse-debug"

Deploying a Custom Layer on the Raspberry Pi

[93]

Deploying the raspberry-packt-image.bb
image
Now comes the time when we can test our image and check its operation. To do this, we
have to launch usual bitbake command, but this time with an argument-the name of our
image, raspberry-packt-image:

$ bitbake raspberry-packt-image
Loading cache: 100%
|##
###
###################| ETA: 00:00:00

Now, we have a 100% custom environment (layer, recipe, and image).

Remember, to learn how to best handle the meta-packt_rpi layer
directory, you can visit
http://www.yoctoproject.org/docs/1.4.2/dev-manual/dev-man

ual.html#managing-layers.

Summary
In this chapter, we learned how to generate a custom layer using the yocto-layer script.
We also learned how to integrate a recipe into this, and finally, we created a custom image
and it on our Raspberry Pi.

In the next chapter, we will explore all of the Raspberry Pi's peripherals.

http://www.yoctoproject.org/docs/1.4.2/dev-manual/dev-manual.html#managing-layers
http://www.yoctoproject.org/docs/1.4.2/dev-manual/dev-manual.html#managing-layers

8
Diving into the Raspberry Pi's

Peripherals and Yocto Recipes
In this chapter, we will learn how to handle the SPI and i2c buses of the Raspberry Pi
through the Yocto Project. We'll see how to write our own recipe for custom applications.

The SPI bus
The Serial Peripheral Interface (SPI) protocol implements a synchronous serial link
between a master and a slave. When a single slave is used, only three signals (and ground)
are needed.

The master generates an SCLK (serial clock) clock signal, which is sent to the slave. On
some transitions of this clock, the slave will read data using the appointed signal, MOSI
(short for master out, slave in), or write it using the signal named MISO (master in, slave
out). There are several names, depending on hardware manufacturers, used to describe
these signals. It is recommended to use the MISO/MOSI notation (the most common one),
because it removes any ambiguity: the MOSI pin of a master must always be connected to
the MOSI pin of a slave, and the same is true for the MISO pin.

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[95]

If several slaves are to be connected to the same host, they may be connected in parallel (all
MISO pins connected together as well as all MOSI pins), but an additional signal (CS, or
Chip Select) is required for each of them, to choose which pin communication is established
with at a given time. An example is presented in the following figure:

Have fun with the SPI protocol on your Raspberry Pi; we will explore it further through a
utility developed for our platform.

For further information about the SPI protocol, you can visit the following
website:
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
_Bus

The spi-tools project
To quickly establish a connection with an SPI device from a shell script, for example, we
suggest you use a small package that a French engineer (Christophe Blaess) has recently
developed, which simplifies configuration and bidirectional communication. It is a free
project called spi-tools.

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[96]

This project is divided into two tools:

spi-config: This allows you to view or edit the communications settings on a an
SPI port. Here is the command:

 $ spi-config

spi-pipe: This allows full-duplex talk with a device by redirecting standard input
and standard output to the specified SPI port. The command is as follows:

 $ spi-pipe

If you want more information, consult the readme file in the GitHub
repository: https://github.com/cpb-/spi-tools

Inclusion in the meta-oe layer
The advantage of spi-tools is that it has been completely integrated into the Yocto/OE
environment since April 2015. Indeed, it is part of the meta-oe layer.

You can look at the initial commit here:
https://github.com/openembedded/meta-oe/commit/90b13eded7
6f7f7fa1a6715e67c32504e7788e96

It is easy to introduce this layer to our environment in order to use these utilities. Here we
see another advantage of the Yocto Project: flexibility.

If you want to visit the metadata index of this recipe, you can visit
http://layers.openembedded.org/layerindex/recipe/33576/.

https://github.com/openembedded/meta-oe/commit/90b13eded76f7f7fa1a6715e67c32504e7788e96
https://github.com/openembedded/meta-oe/commit/90b13eded76f7f7fa1a6715e67c32504e7788e96
http://layers.openembedded.org/layerindex/recipe/33576/

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[97]

As you may have guessed, the first step in integrating the spi-tools recipe is modifying our
conf/bblayers.conf file in order to add the path of the layer:

changes incompatibly
LCONF_VERSION = "6"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \
 /home/packt/RASPBERRYPI/poky/meta \
 /home/packt/RASPBERRYPI/poky/meta-yocto \
 /home/packt/RASPBERRYPI/poky/meta-yocto-bsp \
 /home/packt/RASPBERRYPI/poky/meta-raspberrypi \
 /home/packt/RASPBERRYPI/poky/meta-packt_rpi \
 /home/packt/RASPBERRYPI/poky/meta-openembedded/meta-oe \ "
BBLAYERS_NON_REMOVABLE ?= " \
 /home/packt/RASPBERRYPI/poky/meta \
 /home/packt/RASPBERRYPI/poky/meta-yocto \

You can downloaded the meta-oe layer by using this following
command:

$ git clone https://github.com/openembedded/meta- openembedded.git

Now that the path of our layer has been set, it is visible to BitBake and spi-tools can be
integrated with our root filesystem. To do this, we need to run the command to create the
binaries.

Baking spi-tools
In order to generate the package (ipk, rpm, or dpkg), we can run the following command:

$ bitbake spitools
Loading cache: 100%
|##
###
###################| ETA: 00:00:00
Loaded 2006 entries from dependency cache.
NOTE: Resolving any missing task queue dependencies
Build Configuration:
BB_VERSION = "1.27.1"
BUILD_SYS = "x86_64-linux"
NATIVELSBSTRING = "Ubuntu-14.04"
TARGET_SYS = "arm-poky-linux-gnueabi"
MACHINE = "raspberrypi"

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[98]

DISTRO = "poky"
DISTRO_VERSION = "1.8+snapshot-20150729"
TUNE_FEATURES = "arm armv6 vfp arm1176jzfs callconvention-hard"
TARGET_FPU = "vfp"
meta
meta-yocto
meta-yocto-bsp = "master:19f77cf586fbee9e67d3698263402b717303c5ec"
meta-raspberrypi = "master:7457bf182c8fd550ec877ecd786a3edd16e65495"
meta-packt_rpi = "master:19f77cf586fbee9e67d3698263402b717303c5ec"
meta-oe = "master:f637fadb106a09a6f3dfba4181d06dc9b5e82ff5"
NOTE: Executing SetScene Tasks
NOTE: Executing RunQueue Tasks
Currently 1 running tasks (373 of 381):
0: spitools-git-r0 do_configure (pid 3535)

Alternatively, if we want to integrate spi-tools into our image, we just have to add the
following line to our image and run BitBake raspberry-pack-image:

Base this image on core-image-minimal

include recipes-core/images/core-image-minimal.bb
DESCRIPTION = "Image for raspberry-pi"
IMAGE_FEATURES += "ssh-server-dropbear splash"
Include modules in rootfs
IMAGE_INSTALL += " \
 kernel-modules \
 gpio-packt \
 spitools \
 "

Testing on the Raspberry Pi
With our image in hand, we can now run the utilities offered by spi-tools.

spi-config
To access SPI interfaces from user space, the kernel provides us entry points as special files
in /dev. This requires the loading of the following module:

$ modprobe spidev

http://core-image-minimal.bb

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[99]

After integrating this module, we can try to launch the spi-config utility:

$ spi-config
spi-config: no device specified (use option -h for help)
$ spi-config -h
usage: ./spi-config options...
 options:
 -d --device= use the given spi-dev character device.
 -q --query print the current configuration.
 -m --mode=[0-3] use the selected spi mode.
 0: low iddle level, sample on leading edge
 1: low iddle level, sample on trailing edge
 2: high iddle level, sample on leading edge
 3: high iddle level, sample on trailing edge
 -l --lsb={0,1} LSB first (1) or MSB first (0)
 -b --bits=[7...] bits per word
 -s --speed= set the speed in Hz
 -h --help this screen
 -v --version display the version number

For example, if we wanted to query the /dev/spidev0.0 interface, we would run this:

$ spi-config -d /dev/spidev0.0 -q
/dev/spidev0.0: mode=0, lsb=0, bits=8, speed=500000

If you want more details about spi-config, you can visit
https://github.com/cpb-/spi-tools/blob/master/src/spi-

config.c.

spi-pipe
The spi-pipe program can send the data it receives from its standard input to the SPI MOSI
line, while simultaneously displaying data received from the MISO SPI line on its standard
output.

The general principle of operation is as follows:

$ <command-1> | spi-pipe [options] | <command-2>

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[100]

For example, if we want to send some data to another SPI peripheral, we can use the
following command:

$ printf "HELLO from R-pi" | spi-pipe -d /dev/spidev0.0 | hexdump -C

Note that the three members of a pipeline run in parallel, each in a
separate process, by synchronizing the data that flows between them.

Conclusion
Finally, here is a selection of the various applications for which these tools can be used:

Communicating with a microcontroller to retrieve data from an ADC

Communicating with an SPI flash

Communicating with a delay line

We leave it up to you to think of other types of applications.

The i2c bus
The i2c protocol enables us to port a master component (usually the microprocessor) and
several slave devices. Several masters can share the same bus, and the same component can
send slave status to the master or vice versa. However, communication takes place only
between the master and one slave. Note also that the master can send a command to all
slaves simultaneously (such as a sleep or reset request).

At the electrical level, the protocol uses signals alternating between high and low levels; the
most common value pairs are (0, 5V) and (0, 3.3V). The SCL clock signal is generated by the
master. The serial data (SDA) data signal is set high or low by the master or slave, according
to the communication phase. Throughout the duration of the high segment of the SCL
clock, the SDA data signal must be kept high or low, depending on whether it transmits a 1
or a 0.

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[101]

Finally, as shown in the following figure, particular configurations of signals (produced by
the master) can indicate the beginning or end of an exchange, which are called the START
and STOP conditions. This is a variation of the SDA signal for a slot clock.

In order to test the i2c interface on our Raspberry Pi, we will develop an application to
retrieve data from a Wii Nunchuck through the i2c bus.

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[102]

The Wii Nunchuck

The Nunchuck has an X/Y joystick, an X/Y/Z accelerometer, and two buttons (Z and C).

The sensor data is communicated through the i2c bus.

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[103]

The Nunchuck connector
The connector contains four wires, two of which are power and ground. The other wires are
used for i2c communication (SDA and SCL). The following diagram demonstrates the
principle:

If you are worried about your connection, you can find an adapter for this
controller at https://www.sparkfun.com/products/9281.

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[104]

The Raspberry Pi connection
For the connection with our Raspberry Pi, we just have to connect it to the main connectors,
I2C1_SDA and I2C1_SCL, as shown in this pin diagram:

The Nunchuck's protocol
The Wii Nunchuck contains a controller that communicates through the i2c bus. In order to
know where to store bytes written to it, the first byte must be an 8-bit register address. In
other words, each write() operation to the Nunchuck requires one register address byte,
followed by data bytes.

For a write operation, the first byte sent to the Nunchuck tells it where to start (the START
condition).

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[105]

Encryption
The Nunchuck is designed to provide a specific encrypted link. However, this can be
disabled through the following process:

Write 0x55 to the Nunchuck's 0xF0 register
Pause
Write 0x00 to the Nunchuck's 0xFB register

Write Pause Write

0xF0 0x55 – 0xFB 0x00

Note that if you own a white Nunchuck, the process will be different:

Write 0x00 to the Nunchuck's 0x40 register

Write

0x40 0x00

Once this has been successfully performed, all data is returned
unencrypted.

Requesting sensor data
The whole point of us using the Nunchuck is to read its sensor data. When requested, it
should return six bytes of data, formatted as follows:

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[106]

The following table illustrates the message sequence:

Write Pause Read

0x00 – 1 2 3 4 5 6

Testing the i2c connection
You can start automatically detecting connected devices with i2cdetect. i2cdetect is not
installed on the Raspberry Pi; the easiest method of using it is to install the i2c-tools package
through our raspberry-packt-image Yocto image by adding i2c-tools, as follows:

Base this image on core-image-minimal

include recipes-core/images/core-image-minimal.bb
DESCRIPTION = "Image for raspberry-pi"
IMAGE_FEATURES += "ssh-server-dropbear splash"
Include modules in rootfs
IMAGE_INSTALL += " \
 kernel-modules \
 gpio-packt \
 spitools \
 i2c-tools \
 "

After that, we can launch the BitBake raspberry-pack-image command to test it on the
Raspberry Pi.

In order to detect the i2c device, we just have to launch the following commands on the
Raspberry Pi:

$ modprobe i2c-dev
$ i2cdetect 0
WARNING! This program can confuse your I2C bus, cause data loss and worse!
I will probe file /dev/i2c-0.
I will probe address range 0x03-0x77.
Continue? [Y/n] Y
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: 03 04 05 06 07 -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- 52 -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

http://core-image-minimal.bb

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[107]

If the Nunchuck is working, it will show up in the display at address 0x52.

The Nunchuck uses the i2c address 0x52. If you want more information
about the i2c interface on the Raspberry Pi, you can visit
https://learn.adafruit.com/adafruits-raspberry-pi-

lesson-4-gpio-setup/configuring-i2c.

Creating the Nunchuck application
We can now test our Nunchuck application (developed in the C language). You will find it
in the code bundle that came with this book.

We can test compiling our application with our SDK with the following command and send
it to the Raspberry Pi:

$ source /opt/poky/1.7.1/environment-setup-armv6-vfp poky-linux- gnueabi
$ ${CC} nunchuck.c -o nunchuck_packt

Integrating with meta-packt_rpi
Now, we will prepare our environment so that all of our development is Yocto compliant.

Here is our custom integration layer for the Nunchuck recipe:

$ tree meta-packt_rpi/
meta-packt_rpi/
├── conf
│ └── layer.conf
├── COPYING.MIT
├── README
├── recipes-core
│ └── images
│ └── raspberry-packt-image.bb
├── recipes-custom
│ ├── gpio-packt
│ │ ├── gpio-packt
│ │ │ ├── fix.patch
│ │ │ └── gpio_example.c
│ │ └── gpio-packt_0.1.bb
│ └── nunchuck
│ ├── nunchuck
│ │ └── nunchuck.c
│ └── nunchuck_0.1.bb
├── recipes-example

http://raspberry-packt-image.bb
http://gpio-packt_0.1.bb
http://nunchuck_0.1.bb

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[108]

│ └── example
│ ├── example-packt-0.1
│ │ ├── example.patch
│ │ └── helloworld.c
│ └── example-packt_0.1.bb
└── recipes-example-bbappend
 └── example-bbappend
 ├── example-packt-0.1
 │ └── example.patch
 └── example-packt_0.1.bbappend

The nunchuck_0.1.bb file will contain the recipe for implementing the Nunchuck binary
in our rootfs.

Creating the Nunchuck recipe
Now that our application is functional, we can create our recipe so that BitBake can find it.

Here is the recipe that enables us to integrate the Nunchuck application into the Raspberry
Pi:

DESCRIPTION = "nunchuck i2c example"
LICENSE="GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL
2.0;md5=801f80980d171dd6425610833a22dbe6"
PR = "r0"
SRC_URI = "file://nunchuck.c"
S = "${WORKDIR}"
do_compile() {
 ${CC} ${CFLAGS} ${LDFLAGS} ${WORKDIR}/nunchuck.c -o
nunchuck_packt
}
do_install() {
 install -m 0755 -d ${D}${bindir}
 install -m 0755 ${S}/nunchuck_packt ${D}${bindir}
}

To integrate the package into the Raspberry Pi environment, we have to add the following
line to raspberry-pack-image:

Base this image on core-image-minimal

include recipes-core/images/core-image-minimal.bb
DESCRIPTION = "Image for raspberry-pi"
IMAGE_FEATURES += "ssh-server-dropbear splash"
Include modules in rootfs
IMAGE_INSTALL += " \

http://example-packt_0.1.bb
http://core-image-minimal.bb

Diving into the Raspberry Pis Peripherals and Yocto Recipes

[109]

 kernel-modules \
 gpio-packt \
 i2c-tools \
 spitools \
 nunchuck \
 "

Testing the Nunchuck application
Now, we can launch BitBake and test our program on the Raspberry Pi. Use this command:

$ bitbake raspberry-packt-image

On the Raspberry Pi, launch the following command:

$ nunchuck

You can now have fun with Nunchuck and Video4Linux (V4L).

Next, will see how to integrate video support to our environment.

V4L presentation
V4L is a video API for Linux. It is integrated into the Linux kernel. It is an abstract layer
between video software and video devices. It allows the capture of video streams and
pictures from digital camcorders, video capture cards, TV and radio tuners, webcams, and
so on.

