

Big Data Analytics with Java

Big data analytics – massive, predictive, social
and self-driving

Rajat Mehta

BIRMINGHAM - MUMBAI

Big Data Analytics with Java

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2017

Production reference: 1270717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78728-898-0

www.packtpub.com

www.packtpub.com

Credits

Author
Rajat Mehta

Reviewers
Dave Wentzel

Roberto Casati

Commissioning Editor
Veena Pagare

Acquisition Editor
Chandan Kumar

Content Development Editor
Deepti Thore

Technical Editors
Jovita Alva

Sneha Hanchate

Copy Editors
Safis Editing

Laxmi Subramanian

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Pratik Shirodkar

Graphics
Tania Dutta

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Rajat Mehta is a VP (technical architect) in technology at JP Morgan Chase in
New York. He is a Sun certified Java developer and has worked on Java-related
technologies for more than 16 years. His current role for the past few years
heavily involves the use of a big data stack and running analytics on it. He is also
a contributor to various open source projects that are available on his GitHub
repository, and is also a frequent writer for dev magazines.

About the Reviewers

Dave Wentzel is the CTO of Capax Global, a data consultancy specializing in SQL
Server, cloud, IoT, data science, and Hadoop technologies. Dave helps customers
with data modernization projects. For years, Dave worked at big independent
software vendors, dealing with the scalability limitations of traditional relational
databases. With the advent of Hadoop and big data technologies everything
changed. Things that were impossible to do with data were suddenly within reach.

Before joining Capax, Dave worked at Microsoft, assisting customers with big data
solutions on Azure. Success for Dave is solving challenging problems at companies
he respects, with talented people who he admires.

Roberto Casati is a certified enterprise architect working in the financial services
market. Roberto lives in Milan, Italy, with his wife, their daughter, and a dog.

In a former life, after graduating in engineering, he worked as a Java developer, Java
architect, and presales architect for the most important telecommunications, travel,
and financial services companies.

His interests and passions include data science, artificial intelligence, technology,
and food.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
www.packtpub.com

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book’s Amazon page at https://www.amazon.com/dp/1787288986.

If you’d like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free
eBooks and videos in exchange for their valuable feedback. Help us be relentless in
improving our products!

This book is dedicated to my mother Kanchan, my wife Harpreet, my daughter Meher,
my father Ashwini and my son Vivaan.

[i]

Table of Contents
Preface vii
Chapter 1: Big Data Analytics with Java 1

Why data analytics on big data? 3
Big data for analytics 3

Big data – a bigger pay package for Java developers 4
Basics of Hadoop – a Java sub-project 4

Distributed computing on Hadoop 8
HDFS concepts 8

Design and architecture of HDFS 9
Main components of HDFS 10
HDFS simple commands 11

Apache Spark 12
Concepts 12
Transformations 13
Actions 14
Spark Java API 15
Spark samples using Java 8 16
Loading data 16
Data operations – cleansing and munging 17
Analyzing data – count, projection, grouping, aggregation, and max/min 17
Actions on RDDs 19
Paired RDDs 20
Saving data 23
Collecting and printing results 23
Executing Spark programs on Hadoop 23
Apache Spark sub-projects 24
Spark machine learning modules 25
Mahout – a popular Java ML library 26
Deeplearning4j – a deep learning library 26

Summary 27

Table of Contents

[ii]

Chapter 2: First Steps in Data Analysis 29
Datasets 29
Data cleaning and munging 31
Basic analysis of data with Spark SQL 33

Building SparkConf and context 34
Dataframe and datasets 34
Load and parse data 35

Analyzing data – the Spark-SQL way 35
Spark SQL for data exploration and analytics 43
Market basket analysis – Apriori algorithm 43

Implementation of the Apriori algorithm in Apache Spark 51
Efficient market basket analysis using FP-Growth algorithm 54

Running FP-Growth on Apache Spark 66
Summary 68

Chapter 3: Data Visualization 69
Data visualization with Java JFreeChart 69

Using charts in big data analytics 70
Time Series chart 71

All India seasonal and annual average temperature series dataset 71
Simple single Time Series chart 72
Multiple Time Series on a single chart window 75

Bar charts 77
Histograms 80

When would you use a histogram? 81
How to make histograms using JFreeChart? 81

Line charts 82
Scatter plots 84
Box plots 88
Advanced visualization technique 95

Prefuse 95
IVTK Graph toolkit 96

Other libraries 96
Summary 96

Chapter 4: Basics of Machine Learning 99
What is machine learning? 100

Real-life examples of machine learning 100
Type of machine learning 102

A small sample case study of supervised and unsupervised learning 106
Steps for machine learning problems 107
Choosing the machine learning model 110

What are the feature types that can be extracted from the datasets? 111
How do you select the best features to train your models? 114

Table of Contents

[iii]

How do you run machine learning analytics on big data? 119
Getting and preparing data in Hadoop 120
Training and storing models on big data 123
Apache Spark machine learning API 125

Summary 127
Chapter 5: Regression on Big Data 129

Linear regression 130
What is simple linear regression? 132

Where is linear regression used? 135
Logistic regression 143

Which mathematical functions does logistic regression use? 144
Where is logistic regression used? 146
Predicting heart disease using logistic regression 147

Summary 153
Chapter 6: Naive Bayes and Sentiment Analysis 155

Conditional probability 156
Bayes theorem 157
Naive Bayes algorithm 159

Advantages of Naive Bayes 160
Disadvantages of Naive Bayes 161

Sentimental analysis 162
Concepts for sentimental analysis 162

Tokenization 163
Stop words removal 163
Stemming 164
N-grams 165
Term presence and Term Frequency 165
TF-IDF 166
Bag of words 168
Dataset 168
Data exploration of text data 169

Sentimental analysis on this dataset 174
SVM or Support Vector Machine 181
Summary 183

Chapter 7: Decision Trees 185
What is a decision tree? 185

Building a decision tree 188
Choosing the best features for splitting the datasets 191
Dataset 196
Data exploration 197
Cleaning and munging the data 201
Training and testing the model 202

Summary 209

Table of Contents

[iv]

Chapter 8: Ensembling on Big Data 211
Ensembling 212

Types of ensembling 213
Bagging 213
Boosting 215
Advantages and disadvantages of ensembling 216

Random forests 218
Gradient boosted trees (GBTs) 219

Classification problem and dataset used 221
Data exploration 222
Training and testing our random forest model 230
Training and testing our gradient boosted tree model 236

Summary 237
Chapter 9: Recommendation Systems 239

Recommendation systems and their types 240
Content-based recommendation systems 242

Dataset 248
Content-based recommender on MovieLens dataset 249
Collaborative recommendation systems 256

Advantages 257
Disadvantages 258
Alternating least square – collaborative filtering 258

Summary 266
Chapter 10: Clustering and Customer Segmentation on Big Data 267

Clustering 268
Types of clustering 270

Hierarchical clustering 270
K-means clustering 272
Bisecting k-means clustering 273

Customer segmentation 275
Dataset 276
Data exploration 276
Clustering for customer segmentation 280

Changing the clustering algorithm 287
Summary 288

Chapter 11: Massive Graphs on Big Data 289
Refresher on graphs 290

Representing graphs 292
Common terminology on graphs 293
Common algorithms on graphs 294
Plotting graphs 295

Table of Contents

[v]

Massive graphs on big data 297
Graph analytics 298

GraphFrames 300
Building a graph using GraphFrames 300

Graph analytics on airports and their flights 304
Datasets 305
Graph analytics on flights data 306

Summary 319
Chapter 12: Real-Time Analytics on Big Data 321

Real-time analytics 322
Big data stack for real-time analytics 324
Real-time SQL queries on big data 324
Real-time data ingestion and storage 325
Real-time data processing 325
Real-time SQL queries using Impala 326

Flight delay analysis using Impala 327
Apache Kafka 331
Spark Streaming 333
Trending videos 341

Summary 352
Chapter 13: Deep Learning Using Big Data 353

Introduction to neural networks 354
Perceptron 356

Problems with perceptrons 359
Sigmoid neuron 361
Multi-layer perceptrons 362

Accuracy of multi-layer perceptrons 364
Deep learning 366

Advantages and use cases of deep learning 366
Flower species classification using multi-Layer perceptrons 367
Deeplearning4j 373
Hand written digit recognizition using CNN 374

Diving into the code: 374
Summary 383

Index 385

[vii]

Preface
Even as you read this content, there is a revolution happening behind the scenes
in the field of big data. From every coffee that you pick up from a coffee store to
everything you click or purchase online, almost every transaction, click, or choice of
yours is getting analyzed. From this analysis, a lot of deductions are now being made
to offer you new stuff and better choices according to your likes. These techniques
and associated technologies are picking up so fast that as developers we all should
be a part of this new wave in the field of software. This would allow us better
prospects in our careers, as well as enhance our skill set to directly impact the
business we work for.

Earlier technologies such as machine learning and artificial intelligence used to sit
in the labs of many PhD students. But with the rise of big data, these technologies
have gone mainstream now. So, using these technologies, you can now predict which
advertisement the user is going to click on next, or which product they would like
to buy, or it can also show whether the image of a tumor is cancerous or not. The
opportunities here are vast. Big data in itself consists of a whole lot of technologies
whether cluster computing frameworks such as Apache Spark or Tez or distributed
filesystems such as HDFS and Amazon S3 or real-time SQL on underlying data using
Impala or Spark SQL.

This book provides a lot of information on big data technologies, including machine
learning, graph analytics, real-time analytics and an introductory chapter on deep
learning as well. I have tried to cover both technical and conceptual aspects of these
technologies. In doing so, I have used many real-world case studies to depict how
these technologies can be used in real life. So this book will teach you how to run a
fast algorithm on the transactional data available on an e-commerce site to figure out
which items sell together, or how to run a page rank algorithm on a flight dataset
to figure out the most important airports in a country based on air traffic. There are
many content gems like these in the book for readers.

Preface

[viii]

What this book covers
Chapter 1, Big Data Analytics with Java, starts with providing an introduction to the
core concepts of Hadoop and provides information on its key components. In easy-
to-understand explanations, it shows how the components fit together and gives
simple examples on the usage of the core components HDFS and Apache Spark. This
chapter also talks about the different sources of data that can put their data inside
Hadoop, their compression formats, and the systems that are used to analyze
that data.

Chapter 2, First Steps in Data Analysis, takes the first steps towards the field of
analytics on big data. We start with a simple example covering basic statistical
analytic steps, followed by two popular algorithms for building association rules
using the Apriori Algorithm and the FP-Growth Algorithm. For all case studies, we
have used realistic examples of an online e-commerce store to give insights to users
as to how these algorithms can be used in the real world.

Chapter 3, Data Visualization, helps you to understand what different types of charts
there are for data analysis, how to use them, and why. With this understanding, we
can make better decisions when exploring our data. This chapter also contains lots of
code samples to show the different types of charts built using Apache Spark and the
JFreeChart library.

Chapter 4, Basics of Machine Learning, helps you to understand the basic theoretical
concepts behind machine learning, such as what exactly is machine learning, how it
is used, examples of its use in real life, and the different forms of machine learning.
If you are new to the field of machine learning, or want to brush up your existing
knowledge on it, this chapter is for you. Here I will also show how, as a developer,
you should approach a machine learning problem, including topics on feature
extraction, feature selection, model testing, model selection, and more.

Chapter 5, Regression on Big Data, explains how you can use linear regression to
predict continuous values and how you can do binary classification using logistic
regression. A real-world case study of house price evaluation based on the different
features of the house is used to explain the concepts of linear regression. To explain
the key concepts of logistic regression, a real-life case study of detecting heart disease
in a patient based on different features is used.

Preface

[ix]

Chapter 6, Naive Bayes and Sentimental Analysis, explains a probabilistic machine
learning model called Naive Bayes and also briefly explains another popular model
called the support vector machine. The chapter starts with basic concepts such as
Bayes Theorem and then explains how these concepts are used in Naive Bayes.
I then use the model to predict the sentiment whether positive or negative in a set
of tweets from Twitter. The same case study is then re-run using the support vector
machine model.

Chapter 7, Decision Trees, explains that decision trees are like flowcharts and can be
programmatically built using concepts such as Entropy or Gini Impurity. The golden
egg in this chapter is a case study that shows how we can predict whether a person's
loan application will be approved or not using decision trees.

Chapter 8, Ensembling on Big Data, explains how ensembling plays a major role in
improving the performance of the predictive results. I cover different concepts
related to ensembling in this chapter, including techniques such as how multiple
models can be joined together using bagging or boosting thereby enhancing the
predictive outputs. We also cover the highly popular and accurate ensemble of
models, random forests and gradient-boosted trees. Finally, we predict loan default
by users in a dataset of a real-world Lending Club (a real online lending company)
using these models.

Chapter 9, Recommendation Systems, covers the particular concept that has made
machine learning so popular and it directly impacts business as well. In this chapter,
we show what recommendation systems are, what they can do, and how they are
built using machine learning. We cover both types of recommendation systems:
content-based and collaborative, and also cover their good and bad points. Finally,
we cover two case studies using the MovieLens dataset to show recommendations to
users for movies that they might like to see.

Chapter 10, Clustering and Customer Segmentation on Big Data, speaks about clustering
and how it can be used by a real-world e-commerce store to segment their customers
based on how valuable they are. I have covered both k-Means clustering and
bisecting k-Means clustering, and used both of them in the corresponding case
study on customer segmentation.

Chapter 11, Massive Graphs on Big Data, covers an interesting topic, graph analytics.
We start with a refresher on graphs, with basic concepts, and later go on to explore
the different forms of analytics that can be run on the graphs, whether path-based
analytics involving algorithms such as breadth-first search, or connectivity analytics
involving degrees of connection. A real-world flight dataset is then used to explore
the different forms of graph analytics, showing analytical concepts such as finding
top airports using the page rank algorithm.

Preface

[x]

Chapter 12, Real-Time Analytics on Big Data, speaks about real-time analytics by first
seeing a few examples of real-time analytics in the real world. We also learn about
the products that are used to build real-time analytics system on top of big data.
We particularly cover the concepts of Impala, Spark Streaming, and Apache Kafka.
Finally, we cover two real-life case studies on how we can build trending videos
from data that is generated in real-time, and also do sentiment analysis on tweets by
depicting a Twitter-like scenario using Apache Kafka and Spark Streaming.

Chapter 13, Deep Learning Using Big Data, speaks about the wide range of applications
that deep learning has in real life whether it's self-driving cars, disease detection, or
speech recognition software. We start with the very basics of what a biological neural
network is and how it is mimicked in an artificial neural network. We also cover a lot
of the theory behind artificial neurons and finally cover a simple case study of flower
species detection using a multi-layer perceptron. We conclude the chapter with a
brief introduction to the Deeplearning4j library and also cover a case study
on handwritten digit classification using convolution neural networks.

What you need for this book
There are a few things you will require to follow the examples in this book: a text
editor (I use Sublime Text), internet access, admin rights to your machine to install
applications and download sample code, and an IDE (I use Eclipse and IntelliJ).

You will also need other software such as Java, Maven, Apache Spark, Spark
modules, the GraphFrames library, and the JFreeChart library. We mention the
required software in the respective chapters.

You also need a good computer with a good RAM size, or you can also run the
samples on Amazon AWS.

Who this book is for
If you already know some Java and understand the principles of big data, this book
is for you. This book can be used by a developer who has mostly worked on web
programming or any other field to switch into the world of analytics using machine
learning on big data.

A good understanding of Java and SQL is required. Some understanding of
technologies such as Apache Spark, basic graphs, and messaging will also
be beneficial.

Preface

[xi]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

A block of code is set as follows:

Dataset<Row> rowDS = spark.read().csv("data/loan_train.csv");
rowDS.createOrReplaceTempView("loans");
Dataset<Row> loanAmtDS = spark.sql("select _c6 from loans");

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Dataset<Row>data = spark.read().csv("data/heart_disease_data.csv");
 System.out.println("Number of Rows -->" + data.count());

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

If you have any questions, don't hesitate to look me up on LinkedIn via my profile
https://www.linkedin.com/in/rajatm/, I will be more than glad to help a fellow
software professional.

www.packtpub.com
https://www.linkedin.com/in/rajatm/

Preface

[xii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Big-Data-Analytics-with-Java. We also have other code
bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

http://www.PacktPub.com
http://www.PacktPub.com/support
https://github.com/PacktPublishing/Big-Data-Analytics-with-Java
https://github.com/PacktPublishing/Big-Data-Analytics-with-Java
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[xiii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand
the changes in the output. You can download this file from https://www.
packtpub.com/sites/default/files/downloads/BigDataAnalyticswithJava_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.packtpub.com
www.packtpub.com
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Chapter 1

[1]

Big Data Analytics with Java
Big data is no more just a buzz word. In almost all the industries, whether it is
healthcare, finance, insurance, and so on, it is heavily used these days. There was
a time when all the data that was used in an organization was what was present
in their relational databases. All the other kinds of data, for example, data present
in the log files were all usually discarded. This discarded data could be extremely
useful though, as it can contain information that can help to do different forms of
analysis, for example, log files data can tell about patterns of user interaction with
a particular website. Big data helps store all these kinds of data, whether structured
or unstructured. Thus, all the log files, videos, and so on can be stored in big data
storage. Since almost everything can be dumped into big data whether they are log
files or data collected via sensors or mobile phones, the amount of data usage has
exploded within the last few years.

Three Vs define big data and they are volume, variety and velocity. As the name
suggests, big data is a huge amount of data that can run into terabytes if not peta
bytes of volume of storage. In fact, the size is so humongous that ordinary relational
databases are not capable of handling such large volumes of data. Apart from data
size, big data can be of any type of data be it the pictures that you took in the 20
years or the spatial data that a satellite sends, which can be of any type, be it text
or in the form of images. Any type of data can be dumped into the big data storage
and analyzed. Since the data is so huge it cannot fit on a single machine and hence
it is stored on a group of machines. Many programs can be run in parallel on these
machines and hence the speed or velocity of computation on big data. As the
quantity of this data is very high, very insightful deductions can now be made
from the data. Some of the use cases where big data is used are:

• In the case of an e-commerce store, based on a user's purchase history
and likes, new set of products can be recommended to the users, thereby
increasing the sales of the site

Big Data Analytics with Java

[2]

• Customers can be segmented into different groups for an e-commerce site
and can then be presented with different marketing strategies

• On any site, customers can be presented with ads they might be most likely
to click on

• Any regular ETL-like work (for example, as in finance or healthcare, and so
on.) can be easily loaded into the big data stack and computed in parallel on
several machines

• Trending videos, products, music, and so on that you see on various sites are
all built using analytics on big data

Up until few years back, big data was mostly batch. Therefore, any analytics job that
was run on big data was run in a batch mode usually using MapReduce programs,
and the job would run for hours if not for days and would then compute the output.
With the creation of the cluster computing framework, Apache Spark, a lot of these
batch computations that took lot of time earlier have tremendously improved now.

Big data is not just Apache Spark. It is an ecosystem of various products such as
Hive, Apache Spark, HDFS, and so on. We will cover these in the upcoming sections.

This book is dedicated to analytics on big data using Java. In this book, we will be
covering various techniques and algorithms that can be used to analyze our big data.

In this chapter, we will cover:

• General details about what big data is all about
• An overview of the big data stack—Hadoop, HDFS, Apache Spark
• We will cover some simple HDFS commands and their usage
• We will provide an introduction to the core Spark API of RDDs using a few

examples of its actions and transformations using Java
• We will also cover a general introduction on Spark packages such as MLlib,

and compare them with other libraries such as Apache Mahout
• Finally, we will give a general description of data compression formats such

as Avro and Parquet that are used in the big data world

Chapter 1

[3]

Why data analytics on big data?
Relational databases are suitable for real-time CRUD operations such as order
capture in e-commerce stores but they are not suitable for certain use cases for which
big data is used. The data that is stored in relational databases is structured only but
in big data stack (read Hadoop) both structured and unstructured data can be stored.
Apart from this, the quantity of data that can be stored and parallelly processed in
big data is massive. Facebook stores close to a tera byte of data in its big data stack
on a daily basis. Thus, mostly in places where we need real-time CRUD operations
on data, we can still continue to use relational databases, but in other places where
we need to store and analyze almost any kind of data (whether log files, video files,
web access logs, images, and so on.), we should use Hadoop (that is, big data).

Since analytics run on Hadoop, it runs on top of massive amounts of data; it is
thereby a no brainer that deductions made from this are way more different than
can be made from small amounts of data. As we all know, analytic results from
large data amounts beat any fancy algorithm results. Also you can run all kinds
of analytics on this data whether it be stream processing, predictive analytics,
or real-time analytics.

The data on top of Hadoop is parallelly processed on multiple nodes. Hence the
processing is very fast and the results are parallelly computed and combined.

Big data for analytics
Let's take a look at the following diagram to see what kinds of data can be stored in
big data:

Big Data Analytics with Java

[4]

As you can see, the data from varied sources and of varied kinds can be dumped into
Hadoop and later analyzed. As seen in the preceding image there could be many
existing applications that could serve as sources of data whether providing CRM
data, log data, or any other kind of data (for example, orders generated online or
audit history of purchase orders from existing web order entry applications). Also as
seen in the image, data can also be collected from social media or web logs of HTTP
servers like Apache or any internal source like sensors deployed in a house or in the
office, or external source like customers' mobile devices, messaging applications
such as messengers and so on.

Big data – a bigger pay package for Java
developers
Java is a natural fit for big data. All the big data tools support Java. In fact, some of
the core modules are written in Java only, for example, Hadoop is written in Java.
Learning some of the big data tools is no different than learning a new API for Java
developers. So, putting big data skills in their skillset is a healthy addition for all the
Java developers.

Mostly, Python and R language are hot in the field of data science mainly because of
the ease of use and the availability of great libraries such as scikit-learn. But, Java,
on the other hand has picked up greatly due to big data. On the big data side, there is
availability of good software on the Java stack that can be readily used for applying
regular analytics or predictive analytics using machine learning libraries.

Learning a combination of big data and analytics on big data would get you closer to
apps that make a real impact on business and hence they command a good pay too.

Basics of Hadoop – a Java sub-project
Hadoop is a free, Java-based programming framework that supports the processing
of these large datasets in a distributed computing environment. It is part of the
Apache Software Foundation and was donated by Yahoo! It can be easily installed
on a cluster of standard machines. Different computing jobs can then be parallelly
run on these machines for faster performance. Hadoop has become very successful
in companies to store all of their massive data in one system and perform analysis
on this data. Hadoop runs in a master/slave architecture. The master controls the
running of the entire distributed computing stack.

Chapter 1

[5]

Some of the main features of Hadoop are:

Feature name Feature description
Failover support If one or more slave machines go down, the task is transferred

to another workable machine by the master
Horizontal scalability Just by adding a new machine, it comes within the network

of the Hadoop framework and becomes part of the Hadoop
ecosystem

Lower cost Hadoop runs on cheap commodity hardware and is much
cheaper than the costly large data solutions of other companies.
For example some bigger firms have large data warehouse
implementations such as Oracle Exadata or Teradata. These
also let you store and analyze huge amounts of data but their
hardware and software both are expensive and require more
maintenance. Hadoop on the other hand installs on commodity
hardware and its software is open sourced.

Data locality This is one of the most important features of Hadoop and is the
reason why Hadoop is so fast. Any processing of large data is
done on the same machine on which the data resides. This way,
there is no time and bandwidth lost in the transferring of data.

There is an entire ecosystem of software that is built around Hadoop. Take a look at
the following diagram to visualize the Hadoop ecosystem:

Big Data Analytics with Java

[6]

As you can see in the preceding diagram, for different criteria we have a different
set of products. The main categories of the products that big data has are shown
as follows:

• Analytical products: The whole purpose of this big data usage is an ability
to analyze and make use of this extensive data. For example, if you have
click stream data lying in the HDFS storage of big data and you want to find
out the users with maximum hits or users who made the most number of
purchases, or based on the transaction history of users you want to figure
out the best recommendations for your users, there are some popular
products that help us to analyze this data to figure out these details. Some
of these popular products are Apache Spark and Impala. These products are
sophisticated enough to extract data from the distributed machines of big
data storage and to transform and manipulate it to make it useful.

• Batch products: in the initial stages when it came into picture, the word "big
data" was synonymous with batch processing. So you had jobs that ran on
this massive data for hours and hours cleaning and extracting the data to
probably build useful reports for the users. As such, the initial set of products
that shipped with Hadoop itself included "MapReduce", which is a parallel
computing batch framework. Over time, more sophisticated products
appeared such as Apache Spark, which also a cluster computing framework
but is comparatively faster than MapReduce, but still in actuality they are
batch only.

• Streamlining: This category helps to fill the void of pulling and manipulating
real time data in the Hadoop space. So we have a set of products that can
connect to sources of streaming data and act on it in real time. So using these
kinds of products you can make things like trending videos on YouTube or
trending hashtags on Twitter at this point in time. Some popular products in
this space are Apache Spark (using the Spark Streaming module) and Apache
Storm. We will be covering the Apache Spark streaming module in our
chapter on real time analytics.

• Machine learning libraries: In the last few years there has been tremendous
work in the predictive analytics space. Predictive analytics involves usage of
advanced machine learning libraries and it's no wonder that some of these
libraries are now included with the clustering computing frameworks as
well. So a popular machine learning library such as Spark ML ships along
with Apache Spark and older libraries such as Apache Mahout are also
supported on big data. This is a growing space with new libraries frequently
entering the market every few days.

Chapter 1

[7]

• NoSQL: There are times when we need frequent reads and updates of data
even though big data is involved. Under these situations there are a lot of
non-SQL products that can be readily used while analyzing your data and
some of the popular ones that can be used are Cassandra and HBase both of
which are open source.

• Search: Quite often big data is in the form of plain text. There are many use
cases where you would like to index certain words in the text to make them
easily searchable. For example, if you are putting all the newspapers of a
particular branch published for the last few years in HDFS in PDF format,
you might want a proper index to be made over these documents so that they
are readily searchable. There are products in the market that were previously
used extensively for building search engines and they are now integratable
with big data as well. One of the popular and open source options is SOLR
and it can be easily established on top of big data to make the content easily
searchable.

The categories of products we have just depicted previously is not extensive. We
have not covered messaging solutions and there are many other products too apart
from this. For checking on extensive lists refer to a book that specifically covers
Hadoop in detail: for example, the Hadoop Definitive Guide.

We have covered the main categories of products, but let's now cover some of the
important products themselves that are built on top of the big data stack:

Product Description
HDFS HDFS is a distributed filesystem that provides high-performance access to

data across Hadoop clusters
Spark The Spark cluster computing framework is used for various purposes such

as analytics, stream processing, machine learning analytics, and so on, as
shown in the preceding diagram.

Impala Real-time data analytics is where you can fire queries in real time using this
on big data; this is used by data scientists and business analysts.

MapReduce MapReduce is a programming model and an associated implementation
for processing and generating large datasets with a parallel, distributed
algorithm on a cluster.

Sqoop This helps to pull data from structured databases such as Oracle and push
the data into Hadoop or HDFS

Oozie This is a job scheduler for scheduling Hadoop jobs
Flume This is a tool to pull large amount of streaming data into Hadoop/HSFS
Kafka Kafka is a real-time stream processing engine which provides very high

throughput and low latency.
Yarn This is the resource manager in Hadoop 2

https://en.wikipedia.org/wiki/Programming_model
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Cluster_(computing)

Big Data Analytics with Java

[8]

Distributed computing on Hadoop
Suppose you put plenty of data on a disk and read it. Reading this entire data
takes, for example, 24 hours. Now, suppose you distribute this data on 24 different
machines of the same type and run the read program at the same time on all the
machines. You might be able to parallelly read the entire data in an hour (an
assumption just for the purpose of this example). This is what parallel computing is
all about though. It helps in processing large volumes of data parallelly on multiple
machines called nodes and then combining the results to build a cumulated output.
Disk input/output is so slow that we cannot rely on a single program running on
one
machine to do all this for us.

There is an added advantage of data storage across multiple machines, which is
failover and replication support of data.

The bare bones of Hadoop are the base modules that are shipped with its default
download option. Hadoop consists of three main modules:

• Hadoop core: This is the main layer that has the code for the failover,
data replication, data storage, and so on.
HDFS: The Hadoop Distributed File System (HDFS) is the primary storage
system used by Hadoop applications. HDFS is a distributed filesystem that
provides high-performance access to data across Hadoop clusters.

• MapReduce: This is the data analysis framework that runs parallely on top
of data stored in HDFS.

As you saw in the options above if you install the base Hadoop package you will get
the core Hadoop library, the HDFS file system, and the MapReduce framework by
default, but this is not extensive and the current use cases demand much more then
the bare minimum products provided by the Hadoop default installation. It is due to
this reason that a whole set of products have originated on top of this big data stack
be, it the streaming products such as Storm or messaging products such as Kafka or
search products such as SOLR.

HDFS concepts
HDFS is Hadoop's implementation of a distributed filesystem. The way it is built, it
can handle large amount of data. It can scale to the extent where the other types of
distributed filesystems, for example, NFS cannot scale to. It runs on plain commodity
servers and any number of servers can be used.

Chapter 1

[9]

HDFS is a write once, read several times type of filesystem. Also, you can append
to a file, but you cannot update a file. So if you need to make an update, you need
to create a new file with a different version. If you need frequent updates and the
amount of data is small, then you should use other software such as RDBMS
or HBASE.

Design and architecture of HDFS
These are some of the features of HDFS:

• Open source: HDFS is a completely open source distributed filesystem and is
a very active open source project.

• Immense scalability for the amount of data: You can store petabytes of data
in it without any problem.

• Failover support: Any file that is put in HDFS is broken into chunks (called
blocks) and these blocks are distributed across different machines of the
cluster. Apart from the distribution of this file data, the data is also replicated
across the different machines depending upon the replication level. Thereby,
in case any machine goes down; the data is not lost and is served from the
other machine.

• Fault tolerance: This refers to the capability of a system to work in
unfavorable conditions. HDFS handles faults by keeping replicated copies of
data. So due to a fault, if one set of data in a machine gets corrupted then the
data can always be pulled from some other replicated copy. The replica of
the data is created on different machines, so even if the entire machine goes
down, still is no problem as replicated data can always be pulled from some
other machine that has the copy of it.

• Data locality: The way HDFS is designed, it allows the main data processing
programs to run closer to the data where it resides and hence they are faster
as less network transfer is involved.

Big Data Analytics with Java

[10]

Main components of HDFS
There are two main daemons that make up HDFS. They are depicted in the
following diagram:

As you can see in the preceding diagram, the main components are:

• NameNode: This is the main program (master) of HDFS. A file in HDFS
is broken in to chunks or blocks and is distributed and replicated across
the different machines in the Hadoop cluster. It is the responsibility of the
NameNode to figure out which blocks go where and where the replicated
blocks land up. It is also responsible for clubbing the data of the file when the
full file is asked for by the client. It maintains the full metadata for the file.

• DataNodes: These are the slave processes running on the other machines
(other than the NameNode machine). They store the data and provide the
data when the NameNode asks for it.

The most important advantage of this master/slave architecture of HDFS is failover
support. Thereby, if any DataNode or slave machine is down, the NameNode figures
this out using a heartbeat signal and it would then refer to another DataNode that
has the replicated copy of that data. Before Hadoop 2, the NameNode was the single
point of failure but after Hadoop 2, NameNodes have a better failover support. So
you can run two NameNodes alongside one another so that if one NameNode fails,
the other NameNode can quickly take over the control.

Chapter 1

[11]

HDFS simple commands
Most of the commands on HDFS are for storing, retrieving, or discarding data on it.
If you are used to working on Linux, then using HDFS shell commands is simple, as
almost all the commands are a replica of the Linux commands with similar functions.
Though the HDFS commands can be executed by the browser as well as using
Java programs, for the purpose of this book, we will be only discussing the shell
commands of HDFS, as shown in the following table:

Command What it does
mkdir This helps you to make a directory in HDFS:

hdfs dfs -mkdir /usr/etl

You always start the command with hdfs dfs and then the actual
command, which is exactly similar to the Linux command. In this case, this
command makes a directory etl inside the /usr directory in hdfs.

put This helps you to copy a file from a local filesystem to hdfs:
hdfs dfs -put dataload1.txt /usr/etl

This copies a file dataload1.txt to /usr/etl directory inside hdfs
ls This helps you to list out all files inside a directory:

hdfs dfs -ls /usr/etl (lists out files inside /usr/etl)
rm This helps you to remove a file:

hdfs dfs -rm /usr/etl/dataload.txt
(deletes dataload.txt inside /usr/etl)

du -h This helps you to check the file size:
hdfs dfs -du -h /usr/etc/dataload.txt

chmod This helps you to change the permissions on all:
hdfs dfs -chmod 700 /usr/etl/dataload.txt

This only gives the owner of the file complete permissions; rest of the users
won't have any permissions on the file.

cat This helps you to read the contents of a file:
hdfs dfs -cat /usr/etl/dataload.txt

head This helps you to read the top content (few lines from top) of a file:
hdfs dfs -head /usr/etl/dataload.txt

Similarly, we have the tail command to read a few lines from the bottom
of a file.

mv This helps you to move a file across different directories:
hdfs dfs -mv /usr/etl/dataload.txt /usr/input/
newdataload.txt

Big Data Analytics with Java

[12]

Apache Spark
Apache Spark is the younger brother to the MapReduce framework. It's a cluster
computing framework that is getting much more attraction now in comparison
to MapReduce. It can run on a cluster of thousands of machines and distribute
computations on the massive datasets across these machines and combine
the results.

There are few main reasons why Spark has become more popular than MapReduce:

• It is way faster than MapReduce because of its approach of handling a lot of
stuff in memory. So on the individual nodes of machines, it is able to do a lot
of work in memory, but MapReduce on the other hand has to touch the hard
disk many times to get a computation done and the hard disk read/write is
slow, so MapReduce is much slower.

• Spark has an extremely simple API and hence it can be learned very fast.
The best documentation is the Apache page itself, which can be accessed
at spark.apache.org. Running algorithms such as machine learning
algorithms on MapReduce can be complex but the same can be very simple
to implement in Apache Spark.

• It has a plethora of sub-projects that can be used for various other operations.

Concepts
The main concept to understand Spark is the concept of RDDs or Resilient
Distributed Dataset.

So what exactly is an RDD?

A resilient distributed dataset (RDD) is an immutable collection of objects. These
objects are distributed across the different machines available in a cluster. To a Java
developer, an RDD is nothing but just like another variable that they can use in their
program, similar to an ArrayList. They can directly use it or call some actions on it,
for example, count() to figure out the number of elements in it. Behind the job, it
sparks tasks that get propagated to the different machines in the cluster and bring
back the computed results in a single object as shown in the following example:

JavaRDD<String> rows = sc.textFile("univ_rankings.csv");
System.out.println("Total no. of rows --->"+ rowRdd.count());

spark.apache.org

Chapter 1

[13]

The preceding code is simple yet it depicts the two powerful concepts of Apache
Spark. The first statement shows a Spark RDD object and the second statement
shows a simple action. Both of them are explained as follows:

• JavaRDD<String>: This is a simple RDD with the name rows. As shown in
the generics parameter, it is of type string. So it shows that this immutable
collection is filled with string objects. So, if Spark, in this case, is sitting on
10 machines, then this list of strings or RDD will be distributed across the 10
machines. But to the Java developer, this object is just available as another
variable and if they need to find the number of elements or rows in it, they
just need to invoke an action on it.

• rows.count(): This is the action that is performed on the RDD and it
computes the total elements in the RDD. Behind the scene, this method
would run on the different machines of the cluster parallelly and would club
the computed result on each parallel node and bring back the result to the
end user.

RDD can be filled with any kind of object, for example,
Java or Scala objects.

Next we will cover the types of operations that can be run on RDDs. RDDs support
two type of operations and they are transformations and actions. We will be covering
both in the next sections.

Transformations
These are used to transform an RDD into just another RDD. This new RDD can later
be used in different operations. Let's try to understand this using an example as
shown here:

JavaRDD<String> lines = sc.textFile("error.log");

As shown in the preceding code, we are pulling all the lines from a log file called
error.log into a JavaRDD of strings.

Now, suppose we need to only filter out and use the data rows with the word error
in it. To do that, we would use a transformation and filter out the content from the
lines RDD, as shown next:

JavaRDD<String> filtered = rowRdd.filter(s -> s.contains("error"));
System.out.println("Total no. of rows --->"+ filtered.count());

Big Data Analytics with Java

[14]

As you can see in the preceding code, we filtered the RDD based on whether the
word error is present in its element or not and the new RDD filtered only
contains the elements or objects that have the word error in it. So, transformation
on one RDD produces another RDD only.

Actions
The user can take some actions on the RDD. For example, if they want to know the
total number of elements in the RDD, they can invoke an action count() on it. It's
very important to understand that until transformation, everything that happens
on an RDD is in lazy mode only; that is, to say that the underlying data remains
untouched until that point. It's only when we invoke an action on an RDD that
the underlying data gets touched and an operation is performed on it. This is a
design-specific approach followed in Spark and this is what makes it so efficient.
We actually need the data only when we execute some action on it. What if the user
filtered the error log for errors but never uses it? Then storing this data in memory
is a waste, so thereby only when some action such as count() is invoked will the
actual data underneath be touched.

Here are few common questions:

• When RDD is created, can it be reused again and again?
An RDD on which no action has been performed but only transformations
are performed can be directly reused again and again. As until that point
no underlying data is touched in actuality. However, if an action has been
performed on an RDD, then this RDD object is utilized and discarded as
soon as it is used. As soon as an action is invoked on an RDD the underlying
transformations are then executed or in other words the actual computation
then starts and a result is returned. So an action basically helps in the return
of a value.