For example, it is possible to work with OpenCV (to retrieve the video stream through
/dev/video) and Qt to display content (using a framebuffer or X11).

Video support
In order to add video support, we need only look at the readme file of our BSP layer (meta-
raspberry-pi). It will be evident that we can easily add video support:

2.F. Optional - Video camera support with V4L2 drivers
 ==
Set this variable to enable support for the video camera (Linux 3.12.4+
required)
VIDEO_CAMERA = "1"

Diving into the Raspberry Pis Peripherals and Yocto Recipes

[110]

The VIDEO_CAMERA variable must be set in conf/local.conf.

v4l-utils integration
In order to control the device connected to /dev/videoX, there is a set of utilities called
v4l-utils. The integration of these tools is easy, as usual, through our build system
(Yocto/OpenEmbedded).

To integrate the v4l-utils package to the Raspberry Pi environment, we have to add the
following line to raspberry-pack-image:

Base this image on core-image-minimal

include recipes-core/images/core-image-minimal.bb
DESCRIPTION = "Image for raspberry-pi"
IMAGE_FEATURES += "ssh-server-dropbear splash"
Include modules in rootfs
IMAGE_INSTALL += " \
 kernel-modules \
 gpio-packt \
 i2c-tools \
 spitools \
 nunchuck \
 v4l-utils \
 "

After that, we just have to launch the following command:

$ bitbake rapberryrapberry-packt-image
Loading cache: 100%
|##
###
###################| ETA: 00:00:00
Loaded 2057 entries from dependency cache.
NOTE: Resolving any missing task queue dependencies
Build Configuration:
BB_VERSION = "1.27.1"
BUILD_SYS = "x86_64-linux"
NATIVELSBSTRING = "Ubuntu-14.04"
TARGET_SYS = "arm-poky-linux-gnueabi"
MACHINE = "raspberrypi"
DISTRO = "poky"
DISTRO_VERSION = "1.8+snapshot-20150804"
TUNE_FEATURES = "arm armv6 vfp arm1176jzfs callconvention-hard"
TARGET_FPU = "vfp"
meta
meta-yocto

http://core-image-minimal.bb

Diving into the Raspberry Pi's Peripherals and Yocto Recipes

[111]

meta-yocto-bsp = "master:19f77cf586fbee9e67d3698263402b717303c5ec"
meta-raspberrypi = "master:7457bf182c8fd550ec877ecd786a3edd16e65495"
meta-packt_rpi = "master:19f77cf586fbee9e67d3698263402b717303c5ec"
meta-oe
meta-multimedia = "master:f637fadb106a09a6f3dfba4181d06dc9b5e82ff5"
NOTE: Preparing RunQueue
NOTE: Executing SetScene Tasks
NOTE: Executing RunQueue Tasks
Currently 1 running tasks (558 of 566):
0: v4l-utils-1.6.2-r0 do_configure (pid 20717)

Once the process is complete, it will be possible to use v4l-utils.

If you want more information about v4l-utils, you can visit
http://www.linux-
projects.org/modules/sections/index.php?op=viewarticle&a

rtid=16.

Summary
In this chapter, we learned how to integrate a package to test the SPI interface of the
Raspberry Pi. We also learned how to create an application for the Wii Nunchuck and how
to deploy it inside the Yocto Project.

In the next chapter, we will understand how to integrate a media hub with the Raspberry
Pi.

9
Making a Media Hub on the

Raspberry Pi
In this chapter, we will learn how to deploy a custom application in order to make an
embedded media hub (panel control for temperature, ADC, serial, and so on).

We will work on aspects of rpm packages, init scripts, recipes, and web development.

Project description – CPU temperature
monitoring
The idea of this project is the creation of a web interface that allows, for example,
monitoring of the CPU temperature.

To do this, we will use technologies such as HTML5 and nodejs. We will also have utilities
available on the Raspberry Pi, such as vcgencmd.

In this project, we will use technical aspects, such as:

Websocket
Justgage
Nodejs

The idea here is not to explain these technologies, but to learn that they can be used in the
Yocto Project.

Making a Media Hub on the Raspberry Pi

[113]

Overview
The following diagram represents the project's structure:

Hardware/software requirements
You'll need the following hardware and software for this project:

A Raspberry Pi
A host PC
An SD card
SSH/SCP

Creating the main application
The main project contains several files. To best present things, we'll only concentrate on two
files:

server.js: This is the file that will create our web server and send data to the
HTML web page
index.html: This is the page that will open the web browser to display the data
received

Making a Media Hub on the Raspberry Pi

[114]

server.js
The server.js file creates a server on the listening port 3344 and will be responsible for
creating a socket (rpi_temperature) that contains the CPU temperature of Raspberry Pi.
The socket function uses, among others, the vcgencmd command
(https://github.com/raspberrypi/firmware/blob/master/opt/vc/bin/vcgencm
d), permitting us to monitor the CPU temperature, as shown here:

setInterval(function()
{
 child = exec("vcgencmd measure_temp | awk -F:", function (error,
stdout, stderr)
 {
 if (error !== null)
 {
 console.log('exec error: ' + error);
 }
 else
 {
 var date = new Date().getTime();
 var temp = parseFloat(stdout);
 socket.emit('rpi_temperature', date,temp);
 }
 }
);}, 1000);

For further information about vcgencmd, you can visit the following page:
http://elinux.org/RPI_vcgencmd_usage

index.html
Here is an example of a function receiving the socket (rpi_temperature) containing the
CPU temperature of our Raspberry Pi:

$(document).ready(function(){
 socket.on('rpi_temperature', function (time, data) {
 gg1.refresh($.trim(data));
 return false;
 });
});

Making a Media Hub on the Raspberry Pi

[115]

Creating the Yocto/OE environment
Now that we have developed the main application, what remains for us is to integrate it
with our Yocto RPI environment.

Modifying the image
The first step consists of integrating the nodejs package (located at meta-
openembedded/meta-oe/recipes-devtools/nodejs) with the Raspberry Pi
environment. For this, we have to add the following line to raspberry-pack-image:

Base this image on core-image-minimal

include recipes-core/images/core-image-minimal.bb
DESCRIPTION = "Image for raspberry-pi"
IMAGE_FEATURES += "ssh-server-dropbear splash"
Include modules in rootfs
IMAGE_INSTALL += " \
 kernel-modules \
 gpio-packt \
 i2c-tools \
 spitools \
 nunchuck \
 v4l-utils \
 nodejs \
"

We have now integrated nodejs with our Poky distro.

Creating the recipe file
The second step consists of creating the recipe file; let's call this recipe webserver-
packt_01.bb.

http://core-image-minimal.bb/#_blank

Making a Media Hub on the Raspberry Pi

[116]

The idea is to have the following architecture inside the recipes-custom folder:

$ tree webserver-packt/
webserver-packt/
├── webserver-packt
│ └── server.tar.gz
└── webserver-packt_0.1.bb

The server.tar.gz tarball contains the main application (nodejs +
HTML5).

To create this recipe, we will use the recipetool command , as follows:

$ source oe-init-build-env rpi-build
$ recipetool create -d -o webserver-packt_0.1.bb ../meta-
packt_rpi/recipes-custom/webserver-packt/webserver-packt/
$ cp webserver-packt_0.1.bb ../meta-packt_rpi/recipes-custom/webserver-
packt/

The complete documentation of recipetool command is online at
http://www.yoctoproject.org/docs/1.8/mega-manual/mega-man
ual.html#new-recipe-creating-the-base-recipe-using-

recipetool.

Now we just need to copy the entire archive (server.tar.gz) containing the sources to
${datadir} (/usr/share/); this step is carried out in the do_install() block, as
shown here:

DESCRIPTION = "Panel to monitor rpi temperature"
LICENSE = "GPLv2"
LIC_FILES_CHKSUM =
"file://${COREBASE}/meta/COPYING.GPLv2;md5=751419260aa954499f7abaabaa882bbe
"

Package Release
PR = "r0"

Use local tarball
SRC_URI = " \
 file://server.tar.gz \
 "
RDEPENDS_${PN} += "bash"

Make sure our source directory (for the build) matches the directory
structure in the tarball

http://webserver-packt_0.1.bb/

Making a Media Hub on the Raspberry Pi

[117]

S = "${WORKDIR}"

do_install() {
 install -d ${D}${datadir}/server-packt
 cp -a ${S}/server ${D}${datadir}/server-packt
}

Package files
FILES_${PN} += "${datadir}/server-packt"

Explanation
Let's take a look at what the variables do:

The RDEPENDS_{PN} variable lists a package's runtime dependencies that must
be installed in order for the built package to run correctly. In our case, bash is
necessary for nodejs.
* The FILES_{PN} variable contains the list of directories or files that are placed
in the packages. In our case, server-packt is necessary.

We now have an environment ready to be used. If we want to deploy the application on our
Raspberry Pi, we can do so with the following commands.

The host commands are as follows:

$ bitbake webserver-packt
$ scp tmp/deploy/rpm/arm1176jzfshf_vfp/webserver-packt-0.1-
r0.arm1176jzfshf_vfp.rpm root@ip_address_of_rpi:/home/

These are the Raspberry Pi commands:

$ rpm -ivh webserver-packt-0.1-r0.arm1176jzfshf_vfp.rpm
$ rm webserver-packt-0.1-r0.arm1176jzfshf_vfp.rpm
$ node /usr/share/server-packt/server/server.js

Making a Media Hub on the Raspberry Pi

[118]

Autostarting – the init file
If we want to have a standalone application, it would be interesting if our application can
start during the boot sequence of our Raspberry Pi. For this, we will use an init script,
inheriting directly from System V.

The first step is to create a .init file within our structure. We will call this file
server.init. The tree will look like this:

$ tree webserver-packt/
webserver-packt/
├── webserver-packt
│ ├── server.init
│ └── server.tar.gz
└── webserver-packt_0.1.bb

So, the script will start the application automatically after the installation and every time the
Raspberry Pi starts up. Here is the init script from System V:

#!/bin/bash
BEGIN INIT INFO
Provides: server.init
Required-Start: $remote_fs $syslog
Required-Stop:Å $remote_fs $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Start daemon at boot time
Description: Enable service provided by daemon.
END INIT INFO

DAEMON=node
NAME=server.init
DESC="Nodejs app"
ARGS="/usr/share/server-packt/server/server.js"

set -e

usage()
{
 echo "----------------------------------"
 echo "Usage: $0 (stop|start|restart)"
 echo "----------------------------------"
}

service_start()
{
 echo -n "starting $DESC: $NAME... "

http://webserver-packt_0.1.bb/

Making a Media Hub on the Raspberry Pi

[119]

 start-stop-daemon -S -x $DAEMON -- $ARGS &
 echo "done."
}

echo ""
service_stop()
{
 echo -n "stopping $DESC: $NAME... "
 start-stop-daemon -K -x $DAEMON
 echo "done."
}
case $1 in
 stop)
 service_stop
 echo ""
 ;;
 start)
 service_start
 echo ""
 ;;
 restart)
 service_stop
 service_start
 echo ""
 ;;
 *)
 usage
esac
exit 0

Explanation
Let's look at how the code works:

The DAEMON variable specifies the binary to launch (/usr/bin/node)
The NAME variable specifies the script name
The DESC variable contains some information about DAEMON (node)
The ARGS variable contains the arguments to pass to DAEMON (node)

Making a Media Hub on the Raspberry Pi

[120]

If you want to test this script on the Raspberry Pi, use these commands:

$ scp server.init root@ip_address_of_rpi:/etc/init.d
$ cd /etc/init.d
$ update-rc.d server.init defaults

This command stops the application:

/etc/init.d/server.init stop

This one restarts it:

/etc/init.d/server.init restart

Autostarting – the recipe file
The inclusion of our init file in our webserver-packt.bb recipe consists of:

Adding the server.init file to SRC_URI.
Adding do_install() to the step for our init script.
Including update-rc.d. Adding this to Yocto is done by adding inherit
update-rc.d to our recipe.

Here is webserver-packt.bb after being updated:

DESCRIPTION = "Panel to monitor rpi temperature"
LICENSE = "GPLv2"
LIC_FILES_CHKSUM =
"file://${COREBASE}/meta/COPYING.GPLv2;md5=751419260aa954499f7abaabaa882bbe
"

Package Release
PR = "r0"

Use local tarball
SRC_URI = " \
 file://server.tar.gz \
 file://server.init \
 "
RDEPENDS_${PN} += "bash"

Make sure our source directory (for the build) matches the directory
structure in the tarball
S = "${WORKDIR}"

Making a Media Hub on the Raspberry Pi

[121]

do_install() {
 install -d ${D}${datadir}/server-packt
 cp -a ${S}/server ${D}${datadir}/server-packt
 install -d ${D}${sysconfdir}/init.d/
 install -m 0755 ${WORKDIR}/server.init ${D}${sysconfdir}/init.d/server-
packt-init
}

Package files
FILES_${PN} += "${datadir}/server-packt"

inherit update-rc.d

INITSCRIPT_NAME = "server-packt-init"
INITSCRIPT_PARAMS = "start 99 5 2 . stop 19 0 1 6 ."

Explanation
Here is an explanation of our updated webserver-packt.bb file:

The INITSCRIPT_NAME variable represents the filename of the initialization
script, as installed to /etc/init.d.
* The INITSCRIPT_PARAMS variable specifies the options to pass to update-
rc.d. In our case, the script has a runlevel of 99, is started at init levels 2 and 5,
and is stopped at levels 0, 1, and 6.

If you want more information about update-rc.d, you can visit the
official documentation of the Yocto Project:
http://www.yoctoproject.org/docs/1.8/mega-manual/mega-man
ual.html#ref-classes-update-rc.d

Deploying raspberry-packt-image
Now that we have a functional application (webserver-packt), we can add it to our
custom image, raspberry-pack-image:

Base this image on core-image-minimal

include recipes-core/images/core-image-minimal.bb
DESCRIPTION = "Image for raspberry-pi"
IMAGE_FEATURES += "ssh-server-dropbear splash"
Include modules in rootfs
IMAGE_INSTALL += " \

http://core-image-minimal.bb/#_blank
http://www.yoctoproject.org/docs/1.8/mega-manual/mega-manual.html#ref-classes-update-rc.d
http://www.yoctoproject.org/docs/1.8/mega-manual/mega-manual.html#ref-classes-update-rc.d

Making a Media Hub on the Raspberry Pi

[122]

 kernel-modules \
 gpio-packt \
 i2c-tools \
 spitools \
 nunchuck \
 v4l-utils \
 nodejs \
 webserver-packt \
 "

After doing this, we can start creating our image and then mount it on an SD card:

$ bitbake raspberry-packt-image

Testing the application
In order to test the application on the Raspberry Pi, you have just to go to the following
address from your favorite browser:

http://raspberry-pi-ip-address:3344

If the whole environment has been properly configured, you should see the following page:

Making a Media Hub on the Raspberry Pi

[123]

The future of this project
We looked at the basic idea of a server, and you should be able to improve it in order to
make it as industrial as possible. One can easily imagine the following applications:

Monitoring the ADCs, present on a motherboard
Sending serial commands to a device via an HTML page (node-serial)
Monitor a CAN-bus devices (https://github.com/sebi2k1/node-can)

The final project might look something like this:

Summary
In this chapter, we learned how to create a web interface, how to integrate it within an
existing environment, and how to deploy it on the Raspberry Pi.

In the next chapter we will learn some basics about the Linux kernel and how to configure
the kernel to support various LCD touchscreens. Further on the chapter explains how to
setup a Yocto project to run graphical applications or a window system, on a Raspberry Pi
using a LCD touchscreen.

https://github.com/sebi2k1/node-can

10
Playing with an LCD

Touchscreen and the Linux
Kernel

When setting up an LCD touchscreen using an embedded Linux system, it's recommended
to have basic knowledge of the Linux kernel and how to configure it. In this chapter, we
will learn some basics about the Linux kernel and how to download, configure, and compile
it using a cross compiler. The current recommendation when running a Linux-based system
on the Raspberry Pi is to use the Raspberry Pi Linux kernel instead of the the mainline
Linux kernel; we will learn why in this chapter.

Later in the chapter, we will go through how to boot an image based on the Yocto Project
with a windowing system using a Raspberry Pi 7 touchscreen and a PiTFT 2.8 touchscreen.
The chapter will end with a walkthrough of how to use the Qt application framework to
develop graphical applications for the Raspberry Pi that are possible to play using a
touchscreen.

The Linux kernel
The Linux kernel is a Unix-like operating system kernel created by Linus Torvalds 1991. It
was originally developed for 32-bit x86-based PCs, but today, Linux also supports a large
set of architectures such as ARM, PowerPC, MIPS, and SPARC. The Linux kernel is a
fundamental part of a Linux distribution (such as Ubuntu, Debian, and Fedora).