• What if I want to re-use the same RDD even after running some action on it?
If you want to reuse the RDD across actions, then you need to persist it or,
in other words, cache it and re-use it across operations. Caching an RDD is
simple. Just invoke an API call persist and specify the type of persistence. For
example, in memory or on disk, and so on. Thereby, the RDD, if small, can
be stored in the memory of the individual parallel machines or it could be
written to a disk if it is too big to fit into memory.
An RDD that is stored or cached in this way, as mentioned earlier, is
reusable only within that session of Spark Context. That is, to say if your
program ends the usage ends and all the temp disk files of the storage of
RDD are deleted.

Chapter 1

[15]

• So what would you do if you need an RDD again and again in multiple
programs going forward in different SparkContext sessions?
In this case, you need to persist and store the RDD in an external storage
(such as a file or database) and reuse it. In the case of big data applications,
we can store the RDD in HDFS filesystem or we can store it in a database
such as HBase and reuse it later when it is needed again.
In real-world applications, you would almost always persist an RDD in
memory and reuse it again and again to expedite the different computations
you are working on.

• What does a general Spark program look like?

Spark is used in massive ETL (extract, transform, and load), predictive
analytics, or reporting applications.
Usually the program would do the following:

1. Load some data into the RDD.
2. Do some transformation on it to make the data compatible to handle

your operations.
3. Cache the reusable data across sessions (by using persist).
4. Do some actions on the data; the action can be ready-made or can be

custom operations that you wrote in your programs.

Spark Java API
Since Spark is written in Scala, which inherently is written in Java, Java is the big
brother on the Apache Spark stack and is fully supported on all its products. It has
an extensive API on the Apache Spark, stack. On Apache Spark Scala is a popular
language of choice but most enterprise projects within big corporations still heavily
rely on Java. Thus, for existing java developers on these projects, using Apache Spark
and its modules by their java APIs is relatively easy to pick up. Here are some of the
Spark APIs that java developers can easily use while doing their big data work:

• Accessing the core RDD frameworks and its functions
• Accessing Spark SQL code
• Accessing Spark Streaming code
• Accessing the Spark GraphX library
• Accessing Spark MLlib algorithms

Big Data Analytics with Java

[16]

Apart from this, Java is very strong on the other big data products as well. To show
how strong Java is on the overall big data scene, let's see some examples of big data
products that readily support Java:

• Working on HBase using Java: HBase has a very strong java API and data
can easily be manipulated on it using Java

• Working on Hive using Java: Hive is a batch storage product and working
on it using Java is easy as it has a good Java API.

• Even HDFS supports a Java API for regular file handling operations
on HDFS.

Spark samples using Java 8
All our samples in the book are written using Java 8 on Apache Spark 2.1. Java 8 is
aptly suited for big data work mainly because of its support for lambda's, due to
which the code is very concise. In the older versions of Java, the Apache Spark Java
code was not concise but Java 8 has changed completely.

We will encourage the readers of this book to actively use the Java 8 API on Apache
Spark as it not only produces concise code, but overall improves the readability and
maintainability of the code. One of the main reasons why scala is heavily used on
Apache Spark was mainly due to the concise and easy to use API. But with the usage
of Java 8 on Apache Spark, this advantage of Scala is no longer applicable.

Loading data
Before we use Spark for data analysis, there is some boilerplate code that we always
have to write for creating the SparkConfig and creating the SparkContext. Once
these objects are created, we can load data from a directory in HDFS.

For all real-world applications, your data would either reside in HDFS or
in databases such as Hive/HBase for big data.

Spark lets you load a file in various formats. Let's see an example to load a simple
CSV file and count the number of rows in it.

We will first initialize a few parameters, namely, application name, master (whether
Spark is locally running this or on a cluster), and the data filename as shown next:

private static String appName =LOAD_DATA_APPNAME";
private static String master =local";
private static String FILE_NAME =univ_rankings.txt";\

Chapter 1

[17]

Next, we will create the SparkContext and Spark config object:

SparkConf conf =new
SparkConf().setAppName(appName).setMaster(master);
JavaSparkContext sc =new JavaSparkContext(conf);

Using the SparkContext, we will now load the data file:

JavaRDD<String> rowRdd = sc.textFile(FILE_NAME);

Data operations – cleansing and munging
This is the task on which the data analyst would be spending the maximum amount
of time on. Most of the time, the data that you would be using for analytics will come
from log files or will be generated from other data sources. The data won't be clean
and some data entries might be missing or incorrect completely. Before any data
analytic tasks can be run on the data, it has to be cleaned and prepared in good shape
for the analytic algorithms to run on. We will be covering cleaning and munging in
detail in the next chapter.

Analyzing data – count, projection, grouping,
aggregation, and max/min
I assume that you already have Spark installed. If not, refer to the Spark
documentation on the web for installing Spark on your machine. Let's now use some
popular transformation and actions on Spark.

For the purpose of the following samples, we have used a small dataset of university
rankings from Kaggle.com. It can be download from this link: https://www.
kaggle.com/mylesoneill/world-university-rankings. It is a comma-separated
dataset of university names followed by the country the university is located at.
Some sample data rows are shown next:

Harvard University, United States of America

California Institute of Technology, United States of America

Massachusetts Institute of Technology, United States of America …

Common transformations on Spark RDDs

Kaggle.com
https://www.kaggle.com/mylesoneill/world-university-rankings
https://www.kaggle.com/mylesoneill/world-university-rankings

Big Data Analytics with Java

[18]

We will now cover a few common transformation operations that we frequently run
on the RDDs of Apache Spark:

1. Filter: This applies a function to each entry of the RDD, for example:
JavaRDD<String> rowRdd = sc.textFile(FILE_NAME);
System.out.println(rowRdd.count());

As shown in the preceding code, we loaded the data file using Spark context.
Now, using the filter function we will filter out the rows that contain the
word Santa Barbara as shown next:
JavaRDD<String> filteredRows = rowRdd.filter(s ->
s.contains("Santa Barbara"));
System.out.println(filteredRows.count());

2. Map: This transformation applies a function to each entry of an RDD.
3. In the RDD we read earlier we will find the length of each row of data using

the map function as shown next:
JavaRDD<Integer> rowlengths = rowRdd.map(s -> s.length());

After reading the length of each row in the RDD, we can now collect the data
of the RDD and print its content:
 List<Integer> rows = rowlengths.collect();
for(Integer row : rows){
 System.out.println(row);
}

4. FlatMap: This is similar to map, except, in this case, the function applied to
each row of RDDs will return a list or sequence of values instead of just one,
as in case of the preceding map. As an example, let's create a sample RDD of
strings using the parallelize function (this is a handy function for quick
testing by creating dummy RDDs):
JavaRDD<String> rddX = sc.parallelize(
Arrays.asList("big data","analytics","using java"));

On this RDD, let's split the strings by the spaces between them:
JavaRDD<String[]> rddY = rddX.map(e -> e.split(" "));

Finally, flatMap will connect all these words together into a Single List of
object as follows:
{"big","data","analytics","using","java"}

JavaRDD<String> rddY2 = rddX.flatMap(e ->
Arrays.asList(e.split(" ")).iterator());

Chapter 1

[19]

We can now collect and print this rddY2 in a similar way as shown here for
other RDDs.

5. Other common transformations on RDDs are as follows:

Other transformation Description
Union This is a union of two RDDs to create a single one. The

new RDD is a union set of both the other RDDs that are
combined.

Distinct This creates an RDD of only distinct elements.
Map paritions This is similar to a map as shown earlier, but runs sepa-

rately on each partition block of the RDD.

Actions on RDDs
As mentioned earlier, the actual work on the data starts when an action is invoked.
Until that time, all the transformations are tracked on the driver program and sent to
the data nodes as a set of tasks.

We will now cover a few common actions that we frequently run on the RDDs of
Apache Spark:

• count: This is used to count the number of elements of an RDD.
For example, the rowRdd.count()method would count the rows in
row RDD.

• collect: This brings back all the data from different nodes into an array on
the driver program (It can cause memory leaks on the driver if the driver is
low on memory.). This is good for quick testing on small RDDs:
JavaRDD<String> rddX = sc.parallelize(
Arrays.asList("big data","analytics","using java"));
 List<String> strs = rddX.collect();

This would print the following three strings:
'Big data
 Analytics
 Using java'

• reduce: This action takes in two parameters and returns one. It is used
in aggregating the data elements of an RDD. As an example, let's create a
sample RDD using the parallelize function:
JavaRDD<String> rddX2 =
sc.parallelize(Arrays.asList("1","2","3"));

Big Data Analytics with Java

[20]

After creating the RDD rddX2, we can sum up all its integer elements by
invoking the reduce function on this RDD:
String sumResult = rddX2.reduce((String x, String y)->
{
return»»+(Integer.parseInt(x)+ Integer.parseInt(y));
});

Finally, we can print the sum of RDD elements:
System.out.println("sumResult ==>"+sumResult);

• foreach: Just as the foreach loop of Java works in a collection, similarly this
action causes each element of the RDD to be accessed:

JavaRDD<String> rddX3 = sc.parallelize(
 Arrays.asList("element-1","element-
2","element-3"));
 rddX3.foreach(f -> System.out.println(f));

This will print the output as follows:
 element-1
 element-2
 element-3

Paired RDDs
As HashMap is a key-value pair collection, similarly, paired RDDs are key-value
pair collections except that the collection is a distributed collection. Spark treats these
paired RDDs specially and provides special operations on them as shown next.

An example of a paired RDD:

Let's create a sample key-value paired RDD using the parallelize function:

JavaRDD<String> rddX = sc.parallelize(
 Arrays.asList("videoName1,5","videoName2,6",
"videoName3,2","videoName1,6"));

Now, using the mapToPair function, extract the keys and values from the data rows
and return them as an object of a key-value pair or simple a Tuple2:

JavaPairRDD<String, Integer> videoCountPairRdd = rddX.
mapToPair((String s)->{
 String[] arr = s.split(",");
return new Tuple2<String, Integer>(arr[0],
Integer.parseInt(arr[1]));
});

Chapter 1

[21]

Now, collect and print these rules:

List<Tuple2<String,Integer>> testResults =
videoCountPairRdd.collect();
for(Tuple2<String, Integer> tuple2 : testResults){
 System.out.println(tuple2._1);
}

This will print the output as follows:

videoName2
videoName3
videoName1

Transformations on paired RDDs
Just as we can run transformations on plain RDDs we can also run transformations
on top of paired RDDs too. Some of the transformations that we can run on paired
RDDs are explained as follows:

• reduceByKey: This is a transformation operation on a key-value paired RDD.
This operation involves shuffling across different data partitions and creates
a new RDD. The parameter to this operation is a cumulative function, which
is applied on the elements and an aggregation is done on those elements to
produce a cumulative result.
In the preceding RDD, we have data elements for video name and hit counts
of the videos as shown in the following table:

Video name Hit counts.
videoName1 5
videoName2 6
videoName3 2
videoName1 6

We will now try to run reduceByKey on the paired RDD to find the net hit
counts of all the videos as shown earlier.
We will be loading the data into an RDD in the same way as shown earlier.
Once the data is loaded, we can do a reduceByKey to sum up the hit counts
on the different videos:
JavaPairRDD<String, Integer> sumPairRdd =
videoCountPairRdd.reduceByKey((x,y)-> x + y);

Big Data Analytics with Java

[22]

After the transformation, we can collect the results and print them as
shown next:
List<Tuple2<String,Integer>> testResults = sumPairRdd.collect();
for(Tuple2<String, Integer> tuple2 : testResults){
 System.out.println("Title : "+ tuple2._1 +
", Hit Count : "+ tuple2._2);
}

The results should be printed as follows:
Title : videoName2, Hit Count : 6
Title : videoName3, Hit Count : 2
Title : videoName1, Hit Count : 11

• groupByKey: This is another important transformation on a paired RDD.
Sometimes, you want to club all the data for a particular key into one iterable
unit so that you can later go through it for some specific work. groupByKey
does this for you, as shown next:
JavaPairRDD<String, Iterable<Integer>> grpPairRdd =
videoCountPairRdd.groupByKey();

After invoking groupByKey on videoCountPairRdd, we can collect and
print the result of this RDD:
List<Tuple2<String,Iterable<Integer>>> testResults = grpPairRdd.
collect();
for(Tuple2<String, Iterable<Integer>> tuple2 : testResults){
System.out.println("Title : "+ tuple2._1);
 Iterator<Integer> it = tuple2._2.iterator();
int i =1;
while(it.hasNext()){
 System.out.println("value "+ i +" : "+ it.next());
 i++;
}
}

And the results should be printed as follows:
Title : videoName2
value 1 : 6
Title : videoName3
value 1 : 2
Title : videoName1
value 1 : 5
value 2 : 6

Chapter 1

[23]

As you can see, the contents of the videoName1 key were grouped together
and both the counts 5 and 6 were printed together.

Saving data
The contents of an RDD can be stored in external storage. The RDD can later be
rebuilt from this external storage too. There are a few handy methods for pushing
the contents of an RDD into external storage, which are:

• saveAsTextFile(path): This writes the elements of the dataset as a text file
to an external directory in HDFS

• saveAsSequenceFile(path): This writes the elements of the dataset as a
Hadoop SequenceFile in a given path in the local filesystem—HDFS or any
other Hadoop-supported filesystem

Collecting and printing results
We have already seen in multiple examples earlier that by invoking collect() on
an RDD, we can cause the RDD to collect data from different machines on the cluster
and bring the data to the driver. Later on, we can print this data too.

When you fire a collect on an RDD at that instant the data from the distributed nodes
is pulled and brought into the main node or driver nodes memory. Once the data
is available, you can iterate over it and print it on the screen. As the entire data is
brought in memory this method is not suitable for pulling a heavy amount of data
as that data might not fit in the driver memory and an out of memory error might be
thrown. If the amount of data is large and you want to peek into the elements of that
data then you can save your RDD in external storage in Parquet or text format and
later analyze it using analytic tools like Impala or Spark SQL. There is also another
method called take that you can invoke on the Spark RDD. This method allows
you to pull a subset of elements from the first element of the arrays. Thereby take
method can be used when you need to view just a few lines from the RDD to check if
your computations are good or not.

Executing Spark programs on Hadoop
Apache Spark comes with a script spark-submit in its bin directory. Using this
script, you can submit your program as a job to the cluster manager (such as Yarn)
of Spark and it would run this program. These are the typical steps in running a
Spark program:

1. Create a jar file of your Spark Java code.

Big Data Analytics with Java

[24]

2. Next, run the spark-submit job by giving the location of the jar file and the
main class in it. An example of the command is shown next:

./bin/spark-submit --class <main-class> --master <master-
url><application-jar>

Some of the commonly used options of spark-submit are shown in the
following table:

spark-submit options What it does
--class Your Java class that is the main entry point for the spark

code execution.
--master Master URL for the cluster
application-jar Jar file containing your Apache spark code

For additional spark-submit options, please refer to the Spark
programming guide on the web. It has extensive information on it.

Apache Spark sub-projects
Apache Spark has now become a complete ecosystem of many sub-projects.
For different operations on it, we have different products as shown next:

Spark sub-module What it does
Core Spark This is the foundation framework for all the other modules. It has the

implementation for Spark computing engine, that is, RDD, executors,
storage, and so on.

Spark SQL Spark SQL is a Spark module for structured data processing. Using
this you can fire SQL queries on your distributed datasets. It's very
easy to use.

Spark Streaming This module helps in processing live data streams, whether they are
coming from products such as Kafka, Flume, or Twitter.

GraphX Helps in building components for Spark parallel graph
computations.

MLlib This is a machine learning library that is built on the top of the Spark
core and hence the algorithms are parallelly distributable across the
massive datasets.

Chapter 1

[25]

Spark machine learning modules
Spark MLlib is Spark's implementation of the machine learning algorithms based on
the RDD format. It consists of the algorithms that can be easily run across a cluster of
computer machines parallelly. Hence, it is much faster and scalable than single node
machine learning libraries such as scikit-learn. This module allows you to run
machine learning algorithms on top of RDDs. The API is not very user friendly and
sometimes it is difficult to use.

Recently Spark has come up with the new Spark ML package, which essentially
builds on top of the Spark dataset API. As such, it inherits all the good features of
the datasets that are massive scalability and extreme ease of usage. If anybody has
used the very popular Python scikit library for machine learning, they would realize
that the API of the new Spark ML is quite similar to Python scikit. From the Spark
documentation, Spark ML is the recommended way for doing machine learning
tasks now and the old Spark MLlib RDD based API would get deprecated in
some time.

Spark ML being based on datasets allows us to use Spark SQL along with it. Feature
extraction and feature manipulation tasks become very easy as a lot can now be
handled using Spark SQL only, especially the data manipulation work using plain
SQL queries. Apart from this, Spark ML ships with an advanced feature called
Pipeline. Plain data is usually in an extremely raw format and this data usually goes
through a cycle or workflow where it gets cleaned, mutated, and transformed before
it is used for consumption and training of machine learning models. This entire
workflow of data and its stages is very well encapsulated in the new feature called
as Pipeline in the Spark ML library. So you can work on the different workflows
whether for feature extraction, feature transformation or converting features to
mathematical vector format and gel together all this code using the pipeline API
of Spark ML. This helps us in maintaining large code bases of machine learning
stacks, so if later on you want to switch some piece of code (for example, for feature
extraction), you can separately change it and then hook it into the pipeline and this
would work cleanly without changing or impacting any other area of code.

MLlib Java API
The MLlib module is completely supported in Java and it is quite easy to use.

Other machine learning libraries
There are many machine learning libraries currently out there. Some of the popular
ones are scikit-learn, pybrain, and so on. But as I mentioned earlier, these are
single node libraries that are built to run on one machine but the algorithms are not
optimized to run parallelly across a stack of machines and then club the results.

Big Data Analytics with Java

[26]

How do you use these libraries on big data in case there is a particular
algorithm implementation that you want to use from these libraries?
On all the parallel nodes that are running your Spark tasks, make sure the
particular installation of the specific library is present. Also any jars or
executables that are required to run the algorithm must be available in the
path of the spark-submit job to run this.

Mahout – a popular Java ML library
Apache Mahout is also a popular library and is open source from the Apache stack.
It contains scalable machine learning algorithms. Some of the algorithms can be used
for tasks such as:

• Recommendations
• Classfications
• Clustering

Some important features of Mahout are as follows:

• Its algorithms run on Hadoop so they work well in a
distributed environment

• It has MapReduce implementations of several algorithms

Deeplearning4j – a deep learning library
This library is fully built on Java and is a deep learning library. We will cover this
library in our chapter on deep learning.

Compressing data
Big data is distributed data that is spread across many different machines. For
various operations running on data, data transfer across machines is a given. These
are the formats supported on Hadoop for input compression: gzip, bzip, snappy, and
so on. While we won't go into detail for the compression piece, it must be understood
that when you actually work on big data analytics tasks, compressing your data will
be always beneficial, providing few main advantages as follows:

• If the data is compressed, the data transfer bandwidth needed is less and as
such the data would transfer fast.

• Also, the amount of storage needed for compressed data is much less.

Chapter 1

[27]

• Hadoop ships with a set of compression formats that support easy
distributability across a cluster of machines. So even if the compressed files
are chuncked and distributed across a cluster of machines, you would be able
to run your programs on them without loosing any information or important
data points.

Avro and Parquet
Spark helps in writing the data to Hadoop and in Hadoop input/output formats.
Avro and Parquet are two popular Hadoop file formats that have specific
advantages. For the purpose of our examples, other than the usual file formats
of data, such as log and text format, the files can also be present in Avro or
Parquet format.

So what is Avro and Parquet and what is special about them?

Avro is a row-based format and is also schema based. The schema for the structure
of the data row is stored within the file; due to this, the schema can independently
change and there won't be any impact on reading old files. Also, since it is in
row-based format, the files can easily be split, based on rows and put on multiple
machines and processed parallely. It has good failover support too.

Parquet is a columnar file format. Parquet is specifically suited for applications
where for analytics you only need a subset of your columnar data and not all the
columns. So for things such as summing up/aggregating specific column Parquet
is best suited for such operations. Since Parquet helps in choosing only the columns
that are needed, it reduces disk I/O tremendously and hence it reduces the time for
running analytics on the data.

Summary
In this chapter, we covered what big data is all about and how we can analyze it.
We showed the 3 Vs that constitute big data: volume, variety, and velocity. We also
covered some ground on the big data stack, including Hadoop, HDFS, and Apache
Spark. While learning Spark, we went through some examples of the Spark RDD API
and also learned a few useful transformations and actions.

In the next chapter, we will get the first taste of running analytics on big data. For
this, we will initially use Spark SQL, a very useful Spark module, to do simple yet
powerful analysis of your data and later we will go on to build complex analytic
tasks while learning market basket analysis.

[29]

First Steps in Data Analysis
Let's take the first steps towards data analysis now. Spark has a very useful module,
Spark. Apache Spark has a prebuilt module called as Spark SQL and this module is
used for structured data processing. Using this module, we can execute SQL queries
on our underlying data. Spark lets you read data from various datasources whether
text, CSV, or Parquet files on HDFS or also from hive tables or HBase tables. For
simple data analysis tasks, whether you are exploring your datasets initially or
trying to analyze and cut a report for your end users with simple stats this module
is tremendously useful.

In this chapter, we will work on two datasets. The first dataset that we will analyze
is a simple dataset and the next one is a more complex real-world dataset from an
e-commerce store.

In this chapter, we will cover the following topics:

• Basic statistical analytic approaches using Spark SQL
• Building association rules using the Apriori algorithm
• Advantages and disadvantages of using the Apriori algorithm
• Building association rules using a faster and more efficient

FP-Growth algorithm

Datasets
Before we get our hands wet in the world of complex analytics, we will take small
baby steps and learn some basic statistical analysis first. This would help us get
familiar with the approach that we will be using on big data for other solutions as
well. For our analysis initially we will take a simple cars JSON dataset that has
details about a few cars from different countries. We will analyze it using Spark SQL
and see how easy it is to query and analyze datasets using Spark SQL. Spark SQL is
handy to use for basic analytics purposes and is nicely suited on big data. It can be
run on massive datasets and data can reside in HDFS.

First Steps in Data Analysis

[30]

To start with a simple case study we are using a cars dataset. This dataset can
be obtained from http://www.carqueryapi.com/. It can be obtained from link
http://www.carqueryapi.com/api/0.3/?callback=?&cmd=getMakes. This
datasets contains data about cars in different countries. It is in JSON format. It is not
a very big dataset from the perspective of big data but for our learning purposes to
start with a simple analytics case study it suits our requirements well. This dataset
has four important attributes shown as follows:

Attribute name Attribute description
make_id The type of car, for example Acura, Mercedes
make_display Name of the mode of the car
make_is_common Check if the makel is a common model

(marked as 1 if it is a common model else 0)
make_country Country where the car is made

We are using this data only for learning purposes. The cars dataset can be
replaced by any other dataset too for our learning purposes here. Hence
we are not bothered about the accuracy of this data and we are not using
it other than for our simple learning case study here.

Also here is a sample of some of the data in the dataset:

Sample row of dataset Description
{
"make-id":"acura",
"make_display": "Acura",
"make_is_common":"1",
"make_country" : "USA"
}

Here, the make_id or type of car is
acura and it is made in the country
USA.

{
"make-id":"alfa romeo",
"make_display": "AlfaRomeo",
"make_is_common":"1",
"make_country" : "Italy"
}

Here, the car is of type AlfaRomeo
and it is made in Italy.

http://www.carqueryapi.com/
 http://www.carqueryapi.com/api/0.3/?callback=?&cmd=getMakes
 http://www.carqueryapi.com/api/0.3/?callback=?&cmd=getMakes

Chapter 2

[31]

Data cleaning and munging
The major amount of time spent by a developer while performing a data analysis
task is spent in data cleaning or producing data in a particular format. Most of the
time, while performing analysis of some log file data or getting files from some other
system, there will definitely be some data cleaning involved. Data cleaning can be
in many forms whether it involves discarding a certain kind of data or converting
some bad data into a different format. Also note that most of the machine learning
algorithms involve running algorithms on a mathematical dataset, but most of
the practical datasets won't always have mathematical data. Converting text data
to mathematical form is another important task that many developers need to do
themselves before they can apply the data analysis tasks on the data.

If there are problems in the data that we need to resolve before we use it, then this
approach of fixing the data is called as data munging. One of the common data
munging tasks is to fix up null values in data and these null values might represent
either bad data or missing data. Bad or missing data is not good for our analysis as
it can result in bad analytical results. These data issues need to be fixed before we
can use our data in actual analysis. To learn the concepts of how we can fix our data
before we use it in our analysis let's pick up the dataset that we are using in this
chapter and fix the data before analyzing these datasets.

Most of your time as a developer performing the task of data analysis on big data
will be spent on making the data good for training the models. The general tasks
might include:

• Filtering the unwanted data: There are times when some of the data in
your dataset might be corrupted or might be bad. If you can fix this data
somehow, then you should, else you will have to discard it. Sometimes the
data might be good but it might contain attributes that you don't need. In
this case, you can discard these extra attributes. You can also use the Apache
Spark's filter method to filter out the unwanted data.

• Handling incomplete or missing data: Not all data points might be present
in the data. In such a situation, the developer needs to figure out which data
point or default data point is needed when the data point is not available.
Filling missing values is a very important task especially if you are using this
data to analyze your dataset. We will look at some of the common strategies
for handling missing data.

• Discarding data: If a lot of attributes in the data are missing, one easy
approach is to discard this row of data. This is not a very fruitful approach
especially if there are some attributes within this row that are meaningful,
which we are using.

First Steps in Data Analysis

[32]

• Fill some constant value: You can fill in some constant generic value for
missing attributes; for example, in your car, if you have entries as shown in
the following table with empty make_id and empty make_display:

Dataset one sample row
{
"make_id ";"",
 "make_display "; "",
"make_country" ;" JAPAN"
}

If we discard these entries, it won't be a good approach. If we are asked to
find the total number of cars from JAPAN in this dataset, then we will use the
following code:

make_country = 'JAPAN'.

To counter this and use this data, we can fill in some constant value such as
Unknown in this field. So the field will look like this:

{ "make_id ";"Unknown", "make_display "; "UnKnown", "make_country"
;" JAPAN" }

As shown earlier, we have filled the UnKnown keyword wherever we saw
empty data as in the case of make_id and make_display.

• Populate with average value: This might work in some cases. So if you have
a missing value in some column, you can take all the values with good data
in that column and find an average and later use this average value as a
value on that item.

• Nearest Neighbor approach: This is one of my favorite approaches, and
once we cover the KNN algorithm in this book we will cover this topic
again. Basically, you find data points that are similar to the one with missing
attributes in your dataset. You then replace the missing attributes with the
attributes of the nearest data point that you found. So suppose you have
your data from the dataset plotted on a scatter plot, as shown in the
following screenshot:

Chapter 2

[33]

The preceding screenshot shows some data points of a dataset plotted on the
x and y axis on a scatter plot. Look at the datapoint as shown by the arrow
with Point A as label. lf this datapoint has some missing attributes, then we
find the nearest data point to it which in this case is datapoint B as shown by
the other arrow (which has Point B as a label). From this datapoint, we now
pull the missing attributes. For this approach, we use the KNN algorithm or
the K Nearest Neighbor algorithm to figure out the distance of one data point
from another based on some attributes:

• Converting data to a proper format: Sometimes you might have to convert
data from one format to another for your analytics task. For example,
converting non-numeric numbers to numeric numbers or converting
the date field to a proper format.

Basic analysis of data with Spark SQL
Spark SQL is a spark module for structured data processing. Almost all the
developers know SQL. Spark SQL provides an SQL interface to your Spark data
(RDDs). Using Spark SQL you can fire SQL queries or SQL-like queries on your big
data set and fetch data in objects called dataframes.

A dataframe is like a relational database table. It has columns in it and we can
apply functions to these columns such as groupBy, and so on. It is very easy to
learn and use.

First Steps in Data Analysis

[34]

In the next section, we will cover a few examples on how we can use the dataframe
and run regular analysis tasks.

Building SparkConf and context
This is just boilerplate code and is the entry point for the usage of our Spark SQL
code. Every spark program will start with this boiler plate code for initialization.
In this code we build the Spark configuration and then apply the configuration
parameters (like application name and master location) and also build the
SparkSession object. This SparkSession object is the main object using
which you can fire SQL queries on your dataset.

SparkConf sconf = new sparkConf().setAppName(APP_NAME) .setMaster(APP_
MASTER);
SparkSession spark = SparkSession.builder() .config(sconf)
.getOrCreate();

Dataframe and datasets
Dataframe is a collection of distributed objects organized into named columns. It is
similar to a table in a relational database and you can use Spark SQL to query it in a
similar way. You can build dataframes from various datasources such as JSON files,
CSV files, parquet files or directly from Hive tables, and so on.

A dataset is also a collection of distributed objects, but is essentially a hybrid of
a Resilient Distributed Dataset (RDD) and a dataframe. An RDD or resilient
distributed dataset is a distributed collection of objects, is similar to an array list in
Java except that it is filled with objects that are distributed across multiple machines.
Spark provides low level API to interact with this distributed object. Dataframe on
the other hand is a higher level abstraction on top of RDDs and they are similar
to relational database tables which store data in that format. SQL queries can be
fired on top of dataframes. As we mentioned before a dataset object is a hybrid of
dataframe and RDD and it supports firing SQL queries similar to dataframes and
also applying RDD functions such as map, filter, and flatMap, similar to RDDs.

Chapter 2

[35]

Load and parse data
Spark API is very extensive. We can load data out of the box in different formats
and can clean/munge the data as we require and use it in our analysis tasks. The
following code shows us ways of loading different datasets. Here we are loading
data from a JSON file. This builds Dataset<Row> which is similar to a table in a
relational database, it has a set of columns:

Dataset<Row> carsBaseDF = spark.read() .json("src/resources/data/cars.
json");
 carsBaseDF.show();

Now we will register this dataframe as a temporary view. Just registering it as a temp
table in SparkContext means we can fire queries on it just as you execute queries on
an RDBMS table. That's as simple as it gets. To use this dataset row as a relational
database table and fire queries on it, just use the createOrReplaceTempView method
shown as follows:

carsBaseDF.createOrReplaceTempView("cars");

Now this data is available as a table cars just like a relational database table and you
can fire any SQL queries on it such as select * from cars to pull all the rows.

Analyzing data – the Spark-SQL way
Let's now dive into a few examples. You can find more examples in the
accompanying code in the GitHub repository too. For brevity, I am not showing
the boilerplate code for SparkContext again and again. I will be just referring to
SparkSession object as spark:

• Simply select and print data: Here we will just execute a query on the cars
table and would print a sample result from the entire dataset of results. It's
exactly similar to firing a select query on a relational database table:
Dataset<Row> netDF = spark.sql("select * from cars");
 netDF.show ();

First Steps in Data Analysis

[36]

The result will be printed as follows:

• Filtering on data: Here I will show two simple ways for filtering the data.
First we will select a single column and print results from the top few rows.
For this we will use the spark session and fire a SQL query on the cars table.
We will be selecting only the two columns make_country and make_display
from the cars table shown next. Also, for printing the first few rows, we will
use a handy spark method show(), which will print the first few rows of the
result set:
Dataset<Row> singleColDF =
spark.sql("select make_country,make_display fromcars") ;
singleColDF.show();

The output is as follows:

• Total count: Here we will find the total rows in our dataset. For this we will
use the count method on the dataset. The count method when executed on
the dataset returns the total number of rows in the dataset.
System.out.println("Total Rows in Data --) " + netDF.count();

Chapter 2

[37]

The output is as follows:

Total Rows in dataset :155

• Selective data: Let's fetch some data based on some criteria:
 ° Fetch the cars made in Italy only: We will fire a query on our car

view with a where clause specifying the make_country as 'Italy':
Dataset<Row> italyCarsDF =
spark.sql("select * from cars where make_country 'Italy'"};
 italyCarsDF.show(}; //show the full content

The result will be printed as follows:

 ° Fetch the count of cars from Italy: We will just use the count method
on the dataset we received in the previous call where we fetched the
rows that belonged only to country 'Italy':
System.out.println("Data on Italy Cars");
System .out. println ("Number of cars from Italy in this
data set --> " +
italyCarsDF. count ();

This will print the following:

First Steps in Data Analysis

[38]

 ° Collect all data and print it: Now discard the show() function as
it is just a handy function for testing and instead of that let's use a
function that we will use to get the data after firing the queries.
List<Row> italyRows = italyCarsDF.collectAsList();
for (Row italyRow : italyRows) {
System.out.println("Car type -> " + italyRow.getString(1);
}

This will print out all the types of cars that are made in Italy as
shown (we are only showing the first few cars here)

• Total count of cars from Japan in the dataset: We selected records that
belong to Italy. Let's find the total count of cars from Japan in the dataset.
This time we will just pull the count and not the total data for Japanese cars:
Dataset<Row> jpnCarsDF =
spark.sql("select count(*) from cars where make_country =
'Japan'");
List<Row> jpnRows = jpnCarsDF.collectAsList();
 System.out.println("Japan car dataset -----~> " +
jpnRows.get(0).getLong(0);

As shown, we build a dataframe by searching only for Japanese cars, and
next we print the count of these rows. The result is as follows:

• Distinct countries and their count: Just like we use the distinct clause in
SQL we can use the distinct clause in this big data Spark SQL query. If
the result is small, as in this case, we can do a collect() and bring the data
result in the memory of the driver program and print it there.

Chapter 2

[39]

Using the following code, we will print the distinct countries in this dataset
of cars:

Dataset<Row> distinctCntryDF = spark.sql("select distinct make_
country from
Cars");

List<Row> distinctCtry = distinctCntryDF.collectAsList();
System.out.println("Printing Distinct Countries below");

for (Row drow : distinctCtry) {
System.out.println(drow.get(0).toString();
System. out. println("Total Distinct Countries ; " +
distinctCtry.length);
}

And the result is printed as follows:

• Group by country and find count: Now, let's try to find the number of cars
from each country and sort it in descending order. As most Java developers
have used SQL before, this is a simple group by clause along with an order
by for ordering by count in descending order as shown:
Dataset<Row> grpByCntryDF = spark.sql("select
 make_country,count(*) cnt from Cars order by cnt
desc");

As seen we fired a simple group by query and counted the number of
countries in the dataset and finally sorted by the count in descending
order. We will now print the first few rows of this dataset:

 grpByCntryDF.show()

First Steps in Data Analysis

[40]

The result should be printed as follows:

There is a saying that a picture says a thousand words. Let's plot this in a bar
chart and see how easy it is to visualize this data by country:

As you can see from the graph, it is very easy to figure out that the UK has
the maximum number of cars in this dataset followed by USA.
We will be covering graphs for visualization in detail in the next chapter.

• Country with maximum number of car listings: First, select a list of count
of cars grouped by country and then register it as a temp table. We call this
temp view as CAR_GRP_BYCNTRY. Now, we fire a query on top of this view
CAR_GRP_BYCNTRY to select the max count and from the max count figure
out the country shown as follows:

Chapter 2

[41]

DataSet<Row) grpByAggDF = spark.sql("select make_country, count(
*) as cnt
from cars group by make_country order by cnt desc");
grpByAggDF.createOrReplaceTempView("CAR_GRP_BYCNTRY");

DataSet<Row) countryWithMaxCarDF = spark.sql("select n.make_
country,n.cnt
From CAR_GRP_BYCNTRY n, (select max(cnt) as m from CAR_GRP_BY_
CNTRY)
c where n.cnt = c.m");

countryWithMaxCarDF.show();

This will print the result as follows:

• Saving data to external storage: The results obtained via Spark SQL queries
can easily be dumped into external storage for future use. You can re-read
the external stored files and build the dataframes again and fire queries on
top of them.

• Saving to file (as JSON or Parquet): As discussed earlier, Spark helps us
store/read the content in various formats. Here I will show storing the
results in JSON or Parquet format.

1. Select the cars from Italy and save them to external storage as
JSON: First we load the json dataset. Once the dataset is loaded,
we register it as a temporary view. Now we fire our queries on that
and create a new dataset. Finally, we can dump this dataset into an
external storage using the format of data we want to use.
Dataset<Row> carsBaseDF =
spark.read().json("src/resources/data/cars.json") ;
carsBaseDF.createOrReplaceTempView("cars");

Dataset<Row> italyCarsDF =
spark.sql("select * from cars where make_country='Italy' ");

italyCarsDF.write().format("json").save("C:/temp/italycars") ;

First Steps in Data Analysis

[42]

As shown in the last line of the preceding code, we specify the format
of storage that is, json and save it to an external directory. If you go
to this external directory, you will see that there is a folder named
italy cars and within that there will be a file starting with the
word 'part' (that is, this depicts the partitioned data; in case of large
datasets, the data is partitioned into multiple files). Some of the lines
from this data are shown as follows:
{"make_country": "Italy","make_display":"Abarth","make_
id":"abarth","make_is_common":"0"}
{"make_country":"Italy","make_display":"AlfaRomeo","make_
id":"alfaromeo","make_is_common":"l"}
{"make_country":"Italy","make_display":"Autobianchi","make_
id":"autobianchi","make_is_common": "0"}

Take a look at the make_country attribute in the preceding code, all
are Italian cars.

2. Save as parquet: We can also store the data we stored earlier as JSON
in other formats. This is just a simple change. We will change the
format of the storage to parquet and the rest of the code remains
the same:
italyCarsDF.format("parquet").save("resources/temp/pqt/
italyData");

When we store data to an external directory, it does not matter
from a big data perspective whether the directory is on a filesystem
or the directory belongs to a place in HDFS. In fact, in real-world
applications, you will be partitioning and storing the data mostly on
HDFS in some form (for example, as parquet or JSON, and so on).