Playing with an LCD Touchscreen and the Linux Kernel

[125]

When deciding which kernel is most suited to your project, it's good to have in mind how
kernel releases work. Depending on your needs, you can choose between mainline,
developing, or stable kernels. If you don't work with kernel development, it's
recommended to avoid using the mainline kernel since it's still under development and is
considered unstable. A kernel is always considered stable directly after it has been released
from the mainline tree. After that, the kernel will be maintained until the next mainline
kernel becomes available (usually in 2-3 months). However, a kernel can be picked as a
longterm kernel, which means that it will be maintained for an extended period (several
years). Longterm kernels are often used in commercial projects, since these projects require
a stable and supported base that can have important bug and security fixes backported for a
long time.

Visit https://www.kernel.org/releases.html for more details about
kernel releases.

The Linux kernels versus the Raspberry Pi Linux
kernel
The currently recommended kernel for the Raspberry Pi is the official Raspberry Pi Linux
kernel (https://github.com/raspberrypi/linux.git). The reason we need a specific
kernel for the Raspberry Pi (instead of using the mainline Linux kernel) is mainly the
proprietary firmware/GPU binary blob needed by the Raspberry Pi. However, in 2014, the
full documentation for the VideoCore IV graphics core, together with the complete source
for the graphics stack, was released by Broadcom, under a three-clause BSD license. This
lead to the gap between the mainline support for bcm2835 (the SoC used in the Raspberry
Pi) and the support for the Rasbberry Pi Linux kernel decreasing significantly. With that
said, there is still some hard work left to do in the mainline kernel, for example, video
decoding and camera support. Also, some important drivers such as the rpi-ft5406 (used for
the official Raspberry Pi touchscreen) still don't exist within the mainline Linux kernel.

Read more about the current status of the Raspberry Pi kernel
upstreaming to the mainline kernel at
http://elinux.org/RPi_Upstreaming.

https://www.kernel.org/releases.html
https://github.com/raspberrypi/linux.git

Playing with an LCD Touchscreen and the Linux Kernel

[126]

Getting started with the Linux kernel
In this part of the chapter, we will go through how to download, configure, and compile a
custom Linux kernel.

Different mainline versions of the kernel can be downloaded from kernel.org, either as an
archived file or through GitHub. In the examples, we will use version 4.1 of the kernel, since
its currently the default in meta-raspberrypi. You can easily find the default version for
meta-raspberrypi by searching for PREFERRED_VERSION_linux-raspberrypi, like
this:

$ cd meta-raspberrypi
$ git grep PREFERRED_VERSION_linux-raspberrypi
conf/machine/include/rpi-default- versions.inc:PREFERRED_VERSION_linux-
raspberrypi ?= "4.1.%"

Start by downloading the kernel and then go to the 4.1 branch:

$ cd /path/to/workdir
$ git clone
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/
$ git checkout -b linux-4.1.y -t remotes/origin/linux-4.1.y

Remember that when building for the Raspberry Pi,
https://github.com/raspberrypi/linux.git is the supported kernel repository. Use
it like this:

$ git clone https://github.com/raspberrypi/linux.git
$ git checkout -b rpi-4.1.y -t remotes/origin/rpi-4.1.y

https://github.com/raspberrypi/linux.git

Playing with an LCD Touchscreen and the Linux Kernel

[127]

Next, we can start working with our kernel. First, we need to decide what configuration to
use; all existing configurations exist under arch/*/configs/ in the kernel tree. Later, we
will look at how to make our own customizations to the kernel, but for now, we will start
by using a predefined configuration for the ARM platform. When building from your host
machine, you need to set up a cross compiler for the ARM architecture, which in this case is
bcm2835 (which happens to be the CPU family of the Raspberry Pi). Use this command:

$ make O=/path/to/output_dir CROSS_COMPILE=/path/to/arm-linux-gnueabi-
ARCH=arm bcm2835_defconfig
 make[1]: Entering directory '/path/to/output_dir'
 HOSTCC scripts/basic/fixdep
 GEN ./Makefile
 HOSTCC scripts/kconfig/conf.o
 SHIPPED scripts/kconfig/zconf.tab.c
 SHIPPED scripts/kconfig/zconf.lex.c
 SHIPPED scripts/kconfig/zconf.hash.c
 HOSTCC scripts/kconfig/zconf.tab.o
 HOSTLD scripts/kconfig/conf
 #
 # configuration written to .config
 #
 make[1]: Leaving directory '/path/to/output_dir'

The command will ensure that the chosen configuration, a makefile, and a symlink to the
original source tree are stored in the output directory. It's not mandatory to use an output
directory; you can build directly within the kernel tree itself. However, it's strongly
recommended to specify an output directory to avoid problems in your main kernel tree
and keep it clean from build results. Next, we can start building the kernel. If building from
a multi-core machine, it's recommended to use the -j flag in order to speed up the build.

$ make O=/path/to/output_dir CROSS_COMPILE=/path/to/arm-linux-gnueabi-
ARCH=arm -j4
 make[1]: Entering directory `/path/to/output_dir''
 GEN ./Makefile
 scripts/kconfig/conf --silentoldconfig Kconfig
 make[1]: Leaving directory `/path/to/output_dir''
 make[1]: Entering directory `/path/to/output_dir''
 CHK include/config/kernel.release
 GEN ./Makefile
 WRAP arch/arm/include/generated/asm/bitsperlong.h
 WRAP arch/arm/include/generated/asm/cputime.h
 WRAP arch/arm/include/generated/asm/current.h
 ...
 OBJCOPY arch/arm/boot/zImage
 Kernel: arch/arm/boot/zImage is ready
 make[1]: Leaving directory `/path/to/output_dir'

Playing with an LCD Touchscreen and the Linux Kernel

[128]

If you want to change the configuration of your kernel, a predefined target called
menuconfig can be used. It will give you a menu that contains entries for all the
configurable parts of your kernel. It's possible to search for keywords in the menu to find a
requested configuration option; this can be achieved by typing / followed by the keyword.
Typing ? in the menu will display a short description of the configuration option you
selected.

make O=/path/to/output_dir CROSS_COMPILE=/path/to/arm-linux-gnueabi-
ARCH=arm menuconfig

Here is an example of using menuconfig. The M symbol means that the driver will be built
as a separate module that can be loaded/unloaded by the kernel on demand.

When the new configuration has been saved, you can build the kernel in the same way as
described earlier in the chapter.

Playing with an LCD Touchscreen and the Linux Kernel

[129]

Configuring the kernel in Yocto
When using Yocto, it's possible to use BitBake for configuring and compiling the kernel. The
following example will show you how to perform these steps in the Yocto Project, using the
Raspberry Pi kernel as an example:

$ cd /path/to/project
$ bitbake linux-raspberrypi -c menuconfig

Perform your modifications and save the new defconfig, and then run this command:

$ bitbake linux-raspberrypi

As described in earlier chapters of this book, these commands will set up the cross compiler
for you under the hood. In the Yocto Project, it's possible to take a customized kernel
configuration file (.config) and put it into the kernel recipe. Then, you will have to name it
defconfig and point it out in the SRC_URI variable for the recipe. This will cause the
kernel to be built using the defconfig file as the default configuration. It's also possible to
use a feature called fragments, which makes it possible to add a fragment of the kernel
configuration options in a file called <somename>.cfg. When added to the SRC_URI
variable, it will update the kernel configuration with the information from the fragment. For
linux-raspberrypi (the kernel recipe in meta-raspberrypi), it's not possible to use
defconfig or fragments, since it takes the kernel configuration directly from the kernel
repository (bcmrpi_defconfig or bcm2709_defconfig) and overrides the defconfig
file. In order to change kernel configuration options for meta-raspberrypi, a couple of
possibilities exist. The first option is to create an integration patch for the kernel that
modifies the the chosen defconfig file within the kernel tree and is then applied through
the kernel recipe, like this:

diff --git a/recipes-kernel/linux/linux-raspberrypi_4.1.bb b/recipes-
kernel/linux/linux-raspberrypi_4.1.bb
index 3a3cf40..bddf79b 100644
--- a/recipes-kernel/linux/linux-raspberrypi_4.1.bb
+++ b/recipes-kernel/linux/linux-raspberrypi_4.1.bb
@@ -1,6 +1,8 @@
 LINUX_VERSION ?= "4.1.10"
 SRCREV = "b74df9228c27f55361c065bc5dbfba88861cc771"
-SRC_URI =
"git://github.com/raspberrypi/linux.git;protocol=git;branch=rpi-4.1.y"
+SRC_URI =
"git://github.com/raspberrypi/linux.git;protocol=git;branch=rpi-4.1.y \
+ file://0001-bcmrpi_defconfig-add-debug.patch \
+ "

Playing with an LCD Touchscreen and the Linux Kernel

[130]

Another option is to use the kernel_configure_variable function from linux.inc in
meta-raspberrypi and then prepend the configuration of the kernel recipe using this
function:

diff --git a/recipes-kernel/linux/linux.inc b/recipes-
kernel/linux/linux.inc
index fae78b7..12eec7e 100644
--- a/recipes-kernel/linux/linux.inc
+++ b/recipes-kernel/linux/linux.inc
@@ -107,6 +107,8 @@ do_configure_prepend() {
 # Activate CONFIG_LEGACY_PTYS
 kernel_configure_variable LEGACY_PTYS y
+ kernel_configure_variable TOUCHSCREEN_STMPE y
+
 # Keep this the last line
 # Remove all modified configs and add the rest to .config
 sed -e "${CONF_SED_SCRIPT}" < '${WORKDIR}/defconfig' >> '${B}/.config'

Configuring the kernel with LCD support
When using an LCD display with your Raspberry Pi, your kernel must fulfill some
requirements in order to ensure that the display is fully functional. First of all, you need to
know whether the kernel you want to use supports your display. Using an old kernel
version with a brand new display is often problematic since the drivers required for your
display didn't exist when the old kernel was developed, and new drivers are seldom
backported to older kernel versions. This leaves you with two choices. The first is doing the
hard work of trying to backport the requested drivers by yourself. This is very difficult and
often hard to achieve even for an experienced kernel developer, depending on how old
kernel is that the backport is needed for. The other, more suitable, solution is to use a newer
kernel version with the drivers for your display included.

Even if your kernel contains all the parts needed to get your display up and running, you
have to ensure that all drivers are enabled. Starting from kernel version 3.18, Raspberry Pi
has official support for something called a device tree, which can be used to simplify the
configuration of the kernel.

In this subsection, we will go through these topics:

The device tree: What is it and how to use it on the Raspberry Pi
The configuration of a touchscreen from the kernel perspective: How to configure
the kernel on the Raspberry Pi to handle different touchscreens

Playing with an LCD Touchscreen and the Linux Kernel

[131]

The Raspberry Pi device tree
A device tree (DT) is a tree data structure that contains a description of the device's
hardware. A DT can manage resource allocation and handle module loading, which eases
problems with drivers competing for system resources. For the ARM architecture, device
tree source (DTS) files are stored within the kernel tree under /arch/arm/boot/dts.
When the kernel is build, the DTS files are compiled into device tree blobs (DTBs). To be
able to use DTs, both the firmware and kernel must support it, since the bootloader will be
responsible for loading the DTB along with the kernel (the third-stage bootloader,
start.elf, will pass the device tree blob to the Raspberry Pi).

The Raspberry Pi uses its GPU (VideoCore IV) to boot the system. It starts
by loading its first-stage bootloader. This will make it possible to access
and run the second-stage bootloader, bootcode.bin (located on the SD
card). The second-stage bootloader is executed on the GPU and will load
the third-stage bootloader, called start.elf. The main responsibilities of
the third-stage bootloader are to read and parse configurations and pass
them to the GPU and kernel, together with loading the kernel image. The
bootcode.bin and start.elf bootloaders, together with the
configuration (such as cmdline.txt and config.txt), are located on the
SD card.

Passing a DTB to a kernel that 'doesn't support device trees will prevent the image from
booting. In order to handle this in a generic way, a trailer added by the mkknlimg tool is
used by the bootloader to check whether the kernel supports DT.

The management of device tree is done using the config.txt file for the Raspberry Pi.
The base device trees are located in the /boot partition alongside start.elf and are named
bcm*-rpi-b[-plus].dtb (the A and A+ models are compatible and are supposed to use B
and B+ device tree's). An example from config.txt of enabling the i2c interface, adding
HiFiBerry support, and ensuring that the base DT for the Raspberry Pi B+ is loaded can be
seen here:

dtparam=i2c=on
dtoverlay=bcm2708-rpi-b-plus
dtoverlay=hifiberry-dacplus

When using the latest firmware, the loader will, based on your hardware, try to load one of
the base device trees by default without the need for you to specify it in config.txt.

Playing with an LCD Touchscreen and the Linux Kernel

[132]

Configuring the touchscreen from the kernel
perspective
In this subsection, we will go through the basic kernel configuration needed for the PiTFT
2.8 touchscreen and the Raspberry Pi 7 touchscreen.

First, we need to choose what configuration we should use for our base. When using meta-
raspberrypi, this will be handled automatically by the build system after we have
specified either raspberrypi or raspberrypi2 as our MACHINE variable in local.conf.
When using a custom kernel, we need to know which existing configuration is suitable for
our Raspberry Pi model. Currently, there are three choices: bcmrpi_defconfig (first-
generation Raspberry Pi), bcm2709_defconfig (second-generation Raspberry Pi), or
bcm2835_defconfig (only fully supported in later kernel versions). In our example, we
will be using a Raspberry Pi 2. When the configuration has been decided, we can start by
doing a basic configuration of the kernel, as shown here:

$ cd /path/to/rpi_kernel_repo
$ mkdir -p /path/to/output_dir
$ O=/path/to/output_dir CROSS_COMPILE=/path/to/arm-linux-gnueabi- ARCH=
bcm2709_defconfig

Using BitBake and meta-raspberrypi, you need to do the following:

$ bitbake linux-raspberrypi -c configure

For a custom kernel, the config will be stored at
/path/to/kernel_output/.config. When using Yocto and meta-
raspberrypi, it will be stored at ./tmp/work/raspberrypi*-poky-
linux-gnueabi/linux-
raspberrypi/<kernel_version_and_revision>/linux-

raspberrypi*-standard-build/.config.

Once we have our basic configuration in place, we can check whether it contains the most
basic configurations required for bringing up our display. Note that the following
configurations are currently enabled by default in the Raspberry Pi configurations.

Playing with an LCD Touchscreen and the Linux Kernel

[133]

For PiTFT 2.8, these options must be enabled:

CONFIG_INPUT_TOUCHSCREEN=y
CONFIG_OF_TOUCHSCREEN=y
CONFIG_TOUCHSCREEN_STMPE=m
CONFIG_FB_TFT_FBTFT_DEVICE=m

Besides the generic touchscreen support configuration, we need to ensure that the stmpe
and fbtft devices are built. The stmpe_ts device is needed to get working touch
functionality for the PiTFT. The fbtft device is a framebuffer driver for small TFT LCD
displays, such as the PiTFT's. The device supports the use of SPI and GPIO, which are used
by PiTFT displays, and will ensure that the display is registered and noticed by the kernel.
Besides these options, basic setup of SPI and i2c is required to get everything up and
running.

In this book, we will assume the usage of a kernel version with device tree support for
Raspberry Pi (kernel 3.18+). This means that we need to modify config.txt to make sure
that required parts are automatically loaded using device trees, like this:

dtparam=spi=on
dtparam=i2c1=on
dtparam=i2c_arm=on
dtoverlay=pitft28r,rotate=90,speed=32000000,fps=20

For the official Raspberry Pi 7, it's enough to enable the following:

CONFIG_INPUT_TOUCHSCREEN=y
CONFIG_OF_TOUCHSCREEN=y
CONFIG_TOUCHSCREEN_RPI_FT5406=m

Then, enable ft5406 overlay in config.txt:

dtoverlay=rpi-ft5406

We have learned what basic configuration is needed for the kernel to be functional with
some common touchscreen models for the Raspberry Pi. In the next section, we will learn
how these parts, together with required userspace settings, can be set up using the Yocto
Project.

Playing with an LCD Touchscreen and the Linux Kernel

[134]

Setting up an LCD display for the Raspberry
Pi using the Yocto Project
There exist a number of different LCD displays for the Raspberry Pi. Among the most
popular are the official Raspberry Pi 7 touchscreen and the PiTFT displays (often called
PiTFT Hats, since they are suitable to mount on top of the Raspberry Pi). For now, we will
focus on the Raspberry Pi 7 touchscreen and the PiTFT models.

In this section, we will go through how to boot a standard Yocto Project image, containing a
window system and a working touchscreen.

The Raspberry Pi 7 touchscreen
Getting started with the Raspberry Pi 7 touchscreen using an image based on the Yocto
Project requires quite a few configurations. First, we need to ensure we are using a 4.1+
kernel. Starting from the jethro release of meta-raspberrypi, 4.1 is the default version.
Currently, meta-raspberrypi lacks full support for the Raspberry Pi 7 touchscreen, so we
need to perform some small modifications before booting our image.

Build instructions for the Raspberry Pi 7 touchscreen can be found at
https://www.adafruit.com/images/product-files/2718/2718bu

ild.jpg. The display will work with Raspberry Pi A/B boards; however,
the mounting holes on the back of the display will only line up with A+,
B+, and Raspberry Pi 2/3.

If using the default meta-raspberrypi settings, we will have a supported kernel with all the
required configuration options enabled by default. To be extra safe, you can go through the
previous part of this chapter to ensure that the kernel is correctly configured for your
display. With this in mind, we can start by creating a new project:

$ source /path/to/poky/oe-init-build-env my_project

https://www.adafruit.com/images/product-files/2718/2718build.jpg
https://www.adafruit.com/images/product-files/2718/2718build.jpg

Playing with an LCD Touchscreen and the Linux Kernel

[135]

Next, we can continue with the normal procedure and add external layers required for
building Raspberry Pi images with Yocto:

$ cat local/bblayers.conf
LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "6"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \
 /path/to/poky/meta \
 /path/to/poky/meta-yocto \
 /path/to/poky/meta-yocto-bsp \
 /path/to/meta-raspberrypi \
 /path/to/meta-openembedded/meta-oe \
 /path/to/meta-openembedded/meta-multimedia \
"
BBLAYERS_NON_REMOVABLE ?= " \
 /path/to/poky/meta \
 /path/to/poky/meta-yocto \

If you haven't cloned the openembedded layers for the earlier examples in
the book, it can be done with this command:
$ git clone git://git.openembedded.org/meta-openembedded

We also need to make some modifications to local.conf:

$ echo "MACHINE = "raspberrypi"" >> conf/local.conf (Or
MACHINE=raspberrypi2)
$ echo "LICENSE_FLAGS_WHITELIST = "commercial"" >> conf/local.conf

After this, we are ready to start a new build. By default, meta-raspberrypi will ensure that,
for example, input devices for the touchscreen, together with appropriate udev rules, are set
up for the touchscreen. These settings will be applied seamlessly during the build:

$ bitbake core-image-sato

Once the SD card has been prepared with the new image, we also need to ensure that all
required drivers are loaded for the touchscreen. This can be done by adding this line to the
end of config.txt, which is located in the boot partition of the SD card:

$ echo "dtoverlay=rpi-ft5406" >> /path/to/sdcard/boot/config.txt

Playing with an LCD Touchscreen and the Linux Kernel

[136]

Now, you're ready to rock and will be able to boot a window system with touch support
using your Raspberry Pi 7 touchscreen.

A Raspberry Pi 7 touchscreen running core-image-sato

The PiTFT 2.8 resistive touchscreen
Native support for PiTFT displays in meta-raspberrypi is fairly new. Check whether your
PiTFT model is supported by looking at the readme file for meta-raspberrypi, under the
Enable PiTFT support section””.

PiTFT support is configurable for any existing (or customized) Raspberry Pi image using
the Yocto Project. The support has been added as MACHINE_FEATURES in meta-raspberrypi.
The MACHINE_FEATURES variable is a standard Yocto Project feature, which can be used to
add hardware features for the target your are building for. There exists a set of predefined
MACHINE_FEATURES features in the Yocto Project, which includes Wi-Fi, keyboard, Alsa,
and Bluetooth, among others. In the Raspberry Pi BSP layer, a couple of these are enabled
by default:

$ grep "MACHINE_FEATURES " conf/machine/include/rpi-base.inc
MACHINE_FEATURES += "kernel26 apm usbhost keyboard vfat ext2 screen
touchscreen alsa bluetooth wifi sdio"

Playing with an LCD Touchscreen and the Linux Kernel

[137]

PiTFT support will require two new MACHINE_FEATURES features: a generic one called pitft
and a model-specific version. In this example, we will be using pitft28r, which corresponds
to the PiTFT 2.8 resistive touchscreen. The simplest way to add the new
MACHINE_FEATURES features is by adding them to the local configuration file within your
project:

$ cd /path/to/my/rpi/project
$ echo "MACHINE_FEATURES += "pitft pitft28r"" >> conf/local.conf

This will add support for either running a console-based image or a window-system image.
The pitft feature will, under the hood, ensure that SPI and i2c are enabled. It will also
configure the framebuffer for handling the PiTFT display (change from /dev/fb0 to
/dev/fb1). The model-specific machine feature (pitft28r in this example) will add the
model-specific device tree overlay to config.txt, set up proper configurations for the
screen (such as orientation and speed), and ensure that the stmpe module needed for the
touch functionality is loaded. It will also add some default calibration data for the
touchscreen. When the MACHINE_FEATURES features are set up, we can build our image,
load it on the SD card, and boot:

$ bitbake core-image-sato

The PiTFT 2.8 resistive touchscreen running core-image-sato

Playing with an LCD Touchscreen and the Linux Kernel

[138]

When you boot your Raspberry Pi, the LCD will turn white at first. After a short while, it
should turn black again-this means that the kernel has recognized the screen. Shortly after,
you should be up and running with a window system. The 2.8″” screen is quite small, but
it's possible to use the virtual keyboard in order to write, for example, simple commands in
the terminal. The touchscreen has been calibrated for you using default values, suitable for
your screen and rotation. If you find the default calibration insufficient, for example, if you
wish to change the display orientation (90 degrees by default), you can recalibrate it using,
for example, ts_calibrate.

ts_calibrate is part of the tslib recipe in Poky. It's included by default
when building core-image-sato, and it can easily be added to a
custom image by specifying MACHINE_FEATURES += "touchscreen"

Developing applications and using them on
an LCD display
At this point, we have an image based on the Yocto Project with PiTFT display support up
and running on our Raspberry Pi. In this section, we will develop a graphical application
that we can use with our fancy touchscreen. When developing graphical applications, a
couple of different frameworks exist. Qt is one of the most famous graphical frameworks for
embedded devices and exists in a free software version. In this section, we will go through
how to set up and develop a graphical application for embedded Linux environments using
Qt and EGLFS. Qt is a cross-platform application framework, so besides being able to run
on various types of hardware, it can also be used in many different software platforms
(such as X11, OS X, Windows, and EGLFS). EGLFS, which we will be using in our example,
is basically a platform plugin used for running Qt applications on top of EGL and OpenGL
ES. In fact, it will not even require a window system (such as X11) to work, which makes it
highly suitable for embedded Linux.

Playing with an LCD Touchscreen and the Linux Kernel

[139]

Developing a custom application using Qt
When developing an application based on Qt using the Yocto Project, we need to set up Qt
in our layer. Two standard methods exist for developing a graphical application: either
build your application against an exported SDK, or create a new recipe for your application.
In this example, we will develop our application against an exported SDK. To succeed with
getting our new application to build and run on the target, we need to perform these steps.

Add the external layers required for Qt
Export the SDK containing Qt support
Create the Qt application and build it against the exported SDK
Set up an image with Qt support for the target
Run Qt applications on the official Raspberry Pi 7″” touchscreen

There exist a number of different Qt versions, where Qt5 is the latest. We will use the meta-
qt5 external layer when developing our new application. First, we need to download meta-
qt5 and enable the usage of it in our project:

$ git clone https://github.com/meta-qt5/meta-qt5.git

Add meta-qt5 to local/bblayers.conf:

$ cat local/bblayers.conf
LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"
BBFILES ?= ""

BBLAYERS ?= " \
 /path/to/poky/meta \
 /path/to/poky/meta-yocto \
 /path/to/poky/meta-yocto-bsp \
 /path/to/meta-raspberrypi \
 /path/to/meta-openembedded/meta-multimedia \
 /path/to/meta-qt5 \
 "
BBLAYERS_NON_REMOVABLE ?= " \
 /path/to/poky/meta \
 /path/to/poky/meta-yocto \

Playing with an LCD Touchscreen and the Linux Kernel

[140]

Next, we need to export the SDK and unpack it to a preferred location:

$ bitbake meta-toolchain-qt5
$./tmp/deploy/sdk/poky-glibc-x86_64-meta-toolchain-qt5-cortexa7hf-vfp-
vfpv4-neon-toolchain-2.0.1.sh

The path might be different, depending on which model of the Raspberry Pi and which
release of the Yocto Project you are using.

If you are unsuccessful with building meta-toolchain-qt5, you can try to
build it without the X11 and Wayland packages. Using X11 and Wayland
together with qt5 has been been problematic at times when using meta-
raspberrypi. Use this command: $ echo “DISTRO_FEATURES_remove =
“x11 wayland”” >> conf/local.conf.
If you still have problems building, include the meta-packt-qt5 layer and
try again. The layer contains some workarounds for qt5 on Raspberry Pi.
Refer to the readme file within the layer for additional information.

Set up the environment for using the cross compiler:

$ cd /path/to/extracted_sdk
$ source environment-setup-cortexa7hf-vfp-vfpv4-neon-poky-linux-gnueabi
$ which qmake
/path/to/extracted_sdk/sysroots/x86_64-pokysdk-linux/usr/bin/qt5/qmake

Once the SDK is in place and we have set up the cross compiler, we are ready to build our
first Qt application for the Raspberry Pi. The first example is a simple Qt application based
on C++ that contains some clickable widgets. When building a Qt application from the
command line, qmake can be used to create a project and generate the makefile, like so:

$ tar -zxf qt_packtpub_app.tar.gz
$ cd qt_packtpub_app
$ ls
qt_packtpub_app.cpp window.cpp window.h
$ qmake -project "QT += widgets"
$ qmake
$ make
$ file qt_packtpub_app
qt_packtpub_app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux
2.6.32, BuildID[sha1]=4fa5ba7143d8e7fd240da45a9143e9d285371d80, not
stripped

Playing with an LCD Touchscreen and the Linux Kernel

[141]

Once we have our application ready, we need to generate an image with Qt support for the
target that we can use when testing our new application. We will use rpi-basic-image as
a base, with some additions on top of it. In order to run our Qt application on the target, we
need to add a set of packages. For this purpose, a predefined group of packages called
packagegroup-qt5-toolchain-target can be used. Of course, it's possible to manually
point out required Qt5 packages in order to reduce footprint, for example. But in this
example, we will keep it simple and ensure that everything we need is included. As stated
earlier in the chapter, EGLFS works without any need for a window system, so we can
remove X11 and Wayland support to reduce the footprint of the image. All these operations
can be specified in local.conf:

$ echo "IMAGE_INSTALL_append_pn-rpi-basic-image = " packagegroup-qt5-
toolchain-target qt5-opengles2-test"" >> conf/local.conf
$ echo "DISTRO_FEATURES_remove = "x11 wayland"" >> conf/local.conf

When the project is configured, we can build the basic image:

$ bitbake rpi-basic-image

Remember to add the device tree needed for the Raspberry Pi 7 touchscreen, as described
earlier in the chapter:

$ echo "dtoverlay=rpi-ft5406" >> /path/to/sdcard/boot/config.txt

Transfer the newly built application to the target and run it:

$ /path/to/qt_packtpub_app -platform eglfs

The qt_packpub_app application running on the Raspberry Pi 7 touchscreen

Playing with an LCD Touchscreen and the Linux Kernel

[142]

If you were observant during the earlier steps, you would also have seen that we added a
package named qt5-opengles2-test to our image. This package will produce an
OpenGL-based Qt application, which we can use to demonstrate multi-touch actions on our
touchscreen:

$ qt5-opengles2-test -platform eglfs

Summary
In this chapter we gained some basic knowledge about the Linux kernel and its release
strategy and the differences between the mainline kernel and the official Raspberry Pi Linux
kernel. We also learned how to configure and compile the Linux kernel using a cross
compiler. When changing the defconfig file within meta-raspberrypi, the kernel recipe
requires some special treatment as compared to the normal Yocto Project procedure. This
chapter demonstrated two examples of how this can be done. Later, we also went through
some basic kernel configuration required for setting up two different touchscreens; this also
included some basic understanding about device trees and how to configure the Raspberry
Pi using 'them.

The chapter also covered some examples of how to run a Yocto-based image with a
windowing system on the Raspberry Pi, using two different touchscreens: the Raspberry Pi
7 touchscreen and PiTFT 2.8 resistive touchscreen. In the last section of the chapter, we
learned about how to run Qt applications built against an SDK generated using the Yocto
Project, using a Raspberry Pi and the Raspberry Pi 7 touchscreen.

In the next chapter, we will learn how to contribute to the meta-raspberrypi project.

11
Contributing to the Raspberry Pi

BSP Layer
In this chapter, we will learn how to contribute a custom tool to the meta-raspberrypi layer.
Common terms associated with the area, such as “open source”, “community”, and
“upstream”, will be explained. We will also learn the basics of Git, together with some more
advanced Git commands, that can be used together with the sendmail tool.

Open source
Open source can be described as source code available to the general public. Open source
software can be read, modified, and redistributed by anyone. This means that developers
can use the original code in their own projects without paying any license fee to the owner
of the code. Successful open source projects are often built as a community of developers
that collaborates and ensures that the open source projects are moving in the intended
direction.

The Linux kernel and OpenStack are two of the most famous open source
projects. The Yocto Project and it's subprojects are other examples of large
open source projects, especially within the embedded world.

Contributing to the Raspberry Pi BSP Layer

[144]

Open source communities usually consist of at least one maintainer. A maintainer is a
person responsible for integrating patches into the project and building the source code. In
the integration part, the maintainer often has an important role of either reviewing the
patches sent up by developers in the community or making sure it's done by someone else
with the right knowledge. In large open source projects such as the Linux kernel, a large
number of maintainers exists for different subparts of the kernel. They also appoint a
maintainer for each release of the software, who is responsible to maintain the release by,
for example, ensuring that important bug fixes are backported.

Contributing to open source projects
Open source projects are heavily dependent on what people give back to the project, for
example, submitting error reports if they find faults in the software or helping the project
with solving bugs or developing new features. The community behind an open source
project is often limited and doesn't have the resources to do everything by itself. Large
projects such as the Linux kernel, OpenStack, and the Yocto Project have large companies
behind them, allocating resources for helping out with those projects. The reason for this is
obvious: the companies are using the project in commercial products and it's in their
interest to make sure that the product has good progress. Many companies also use their
own version of the project and want to contribute features and bug fixes in order to
decrease the integration cost.

When working with open source, the term upstream is used from time to
time. Upstream could basically be summarized as the original source. The
phrase “merge upstream” means that the patch in question should be
integrated in the original source code of the project.

Exploring Git
Git is the version control system used within the Yocto Project, including the Raspberry Pi
BSP layer (meta-raspberrypi). Therefore, Git is a central part that you need to master before
considering contributing to the Yocto Project and its subprojects.

Contributing to the Raspberry Pi BSP Layer

[145]

What is Git?
Git is a distributed version control system that has been around since 2005 and is designed
to handle projects with speed and efficiency, regardless of size. It was originally created to
handle the source code of the Linux kernel. Git is free and open source and can be used by
anyone without any need to pay licensing fees. The design of Git is highly suited to the
manner of working used within open source projects. Besides the possibility of using
distributed development, it has an easy logging mechanism to record who did what,
cryptographic authentication of history, and an easy way to create branches, among other
things.

One of the fundamental differences between many other distributed version control
systems (VCS, subversion, Bazaar, and so on) is how Git stores information. In Git, the data
can be seen as a snapshot of a miniature filesystem. When saving the state of your project, a
snapshot is taken of that state and a reference is saved.

The basic Git workflow goes something like this:

You modify files in your working directory
You stage the files, adding snapshots of them to your staging
area
You perform a commit, which takes the files as they are in the
staging area and stores that snapshot permanently to your Git
directory”

For more information, visit
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
.

Working with Git
A project in Git is called a repository. Most of the work can be done locally by cloning the
main repository to your preferred working directory. This is one of the reasons why Git is
often considered very fast, when compared with other version control systems that need
network access for many operations.