Hadoop runs on various other filesystems such as
Amazon S3, so the output files can be saved to these
filesystems as well.

3. Saving to HDFS: The files that we are saving on the operating
system filesystem can also be pushed to HDFS or to any third-party
filesystem such as Amazon S3:

 Here we will see how we can save the dataframe on HDFS:

italyCarsDF.write().format("parquet").save("<PATH_IN_
HDFS>");

Chapter 2

[43]

If you execute the preceding code from a machine that is on big data
stack and uses HDFS filesystem, it will then create and insert the data
on HDFS.

4. Re-read the stored data: Let's now re-read the Italian cars data that
we stored to external storage earlier. We will select and print the
Italian cars data but this time read the data from external storage that
is the external JSON file italyData.json. This file can also reside on
HDFS too, apart from the normal filesystem:
DataFrame newItalyCarsDF =
sqlCtx.read().format("json").json("resources/temp/italyData.
json");
newItalyCarsDF.registerTempTable("italy_cars");
DataFrame italyCarsDF = sqlCtx.sql("select * from italy_
cars");
italyCarsDF.show();

As you can see in the preceding code, we just loaded our data
back from the external JSON file. We registered the dataframe as a
temporary view and fired another query on it too.

Spark SQL for data exploration and analytics
Whatever we have depicted earlier using Spark SQL is a simple form of analytics
that can both be used in real-world analytics as well as for exploring your data.
So you can easily use Spark SQL and run queries for counting your data, finding
distinct values or grouping your data to find counts, and so on by categories. Even
though these are simplistic tasks, yet they are very powerful and in many use cases
perhaps these are the only analytics pieces you might need.

Next let's look into a more complex analytics problem. In this problem we will try
to analyze what is in the shopping basket of a consumer and based on that we will
build some deductions and rules.

Market basket analysis – Apriori algorithm
When we shop at any store, we get a receipt of all the items we bought. This receipt
is one transaction and it can have a very unique ID called transaction ID in the
shopping store's database. Note that the store can be an online e-commerce store
too. They keep all these transactions in a database to later study them.

First Steps in Data Analysis

[44]

This transaction history is valuable information for the shop owners or the
e-commerce stores. It tells them about the buying patterns of the customers. Using
this information, they can figure out which items sell the most, or which items go
together. This will help them to arrange items accordingly in the different isles in
their shop. For example they can keep chocolate cookies near to the isle containing
milk as they know that lots of people who buy milk generally tend to buy chocolate
cookies too. Similar to this, an online store can display items that go together, as
shown next from one sample ecommerce store:

Suppose we get a list of few such transactions containing users buying different
items, as shown in the following table:

Transaction ID Items bought (in each transaction)
12761 Chocolate cookies, milk, and papaya
32343 Apples, milk, and diapers
43787 Chocolate cookies, apples, milk, and diapers
77887 Apples and diapers

Chapter 2

[45]

As you can see there are four transactions in the preceding table.

Now, let's try to analyze this transaction set and while analyzing we will also study
a very popular data mining algorithm called Apriori algorithm. We will go step-by-
step through this evaluation:

• Item frequency: Find the frequency of each item within this transaction list.
Frequency is nothing but the number of times this item is bought within this
set of transactions. The values are shown as follows:

Item Number of times it was sold Support

Milk 3 ¾ = 0.75
Chocolate cookie 2 2/4 = 0.5
Apples 3 ¾ = 0.75
Papaya 1 ¼ = 0.25
Diapers 3 ¾ = 0.75

From this count of number of items sold, we can see that milk, diapers, and
apples are each sold three times and papaya is sold only once. Thus, papaya
is quite an infrequent item and is not sold much; hence, it does not look
important for the purpose of analysis at all.
But what does the data in the last column under Support mean?
For studying the Apriori algorithms and its analysis, we must learn a few
concepts. Let's try to understand these concepts now:

• Support: In simple terms, support just shows the ratio of the number of
times a particular item or set of items is sold divided by the total number of
transactions as shown:

First Steps in Data Analysis

[46]

• Minimum support: If you look at the preceding set of transactions, you can
easily see that there are a lot of combinations for items. So milk goes with
chocolate cookies, milk goes with apples, chocolate cookies go with apples,
and so on. As you can see, there are lots of combinations that you can build
based on this small transaction history dataset itself. But an actual store has
lots of items. If we try building this combination of items across the whole
product list of the store (based on their transactions), you can easily make
out that the amount of combinations and calculations would soon reach to
an unmanageable quantity.
To facilitate in reducing the number of combinations to analyze, the Apriori
algorithm asks the users to set a minimum support ratio below which they
can discard the item or item sets with that support level.
Thus, if the minimum support is 0.5 (that is, the item should be present in
minimum of half of the transactions), then we can discard the items that do
not meet this minimum support value and create the most frequent item set
from the previous set shown as follows:

Item Number of times
item was sold

Support Description

Milk 3 ¾ = 0.75 Selected as the value is greater
than minimum support

Chocolate cookie 2 2/4 = 0.5 Selected as the value is greater
than minimum support

Apples 3 ¾ = 0.75 Selected as the value is greater
than minimum support

Papaya 1 ¼ = 0.25 Discarded as the value is less
than minimum support

Diapers 3 ¾ = 0.75 Selected as the value is greater
than minimum support

As you can see, we discarded Papaya as it was mentioned in only one
transaction and its support value is lower than the minimum support
value. But this brings up an important question.
What is the rule behind choosing only frequently sold items or items that are
frequently sold together?
Here comes an important rule from the Apriori algorithm, which states
that, "If an item set is frequent then its subsets will be frequent too". As an
example, if milk and apples are mentioned frequently in many transactions,
then their subsets, that is, just apples and just milk are also mentioned in a lot
of transactions and hence are frequent too.

Chapter 2

[47]

• Association rule: Before we dig deeper into this analysis approach, let's try
to understand what an association rule is.
An association rule is an if…then…else type of statement that will link
unrelated data within a database. So if we say "If we buy an item A, then
we are most likely to buy another item B", then this is an association rule.
Association rules are written as follows:

A => B
That is, if the Left Hand Side (L.H.S) is present, then Right Hand Side
(R.H.S) is most likely going to be present.
An example of an association rule could be as follows:
{Chocolate cookies, Milk} => {Apples}
Thus, if somebody buys chocolate cookies and milk, then they are likely to
buy apples.
If we have a transaction dataset of millions of transactions with thousands if
not millions of items sold, we will have a huge number of association rules.
Managing such a vast number of rules is a waste of computation effort, as
not all rules will hold good, so let's now try to find how good our association
rules are.
How good is an association rule?
From the preceding transaction dataset based on different combinations of
items, we can figure out a lot of association rules as shown earlier. But do we
know which ones are really good enough and which we can utilize?
To figure out which rules are good enough for us to use, we use the concept
of confidence. Thus, we will try to figure out how much confidence we have
in a rule.

• Confidence: Confidence is the measure of goodness of our association rule.
Thus, for a given association rule {A} => {B} within a set of transaction is
defined as the proportion of transactions that contain A and also contain Y.
Thus, for {A} => {B}, the confidence value is as shown :

First Steps in Data Analysis

[48]

Support of {A} U {B} shows the value of support from
transactions where both A and B are found.

Let's try to calculate confidence for the following rule:
{Chocolate cookie, Milk} => {Apple}
The confidence for this rule will be calculated using the following three steps:

1. First we calculate the support for chocolate cookies, milk, and
apples as:
Support of {Chocolate cookie, milk, apples} = ¼ = 0.25

2. Then we calculate the support for chocolate cookies and milk as:

Support of {Chocolate cookie, Milk} = 2/4 = 0.5

 Finally we calculate the confidence for our association rule as:
Confidence for {Chocolate cookie, Milk} => {Apple} = 0.25/0.5 = 0.5

Converting this real value result of 0.5 to a percentage we get the value as 50
percent. Thus we have 50% confidence on this association rule.

Full Apriori algorithm
In the previous steps, we saw how item frequency is found and we went over the
concepts of how support, minimum support, and confidence is calculated. Now, let's
look at the full Apriori algorithm given that we have the minimum support level that
we want to run this algorithm on. Apriori algorithm comprises the following steps:

1. First find the frequent items and item sets.
2. Discard the item sets that have a frequency lesser than our minimum

support level.
3. Figure out the association rules from these item sets and figure out their

confidence levels.
4. Discard the rules that have confidence lesser than the value we are looking

for and sort the association rules in descending order with values with higher
confidence listed on top.

Chapter 2

[49]

We will now put these steps into action and walk through an entire Apriori
implementation on a sample dataset that we showed earlier:

• Dataset: Let's get back to our example dataset and solve the full problem
now and build the association rules. As you must have noticed, we had put
a minimum support of 0.5. After removing the items that did not meet the
minimum support, we got a frequent item set shown as follows.

Item Number of times it was sold Support
Milk 3 ¾ = 0.75
Chocolate cookie 2 2/4 = 0.5
Apples 3 ¾ = 0.75
Diapers 3 ¾ = 0.75

• Apriori implementation: After we collect the single items, we form the
subsets of these items by combining them and forming combinations. The
combinations can be shown as follows:

Our individual items are => { chocolate cookie, milk , Apples, diapers }
From these items, we can now make combinations as { chocolate cookie, milk }, {
chocolate cookie, apples }, { apples, diapers }, and so on.

The full list is shown in the following table. We also collect the Support for these item
sets. Support will be the transaction containing these item sets divided by the total
number of transactions:

Item sets Number of times these item
sets are seen in the transactions

Support

Chocolate cookies and milk 2 2/4 = 0.5
Apples and milk 2 2/4 = 0.5
Diapers and milk 2 2/4 = 0.5
Apples, chocolate cookies 1 ¼ = 0.25
Chocolate cookies and diapers 1 ¼ = 0.25
Apples and diapers 2 2/4 = 0.5
Apples, chocolate cookies, and milk 1 ¼ = 0.25
Chocolate cookies, diapers, and milk 1 ¼ = 0.25
Apples, chocolate cookies, diapers,
and milk

1 ¼ = 0.25

Apples, diapers, and milk 1 ¼ = 0.25
Apples, chocolate cookies, and diapers 1 ¼ = 0.25

First Steps in Data Analysis

[50]

As shown, we will reject all the item sets or combinations that do not meet our
minimum support value. In our case, we use the minimum support value as 0.5
hence some of the item sets (in grey color in the preceding table) are rejected.

So now our set of combinations that passed our minimum support value will be
as follows:

Item sets Number of times these
item sets are seen in the
transactions

Support

Chocolate cookies and milk 2 2/4 = 0.5
Apples and milk 2 2/4 = 0.5
Diapers and milk 2 2/4 = 0.5
Apples and diapers 2 2/4 = 0.5

From these combinations, we now form the association rules. As we said earlier, the
association rule is like an if...else statement, which states that if the left hand side
happens then the right hand side might happen, that is:

'if somebody bought apples' => 'they might buy milk.

We can write this rule as:

{apples} => {milk}

As we can see, this rule denotes if L.H.S happens, then R.H.S is possible.

But how do we know that the rule that we have depicted here is good enough?

Enter the confidence value that we had explained earlier. So how do we find our
confidence in the preceding rule? We will use the following formula:

Support of L.H.S and R.H.S both = Support for both Apples and Milk

Support of L.H.S only Support for Apples only

Result = (2/4) = 2/3 = 0.66

(¾)

Thus, our confidence in this rule {Apples} => {Milk} is 0.66 or 66%.

Chapter 2

[51]

Now, let's see all the rules based on the combinations we selected earlier:

Left Hand Side (LHS) Right Hand Side (RHS) Confidence
Chocolate cookies Milk 2/4 = 1 or 100%

2/4
Milk Chocolate cookie 2/4 = 0.66

3/4
Apples Milk 0.66
Milk Apples 2/4 / ¾ = 0.66
Diapers Milk (2/4) / (¾) = 0.66
Milk Diapers ¾ / ¾ = 1 (this is 100%)
Apples Diapers ¾ / ¾ = 1
Diapers Apples ¾ / ¾ = 1

As you can see, the minimum confidence in our rules is 66% or 0.66.

What if the user says that they are only interested in rules with a minimum
confidence level of 80% ?

In this case, we will filter out the rules that have lesser confidence than this, and we
will have the following rules from the preceding tables.

Note, here we will write the rules in the proper format.

So our final result is as follows:

Rule Confidence
{ Chocolate cookies, Milk } 1
{ Milk, Diapers } 1
{ Apples, Diapers } 1
{ Diapers, Apples } 1

Implementation of the Apriori algorithm
in Apache Spark
We have gone through the preceding algorithm. Now we will try to write the
entire algorithm in Spark. Spark does not have a default implementation of Apriori
algorithm, so we will have to write our own implementation as shown next (refer to
the comments in the code as well).

First Steps in Data Analysis

[52]

First, we will have the regular boilerplate code to initiate the Spark configuration
and context:

SparkConf conf = new SparkConf().setAppName(appName).
setMaster(master);
JavaSparkContext sc = new JavaSparkContext(conf);

Now, we will load the dataset file using the SparkContext and store the result in a
JavaRDD instance. We will create the instance of the AprioriUtil class. This class
contains the methods for calculating the support and confidence values. Finally,
we will store the total number of transactions (stored in the transactionCount
variable) so that this variable can be broadcasted and reused on different
DataNodes when needed:

JavaRDD<String> rddX = sc.textFile(FILE_NAME);
AprioriUtil au = new AprioriUtil();
Long transactionCount = rddX.count();
Broadcast<Integer> broadcastVar = sc.broadcast(transactionCount.
intValue());

We will now find the frequency of items. By frequency we mean the number of
times the item and its combination with other items is repeated in the transactions.
The UniqueCombinations class instance contains the utility methods for helping us
find the item combinations, which we later use to find their frequency in the dataset
of transactions. As shown in the following methods, we first find the combinations
and later use the combination values as the key so that we can run reduceByKey
operations to sum up their frequency count as follows:

UniqueCombinations uc = new UniqueCombinations();
JavaRDD<Map<String,String>> combStrArr = rddX.map(s ->
uc.findCombinations(s));
JavaRDD<Set<String>> combStrKeySet = combStrArr.map(m -> m.keySet());
JavaRDD<String> combStrFlatMap = combStrKeySet.flatMap((Set<String> f)
->
f.iterator());
JavaPairRDD<String, Integer> combCountIndv = combStrFlatMap.
mapToPair(s -> new Tuple2(s, 1));
JavaPairRDD<String, Integer> combCountTotal = combCountIndv.
reduceByKey((Integer x, Integer y) -> x.intValue() + y.intValue());

Now we will collect the items and their count as well as the item combinations
and their count and store them in a Map for future use within the program.
To make the collection available across different DataNodes, we put this Map
in a Broadcast variable:

Map<String,Integer> freqMap = combCountTotal.collectAsMap();
Broadcast<Map<String,Integer>> bcFreqMap = sc.broadcast(freqMap);

Chapter 2

[53]

Now we will be filtering items with frequency less than support:

Support is the number of minimum counts or frequency of
an item.

JavaPairRDD<String,Integer> combFilterBySupport = combCountTotal.
filter(c ->
c._2.intValue() >= 2);

Since we are interested in association rules where we want to depict that if one item
or items are present then another item might also be present, we are interested in a
combination of items only; hence, we will filter our rules with just a single item
in it:

JavaPairRDD<String,Integer> freqBoughtTogether = combFilterBySupport.
filter(s ->
s._1.indexOf(",") > 0);

Let's start building the actual association rules now. For this, we will go over
the items of frequently bought together RDD and we would invoke a flatMap
method on it. This flatMap function would break the individual rows into a
collection of objects. On this collection, we will invoke a method getRules from
our UniqueCombinations class. This method getRules would break the items into
left hand side and right hand side combinations and store in a Rule object. Finally,
we will figure out the support of the left-hand side value, support of the right-hand
side value and the confidence value of this rule and store the rule in a collection and
return the result in RDD:

JavaRDD<Rule> assocRules = freqBoughtTogether.flatMap(tp -> {
List<Rule> rules = uc.getRules(tp._1);
 for (Rule rule : rules) {
 String lhs = rule.getLhs();
 String rhs = rule.getRhs();
 Integer lhsCnt = bcFreqMap.value().get(lhs);
 Integer rhsCnt = bcFreqMap.value().get(rhs);
 Integer lhsRhsBothCnt = bcFreqMap.value().get(tp._1);
 double supportLhs = au.findSupport(lhsCnt, broadcastVar.value());
 double supportRhs = au.findSupport(rhsCnt, broadcastVar.value());
 double confidence = au.findConfidence(lhsRhsBothCnt, lhsCnt);
 rule.setSupportLhs(supportLhs);
 rule.setSupportRhs(supportRhs);
 rule.setConfidence(confidence);
 }
 return rules.iterator();
});

First Steps in Data Analysis

[54]

We will start printing our association rules now:

At this point, we can also filter out the rules that do not meet
our minimum confidence criteria.

List<Rule> rulesColl = assocRules.collect();
for (Rule rl : rulesColl) {
 System.out.println(rl.getLhs() + " => " + rl.getRhs() + " , " +
rl.getConfidence());
}

We will now see the uses and any disadvantages of this algorithm:

• Use of Apriori algorithm: Apriori can be used in places where the number of
data transactions is small. It's a simpler algorithm and is easy to maintain on
small amounts of data.

• Disadvantages of Apriori algorithm: Even though Apriori algorithm is easy
to code and use, it has some disadvantages:

 ° The main disadvantage of Apriori algorithm is that it is slow.
For such a small dataset as we used earlier there were so many
combinations. Thus, on a very large dataset, it can generate millions
of combinations and so computation-wise it can be slow.

 ° If the number of counts of items sold or combinations sold increases
(which will happen as items do get sold), then the algorithm will
have to rescan the entire dataset and do the computation again.

Thus, as you can see, Apriori algorithm is a good choice for
smaller datasets.

Efficient market basket analysis using
FP-Growth algorithm
The Apriori algorithm is slow and requires lot of computation power. When the
number of transactions is very high, the item combination count explodes and
becomes too expensive to compute. Hence, Apriori is not a practical approach on
very large datasets.

Chapter 2

[55]

To avoid the pitfalls in Apriori, the FP-Growth algorithm was developed. This
algorithm is especially suited for big data operations and goes well with Apache
Spark and MapReduce. Spark comes with a default implementation of FP-Growth
algorithm in its MLlib library.

Let's now try to understand the concepts behind the FP-Growth algorithm.

What is a FP-Growth algorithm?

FP-Growth algorithm builds on top of the Apriori algorithm and is essentially an
improvement on top of it. It avoids the pitfalls of the Apriori algorithm and is very
fast to run on large datasets. The FP-Growth algorithm uses a different approach
than Apriori and reads the databases of transactions only twice as compared to
Apriori (which has to read the database multiple times) and hence it is much faster.
The algorithm reads through the dataset of transactions and creates a special data
structure called FP-Tree. An example of a Dtree is shown next:

As you can see in the preceding diagram, Chocolates has the number 3 next to it.
This number depicts the number of transaction encountered until that particular
row of the dataset.

Unlike normal search trees, the Node in the Dtree can be repeated As you
can see in the preceding diagram, the node Bread is repeated in this tree.

First Steps in Data Analysis

[56]

The approach to using the FP-Growth algorithm for market basket analysis can be
described in two steps:

• Build the FP-Tree
• Find frequent item sets using this FP-Tree

Let's now go through the full FP-Growth algorithm step-by-step:

• Transaction dataset: So let's suppose we get a list of a few transactions
containing users buying different items shown in the following table:

Transaction ID Items bought in each transaction
12761 Chocolate cookies, milk, and papaya
32343 Apples, milk, and diapers
43787 Chocolate cookies, apples, milk, and diapers
77887 Apples and diapers
77717 Milk and oranges

• Calculating the frequency of items: Now, let's find the frequency of each
item in the datasets. Frequency is nothing but the number of times the items
show up with in the set of transactions. For example, apples show up three
times in the preceding transactions, hence the frequency is three. The full set
of values is shown in the following table:

Item Frequency
Chocolate cookie 2
Milk 4
Papaya 1
Apples 3
Diapers 3
Oranges 1

• Assign priority to items: Now assign a priority to each item in the preceding
list. The item which has more frequency in the dataset is given a higher
priority. The priority of the items are shown in red color in the
following table:

Chapter 2

[57]

Item Frequency Priority
Chocolate cookie 2 4
milk 4 1
papaya 1 5
Apples 3 2
diapers 3 3
oranges 1 6

• Array items by priority: Now we go back to the transaction list we had in
10.1 and arrange the items in the order of priority with the highest priority
items coming first and lowest one in the end as shown in the following table:

Transaction ID Items bought Items according to priority
12761 Chocolate cookie, milk, and papaya Milk, chocolate cookie, and

papaya
32343 Apples, milk, and diapers Milk, apples, and diapers
43787 Chocolate cookie, apples, milk, and

diapers
Milk, apples, diapers, and
chocolate cookie

77887 Apples and diapers Apples and diapers
77717 Milk and oranges Milk and oranges

• Building the FP-Tree: Once you have arranged the items in the sort order
according to priority, it is the time to build the FP-Tree.
We will start building the FP-Tree by going from the sorted list of first
transaction items downward until we cover all the transactions. The
steps are listed as follows:

1. The first transaction is {Milk, chocolate cookie, papaya }
(in the order of priority).

First Steps in Data Analysis

[58]

For FP-Tree, the initial node is always null or blank and the
remaining nodes root out from it. While writing the item in the node,
we write the count of its occurrence until that transaction. So since
{Milk, chocolate cookie, papaya } is the first transaction only,
the occurrence count of all the items will be 1 until this transaction
and the tree would be as shown next:

As you can see in the preceding diagram, the FP-Tree starts with a
null node and at each node element you can see the count of that
element (up to that transaction).

2. Now pull the second transaction and take the items and see if you
need to walk through the same path of the tree; if not, then you create
a new path. If you walk through the same path, then you increase
the item counts in the entry that already exist. If you are going on
a new path in the tree, then you put the item count as if it's the first
transaction:

Chapter 2

[59]

As you can see in the preceding diagram, Milk was on the same path
twice so we increased its value by 1 whenever it occurred across the
same path in a different transaction. Also, we treat items on a new
path as new items and add a new count of 1 to them. On the new
path, the items can be repeated.

3. Now we pick the third transaction and plot it on the tree. Note that
none of the existing paths start with Chocolate Cookie; hence, we
create a new path. This new path will contain items that we already
mentioned in the FP-Tree earlier. This is the main difference between
an FP-Tree and a normal search tree. It can contain repeated items as
we mentioned earlier:

First Steps in Data Analysis

[60]

4. Remaining steps: Plotting the remaining transactions on the tree will
show the full FP-Tree as shown next:

{Milk, Oranges} starts with the existing node Milk, so we increase its
count further to 3.

As you can see, the whole set of transactions is now fitted into one
small tree. In a way, FP-Tree can compress a huge list of transactions
into a sorted tree structure. This tree structure in some cases can be
easily fitted into a computer's memory for fast computations. In the
case of big data, huge FP-Trees can be distributed across a cluster
of machines.
We have seen the full FP-Tree now but we need to find out a few
more details about the tree as mentioned next.
How do you validate whether the FP-Tree that you have built is
good or not?
The count of the total number of items should exactly match the
count of the items in the original transaction. Thus, as you can
see in the preceding diagram, the count of Milk is 4.

Count of Milk Items from the FP-Tree is = Count on First Milk Node + Count on
Second Milk Node = 3 + 1 = 4.
Hence, this is correct as it matches the original count of Milk transactions
from the dataset.

Chapter 2

[61]

What about the count of Diapers?
As you can see, the diaper's node is mentioned 3 times in the
preceding diagram. Hence, the count of diapers is 3 and this matches
the original count of diapers in the transaction dataset.

• Identifying frequent patterns from the FP-Tree: Before we find the frequent
patterns from the FP-Tree, let's check what the minimum support is on which
we want to find the frequent patterns. Let's try to evaluate the pattern at a
minimum support of 0.4.
If the minimum support is 0.4, then what will the support be? Let's see in the
following formula:
Support = minimum support * Number of total transactions
Therefore, Support = 0.4 * 5 = 2
After we have the minimum support or support value we can start mining the
conditional patterns from the FP-Tree we built earlier.

• Mining the conditional patterns: To mine the conditional patterns, we will
go over the tree recursively from the leaf nodes onwards, that is, from the
bottom of the tree upwards. However, the path that we will mention and use
for patterns will always be from the top of the root node to the node we are
evaluating.
Let's see the Full FP-Tree again along with the frequencies of each item:

We will traverse the tree from the bottom upwards, but first we reject the
items whose frequencies are lesser than our minimum support value,
that is, 2.
Hence, as shown in the preceding diagram (in red crosses), Oranges and
Papaya are rejected.

First Steps in Data Analysis

[62]

Now, let's start building the conditional pattern base and conditional
FP-Tree.
Let's start with each item and traverse the tree upwards from the leaf nodes
and find the conditional patterns. We will pick one node Diaper and traverse
up and we leave it up to our readers to traverse remaining nodes and figure
out the same. The approach would be exactly the same as we'll explain for
the node Diaper. The reader can later match their results with the result that
our actual Apache Spark FP-Growth program produces.

As I also mentioned earlier, for the purpose of explaining
this, I am only using the leaf node Diapers. For brevity in this
section of the book, I leave it to the readers to do the same for
other items in the dataset.

• Conditional patterns from leaf node Diapers: The leaf node Diapers can be
reached by the following paths as shown in the following figure:

In the preceding figure, the blue, green, and purple lines denote the various
paths by which Diapers can be reached in the FP-Tree and the number of its
occurrences within that path. Each path denotes a conditional pattern. Hence,
all the conditional patterns for diapers are:

Chapter 2

[63]

Item Conditional patterns
Diapers { Apples : 1}, {Milk, Apples : 1}, {Chocolate

Cookie, Apples, Milk : 1}

Now that you have the conditional patterns, let's look at our next question:
How will you make the conditional tree out of the conditional pattern you
found for diapers?
Making the conditional tree is simple. Just use the conditional patterns as a
new dataset (given the condition that diapers are already selected). So, with
this new dataset, we'll now make the conditional tree, but first we'll make the
header table with the item frequencies and priorities.

Item Frequency (or count) Priority
Apples 3 1
Milk 2 2
Chocolate cookie 1 3

Now, let's make the tree again iterating the transactions:

As you can see, this is our Conditional FP-Tree for Diapers based on the conditional
patterns we found for it.

First Steps in Data Analysis

[64]

Now, let's again build the Conditional Patterns Base, Conditional FP Tree, and
Frequent Item sets from the tree shown in the preceding table:

Item Conditional
Pattern

Conditional
FP-tree

Frequent item
sets

Meets 'support'

Apples {Milk : 1},
{Chocolate
Cookie : 1}

- None of the
items meet
minimum
support

Milk {Chocolate
Cookie,
Apples : 1 }

- - None of the
items meet
minimum
support

Chocolate
Cookie

 No Items - - No items

As all the Conditional Pattern items below the minimum support count are rejected,
there are no frequent item sets from the Conditional-FP tree. Here, we just checked
the combination and rejected the combinations, but we have not evaluated the
individual items yet. The individual items from the conditional pattern of diapers
had some values greater than the minimum support as shown in the following table:

Item Frequency (or Count) Priority Meets 'Support'
Apples 3 1 Yes
Milk 2 2 Yes
Chocolate cookie 1 3 No

We have eliminated all the items that did not meet the minimum
support here as well.

As you can see, only two items are above the minimum support and they are
{Apples : 2} and {Milk : 2}.

Thus, we get the frequent item set for diapers as shown next:

{Apples, Diapers : 3}, {Milk, Diapers : 2} and the combination of apples
and milk along with diapers, that is, {Apples, Milk, Diapers}.

Chapter 2

[65]

So, finally, we have the list of association rules for the item Diapers. But our
algorithm is not finished yet. We need to repeat the same approach for the other
items. Similar to what we did for diapers earlier, we have to go over all the other
items in the list of our main Header Table, that is, our original list of items. For
refreshing your memory, I have shown the same list of transactions again:

Items from main transaction
dataset Frequency Priority

Milk 4 1
Apples 3 2
Diapers 3 3
Chocolate cookie 2 4

As shown in the preceding table, we have the original list of items and their
frequency. We have also reshown the priority here. From this we find Conditional
Patterns, Conditional FP-Tree, frequent itemsets for the remaining items, that is,
chocolate cookie, apples, and milk in a similar way as we did for Diapers.

I have discarded oranges and papaya in the preceding table as
they don't meet the minimum support. This is our assumption
that if the items are infrequent, their combinations would be
infrequent too, hence they are completely discarded.

FP-Growth algorithm has some clear advantages over Apriori; we will list the
following advantages below:

What are the advantages of using FP-Growth over Apriori?

FP-Growth is a very popular algorithm and it is much more popular than
Apriori because:

• It only requires you to scan the transaction dataset two times for building
the FP-Tree. On the other hand, in Apriori, you have to scan the transaction
dataset again and again. If the number of transactions in the dataset is very
high, which is quite possible for a big data project, then Apriori will become
just too slow to handle. On the other hand, FP-Growth will be much faster in
this case.

• FP-Growth compresses the transaction data in the form of an FP-Tree data
structure; hence, it can fit in memory too in certain cases if the data is good
enough to fit in memory. In this case, it will become even faster.

First Steps in Data Analysis

[66]

• There is a parallel version of FP-Growth algorithm (this is the version
that Spark uses). It distributes the FP-Growth computation on a cluster
of machines and this version is massively scalable.

Running FP-Growth on Apache Spark
Apache Spark implements a parallel version of FP-Growth called as PFP. In this
version, the dataset of transactions is broken and distributed across a cluster of
machines. So the frequency count of operations is individually done on the cluster
of machines. Later the result of the frequency count is combined. This algorithm
now groups the transactions into different groups. The groups are individually
independent in such a way that FP-Trees can be locally built based on them on
different machines of the cluster. Later, the results can be combined for the frequent
itemsets. Thus, this implementation is massively scalable. For a complete description
of the algorithm, refer to the research paper mentioned on Spark documentation at
https://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.
html. Even though the algorithm is distributed underlying the principle of finding
frequent item sets the technique is still the same.

The Spark Java code for the same algorithm is shown next.

We are using the same transaction dataset as we used in our FP-Growth
example earlier.

We will build the SparkContext with instance sc. Next, using this instance we load
our dataset of transactions:

JavaRDD<String> data =
sc.textFile("resources/data/retail/retail_small_fpgrowth.txt");

Now, break each row of transaction into individual items and store these items as a
list of strings per row in a Spark RDD object called transactions:

JavaRDD<List<String>> transactions = data.map(
 new Function<String, List<String>>() {
 public List<String> call(String line) {
 String[] parts = line.split(" ");
 return Arrays.asList(parts);
 }
 }
);

https://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html
https://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html

Chapter 2

[67]

Now create an instance of FP-Growth algorithm that is provided by Apache Spark
and is present in the MLlib API of Spark:

On the FP-Growth instance, see how we are setting the value of the
MinSupport as 0.4.

FPGrowth fpg = new FPGrowth().setMinSupport(0.4).setNumPartitions(1);

Now, run the FP-Growth algorithm instance on the transactions RDD object we
built earlier. This would create the FP-Tree and create the association rules internally
and store the results in a FPGrowthModel object:

FPGrowthModel<String> model = fpg.run(transactions);

Get the list of frequent items and print them. You can get this list from the
FPGrowthModel instance you built earlier:

for (FPGrowth.FreqItemset<String> itemset:
model.freqItemsets().toJavaRDD().collect()) {
 System.out.println("[" + itemset.javaItems() + "], " + itemset.
freq());
}

Now define the minimum confidence value and apply it to get the association rules
from the FPGrowthModel object:

double minConfidence = 0.0;
for (AssociationRules.Rule<String> rule
 : model.generateAssociationRules(minConfidence).toJavaRDD().
collect()) {
System.out.println(
 rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " +
rule.confidence());
 }
}

First Steps in Data Analysis

[68]

And the results would be printed as follows:

[apples, milk] => [diapers], 1.0
[milk] => [diapers], 0.5
[milk] => [apples], 0.5
[milk] => [chocolate], 0.5
[apples] => [diapers], 1.0
[apples] => [milk], 0.66
[diapers, apples] => [milk], 0.66
[diapers] => [apples], 1.0
[diapers] => [milk], 0.66
[diapers, milk] => [apples], 1.0
[chocolate] => [milk], 1.0

Summary
We started this chapter on a simple note by going over the very basic yet very power
simple analytics on simple datasets. While doing so, we also learned a very powerful
module of Apache Spark called Spark SQL. Using this module, Java developers can
use their regular SQL skills and analyze their big data datasets.

After exploring the simple analytics piece using spark-sql, we went over two
complex analytic algorithms: Apriori and FP-Growth. We learned how we can
use these algorithms to build association rules from a transaction dataset.

In the next chapter, we will learn the basics of machine learning and get an
introduction to the machine learning approach for dealing with a predictive
analytics problem.

[69]

Data Visualization
It's easier to analyze your data once you can view it. Viewing data requires putting
your data points in charts or graphs that you can visualize and figure out the various
details. You can also generate charts/graphs after running your analytic logic. This
way you can visualize your analytical results as well. As a Java developer you have
lots of open source tools at your disposal that you can use for visualizing your data
and the results.

In this chapter we will cover:

• Six types of charts and their general use and concepts
• Sample datasets used in building the charts
• Brief JFreeChart introduction
• An example of each type of chart using the JFreeChart and Apache Spark API

on big data

Data visualization with Java JFreeChart
JFreeChart is a popular open source chart library built in Java. It's used in various
other open source projects as well such as JasperReports (open source reporting
framework). You can build a number of popular charts such as pie charts, time series
charts, and bar charts to visualize your data with this library.

JFreeChart builds the axis and legends in the charts and provides automatic features
such as zooming into the charts with your mouse. For simple chart visualizations
that the developer can use to build the models (using lesser data) JFreeChart is
good but for extensive data visualization that you need to ship to your customers
or end users you are better off with an elaborate data visualization product such as
Tableau or QlikView over big data. Although we will cover some of the charts from
JFreeChart, this chapter is by no means an extensive take on JFreeChart.

Data Visualization

[70]

For this book and its examples, we use these charts extensively for visualizing our
datasets. In most of the cases, the boilerplate code (the code involved in building
the chart) is the same and we will just change the dataset. From this dataset, we will
pull the data and provide it in the format (read the type of dataset object) that the
JFreeChart library requires and pass it to the chart object that we need. For most of our
examples and practicing, this should be enough. For advanced data visualizations, we
are better off using advanced data visualization tools such as Tableau or QlikView.

Using charts in big data analytics
It is said that a picture is worth a thousand words. In terms of big data, the amount
of data is so high that by just plainly looking at raw data it is extremely difficult to
figure out any trends in data. However, the same data when plotted on a chart is
much more comprehensible and easier to identify trends or relationships within
data. As an example, let's take a look at a simple time-series chart showing house
prices versus year.

As you can see from the preceding chart, the house price almost kept rising after
1989 and reached its peak at around 2007, and after that it started falling before
starting to rise again around 2009 onwards. It's not a bad analysis since 2007 was
around the time we had the recession.

From the perspective of data analysis, charts are used mainly for two purposes:

1. For initial data exploration: Any raw data has to be explored first before it
gets analyzed. Initial data exploration helps us in figuring out:

 ° Any missing data
 ° Null data
 ° Erroneous data

Chapter 3

[71]

 ° Outliers (erroneous or special points in data)
 ° It also helps us in making simple deductions from data such as count

of rows in the dataset, average or mean calculations, percentiles, and
so on

2. For data visualization and reporting: Making charts for exploration is
mainly for the purpose of initial study of the data before it can be properly
transformed for proper analysis via different algorithms. But you might have
requirements to store the results of the data in different forms of reports or
dashboards. This chapter mainly serves the purpose of data exploration and
we do not dig into data reporting as it is a much bigger issue and beyond the
scope of this book. For advanced data visualization and reporting, you can
refer to tools such as FusionCharts, D3.js, Tableau, and so on.

Time Series chart
This is a simple chart used for measuring events over time or in other words it is a
series of statistical observations that are recorded over time. Visualizing your data
this way would help you figure out how the data changes with respect to time in the
past and you can also make predictions regarding the values that might occur in the
future when time changes. Let's now see some sample Time Series charts in action.

Before giving examples of time series charts, let's understand the dataset used for the
time series chart examples.

All India seasonal and annual average
temperature series dataset
In this dataset, we have India's seasonal temperature captured on monthly/annual
basis from 1901 to 2015. The dataset is downloaded as a JSON fi le from https://
data.gov.in/catalog/all-india-seasonal-and-annual-mean-temperature-
series. You can also find the sample dataset in the GitHub code accompanied with
this book.

https://data.gov.in/catalog/all-india-seasonal-and-annual-mean-temperature-series
https://data.gov.in/catalog/all-india-seasonal-and-annual-mean-temperature-series

Data Visualization

[72]

This dataset comprises two json objects as shown next:

• Fields: This json object contains the fields and labels for the data within the
dataset. These are the fields present in the dataset as shown in the following
table. I am only showing the indexes that we are using in the charts.

Table index Label
0 Year
1 Temperature in Jan
2 Temperature in Feb
3 Temperature in March
4 Temperature in April
… …
13 Average Annual Temperature

• Data: This json object contains the actual data in the form of a JSON array
object. For simplicity, I have removed the fields object and put the data
object in a single row so that it will be easy to process with Apache Spark.
So, our data is of a single row as follows:

{"data":"1901","22.40","24.14","29.07","31.91","33.41","33.18","31
.21"
...}

Simple single Time Series chart
Let's see a simple Time Series chart of average monthly temperature versus months
in 2015. So, on the y axis, we will have the average temperature and on the x axis we
will have the months of 2015 as shown in the following diagram:

Chapter 3

[73]

As you can see in the preceding diagram, the temperature spikes in the month of
May which is quite true as these are very hot months in India. The graph also shows
in general, the trend of the flow of data as you can also see the temperature keeps on
going up until the mid of May and then it starts falling as the months get colder.