Contributing to the Raspberry Pi BSP Layer

[146]

Let's go through some basic examples, which will teach you how to:

Import an existing project to a Git repository
Create your first commit
Convert to a shared repository
Clone a local version of the shared repository
Create a work branch
Push a commit to your shared repository
Update the cloned repository with the latest changes

When importing an existing project into a new Git repository, we must first initialize an
empty Git repository. This can easily be done within the existing source tree of our project:

$ tar -zxf my_packt_project_ch_11_01.tar.gz
$ cd my_packt_project
$ git init
Initialized empty Git repository in /path/to/repo/my_packt_project/.git/

When initializing a new Git repository, a new directory, .git, is created. This directory
contains all Git-related information about your new repository. Among others things, it
contains the main Git configuration file, config, which contains the Git settings for your
project. Another frequently used file within this directory is HEAD, which contains a
reference to your current branch.

After the empty Git repository has been created, we can continue with adding all the
content of our project to the new repository. A useful command to obtain the current status
of your branch and repository is git status. When Git isn't aware of a file, it will show up
under Untracked files, as shown here:

$ git status
On branch master
Initial commit
Untracked files:
(use "git add <file>..." to include in what will be committed)
Makefile
README
my_packt_project.c
nothing added to commit but untracked files present (use "git add" to
track)

Contributing to the Raspberry Pi BSP Layer

[147]

We can add all files and/or changes with a single command, but be aware that it will add
build output as well. So, when using git add --all, make sure that you have removed
unwanted files first. Then, we can use git status again to check whether all the expected
files are listed:

$ git add --all
$ git status
On branch master
Initial commit
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
new file: Makefile
new file: README
new file: my_packt_project.c

Before we can submit our changes and create our first commit, we need to set up some basic
Git configurations. At the minimum, Git requires you to set up your name and e-mail:

$ git config user.email "your_email@packtpub.com"
$ git config user.name "Forename Surname"

If you want to set up a global e-mail and name for all your Git repositories, you can specify
the --global option, like this:

$ git config --global user.email "your_email@packtpub.com"
$ git config --global user.name "Forename Surname"

To verify the settings, type this:

$ git config user.email
your_email@packtpub.com
$ git config user.name
Forename Surname

Global Git configurations are stored in /home/$USER/.gitconfig and
local ones are stored in /path/to/git/repository/.git/config. By
default, changes in the local repositories' Git configuration will override
changes in your global Git configuration.

Contributing to the Raspberry Pi BSP Layer

[148]

When committing a change in Git, the git commit command is used. It records changes to
the repository and thereby makes it possible to track the commit using the unique SHA-1
hash generated for the commit. An historical overview of a branch can be seen by typing
git log [branch].

$ git commit -m "My initial commit"
[master (root-commit) f01bdf2] My initial commit
3 files changed, 11 insertions(+)
create mode 100644 Makefile
create mode 100644 README
create mode 100644 my_packt_project.c
$ git log
commit f01bdf29a2c9df1c2417542c5531f90e04c9773a
Author: Forename Surname <you_email@packtpub.com>
Date: Sun Jan 1 00:00:00 2016 +0100
My initial commit

When multiple developers work on the same project, each user uses their own local clone of
the repository. Git will by default reject changes pushed to a repository that isn't a bare
repository. We will now go through a simple example that will:

Convert our repository to a shared repository
Clone the shared repository

A shared repository is normally stored on a server and the repository must be created as a
bare Git repository. This is done by using the --bare flag when initializing the Git
repository or while cloning. Since we worked with a non-shared repository in our earlier
examples, we will convert it to a shared repository using git clone --bare, and we can
then remove our old repository and continue working with clones of the bare repository
instead.

$ cd /path/to/my/workdir
$ git clone --bare /path/to/my_packt_project my_packt_project.git
$ rm -rf /path/to/my_packt_project

A bare repository is basically a repository that doesn't contain a working
directory. This will prevent developers from making changes to the
repository. According to naming conventions, a bare Git repository should
be named name_of_my_repo.git.

Contributing to the Raspberry Pi BSP Layer

[149]

We now have a bare repository that can be used by a collaboration of developers. Next, we
continue with cloning a local copy of the bare repository, which we can use when
developing our new features. By default, you will be in a branch called master when
cloning a repository. It's possible to do all our work in the master branch; since this is only a
local clone, we will not destroy anything for other developers. But it's strongly
recommended to create a working branch and make all your changes in that branch
instead. This way, the master branch is always in a stable and known state. When you are
an advanced Git user, you might work on several features in parallel and also might want
to integrate new features that other developers have worked on through the master branch.
In other words, it's a good habit to create separate branches for all your features.

$ git clone /path/to/my_packt_project.git
Cloning into 'my_packt_project'
$ cd my_pack_project

Next, we will create a new branch called my_new_feature, move it, and develop a tiny
new feature for the project. It's possible to use git branch to list all available local
branches; if you add the -a flag when listing branches, all remote branches will be listed as
well.

A remote branch is a branch that exists in a shared repository that has
been cloned from. The asterisk (*) helps the user locate the current branch.

$ git branch
* master
$ git branch my_new_feature
$ git checkout my_new_feature
Switched to branch 'my_new_feature'
$ git branch
master
* my_new_feature
$ git branch -a
master
* my_new_feature
remotes/origin/HEAD -> origin/master
remotes/origin/master

Contributing to the Raspberry Pi BSP Layer

[150]

We are now in our new branch and it's time to make some modifications. In this example,
we will add a new target, clean, to our makefile. Remember to use git add in order to
add your changes to the index before committing them. Use git diff before adding the
file if you want to list your changes.

If you have already added a file using git add, you can check your
changes before committing them by using git diff --cached.

$ vim Makefile
$ git diff
diff --git a/Makefile b/Makefile
index c6466e0..d986116 100644
--- a/Makefile
+++ b/Makefile
@@ -1,2 +1,5 @@
all:
$(CC) my_packt_project.c -o my_packt_project
+
+clean:
+rm -f my_packt_project
$ git add Makefile
$ git commit -m "Makefile: Add a new target"
[my_new_feature 7c3d896] Makefile: Add a new target
1 file changed, 3 insertions(+)

The last step for us is to send our new change to the shared repository, update our
localmaster with the new changes, and then remove our feature branch, since it will no
longer be required. When pushing a change to our shared repository, we can use the
predefined remote origin; by default, the origin is set to point to the repository we cloned
from. When pushing a change, we need to specify which revision we will send and to
which branch. In most situations, we will want to send the entire branch; if so, we can use
HEAD to obtain all changes from the current branch, like this:

Contributing to the Raspberry Pi BSP Layer

[151]

$ git push origin HEAD:master
Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 383 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /path/to/my_packt_project.git
f01bdf2..7c3d896 HEAD -> master
$ git checkout master
Switched to branch 'master'
Your branch is behind 'origin/master' by 1 commit, and can be fast-
forwarded.
(use "git pull" to update your local branch)
$ git pull
Updating f01bdf2..7c3d896
Fast-forward
Makefile | 3 +++
1 file changed, 3 insertions(+)
$ git branch -d my_new_feature
Deleted branch my_new_feature (was 7c3d896).

If you want to learn more about the basics of Git, visit
https://git-scm.com/doc.

Contributing to the Yocto Project
Many open source projects, including the Yocto Project, use mailing lists. These lists are
mainly used for discussions about the project and public review of patches sent up by the
people contributing to the project.

Contributing to the Raspberry Pi BSP Layer

[152]

Since the Yocto Project is an umbrella project for a large set of projects, one mailing list isn't
enough. For example, there are separate lists for BitBake, OpenEmbedded-Core, and Yocto,
where the Yocto includes different external layers, such as meta-raspberrypi and meta-qt5.
When sending e-mail to a list used by more then one project, a prefix is required if the mail
is intended for a specific subproject (the syntax for the prefix is [layername] subject).
The following screenshot illustrates an example of sending a series of patches to meta-
raspberrypi:

The mailing lists can be easily tracked by subscribing to a specific mailing list or by reading
the archives.

All Yocto Project mailing lists can be found at
https://www.yoctoproject.org/tools-resources/community/ma
iling-lists

Contributing to meta-raspberrypi
If you have prepared a fix or feature for meta-raspberrypithat you want to share with the
community, there are a number of things you need to be aware of.

The current maintainer of meta-raspberrypi is Andrei Gherzan. He has the final word about
a patch and will integrate the patch into the meta-raspberrypi main layer. Since the
maintainers are quite busy, it's important that you test your patch carefully before sending
it upstream. The most important thing for a contributor, regardless of the project, is to build
up its reputation by sending well-tested patches that follow the requested guidelines. This
will significantly increase the chances of getting your patch integrated into the project.

Contributing to the Raspberry Pi BSP Layer

[153]

Some overall “rules” exist for contributing to meta-raspberrypi:

Patches related to meta-raspberrypi should always be sent to
yocto@yoctoproject.org.
Prefix your emails with “[meta-raspberrypi]“
Follow the OpenEmbedded patch guidelines
Follow the meta-raspberrypi readme instructions

An extended explanation of this set of rules, together with examples, will be described later
in this chapter.

Setting up your Git repository
Before you can send anything upstream, you need set up some basic things. First, you
should set up your name and e-mail for your meta-raspberrypi Git repository, as described
in earlier parts of this chapter:

$ cd meta-raspberrypi
$ git config user.email "your_email@packtpub.com"
$ git config user.name "Forename Surname"

Next, you should set up git send-email in order to use Git to send your patches through
your SMTP server. This is often required by the maintainers in order to ensure that the
format of the patch is correct and it can be easily integrated. You need to manually
configure the server parameters-refer to your e-mail provider's documentation or contact
support in order to find the right parameters.

In addition to Git, you also need to install send-email, which is the software Git uses
under the hood for git send-email. The send-email package is available on most
distributions, but the name might differ. Here is how to set it up on Ubuntu and Fedora:

Ubuntu: $ sudo apt-get install sendemail
Fedora: $ sudo yum install sendmail

mailto:yocto@yoctoproject.org

Contributing to the Raspberry Pi BSP Layer

[154]

Here is an example of how to configure sendemail:

$ cd meta-raspberrypi
$ git config sendemail.smtpencryption tls
$ git config sendemail.smtpserver smtp.packtpub.com
$ git config sendemail.smtpuser your_email@packtpub.com
$ git config sendemail.smtpserverport 587

Creating your commit
Now, you are ready to make your modifications. In this subsection,we will go through each
step from implementing your changes to creating a commit that follows the patch
guidelines for meta-raspberrypi.

It is common sense to create your changes in a working branch (not the master branch). In
our example, we will set up a branch that tracks the master branch:

$ cd meta-raspberrypi
$ git checkout -b my_work_branch -t origin/master

Now, using your favorite editor, edit the files you want to change. When you are done with
your modifications, you need to add the changed files to the Git index; otherwise, Git will
not add your changes to the upcoming commit:

$ git add <files changed>

Now it's time to create a commit message by following the guidelines in the meta-
raspberrypi' readme and the openembedded guidelines. Here are the most important parts
of the guidelines:

Contributing to the Raspberry Pi BSP Layer

[155]

The complete OpenEmbedded guidelines can be found at
http://www.openembedded.org/wiki/Commit_Patch_Message_Gui

delines.

http://www.openembedded.org/wiki/Commit_Patch_Message_Guidelines
http://www.openembedded.org/wiki/Commit_Patch_Message_Guidelines

Contributing to the Raspberry Pi BSP Layer

[156]

When creating the commit, remember to sign off on it (using -s). The signoff is a one-liner
that is added by default to the end of the commit message. The original purpose of the
signoff is as follows, according to the Linux kernel documentation:

“To improve tracking of who did what, especially with patches that can percolate to their
final resting place in the kernel through several layers of maintainers, we've introduced a
“sign-off” procedure on patches that are being emailed around. The sign-off is a simple line
at the end of the explanation for the patch, which certifies that you wrote it or otherwise
have the right to pass it on as an open-source patch.”

Here is how you use it:

$ git commit -s
Write your commit message

Sending changes to the community
The maintainers of a project want to focus on the design of your patches and often assume
that patches sent to the list are functional. Therefore, it's important to ensure that you have
verified that the patch has been built and tested for relevant images supported by meta-
raspberrypi.

When your patch meets your expectations and has passed all tests, it's time to send it to the
community. First, we need to generate the patch. When generating a patch, we should
follow the recommendations from the readme in meta-raspberrypi. If you have more than
one commit, one patch for each commit will be generated. A cover letter will also be
generated, and it will always be named 0000-cover-letter.patch. The cover letter is
optional but strongly recommended when creating more then one patch in the same series.

$ git format-patch --cover-letter --subject-prefix='meta-
raspberrypi][PATCH' origin

Remove “–cover-letter” if you only have one patch or don't feel the need
for it.

If you decide to generate a cover letter, you can open it with your preferred editor. Search
for the lines *** SUBJECT HERE *** and *** BLURB HERE *** and replace them with
appropriate information about your patches.

Contributing to the Raspberry Pi BSP Layer

[157]

Time for the final step: sending the patches up to the mailing list!

$ git send-email --to yocto@yoctoproject.org <generated patches>

Follow-up
By now, your patches should have reached the mailing list, and you can sit back for a while
and wait for feedback. If you receive feedback from the mailing list, you are expected to
reply with an answer saying that you will perform the requested changes or, if you
disagree, reply with an 'appropriate reason for why you don't.

Don't be scared if you receive feedback; this is normal. In fact, many of the changes sent to
the mailing list will need updates before they are ready to be integrated into the main layer.

When sending an update of your patch to the mailing list, it's important that you specify the
version number of your patch series. This can easily be done by slightly modifying the line
used when you generated the patch in the first place (pay attention to the new subject
prefix):

$ git format-patch --cover-letter --subject-prefix='meta-raspberrypi][PATCH
v2' origin

Remove “–cover-letter” if you only have one patch or don't feel the need
for it.

If your patch needs yet another update, just increment the version number and try again.
When your patch has reached the meta-raspberrypi layer, you are done and can continue
working with some other feature that interests you.

Contributing to the Raspberry Pi BSP Layer

[158]

Practical example – sending a custom tool
upstream
In this section, we will go through a practical example of integrating a custom tool into
meta-raspberrypi. The tool we have chosen is con2fbmap, a command-line tool for setting
and showing mappings between framebuffer TFT devices (such as PiTFT displays) and
consoles.

First of all, we need to identify where in the layer structure we should place our new recipe.
In some situations, we can guess the location by reading the name of the package. One
example of this is the omxplayer recipe. It's quite easy to figure out that it should be placed
among the multimedia recipes (recipes-multimedia). If we cannot use the package name to
find a location, we can check whether a similar tool exists. For our example, meta-oe (the
openembedded base layer) contains a somewhat similar tool called fbset. It's a tool for
modifying framebuffer devices. If we locate the fbset recipe, we can see that it's placed
within recipes-support, and we should probably place our package in that directory as well.

You can find the fbset tool at
https://github.com/openembedded/meta-openembedded/tree/master/meta-oe/r

ecipes-support/fbset, as shown here:

Contributing to the Raspberry Pi BSP Layer

[159]

When creating a new recipe, you can either use the tools described in Chapter 7,
Deploying a Custom Layer on the Raspberry Pi or create it from scratch. In this example, we
will create it from scratch. The first thing we need to know is which kind of source (such as
.tar.gz or Git) the tool has. In this case, the original source is Git, and we can create a basic
recipe for con2fbmap, as follows:

$ cd meta-raspberrypi
$ mkdir -p recipes-support/con2fbmap
$ cd recipes-support/con2fbmap
$ touch con2fbmap_git.bb

Use your favorite editor and create the content for the BitBake file (.bb). In this book, we
have chosen to use a “known state” and set SRCREV to
f57bf6d28910ba665efab8a65085ba6d4c6162a5. Other information in the BitBake file, such as
LIC_FILES_CHKSUM, will be based upon this particular SRCREV value. The complete
con2fbmap_git.bb file looks like this:

SUMMARY = "Utility for swapping an fbtft-based device"
DESCRIPTION = "Simple utility for swapping an fbtft-based device as \
the console"
LICENSE = "GPLv3"
LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"
SECTION = "console/utils"
Inherit autotools
SRC_URI =
"git://gitlab.com/pibox/con2fbmap.git;branch=master;protocol=https"
SRCREV = "f57bf6d28910ba665efab8a65085ba6d4c6162a5"
S = "${WORKDIR}/git"

Remember to build and verify the new recipe. When you are satisfied with your changes,
you can go ahead and create your new Git commit. Make sure that you follow the
guidelines when writing your commit message.

$ git add con2fbmap_git.bb
$ git commit -s
con2fbmap: Add new recipe
Currently there is no easy way to manually switch between
framebuffer devices and console during run-time.
This tool can be used when the system is up and running, to
set and show mapping between framebuffer tft devices
(such as pitft displays) and the consoles.
Signed-off-by: Petter Mabäcker <petter@technux.se>
Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.