Now, let's create this chart via the JFreeChart library. Creating a JFreeChart chart
requires some simple steps as follows:

1. Create a dataset in the format that is needed by the JFreeChart API:
 ° Load the dataset using Apache Spark: Before starting any Spark

program we build the Spark Context and Spark configuration first.
So we will build the Spark config and JavaSparkContext object

 SparkConf sparkConf = new
 SparkConf().setAppName("TimeSeriesExample")

 .setMaster("local");
 JavaSparkContext ctx = new
JavaSparkContext(sparkConf);

As we are going to use the Spark SQL queries to pull data from our
dataset, for ease of usage we1 will next create the SQLContext object
of Spark using the previously created JavaSparkContext object.

 SQLContext sqlContext = new SQLContext(ctx);

After building our SQLContext object we are now ready to load our
dataset from the dataset file. To the sqlContext object, we provide
the format of the data that we are trying to load, in our case it is json
format and we also provide the location of the file. The sqlContext
object will load the data and store it in a dataset variable.
Dataset<Row> df = sqlContext.read().format("json").
json("data/india_temp.json");
 df.createOrReplaceTempView("india_temp");

 ° Next, query the dataframe you created and pull all the data:
Dataset<Row> dfc = sqlContext.sql("select explode(data) from
india_temp");

 ° Now, filter only the data for the year 2015:
JavaRDD<Row> rdd = dfc.javaRDD();
""""
JavaRDD<Row> filterRdd = rdd.filter(s -> {
 if("2015".equals(s.getList(0).get(0).toString()))

Data Visualization

[74]

return true;
return false;
 });

 ° Finally, fill this data into a TimeSeries object and return the results:

final TimeSeries series=new TimeSeries("Jan-Dec2015");
List<Row> filterList = filterRdd.collect();
for(Row row : filterList) {
 List<String> items = row.getList(0);
 for(int i =1; i <=12; i++){
 series.add(new Month(i,
Integer.parseInt(items.get(0))),
new Double(items.get(i)));
 }
}
return new TimeSeriesCollection(series);

2. Create the chart object: As you can see in the following code, we
build a Time Series chart by invoking createTimeSeriesChart on the
chartFactory object and it is in this object that we also pass the chart name,
x axis label, y axis label along with the dataset object itself. The library that we
are using that is JFreeChart, extracts data from the dataset objects and starts
building the chart using the other parameters specified in the method too.
chartFactory.createTimeSeriesChart("TimeSeries Temperatures
vs Months (2015) ","Months (2015)","Avg. Temperature",
dataset,false,false,false);

Finally, we have some boilerplate code that connects all this together. So, in
this code, we build the dataset and pass it to the chart object. Finally, we add
the chart object to the chart panel that is again pushed on the content pane.

final JFreeChart chart = createChart(dataset);
 chart.getPlot().setBackgroundPaint(Color.WHITE);
final ChartPanel chartPanel =new ChartPanel(chart);
chartPanel.setPreferredSize(new
java.awt.Dimension(560,370));
 chartPanel.setMouseZoomable(true,false);
 setContentPane(chartPanel);

For the full code of this example, refer to the code in the GitHub repository.

Chapter 3

[75]

Multiple Time Series on a single chart window
If you show multiple charts in the same window, then you can easily visualize the
comparison of variations of data over time. Here, I will show two Time Series charts
in the same window. In one chart, we will see Avg Temp versus Months for 2014
and in the other chart we will see Avg Temp versus Months for 2015 as shown in the
following diagram:

As you can see in the preceding diagram, it is easy to visualize the graphs for the
years 2014 and 2015 and see how the temperature varies between the two. The blue
line is the chart for the year 2014 and the red line is the chart for the year 2015.

For building any JFreeChart as shown in the examples in this book, most of the code
needed to actually create the graph is almost boilerplate with a few configuration
changes as needed. The main piece of the code is the createDataset() function. It is
here that you need to pull the data from your data files or other sources of data and
fill them into an object that the JFreeChart, which specific chart component needs. As
long as the data is compliant with the dataset component that the chart requires, you
can easily prepare the chart.

So, for the multiseries chart component, we would just change the createDataset()
method. Let's now go through the code of this method.

Data Visualization

[76]

First, we create an instance of DefaultXYDataset and load the data using Spark.
Once the data is loaded, we register the dataframe as a temporary view and query it
to pull the data.

private XYDataset createDataset()
{
DefaultXYDataset ds = new DefaultXYDataset();
SparkConf sconf = new
SparkConf().setAppName(APP_NAME).setMaster(APP_MASTER
);
SparkSession spark = SparkSession.builder()
.config(sconf)
.getOrCreate();
Dataset<Row> df = spark.read().format("json").json(
"data/india_temp.json");
df.createOrReplaceTempView("india_temp");
Dataset<Row> dfc = spark.sql("select explode(data) from
india_temp");
 JavaRDD<Row> rdd = dfc.javaRDD();

Next, we filter the data for the years 2014 and 2015 using the following code:

JavaRDD<Row> filterRdd = rdd.filter(s -> {
 if("2015".equals(s.getList(0).get(0).toString()))
return true;
else
if("2014".equals(s.getList(0).get(0).toString()))
return true;
else return false;
 });

After the data for the years 2014 and 2015 is extracted, we fill this data in our
DefaultXYDataset object and return it with the help of the following code:

List<Row> filterList = filterRdd.collect();
int j = 0;
for (Row row : filterList) {
double[][] series = new double[2][13];
List<String> items = row.getList(0);
for(int i = 1 ; i <= 12 ; i++) {
series[0][i] = (double)i;
 series[1][i] = new Double(items.get(i)) ;
}
ds.addSeries("Series-" + j, series);
j = j + 1;
}
return ds;
}

Chapter 3

[77]

Bar charts
A bar chart shows variations in quantity of some entity using rectangles either
drawn vertically or horizontally on a chart. As you visualize the different lengths of
rectangles on the chart, it is easy to figure out which category is more and which one
is less. Bar charts have three main advantages:

• You can see the data relationships in the x and y axes
• You can easily compare the values among different categories
• You can also use them to visualize trends

As an example, take a look at the following bar chart, which shows the number of
cars made by different countries (as shown in cars.json dataset):

As you can see in the preceding chart, this dataset has a maximum number of cars
from the UK followed by the USA, followed by Italy, and so on.

Let's explore this example further with the actual code. The cars.json dataset that is
analyzed by the preceding chart, has the following format:

{"make_id":"abarth","make_display":"Abarth","make_is_
common":"0","make_country":"Italy"}

{"make_id":"ac","make_display":"AC","make_is_common":"0","make_
country":"UK"}

Data Visualization

[78]

{"make_id":"acura","make_display":"Acura","make_is_common":"1","make_
country":"USA"}

{"make_id":"alfa-romeo","make_display":"Alfa
Romeo","make_is_common":"1","make_country":"Italy"}

This dataset contains information about cars from different countries. It has a json
object per row and within the json object it has details for one particular car. Some
of the main attributes within one json object are shown in the following table:

Attribute name Description

make_display Display name of car, the name used in 'Ads'.
make_country Country where the car is made
make_id Name of car or model name

To build the bar chart, we follow similar steps to what we discussed in the preceding
Time Series chart. Let's see how to do it:

1. Create the dataset: We will load the cars.json file using Apache Spark
and build a dataset object (from JFreeChart library). Here is the code for
that (before we write the main code for our Spark program we build the
SparkSession object)
 SparkSession spark = SparkSession
 .builder()
 .appName("Learning charts for
 analytics")
 .config("spark.some.config.option", "some-value")
 .getOrCreate();

Now we have our SparkSession object ready. Using this SparkSession
object, we next go on to load our dataset from the dataset file.
First we load the dataset json file into a dataframe and register it as a
temporary view:
Dataset<Row> cdf =
spark.read().format("json").json("data/cars.json");
 cdf.createOrReplaceTempView("cars");

Chapter 3

[79]

Next we query it to pull the temp view to pull the countries and the number
of cars in each country:
Dataset<Row> cdfByCountry = spark.sql("select make_country,
count(*) from cars group by make_country");

Finally, we fill this data into a dataset object. This dataset object is used
later by the actual chart object:

 final DefaultCategoryDataset dataset =
 new DefaultCategoryDataset();
 List<Row> results = cdfByCountry.collectAsList();
 for (Row row : results) {
 dataset.addValue(row.getLong(1) , category ,
row.getString(0));
}
return dataset;

2. Create the chart component and fill it with the dataset object: Using the
JFreeChart API, we choose the type of chart we want to build and fill it with
the dataset object we built earlier. We also specify the configuration of the
chart such as the chart size, where we will display it (like at the center of the
screen):
 JFreeChart barChart = ChartFactory.createBarChart(
 chartTitle,
 "Country",
 "Number of Cars",
 createDataset(),
 PlotOrientation.VERTICAL,
 true, true, false);

 ChartPanel chartPanel = new ChartPanel(barChart);
 chartPanel.setPreferredSize(new java.awt.Dimension(
 560 ,
 367));
 setContentPane(chartPanel);

3. Finally, we just display the chart and center it on the screen. For the full code
of this chapter, refer to the accompanied code in GitHub.

So, when would you use a bar chart?

Bar charts help to set up clear demarcations on your data and help to outline
those in a pictorial form. When you plot a bar chart, you can easily figure out how
data values compare to each other based on different criteria and it will help in
understanding your underlying data better.

Data Visualization

[80]

Histograms
A Histogram is a special kind of bar chart. A histogram depicts some quantitative
value on the x axis and frequency of that value on the y axis. The main feature of a
histogram is that in a histogram, the x axes are grouped into bins and we treat each
bin as a category. Thus, for a particular value, we take both the x axis bin and the
frequency on the y axis into account.

Let's try to understand a histogram using the same cars.json dataset, which we
used earlier. For the quantitative variable on the x axis, we will be using the number
of cars grouped by each country and depict that on the x axis. The Y axis will denote
the frequency of the number of counts, that is, the percentage or probability of
countries with that amount of cars in the dataset. The diagram is as shown next:

As you can see in the preceding chart, the maximum number of countries have a
number of cars between 0 and 10 count. Next is the countries with cars between
10 and 20 count, and the remaining few between 20 and 30, and then 30 and 40.

Chapter 3

[81]

When would you use a histogram?
For the purpose of data analytics histograms can be heavily used in the early data
exploration phase and they give us a rough estimate of the density of our data.
Thereby, from the preceding chart, you can figure out that our dataset has a lot of
countries with only a few cars and there are only a few countries with lots of cars.
If you check in the cars.json dataset you will see that the US and the UK have the
maximum number of cars in this dataset. Sometimes, from a big data perspective,
you might have to filter your data on this basis and segregate it, else your machine
learning models might get trained with only one specific kind of data item that
belongs to categories with a majority and hence they have to be normalized before
being fed to predictive algorithms. We have explained this phenomenon in future
chapters too.

There are particular shapes of histograms like symmetrical, right skewed
(which we have in our preceding chart), left skewed, and so on. For more
descriptions of histograms, please refer to the content on Wikipedia.

How to make histograms using JFreeChart?
In the following steps, we will see how to code a histogram using the JFreeChart
library. We are using the same cars.json dataset here, which we previously used
in the bar charts.

1. Create the HistogramDataset object to store data for the histogram: The
approach here is also the same. First, we load the JSON file cars.json. Next,
we register it as a dataframe temporary view and query it to pull the data
and group the data by the make_country of cars. Next, we fill this data in a
HistogramDataset object.
Dataset<Row> df = sqlContext.read().format("json")
.json("data/cars.json");
df.createOrReplaceTempView("cars");
 Dataset<Row> dfc = sqlContext.sql("select make_country,count(*)
from cars group by make_country");
 JavaRDD<DataItem> dataItems = dfc.javaRDD().map(s -> new
DataItem(s.getString(0), new
Double(s.getLong(1)).doubleValue())) ;
List<DataItem> dataItemsClt = dataItems.collect();
 double[] values = new double[dataItemsClt.size()];
 for(int i = 0; i < values.length ; i++) {
 values[i] = dataItemsClt.get(i).getValue();
 }
int binSize = values.length / 5;
 HistogramDataset dataset = new HistogramDataset();
 dataset.setType(HistogramType.FREQUENCY);

Data Visualization

[82]

 dataset.addSeries("Histogram",values,binSize);
 return dataset;

2. Create the histogram chart object and provide the dataset to this chart object:
 private JFreeChart createChart(HistogramDataset dataset) {
 String plotTitle = "Histogram";
 String xaxis = "Number of cars";
 String yaxis = "Frequency";
 PlotOrientation orientation = PlotOrientation.VERTICAL;
 boolean show = false;
 boolean toolTips = false;
 boolean urIs = false;
 JFreeChart chart = ChartFactory.createHistogram(plotTitle,
xaxis, yaxis,dataset, orientation, show, toolTips,
urIs);
 int width = 500;
int height = 300;
 return chart;
 }

Line charts
These types of charts are useful in regression techniques as we will see later.
It's a simple chart represented by a line that shows the changes in data either
by time or some other value. Even Time Series charts are a type of line chart.
Here is an example of a Time Series chart:

Chapter 3

[83]

This line chart is a simple chart showing Max Temp versus Year, In this case, max
temperatures are from 1901 to 1910. The chart shows that the temperature did not
change drastically within these 10 years.

To build this line chart, we have used the same All India seasonal and annual
min/max temperature series dataset as explained in the preceding Time Series
charts. For building the charts, the steps are again the same:

1. Loading the chart dataset and creating a JFreeChart-specific dataset.
 ° We will create a similar createDataset method and return our

DefaultCategoryDataset object
 private DefaultCategoryDataset createDataset() {
 DefaultCategoryDataset dataset = new
DefaultCategoryDataset();

 ° Next, we go on to build our boilerplate code for creating the
SparkSession.

 ° After building the SparkSession, load the india_temp.json dataset
and register it as a temporary view.
 Dataset<Row> df =
sqlContext.read().format("json").json("data/india_temp.j
son");
 df.createOrReplaceTempView("india_temp");

Now, fire a query on this view to pull the first 10 records:
 Dataset<Row> dfc = sqlContext.sql("select explode(data)
from
india_temp limit 10");

 ° Collect the data and put it into the dataset object:
 List<Row> rows = dfc.collectAsList();
 for (Row row : rows) {
 List<String> dataList = row.getList(0);
 dataset.addValue(new
Double(dataList.get(12).toString()),
 "Max Temp", dataList.get(0).toString()
);
 }
return dataset;

Data Visualization

[84]

 ° Code to load the chart: Create the lineChart object and fill it with
the dataset object (see where the createDataset() method is
invoked):

JFreeChart lineChart =
ChartFactory.createLineChart(chartTitle, "Year","Max
Temperatue",
createDataset(), PlotOrientation.VERTICAL, true, true,
false);
 lineChart.getPlot().setBackgroundPaint(Color.WHITE);

ChartPanel chartPanel = new ChartPanel(lineChart);
 chartPanel.setPreferredSize(new java.awt.
Dimension(560, 367));

So, when will you use Time Series charts? Whenever you have data points that refer
to time, you can use this chart. As mentioned earlier, it will help you study the past
data. Also, using the Time Series plot, you can estimate the future value.

Scatter plots
One of the most useful charts for data analysis are scatter plots. These charts are
heavily used in data analysis, especially in clustering techniques, classification, and
so on. In this chart, we pick up data points from the data and plot them as dots on
a chart. In simple terms, scatter plots are just data points plotted on x and y axes as
shown below. This helps us figure out where the data is more concentrated or in
which direction the data is actually flowing.

This is very useful for showing trends, clusters, or patterns, for example, we can
figure out which data points lie closer to each other. As an example, let's see a
scatter plot next that shows the price of houses versus their living area.

As you can see from the graph, you will generally see that prices are going in the
upward direction as the area is increasing. Of course, there are other parameters for
the price to consider too; however, for the sake of this graph, we only used the living
area. You can also see that there is a concentration of a lot of points in the 200K-500K
price range and between 1000-1500 sqft area. Thereby, you can make a quick guess
that a lot of people like to buy within this range of sqft area.

Chapter 3

[85]

Making scatter plots with JFreeCharts is easy. As with other charts, we build the
required dataset and chart component. We populate the chart component with the
data we require and then plot the graph. For that, we follow few steps:

1. The code for creating the dataset component is shown next. The steps are
simple, just load data via Spark from a text file. From the data, pull the living
area and price and convert it to double. Now populate this data in a dataset
object that is provided by JFreeChart.

 ° We will create the same createDataSet method but this time we
return the XYDataset object using this code:
 private XYDataset createDataSet(String datasetFileName)

 ° Next, we have the boilerplate code to create Spark context and load
the textFile for the dataset.
JavaRDD<String> dataRows = sc.textFile(datasetFileName);

 ° Extract the living area and price and convert to double:
JavaRDD<Double[]> dataRowArr =
dataRows.map(new Function<String, Double[]>() {
 @Override
 public Double[] call(String line) throws
Exception {
 String[] strs = line.split(",");
 Double[] arr = new Double[2];
 arr[0] = Double.parseDouble(strs[5]);
 arr[1] = Double.parseDouble(strs[2]);
 return arr;

Data Visualization

[86]

 }
 }) ;

 ° Collect the data and fill it into the dataset object:

 List<Double[]> dataltems = dataRowArr.collect();
XYSeriesCollection dataset =new XYSeriesCollection() ;
 XYSeries series= new XYSeries("real estate item");
 for (Double[] darr : dataltems) {
 Double livingArea = darr[0];
 Double price = darr[1];
 series.add(livingArea, price);
 }
 dataset.addSeries(series);
 return dataset;

2. Finally, create the chart component that you want to use from
JFreeChart. In this case, it is a scatter plot as seen by the ChartFactory.
createScatterPlot method:
 private JFreeChart createChart(XYDataset inputDataSet) {
 JFreeChart chart = ChartFactory.createScatterPlot("price for
Living Areal", "LivingArea", "Price", inputDataSet,
 PlotOrientation.VERTICAL, true, true, false);
 XYPlot plot = chart.getXYPlot();
 plot.getRenderer().setSeriesPaint(0, Color.green);
 return chart;
}

We are going to use the scatter plot heavily in our data analytics.
This chart is also used along with other charts such as line charts to
figure out how the data is properly segregated. As an example, refer
to the following chart. Here the line chart is trying to divide the data
points into categories. This can be used in classification to figure out
the points into categories or labels based on whether they lie on the
left-hand side of the line chart or right-hand side. You will see more
of this in the coming chapters.

Chapter 3

[87]

Now that you have seen scatter plots, let's answer a few simple questions:

When will you use a scatter plot?

Whenever you want to plot your data points on the x and y axes to figure out where
the points are concentrated (that is, clustered), or which direction the patterns are
flowing (that is, trends), or how data points are related to each other (that is, nearest
neighbors), you can use a scatter plot. This plot will show you a cloud of data points
that you can then use to figure out the correlations as mentioned earlier.

In the preceding example, you showed the graph only on the x and y axes, what if we
have more features to take into account?

House prices are not just based on the living space area. There are many other
features that can impact the price of a house. As an example, some of the additional
features could be:

• Number of bathrooms
• Age of the house
• Zip code where it is located
• Condition of the house—whether it requires any additional maintenance

work or not

Data Visualization

[88]

So how would you plot a scatter plot when the number of features is high? When the
number of features is very high, any feature size more than four or five is not easily
comprehensible by human beings. This is because it is not easy for us to visualize 4-
or 5-dimensional graphs. In real life use cases the features can be in the thousands, if
not more. In such a scenario, a chart is represented by a figure called a hyperplane.
A hyperplane is a plane or an area that you will try to fit within the n--dimensional
space where n represents the number of features. So if you have two features, you
will have a 3-dimensional graph with a simple hyperplane bifurcating your data
points (represented by scatter points) as shown next:

As you can see in the preceding 3D graph, the x1 axis shows the Age of a person, the
x2 axis shows his Weight, and the y axis show the Sugar Levels of the person. The blue
area depicts a hyperplane that is fitted to the data points for best case prediction. When
the Weight and Age of a person is given what could be his Sugar Levels?

We are not covering 3D charts in this chapter, but there are good 3D
chart libraries both in Java or otherwise that you can use to plot graphs
as shown earlier. Also, for even more dimensions, such as four or
five dimensions, it's difficult to visualize it on a graph, but there are
algorithms you can still fit in the hyperplane, though you won't be able
to visualize the graph. In this case, you can plot the features with the data
points in several separate graphs.

Box plots
Another very useful type of charts is box chart. Before looking into box charts, let's
revise some simple mathematical concepts next. You can skip this page and directly
go to the chart as well.

Chapter 3

[89]

Suppose you have an array of numbers as shown here:

int[] numbersArr = { 5, 6, 8, 9, 2 };

Now, from this array, we have to find the following simple math stats:

• Min: This is just the minimum value from the array and as you can see it is 2
• Max: This is the maximum value from the array and this as you can see, is 9
• Mean: This is the mean value of the array elements. Mean is nothing but the

average value. Hence in this case it is the sum of array elements divided by
the number of elements in the array.
 (5 + 6 + 8 + 9 + 2) / 5 = 6

• Median: If we sort the preceding array in ascending order, the values
would be:
int[] numbersArr = (2, 5, 6, 8, 9),

The value located at the middle of the dataset array depicts the median. As
such, the median depicts a value in the array such that 50% of the values in
the array are lesser than this and the other 50% of the values are greater
than this.
Thus, in our case the median is 6.

• Lower quartile: This depicts the value in the datasets such that 25% of values
are lesser than this value. For ease of depiction, let's take a slightly bigger
array for checking this:

int[] numbersArr = { 11,5, 6, 8, 9, 2,7 };

Now, if we sort this array, we will get the following:
 { 2,5, 6,7,8,9,11 };

Let's see at which index point in the array the first 25% of the values will lie. To
figure this out, we find the index point where the first 25% of the values end. For this,
we will use the length of the array and find 25% of that. We will later round off this
value to the closest number and that value will be the index point in the array where
25% would occur. Therefore, the formula will be as follows:

Number of elements in the array * (25 / 100) = 7 * (25/100) = 2

So until the 2nd value of the array's 25% values are covered and since lower quartile
refers to the value below which 25% values in the dataset are covered, we take the
next value from our preceding sorted array, that is, the third value and hence it is 6.
Thus, our lower quartile value is 6.

Data Visualization

[90]

• Upper quartile: This depicts the value in the datasets such that 25% of values
are greater than this value. Let's refer to the same array as earlier and find
this. I have used the sorted array as follows:
 { 2,5,6,7,8,9,11 '} =>the value is '9'

The calculation of upper quartile that is shown above can be easily done
using plain old Java code too. For this, we will build a simple quartile
function in Java and in it we will consider the the lower percent as 25% and
the highest as 75%. As soon as we enter the functions we will first check if
the parameters passed are good or not, else we will throw an exception:
public static double quartile(double[] values, double
lowerPercent) {
if (values == null || values.length == 0) {
 throw new IllegalArgumentException("The data array
 either is null or does not contain any data. ");
}

Next, we will now order the values and calculate our value by using the
Math.round function and finally we will return the result:

double[] v = new double[values.length];
System.arraycopy(values, 0, v, 0, values.length);
Arrays.sort(v);
int n = (int) Math. round (v.length * lowerPercent / 100);
return v[n];
}

• Outliers: In statistics terms, an outlier is a value in the dataset that is
very different from other values. It depicts that the data is not normally
distributed and there are variations in the data and that you should be
careful in applying analytic algorithms to that data, especially the algorithms
that think that the data is normally aligned and has no abnormal values.
Outlier points can therefore, indicate bad data or some errors in data.

Now that we have seen these simple math stats functions, let's dive into box charts.

So, what are box charts or box and whiskers charts?

It is a very convenient way in statistics to depict numerical data in terms of their
quartiles, minimum, maximum, and the outliers. The whiskers or the lines that
stretch out from the main chart rectangle boxes depict the values that stretch out
beyond the upper and lower quartiles.

Chapter 3

[91]

The following figure depicts one simple box chart:

As you can see in the preceding figure, the rectangle is built with third and first
quartile and the line within the rectangle depicts the median value. Also, the edges
stretching out and the whiskers on them depict the minimum and maximum values.
Now, the outliers on the chart can be shown as simple points as shown in the
following figure:

Box charts are very useful for studying numerical data and give a good overview of
data distribution.

Data Visualization

[92]

Let's try to understand the box charts using a realistic example. Suppose there is
a fictitious website xyz.com that generates plenty of web traffic and you want to
analyze the numerical hit counts in a generic way using some simple graph. The
following table shows the stats of average hit count per day in a month:

Month Hit count per day in the month
January {25, 35, 45, 55, 60, 54, 34 …}

February {86, 90, 45, 55, 60, 54, 34 …}
March {54, 64, 89, 55, 60, 54, 34 …}

These stats are stored in a CSV file that is pulled and parsed using Apache Spark.
One row of a file is shown in the figure that follows.

If we now draw a box and whiskers chart on top of this data for the months between
January and March, the chart would look like this:

Chapter 3

[93]

As you can see in the preceding chart, the outliers are marked by circular dots at the
top of the chart. Also, as you can see for March, the maximum value was 150 and for
February the minimum was 70.

JFreeChart has a very handy way to show all the stats such as mean, average,
median, maximum, and minimum for a box chart. To see this, just mouse over on a
particular chart and it will show you the details in a tooltip as shown in the following
figure for January and so on.

As you mouse over, the overlay window depicts the summary of stats such as min,
max , first quartile (that is, Q1), and so on.

JFreeCharts have the API for box plots. As with other charts, we build the required
dataset and chart component. We populate the chart component with the data we
require and then plot the graph. The following are the steps we will use to build the
chart for the dataset shown earlier:

1. The code for creating the dataset component is shown next. To create a box
chart, we need a dataset of type BoxAndWhiskerCategoryDataset:

 ° First we will create the createSampleDataset method that returns
our specific dataset object:
private BoxAndWhiskerCategoryDataset createSampleDataset() {

Data Visualization

[94]

 ° Next, we initialize our Spark sqlContext using our boilerplate code.
Using the sqlContext, we now load the dataset file and extract
tokens from it as strings (see the map method).
sc.textFile("data/website_hitcounts.csv");
JavaRDD<String[]> vals = rdd.map(s -> s.split(","));

 ° Next, we collect these values and fill our dataset object with the data:

List<String[]> data = vals.collect();
final DefaultBoxAndWhiskerCategoryDataset dataset =
new DefaultBoxAndWhiskerCategoryDataset();

for (String[] dataltem : data) {
final List list = new ArrayList();
for (int i = 1 ; i < dataltem.length ; i++) {
list.add(Double.parseDouble(dataltem[i]));
}
dataset.add(list, "Hit Count by Month
Series", dataltem[0]);
}
return dataset;

Finally, we create the chart component that you want to use from JFreeChart.
In this case, it is a box chart as shown in the following code:

 ° First, we invoke createSampleDataset and store the result in a
BoxAndWhiskerCategoryDataset variable.
final BoxAndWhiskerCategoryDataset dataset =
createSampleDataset();

 ° Next, for this specific chart, we have used ItemRenderer;
this renderer object helps us customize this chart. So we can
specify the details of the ToolTip renderer, or the specific
custom x axis and y axis.
final CategoryAxis xAxis = new CategoryAxis("Months");
final NumberAxis yAxis = new NumberAxis("Hit Counts");

yAxis.setAutoRangeIncludesZero(false);
final BoxAndWhiskerRenderer renderer = new
BoxAndWhiskerRenderer();
renderer.setFillBox(true)
renderer.setToolTipGenerator(new
BoxAndWhiskerToolTipGenerator());
 renderer.setMeanVisible(false);

Chapter 3

[95]

 ° We hook all the custom details of x axis, y axis, and the renderer in
the category plot. Finally, we pass the CategoryPlot object to our
JFreeChart object.
final CategoryPlot plot =
new CategoryPlot(dataset, xAxis, yAxis, renderer);
final JFreeChart chart = new JFreeChart(
 "Website Hit Counts between Jan-Feb",
 new Font("SansSerif", Font.BOLD, 14),
plot,
true
);
final ChartPanel chartPanel = new ChartPanel(chart);

For full code, you can refer to our GitHub repository.

Advanced visualization technique
For advanced data visualization, commercial tools such as Tableau or FusionCharts
can be used. These are very good in making dashboards and reports that can be used
by businesses in their presentations or demos. In fact, for business needs, specifically
for presentations or demos, we would urge the users to go with commercial tools
such as Tableau or FusionCharts as they can be used to make very good reports
and presentations. However, if you have specific advanced charting needs such
as making three-dimensional charts or creating graphs or trees in Java, we can use
advanced Java charting libraries such as Prefuse or VTK Graph toolkits.

Covering these advanced libraries in detail is beyond the scope of this
book. Hence, we will only give specific brief outline on these libraries.
Readers who are interested in these libraries can refer to their specific
websites for more information.

Prefuse
This is an open source set of tools that is used for creating rich, interactive data
visualizations in the Java programming language. It supports a rich set of features
for data modeling, visualization, and interaction. It provides optimized data
structures for tables, graphs, trees, and so on. The library is a little old but its
code is available on GitHub at https://github.com/prefuse/Prefuse.

https://github.com/prefuse/Prefuse

Data Visualization

[96]

IVTK Graph toolkit
As its wiki says, the Visualization ToolKit (VTK) is an open source, freely available
software system for 3D computer graphics, image processing, and visualization
used by thousands of researchers and developers around the world. It's an extensive
visualization library that might be considered for your big data analytics work. You
can check out this library at http://www.vtk.org/download/.

Other libraries
Apart from these, there are several other popular open source data visualization
libraries written in other languages, for example, matplotlib in Python or D3.js in
JavaScript. All these have different flavors and are useful to use on your big data
analytics operations. D3.js is very famous and we would recommend you to use it if
you are comfortable with JavaScript.

Summary
In this chapter, we covered six basic types of charts, namely, Time Series charts,
bar charts, line charts, histograms, and scatter plots. These charts are extensively
used in the data exploration phase to help us better understand our data. Visually
understanding our data this way can help us easily figure out anomalies in our
dataset and give us insights into our data that we can later put to use for making
predictions on new data. Each chart can be used for specific needs such as:

• Time Series charts show us how our data changes with respect to time
• Bar charts show us the trends in our data and histograms help us find the

density of our data
• Box charts help us find the minimum, maximum, median values in our

numerical data, and also help us figure out the outlier points
• Scatter plots help us figure out patterns in our data or how our data points

are concentrated

Java provides us with various open source libraries that we can put to use for
making these charts. One such popular library is JFreeCharts that is heavily used in
making charts using Java. We briefly covered an introduction of this library followed
by making each type of chart using this library. We have followed a simple pattern
in building these charts. We have loaded our datasets using Apache Spark and then
used the JFreeChart library to build the charts. We believe that Java developers
working on big data might find it easier to use a Java charting library initially for
data exploration before they move on to more advanced charting solutions like D3.js
and FusionCharts.

http://www.vtk.org/download/

Chapter 3

[97]

However, we are not restricting developers and they are free to use any framework
of their choice for building the charts. Our aim for this chapter was to show you
how different type of charts can be used in data exploration. In any analytics
project that the readers might be involved in, depicted data using charts is a must,
understanding the types of charts that can be used is as important as making the
charts themselves. You can download the examples from our GitHub page and run
these examples for practising these charts.

In the next chapter, we will study the basics of machine learning and learn how to
handle a machine learning problem and the general approach in solving a machine
learning problem.

[99]

Basics of Machine Learning
Any form of any analytical activity depends heavily on the presence of some clues
or data. In today's world data is bountifully available. Due to the broad availability
of various devices (such as mobile devices), IoT devices, or social network, the
amount of data generated day by day is exploding. This data is not all waste; it can
be used to make lots of deductions. For example, we can use this data to figure out
what particular ad the user might click on next or what item the user might like to
purchase along with the item they are already purchasing currently. This data can
help us figure out a knowledge base that can directly impact the core business in
many useful ways, hence it is very important.

This chapter is action-packed and we will try to cover a lot of ground while learning
the basics. In this chapter, we will cover:

• Basic concepts of machine learning such as what machine learning is, how it
is used, and different forms of machine learning

• We will look at some real-life examples where machine learning has been
successfully used

• We will learn how to approach a machine learning problem and will see the
steps involved in working on a typical machine learning problem

• We will learn to select features from data
• Finally, we will see how to run a typical machine learning model on a big

data stack

Basics of Machine Learning

[100]

What is machine learning?
Machine learning is a form of artificial intelligence where a computer program learns
from the data it is fed or trained with. After learning from this data it internally
builds a knowledge base of rules and based on this knowledge base it can later make
predictions when it is fed new data. Machine learning is part AI, part data mining,
and part statistics, but overall the criterion is to teach a machine to make new
decisions based on past data it is trained with. So, for example, if we teach a machine
some data regarding the inventory statistics of a store throughout the year then you
might be able to tell things such as in which months the items sell more or which
items sell more often. Also, it can tell the shop owner if they are selling one
particular item more than other items; it can also show this to the customer
so as to increase sales.

The concept of making new predictions is very important as we can now make
predictions such as in which zone or area a marketing campaign should be launched
first, or which segment of customers would be most interested in our new product;
or if we increase our advertising budget by say a few percent then how much of an
increase in sales we'll see. Such machine learning can directly impact business in a
very positive way as it is totally coupled with real business use cases.

As we mentioned earlier, machine learning is part programming, part statistics,
and part mathematics. Inference from data involves studying of existing data
patterns, which is statistics, and doing this via a computer requires programming.
Today machine learning is used in a lot of places to directly impact business. In
fact, it is one of the hottest technologies to work in currently. Whether it is self-
driving cars, suggestive searches, or customer segmentation based on their buying
patterns, businesses are using more and more machine learning technology. Due
to the tremendous interest in this technology in recent years a lot of new tools and
frameworks have originated for machine learning and this is great for developers as
now they have access to lots of resources for machine learning.

Before we delve into the code of machine learning algorithms let's look at some real-
life examples of machine learning.

Real-life examples of machine learning
Machine learning usage is almost everywhere and it is growing as we read this book
now. Here are some of the popular examples of machine learning usage where it has
been running for years now:

• Machine learning at Netflix: Let's look at the following screenshot from
Netflix. Look at the section Because you watched Marco Polo; it lists some
movies or serials that might be of similar taste and would appeal to the user.

Chapter 4

[101]

• How does Netflix figure this out? Basically, Netflix is keeping an eye on what
the user is watching and based on that they try to figure out the user's likes
and dislikes. Once a pattern of user likes is discovered a new set of movies
are shown to them for viewing. In short, Netflix is analyzing user viewing
patterns and then giving suggestions to the users:

• Spam filter: Spam filters that are used in our email account on a daily basis
are a result of a good use of machine learning algorithms. Take a look at the
following screenshot. Here we are showing two emails; one is spam and the
other is not. The spam filter uses a special algorithm that uses some words
(underlined in red) to figure out if an email is spam or not:

• Hand writing detection on cheques submitted via ATMs: This is a popular
on cheque submitted via ATMs" usage implemented across a lot of banks
already. Some of the best uses of machine learning are simple yet so powerful
that they directly impact the day to day lives of many people. For example
in this case when the user deposits a hand written cheque in an ATM
machine, the ATM machine figures out the amount deposited by reading
the handwritten amount from the cheque and the actual numbers in it.

Basics of Machine Learning

[102]

For figuring the numbers from the cheque complex machine learning algorithms
are used, but the whole process is very transparent and seamless for the end users.
Look at the following figure, it shows a user depositing a cheque and receiving a
receipt. The receipt shows the printed copy of the cheque, but before that it shows
the amount that it read from the check:

We will now go over the many types of machine learning algorithm.

Type of machine learning
There are three types of machine learning algorithm and within each type we have
sub types. We will now go over the types of machine learning:

• Supervised learning: In this form, we have data that is labeled with results.
The model is trained or fed with this prelabeled data. Based on this set of
results the model internally builds its own knowledge and rule set. Using this
knowledge that the model has learnt from existing data it can now classify a
new set of data for the various labels. In simple terms this is what supervised
learning is all about. And as the name says, the model is supervised with
pre-existing data to make new predictions.
Let's try to understand this with a simplistic example of a spam detection
system. As seen in the following diagram, a set of words is used to form a
dataset. The set of words is labeled as GOOD or SPAM. This dataset is fed to
a model that builds its knowledge or rules based on this dataset. We call this
training a SPAM Detector Model. Once the model is trained it can classify a
new set of words as GOOD or SPAM:

Chapter 4

[103]

Now suppose a new email arrives, this new email can be broken into a set of
words and those words can then be analyzed by this trained model to detect
whether the email is spam or not, as shown in the following diagram:

Basics of Machine Learning

[104]

Supervised learning models are of different types. We will go over the
different types of supervised learning now.
Here are a few types of supervised learning algorithm:

 ° Classification: In classification we have to predict to which category
a particular set of data or attributes belong. So for example, if you
take the iris dataset with three varieties of the same flower and
teach your model to make prediction with that data, then later when
you feed a new set of data to your model it will be able to classify the
variety of flower based on the three varieties and the data that it was
fed earlier.

 ° Regression: Regression is also a form of supervised learning as it is
also based on existing data. But in the case of regression the value
you are predicting is continuous in nature and not predicted from a
set of categories as in the case of classification. Hence if you take the
same iris dataset and build a model by feeding attributes such as
sepal length, sepal width, and type of variety of flower, then later if
you are given the type of flower and sepal length you might be able
to predict a value for the continuous value sepal width.

• Unsupervised Learning: In this form we do not have any training data
for the model. This is to say the model directly acts on the data, instead of
making predictions about the data. We try to figure out the combinations
or relationship between the data. Clustering is one form of unsupervised
learning. With clustering we try to form groups between the data. These
groups comprise data points that are similar to each other. For example,
using clustering we can figure out islands of users that buy a product
together, or figure out the area of epidemic in a region, and so on. Let's try to
discuss clustering with an example. Let's look at the following graph, which
shows the various datapoints that are collected for some disease outbreak
in a region. All the datapoints are currently plotted in this two-dimensional
graph as follows:

Chapter 4

[105]

The preceding figure shows unclustered data in two dimensions for simplicity.
Suppose the datapoints show the occurrence of disease in some region. Our task then
is to group the data so that we can make some deductions from it. To group the data
into different groups we run unsupervised clustering algorithms on these and try to
figure out three specific groups within this region of disease outbreak. The groups so
detected could be as follows:

Basics of Machine Learning

[106]

The preceding figure shows the clustering results after the algorithm is run
on the raw dataset to figure out three groups. The three groups are shown
in three different colors in the graph. Each could be some different form of
deduction from the data, for example, the red color group might depict the
region or area of severe form of the disease outbreak:

• Semi supervised learning: Semi supervised learning falls between
supervised learning and unsupervised learning. In the cases of supervised
learning we have a labeled dataset used for training and in unsupervised
we have a completely unlabeled dataset that we use for finding the patterns.
But in semi supervised learning we have a portion of the dataset that is
labeled and another portion of the dataset that is completely non-labeled.
Researchers have found that using a mixture of labeled and non-labeled data
can sometimes produce great predictive results. In this book, however, we
will be using mostly supervised and unsupervised learning algorithms.

Let's try to understand the concept of supervised and unsupervised learning
algorithms using a simple case study now.

A small sample case study of supervised and
unsupervised learning
Let's discuss a pollution detection system. Suppose we have an IoT device or any
device that can capture the pollution levels or air quality levels and it is installed on
various corners in the city. The role of this device is to pull the air quality levels at
frequent intervals and store the results in files. These files can later be copied in a
backend system where our analysis jobs can run on top of them. Also suppose we
are collecting data for the following features: air quality levels, number of vehicles,
location of the device, time of day, and the traffic congestion level.

Now suppose we have two analytic tasks on top of this data:

• Based on the features we have to predict if the number of vehicles is
increased say two folds and time of day is in the afternoon when all the
factories in the city are opened and producing toxic gases. What would be
the air quality levels?

This is clearly the case of supervised learning. We had a set of data initially
where we had some features such as number of vehicles, air quality, time of
day, and so on. We can feed this data into a machine learning model (model
is a program or algorithm) and let it build its knowledge based on existing
data. This knowledge is nothing but the relation between different data
points based on which the program can make predictions in the future
when the data changes.

Chapter 4

[107]

So we can build and store a machine learning model. The next time if we
need to predict air quality for a new set of features we can feed the set of
features to the model and it can send us air quality levels.
This is pretty much what is going to happen in smart city projects that are on
the increase recently.

• Task 2 is figuring out zones of high pollution levels within the city: This is an
example of unsupervised learning where we do not have a result set and we
need to just analyze the data and come up with a set of analytics. So in this
case we figure out the air quality levels across different devices and figure
out which quality levels appear to be similar and build zones based
on these. This in other words is called clustering and is an example of
unsupervised learning.

We have now seen the types of machine learning, let's now explore the typical steps
in approaching a machine learning problem.

Steps for machine learning problems
A typical machine learning problem requires a set of steps to go through before we
can start making an analysis using the machine learning models. The steps involved
in the machine learning problems are:

1. Understanding the problem: Evaluating the problem at hand is a very
important task. This step is basically used in understanding the problem
and laying out the expectations from the outcome. This is basically where
we analyze what we are trying to achieve from using machine learning for
our problem.

2. Collecting the data: From the perspective of big data there are various
ways of data collection. Data can be copied to HDFS or can be present in
the NoSQL database HBase. Data that is stored in HDFS does not require
to be frequently changed; however in HBase you can store data that can
be changed and later reused. Data can be brought into Hadoop by variety
of different ways, for example, you can bring in data in real time using
messaging technologies such as Kafka or you can do a batch transfer of data
via tools such as Flume or simple SFTP. We will be covering data ingestion in
detail again in this chapter.

Basics of Machine Learning

[108]

3. Cleaning and munging the data: When you work on a machine learning
problem, it is best to first analyze the dataset at hand figure out what kind
of data it is that you are going to train your model on. There could be some
fields that might be null and have to be dealt with or some data that is not
needed at all and can be filtered out. There could also be some data that is
not in numeric format and needs to be converted into proper numeric format
throughout to be fed to the models later. Analyzing and spending time on
the data that is later fed to the models goes a long way towards making your
models more qualitative in terms of predicted results.
We covered this topic in Chapter 2, First Steps in Data Analysis, as well. Data
is usually in raw format and contains some missing or bad values. Since our
machine learning models take in mathematical numerical input, feeding
raw or bad data to them would result in errors. Hence data has to be first
converted into proper form or format before it can be consumed for data
analysis. There are various ways of data cleaning and munging. Apache
Spark has a handy API whereby you can create separate data cleaning
Spark jobs and push the clean data back to HDFS for analysis.

4. Exploring the data and breaking the data later into training and test data:
Initial data exploration is very important as it gives you the initial insights
of the data and is a very important step in data analysis. Initial exploration
involves plotting the scatter plots, or figuring out the number of rows in
your dataset and you also do simple analysis as was shown in Chapter 2, First
Steps in Data Analysis, using spark-sql. Exploring big data by writing simple
spark-sql queries or plotting charts helps you better understand your data
before you start running heavy analytics pieces on it.
After you have run your initial data exploration break the data into two
parts, one for training your models and the other part for testing on your
models so as to check how well you have trained your model.

5. Choosing, training, and storing models: Choosing the right tool for the job is
always of utmost importance. Think of the different models as different tools
that you can use for different types of tasks; every tool or model has a unique
set of features and drawbacks and it is your job as a data analyst to figure
out the best fit for a particular use case. Apart from choosing a good model
training the model with good data is very important too. Most of the models
are mathematical and require data in number format, so make sure that
data is in proper format (handle missing/nulls too) before feeding it to your
models to train them. Once the models are trained they have to be stored
(mostly external as in HDFS for big data models) so that they can be utilized
later and applied on a new set of data.

Chapter 4

[109]

In real-world applications you would almost always use a group
of models. Applying a set of tools for a particular task where
the subtasks are handled by individual tools best suited for the
job helps in getting a better job done, similar to applying a set of
models (using techniques such as ensembling and so on almost
always yields better results).

6. Evaluating the results and optimizing the models: Use the model that you
have trained and stored in the previous step and apply it on the test data
that you had kept earlier. Check how good your model is by using different
evaluation techniques (such as root mean squared error and so on). Our aim
is to bring down the error in our model predictions and reach a suitable level
where our errors are minimized.
To bring down the errors we will have to try different models, or change the
input parameters of the models, or use a different set of features. In many
cases it's a big trial and error process and this will consume a lot of time.

You will see that beyond a certain point the error levels wont
decrease further and as such that would be your maximum
precision level. Also a good amount of data almost always beats
the best-of-the-breed algorithms. The larger the data the better the
knowledge set of the algorithms will become.

7. Storing and using the results: Once the models are good enough to be
utilized, run them on your actual data now and store the results in external
storage. Big data gives you various options to store your data. For example,
you can store the results in Parquet format on HDFS, or as CSV or plain text
in HDFS, or dump to the HBase data. The results stored in HDFS this way
can be re-analyzed using spark-sql or using some real-time data analytics
tools such as Impala.

We have seen the steps of running a typical machine learning problem, but still there
are a few important questions unanswered and these questions are important for our
understanding of big data and running machine learning algorithms on it. We will
now explore some of those questions.

Basics of Machine Learning

[110]

Choosing the machine learning model
Choosing the model depends upon the task we have at hand. If you have existing
data available to train your models then you would be using one of the supervised
learning algorithms either for classification or regression. If the end results are
continuous in nature then you would use one of the regression algorithms and if the
end results are one of some specific discrete values then you would use a classifier
model. However, if there is no training data available and you still want to
analyze your data then you would use some algorithms from the unsupervised
learning models.

Within each type of machine learning technique, whether it's supervised learning or
unsupervised learning, there are plenty of models to choose from. Before we look
into the technique of choosing the model, let's look at two important concepts:

• Training/test set: It's a very useful practice and something that you almost
always have to use. We would split the training data that we have into two
separate sets. The first set we would use for training our model and the
remaining set we would use to test our model. Since the remaining set will
be totally new data for our model to test on, based on the error in predictions
we can gauge the suitability of our model and improve upon it. Apache
Spark provides us a handy method to split our dataset.
First we load the data in a dataset object and then on the dataset object we
invoke the randomSplit function providing the training and test set size (as
shown by the ratio of 0.9 and 0.1). 12345 is the seed value used to randomly
split the data:
Dataset<Row>data=
spark.read().load("data/sample.txt");
Dataset<Row>[]splits=
data.randomSplit(newdouble[]{0.9,0.1},12345);

As seen in the preceding code, the splits holds two values. The first value
in the array is the training data and the other is the test data.
However, even a plain training/test data holdout approach is prone to
a common problem called overfitting. The reason is that we as a user of
the model can still keep on tweaking it until it performs well on the test
data. Thereby our model will perform nicely on this training and test data
combination, but might again failout on new data. In order to train our
model well we need to make our model touch as much data as possible for
training, but still be good on new data. If we use too little data for training,
our model might under fit, that is, it won't be nicely trained and would
give bad predictions and if we use all the data it might overfit. A common
approach to deal with this is to use cross validation.

Chapter 4

[111]

• Cross validation: Cross validation uses the concept of training/test datasets
also, but in this approach, we build multiple pairs of training and test
dataset. K-fold cross validation is a common technique for cross validation
and in this approach we build k pairs of training and test combinations. We
train the model on the k training sets and test on each of the individual k test
sets. Next we take the average of the error in predictions on each of the test
sets and this is called the cross validation error. Our aim as model trainers is
to reduce this cross validation error so that our model performs better.

For selecting a model you would first select it based on the type of problem at hand,
that is, either a classification or regression or unsupervised learning algorithm. Once
you have the algorithms you should train and test them with the cross validation
approach and pick the model with the least amount of error on prediction results.

Let's now look at the types of features we can extract from our datasets.

What are the feature types that can be extracted
from the datasets?
We will now list some of the main types of features that you will be dealing with on
a day to day basis as a data analyst:

• Categorical features: These are discrete variables, that is, they are bound
and have definite values. They are present as labels or strings to depict the
outcome of a set of data points in a dataset row. For example in a dataset
containing the health records of patients a feature like blood pressure might
be represented in categorical form as high, low or normal. There are machine
learning algorithms like decision trees and random forest that can consume
categorical features as-is. However there are other algorithms like logistic
regression that are purely mathematical and would require even the discrete
categorical features to be converted to numeric format before training on
them. For such algorithms we can convert categorical features to numerical
format as shown:

1. Extracting features from categorical variables (continuous
numbers): These are variables that are non-numeric. As most of the
machine learning algorithms run on mathematical numeric numbers
we need to convert the categorical non-numeric features to numeric
features.

Basics of Machine Learning

[112]

As an example, let's look at the following rows of data from some
sample dataset that checks the health of a person based on some
parameters or features and then tells if a person has a disease or not:

Sample data (to show examples of categorical data)
6,148,72,35,0,33.6,0.627,50, "has disease"
1,85,66,29,0,26.6,0.351,31, "no disease"
8,183,64,0,0,23.3,0.672,32, "has disease"

This is a classic example of a binary classification dataset. But as we know
most of our binary classifier models (programs that can learn from existing
data and build the ruleset), only work on mathematical data so we can't feed
the last value, that is, "has disease" and "no disease" to our classifier models.
Since "has disease" and "no disease" are the only two categorical values in
this dataset, we can safely turn them into numerical values as "1" and "0"
thereby the dataset would become:

Sample data (to show examples of categorical data)
6,148,72,35,0,33.6,0.627,50, 1
1,85,66,29,0,26.6,0.351,31, 0
8,183,64,0,0,23.3,0.672,32, 1

The previous example can now work well in this case of binary
classifications.

2. Extracting features from categorical variables (non-continuous
numbers): In the previous point we showed you how to use
continuous numbers 0 and 1 in a binary classification problem to
replace categorical values. But does the use of continuous numbers
(that is, numbers in order 1, 2, 3) work in all cases? The simple
answer is no and in fact in some case continuous numbers can cause
machine learning algorithms to produce erroneous results.
Not all categorical variables can have continuous numeric values
as that might cause the models to treat them as numbers in order.
Consider this example of a dataset row:

Dataset containing multiple categories of data points.
12,15,16,178,36,89, "New Jersey"
12,15,23,178,36,89, "Texas"
37,33,44,12,12,33, "New York"

Chapter 4

[113]

Suppose the rows of data show few values based on which we classify
whether the state referred here is New York, Texas, or New Jersey. Now if
we just blindly put the values as 0 for New Jersey, 1 for Texas, and 2 for New
York it won't be correct. The reason for this is that these are not continuous
values; there is no relation between New Jersey, Texas, and New York.
Hence we should replace them with non-continuous numbers that do not
depict any kind of relationship like one number being greater than other
(so it should have more emphasis), hence if New Jersey is say 14, Texas can
be 50, and New York can be 6. None of these numbers show any kind of
continuous relationship.

However, if you had categorical labels for movie ratings
such as bad, good, and awesome, you could replace them
with continuous numbers such as 1, 2, 3. Thus 3 being
awesome has a value greater than the other two.

• Numerical features: These features are as real numbers or integers and can
be extracted from raw data for analysis. Most machine learning models are
dependent on numerical data. But even with numbers you might want to
transform the numbers into a particular range to feed to your models.

• Text features: Features can also be extracted from plain text. Text can
be in the form of comments on a topic, in the form of some reviews such
as Amazon reviews for its products, or they can be as messages sent on
Facebook, WhatsApp, or Twitter. This text is valuable as we can analyze this
to figure out things such as current trends or the overall review of a product
or movie, or do sentimental analysis of a set of text messages, and so on from
text using Natural Language Processing (NLP) techniques.

Apart from these, features can be images and videos too. But these
features have to be converted into different numbers using special
techniques that are beyond the scope of this book.

We have seen the types of features; let's now look at the main methods of extracting
the features.

Basics of Machine Learning

[114]

How do you select the best features to train your
models?
Feature selection is a very important task and it is tightly coupled with the predicted
results. Especially in the case of big data analysis a dataset can contain thousands
of features. We cannot use all the features as it can slow down the computation
tremendously as well as yielding improper results. Besides this some of the features
might be unnecessary or redundant. To overcome this problem various techniques
on the feature selection side can be used to select a subset of features. Doing this
would help us train our models better as well as reduce the problem of overfitting.

Overfitting is the problem where our models are nicely fitted or trained
on the training data. As such they work very well on instances on the
training data for prediction results, but they work poorly on any new set
of the data (that is, new data that the model has not seen before).

Feature selection techniques are different from feature extraction as in feature
selection we reduce the number of features we are using to train our models, but in
feature extraction we are only interested in choosing features from our raw data.
To depict the importance of features let's take a small example of a dataset shown
as follows:

Age Diabetic Heart
disease

Exercise Smokes Talks fluent
English

Random
variable

42 No No No Yes Yes $#@
45 Yes No Yes Yes No -
68 Yes Yes No No Yes test

Now suppose somebody asks us to write a machine learning program that will teach
a model to predict the age of people based on the features depicted in the preceding
dataset. Look at the features shown—Diabetic, Heart disease, Exercise, and Smokes
do make sense as they impact the age of a person. But what about Talks fluent
English and Random variable. Random variable contains only garbage variables,
not good to teach to the model and Talks fluent English is completely irrelevant. So
we should discard these features and not use them to teach our model or else we will
get bad results. This is what feature engineering is all about, choosing or building a
proper set of features to teach your models with. It is a broad topic and entire books
have been written on it. We will try to cover this in as much detail as possible as part
of this book.

Chapter 4

[115]

As part of feature selection there are three important techniques for feature selection
and Apache Spark provides API methods for those techniques. The techniques that
are used for feature selection are:

• Filter methods: As the name suggests we filter out the irrelevant features
and choose only the relevant ones. There are many techniques by which we
can only select a subset of the features we have and still get good predictions.
There is a big advantage of choosing fewer features as it helps train our
models faster, it helps in avoiding overfitting, and it might help in getting
better results as with more features we might overfit and wrongly train our
models. Simple statistical methods are used to correlate the features with the
outcome variable and the features are selected based on that. Some of the
filter methods are:

 ° Pearson coefficient: Pearson correlation is a simple method used
for understanding a relation of a feature with respect to its outcome
or response variable. It measures linear correlation between two
variables that are both continuous in nature (that is, numerical).
The resulting value lies in [-1;1], with -1 meaning perfect negative
correlation (as one variable increases, the other decreases), +1
meaning perfect positive correlation, and 0 meaning no linear
correlation between the two variables.
Spark comes with some handy pure statistical functions built into
its statistics package. The pearson coefficient function is also built
inside it and using this function from the statistics package of Spark,
you can apply it on RDD's of data. As an example, let's look at the
following code:
First we create two datasets seriesX and seriesY with some
sample data:

 JavaDoubleRDDseriesX = jsc.parallelizeDoubles(
 Arrays.asList(1.0, 2.0, 3.0, 3.0, 5.0));
 JavaDoubleRDDseriesY = jsc.parallelizeDoubles(
 Arrays.asList(11.0, 22.0, 33.0, 33.0, 555.0));

Basics of Machine Learning

[116]

Now we find the correlation between these two datasets and we find it using
the Statistics.corr method from the statistics package of Apache Spark.
Next we print out the result:
 Double correlation =
Statistics.corr(seriesX.srdd(), seriesY.srdd(), "pearson");

System.out.println("Correlation is: " + correlation);

 ° Chi-square: When both the feature and the response are categorical
then the chi-square method for feature selection can be used. It is a
statistical test applied to the groups of categorical features to evaluate
the likelihood of correlation or association between them using their
frequency distribution. Using this method is simple, we calculate the
chi-square distribution between each feature and the response and
figure out if the response is independent of the feature or not. If the
response is related to the feature then we keep it or else we discard it.
Spark ML comes with the chi-square feature selector built in. Let's try
to understand it using an example.

Suppose we have a dataset as follows (the column on the left shows
the set of numerical features and the column on the right shows the
response, this is just some sample data for this example):

Features (4 features per row) Response
[0.0, 0.0, 18.0, 1.0] 1.0
[0.0, 1.0, 12.0, 0.0] 0.0
[1.0, 0.0, 15.0, 0.1] 0.0

Now our task is to find out which among the four features is the
top feature for predicting the outcome response (right column in
the table).
For this first create the dataset (here we are creating a dataset using
sample data shown in the preceding table and providing a schema
for that data; the full code is in our GitHub repository for this):
Dataset<Row>df=spark.createDataFrame(data,schema);

Chapter 4

[117]

Now create an instance of ChiSqSelector and set the number of top
features that you want from it:
ChiSqSelectorselector=newChiSqSelector()
.setNumTopFeatures(1)
.setFeaturesCol("features")
.setLabelCol("clicked")
.setOutputCol("selectedFeatures");

Now apply this chi-square selector to the dataset we loaded earlier
and extract the top features from it. Store the result in another dataset
and finally print out the results from this dataset:
Dataset<Row>result=selector.fit(df).transform(df);

System.out.println("ChiSqSelector output with top
"+selector.getNumTopFeatures()
+" features selected");
result.show();

The results will be printed as shown:

Note: Apache Spark comes bundled with other feature selection
methods such as VectorSlicer and RFormula, please refer
to the official Spark documentation for information on those.

• Wrapper methods: The concept of wrapper methods is simple. We pick
a machine learning model and train it with a subset of features. Next, we
record the error in our predictions and check how the errors change by
choosing a different set of features (by removing or adding features from or
to our original subset). We keep on doing this until we reach an optimum
set of features .As such this method is very computationally expensive
and it takes a long time to run and check. Correlation methods on the
other hand are much faster, but they do not bring such good results as
wrapper methods.

Basics of Machine Learning

[118]

There are some common examples of wrapper method approaches. We will
explain some of them now:

 ° Forward Selection: The concept is quite simple. We pick a machine
learning model (it can be a decision tree) and train it with no features.
We now check how the predictions are and the predictive results
error rate is. Next, we keep on adding one feature at a time and keep
on checking the error rate. If the feature improves the performance of
a model, then we keep it; if not we remove it. Thus, it is an iterative
and computationally expensive process, but it helps us build a good
set of features.

The feature set thus obtained might be tightly coupled with
the model you have trained with. As such they might not be
good for the other models. Also, this technique is prone to
overfitting where by the models are good in predicting on
training data, but predict badly on new test data.

 ° Backward elimination: This approach is just the opposite of forward
selection. Here we pick a model and train it with all the features
and next we keep on removing one feature at a time and observe
the results. We remove the features that have no impact on model
performance. This approach also suffers from the same problems as
those of forward elimination.
Apart from these there are other approaches such as recursive feature
elimination. We urge the readers to check on Wikipedia for more
information on these.

• Embedded methods: As the name suggests these are methods that are inbuilt
or embedded within the machine learning algorithm itself. Thus, all features
are fed to the model and models containing the embedded method will pick
the best subset of features by themselves. These embedded methods combine
the qualities of wrapper as well as filter methods both. Some of the popular
examples of embedded methods are lasso and ridge regression. These
methods lasso and ridge regression have inbuilt penalization functions to
reduce overfitting.

Note: Regression in statistics refers to the technique
of adding additional information to improve the
performance of a model.

Chapter 4

[119]

We have seen now how to select the models and how to select its features. Let's now
see how we can run a complete machine learning algorithm on big data.

How do you run machine learning analytics on big
data?
The real usage of machine learning comes mainly in the form of big data. Over a
period of time you will realize that more data beats best-of-the-breed algorithms.
More data means more criteria's and more knowledge that can be fed to the models
and they will then produce better results. Most of the companies that are heavily
using some form of analytics for business decisions are now also using or getting
into big data. The reasons are:

• In some cases, it might be completely impossible to run the analytics on
traditional datasets, for example, consider the case of storing video's and
images. Relational databases have a capacity beyond which storing data in
them just does not makes any sense and they won't scale beyond a certain
point. Hadoop is especially suitable for storing this kind of complex data
such as videos and images.
Now what if your task is to analyze the videos and images and extract out
any vulgar content such as porn images or videos. There are different forms
of machine learning like deep learning that you can use to classify images
into porn and filter them out. To run analytics jobs of this scale where
millions of images and videos are involved is specially suited for running on
big data with cluster computing frameworks such as Apache Spark.

• Hadoop is open source, so it is easily available and there are lots of vendors
that sell support for big data stacks such as Hortonworks, Cloudera, MapR,
and others.

• Network cost is low due to parallel computing and data locality.
• Parallel jobs reduce the total execution time of computations considerably.

Earlier, a lot of computations for example computations on spatial data or
genomic data used to take days when processed through sequential batch
jobs but now can be run much faster as they can be processed in parallel
now. Easy rollback and failover support from different parallel jobs.

We have seen the advantages of running a machine learning problem on big data.
Let's now see how we can run a typical machine learning problem on big data. We
will try to cover the individual steps in detail.

Basics of Machine Learning

[120]

Getting and preparing data in Hadoop
Hadoop is a very open ecosystem as such data can be fetched into it from various
datasources and by various methods. It has a plethora of products now that can be
used for batch analysis of data as well as real-time analysis of the data. There are
plenty of sources from which data can be collected and pushed into Hadoop for
storage, for example, all the images, videos, tweets, logs, or data from existing apps
can be dumped into Hadoop. So Hadoop becomes a big storage engine for regular
apps data as well as social media apps data and here all this data can then
be analyzed to provide useful business intelligence.

As seen in the preceding figure, there are various sources from which data can be
pulled into Hadoop. Also various technologies such as Flume, SFTP, Kafka, and so
on can be used to transfer data from sources into Hadoop. We will cover some of
these sources and data transfer techniques now:

• Flume: Using Flume you can directly copy the log files or other data files
to HDFS.

• FTP: You can FTP the files to some location on the shell (Linux shell, and so
on) and can later push this file to HDFS.

Chapter 4

[121]

Note: If you are playing around with a large dataset and planning
to run data analytics on it you can explore the option of simply
FTPing the file and later pushing it to HDFS manually.

• Kafka: You can publish the data to a Kafka topic and this data will be pushed
by Kafka to HDFS. This is more of a real-time method that is generally used
in event driven systems, for example, if you want to collect tweets from
Twitter and every few seconds or at intervals you want to publish them to
HDFS then Kafka is great for such usage.
You can use Apache Spark's Spark Streaming API to read the data from the
Kafka topics and store them on HDFS.

• HBase: This is the default database that ships along with most Hadoop
bundles. Data can be inserted into this database and then can directly be
consumed for analysis. This is the main database that comes into action
when you are sending a message to your friend on Facebook.

• Hive: This is a batch solution. So if you push data into it it stores the data
in a Hive datawarehouse that is kept inside HDFS. Hive has an SQL engine
inbuilt so you can fire SQL queries for analysis. Hive is slow as it is batch
and internally for queries it fires MapReduce jobs, but it is still used in many
places due to its good support for SQL.

• Impala: This is a more real-time option This product was built by Cloudera.
It is very fast and is an excellent product for quick real-time data analytics on
big data.

For running the examples in this book we would suggest you
copy the files to HDFS.
For this you need to copy the file to the Linux or Unix shell first
and later push them to HDFS using the following command:
Hdfsdfs -put <FILE_NAME><HDFS_LOCATION>

This will pull the file from the shell and push it to the HDFS
location.

We have seen how we bring data into Hadoop, let's now see how we prepare this
data in Hadoop.

Basics of Machine Learning

[122]

Preparing the data
Data might be completely raw when it is first brought in Hadoop. As we discussed
earlier data has to be cleaned and munged thoroughly before it can be consumed
by machine learning models. In Hadoop, and generally in data warehousing, raw
data is initially copied to a staging area (temporary area) and then some Spark jobs
or MapReduce jobs can be run on them to clean the data and republish the data into
HDFS.

Formatting the data
From the perspective of the data 'form' we must compress the data before it can
be dumped into HDFS. There is no restriction though on the type of data that
can be stored in Hadoop. You can store data in text, JSON, binary, or any other
format. However, for applications in production we normally prefer data in some
compressed format for example Avro or Parquet format. The reason being that the
compressed data will take less space and it would need less network bandwidth for
data transfer. We would recommend that the users use formats of data that are well
suited for Hadoop itself, for example, Avro, Parquet, or SequenceFile. Apart from
compression there is one other major advantage of using these specific compression
formats on Hadoop and that is they support partitioning, thus an Avro file can be
easily split and spread across multiple machines without corrupting the data it
holds. Please refer to Hadoop documentation for more details on this.

Note: If you are going to run lot of aggregation analytical tasks such as
aggregating on specific columns then it's better to use Parquet format as
it is well equipped for cases where we require fewer columns for data
analysis.

Storing the data
After the data is properly cleaned and formatted it can be stored in Hadoop, as was
shown in the previous figure, either directly in HDFS (in Parquet, Avro, or any other
format) or it can be passed to HBase or Hive.

While storing the data in Hadoop you might have to check how you partition the
data as this is a very important step and it guides the performance of an application
running on top of this data. For example, if you are storing data dumps from various
dates then you can partition the data on date, that is, you can store it as:

<HDFS_DIR>/data_ingestion_date=<DATE_Value>

Chapter 4

[123]

Here HDFS_DIR is the director containing the HDFS folder that begins with data_
ingestion_date= and after this equals sign we have the actual date when the data
dump was taken.

This helps to partition the data by date and the advantage of partitioning is simple
yet very powerful. So suppose you need the data only for the last two days and then
you just need to check the folders for the last two days in HDFS and you can simply
ignore the remaining folders. This would mean that if you had been taking a dump
of your data every day for few months or years and putting each days data in its
specific folder (that could have a 'days date' as its name) in HDFS, you would
simply ignore that old data and only take the latest data for last two days. This
would highly expedite the queries or jobs run on data as the amount of data
analyzed is reduced now.

Data partitioning on Hadoop is a very important topic and please refer to
the Hadoop official documentation for more information on it.

In this section, we have covered how we can fetch data into Hadoop and how we can
prepare it so that is ready to train our machine learning models. In the next section,
we will see how machine learning models can be trained on big data.

Training and storing models on big data
Most data scientists from the Python world are used to working on libraries such as
scikit-learn and these are mainly single node libraries that do not work well on big
data. Big data requires specially built machine learning algorithms that are designed
to work on a cluster of multiple machines. Apache Spark ships with a lot of machine
learning algorithms bundled in its machine learning library. These algorithms are
specially designed to work on a cluster of distributed machines as such they are best
suited for big data analysis. Since Apache Spark is a relatively new library not all the
algorithms are available. So if you want to use a machine learning algorithm from
some other library then you need to use the jar file in which it is bundled and put
it in the classpath of all the datanodes that are running your Spark jobs. This way on
each datanode where your Spark job runs the specific JAR would be available.

These are the steps to build and train a model on big data:

• Choose the model: If the model is present in the Spark implementation
choose it first and build your Spark program on top of it. If the model is not
present in the default Spark machine learning library then use the library you
want to use and write your Java program on top of it. Next you can invoke
your Java program using a Spark job, you just need to provide this jar in the
classpath for the Spark job.

Basics of Machine Learning

[124]

• Train the model: Train the model on the clean data that you prepared earlier
and test it on the test data. After making different iterations of testing your
model when your model is good you can store it.

• Store the model: After the model is trained it should be kept in external
storage so that later it can be repicked and used for testing. This way you
won't have to train a new model again when you want to do some prediction
results again.

In the case of big data models, storage is a very important
operation as the amount of data involved is huge; you cannot
retrain the model again on the same data. So it's better to
train and keep a good performing model in external storage
and reuse it when needed.

In Spark ML all the machine learning algorithms have the save methods using
which a trained or fitted model can be exported to external storage and later reused.
Let's see an example of this API:

Here we have a Logistic Regression Model:

LogisticRegressionlr=newLogisticRegression();

After creating the model, we train it on some training data:

LogisticRegressionModelmodel1=lr.fit(training);

Once the model is ready and trained, now you can store it to its HDFS location
(for example, as on hdfs://testapp/modelstore/temp):

model1.write().overwrite().save("hdfs://testapp/modelstore/temp");

Now once the model is saved in this external location on HDFS, you can always
deserialize it and bring it back into an object of the same model type by recreating it
from external storage:

LogisticRegressionModelmodelFromExternalStore =
LogisticRegressionModel.load("hdfs://testapp/modelstore/temp")

As seen here, each Spark ML model contains a handy function load using which
the model can be loaded from external storage like HDFS. Apache Spark has a very
extensive machine learning API that is suitable for feature extraction from raw data,
feature selection, machine learning algorithms, and some utility functions. We will
learn more about this API in the next section.

Chapter 4

[125]

Apache Spark machine learning API
Spark ML is Apache Sparks library for machine learning analysis. This library
contains machine learning algorithms that are pre-designed to run on a cluster of
distributed machines. This feature is something that is not available on the other
popular machine learning libraries such as scikit-learn as such these are single node
libraries. To run these third-party single node libraries via Spark you will have to
ship their code on each individual machine that is running a Spark job. You can do
this via the spark-submit job.

Apart from this Spark machine learning algorithms are massively scalable and
are much easier to write and maintain as compared to older versions of machine
learning algorithms built on top of map reduce. Algorithms built on top of
MapReduce were slower, much more complicated in terms of code, and
were hard to debug and maintain.

We will go over the specific details of the Spark ML API now.

The new Spark ML API
The initial machine learning algorithms of the Apache Spark (MLlib API) were
highly centered around the RDD API. But over a period of time they started
concentrating on the DataFrame API, hence in this book all machine learning
algorithms are based on machine learning algorithms run using the DataFrame
piece. Those people coming from a scikit background will find the DataFrame API
much similar to the one they use. Overall the DataFrame machine learning API is
very simpler to use and maintain, it has handy tools for feature transformations
and extractions.

Note: As of Spark 3.0 the MLlib RDD API will be fully deprecated hence
we encourage the users to concentrate on using the DataFrame machine
learning API wherever they can.

At a higher level, the Spark ML API contains the following tools:

• Machine learning algorithms: Spark contains the implementation for some
popular machine learning algorithms, for example, for Logistic Regression,
Naive Bayes, clustering, and so on. The API is very developer friendly and is
very easy to use. If you have used libraries such as scikit-learn you will find
lots of similarity in terms of usage. The following is an example of sample
code where we load the dataset and apply a k-means clustering algorithm:

Basics of Machine Learning

[126]

We are going to first load our dataset from a file and store it in a dataset
variable dataset:
Dataset<Row> dataset = spark.read().format("libsvm").load("data/
mllib/sample_kmeans_data.txt");

Next we create a KMeans algorithm instance and apply the algorithm to the
dataset:
KMeanskmeans = new KMeans().setK(2).setSeed(1L);
KMeansModel model = kmeans.fit(dataset);

Our task here was not to explain the code or algorithm to you, but we just
wanted to show how easy it is to use the Spark ML code. We just need to
load the dataset in the proper format and instantiate an algorithm and apply
to it. We can also pass custom parameters to our algorithm.

• Features handling tools: Feature engineering is one of the most important
fields within the machine learning arena. It's not the number of features,
but the quality of features that you feed to your machine learning algorithm
that directly affects the outcome of the model prediction. Spark ships with
feature handling tools that help in doing feature extraction, transformation,
and selection. It's a very handy set of prebuilt feature tools and we discussed
them in detail in an earlier section in this chapter.

• Model selection and tuning tools: These are methods that are specifically
used in choosing a model as well as tuning its performance. Cross validation
is built into the Spark ML package and can be used to best train a model and
hone its performance.

• Utility methods: The API contains some utility methods to do some basic
statistics as well as some other basic utility methods.

Some of the useful utility methods are:

Method Details

Statistics.colStats() This method returns an instance of
MultivariateStatisticalSummary, which
contains the column-wise max, min, mean, variance,
and number of nonzeros, as well as the total count. This
method is applied on an instance of RDD[Vector] and
is part of the Statistics package with Apache Spark
MLlib.

Statistics.corr() We covered this in a previous section too. Spark
provides methods to calculate pearson as well as
spearmans coefficient and these methods are present in
the Statistics package only.

http://spark.apache.org/docs/latest/api/java/org/apache/spark/mllib/stat/MultivariateStatisticalSummary.html

Chapter 4

[127]

Method Details

RandomRDDs These contain factory methods for random data
generation, very handy in prototyping and testing a
model with some randomly generated data.

Summary
This chapter was action packed on machine learning and its various concepts. We
covered a lot of theoretical ground in this chapter by learning what machine learning
is, some important real-life use cases, types of machine learning, and the important
concepts of machine learning such as how we extract and select features, training our
models, selecting our models, and tuning them for performance by using techniques
such as training/test set and cross validation. We also learnt how we can run our
machine learning models specifically on big data and what Spark has to offer on the
machine learning side in terms of an API.

In the next chapter, we will dive into actual machine learning algorithms and we
will learn a simple yet powerful and popular linear regression algorithm. We will
understand it by using an example case study. After studying linear regression we
will study another algorithm logistic regression and we will also try to learn it by
using a sample case study.

[129]

Regression on Big Data
Regression is a form of machine learning where we try to predict a continuous value
based on some variables. It is a form of supervised learning where a model is taught
using some features from existing data. From the existing data the regression model
then builds its knowledge base. Based on this knowledge base the model can later
make predictions for outcomes on new data.

Continuous values are numerical or quantitative values that have to be predicted
and are not from an existing set of labels or categories. There are lots of examples of
regression where it is heavily used on a daily basis and in many cases it has a direct
business impact. Some of the use cases where regression can be used are the following:

• To estimate the price of a product based on some criteria or variables
• For demand forecasting, so you can predict the amount of sales of a product

based on certain features such as amount spent on advertising, and so on
• To estimate the hit count of an e-commerce website
• To predict the value of a house based on features such as number of rooms,

living area, and so on

As you can see in the preceding cases, all the values predicted are continuous
numerical values and even though the model is trained with data from existing
values the outcome value is quantitative and does not lie from a predefined set
of values.

In this chapter, we will cover:

• The basics of regression, including what regression is and how it is used in
machine learning

• We will learn about linear regression and see a real-world example of how
we can predict housing prices using linear regression

Regression on Big Data

[130]

• We will improve our linear regression model by using some
standard techniques

• We will briefly introduce other forms of regression techniques and explain
their benefits

• After covering linear regression to predict continuous values we will learn a
popular machine learning approach logistic regression

• Using logistic regression we will study a real-world example of detecting
heart disease in patients using a UCI dataset

• We will improve our model by using standard approaches
• Finally, we will also see the benefits of using logistic regression and in which

places it can be used

Linear regression
As we mentioned earlier, regression is a technique for predicting continuous values
based on certain inputs or variables. With linear regression, we try to learn from data
that can fit into a straight linear line. For example, we can try to predict the amount
in sales of a product based on variables such as amount spent on advertising,
number of hits received on the e-commerce website, price of the product, and
percentage offered in terms of sale price. To explain linear regression let's use a
simple example using a sample fictitious data of the count of likes on a Facebook
post versus the number of times it was shared, as shown in the following table:

Count of likes Number of times shared
100 10
200 20
300 30
400 40
500 50
600 60

Chapter 5

[131]

Let's try to plot this data on a line chart:

As you can see in the preceding figure, the data points are linear, which means
that they linearly go up. In other words, an independent variable count of likes,
when changed causes the value of a dependent variable that is number of shares to
change. Thus, if we know a future value of the count of likes we can predict the value
of the number of shares based on historical data that can be fed to a mathematical
function. This linear mathematical function can be created based on the historical
data. Now suppose I ask you to predict the value of shares count given that a
particular Facebook post's likes count was 450. As seen by the arrow in the chart you
can predict this value from the preceding line chart. The corresponding shares count
comes to 45.