Contributing to the Raspberry Pi BSP Layer

[160]

Once you are satisfied with your commit message, it's time to generate the patches. Since all
changes in this example will fit into one Git commit, we can skip the --cover-letter flag.

$ git format-patch --subject-prefix='meta-raspberrypi][PATCH' origin
0001-con2fbmap-Add-new-recipe.patch

When the tool has been built and carefully tested on the target, we can send it to the mailing
list:

git send-email --to yocto@yoctoproject.org 0001-con2fbmap-Add-new-
recipe.patch

You have now learned how to contribute to the main layer. A good piece of advice is to be
patient when working with an open source community. Depending on which state the
project is in, maintainers and other people responsible for integrating changes might be
busy, and sometimes, it takes time until they respond to your patch. If you haven't heard
anything in a while, don't be afraid to send a friendly reminder to people on the list to look
at your patch.

Summary
In this chapter, we had an overview of open source software and how to work with open
source projects. Some of the major benefits of contributing to open source, such as
decreasing integration cost for your product, were highlighted. We also learned the basics
of Git and some more advanced Git commands, which can be used in combination with the
sendmail binary, in order to send patches to an open source community. Finally, we took a
walkthrough of a real-world example, by learning how to integrate the custom tool
con2fbmap into meta-raspberrypi and send it for review to the Yocto Project community.

In the next chapter, we will summarize all that we have learned through this book by
creating a home automation project.

12
Home Automation Project -

Booting a Custom Image
The Internet of Things is a very hot subject today. Using automation within the home to
ease daily tasks has gained more importance than ever. The Raspberry Pi, due to its size,
price, and the possibilities to easily connect it to other electronics equipment, is a very good
choice for making small home automation projects. This chapter will guide you through a
small home automation project that will let you set up a remote lighting control system
using the Raspberry Pi and then control it remotely with the help of a smartphone. The
project will require skills learned in earlier chapters, so this chapter will also act as a
summary of all you have learned throughout the book.

The chapter will start with an introduction to our home automation project and the material
that is required for it. Then, it will go into the integration of Yocto with our project. This
section of the chapter will explain how to set up up the image used by the Raspberry Pi: it
will cover things such as creating a new layer containing our new image recipe and
adding/modifying packages required for our project. The chapter will end with a section
that puts everything together. It will explain how all the physical parts should be connected
and how to remote control the device using different devices, such as a smartphone or
another Raspberry Pi with touchscreen.

Home automation using a Raspberry Pi
Our home automation project will loosely continue from the “light an LED” example in
Chapter 5, Creating, Developing, and Deploying on the Raspberry Pi. It will adapt and
evolve that project to create one where the end user can wirelessly light a lamp using a
smartphone (or some other device with a web browser).

Home Automation Project - Booting a Custom Image

[162]

As illustrated in the following diagram, the idea is to connect a one-channel relay module to
the Raspberry Pi, using the GPIO pins. Then, we connect a lamp and an external power
source to the relay module, creating a circuit. When everything has been connected, it will
be possible to control the relay module (on/off) using GPIO connections from the Raspberry
Pi.

A home automation project that enables remote lighting

Material required for the project
You will need the following material for the project:

A Raspberry Pi (any model will do)

 The Raspberry Pi Zero requires that you either solder in a GPIO header or
solder the wires directly to the GPIO pads

Jumper cables (three are required)
A one-channel 5V relay module
A lamp (preferably a lamp you don't mind splitting and cutting the cable of)
An external power supply (preferably 12V)

WARNING: This project requires basic knowledge of electrical circuits.
We strongly discourage using high-voltage power if you don't have the
knowledge or experience.

Home Automation Project - Booting a Custom Image

[163]

Setting up the base for the project
First, we should set up the base for our Yocto Project implementation. Most of the
techniques used in this section have been covered throughout the book, so they will not be
explained in detail. In this part of the chapter, we perform the basic setup for our Yocto
Project implementation, which will be used for the home automation project.

Creating a new layer
We will begin by creating a new layer. The new layer will act as the base of our home
automation project. For now, it will only contain our image recipe, but we will add more
content to the layer throughout the chapter until we have all the parts needed for our
server. Just as described in Chapter 7, Deploying a Custom Layer on the Raspberry Pi, we will
use yocto-layer to help us set up the structure of the layer. We need to set a high priority to
ensure that content from this layer is prioritized over, for example, content in meta-
raspberrypi, like so:

$ /path/to/poky/scripts/yocto-layer create packt-iot
Please enter the layer priority you'd like to use for the layer: [default:
6] 10
Would you like to have an example recipe created? (y/n) [default: n]
Would you like to have an example bbappend file created? (y/n) [default: n]
New layer created in meta-packt-iot.
Don't forget to add it to your BBLAYERS (for details see meta-packt-
iot/README).

Customizing the image recipe
In this subsection, we will improve upon the usage of a customized image recipe, which we
learned in Chapter 7, Deploying a Custom Layer on the Raspberry Pi..

Start by creating your image recipe file:

$ cd meta-packt-iot
$ mkdir -p recipes-core/images/
$ touch recipes-core/images/packt-iot-image.bb

Home Automation Project - Booting a Custom Image

[164]

Next, we will set up the basic content of the image; take a look at the following code
snippet. This image recipe will be growing during the entire chapter until we finally have a
complete image that fits our purpose. The image will be based on rpi-basic-image.

$ cat recipes-core/images/packt-iot-image.bb
Base this image on rpi-basic-image
include recipes-core/images/rpi-basic-image.bb
SPLASH = "psplash-raspberrypi"
IMAGE_FEATURES += "ssh-server-dropbear splash"
IMAGE_INSTALL_append = " rpi-gpio"

When working with image recipes, two commands called ROOTFS_PREPROCESS_COMMAND
and ROOTFS_POSTPROCESS_COMMAND exist. They can be used as the last resort to, for
example, add, remove, or modify content in the root filesystem. The two methods can be
used either just before the root filesystem is created using the PREPROCESS variant or after
the root filesystem has been created using the POSTPROCESS method. They are used by
specifying a list of functions to the variable. The functions can use ${IMAGE_ROOTFS} to, in
a generic way, find out the path to the filesystem. For this project, we will use this method
to add a function to ROOTFS_POSTPROCESS_COMMAND that will create a release file for our
image. Add the following content last in packt-iot-image.bb:

ROOTFS_POSTPROCESS_COMMAND += " create_release_file ; "
create_release_file() {
IMAGE_REL_FILE="${IMAGE_ROOTFS}${sysconfdir}/packt-iot-release"
 echo "packt-iot release version 1.0" > ${IMAGE_REL_FILE}
 echo "Image: ${IMAGE_NAME}" >> ${IMAGE_REL_FILE}
 echo "Build date: ${DATETIME}" >> ${IMAGE_REL_FILE}
 chmod 0444 ${IMAGE_REL_FILE}
}

Take careful notice of the whitespace in the create_release_file; part of the
ROOTFS_POSTPROCESS_COMMAND declaration.

Building and booting the image
We now have a new external layer containing a basic image recipe. Until now, we haven't
done any testing of the layer. It is always a good idea to perform regular tests of your
changes during development. We will perform an early test of our layer. In order to do this,
we will create a new project, set up some mandatory and good-to-have configurations in
local.conf, and add external layers to bblayers.conf. This project will then be used
throughout the chapter.

$ source /path/to/poky/oe-init-build-env packt_project_chapter12

Home Automation Project - Booting a Custom Image

[165]

Add the meta-raspberrypi and meta-oe external layers, together with our new meta-
packt-iot layer, to bblayers.conf:

BBLAYERS ?= " \
 /path/to/poky/meta \
 /path/to/poky/meta-poky \
 /path/to/poky/meta-yocto-bsp \
 /path/to/meta-raspberrypi \
 /path/to/meta-openembedded/meta-oe \
 /path/to/meta-packt-iot \
 "

Decide which machine to use and add it to local.conf. In this example, we will use
raspberrypi2:

$ echo "MACHINE = "raspberrypi2"" >> conf/local.conf

We will next enable a local package revision (PR) server in our project. The PR server will
automatically bump the PR of a package if a change is detected. This will be done without a
need for the end user, to manually update the PR number in the recipe file. This feature is
very handy during, for example, the development of new recipes:

$ echo "PRSERV_HOST = "localhost:0"" >> conf/local.conf

A project in BitBake can consume a lot of disk space. There exist a number of methods that
can be used to reduce both the amount of disk space used by a project and its overall build
time.

The first method is to use rm_work. This feature will make sure that BitBake performs a full
cleanup of packages that have been built. By default, all built packages will have source and
artifacts saved in package-specific locations, under ./tmp/work in the project. These will be
wiped when the following class is inherited for the project:

$ echo "INHERIT += "rm_work"" >> conf/local.conf

However, it might be good to exclude packages that are frequently used during
development, especially if it takes a long time unpack them. To achieve this,
RM_WORK_EXCLUDE can be used.

Home Automation Project - Booting a Custom Image

[166]

The build time for a project is often quite long, especially the first time, since BitBake needs
to fetch all source and build packages from scratch. But after the first build is done, you can
use a number of methods to speed up subsequent builds. These methods can also be used in
other Yocto projects with a similar setup to decrease the build time and amount of disk
space needed. The first method is to use a shared state (sstate). By default, the sstate
cache is located within the project. But by using the SSTATE_DIR variable in local.conf,
the shared state can be located outside of a project and be used by other projects as well.
The same goes for the next method, which is specifying the download location for all
packages fetched by BitBake during the build. It can also be configured from local.conf
using the DL_DIR variable. In this example, we will not use a shared state or a download
directory outside of our project. The reason for this is that it isn't recommended when using
a local PR server.

At this point, your local.conf file should look something like this:

$ tail conf/local.conf
PACKAGECONFIG_append_pn-nativesdk-qemu = " sdl"
#ASSUME_PROVIDED += "libsdl-native"
CONF_VERSION is increased each time build/conf/ changes incompatibly and
is used to
track the version of this file when it was generated. This can safely be
ignored if
this doesn't mean anything to you.
CONF_VERSION = "1"
MACHINE = "raspberrypi2"
PRSERV_HOST = "localhost:0"
INHERIT += "rm_work"

When the project has its initial configuration in place, we can build the image created earlier
in this chapter:

$ bitbake packt-iot-image Parsing
recipes: 100%
|##
###############################| Time: 00:00:31
Parsing of 895 .bb files complete (0 cached, 895 parsed). 1325 targets, 68
skipped, 0 masked, 0 errors.
NOTE: Resolving any missing task queue dependencies

Home Automation Project - Booting a Custom Image

[167]

Let's try our new image on the target. In this state, the image should behave similarly to a
normal rpi-basic-image image. It's always good to not only build our changes but also test
them on the target in order to ensure that nothing gets broken along the road. Use the
method described in Chapter 2, Building our First Poky Image for the Raspberry Pi to
copy the image to an SD card (remember to change /dev/sdX to the proper device name):

$ sudo dd
if=/path/to/packt_project_chapter12/tmp/deploy/images/raspberrypi2/packt-
iot-image-raspberrypi2.rpi-sdimg of=/dev/sdX bs=1M

Next, insert the SD card into the Raspberry Pi and power it on. The image doesn't contain
any big changes from rpi-basic-image; still, we can easily see that we are running the
correct image. As you might remember, we added a post function in the image recipe,
which added a release file. Let's check whether it exists and check the content (log in using
root and an empty password):

Poky (Yocto Project Reference Distro) 2.0+snapshot-20160229 raspberrypi2
/dev/ttyAMA0
 raspberrypi2 login: root
 root@raspberrypi2:~# ls /etc/*release*
 /etc/packt-iot-release
 root@raspberrypi2:~# cat /etc/packt-iot-release
 packt-iot release version 1.0
 Image: packt-iot-image-raspberrypi2-20160304085812
 Build date: 20160304085812
 root@raspberrypi2:~#

Creating the server side
We now have the base ready and can continue with implementing the project-specific parts.
The Raspberry Pi that is connected with the circuit and the lamp will act as a server. It will
run a tiny web server that can be reached through a client of your choice using a web
browser.

Home Automation Project - Booting a Custom Image

[168]

For the server side, we will adapt and evolve the server example used in Chapter 9,
Making a Media Hub on the Raspberry Pi, and combine it with an updated version of the
gpio-packt recipe from Chapter 5, Creating, Developing, and Deploying on the
Raspberry Pi, . To start with, we need to add the meta-packt_rpi layer used in earlier
chapters of the book. We have already ensured that our newly created layer has a higher
priority then meta-packt_rpi, but let's also add it in a dependency order in
bblayers.conf. Here is the complete bblayers.conf file that will be used in this project:

LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
POKY_BBLAYERS_CONF_VERSION = "1"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \
 /path/to/poky/meta \
 /path/to/poky/meta-poky \
 /path/to/poky/meta-yocto-bsp \
 /path/to/meta-raspberrypi \
 /path/to/meta-openembedded/meta-oe \
 /path/to/meta-packt_rpi \
 /path/to/meta-packt-iot \
 "
BBLAYERS_NON_REMOVABLE ?= " \
 /home/path/to/git/poky/meta \
 /home/path/to/git/poky/meta-yocto \
 "

Next, we should make some minor changes to gpio-packt in order to make it more
suitable for our project. These changes will be made as a integration patch. The original
code uses GPIO4, which is one of the pins that are set high by default. We will instead use
GPIO17, which is one of the pins that defaults to low.

Home Automation Project - Booting a Custom Image

[169]

To change the gpio_example code to use GPIO17 instead, we can create a new integration
patch that changes the behavior only when we apply the meta-packt-iot layer. The
minor changes required are as follows:

--- gpio_example.c.orig 2016-03-10 16:55:04.334832221 +0100
+++ gpio_example.c 2016-03-10 16:54:13.400537071 +0100
@@ -39,7 +39,7 @@
/*===*/
#define LENGTH 128
#define SYSFS_GPIO_DIR "/sys/class/gpio/"
-#define GPIO_PIN 4
+#define GPIO_PIN 17
#define BUFFER_SIZE 255
#define DEBUG 1
#define VERSION 1.00

The patch can be generated by using the diff command. This will result in a difference
between the original version of gpio_example.c and the updated version.

$ diff -Naur gpio_example.c.orig gpio_example.c > use_gpio17.patch

Next, we must add the patch to meta-packt-iot. Start by creating the structure for
appending gpio_example in meta-packt-iot:

./recipes-custom

./recipes-custom/gpio-packt

./recipes-custom/gpio-packt/gpio-packt

./recipes-custom/gpio-packt/gpio-packt/use_gpio17.patch

./recipes-custom/gpio-packt/gpio-packt_0.1.bbappend

The content of the bbappend will be very small and will only be required to apply the
patch:

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
SRC_URI += " \
file://use_gpio17.patch;striplevel=0 \
"

Home Automation Project - Booting a Custom Image

[170]

Time to start with the web server. We need to make some modifications to our project for
the server part as well. Most of the basic setup can be kept as is for the webserver-packt
recipe. However, the server JavaScript (server.js) and the main webpage (index.html)
need new logic and content. Since the new content is not really suitable to add to the
existing code, we will create a new bbappend file for the web server and then override the
package with new versions of the index.html and server.js files that are suitable for
this specific project. Start by creating a new structure within meta-packt-iot that looks
like this (index.html, server.js, and webserver-packt_0.1.bbappend can be empty
for now):

./recipes-custom

./recipes-custom/webserver-packt

./recipes-custom/webserver-packt/webserver-packt_0.1.bbappend

./recipes-custom/webserver-packt/webserver-packt

./recipes-custom/webserver-packt/webserver-packt/index.html

./recipes-custom/webserver-packt/webserver-packt/server.js

When the new structure is in place, we can start with adding content to the bbappend file:

DESCRIPTION = "Remote lighting control"
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
SRC_URI += " \
 file://server.js \
 file://index.html \
 "
do_install_append() {
 install -d ${D}${datadir}/server-packt/server
 install -m 0755 ${WORKDIR}/index.html ${D}${datadir}/server-
packt/server/public/index.html
 install -m 0755 ${WORKDIR}/server.js ${D}${datadir}/server-
packt/server/server.js
}

The logic in webserver-packt_0.1.bbappend is quite simple. It appends the SRC_URI
variable with our new versions of index.html and server.js and then overrides the old
files in the install stage.