The preceding diagram depicts a very simple form of simple linear regression.
Let's now dig a little deeper into simple linear regression.

Regression on Big Data

[132]

What is simple linear regression?
Simple linear regression is a simple form of regression where we try to predict the
value of one dependent variable based on changes to another variable. If we have
a dataset with the value of the variables (x) and the labels (y) then simple linear
regression can be represented by a mathematical formula:

y = ax + b

Using this formula, we try to predict the value of y when we get a new value of x.

For the purpose of our dataset, we will plot our dataset into a scatter plot, as shown
in the following figure. All the data points will show up on the scatter plot. Then we
will try to draw a simple line through the data points on the chart and try to find a
best fit line. We will later use this line to predict the value of a datapoint given the
variable x:

The preceding graph shows the line through the data and this line depicts the
formula y=ax+b.

If we want to use the line to make predictions on future values, we need to find the
values of the parameters a and b.

How do you find the values of a and b in the preceding equation (y = ax + b)?

Chapter 5

[133]

The common approach for finding a and b is by making several lines through the
data (scatter plot), as shown in the following figure. From the data points we now
calculate the distance to our best fit line.

We have depicted this in the following figure using the lines between the data points
and our prediction line.

Essentially, this is just the difference between the predicted value and the actual
value. To compute the total error we sum up this error value for all our predicted
data points. There is a problem however: some values are positive and some are
negative. Due to this when you try to add the negative and positive numbers, the
negative value would be subtracted from the positive one and this would reduce
the absolute overall value of the error. To fix this issue, we take the squared of the
error for each predicted and actual value difference, so this will always result in a
positive number. Later, we sum up all the errors to find the net error. Taking the
mean (average) of this net error would return the mean squared error, as shown in
the following figure:

The preceding graph just shows one line and for the predicted values on that line we
calculate the error (squared of error) and sum up the total errors. We do this again
by creating a new line through our dataset and again, calculating the total error. We
will keep on repeating this until we find our best fit line with minimal error (or after
which point the error value does not change much).

If we take the squared root of mean squared error we get root
mean squared error and this value is quite popular in our
regression calculations.

Regression on Big Data

[134]

Up until now we have discussed only one feature, what if the number of features is
more than one?

In this case, to best represent our data instead of a single line we will have
something called a hyperplane. Let's see an example of a hyperplane,
as shown in the following figure:

As you can see in the preceding chart, both the number of comments (X2 axis) and
number of Facebook likes (X1 axis) are responsible for the quantity of share count
(Y axis). In this case instead of the best fit line representing the data we have a best
fit hyperplane (three-dimensional in this specific case) representing the data. When
the number of input variables (that is, X1 and X2) is more than one we call this linear
regression multiple linear regression. We have seen that linear regression has been
used for data points that are spread out linearly and can be depicted using a best fit
line. However, what if the data points are like in the following figures?

Chapter 5

[135]

As seen in the preceding figures, we have a curvial relationship and a polynomial
relationship. Both are still depictable by a linear regression model. In this case,
the mathematical function depicting the outcome will change. If you see the
polynomial relationship it fits the data nicely, but that does not mean it will
produce great predictions simply because it fits nicely on training data, how this
would perform on test data (that is, a totally new piece of data) is not known yet.
The curvial relationship shown in the first figure is represented by the following
mathematical formula:

Y = a + bx + cx2

(In this case, we need to find the parameters a, b, and c, we can use the same mean
squared error principle as we used previously)We have seen some concepts of linear
regression and now let's see its uses.

Where is linear regression used?
Linear regression has a number of practical uses. Some of the uses are listed here:

• Linear regression can be used in businesses to make estimates of
product prices.

• Linear regression as it is depicted by linear graphs can be used to depict
trends of items, for example, trending sales of an item over a period of time.

• It can be used in sales forecasting, for example, if the price of a product is
reduced by some percentage linear regression can be used to forecast the
amount in sales.

• In the field of finance linear regression is used in risk analysis.
• Linear regression can be used to predict the healthcare cost involved for

individuals based on some variables. This information is very useful for
health insurance companies as they can predict earlier how much cost might
be involved in giving insurance to a person.

So much for the theory, let's dig deep into a real-life case study of linear regression.
To run our samples we will use the Java code on the Apache Spark MLlib library.
We will be showing an example of multiple linear regression and for simple linear
regression we leave it as a task for the readers of this book, please check out the code
on the main Apache Spark MLlib page and it has great working examples on it. Also
note simple linear regression is inherently so simple that you can directly write a
program on it and run it or use a SimpleLinearRegression class from the Apache
Commons - project.

Regression on Big Data

[136]

We are using Spark only to show the users how we can run these algorithms in
parallel on big data, other programs such as SimpleLinearRegression from Apache
commons are suited for running on smaller datasets. We are using the latest Apache
Spark MLlib API using the DataSet object and not the RDD-based MLlib API. We
encourage users to do the same too as the RDD MLlib API will be deprecated in
Apache Spark 3.

Predicting house prices using linear regression
This is a sample case study where we will train our linear regression model using a
training dataset. Once the model is trained, we will feed new test data to it to predict
the house price for us based on the new data input. For this case study we will be
using a dataset from http://www.kaggle.com. The steps that we will use in running
our full algorithm of regression are as follows:

1. Collecting the data from the data source: In our case, since it is a file we
can simple copy it to HDFS since it is a big data project and Apache Spark
expects the file to be on HDFS or another big data filesystem to mimic a real-
world application.

The data in HDFS can be in any format such as plain text,
CSV, Avro, or Parquet. Hadoop supports a variety of
formats. Please refer to Chapter 1, Big Data Analytics with Java
where we briefly covered a few of the popular formats.

2. Cleaning and munging the data.
3. Exploring the data for initial insights.
4. Building and training the regression model and storing the model to external

storage on HDFS.
5. Reloading the model from HDFS and running predictive analytics for the

price of house.
6. Evaluating our results.

We will now look into the full analysis of this sample application.

http://www.kaggle.com

Chapter 5

[137]

Dataset
The dataset contains house sale prices for King County, which includes Seattle. It
includes homes sold between May 2014 and May 2015. This dataset has been used
from kaggle.com and it can be downloaded from this link: https://www.kaggle.
com/harlfoxem/housesalesprediction. Kaggle.com is a famous site that hosts
data science competitions for developers and has plenty of datasets for learning
analytics. This King County house sale dataset is a great dataset for evaluating
regression models. Let's try to run our regression algorithm on this dataset.
There are many features in the dataset, but the main features that we will be
using are shown here:

Feature name Description
Bed_rooms Number of bedrooms
Bath_rooms Number of bathrooms
Sqft_Living Living area in squared feet
Sqft_lot Lot area in squared feet
Price Price of the house

Data cleaning and munging
Before we use any dataset for our machine learning tasks we have to make sure
the data is in proper format. Most of the algorithms that we use rely on using
mathematical data. Hence, data that is in string format as labels and so on needs to
be converted into proper mathematical format before it can be fed to the machine
learning algorithm.

Our first step for data cleaning is to load the data and visualize the first few lines
and see if some garbage data is there or some missing values that you can visualize.
Fortunately for us this dataset is pretty clean and it has no missing values. Also all
the data points in it are numbers. Let's explore our data a little bit before we finally
run regression on it.

Exploring the dataset
Before undergoing any machine learning task we must analyze the dataset first.
In the event of some missed features or bad data we must clean the features data first
before using it for training the models. Before we run any analytics job on our data
we need to build our Spark configuration and Spark session object as shown in
the following code:

SparkConf c = new SparkConf().setMaster("local”);

SparkSession session = SparkSession

kaggle.com
https://www.kaggle.com/harlfoxem/housesalesprediction
https://www.kaggle.com/harlfoxem/housesalesprediction
Kaggle.com

Regression on Big Data

[138]

 .builder()
 .config(c)
 .appName("chp_5”)
 .getOrCreate();

Once the SparkSession is built, let's run some simple analytics on data using Spark
SQL as follows:

• Number of rows in this dataset: Using the SparkSession object load the
dataset using the CSV method as it is in CSV format. Next invoke count()
and find the total rows in this dataset:
 Dataset<Row>data = Spark.read().CSV("data/kc_house_data.CSV”);
 System.out.println("Number of Rows -->" + data.count());

And the output is as follows:

• Average price of houses per zip code sorted by highest on top: For this we
will register the dataset generated in the previous step as a temporary view
named houses and then we will fire a simple group by query on this view.
We will group the columns by zip code and find the average price per zip
code and will later sort with the highest on top as follows:
 data.createOrReplaceTempView("houses”);
 Dataset<Row>avgPrice = Spark.sql("select _c16 zip code,avg(_c2)
 avgPrice
from houses group by _c16 order by avgPrice desc”);
 avgPrice.show();

And the result would be printed as:

Chapter 5

[139]

For more elaborate data exploration and with graphs please refer to what
we covered in Chapter 2, First Steps in Data Analysis and Chapter 3, Data
Visualization and practice the code here.

Running and testing the linear regression model
For this example, we have used the dataframe machine learning API. It is an
upcoming API from Apache Spark and it is built on the lines of the scikit-learn
library. It is easy to use the machine learning algorithms on dataframe objects and
they are massively scalable. Let's go through the code now.

We have the dataset now, so first we build the SparkSession and store it in a Spark
object. For brevity I am not showing the full boilerplate code here:

SparkSession Spark = SparkSession.builder()…

Next load up the data from the dataset's CSV file (kc_house_data.CSV). After
loading the dataset in the Spark dataset object we register it as a temporary view in
Spark to fire queries on it:

Dataset<Row>fullData = Spark.read().CSV("data/kc_house_data.CSV”);
 fullData.createOrReplaceTempView("houses”);

Here you can do a fullData.printSchema() to see the schema (the
column names, and so on) in the dataset. By default Apache Spark will
give some columns names to the columns loaded in this CSV file and they
will start with _c1, _c2, and so on.

Now filter out the columns that we need by firing a Spark SQL query:

Dataset<Row>trainingData = Spark.sql("select _c3 bedrooms,_c4
bathrooms,_c5 sqft_living,_c6 sqft_lot, _c2 price from houses”);

This is an important step. Note that our machine learning algorithm requires data
in a particular form. Our machine learning algorithm from Apache Spark requires
data to be in Dataset<Row> form only, but within the row object, the first value is
the label or outcome of data (that is, if we are predicting the price so our outcome or
label is price) and finally in the next value we pass a vector and this vector object is
filled with the data of the features that we are feeding to our model.

Regression on Big Data

[140]

In the following code, we converted the dataframe to RDD first and later fired a
map transformation on it. We invoke a Java lambda function and using that we
are creating objects in the proper form as follows:

 JavaRDD<Row>training = trainingData.javaRDD().map(s -> {
 return RowFactory.create(Double.parseDouble(s.getString(4).
 trim()),
 Vectors.dense(
Double.parseDouble(s.getString(0).trim()),

Double.parseDouble(s.getString(1).trim()),

Double.parseDouble(s.getString(2).trim()),

Double.parseDouble(s.getString(3).trim()))
);
 });

This model is a fully mathematical model and it needs to be fed with only
numbers. Hence, we are converting all the feature values and the label
outcomes to be numbers (double) first.
If you have values in your datasets that are categorical or non numbers
then before feeding them to your models you need to convert them to
numbers first.

Since this is the new machine learning dataframe API, it has the dependency of the
data to be present in DataSet<Row> format. Hence we convert our preceding training
data RDD back to a Dataset object. First we defined the schema of the values that
we have in our JavaRDD. Using this schema next we build the Dataset object by
invoking createDataFrame on a Spark session:

StructType schema = new StructType(new StructField[]{
new StructField("label”, DataTypes.DoubleType, false, Metadata.
empty()),
new StructField("features”, new VectorUDT(), false, Metadata.empty())
});

Dataset<Row>trn = Spark.createDataFrame(training, schema);
 trn.show();

Chapter 5

[141]

We have invoked a trn.show() here to show us the first few values in our dataset
now. It will show up as a list of labels and features as follows:

We will split our dataset into two parts, one for training our model and the second
part for testing our trained model as to how good it is. We keep 90 percent of the
data for training and the remainder for testing:

Dataset<Row>[] splits = trn.randomSplit(newdouble[] {0.9, 0.1},
12345);
Dataset<Row>trainingMain = splits[0];
Dataset<Row>testMain = splits[1];

Now build our regression model and provide the parameters:

LinearRegression lr =
new LinearRegression().setMaxIter(50).setRegParam(0.3).
setElasticNetParam(0.5);

Train the model on the training data:

LinearRegressionModel lrModel = lr.fit(trainingMain);

Now test how good our training of the models is and how good the parameters we
have chosen are. We will print the trained model coefficients and also print the root
mean squared error. We will use the handy LinearRegressionTrainingSummary
class that does these calculations for us and prints the root mean squared error:

System.out.println("Coefficients: "
 + lrModel.coefficients() + " Intercept: " + lrModel.intercept());
LinearRegressionTrainingSummary trainingSummary = lrModel.summary();
 System.out.println("RMSE: " + trainingSummary.
rootMeanSquareddError());

Regression on Big Data

[142]

This would print the coefficients and root mean squared error as follows:

As we discussed the root mean squared error before, we should
try our model with different features and different parameters
and see how our root mean squared error behaves. Our target is
to reduce the root mean squared error, if it is going down then
our model is getting better.

Finally, run our trained model on the test data split we had. After running the model
using the transform function record the results of the model in the rows object, as
shown in the following snippet, and collect and print the results:

Dataset<Row>results = lrModel.transform(testMain);
Dataset<Row>rows = results.select("features”, "label”, "prediction”);
for (Row r: rows.collectAsList()) {
 System.out.println("(" + r.get(0) + ", " + r.get(1) + ") " + ",
prediction=" + r.get(2));
}

This would print the results as follows:

Look at the preceding printed results. A few values are predicted relatively well, for
example, the second row from the top where the predicted results is quite near the
actual value. Let's explore two values from this result:

Chapter 5

[143]

Features and actual value Predicted value Description
[3.0,2.5,2390.0,6435.0], 432500.0 666740.1204811503 Values are widely off
[3.0,2.5,1650.0,2787.0], 433190.0 435306.25133833074 Values nearly match

As you can see in the preceding table, one value was close and the other was widely
off. This is what machine learning is about; we need to get the best predicted results
that are good for most cases. It takes years of practice on the part of data scientists to
evaluate models that bring awesome predicted results. There are plenty of practical
examples (for example, in the case of Amazon.com their website is full of predicted
suggestive results that are very good) that are used in real life where the machine
learning algorithms have been so finely optimized that they bring very good
predictive results.

To fix our preceding results we need to try and test different feature combinations
and do things such as cross-validation on the data and also tweak the parameters we
pass to the model. Our aim in this book is to give you good introductory information
on the predictive models and we would expect that the readers take it from there
and practice with different models and different features and try to come up with
the best results.

Next we will learn a very popular classification model, logistic regression.

Logistic regression
This is a popular classification algorithm where the dependent variable (outcome) is
categorical. Even though it has the word regression in its name, it is a classification
technique. Using this technique, we can train a model on some training data and the
same model we can later use on new data to classify it into different categories. So,
if you want to classify data into categories such as 1/0, Yes/No, True/False, Has
Disease/No Disease, Sick/Not Sick and so on, logistic regression is a good classifier
model to try in these cases. As per these examples, logistic regression is typically
used for binary classification, but it can also be used for multiclass classification too.

The approach used by this algorithm is quite simple. We apply the data from the
dataset onto a mathematical optimization function and this function will later make
the data fall either in a 0 category or 1 category. Later on when we get a new piece of
data we apply the same function to that new data and see where it falls, and based
on that we predict its category.

Let's now try to dig deep into the concepts of logistic regression by asking a
few questions.

Amazon.com

Regression on Big Data

[144]

Which mathematical functions does logistic
regression use?
There are many mathematical functions that can be used with logistic regression.
Basically, we will be feeding our parameters to this mathematical function and it
will give an output of either 1 and 0, or 1 and -1. Based on this output we will be
able to figure out which category is the output. We will be mainly discussing the
sigmoid function.

A sigmoid is a mathematical function. It is defined by the following
mathematical formula:

Here:

• e: The natural logarithm base (also known as Euler's number)
• x: The x-value of the sigmoid's midpoint
• L: The curve's maximum value (you can see the curve in the following figure)
• k: The steepness of the curve (you can see the curve in the following figure)

This function is also called a sigmoidal curve. If it is plotted on the x and y axes it is
an S-shaped curve shown as follows:

https://en.wikipedia.org/wiki/Natural_logarithm
https://en.wikipedia.org/wiki/E_(mathematical_constant)

Chapter 5

[145]

As seen in the preceding figure, it's an S-shaped graph and the graph starts from -6
and goes to +6 values. Its center lies at 0.5 (which is the value on the y axis). It's a
very simple yet powerful function that states that if our value or outcome value
is greater than 0.5 then we have the result as '1', and if it is less than 0.5 then the
result is 0.

Sigmoid is one of the functions we have covered here. There are other
mathematical functions that are used in logistic regression, for example,
the Heaviside Step function.

Thus logistic regression is basically an optimization technique that crunches your
data to fall on either side of the boundary of a mathematical function. You can use
this boundary condition, that is, greater or less than 0.5, as seen in the preceding
graph, to figure binary classifications for labels such as sick/healthy, customer clicks
the ad / customer avoids the ad, customer buys the product / customer ignores the
product, and so on. In mathematical terms it is a probabilistic approach whereby
the mathematical function figures out the probability of outcome and when it is
beyond a certain value (as in our case it is 0.5) it is classified as one value or else
the other value.

Logistic regression in use here is a binary classification technique where the output is
of two kinds, but logistic regression can also be used as a multiple class classification
technique. In a multiple class classification technique, the output can be of multiple
kinds, for example, customer buys, ignores, or adds a product to their wish list.
Thus, there are three categories here.

As we mentioned earlier, before feeding our features to the sigmoid function we
multiply them with weights and then sum them up. But how do we calculate these
weights? Calculation of proper weights or regression coefficients is important as
based on that our logistic regression model performs. So naturally we get another
question on this now. How do we calculate the regression coefficients?

We will briefly explain the two ways (though there are more ways) used to finding
the regression coefficients or weights:

• Gradient ascent or descent: I won't go into the details of the math involved
here much. For detailed reference on these approaches refer to the content
on Wikipedia.

Regression on Big Data

[146]

Gradient ascent is an iterative technique whereby we try to find the max
point within a graph. To find the max point we will move in the direction
of the gradient using some mathematical function. To move one step ahead
every time along this path we would require a step function. We would try
to minimize the loss or the cost function. As it is an iterative approach we can
set up a maximum number of iterations beyond which this approach would
stop. Similar to gradient ascent that finds a max function, a gradient descent
finds a minimum function.

After a required number of iterations are done and your model is
ready run the predictive results and plot the results on a line that is
superimposed on the scatter plots of the data. This will show you
how well the data is partitioned using this approach.

• Stochastic gradient descent: The performance of the gradient ascent
algorithm that was discussed previously is not very good because it re-
evaluates the full data points on each run. To avoid this we use the stochastic
gradient. This algorithm is very similar to the gradient descent one except
that in this one we will update the weights or regression coefficients using
only one instance at a time. For more information on this approach refer
to Wikipedia.

Let's now try to find the uses of logistic regression.

Where is logistic regression used?
Logistic regression is a very useful technique. Here are some of its uses:

• Logistic regression is the base for more complex algorithms such as
neural networks

• Logistic regression is used in medical sciences and social sciences, for
example, whether a patient has a disease or not

• Logistic regression can be used in business too, for example, in e-commerce
apps, it can be used to predict things such as whether the user will click on
an ad or not, and so on

Chapter 5

[147]

Predicting heart disease using logistic regression
Disease detection is an interesting problem and one that has been very active in the
research field too. In most of the research papers on automatic disease detection
machine learning is actively used to predict the occurrence of the disease based on
various attributes. For this case study we will try to predict the occurrence of heart
disease based on various parameters that the machine learning model is trained
on. We will be using a heart disease dataset that is explained in the next section,
for training our model.

For the full steps of how we can run a machine learning model on big
data, refer to Chapter 4, Basics of Machine Learning, where we talk about
how data can be shipped into HDFS and how you can run the models
using Spark and store the results in Parquet or other formats. Finally,
the results can be consumed using products such as Impala to query the
results in real time.

Dataset
The heart disease dataset is a very well-studied dataset by researchers in machine
learning and it is freely available at the UCI machine learning dataset. Though there
are 4 datasets in this, I have used the Cleveland dataset that has 14 main features;
we are only using 5 of those. The dataset is in a CSV file and the features or attributes
are as follows:

Feature Description
Age Age of the person
Sex Male or female (1 = male; 0 = female)
cp Chest pain type:

value '1': typical angina
value '2': atypical angina
value '3': non-anginal pain
value '4': asymptomatic

trestbpss Resting blood pressure (in mm Hg on admission to the hospital)
chol serum cholesterol in mg/dl
num Diagnosis of heart disease (angiographic disease status):

value 0: < 50% diameter narrowing (means 'No Disease')
value 1: > 50% diameter narrowing (means 'Disease is Present')

Regression on Big Data

[148]

Data cleaning and munging
The files contain data that has to be adapted into the format that the model requires.
As it is a mathematical model it requires all numbers. In our dataset we have two
main problems, as follows:

• Missing data: Some of the data points have null or no values and these
would cause a null pointer exception to occur if we feed them to the model.
In Chapter 2, First Steps in Data Analysis, we discussed a few strategies to deal
with missing data, please refer to that chapter if you need to go through
those details again. For now we will take a simplistic approach out of those
approaches, we will replace the missing values with the mean value for that
particular data column.

• Categorical data: The last parameter num has categorical string data in it. We
can only feed numerical data to our model. For this we need to convert this
string data to numbers. This categorical data signifies whether the user has a
disease or not as such it can be depicted by binary values whereby 1 means
has disease and 0 means no disease.

Data exploration
Let's do some initial data exploration on the data:

• Number of items in the dataset: It's a relatively small dataset and we will
load the dataset and run a count on the number of rows:
 Dataset<Row>data = Spark.read().CSV("data/heart_disease_
data.CSV”);
 System.out.println("Number of Rows -->" + data.count());

• Number of women and men in the dataset: We will now find the total
number of men and women in this dataset. For this, we will register the
previous dataset as a temporary view and fire a Spark SQL group by query
on it as follows:
 Dataset<Row>menWomenCnt = Spark.sql("select _c1 sex,count(*)
from
heartdiseasedata group by _c1”);
 menWomenCnt.show();

Chapter 5

[149]

In our dataset 1 = male and 0 = female.

• Average age of women and men: Let's find the average age of men and
women in this dataset:
Dataset<Row>menWomenAvgAge = Spark.sql("select _c1 sex,avg(_c0)
from
heartdiseasedata group by _c1”);
 menWomenAvgAge.show();

• Minimum age of women and men with the disease: Let's find the minimum
age of women and men that have the disease:

 Dataset<Row>menWomenMinAge = Spark.sql("select _c1 sex,min(_c0)
from
heartdiseasedata group by _c1”);
 menWomenMinAge.show();

Regression on Big Data

[150]

We will leave it to the users to do more analysis on the data. As you can
see, you can get valuable information just by exploration. For example,
we saw that the minimum age for men with disease is 5 years less than
women in this dataset; if we have more data than this dataset then even
data exploration can give extremely useful results. Also you can plot
graphs based on this data and the visualization of those graphs is quite
insightful too.

So much for the data exploration piece; let's now dig into the logistic regression
algorithm and see how it helps us predict the presence of heart disease given
some data.

Running and testing the logistic regression model
The code for the model is very similar to what we showed for linear regression
except that the type of model has changed in this case. We will start by building the
SparkSession object, we call it Spark and later using that object, we will pull only
the columns or features that we need to train our models with:

Our model is a mathematical model and it feeds only on numbers. So
make sure before feeding and training the model it has only numbers in
the dataset.

SparkSession Spark = SparkSession.builder()…

Next, load up the data from the dataset's CSV file (kc_house_data.CSV). After
loading the dataset in the Spark Dataset object, we register it as a temporary
view in Spark to fire queries on it:

Dataset<Row>fullData = Spark.read().CSV("data/heart_disease_data.
CSV”);
 fullData.createOrReplaceTempView("heartdiseasedata”);

Here you can do a fullData.printSchema() to see the schema (the
column names, and so on) in the dataset. By default, Apache Spark will
give some column names to the columns loaded in this CSV file and they
will start with _c1, _c2, and so on.

Now filter out the columns that we need by firing a Spark SQL query:

Dataset<Row> selFeaturesdata = Spark.sql("select _c0 age,_c1 sex,_c2
cp,_c3
sqft_lot, _c4 price,_c13 has_disease from heartdiseasedata”);

Chapter 5

[151]

After selecting the features that we need, we will convert all the features data into
a number and put it into a vector object. Since our model requires a row object, we
fill the row object with the outcome (from this training data) and the features into a
vector as follows:

JavaRDD<Row>vectorsData = selFeaturesdata.javaRDD().map(s -> {
 return RowFactory.create((Double.parseDouble(s.getString(5).
trim()) >
? 1.0 : 0.0, Vectors.dense(

Double.parseDouble(s.getString(0).trim()),
 Double.parseDouble(s.getString(1).trim()),
 Double.parseDouble(s.getString(2).trim()),
 Double.parseDouble(s.getString(3).trim()),
 Double.parseDouble(s.getString(4).trim()))

);
});

Now we convert this JavaRDD back to a dataframe as our new dataframe machine
learning API requires it to be in dataset format:

StructType schema = new StructType(new StructField[]{
new StructField("label”, DataTypes.DoubleType, false, Metadata.
empty()),
new StructField("features”, new VectorUDT(), false, Metadata.empty())
 });

 Dataset<Row>trn = Spark.createDataFrame(vectorsData, schema);
 trn.show();

We have invoked a trn.show() here to show us the first few values in our dataset
now. It will show up as a list of labels and features as follows:

Regression on Big Data

[152]

We will split our dataset into two parts, one for training our model and the second
part for testing our trained model as to how good it is. We keep 90 percent of the
data for training and the remainder for testing:

Dataset<Row>[] splits = trn.randomSplit(newdouble[] {0.9, 0.1},
12345);
Dataset<Row>trainingData = splits[0];
Dataset<Row>testData = splits[1];

Now build our logistic regression model. We have checked that even with
the default configuration this model performs well, so we have not done any
extensive tweaking with the parameters here:

LogisticRegression lr = new LogisticRegression();

Now train the model on the training data:

LogisticRegressionModel lrModel = lr.fit(trainingData);

Now run our trained model on the test data split we had. After running the model
using the transform function record the results of the model in the rows object, as
shown in the following snippet, and collect and print the results:

Dataset<Row>results = lrModel.transform(testData);
Dataset<Row>rows = results.select("features”, "label”, "prediction”);
for (Row r: rows.collectAsList()) {
 System.out.println("(" + r.get(0) + ", " + r.get(1) + ") " + ",
prediction=" + r.get(2));
}

This would print the results as follows:

Chapter 5

[153]

False positive is a very dangerous predictive outcome in a disease dataset
like this. A false positive states that the diseases are not present (as per
the predictive results); however, in reality the disease is there. Thereby
the false positive from a logistic regression model perspective is very bad
for a predictive result. To counter this a little bit you can set a minimum
probability beyond which only a certain result will be marked as positive
or negative.

Now let's quickly check with a simple way as to how many of our predictions were
good according to this model. For this we will take the total data rows in our test
data and divide the number of wrong results with that and calculate the percentage
of wrong results. The smaller the value the better our model is:

 inttestDataLength = new Integer("" + rows.count());
 intwrongResultsCnt = 0;
 for (Row r: rows.collectAsList()) {
 if(r.getDouble(1) != r.getDouble(2)) wrongResultsCnt =
wrongResultsCnt + 1;
 }
 doublepercentOfWrong = (wrongResultsCnt * 100)/testDataLength;
 System.out.println("Percent of wrong results -->" +
percentOfWrong);

And the result is printed as follows:

Percent of wrong results --> 16.0

As you can see, our model gave 16% bad results. As such this model is not good for
disease prediction. We need a much better accuracy if we need to make this model
make some useful predictions. As for the readers, we would encourage the reader to
try different models on the same dataset and observe the error rate for practice.

Regression on Big Data

[154]

Summary
In this chapter, we studied two very popular machine learning algorithms, namely
linear regression and logistic regression. We saw how linear regression can be used
to predict continuous values such as sales counts, estimating the price of products,
and so on. We also ran a sample case study using the linear regression approach
to predict the prices of houses. We later learned about logistic regression and ran a
sample using a popular heart disease dataset used for studying machine learning.

In the next chapter, we will learn two more supervised learning algorithms that are
used heavily in classification. The first algorithm that we will study is Naive Bayes
and then we will learn about the support vector machine algorithm.

[155]

Naive Bayes and
Sentiment Analysis

A few years back one of my friends and I built a forum where developers could
post useful tips regarding the technology they were using. I wished I knew about
the Naive Bayes machine learning algorithm then. It could have helped me to filter
objectionable content that was posted on that forum. In the previous chapter, we saw
two algorithms that can be used to predict continuous values or to classify between
discrete sets of values. Both the approaches predicted a definite value (whether it
was continuous or discrete), but they did not give us a probability of occurrences
of our best guesses. Naive Bayes gives us the predicted results with a probability
attached to it, so in a set of results for same category we can pick the one with the
highest probability.

In this chapter, we will cover:

• General concepts about probability and conditional probability. This section
will be basic and users who already know this can skip this section.

• We will cover the bayes theorem upon which the Naive Bayes algorithm
is based.

• We will look into the concepts of Naive Bayes and see some real-life
use cases.

• After this we will use a simple example to understand the concepts of a
Naive Bayes algorithm.

• Finally, we will run a real-world sample case study on a Twitter dataset for
sentimental analysis. For this we will be using a standard machine learning
algorithm, and the big data toolsets such as Apache Spark, HDFS, parquet,
Spark ML, and Spark SQL.

Naive Bayes and Sentiment Analysis

[156]

While doing sentiment analysis (we will explain this in
detail within this chapter) we will cover a lot of features
on text analysis on top of big data.

• Before we get into the details of the Naive Bayes algorithm we must
understand the concepts of conditional probability.

Conditional probability
Conditional probability in simple terms is the probability of occurrence of an event
given that another event has already occurred. It is given by the following formula:

P(B|A)= P(A and B)/P(A)

Here in this formula the values stand for:

Probability value Description
P(B|A) This is the probability of occurrence of event B given

that event A has already occurred.
P(A and B) The probability that both event A and B occur.
P(A) This is the probability of occurrence of an event A.

Now let's try to understand this using an example. Suppose we have a set of seven
figures as follows:

As seen in the preceding figure, we have three triangles and four rectangles. So if we
randomly pull one figure from this set the probability that it belongs to either of the
figures will be:

P(triangle) = Number of Triangles / Total number of figures = 3 / 7

P(rectangle) = Number of rectangles / Total number of figures = 4 / 7

Now suppose we break the figure into two individual sets as follows:

Chapter 6

[157]

As seen in the preceding figure, we have two sets each with their own individual
figures. Now suppose we pull a figure from Set-1 then what is the probability that
it is a triangle? There are two events involved here, the first event is the event of
pulling a figure from the Set-1 and the second event is that the set chosen is Set-1.
We know that the set chosen is Set-1 as described by the problem hence the second
event has already occurred. Thus we can write the formula as follows:

P(triangle and set-1) = Number of triangles in set-1 / Total figures = 2 / 7

P(set-1) = Number of figures in set-1 / total number of figures = 5 / 7

Therefore,

P(triangle | set-1)= P(triangle and set-1) / P(set-1) = (2/7) / (5/7) = 2/5 = 0.4

Thus, our conditional probability of pulling a triangle from Set-1 is 0.4. We have seen
what conditional probability is, and now it's time to learn the bayes theorem.

Bayes theorem
The Bayes theorem is based on the concept of learning from experience, that is, using
a sequence of steps to come to a prediction. It is the calculation of probability based
on prior knowledge of occurrences that might have led to the event. Bayes theorem is
given by the following formula:

Naive Bayes and Sentiment Analysis

[158]

Where:

Probability Value Description
P(A | B) Conditional probability of event A given that event B has occurred.
P(B | A) Conditional probability of event B given that event A has occurred.
P(A) Individual probability of event A without regard to event B.
P(B) Individual probability of event B without regard to event A.

Let's understand this using the same example as we used previously. Suppose we
picked one green triangle randomly from a set then what is the probability that it
came from Set-1?

Before we run the bayes theorem formula we will first calculate the individual
probabilities:

• Probability of randomly picking a set from one of the two sets, Set-1
and Set-2
Since there are two sets only this probability is

• Probability of picking a triangle from any set

• Probability of picking a triangle given that it came from Set-1

• Now we will go to our original bayes formula and find the probability we are
looking for, that is

Thus, the probability that the triangle came from Set_1 is 0.47 or 47%.

• To find that the triangle came from Set_2 is simple as it would be the
remaining probability and we can delete it from 1. Thus

Chapter 6

[159]

So the probability that the triangle came from Set_2 is 0.53 or 53%.

• As the probability of picking the triangle from Set_2 is higher than the
probability of picking it from Set-1, thus we can predict that the triangle
came from Set_2.

Before we knew which set the triangle belonged to, the probability of pulling the
triangle was 40% or 0.4. But once we knew what bucket the figures belonged to, the
probability increased to 53% when it is pulled from Set_1. This makes sense too
right, once we know which set the bucket belongs to it becomes a little easier to
figure out whether it's a triangle or not, and hence the increase in probability. And
this is what bayes theorem is all about, where a new probability is figured out as a
consequence of a set of sequences (which in our case was depicting which set the
figure belonged to).

Also, if you closely look at the preceding results you would realize that we just
solved a classification problem. Thus, we gave a few attributes (figure type, that is,
triangle) and asked the user to classify between two discrete values, that is, Set_1
and Set_2.

For a full blown classification problem we will have many more features
as compared to the single feature (the figure type, that is, triangle or
rectangle) shown previously.

We will next look at the Naive Bayes algorithm that is based on this probability
principle of bayes theorem.

Naive Bayes algorithm
Have you ever wondered how your Gmail application automatically figures out
that a certain message that you have received is spam and automatically puts it
in the spam folder? Behind the email spam detector, a powerful machine learning
algorithm is running, that automatically detects whether a particular email that you
have received is spam or useful. This useful algorithm that runs behind the scenes
and saves you wasted hours on deleting or checking these spam emails is Naive
Bayes. As the name suggests, the algorithm is based on the bayes theorem. The
algorithm is simple yet powerful, from the perspective of classification the algorithm
figures out the probability of occurrence of each discrete class and it picks the value
with the highest probability.

Naive Bayes and Sentiment Analysis

[160]

You might have wondered why the algorithm carries the word Naive in its name.
It's because the algorithm makes some Naive assumptions that the features that are
present in a dataset are independent of each other. Suppose you have an email that
contains the word casino and gambling, this algorithm will make the assumption
that both these words are completely independent and occurrence of one will not
affect the occurrence of the other one in any way. Even in this example of casino
and gambling this assumption looks wrong since we all know that people go to
casinos mainly for gambling. Even though Naive Bayes makes such an assumption
of features being independent of each other the overall performance of the algorithm
is still pretty good and hence it is used in many real-life applications such as spam
filters. In the next section, we will see some of the real-life applications of
this algorithm.

Naive Bayes is used in a lot of practical real-life applications as follows:

• This algorithm is the base for many spam filters and spam classifiers. As such
it is used in many popular email clients, forum software, comments filtering
software, and so on for filtering spam content.

• It is used in sentimental analysis of text to classify the emotion of a particular
piece of text (for example, a review of a product) whether it is a positive
emotion or a negative one.

• For document categorization, for example, to classify an article into
categories such as politics, sport, technology, and so on.

• This algorithm is fast to train and test; hence it is used in real-time prediction
scenarios to make fast predictions on events based data that is generated in
real time.

• It is used in many recommendation systems to give useful suggestions of
content to the users.

• We have seen some of the real-life use cases of Naive Bayes; we will now
learn some of its advantages and disadvantages.

Advantages of Naive Bayes
Even though Naive Bayes looks like a simple algorithm, it can give tough
competition to many of the similar popular machine learning algorithms.
Some of its major advantages are:

• It is simple and fast to train. It can be trained on smaller sets of data too.
Hence if you are looking for something very fast to try and train Naive Bayes
is a good choice to go for first.

Chapter 6

[161]

• Since it can be trained fast it is also useful in real-time prediction systems as
well. For example, in terms of big data if you have a real-time event transfer
system such as Kafka that is hooked to transfer data around, you can predict
on this data in real time using the Naive Bayes algorithm.

• If the assumption of independent features holds good on the dataset that
you are working on, and then it can give good competition to other machine
learning algorithms such as logistic regression in terms of performance.

• It can make both binary and multi class classification.
• It can be trained to work in parallel (as you can see its implementation in

Apache Spark also works in parallel), and do to this it can easily scale on
massive datasets especially in the case of big data datasets.

We have seen the advantages of this algorithm; let's now look at some of its
drawbacks.

Disadvantages of Naive Bayes
We have seen that Naive Bayes makes some strong assumptions on the dataset
features, as such, it has some drawbacks too. We will explore some of those
drawbacks now:

• Naive Bayes assumes that the features in the dataset are completely
independent of each other. This goes well in some datasets where the
features are relatively independent, but in datasets where the features
are tightly coupled or related, it can give bad performance in terms of
predictions. Suppose you like sugary drinks and salty drinks, the Naive
Bayes can predict well whether you will like a drink or not when given a
sugary drink or salty drink. But suppose you don't like drinks that contain
both sugar and salt, then in this case Naive base would predict badly as
it considers both the features independent and cannot relate both of the
features together.

• If there is a response variable in the test data, but correspondingly it does not
have value in the training data then it would assign it a probability of zero. In
this case it won't be able to make a prediction. To solve this, a value is added
to the zero probability and this is called a smoothing factor (it is called a
Laplace Estimation).

We have now gone through some of the basic concepts of the Naive Bayes algorithm,
and we have seen that this algorithm is extensively used in text analysis. So we will
try to understand its usage by looking at a real-life example of sentimental analysis,
which is a form of text analysis. Before diving directly into the algorithm, we will
study some of the basic concepts regarding sentimental analysis.

Naive Bayes and Sentiment Analysis

[162]

Sentimental analysis
As we showed in the previous examples, Naive Bayes has extensive usage in
text analysis.

One of the forms of text analysis is sentimental analysis. As the name suggests
this technique is used to figure out the sentiment or emotion associated with the
underlying text. So if you have a piece of text and you want to understand what
kind of emotion it conveys, for example, anger, love, hate, positive, negative, and so
on you can use the technique sentimental analysis. Sentimental analysis is used in
various places, for example:

• To analyze the reviews of a product whether they are positive or negative
• This can be especially useful to predict how successful your new product is

by analyzing user feedback
• To analyze the reviews of a movie to check if it's a hit or a flop
• Detecting the use of bad language (such as heated language, negative

remarks, and so on) in forums, emails, and social media
• To analyze the content of tweets or information on other social media to

check if a political party campaign was successful or not

Thus, sentimental analysis is a useful technique, but before we see the code for our
sample sentimental analysis example, let's understand some of the concepts needed
to solve this problem.

For working on a sentimental analysis problem we will be using some
techniques from natural language processing and we will be explaining
some of those concepts.

Concepts for sentimental analysis
Before we dive into the fully-fledged problem of analyzing the sentiment behind text,
we must understand some concepts from the NLP (Natural Language Processing)
perspective.

We will explain these concepts now.

Chapter 6

[163]

Tokenization
From the perspective of machine learning one of the most important tasks is feature
extraction and feature selection. When the data is plain text then we need some way
to extract the information out of it. We use a technique called tokenization where the
text content is pulled and tokens or words are extracted from it. The token can be a
single word or a group of words too. There are various ways to extract the tokens,
as follows:

• By using regular expressions: Regular expressions can be applied to textual
content to extract words or tokens from it.

• By using a pre-trained model: Apache Spark ships with a pre-trained model
(machine learning model) that is trained to pull tokens from a text. You can
apply this model to a piece of text and it will return the predicted results as a
set of tokens.

To understand a tokenizer using an example, let's see a simple sentence as follows:

Sentence: "The movie was awesome with nice songs"

Once you extract tokens from it you will get an array of strings as follows:

Tokens: ['The', 'movie', 'was', 'awesome', 'with', 'nice', 'songs']

The type of tokens you extract depends on the type of tokens
you are interested in. Here we extracted single tokens, but
tokens can also be a group of words, for example, 'very nice',
'not good', 'too bad', and so on.

Stop words removal
Not all the words present in the text are important. Some words are common words
used in the English language that are important for the purpose of maintaining the
grammar correctly, but from conveying the information perspective or emotion
perspective they might not be important at all, for example, common words such
as is, was, were, the, and so. To remove these words there are again some common
techniques that you can use from natural language processing, such as:

• Store stop words in a file or dictionary and compare your extracted tokens
with the words in this dictionary or file. If they match simply ignore them.

• Use a pre-trained machine learning model that has been taught to remove
stop words. Apache Spark ships with one such model in the Spark feature
package.

Naive Bayes and Sentiment Analysis

[164]

Let's try to understand stop words removal using an example:

Sentence: "The movie was awesome"

From the sentence we can see that common words with no special meaning to
convey are the and was. So after applying the stop words removal program to this
data you will get:

After stop words removal: ['movie', 'awesome', 'nice', 'songs']

In the preceding sentence, the stop words the, was, and with
are removed.

Stemming
Stemming is the process of reducing a word to its base or root form. For example,
look at the set of words shown here:

car, cars, car's, cars'

From our perspective of sentimental analysis, we are only interested in the main
words or the main word that it refers to. The reason for this is that the underlying
meaning of the word in any case is the same. So whether we pick car's or cars we are
referring to a car only. Hence the stem or root word for the previous set of words
will be:

car, cars, car's, cars' => car (stem or root word)

For English words you can again use a pre-trained model and apply it to a set of data
for figuring out the stem word. Of course there are more complex and better ways
(for example, you can retrain the model with more data), or you have to totally use
a different model or technique if you are dealing with languages other than English.
Diving into stemming in detail is beyond the scope of this book and we would
encourage readers to check out some documentation on natural language
processing from Wikipedia and the Stanford nlp website.

To keep the sentimental analysis example in this book simple we
will not be doing stemming of our tokens, but we will urge the
readers to try the same to get better predictive results.

Chapter 6

[165]

N-grams
Sometimes a single word conveys the meaning of context, other times a group of
words can convey a better meaning. For example, 'happy' is a word in itself that
conveys happiness, but 'not happy' changes the picture completely and 'not happy'
is the exact opposite of 'happy'. If we are extracting only single words then in the
example shown before, that is 'not happy', then 'not' and 'happy' would be two
separate words and the entire sentence might be selected as positive by the classifier
However, if the classifier picks the bigrams (that is, two words in one token) in this
case then it would be trained with 'not happy' and it would classify similar sentences
with 'not happy' in it as 'negative'. Therefore, for training our models we can either
use a unigram or a bigram where we have two words per token or, as the name
suggests, an n-gram where we have 'n' words per token, it all depends upon which
token set trains our model well and improves its predictive results accuracy.
To see examples of n-grams refer to the following table:

Sentence The movie was awesome with nice songs
Uni-gram ['The', 'movie', 'was', 'awesome', 'with', 'nice', 'songs']
Bi-grams ['The movie', 'was awesome', 'with nice', 'songs']
Tri-grams ['The movie was', 'awesome with nice', 'songs']

For the purpose of this case study we will be only looking at unigrams to keep our
example simple.

By now we know how to extract words from text and remove the unwanted words,
but how do we measure the importance of words or the sentiment that originates
from them? For this there are a few popular approaches and we will now discuss
two such approaches.

Term presence and Term Frequency
Term presence just means that if the term is present we mark the value as 1 or else
0. Later we build a matrix out of it where the rows represent the words and columns
represent each sentence. This matrix is later used to do text analysis by feeding its
content to a classifier.

Naive Bayes and Sentiment Analysis

[166]

Term Frequency, as the name suggests, just depicts the count or occurrences of the
word or tokens within the document. Let's refer to the example in the following table
where we find term frequency:

Sentence The movie was awesome with nice songs and nice
dialogues.

Tokens (Unigrams only for now) ['The', 'movie', 'was', 'awesome', 'with', 'nice',
'songs', 'and', 'dialogues']

Term Frequency ['The = 1', 'movie = 1', 'was = 1', 'awesome = 1', 'with
= 1', 'nice = 2', 'songs = 1', 'dialogues = 1']

As seen in the preceding table, the word 'nice' is repeated twice in the preceding
sentence and hence it will get more weight in determining the opinion shown by
the sentence.

Bland term frequency is not a precise approach for the following reasons:

• There could be some redundant irrelevant words, for example, the, it, and
they that might have a big frequency or count and they might impact the
training of the model

• There could be some important rare words that could convey the sentiment
regarding the document yet their frequency might be low and hence they
might not be inclusive for greater impact on the training of the model

Due to this reason, a better approach of TF-IDF is chosen as shown in the
next sections.

TF-IDF
TF-IDF stands for Term Frequency and Inverse Document Frequency and in simple
terms it means the importance of a term to a document. It works using two simple
steps as follows:

• It counts the number of terms in the document, so the higher the number of
terms the greater the importance of this term to the document.

• Counting just the frequency of words in a document is not a very precise way
to find the importance of the words. The simple reason for this is there could
be too many stop words and their count is high so their importance might get
elevated above the importance of real good words. To fix this, TF-IDF checks
for the availability of these stop words in other documents as well. If the
words appear in other documents as well in large numbers that means these
words could be grammatical words such as they, for, is, and so on, and
TF-IDF decreases the importance or weight of such stop words.

Chapter 6

[167]

Let's try to understand TF-IDF using the following figure:

As seen in the preceding figure, doc-1, doc-2, and so on are the documents from
which we extract the tokens or words and then from those words we calculate the
TF-IDFs. Words that are stop words or regular words such as for , is, and so on,
have low TF-IDFs, while words that are rare such as 'awesome movie' have higher
TF-IDFs.

TF-IDF is the product of Term Frequency and Inverse document frequency.
Both of them are explained here:

• Term Frequency: This is nothing but the count of the occurrences of the
words in the document. There are other ways of measuring this, but the
simplistic approach is to just count the occurrences of the tokens. The simple
formula for its calculation is:
Term Frequency = Frequency count of the tokens

• Inverse Document Frequency: This is the measure of how much information
the word provides. It scales up the weight of the words that are rare and
scales down the weight of highly occurring words. The formula for inverse
document frequency is:

• TF-IDF: TF-IDF is a simple multiplication of the Term Frequency and the
Inverse Document Frequency. Hence:

TF-IDF=Term Frequency * Inverse Document Frequency

Naive Bayes and Sentiment Analysis

[168]

This simple technique is very popular and it is used in a lot of places for text analysis.
Next let's look into another simple approach called bag of words that is used in text
analytics too.

Bag of words
As the name suggests, bag of words uses a simple approach whereby we first extract
the words or tokens from the text and then push them in a bag (imaginary set)
and the main point about this is that the words are stored in the bag without any
particular order. Thus the mere presence of a word in the bag is of main importance
and the order of the occurrence of the word in the sentence as well as its grammatical
context carries no value. Since the bag of words gives no importance to the order of
words you can use the TF-IDFs of all the words in the bag and put them in a vector
and later train a classifier (Naive Bayes or any other model) with it. Once trained, the
model can now be fed with vectors of new data to predict on its sentiment.

We have seen the steps that we will be using for sentimental analysis, let's now start
digging into the code. We will look at our dataset first.

Dataset
Our dataset contains a single file with lots of movie reviews and the corresponding
sentiment, that is, whether the review is positive or negative. The file contains data
that is tab separated. Some of the first few lines from the dataset are shown here:

As seen in the preceding screenshot, the dataset is mostly text data and text data is
generally huge in size if you are trying to pull text from sources such as social media,
log files, and so on. As such for text analysis a big data stack is best. Storing the text
data in HDFS is a good option as HDFS is highly scalable. Our dataset file size is not
huge, but to mimic a big data environment let's now put the file in HDFS using the
following command:

hdfs -dfs put <Filename><HDFS_DIR_NAME>

As we can see, we use the hdfs command to put the file from the operating system
file system to the hdfs directory.

We will now do some general data exploration on the file.

Chapter 6

[169]

Data exploration of text data
To explore our model we will first load our dataset from HDFS. To do this we will
first create the SparkSession (using Spark configuration) and then load the text file
using the sparkContext as follows. We will not show the boiler plate code though
the full code can be seen in the GitHub package for this book:

SparkConf c = ...

SparkSession spark = ...

JavaRDD<String> data =
spark.sparkContext().textFile("hdfs://data/sa/training.txt",
1).toJavaRDD();

As we can see, we load a JavaRDD object with text data that is loaded from a
textFile in hdfs.

The data exploration piece is not tied to any specific package from Spark.
So we should feel free to use both the RDD API or Spark dataset API for
our exploration.

Next, we fire a map function on this JavaRDD and the map function is then applied
to each row of data. Each row is a sentence within the dataset along with a label of
sentiment. From this row of data the sentiment and the sentence are extracted (they
are tab separated) and stored in a Java POJO object called TweetVO. The JavaRDD
object is now a distributed list of these POJOs:

JavaRDD<TweetVO>tweetsRdd = data.map(strRow -> {
 String[] rowArr = strRow.split("\t");
 String realTweet = rowArr[1];

 TweetVOtvo = new TweetVO();
 tvo.setTweet(realTweet);
 tvo.setLabel(Double.parseDouble(rowArr[0]));
 returntvo;
 });

Naive Bayes and Sentiment Analysis

[170]

Let's now find the number of rows in our dataset:

System.out.println(" Numbers of Rows --> " + tweetsRdd.count());

This would print the result as follows:

 Number of Rows --> 7086

Next we create a dataframe out of our RDD using the following code:

Dataset<Row>dataDS = spark.createDataFrame(tweetsRdd.rdd(), TweetVO.
class);

After creating the dataframe let's see the first few lines of our data:

 dataDS.show(5);

This would print the first five lines of data as follows:

We will now count the number of positive labels versus the number of negative
labels or sentiments in the dataset we have. For this first we register our dataset as
a temporary view and then fire an SQL query on it using the group by function to
count the labels:

 dataDS.createOrReplaceTempView("tweets");
Dataset<Row> saCountDS =
spark.sql("select label sentiment, count(*) from tweets group by
label");
 saCountDS.show();

Chapter 6

[171]

This would print the output as follows:

As seen here, the number of positive reviews (depicted by 1) are more than the
number of negative review (depicted by 0).To view the count of labels in a better
way we will plot this on a bar chart. For this we will reuse the SQL query that we
just depicted previously and fill the results of this query into a chart object (specific
to JFreeChart). We will create an instance of DefaultCategoryDataset used by
the bar charts and later we will collect the data from the saCountDS dataset created
previously. We will iterate over this data and from each data row we will extract
the label and the corresponding count value of the sentiment and fill it into the
defaultCategoryDataset object:

finalDefaultCategoryDataset dataset = new DefaultCategoryDataset(
);
List<Row> results = saCountDS.collectAsList();
 for (Row row : results) {
 String key = "" + row.getDouble(0);
 if(null == key) key = "(Empty Values)";
 else if("1.0".equals(key)) key = "Positive";
 else key = "Negative";
 dataset.addValue(row.getLong(1) , category , key);
 }

 return dataset;

For maintaining the brevity of the code we are not showing the
code for the full chart here. For the full code refer to the code in
our GitHub repository. Also you can refer to the previous
Chapter 5, Regression on Big Data that we covered on charts.

Naive Bayes and Sentiment Analysis

[172]

This would then create the chart as follows:

As seen in the preceding bar chart, the number of positive sentiments is more than
the number of negative sentiments.

As we have mostly text data, let's now see how many words there are in our dataset
and we will count these number of words. Also we will try to sort the top words.

To create a word count program:

1. We first create our dataset of data in the same way as we did initially in our
data exploration section:
Dataset<Row>tweetsDs = spark.createDataFrame(tweetsRdd.rdd(),
TweetVO.class);

After loading the dataset we create a Tokenizer instance. This class is
provided in the Spark ML package and it is a pre-trained model to extract
tokens from textual content. In our case, it would extract words from each
row of sentences. As seen in the following code, we provide the column
where the tokenizer would read the data from and the column where it
would output its results:
Tokenizer tokenizer = new Tokenizer().setInputCol("tweet").
setOutputCol("words");

Chapter 6

[173]

2. Next we run this tokenizer and store its results in a new Dataset object:
Dataset<Row>dataDs = tokenizer.transform(tweetsDs);

3. Next we extract the column that has the results of our tokenizer.
4. After extracting the column we convert this dataset to a JavaRDD object and

invoke a flatMap function on it to flatten the list of words and store each
word in a string per row of this new JavaRDD:
JavaRDD<Object> words = dataDs.select("words").javaRDD().flatMap(s
->s.getList(0).iterator());

5. Next we invoke a mapToPair function on this words JavaRDD so as to
create a pair of each word with the default value of 1 with the word
itself as the key:
JavaPairRDD<String, Integer>wpairs = words.mapToPair(w -> new
Tuple2(w.toString(), 1));

6. Finally, we invoke a reduceByKey to sum up the count of words:
JavaPairRDD<String, Integer>wcounts = wpairs.reduceByKey((x,y) ->
x + y);

7. To analyze the results, we convert this RDD back to dataset so that we can
fire SQL queries on it. For this on the wcounts pair function we invoke a map
function and fill the results in WordVO POJO:
JavaRDD<WordVO>wordsRdd = wcounts.map(x -> {
 WordVOvo = new WordVO();
 vo.setWord(x._1);
 vo.setCount(x._2);
 returnvo;
});

8. Next we create a dataframe out of this wordsRdd and register it as a
temporary view with the name as words. We are not showing this code for
brevity. On this words view we now fire a query to collect the top words
used, as shown in the following snippet:

Dataset<Row>topWords = spark.sql("select word,count from words
order by count desc");
 topWords.show();

Naive Bayes and Sentiment Analysis

[174]

This would print the result as follows:

It's no wonder that our top words are stop words such as i, the, and, and so on.
These words don't add much for sentimental analysis and as such should
be removed.

We leave it for the users to fire further queries on our dataset
and try out other things such as changing the case of the
words, removing all the special characters, trying out different
token types like bigrams, and so on.

So much for the data exploration piece let's now dive into the actual code for
sentimental analysis.

Sentimental analysis on this dataset
In this program, we will do the following steps for sentimental analysis, as shown in
the following figure:

Chapter 6

[175]

As seen from the steps in the preceding diagram, our simple approach is:

• Load the dataset from HDFS in Spark
• Clean and filter the data from the dataset
• On each row of data use a tokenizer to parse the tokens
• Remove the stop words from the tokens
• Find the TF-IDF of the words and feed it to a classifier
• Finally test the model on some new data for sentiment prediction

Our approach is very simplistic and there is no rocket science
approach. Our aim is to just get the concepts laid out in front of
the users. In the real world, sentimental analysis is much more
complicated and is an active research area.

Finally, we will jump into the code now. Let's build the boiler plate code first for the
SparkSession:

SparkConf c= ...
SparkSession spark= ...

For brevity we are not showing all the boiler plate code here for
building the SparkSession.

Naive Bayes and Sentiment Analysis

[176]

Next, we load the dataset from hdfs and store it in an RDD of strings:

JavaRDD<String> data = spark.sparkContext().textFile("hdfs://data/sa/
training.txt", 1).toJavaRDD();

Fire a map function on this RDD and extract data per row and store it in a POJO
(TweetVo class in our case):

JavaRDD<TweetVO>tweetsRdd = data.map(strRow -> {
 String[] rowArr = strRow.split("\t");
 String rawTweet = rowArr[1];
 String realTweet = rawTweet.replaceAll(",", "").replaceAll("\"",
"").replaceAll("*", "").replaceAll("\\.", "").trim();
 TweetVOtvo = new TweetVO();
 tvo.setTweet(realTweet);
 tvo.setLabel(Double.parseDouble(rowArr[0]));
 returntvo;
});

This code is similar to what we did in data exploration. The main point is we have
the data cleaning code also here where we remove the special characters from
the data. The raw data is part of the rawTweet object and we clean it to build the
realTweet object.

Remember we are using the new Spark ML package, which runs the machine
learning algorithms on the Spark dataframe. But we loaded our data into an rdd
class, hence we convert it into a dataframe now. To do so we invoke the spark
createDataFrame method and pass it the rdd as well as the POJO class:

Dataset<Row>tweetsDs = spark.createDataFrame(tweetsRdd.rdd(), TweetVO.
class);

Now we have the dataset ready to use for our training and testing. We break this
dataset into the individual training and testing datasets:

 Dataset<Row>[] tweetsDsArr = tweetsDs.randomSplit(new double[]
{0.8,0.2});
Dataset<Row> training = tweetsDsArr[0];
Dataset<Row> testing = tweetsDsArr[1];

Each row of our dataset is essentially an English sentence. Now create a tokenizer
and provide the input column to read the data from and an output column where
the tokenizer would store the new list of words after removing stop words:

Tokenizer tokenizer = new Tokenizer().setInputCol("tweet").
setOutputCol("words");

Chapter 6

[177]

If you individually execute this tokenizer and collect its output you will be able to
see its output as follows:

As you can see, the reviews that are fed to the movie are broken into individual
words. The arrow shows the words that are tokenized.

Next, initialize a stop words remove object using this feature from the Spark ML
library. Again, provide the input and output columns:

StopWordsRemoverstopWrdRem =
new StopWordsRemover().setInputCol("words").
setOutputCol("updatedWords");

If we run this stop words remover individually and collect its output it will print the
results as follows:

Naive Bayes and Sentiment Analysis

[178]

As you can see in the preceding screenshot, the ellipses depict the stop words that
have been removed by the stop words remover feature of the Spark ML API.

As is the case with most machine learning algorithms in the Apache Spark package,
they work on an input set of features that are in the form of a feature vector. Due
to this we need to put our extracted words into a vector form. For this we will use
a HashingTF (though you can use CountVectorizer too) class provided by Apache
Spark. HashingTF is a Term Frequency generator and it creates a vector filled with
term or token frequencies. It is an optimized algorithm as it uses a hashing technique
for this; please refer to official Spark documentation for more details. As in other
cases the pattern is similar we provide the input and output column except in this
case we provide the number of features too:

intnumFeatures = 10000;
HashingTFhashingTF = new HashingTF()
 .setInputCol("updatedWords")
 .setOutputCol("rawFeatures")
 .setNumFeatures(numFeatures);

HashingTF is similar to a hast table that stores the words as a key and
their counts except that it maintains a distributed structure. The previous
number of features depicts the bucket size of this hash table. The more the
buckets, the less the collisions and more words it can store.

We can use these term frequencies to train our simplistic model, but that won't be
good simply because the frequency of some useless words could be very high. To
better gauge at the importance of real good words we calculate their TF-IDF using
this vector of term frequencies created by HashingTF:

IDFidf = new IDF().setInputCol("rawFeatures").
setOutputCol("features");

After calculating our Inverse Document Frequencies we need to train our model
that it can build its probability levels based on these frequencies to figure out the
sentiment of the text. For this we train our Naive Bayes model. We provide the input
column where the model can read the TF-IDF frequencies vector and the output
column where it can store the predicted sentiment:

NaiveBayesnb = newNaiveBayes().setFeaturesCol("features").setPredictio
nCol("predictions");

Chapter 6

[179]

Finally, use the Pipeline API to hook all this together:

Pipeline p = newPipeline();

Provide all the steps of the workflow tokenizer, stop words removal, and so on to
this Pipeline object:

p.setStages(new PipelineStage[]{ tokenizer, stopWrdRem, hashingTF,
idf,nb});

Provide the training set of data to run through the workflow using the Pipeline
object and train the model:

PipelineModelpm = p.fit(training);

Finally, run the trained model on the testing dataset and store the predictions in a
dataset object:

Dataset<Row>updTweetsDS = pm.transform(testing);
 updTweetsDS.show();

This will print the first few lines of the predictions as follows:

To fit the content to page we are not showing all the columns in the prediction
results. The last columns show the predictions whether positive or negative,
that is, either 1 or 0.

As Naive Bayes works on the principle of probability, there is an
additional column for probability added onto the dataset that contains
the conditional probability of each feature (word).

Naive Bayes and Sentiment Analysis

[180]

So much for the predictive results. Let's now check how good our trained model
is. For this we will use the MulticlassClassificationEvaluator class provided
by the Spark framework and create an instance of this class. We will also provide
the actual label and the predicted label to this class along with the metric we are
interested in (in our case it is accuracy):

MulticlassClassificationEvaluator evaluator =
newMulticlassClassificationEvaluator()
 .setLabelCol("label")
 .setPredictionCol("predictions")
 .setMetricName("accuracy");

Next we calculate the accuracy value by invoking an evaluate method of the
evaluator on our dataset:

double accuracy = evaluator.evaluate(updTweetsDS);
System.out.println("Accuracy = " + accuracy);
System.out.println("Test Error = " + (1.0 - accuracy));

This will print the output as follows:

The accuracy comes out to 0.97 or 97%, which is not bad at all for our simplistic
Naive Bayes classifier.

The approach we showed here is very basic. We would urge the users
to try a different set of features, clean up the data further, and retest the
models to improve the accuracy.

We have now seen one popular algorithm called Naive Bayes, let's now briefly learn
another popular machine learning algorithm in the next section.

Chapter 6

[181]

SVM or Support Vector Machine
This is another popular algorithm that is used in many real life applications like
text categorization, image classification, sentiment analysis and handwritten digit
recognition. Support vector machine algorithm can be used both for classification
as well as for regression. Spark has the implementation for linear SVM which is a
binary classifier. If the datapoints are plotted on a chart the SVM algorithm creates
a hyperplane between the datapoints. The algorithm finds the closest points with
different labels within the dataset and it plots the hyperplane between those points.
The location of the hyperplane is such that it is at maximum distance from these
closest points, this way the hyperplane would nicely bifurcate the data. To figure out
this maximum distance for the location of the hyperplane the SVM algorithm uses a
kernel function (mathematical function).

As you can see in the image we have two different type of datapoints one clustered
on the X2 axis side and the other clustered on the X1 axis side. There is a unique
plane that separates the two closest points marked as A and B in the image. The
hyperplane which is actually a straight line in this two-dimensional image is the
solid line and the distance is shown by the perpendicular lines from the point A
and point B. The dashed lines which pass through point A and point B are another
hyperplanes which are not good as they do not segregate the data well. To figure out
the location of this hyperplane a mathematical kernel function is used. To learn more
about Support Vector Machine please refer to its documentation on Wikipedia.

Naive Bayes and Sentiment Analysis

[182]

From Spark MLlIB 2.2 onwards there is a complete linear support vector machine
algorithm that is bundled inside the Spark machine learning library itself. We will
now use that linear support vector machine algorithm from Spark and do the same
sentiment analysis piece that we did earlier using Naive Bayes. Almost the entire
code that we discussed in the previous section using Naive Bayes algorithm would
remain the same and just the portion where we actually use the Naive Bayes model
would change.

As shown in the code we will build an instance of a LinearSVC model which is
a binary support vector machine classifier bundled inside Spark library. To this
instance we supply the necessary parameter of the name of the column where the
algorithm can read the vectorized features and the name of the column where the
algorithm can put the predicted results. In our case these columns are features
and predictions

LinearSVC linearSVM = new
LinearSVC().setFeaturesCol("features").setPredictionCol("predictio
ns");

After creating the instance of the model the remaining code is exactly the same as
what we did for Naive Bayes. We will put this model into the flow for Pipeline API
of Spark and remove the old Naive Bayes model that we used earlier here as shown.

Pipeline p = new Pipeline();
 p.setStages(new PipelineStage[]{ tokenizer, stopWrdRem,
 hashingTF, idf, linearSVM});

Next we will just fit this pipeline model on the training data and run it on the test
data and finally verify the accuracy of our model. Since this code is exactly similar
to what we showed in the previous section please refer to the previous section for
this code.

The output of the dataset that stores the predictions from the SVM model is
as shown:

Chapter 6

[183]

The output of the accuracy of the SVM classifier is as shown:

As shown in the result of the SVM classifier the performance of the classifier has
improved further and it is now 0.98 or 98 %. Support vector machine is a popular
model in many real world applications as it performs well. For more information on
this model please refer to Wikipedia.

Summary
This chapter covered a lot of ground on two important topics. Firstly, we covered
a popular probabilistic algorithm, Naive Bayes, and explained its concepts and
showed how it uses bayes rule and conditional probability to make predictions
about new data using a pre-trained model. We also mentioned why Naive Bayes
is called Naive as it makes a Naive assumption that all its features are completely
independent of each other, thereby occurrence of one feature does not impact the
other in any way. Despite this it forms well as we saw in our sample application. In
our sample application we learnt a technique called sentimental analysis for figuring
out the opinion whether positive or negative from a piece of text.

In the next chapter, we will study another popular machine learning algorithm called
decision tree. We will show how it is very similar to a flowchart and we will explain
it using a sample loan approval application.

[185]

Decision Trees
Decision trees are one of the simplest (and most popular) of machine learning
algorithms, yet they are extremely powerful and used extensively. If you have used
a flowchart before, then understanding a decision tree won't be at all difficult for
you. A decision tree is a flowchart except in this case, the machine learning algorithm
builds this flowchart, for you. Based on the input data, the decision tree algorithm
automatically internally creates a knowledge base of a set of rules based on which it
can predict an outcome when given a new set of data. In this chapter, we will cover
the following topics:

• Concepts of a decision tree machine learning classifier, including what a
decision tree is, how it is built, and how it can be improved

• The uses of the decision tree
• A sample case study using decision trees for classification

Let's try to understand the basics of decision trees now.

What is a decision tree?
A decision tree is a machine learning algorithm that belongs to the family of
supervised learning algorithms. As such, they rely on training data to train them.
From the features on the training data and the target variable, they can learn and
build their knowledge base, based on which they can later take decisions on new
data. Even though decision trees are mostly used in classification problems, they
can be used very well in regression problems also. That is, they can be used to
classify between discrete values (such as 'has disease' or 'no disease') or figure
out continuous values (such as the price of a commodity based on some rules).

Decision Trees

[186]

As mentioned earlier, there are two types of decision trees:

• Decision trees for classification: These are the decision tree algorithms
that are used in classification of categorical values, for example, figuring
out whether a new customer could be a potential loan defaulter or not.

• Decision trees for regression: These are the decision tree algorithms that
are used in the predicting continuous values, for example, what size loan (in
amount) can be given to a particular new customer based on certain criteria
or attributes.

Let's try to understand a decision tree using the perspective of a flowchart. In a
flowchart, we go from one flow to another based on rules, for example, if an event
has occurred, we choose one direction or the other. Similar to that, in a decision tree,
we have a bunch of rules (that are created by our machine learning classifier) and
that direct our direction of decision flow. Understanding a decision tree becomes
easy when we look at some examples. We will now try to understand a decision
tree using a simple example.

Suppose there are two people applying for a job position at Java in big data analytics.
Let's call these people Candidate A and Candidate B. Now suppose the candidates
have the following skillsets:

• Candidate-A: Java, big data, web applications
• Candidate-B: Java, big data, analytics on big data

Let's build a simple decision tree to evaluate which candidate is suitable for the
Java position, considering that only the candidate who has the desired skillset
will be selected.

Chapter 7

[187]

As you can see in the preceding diagram, the final decision—or candidate
selected—is Candidate-B, as he is the one whose skillset matches the desired skillset.

Decision Trees

[188]

This is as simple as a decision tree can be. It is just like a flowchart or tree structure
built on a set of rules. Upon following the rules from the top of the tree to the
leaf node, we can figure out the outcome and classify the end result. From the
perspective of machine learning, we build a model that is trained on a set of features
and labels (labels are the final outcome for these features). The model learns from
these features and builds its knowledge base for the set of rules needed for the tree.
Based on these rules, the model can then predict decisions on a new set of data.

Decision trees have been effectively used in a lot of industries. Here are some real-life
examples of decision trees:

• In risk analysis in financial systems
• In software systems to estimate the development efforts on software modules

and for other purposes
• In astronomy to discover galaxy counts, filtering noise from telescope

images, and so on
• In medical research for diagnosis, cardiology, and so on
• For text classification, building personal learning assistants, to classify sleep

patterns, and so on

As you saw in the preceding diagram, visualizing a decision tree is easy and helps us
easily figure out what an outcome will be. A decision tree built by a human being is
one thing, as we can visualize nicely, but a decision tree built by a computer program
is complex and requires a few techniques utilized from pure mathematics. Next, we
will study how a computer program builds a decision tree.

Building a decision tree
Up until recently, decision trees were one of the most used machine learning
algorithms. They have been used extensively with ensembled algorithms (we will
explain ensembling in the next chapter). Building a decision tree involves programs
that can read data from a dataset and then split the data into sections based on a rule.
This rule—or split rule—is figured out using mathematical techniques. To decide on
which feature is best suited to the split, the algorithm will split on every feature and
will pick the feature that makes elements within the two individual split sets most
similar to each other. Let's try to understand this using an example:

Chapter 7

[189]

Suppose you have a dataset of fruits with the following attributes:

Color Diameter Fruit (target variable)
Red 4 Apple
Orange 4 Orange
Red 1 Cherry
Red 5 Apple
Orange 3 Orange

Now, our task is to build a decision tree with this dataset of attributes (color and
diameter) and based on these attributes the decision algorithm should be able to
figure out the type of fruit when a new data point is given to it with a specific color
and diameter. As you can see, there are two features or attributes in this dataset
Color and Diameter. We will evaluate both cases when we split the dataset based
on these features as shown next:

• Splitting by color = 'red': Though there are two color types in this dataset
(red and orange), for brevity we are showing only the first red color type.
We will split the dataset based on this color and figure out how
homogeneous the split sets of data turn out to be.

Decision Trees

[190]

As you can see in the preceding diagram, the split is quite good. Only cherry
is the item on the left-hand side that is out of place otherwise the split criteria
has nicely split the values and both the split sets are homogeneous or almost
homogeneous (that is, of the same type)

• Splitting by diameter > 3: Here I have used the value 3 because 3 is
the average diameter of the items. The split will be as shown in the
following diagram:

As you can see in the preceding diagram, this is not a very good split as it
results in mixed sets. We want splits that are as homogeneous as possible.

For us human beings, visualizing a decision tree is easy and we can easily plot it on
a diagram using our human intelligence. But what about a computer program—how
does a computer program figure out the set of rules it should bifurcate decisions on?
We will now see how a computer program builds a decision tree based on the data it
is trained with.

Chapter 7

[191]

Choosing the best features for splitting the datasets
The accuracy of a tree depends upon how good a split it does. The best feature
chosen to split upon will directly impact the prediction results. There are
mathematical ways by which we can decide upon the split criteria and the
mathematical functions to use. The general approach that is employed to find
the best split feature is:

• First split the dataset by each feature one at a time
• Next, record how homogeneous each split set is by figuring out the

homogeneousness using a mathematical function such as entropy
or Gini impurity

• The feature that splits the datasets into most homogeneous split sets is the
best feature for the split and is chosen

The question that remains is, "How do we measure the homogeneousness of the
split sets?" To do so, we use two mathematical approaches called Gini Impurity
and Entropy. Now we will explain them in detail:

1. Gini Impurity: This is a measure of the probability of an item being correctly
labeled when it is randomly picked from a split set. If you have a split
set with k discrete classes of samples, then Gini Impurity is given by the
following formula:

Here, is the probability of picking that class of sample from the split set.

Now, suppose we split on some criteria and our split set contains the following data
as shown in the following table:

Color Diameter Fruit (target variable)
Red 4 Apple
Orange 4 Orange
Orange 3 Orange
Red 5 Apple
Orange 3 Orange

Decision Trees

[192]

Thus, our split set has 3 Oranges and 2 Apples, which will be calculated as follows:

P(oranges) = 3/5

P(apples) = 2/5

We showed one such split earlier. What if the decision tree algorithm makes multiple
splits based on a feature?

In that case, we calculate the Gini Impurity of all the split sets. We later find the net
Gini Impurity of all the split sets using the following formula:

After finding the Gini of all the split sets, we find the GiniGain. This property tells
how much impurity is reduced by making the split. This is a simpler difference
between the Gini of the parent set and the Net Gini of the Split Sets. Thus, we can
say that:

GiniGain = Gini of the Parent Set - Gini of the split sets

The decision tree uses that split, which results in producing the maximum GiniGain.

1. Entropy: In simple terms, Entropy is the measure of mixedness or impurity
in a collection of examples. If there is a collection of examples with all the
items of the same type, then it is completely pure. Since, if you randomly pull
any item from it, it will be of the one type only. A pure collection like this has
an entropy of 0. Similarly, if there is a set with all the items of different types,
then it has one hundred percent impurity and the entropy will be 1. The aim
of the decision tree split is to generate a new set of split values where this
amount of Entropy is reduced. This concept of reduction of entropy based
on a split criterion (or rule) is called as information gain.

Chapter 7

[193]

2. If you have a set with xss different values in it, then the formula for Entropy
calculation is given by:

As seen in the preceding formula, if i is one such item in the set(x) then we find its
probability within the set and multiply it by the logarithmic of its probability (log to
the base 2). We do this for all the different discrete classes within the impure set and
sum up all the calculated values for each different class in the set.

Let's understand this with a simple example.

Suppose you have a set of different fruits such as:

Set(fruits) = {apples, apples, apples, orange, orange, orange, orange, orange}

On this set, we find the probability of pulling each fruit.

So, it will be calculated as follows:

Probability(apple) = 3/8

Probability(orange) = 5/8

So, the Entropy for the Set (fruits) will be:

Decision Trees

[194]

Using this Entropy calculation, our decision tree would calculate the information
gain on each split. So specifically what the decision tree would do is shown in the
following diagram:

As you can see in the preceding diagram, the decision tree would perform the
following steps:

1. First, the decision tree algorithm calculates the Entropy of a Parent Set.
In our case, as shown in the image, it is E(x).

2. Next, it splits the set based on a feature, for example, here we split on two
features separately one feature is Color and the other is Diameter.

3. After splitting, it finds the entropy of each split set. In the diagram, the split
sets Entropy is E(A1), E(A2), E(B1), and E(B2).