Home Automation Project - Booting a Custom Image

[171]

Let's take a deeper look at the code modifications needed for our project. Just like in the
media hub example in Chapter 9, Making a Media Hub on the Raspberry Pi we will
continue to serve an HTML file that will act as the client. We will also continue to listen on
the same port (3344) to avoid confusion. The functional logic in the server code lies within
the io.on() {...} function. Here, we will receive a message from the client
(index.html) and execute it on the server. In our example, the command to execute is
either gpio_example --led=1 or gpio_example --led=0, which will cause the light to
turn on and off, respectively. The complete code for server.js looks like this:

var express = require('express')
 , app = express()
 , server = require('http').createServer(app)
 , path = require('path'),
 fs = require('fs'),
 sys = require('util'),
 exec = require('child_process').exec,
 child, child1;
http://192.168.1.13:3344/light.html
io = require('socket.io').listen(server),
 io.set('log level', 1); /* DEBUG MODE */
app.use(express.static(path.join(__dirname, 'public')));
app.get('/', function(req, res) {
 res.sendFile(__dirname + '/public/index.html');
});
io.on('connection', function(socket) {
 socket.on('light', function(msg) {
 child = exec(msg, function (error, stdout, stderr) {
 if (error !== null) {
 console.log('exec error: ' + error);
 }
 });
 });
});

server.listen(3344, function() {
 console.log('listening on *:3344');
});

Home Automation Project - Booting a Custom Image

[172]

To get the whole picture of the solution, we also need to look at the client, index.html. The
look and feel of the web page from Chapter 9, Making a Media Hub on the Raspberry Pi is
kept, but the CPU monitoring has been replaced by a green/red button, used to turn the
light on or off. Depending on which button is pushed, a socket message using
socket.emit is used. The message contains the exact Unix command required to turn the
light on or off:

<body>
<nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<div class="container-fluid">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#bs-example-navbar-collapse-1">
Toggle navigation

</button>
 <ul class="nav navbar-nav">
 <li class="active"> HOME

</div>
</div>
</div>
</nav>'
<hr>
<div class="container-fluid">
<div class="well well-lg text-center">
<h1>Raspberry-Pi</h1>
<p>Remote lighting control</p>
<h4></h4>
</div>
<button class="button buttonON" onclick="lighton()">ON </button>
<button class="button buttonOFF" onclick="lightoff()">OFF</button>
<script src="/socket.io/socket.io.js"></script>
<script>
 var socket = io.connect('http://'+ location.host);
 function lighton()
 {
 socket.emit('light', 'gpio_example --led=1');
 return false;
 }
 function lightoff()
 {
 socket.emit('light', 'gpio_example --led=0');
 return false;
}

Home Automation Project - Booting a Custom Image

[173]

</script>
</body>

If you look at index.html in a web browser, it should look like this:

The look of the client (index.html) when displayed in a web browser

Home Automation Project - Booting a Custom Image

[174]

Lastly, we must not forget to add gpio-packt and webserver-packt to our image:

$ cat recipes-core/images/packt-iot-image.bb
Base this image on rpi-basic-image
include recipes-core/images/rpi-basic-image.bb
SPLASH = "psplash-raspberrypi"
IMAGE_FEATURES += "ssh-server-dropbear splash"
IMAGE_INSTALL_append = " rpi-gpio gpio-packt webserver-packt"

Creating a packet list for your image
One of the reasons you would want to create a customized image is that you often require a
different set of packages than those used in existing images. When using the Yocto Project,
it's possible to use a sort of package list, to make it easier for the end user to add new
packages and to keep the image recipe as simple as possible. This section will guide your
through how to use a customized package list using the Yocto Project.

Setting up a customized package list
First, you need to add a new BitBake file (.bb) named packagegroup-packt-iot.bb:

$ mkdir recipes-core/images/packagegroups
$ touch packagegroup-packt-iot.bb

A typical package list will look something like this:

$ cat packagegroup-packt-iot.bb
DESCRIPTION = "Package list for packt-iot-image"
LICENSE = "MIT"
inherit packagegroup
RDEPENDS_${PN} += " \
 pkg1 \
 pkg2 \
 pkg3 \
 "

Home Automation Project - Booting a Custom Image

[175]

Start using a customized package list in meta-
packt-iot
When our customized package list is in place, we can transfer packages added through
IMAGE_INSTALL. This will make the package group look like the following:

$ cat packagegroup-packt-iot.bb
DESCRIPTION = "Package list for packt-iot-image"
LICENSE = "MIT"
inherit packagegroup
RDEPENDS_${PN} += " \
 rpi-gpio \
 nodejs \
 gpio-packt \
 webserver-packt \
 "

Finally, we need to ensure that our new package list is used; for this example, it will be
done by replacing the content in IMAGE_INSTALL with the package group recipe, like this:

Base this image on rpi-basic-image
include recipes-core/images/rpi-basic-image.bb
SPLASH = "psplash-raspberrypi"
IMAGE_FEATURES += "ssh-server-dropbear splash"
IMAGE_INSTALL_append = " packagegroup-packt-iot"

The Yocto Project documentation contains the following information about
IMAGE_INSTALL:
“Using IMAGE_INSTALL with the += operator from the /conf/local.conf
file or from within an image recipe is not recommended as it can cause
ordering issues. Since core-image.bbclass sets IMAGE_INSTALL to a
default value using the ?= operator, using a += operation against
IMAGE_INSTALL will result in unexpected behavior when used in
conf/local.conf. Furthermore, the same operation from within an image
recipe may or may not succeed depending on the specific situation. In
both these cases, the behavior is contrary to how most users expect the +=
operator to work.”
For more details, visit
http://www.yoctoproject.org/docs/current/ref-manual/ref-m

anual.html#var-IMAGE_INSTALL.

Home Automation Project - Booting a Custom Image

[176]

Putting it all together
At this point, we have a basic idea about how to build our project, and we also have all the
software required for our project. In this section, we will go through a number of iterations
until we reach the final goal of using a remote device to control the lamp.

We will do this in three steps:

Control the relay using the Raspberry Pi.1.
Control the lamp using the Raspberry Pi.2.
Turn on/off the lamp from a smartphone.3.

During development, it's inefficient to always boot the Raspberry Pi using, for example, an
HDMI connection to a TV that also requires a separate mouse and keyboard to control the
Pi. Using HDMI, we will not be able to track the early boot procedure either. For this
project, we also want to be able to troubleshoot the Raspberry Pi without the need to place it
close to a TV. For our project, we will either use SSH or a serial connection to reduce
turnaround time during development.

Serial and SSH connections to the Raspberry Pi
The first method is to use a serial connection to the Raspberry Pi. The easiest way to achieve
this is to use a USB-to-serial cable. Connect the USB to the your host machine. Then, connect
the four wire cables to the correct GPIO pins on the Raspberry Pi, as showed in the
following figure:

Home Automation Project - Booting a Custom Image

[177]

A USB-to-serial cable connected to the Raspberry Pi GPIO header

The following table will give a more detailed explanation of how the GPIO wires should be
connected. Also check the GPIO header diagram in Chapter 8, Diving into the Raspberry Pis
Peripherals and Yocto Recipes. to review the purpose of all the pins in the GPIO header.

Red 5V

Black GND

White GPIO 14 (TXD)

Green GPIO 15 (RXD)

Home Automation Project - Booting a Custom Image

[178]

Once the physical connection has been set up, we can continue with preparing our host
environment. In this example, we will use the screen package to set up our console
connection.

To set up screen on Ubuntu, use this command:

$ sudo apt-get install screen

Use this one to set it up on Fedora:

$ sudo yum install screen

Next, we must ensure that we have plugged in the USB cable to our Raspberry Pi
(remember that no additional power supply is needed). After that, we can open a terminal
window and type the following command, which will connect us to the Raspberry Pi
console:

$ sudo screen /dev/ttyUSB0 115200
<snip>
[2.017380] [vc_sm_connected_init]: end - returning 0
[2.023899] uart-pl011 3f201000.uart: no DMA platform data
[2.034527] EXT4-fs (mmcblk0p2): INFO: recovery required on readonly
filesystem
[2.041844] EXT4-fs (mmcblk0p2): write access will be enabled during
recovery
[2.093584] EXT4-fs (mmcblk0p2): recovery complete
[2.103945] EXT4-fs (mmcblk0p2): mounted filesystem with ordered data
mode. Opts: (null)
[2.112154] VFS: Mounted root (ext4 filesystem) readonly on device
179:2.
[2.122995] devtmpfs: mounted
.
.
.
Starting syslogd/klogd: done
Poky (Yocto Project Reference Distro) 2.0+snapshot-20160229 raspberrypi2
/dev/ttyAMA0
 raspberrypi2 login: [17.906610] random: nonblocking pool is initialized
Poky (Yocto Project Reference Distro) 2.0+snapshot-20160229 raspberrypi2
/dev/ttyAMA0
raspberrypi2 login:

Home Automation Project - Booting a Custom Image

[179]

If we have connected a network cable to the Raspberry Pi, we can use this method to grab
the IP address of our board:

root@raspberrypi2:~# ifconfig eth0 | grep "inet addr"
inet addr:192.168.1.13 Bcast:192.168.1.255 Mask:255.255.255.0

The other method to gain quick access to the Raspberry Pi without using any external
equipment (such as a mouse, keyboard, or TV) are using SSH. If you have an SSH daemon
running on your Raspberry Pi and it's connected to the network, you can access it through
SSH using your host machine, with a command similar to this:

$ ssh root@192.168.1.13
root@raspberrypi2:~#

Now we are ready to get going with connecting the relay and lamp to our Raspberry Pi.

Controlling the relay using the Raspberry Pi
To start with, we will control only the relay from the Raspberry Pi connected to it. This will
be done using GPIO pins. First, we need to connect the relay to our Raspberry Pi in the
correct way. The following table shows the connection scheme:

Wire (color) GPIO pin Relay pin

Red 3.3V (pin 1) Power/VCC (+)

Black GND (pin 6) GND (-)

Yellow GPIO 17 (pin 11) IN (Signal/S)

Home Automation Project - Booting a Custom Image

[180]

When this scheme is physically applied, it will look like the following figure. Remember
that the exact order of the relay pins might look different between different models.

A Raspberry Pi 2 connected to a one-channel relay module, using GPIO 17 for the signaling

Home Automation Project - Booting a Custom Image

[181]

When the connection to the relay is complete, we can continue with next step: turning on or
off the small LED connected to the relay. Most relays have a small LED attached to them. If
your relay doesn't have an LED indicator, don't worry; we will look at some methods of
checking from the command line whether the GPIO pin is active or not. There exist a
number of different methods to control the GPIO pins on the Raspberry Pi; in this book, we
will learn how to use sysfs and RPi.GPIO to control the GPIO pins.

We will start by learning how to use sysfs to turn the LED on and off. First, we need to
export the GPIO pins and thereby make them visible from the userspace:

$ echo 17 > /sys/class/gpio/export

Next, we can see that a gpio17 directory with some files has popped up in
/sys/class/gpio:

$ ls /sys/class/gpio17/

After that, we need to set the direction (in/out) for the GPIO pin; in our example, we want
the GPIO to act as an output pin:

$ echo "out" > /sys/class/gpio/gpio17/direction

Finally, we can enable the GPIO pin, which will cause the LED to turn on, by writing 1 to
the value file:

$ echo 1 > /sys/class/gpio/gpio17/value

To turn off the light, we can write to the value file:

$ echo 0 > /sys/class/gpio/gpio17/value

When done, you need to unexport the GPIO pin:

$ echo 17 > /sys/class/gpio/unexport

Home Automation Project - Booting a Custom Image

[182]

Now, the gpio17 directory in sysfs is gone. In our project, we will not manipulate the sysfs
structure by hand. Instead, we will use the gpio-packt recipe added to our image earlier
in this chapter, but under the hood, it uses the sysfs structure in a similar way as just
described. The gpio-packt recipe produces a binary called gpio_example; it can be used
to control GPIO17 using the following syntax:

$ gpio_example --led=1
$ gpio_example --led=0

Another way of controlling the GPIO pins is by using RPi.GPIO, which is a Python module
that uses direct register access in the background to access GPIO. Controlling GPIO17 using
RPi.GPIO requires that you add the following to a file called, for example, ledon.py:

import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.OUT)
GPIO.output(17, 1)

Then, we can run the script. Turning off the pin can easily be done by replacing 1 with in
the GPIO.output() function:

$ python ledon.py

RPi.GPIO can also use the physical GPIO header pin numbering. In that case, GPIO17 will
be placed on pin 11. To use this mode, the script must be modified as follows:

import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(12, GPIO.OUT)
GPIO.output(11, 1)

The GPIO header diagram from Chapter 8, Diving into the Raspberry Pis
Peripherals and Yocto Recipes can be used as a reference for understanding
and playing with the GPIO pins.

Controlling the lamp using the Raspberry Pi
At this point, we can control the relay locally from our board. Next, it's time to connect the
lamp to our relay module.

Home Automation Project - Booting a Custom Image

[183]

WARNING: This project require basic knowledge of electricals. We
strongly discourage using high-voltage power if you don't have the
knowledge or experience. The recommendation is to use a low-voltage 12-
V power supply.

 A one-channel relay module

Before we connect the lamp, we need to go through some basics about how the relay
module will be used. Look closely at the following relay; it contains C, NC, and NO
openings on the opposite side to where we inserted the GPIO jumper cables. These slots
will be used to connect the lamp to the relay.

The C on the relay stands for common connection, and we will connect the power from our
external power supply to this port. Next, we have NC and NO, which stand for normally
closed and normally open. In our project, we will be using NO. The reason for this is that it
will work like a switch. By default, there will be no contact between C and NO, but when
we trigger the relay using the signaling from our GPIO pin, we will turn off the relay and
that will open the circuit. Using NC instead of NO will give you the opposite behavior.

Home Automation Project - Booting a Custom Image

[184]

The lamp and the external power supply (12V strongly preferred for safety reasons) will be
connected as shown in the following figure. Note that if no adapter is used for the lamp,
you might need to open the outer shell of the cable to get the positive and negative wires.
The black negative cable can be connected right from the external power supply to the
lamp. The positive must be inserted from the power supply to the C slot on the relay.
Finally, we need to connect the red positive cable from the lamp to the NO slot in the relay
to get the required behavior as described earlier.

When all the physical connections are in place, we can check whether everything works by
using the gpio_example binary again. At this point, our Raspberry Pi is probably hard to
move, so we will use SSH to gain access to the board and turn the light on and off.

$ ssh root@192.168.x.x
root@raspberrypi2:~#
root@raspberrypi2:~# gpio_example --led=1
root@raspberrypi2:~# gpio_example --led=0

Home Automation Project - Booting a Custom Image

[185]

If everything has been set up in the correct way, you should see the light go on and off. In
the next subsection, we will continue with controlling the light remotely by using a
smartphone.

Turning on/off the lamp from a smartphone
Our home automation project is nearly finished, but one important thing remains: we need
to ensure that it's possible to control the light using a remote device, such as a smartphone.
First of all, we need to check on the board whether the web server is present:

$ ps | grep server
295 root 2732 server.init

If the server for some reason hasn't auto-started, we can try to manually start it using this
command:

$ /etc/init.d/server-packt-init start
starting Nodejs app: server.init... done.
root@raspberrypi2:~# info - socket.io started
listening on *:3344

If we manually perform some changes to the web server directly on the Raspberry Pi, we
can restart the web server by using this command:

$ /etc/init.d/packt-server restart
stopping Nodejs app: server.init... stopped node (pid 295)
done.
starting Nodejs app: server.init... done.

Home Automation Project - Booting a Custom Image

[186]

Now, we can start the web browser on our smartphone and go to
http://my_rpi_ipaddress:3344. You will see the same page that we saw when we
opened index.html earlier in the chapter. The format might look a little bit different on a
smartphone, but the red and green buttons will be there! Try tapping them and you will see
the light go on and off.

 A real-world example of the final result of the home automation project.

At this point, your home automation project is up and running, and you have managed to
get one step closer to a wirelessly connected home. Hopefully, this project will give you
plenty of ideas of how to set up other fun and creative home automation projects using a
Raspberry Pi.

Extra – using a Raspberry Pi with an LCD as
the client
We can easily use an additional Raspberry Pi for the client side, which will be responsible
for turn the lamp on and off. For this example, we will use the tiny PiTFT 2.8 touchscreen to
control the light. Note that other touchscreens, of course, will work just as well; the
important thing is that the image contains a web browser:

$ source /path/to/poky/oe-init-build-env pitft28r_client_proj

Home Automation Project - Booting a Custom Image

[187]

Update bblayers.conf like this:

$ cat local/bblayers.conf
LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "6"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \
 /path/to/poky/meta \
 /path/to/poky/meta-yocto \
 /path/to/poky/meta-yocto-bsp \
 /path/to/meta-raspberrypi \
 /path/to/meta-openembedded/meta-oe \
 /path/to/meta-openembedded/meta-multimedia \
 "
BBLAYERS_NON_REMOVABLE ?= " \
 /path/to/poky/meta \
 /path/to/poky/meta-yocto \

Then, update local.conf:

$ echo "MACHINE = "raspberrypi2"" >> conf/local.conf
$ echo "MACHINE_FEATURES += "pitft pitft28r"" >> conf/local.conf
$ echo "LICENSE_FLAGS_WHITELIST = "commercial"" >> conf/local.conf

NOTE: This example uses the raspberrypi2 image; if you have a different
model, remember to change it to the correct machine name.

Build the image with the following command, boot it, and go to
http://my_rpi_ipadress:3344:

$ bitbake core-image-sato

Home Automation Project - Booting a Custom Image

[188]

Summary
In this final chapter of the book, we repeated the techniques we learned throughout the
book. This was done by creating a home automation project, which can wirelessly turn on
and off lamps in your home with help from a Raspberry Pi and a web browser, using your
smartphone as the remote, for example.

For our home automation project, we improved some of the examples used earlier in the
book, such as the GPIO control binary and the Node.js examples. By evolving them, we
revised how to modify existing recipes by appending them with new files or patching the
old ones. The project also required you to revise how to create and integrate external layers.
Further on, the chapter looked closer at some techniques and introduced you the usage of a
specific package list in your project and how to use a serial connection and SSH to easily
access and debug your Raspberry Pi. In order to complete the project, you were required to
learn more deeply how the GPIO header and pins for the Raspberry Pi models are set up.

Using the skills learned in this chapter will hopefully inspire you when developing new
cool and crazy home automation projects for the Raspberry Pi platform.

Index

A
Angstrom
 about 12
 URL 12
application
 developing 68, 69, 70
 developing and using, on LCD display 138
 recipe explanation 71, 72, 73
 recipe, creating 70, 71

B
base, setting up for home automation project
 image recipe, customizing 163
 image, booting 164, 165, 166, 167
 image, building 164, 165, 166, 167
 new layer, creating 163
 setting up 163
BBLAYERS variable 25
bblayers.conf file
 editing 26, 27
Bitbake tasks
 about 53
 do_compile 54
 do_configure 54
 do_fetch 53
 do_install 54
 do_package 54
 do_patch 54
 do_unpack 53
BitBake
 about 12, 47
 user manual 47, 48
 working 13
Buildroot
 about 9
 reference, for documentation 9

 URL 8

C
canutils
 reference 50
class files 48
con2fbmap 158
configuration files 48
core components, Yocto Project
 about 10
 BitBake 12
 metadata 16
 OpenEmbedded-Core 14
 Poky 11
cross-compilation 57
 about 60
 compilation 61
 list of tools 61
 SDK environment configuration 60
custom application
 developing, Qt used 139, 140, 141, 142
customized package list
 setting up 174
 using, in meta-packt-iot 175

D
DEB package format 63
dependencies, BitBake 50, 51
developing kernel 125
development environment, Yocto Project
 Application development SDK 18
 build system 18
 images 18
 metadata layers 17
 package feeds 18
 source files 17

[190]

 user configuration 17
device tree (DT) 131
device tree blobs (DTBs) 131
device tree source (DTS) 131

E
environment variables 25
external layers
 adding, to Raspberry Pi 81

F
fbset tool
 about 158
 reference 158
fetcher backend
 about 51
 Git fetcher 52
 HTTP fetcher 52
 local file fetcher 51
fragments 129
Fritzing
 URL 68

G
general purpose input output (GPIO) pins 68
Git fetcher 52
git scm
 reference 23
Git tool 21
Git
 about 144, 145
 workflow 145
 working with 145, 146, 147, 148, 149, 150
gpio-packt
 adding, to meta-packt_rpi 86, 87, 88
 patch, adding to recipe file 88, 90
 patch, generating 88
 patching 88

H
Hob
 about 33
 environment, preparing 33
 image, building 42, 43, 44

 packages, configuring 40, 41
 recipes, configuring 40, 41
 running 34, 36, 38, 39
home automation project
 base, setting up 163
 building 176
 creating 161
 lamp, controlling with Raspberry Pi 182, 183,

184
 lamp, turning on/off from smartphone 185, 186
 materials required 162
 packet list, creating for image 174
 Raspberry Pi used 161, 162
 relay, controlling with Raspberry Pi 179, 180,

181, 182
 serial and SSH connections, to Raspberry Pi

176, 177, 178, 179
 server side, creating 167, 168, 169, 170, 171,

172, 174
HTTP fetcher 52

I
i2c bus 100, 101
i2c protocol 100
i2c-tools 106
i2cdetect 106
index.html 113, 114
IPK package format 64
IPK packages
 about 67
 automatic installation 67, 68
 manual installation 67

J
jethro 134

K
kernel configuration, with LCD support
 about 130
 Raspberry Pi device tree 131
 touchscreen, configuring from kernel perspective

132, 133
kernel releases
 reference 125

[191]

kernel.org 126

L
layers
 about 74, 75
 distribution 76
 machine (BSP) 76
 miscellaneous 76
 reference 75
 software layer 76
 theory 75
LCD display, setting up for Raspberry Pi
 PiTFT 2.8 resistive touchscreen 136, 137, 138
 Raspberry Pi 7 touchscreen 134, 135, 136
 Yocto Project used 134
Linux distributions
 reference 20
Linux kernel
 about 124, 125
 configuring, in Yocto 129, 130
 configuring, with LCD support 130
 getting started process 126, 127, 128
 versus Raspberry Pi Linux kernel 125
local file fetcher 51
local.conf file
 editing 26
localmaster 150
longterm kernel 125
LTIB
 URL 8

M
machine (BSP) layer 79, 81
main application, web interface project
 creating 113
 server.js 114
mainline kernel 125
maintainer 144
meta-oe layer
 inclusion, to SPI bus 96, 97
meta-packt_rpi layer
 creating, with yocto-layer script 83, 84, 85, 86
 gpio-packt, adding to 86, 87, 88
meta-qt5 external layer 139
meta-raspberrypi 16

 contributing to 152, 153
 Git repository, setting up 153
meta-string 84
meta-toolchain recipe 58
meta-toolchain-qt toolchain 59
meta-toolchain-qt5 60
meta-webserver
 reference 81
metadata, BitBake
 about 48
 classes 48
 configuration 48
 parsing 49
 recipes 49
metadata
 about 16
 meta-yocto 16
 meta-yocto-bsp 16
mkknlimg tool 131
Monkey
 URL 81
MOSI 94

N
Nunchuck protocol
 about 104
 encryption 105
 sensor data, requesting 105

O
OE-Core 8, 22
oe-init-build-env script 25
open source 143
open source projects
 contributing to 144
OpenEmbedded-Core
 about 14
 organization 15
OpenWRT
 URL 8

P
package formats
 about 62

[192]

 DEB 62
 IPK 63
 RPM 62
 selecting 63, 64
package manager
 about 62
 package formats 62
package revision (PR) server 165
package
 installing, on target 64
 updating, on target 64
pitft 137
pitft28r 137
Poky 11
Poky image
 available images, listing 27, 28
 BitBake, running 29, 30
 booting, on Raspberry Pi 31
 building 27
 SD card, creating 30
Poky metadata
 downloading 21, 22
Poky on Fedora 21
Poky on Ubuntu 20
preferences, BitBake 50
providers, BitBake 50

Q
qmake 140
Qt SDK 59
Qt5 SDK 60

R
Raspberry Pi BSP metadata
 downloading 22, 23, 24, 25
Raspberry Pi connection
 about 104
 i2c connection, testing 106, 107
 integrating, with meta-packt_rpi 107
 Nunchuck application, creating 107
 Nunchuck application, testing 109
 Nunchuck protocol 104
 Nunchuck recipe, creating 108
 V4L presentation 109
 v4l-utils integration 110

 video support 109
Raspberry Pi Linux kernel
 about 125
 reference 125
Raspberry Pi
 and package manager 62
 spi-config 98, 99
 spi-pipe 99, 100
 testing 98
 using, with LCD as client 186, 187
raspberry-packt-image.bb image
 creating 90
 deploying 93
 environment, creating 90
 recipe file, modifying 91, 92
 reference 93
recipes 49
remote branches 149
remote origin 150
required packages, for host system
 bblayers.conf file, editing 26, 27
 installing 19
 local.conf file, editing 26
 oe-init-build-env script 25
 Poky metadata, downloading 21, 22
 Poky on Fedora 21
 Poky on Ubuntu 20
 Raspberry Pi BSP metadata, downloading 22,

23, 24, 25
rpi-basic-image 37, 164, 167
RPi.GPIO 181
RPM package format 63
RPM packages
 about 64
 automatic installation 64, 65, 66
 manual installation 64

S
SCLK 94
sendmail tool 143
Serial Peripheral Interface (SPI) protocol 94
server.js file 113, 114
software development kits (SDKs)
 about 56
 generic SDK 58

[193]

 image.bb -c populate_sdk 58
 Qt SDK 59, 60
 Qt5 SDK 60
software layer
 about 77
 classes folder 78
 conf folder 78
 COPYING 78
 README 77
 recipes-* directory 79
SPI bus
 about 94, 95
 conclusion 100
 inclusion, into meta-oe layer 96, 97
 Raspberry Pi, testing 98
 spi-tools project 95
 spi-tools, baking 97
SPI protocol
 reference 95
spi-tools project
 about 95
 spi-config 96
 spi-pipe 96
SRC_URI parameter
 reference 52
stable kernel 125
sysfs 181

T
tar.bz2 file
 reference 22
theory layer
 about 75
 name 75
 priority 75
Toaster
 about 44
 BitBake, running 45
 exploring 44
 required packages, installing for host system 44
 running 44, 45
 web interface, running 46
toolchain 56

U
Untracked files 146
upstream 144

V
V4L 109
vcgencmd command
 reference 114

W
web interface project
 about 112
 application, testing 122
 CPU temperature monitoring 112
 future 123
 hardware/software requisites 113
 main application, creating 113
 overview 113
 raspberry-packt-image, deploying 121
 Yocto/OE environment, creating 115
Wii Nunchuck
 about 102
 Nunchuck connector 103
working branch 149

Y
Yocto Project Manual
 reference 59
Yocto Project
 about 7, 8
 build system 8
 changes, sending to community 156, 157
 commit, creating 154, 156
 contributing to 151, 152
 core components 10
 custom tool upstream, sending 158, 159, 160
 follow-up 157
 practical example 158
 workflow 17
yocto-layer 163
yocto-layer script
 meta-packt_rpi layer 85
 used, for creating meta-packt_rpi layer 83, 84,

86

Yocto/OE 56, 57
Yocto/OE environment, web interface project
 creating 115
 image, modifying 115

 init file, autostarting 118, 119, 120
 recipe file, autostarting 120, 121
 recipe file, creating 115, 116, 117
Yocto/OpenEmbedded
 URL 8

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Meeting the Yocto Project
	The Yocto Project
	Understanding the build system

	The core components
	What is Poky?
	The Chief – BitBake
	OpenEmbedded-Core
	Exploring metadata

	Yocto Project – workflow
	Summary

	Chapter 2: Building our First Poky Image for the Raspberry Pi
	Installing the required packages for the host system
	Poky on Ubuntu
	Poky on Fedora
	Downloading the Poky metadata
	Downloading the Raspberry Pi BSP metadata
	The oe-init-build-env script
	Editing the local.conf file
	Editing the bblayers.conf file

	Building the Poky image
	Choice of image
	Running BitBake
	Creating an SD card

	Booting the image on the Raspberry Pi
	Summary

	Chapter 3: Mastering Baking with Hob and Toaster
	Hob
	Preparing the environment for Hob
	Running Hob
	Configuring recipes and packages
	Building the image

	Exploring Toaster
	Installing the required packages for the host system
	Running Toaster
	Running BitBake
	Running the web interface

	Summary

	Chapter 4: Understanding BitBake
	BitBake
	Metadata
	Configuration
	Classes
	Recipes

	Parsing metadata
	Preferences and providers
	Dependencies
	Fetching
	The local file fetcher
	The HTTP fetcher
	The Git fetcher

	Understanding BitBake's tasks
	Summary

	Chapter 5: Creating, Developing, and Deploying on the Raspberry Pi
	Software development kits (SDKs)
	A generic SDK – meta-toolchain
	image.bb -c populate_sdk
	The Qt SDK – meta-toolchain-qt
	The Qt5 SDK – meta-toolchain-qt5
	Cross-compilation – an example
	Configuration of the SDK environment
	List of tools
	Compilation

	Raspberry Pi and a package manager
	Package format availablility
	Choosing a package format
	Installing and updating a package on the target
	RPM packages
	[Installing manually]
	Installing manually
	Installing automatically

	IPK packages
	[Installing manually]
	Installing manually
	Installing automatically

	Our application – an introduction
	Our application – creating the recipe
	The recipe explained

	Summary

	Chapter 6: Working with External Layers
	Introducing layers
	The basic concepts of layers
	Theory
	The software layer
	README and COPYING
	The classes folder
	The conf folder
	The recipes-* directory

	The machine (BSP) layer

	Adding external layers to the Raspberry Pi
	Summary

	Chapter 7: Deploying a Custom Layer on the Raspberry Pi
	Creating the meta-packt_rpi layer with the yocto-layer script
	Adding gpio-packt to meta-packt_rpi
	Patching gpio-packt
	Generating the patch
	Adding the patch to the recipe file

	Creating the raspberry-packt-image.bb image
	Creating the environment
	Modifying the recipe file

	Deploying the raspberry-packt-image.bb image
	Summary

	Chapter 8: Diving into the Raspberry Pis Peripherals and Yocto Recipes
	The SPI bus
	The spi-tools project
	Inclusion in the meta-oe layer
	Baking spi-tools
	Testing on the Raspberry Pi
	spi-config
	spi-pipe

	Conclusion

	The i2c bus
	The Wii Nunchuck
	The Nunchuck connector

	The Raspberry Pi connection
	The Nunchuck's protocol
	Encryption
	Requesting sensor data

	Testing the i2c connection
	Creating the Nunchuck application
	Integrating with meta-packt_rpi
	Creating the Nunchuck recipe
	Testing the Nunchuck application
	V4L presentation
	Video support
	v4l-utils integration

	Summary

	Chapter 9: Making a Media Hub on the Raspberry Pi
	Project description – CPU temperature monitoring
	Overview
	Hardware/software requirements

	Creating the main application
	server.js
	index.html

	Creating the Yocto/OE environment
	Modifying the image
	Creating the recipe file
	Explanation

	Autostarting – the init file
	Explanation

	Autostarting – the recipe file
	Explanation

	Deploying raspberry-packt-image
	Testing the application
	The future of this project
	Summary

	Chapter 10: Playing with an LCD Touchscreen and the Linux Kernel
	The Linux kernel
	The Linux kernels versus the Raspberry Pi Linux kernel
	Getting started with the Linux kernel
	Configuring the kernel in Yocto

	Configuring the kernel with LCD support
	The Raspberry Pi device tree
	Configuring the touchscreen from the kernel perspective

	Setting up an LCD display for the Raspberry Pi using the Yocto Project
	The Raspberry Pi 7 touchscreen
	The PiTFT 2.8 resistive touchscreen

	Developing applications and using them on an LCD display
	Developing a custom application using Qt

	Summary

	Chapter 11: Contributing to the Raspberry Pi BSP Layer
	Open source
	Contributing to open source projects
	Exploring Git
	What is Git?
	Working with Git

	Contributing to the Yocto Project
	Contributing to meta-raspberrypi
	Setting up your Git repository

	Creating your commit
	Sending changes to the community
	Follow-up
	Practical example – sending a custom tool upstream

	Summary

	Chapter 12: Home Automation Project - Booting a Custom Image
	Home automation using a Raspberry Pi
	Material required for the project

	Setting up the base for the project
	Creating a new layer
	Customizing the image recipe
	Building and booting the image

	Creating the server side
	Creating a packet list for your image
	Setting up a customized package list
	Start using a customized package list in meta-packt-iot

	Putting it all together
	[Serial and SSH connections to the Raspberry Pi]
	Serial and SSH connections to the Raspberry Pi

	Controlling the relay using the Raspberry Pi
	Controlling the lamp using the Raspberry Pi
	Turning on/off the lamp from a smartphone

	Extra – using a Raspberry Pi with an LCD as the client
	Summary

	Index