4. Finally, it finds the net Entropy of the split sets. This is calculated as follows:

Here, i represents one Split Set and n the total number of Split Sets.

5. Finally, the information gain is calculated as the difference between the
parent Entropy and the new net split sets Entropy. The more the value the
better the split is. So the information gain in the preceding example (in the
image) is calculated for both split criteria (that is, color and diameter both)
and the one with the higher value is selected.

Chapter 7

[195]

Even though we have discussed only two approaches, we encourage
readers to check more information on other approaches for splitting such
as Chi-square and Gini index.

Building a perfect tree is computationally very expensive and hard at the same time.
To counter this, our task is to come up with a good enough tree that suits our need.

A good enough tree is suited to more conditions, as in most applications
you would use techniques such as ensembling to use a group of trees
instead of a single tree algorithm. Hence, a combination of all these trees
to figure out the predictive results will ultimately yield an excellent
solution as we will see in the next chapter.

Advantages of using decision trees
Decision trees are very popular machine learning models and we will now study
some of the advantages of using them:

• As you have seen, they are very simple to build and use. They are essentially
a set of if...else statements that lead to a conclusive result.

• The input can be of any type whether numeric or strings for checking the
decision type.

• From the perspective of big data and distributed computing, it's easier to
build a decision tree model that can be distributed on a cluster of machines.
Thus, it can run parallely and can be very fast.

Apart from these advantages, decision trees also suffer from some problems.
Let's look at some of these problems now.

Disadvantages of using decision trees
All the machine learning algorithms come with a few pros and cons. Decision
trees are no exception to this. Let's look at some of the disadvantages of using
decision trees:

• Decision trees suffer from the problem of overfitting. Overfitting is a generic
problem with many machine learning models. Due to overfitting, the models
get well acquainted to the data that they are trained with and they perform
extremely well on the training data, but the same models perform poorly on
any new data that was not part of the training set.

Decision Trees

[196]

• If there are too many decision rules, then the model can soon become quite
complex. Since we are dealing with big data, this problem is more common.

You might have observed by now that as the number of decision rules
increases more number of splits are required and hence the amount of
computations required also increases. This will slow down the whole
process of decision tree computations.

Dataset
A loan approval dataset is a sample dataset that is freely available on the web
globally please. This is just a sample dataset, which contains rows of data with
various attributes. The outcome or response of each row shows whether the loan
application was approved or rejected. The attributes in each row of the dataset are
shown in the following table:

Attribute name Description
Loan ID This states the Loan ID, which is a unique variable
Gender This states the gender—male or female
Married This is the marital status—married or unarried
Dependents This states the number of dependents for the person
Education This states the educational qualification
Self employed This states whether the person is self-employed
Applicant income This states the income of the loan applicant
Coapplicant income This states the income of the co-applicant of the loan
Loan amount This states the amount of the loan
Loan amount term This states the duration of the loan
Credit history This states the credit history of the person applying for

loan (good or bad)
Property area This states the area of property in case this is a

housing loan
Loan status This states whether the application was approved

or rejected

Chapter 7

[197]

Data exploration
Before we dive into running our models for training and testing the dataset, let's
explore the dataset first for understanding the data. For this, we will first create the
Spark session instance and we will load our dataset from the dataset file. For brevity,
we will not show the boilerplate code for SparkSession creation.

SparkSession spark = …
Dataset<Row> rowDS = spark.read().csv("data/loan/loan_train.csv");

Let's see the first few rows of our dataset by running the show() method:

 rowDS.show()

This will give us the following output:

As you can see, Spark automatically names the columns as _c0, _c1, and so on. You
can map this dataset to a schema and probably to some good column names. For us,
we will be using the same column names for our queries.

Next we will find the total rows in this dataset:

rowDS.createOrReplaceTempView("loans");

This would print the output as follows:

 Number of rows à 768

As you can see, it's a small dataset, but for learning purposes this is sufficient
for now.

Decision Trees

[198]

We will now find the number of males and females in the dataset:

Dataset<Row> maleFemaleDS = spark.sql("select _c1 gender,count(*) cnt
from loans group by _c1");
 maleFemaleDS.show();

This would print the result as follows:

As you can see, there are thirteen null values in the gender column and this has to
be fixed. We will replace this with the median value in the column (of course, we
will round the value to the nearest number). Similar to this, you can group and find
the count of other columns too, this is a handy way for finding null value counts or
garbage values apart from the real good values. But Apache Spark has a great API
and it provides a very handy method for checking the details of your columns and
here is that method:

rowDS.describe("_c0","_c1","_c2","_c3","_c4","_c5","_c6","_c7","_
c8","_c9","_c10","_c11","_c12").show();

And this would print the summary of all the columns including their count
(where the values were found) and their mean value.

For maintaining brevity, we are not showing all the columns here. But we need to
fix all the columns with null values or discard these columns completely and not
use them in training our models. We will cover data cleaning in our next section.

Chapter 7

[199]

Let's now plot the loan amount on a box chart to get some information regarding the
loan amount values (such as loan amount median values) to see if any outlier points
are present. Refer to Chapter 3, Data Visualization where we saw how to make a
box chart.

As shown in the following code, we just need to properly pull the data from
the dataset using Apache Spark and extract the loan amount data (that is,
_c6 column) from it.

Dataset<Row> rowDS = spark.read().csv("data/loan_train.csv");
 rowDS.createOrReplaceTempView("loans");
Dataset<Row> loanAmtDS = spark.sql("select _c6 from loans");

Next, pull the data from its dataset and populate it into a list object:

List<Row> loanAmtsList = loanAmtDS.collectAsList();
List list1 = new ArrayList<Double>();
 for (Row row : loanAmtsList) {
 if(null != row.getString(0) &&
 !"".equals(row.getString(0)))
list1.add(Double.parseDouble(row.getString(0)));
}

Finally, use this list object to populate a default
DefaultBoxAndWhiskerCategoryDataset and return this dataset. The chart will be
printed as shown next:

Decision Trees

[200]

When it comes to loans, one of the most important parameters is credit history. Let's
now analyze how many loans were approved for people when they had good credit
history and bad credit history. For this, we draw a bar chart for the approved loans
and plot the credit history on the x axis as shown.

For the code for the bar chart generation, refer to our code samples in the
GitHub repository. In order to maintain brevity, we are not showing the
code here.

There are two important things you can make out from the preceding graph. The
first is that most of the loans with good credit were approved and very few were
approved for those people with bad credit history. Also, there are around fifty (or
slightly less) data points that do not have any value on the credit history column.
So we would need special data cleaning operations on these empty column values.
Also, similar to the preceding chart for approved loans, we can make another chart
for rejected loans in a similar way. We can also make bar charts or histograms on
the other values such as loan amounts and applicant income in a similar way to
understand our data better.

Chapter 7

[201]

Apart from giving some good details about the data such as which parameters
impact loan approval like credit history, what is the average applicant income is,
the number of males versus females in our dataset, we also saw that our dataset is
quite unclean. We need to fix our data by adding the missing values before we can
apply any model to it for training. In our next section, we will show how to clean and
mung this data.

Cleaning and munging the data
As our dataset is pretty unclean and it has lots of missing values, we need to fix these
values before we can train our models. As we mentioned in Chapter 2, First Steps in
Data Analysis there are various ways to add the missing values such as replacing
them with the mean value of the column, ignoring the missing points altogether or
using the k-NN (k-nearest neighbour) algorithm and picking the most similar data
point value next to the missing one, we will be using a simple approach here, by
taking a mean of the column values and replacing the missing values with the
mean value.

We will fix the missing values of the credit history first. As credit history has two
discrete values, we are taking the approach of finding the percentage of values
a positive credit history and with the percentage of values with a negative credit
history. Considering that we have the SparkSession object ready, let's fire a
Spark SQL query to figure out the count of credit history values with good and
bad credit history:

Dataset<Row> rowAvgDS = spark.sql("select _c10,count(*) from loans
where _c10 is
not null group by _c10 ");

In the preceding code, the _c10 column is for credit history and this would print the
following result:

As such 0 represents bad credit history and 1 represents good credit history. If we
find the percentage of good versus bad credit history in the non-null data rows, we
will see that close to 85% of rows have positive credit history. Thus, we will put
positive credit history or 1 in the missing ones. Of course we could have tried more
fancy ways such as using a machine learning model to predict the best missing value
in this case.

Decision Trees

[202]

We will now figure out the value that we want to put for the missing loan amounts.
Here we will take a simple approach as we will just replace the value with the
average or median value for the loan amounts. To find the average or mean
value of the loan amount, you can run a simple Spark SQL query as shown next.

Here, we are running a Spark SQL query on the loans dataset and invoking on the
avg function from Spark SQL to find the average value of loan amount based on the
loan amount fields that are not null in the dataset.

Dataset<Row> avgLoanAmtRow = spark.sql("select avg(_c8) avgLoanAmount
from loans where _c8 is not null");
 avgLoanAmtRow.show();

This would print the following result:

If we round off the preceding value to the nearest number, the value comes to 146.
So, wherever we see the value missing for the average loan amount, we replace it
with this value. We will show this piece in the code in the next section. Also, similar
to the loan amount, we can replace the missing values of applicant income with the
average value of applicant income.

We only showed fixing the missing features loan amount, applicant
income, and credit history, but there are many other features in this
dataset. Even for training our models we are only going to use these
features. We will leave it for the readers as an exercise to work on the
remaining features for data cleaning and training their models if they
want to use them to predict loan approvals.

Next, we will look at the actual training and testing of our decision tree model.

Training and testing the model
For this particular algorithm, we will use the new pipeline API from Apache Spark.
The advantage of using the Apache Spark pipeline API is, it nicely encapsulates our
workflow, or the entire steps for training and testing our model. This is useful in the
maintenance of large-scale machine learning implementations.

Chapter 7

[203]

The general steps of training and testing the model, however, will be similar to what
we did earlier. That is:

• Loading the dataset
• Cleaning and munging the data in the dataset
• Extracting features from the dataset
• Training the various steps in the pipeline workflow, including feature

extraction, model training, and model testing
• Running the model using the pipeline object and collecting the results
• Finally, evaluate how good our model is and improve its accuracy by trying

different sets of features

Let's dive into the code now. Start the program by writing the boilerplate code to
build the SparkSession. We will refer to this object as spark:

SparkSession spark = ...

Next, using this spark object, we load data from the CSV file containing our data:

Dataset<Row> rowDS = spark.read().csv("data/loan/loan_train.csv");

After loading the data into our dataset, we register it as a temporary view so that we
can fire SQL queries on it:

rowDS.createOrReplaceTempView("loans");

Before we do actual training of your models, we must do the data exploration step
first to understand our data better. In a previous section in this chapter, we carried
out the data exploration and found that our data was unclean and had a lot of
missing values. Next, in the code, we will replace the missing values in the features
that we are planning to use to train our models. For training our models, we will use
three features, namely, loan amount, applicant income, and credit history. For credit
history, we replaced the missing value with the most occurring value out of the two
values, that is, good and bad credit history and that turned out to be good as we
showed in the previous section.

For applicant income, we find the average by firing a Spark SQL query,
as shown next:

Dataset<Row> rowAvgDSIncome = spark.sql("select avg(_c6) avgIncome
from loans");
rowAvgDSIncome.show();

Decision Trees

[204]

This would print the average value for applicant income as follows:

Thus, the rounded value for this is 5403. Also, similar to this, we can find the
average value for loan amount in the same way.

We will now pull out the row that contains this average value for the
applicant's income:

Row avgIncRow = rowAvgDSIncome.collectAsList().get(0);

Now, we will pull the data from the dataset and map it to our JavaBean object:

JavaRDD<String> rowRdd =
 spark.sparkContext().textFile("data/loan/loan_train.csv",
1).toJavaRDD();-

After the data is loaded in the Rdd object, we next map it our POJO object LoanVO,
and while doing so, we also put in the missing values for our features:

JavaRDD<LoanVO> loansRdd = rowRdd.map(row -> {
 String[] dataArr = row.split(",");
 LoanVO lvo = new LoanVO();

 if(null == dataArr[6] || "".equals(dataArr[6]))
 lvo.setApplicantIncome(avgRow.getDouble(0));
 else lvo.setApplicantIncome(Double.parseDouble(dataArr[6]));

 if(null == dataArr[8] || "".equals(dataArr[8]))
 lvo.setLoanAmount(avgRow.getDouble(0));
 else lvo.setLoanAmount(Double.parseDouble(dataArr[8]));

 if(null == dataArr[10] || "".equals(dataArr[10]))
 lvo.setCreditHistory(avgCreditHistory);
 else lvo.setCreditHistory(Double.parseDouble(dataArr[10]));

 if(dataArr[12].equals("Y")) lvo.setLoanStatus(1.0);
 else lvo.setLoanStatus(0.0);

 return lvo;

});

Chapter 7

[205]

Now we will create our dataset object. As we are using the new Spark ML API
throughout this book, we will be using the dataset object for training our machine
learning models.

Dataset<Row> dataDS = spark.createDataFrame(loansRdd.rdd(), LoanVO.
class);

After fetching our dataset, we create a StringIndexer object by passing the result
label to it. It's a simple class which takes the distinct value from our response
variable and puts it in a string array. This value is then put in the output column that
we specify on our labelIndexer object, and in our case, it is the result column as
shown next:

StringIndexerModel labelIndexer = new StringIndexer()
 .setInputCol("loanStatus")
 .setOutputCol("result")
 .fit(dataDS);

In the next step, we vectorize our features, that is, we store the value of all the
features that we are using to train our models in the form of a vector. For this, we
will use the VectorAssember class, which will take an array of feature names in
a column and spit out a vector (containing the features) in a new column on
the dataset.

String[] featuresArr = {"loanAmount","applicantIncome","creditHisto
ry"};
VectorAssembler va =
new VectorAssembler().setInputCols(featuresArr).
setOutputCol("features");
va.transform(dataDS);

Now we will split our dataset into two parts, one for training our model and the
other for testing our model for its accuracy. We choose 70% of our data for our
training and the remaining 30% for testing our trained model.

Dataset<Row>[] splits = dataDS.randomSplit(new double[]{0.7, 0.3});
Dataset<Row> trainingData = splits[0];
Dataset<Row> testData = splits[1];

Decision Trees

[206]

Create an object of the classifier model and provide it with the column that it should
use to read its features for training, and also the column for the corresponding
response variable. Also, as we mentioned earlier, we are using two kinds of split
criteria with Apache Spark, and they are entropy and Gini Impurity. We specify the
type of split criteria (that is, Entropy or Gini) that we want to use on our classifier by
setting it as a property on our classifier, as shown next:

DecisionTreeClassifier dt = new DecisionTreeClassifier()
 .setLabelCol("result")
 .setFeaturesCol("features").setImpurity("entropy");

In the next step, we create an instance of an IndexToString object. Our model is
mathematical, as such it produces mathematical output. To convert this output back
to a string readable format, we use the IndexToString method. Similar to other
classes that we have used from the Spark ML package, this class also takes an input
column that it can read the input data from and an output column where it can
produce the output result.

IndexToString labelConverter = new IndexToString()
 .setInputCol("prediction")
 .setOutputCol("predictedLabel")
 .setLabels(labelIndexer.labels());

In the preceding code, we also pass the labelIndexer object. As you
can see in a previous step, we used label indexer and this has converted
our categorial output into a string array and put it in a column. The result
that is generated by our model will be a number that will be an index in
this array. From this index, the actual string value can then be pulled by
our IndexToString class object.

The next step is the most important step, where we hook all these pieces together.
As you saw in the preceding code, we built different features or objects for different
parts in the workflow, it is using the pipeline API that we will hook all the pieces
together. For this, we will pass all the individual workflows built earlier and push
them into the pipeline using the setStages method, as shown next:

Pipeline pipeline = new Pipeline()
 .setStages(new PipelineStage[]{labelIndexer, va, dt,
labelConverter});

Chapter 7

[207]

This pipeline API is an excellent new approach by the Spark ML package.
With this, the main advantage is maintaining your large-scale machine
learning code. Suppose you want to try a new model, then you just have
to replace the DecisionTreeClassifer with a new model. Next, you
just add that new model to the pipeline stages, and all the remaining
pieces will remain as is with minimum impact as they are all loosely
coupled.

Now, pass the training data to our pipeline model. What this would do is run the
training data through all the stages that is:

• It will pull the distinct response variables using string indexer and put them
in an array

• Next, the features are extracted from the dataset and put in a vector format
• Finally, the model is fed with these features
• In the last stage, the model prediction results that will be obtained on test

data are mapped to the labels from the first stage and the result can be pulled
from the output column of this stage.

The code for this is shown next:

PipelineModel model = pipeline.fit(trainingData);

In the next step, we pass our test data to the model and record its predicted results in
a predictions object.

Dataset<Row> predictions = model.transform(testData);

Let's now print the first 10 rows from our predicted results and see how it looks. For
this, we will select the first 10 rows from our predictions object generated earlier.

predictions.select("predictedLabel", "result", "features").show(10);

Decision Trees

[208]

And this will print the following result:

Let's now try to run some stats on our predicted result. We mainly want to find out
how accurate our model is. This will help us train it better. For this, we will use the
MulticlassClassificationEvaluator object. To this, we pass our prediction and
the original result and pass the metric we want it to find out. In our case, the cmetric
we are interested in is accuracy:

MulticlassClassificationEvaluator evaluator = new
MulticlassClassificationEvaluator()
 .setLabelCol("result")
 .setPredictionCol("prediction")
 .setMetricName("accuracy");

Run this evaluator on the predicted results dataset as shown next and print the
accuracy value and test results:

double accuracy = evaluator.evaluate(predictions);
System.out.println("Accuracy = " + accuracy);
System.out.println("Test Error = " + (1.0 - accuracy));

This will print the results as follows:

As you can see, our model has a 76% accuracy.

Chapter 7

[209]

We need to try different combinations of features or split criteria or train
with more data in order to increase the efficiency of our models.

With this we come to an end to a discussion on decision trees. Even though we
have covered a lot of ground on the concepts of decision trees, still there are other
concepts that we have not covered, for example, the concept of tree pruning.
We would encourage the users to read more on these topics on Wikipedia or
other sources.

Summary
In this chapter, we covered a very important and popular algorithm in machine
learning called as decision trees. A decision tree is very similar to a flowchart and is
based on a set of rules. A decision tree algorithm learns from a dataset and builds
a set of rules. Based on these rules, it splits the dataset into two (in the case of
binary splits) or more parts. When a new data is fed in for predictions based on
the attributes of the data, a particular path is taken and this follows along the full
path of rules in the tree until a particular response is reached.

There are many ways in which we can split data in a decision tree. We explored
two of the most common ways called Entropy and Gini Impurity. In either of these
cases, the main criteria is to use the split mechanism, which makes the split set
as homogeneous as possible. Both Entropy and Gini Impurity are mathematical
formulas or approaches and as such the entire model works on numerical data.

In the next chapter, we will learn the very important concept of ensembling, where,
instead of a single algorithm working on a problem, we use a set of algorithms to
work on a problem. We will see how such an approach enhances the accuracy of
our predictions.

[211]

Ensembling on Big Data
Have you used a Kinect while playing video games on Microsoft Xbox? It's so
smooth how it detects your motion while you are playing games. It enables users to
control and interact with their game without using any external device like a game
controller. But how does it do that? How does the device detect the user's motion
from the camera and predict the command that the motion suggested? Some users
on different forums have claimed that a powerful random forest machine learning
algorithm runs behind it and the link for the same is https://www.quora.com/
Why-did-Microsoft-decide-to-use-Random-Forests-in-the-Kinect. Though
I am myself not sure how true this claim is, this example at least demonstrates at
what scale and level this powerful machine learning algorithm has the potential to
be used. Random forests are perhaps one of the best machine learning algorithms
because of the accuracy they bring in the predicted results and because of their
implicit feature selection. They should be within the skillset of every machine
learning programmer.

In this chapter, we will cover:

• The main concepts behind ensembling and what makes it so powerful.
We will also cover the advantages and disadvantages of this approach.

• An introduction to and information on the concepts of random forest. We
will also learn when we can use this algorithm and its specific advantages.

• A real-world use case of predicting loan defaults using random forest.
• The concept of gradient boosting, another important approach.
• Replacing the machine learning algorithm in our real-word use case

example with the gradient boosting algorithm and running it on the
dataset for predictions.

Before we get into the details of the random forest algorithm, we must first
understand the concepts of ensembling.

https://www.quora.com/Why-did-Microsoft-decide-to-use-Random-Forests-in-the-Kinect
https://www.quora.com/Why-did-Microsoft-decide-to-use-Random-Forests-in-the-Kinect

Ensembling on Big Data

[212]

Ensembling
Imagine that a group of friends are deciding which movie they want to see together.
For this, they select their movie of choice from a set of, say, five or six movies. At
the end, all their votes are collected and read. The movie with the maximum votes
is picked and watched. What just happened is a real-life example of the ensembling
approach. Basically, multiple entities act on a problem and give their selection
out of a collection of discrete choices (in the case of a classification problem). The
selection that was suggested by the maximum number of entities is chosen as the
predicted choice.

This explanation was a general approach to ensembling. From the perspective of
machine learning, it just means that multiple machine learning programs act on a
problem that can be either of type classification or regression. The output from
each machine learning algorithm is collected. The results from all the algorithms
are then analyzed with different approaches like voting, averaging, or by using
another machine learning algorithm, and finally out of the selected outcomes
the best outcome is picked. Let's look into some of these approaches:

• Voting: This is a simple approach that we mentioned earlier. Multiple
machine learning algorithms act on a task and give their output. The output
from these algorithms is collected and each outcome is voted for. The
outcome with the maximum number of votes is selected. This is also depicted
in the following figure; as you can see in the figure, both the machine
learning algorithms 1 and 2 choose the outcome 1, and hence its number
of votes is 2, which is more than the votes on the other outcome and this
outcome is selected:

Chapter 8

[213]

• Averaging: This is another simple approach but one that also yields good
results. In this case, we also apply multiple algorithms on a problem and
collect the output from each. The final outcome is the average of all the
outcomes that were predicted by the machine learning algorithms. Suppose
that you have a regression problem where you are predicting the age of a
person based on different parameters:

As seen in the previous image, the average age predicted by all the three
algorithms is 33.

• Using another machine learning algorithm: This is another approach where
the output of all the machine learning algorithms is fed to another machine
learning algorithm and the final algorithm then picks the best possible
algorithm. One example of this is an aritificial neural network, we will
cover this in Chapter 13, Deep Learning Using Big Data.

What we just showed you are some of the approaches used in ensembling the
models together. Next, we will cover some popular ensembling types.

Types of ensembling
Mentioned below are two common types of ensembling techniques that are used in
random forests and gradient boosted trees algorithms in the big data stack:

Bagging
Before we understand bagging, we must look into a simple concept called
bootstrapping.

Ensembling on Big Data

[214]

Bootstrapping is a simple and powerful concept of pulling n samples of a fixed size
from an existing training dataset. This is done until a decided number of samples
is reached. Therefore, the existing training dataset now becomes a multi-training
dataset, with each training set now containing n samples each. The approach is
shown in the following diagram:

As you can see in the previous diagram, three bootstrap samples of training datasets
are created from the original training dataset. In practice, these sample datasets can
run into thousands of datasets when this approach is used in the real world.

Now that we understand bootstrapping, bagging is a concept of training multiple
machine learning models on these bootstrapped samples. So, on each bootstrapped
sample a machine learning model is applied and predicts an outcome. Once all
the outcomes of the machine learning models are generated, the final outcome
is predicted using one of the approaches described previously, that is, voting,
averaging, or by using another machine learning model. Bagging is depicted in the
following figure:

Chapter 8

[215]

As you can see in the previous figure, the different machine learning models are
trained on the sampling sets and the results of them are then voted for, with the final
outcome selected based on the best voted result.

The approach of bagging that involves voting at the end of the result of multiple
models is used in random forests for classification in Apache Spark. When averaging
is used at the end for depicting the result of multiple models, this approach is used in
regression using random forests in apache spark.

Boosting
Have you seen a relay race where members of the team take turns to run? The first
runner runs first, followed by second and the third one, and so on. Similar to this
sequential approach, boosting is the concept of running multiple weak-supervised
learning algorithms one after the other, with the assumption of improving the results
upon multiple runs.

Ensembling on Big Data

[216]

The idea is that a weak machine learning algorithm might still be good on a certain
part of the dataset for predictions, and by clubbing this strength of various weak
algorithms we can come up with a strong predictive approach mechanism. Boosting
is depicted in the following figure:

The previous figure shows boosting. As we can see, there are multiple models
that are used in the approach of boosting. There are some important points to note
regarding the boosting approach:

• Each model is trained on the entire dataset
• The next model that is run after the first one has completed focuses on the

errors made in predictions by the first model, and therefore it improves upon
the results of the previous model, hence the name boosting

This approach of boosting is used in gradient boosted trees in apache spark. We have
seen two popular techniques for improving the accuracy of your predictions. Let's
now see some advantages and disadvantages of the ensembling approaches.

Advantages and disadvantages of ensembling
The advantages of ensembling are:

• The main advantage, and probably the only reason why ensembling is used
so frequently, is that it improves the accuracy of the predictions. So, if you
see and read the results of a lot of competitions on data analytics on sites
like http://www.kaggle.com and so on, you would find that most of these
competition winners would have used ensembling in some form.

http://www.kaggle.com

Chapter 8

[217]

• Ensembling can be used to represent complex relationships. Even though
we are not showing you how we can combine two different types of models
in this chapter, it is doable, and this form of combining different types of
models in ensembling helps you to represent variable relationships using
machine learning models.

• Another advantage of ensembling is it results in building a more generalized
model with reduction in overfitting.

• As you will see when we discuss random forests in upcoming sections, the
ensembling algorithms can be made to run in parallel across thousands of
nodes. From the perspective of big data, random forest algorithms containing
multiple machine learning algorithms can be easily distributed across a
cluster of many distributed machines. Therefore, these algorithms scale well
too.

We will now look at some of the disadvantages of using the ensembling approach:

• As you can see, this approach requires a training multiple model (which
can run into hundreds, if not thousands, of models), and this approach can
be tedious and slow. It is not suited for real-time applications that require
immediate results.

• It makes the entire model prediction technical setup much more complex and
hard to maintain as we have to take multiple components.

We have seen the approaches of ensembling, and their good and bad points, but
how are these techniques used in the big data world? In the big data world, we
have extensive Apache Spark usage and Apache Spark ships with some ensembled
models within their machine learning APIs. We are going to learn two important
models: random forest and Gradient Boosted Trees (GBTs).

These ensembled models, that is, random forest and GBTs, are some of
the best machine learning models used.

Ensembling on Big Data

[218]

Random forests
In the previous chapter, we studied a very popular algorithm called decision trees.
Recall that a decision tree is like a flow chart that splits the data using mathematical
concepts like entropy before finally coming to a conclusion for predictive results.
Like other machine learning algorithms decision trees suffer from the main problem
of overfitting, overfitting as the name suggests is the problem when the model is not
nicely generalized that is to say it gets too well trained on the training data such that
it works well only on test samples from the training data but as soon as a new set of
data is given to it (that which it did not see in training) it will perform very badly on
that, so if our decision tree is made to classify a black sheep, it can classify a black
dog as a black sheep due to overfitting. Throwing more entities at a problem is a
common approach to solving problems. Hence, instead of one decision tree a cluster
of decision trees can be used to solve the problem. Each tree can then classify or
use regression to predict an outcome. The final outcome can then be decided on the
basis of techniques like voting, averaging, and so on. The approach is shown in the
following diagram:

As seen previously, the decision trees feed their outcome to a voting or averaging
system that then figures out the final outcome.

This approach of using multiple decision trees, or an ensemble of decision trees, is
called random forest. From the perspective of big data, this approach is a clean fit on
the big data stacks of Apache Spark and MapReduce. As you can see in the previous
figure, the decision trees can be trained in parallel on a cluster of distributed
machines and their results can then be collectively estimated.

As we saw in the advantages of ensembling, random trees main usage is to increase
the accuracy of predictions. It also solves the main problem of overfitting. The
trees in the forest can each be computed based on a different feature, which would
enhance the performance by lowering the emphasis of a feature that is particularly
noisy and overshadows other features.

Chapter 8

[219]

Gradient boosted trees (GBTs)
Gradient boosted tree (GBT) is a very popular technique and is used extensively
in many data science competitions online. You can check kaggle.com for this,
where you will see that a lot of people have used it frequently. The idea behind
this technique is that a group of weak learners can be boosted to produce a strong
predictor. It is a sequential approach whereby in every stage of the sequence, a weak
model is used to predict an outcome. The error of the previous model is boosted and
the new models then give preference to these data items with error.

Let's try to understand the base concept of gradient boosting using an example.
Suppose you are given a huge dataset containing data for users' age, their smoking
habits, whether they smoke or not, and whether they are diabetic or not. Based on
this data, you already have statistics for what their health insurance quotes are. Now
our task is to train gradient boosted trees with this data and to come up with good
predictions regarding the insurance quotes of the users.

In this case, a simplistic approach for gradient boosted tree is needed, as shown in
the following diagram:

kaggle.com

Ensembling on Big Data

[220]

As seen in the previous diagram, the whole boosting technique goes as follows:

• First, a weak decision tree, W1 (not a good performer), is trained on the
dataset and is made to predict on the test set.

• The predictions are then evaluated, and the difference between the actual
value and prediction is found out; this is called the residual. The predicted
value can be depicted as follows:

Here, y is the actual value and F(x) is the predicted value (which is a function
of the feature x and error is the error in prediction). Error or residual can now
be written as follows:

• Next, we use this error and use another model (W2) on it to make a
prediction. Thus, the predicted value of second model can now be depicted
as:

Here, as you can see, the previous error is now equal to the function (Func2)
of the second model and the error2 is the error generated by the second
model.

• Thus, we can now change our original function to a new function, which is a
combination of the results of model 1, as well as the second model shown as
follows:

Decision Tree 1

Decision Tree 2

Final Result

Thus, both the models are combined to produce a better result. Error2 is
lesser than the original error value, that is. error.

Chapter 8

[221]

• Boosting is a technique that uses multiple models and an approach that is
gradient descent, which minimizes the error going forward. Thus, the final
predicted value will be the sum of the prediction of the multiple models
as follows:

It's good to know about GBTs and gradient descent in depth. We would
encourage readers to read more on this topic on Wikipedia and in other
books on statistical learning.

So much for the theory, let's now dive into a real-world application usage of random
forests and GBTs.

Classification problem and dataset used
We will be using random forests to predict a loan default by users. For this, we will
be using a real-world dataset provided by Lending Club. Lending Club is a fintech
firm that has publicly available data on its website. The data is helpful for analytical
studies and it contains hundreds of features. Looking into all the features is out
of the scope of this book. Therefore, we will only use a subset of features for our
predictions. The features that we will be using are the following:

Feature Description
ID Unique numerical ID for each loan
Loan amount Amount applied by the borrower for loan
Funded amount The amount committed to that loan at that point in time
Annual income Annual income of the applicant
Grade Assigned loan grade
SubGrade A more detailed loan grade; values are from A1 to G5
Home ownership The home ownership status provided by the borrower; the

values are RENT, OWN, MORTGAGE, and OTHER
Employment length Length of time in current employment
Loan status Status of loan, whether paid or other statuses
Zip code Code of the state where the loan was applied for, for example,

NJ for New Jersey, NY for New York

Ensembling on Big Data

[222]

This dataset would give you a real taste of data in the real world, as this
data is completely unclean and requires a lot of modifications before it
can be used for analysis.

Before we train our models using this data, let's explore the data first for
initial insights.

Data exploration
Before we do anything meaningful in the data exploration, we need to make sure
our source of data that is our dataset files are present in HDFS where we expect to
read them from our Spark jobs. To put the files in HDFS first bring the files to the
operating system (that Linux in our case) and from Linux you can copy them to
HDFS using the following command:

hdfs dfs -put <FILE_NAME><Destination directory in hdfs>

As seen we just use the put command to put a local file to HDFS.

If you do not want to move this file to HDFS and just test it
from your local OS like on Windows, you can do that too.
For this you would have to load the file directly from Spark
from your local filesystem.

For data exploration, we will first load the dataset using Apache Spark and see
the number of rows in our dataset. For this, we will create sparkContext and
initialize the SparkSession. To keep the code concise, we are not showing the
full implementation as follows:

SparkConf c = ...

SparkSession spark = ...

Next, we load the dataset and find the number of rows in it:

JavaRDD<String> dataRdd =
spark.sparkContext().textFile("hdfs://datasets/LoanStats3a.csv",1)
.toJavaRDD();

As you can see previously, we loaded the dataset from an HDFS location and stored
it in an RDD of strings. Luckily, this dataset is relatively clean and has one row per
data item. Now to count the number of rows in the dataset we run the following:

System.out.println("Number of rows -->" + dataRdd.count());

Chapter 8

[223]

This would print the result as follows:

Number of rows -->42538'

We are not interested in all the rows of this data, especially the current loans (as we
are learning from historical data), and so we filter them out:

JavaRDD<String> filteredLoans = dataRdd.filter(row -> {
 return !row.contains("Current");
});

Also, there are lots of rows that contain N/A fields with no data, so we will filter
them out, too. After filtering, we will load the data in POJOs and store them in
the rdd object.

JavaRDD<LoanVO>data = rdd.map(r -> {
 if(r.size() < 100) returnnull;
 LoanVO lvo = new LoanVO();
 String loanId = r.getString(0).trim();
 String loanAmt = r.getString(2).trim();
 String fundedAmt = r.get(3).toString().trim();
 String grade = r.get(8).toString().trim();
 String subGrade = r.get(9).toString().trim();
 String empLength = r.get(11).toString().trim();
 String homeOwn = r.get(12).toString().trim();
 String annualInc = r.getString(13);
 String loanStatus = r.get(16).toString().trim();

 if(null == annualInc || "".equals(annualInc) ||
 null == loanAmt || "".equals(loanAmt) ||
 null == grade || "".equals(grade) ||
 null == subGrade || "".equals(subGrade) ||
 null == empLength || "".equals(empLength) ||
 null == homeOwn || "".equals(homeOwn) ||
 null == loanStatus || "".equals(loanStatus))
returnnull;

 if(loanAmt.contains("N/A") ||
loanId.contains("N/A") || fundedAmt.contains("N/A") ||
grade.contains("N/A") ||
 subGrade.contains("N/A") || empLength.contains("N/A") ||
homeOwn.contains("N/A") || annualInc.contains("N/A") ||
loanStatus.contains("N/A")) returnnull;

Ensembling on Big Data

[224]

 if("Current".equalsIgnoreCase(loanStatus)) returnnull;

 lvo.setLoanAmt(Double.parseDouble(loanAmt));
 lvo.setLoanId(Integer.parseInt(loanId)); lvo.
setFundedAmt(Double.parseDouble(fundedAmt));
 lvo.setGrade(grade);
 lvo.setSubGrade(subGrade);
 lvo.setEmpLengthStr(empLength);
 lvo.setHomeOwnership(homeOwn);
lvo.setAnnualInc(Double.parseDouble(annualInc.trim()));
 lvo.setLoanStatusStr(loanStatus);

 if(loanStatus.contains("Fully")) lvo.setLoanStatus(1.0);
 elselvo.setLoanStatus(0.0);
 returnlvo;

 }).filter(f -> {
 if(f == null) returnfalse;
 elsereturntrue;

 });

In the previous code, there are few notable things.

When the string contained N/A, we returned null and all null mapped
values are filtered out in the RDD. For the loan status, we only picked
loans that were fully paid and consider others in bad status. This is a
slightly extreme guess, but for the first version of our program it's okay.

Next, we build the DataFrame out of this rdd and register it as a view to fire
queries on:

Dataset<Row> dataDS = spark.createDataFrame(data.rdd(), LoanVO.class);
dataDS.createOrReplaceTempView("loans");

Now our data is ready to fire queries on. First, we will figure out the average,
minimum, and maximum values of the loan amount, as this would give us a general
idea of within what range people apply for loans on Lending Club. Apache Spark
SQL provides us with a handy describe method that will help us calculate these
values:

dataDS.describe("loanAmt").show();

Chapter 8

[225]

This would generate the output as:

As you can see, the max loan amount applied for is 35000$ (since this is in dollars)
and the average loan amount applied for is around 11000$ (or 10994$ precisely).

Similar to this, let's see the average value for annual income:

dataDS.describe("annualInc").show();

This would print the following output. As you can see, the average annual income is
close to 69000$ and the maximum is 6 million dollars:

Let's look at the average of one more entity, that is, the funded amount, before
we find a relation between these entities. This is the actual amount of loan that is
approved and funded. As you can see in the following code, the average loan given
is around 11000$ and the maximum given is 35000$.

Ensembling on Big Data

[226]

We have seen the general statistics for three important parameters, so let's try to plot
on a scatter plot the values of the funded amount versus the annual income. To build
the chart, we first load our dataset, clean it and extract the data, and fill it into an rdd
containing Java POJOs (as was shown previously in this section). Next, we extract
the two attributes, annual income and funded amount, and put these values in a
chart object that is specific to the JFreeChart library used as follows:

JavaRDD<Double[]> dataRowArr = data.map(r -> {
Double[] arr = new Double[2];
 arr[0] = r.getAnnualInc();
 arr[1] = r.getFundedAmt();
 return arr;
});

Next, we use this RDD, collect it, and fill the data into x and y coordinates for the
XYSeries object of JFreeChart. Finally, these coordinates are populated in the
XYSeriesCollection dataset and returned.

List<Double[]> dataltems = dataRowArr.collect();
XYSeriesCollection dataset =new XYSeriesCollection() ;
XYSeries series= new XYSeries("Funded Loan Amount vs Annual Income of
 applicant");
 for (Double[] darr : dataltems) {
 Double annualInc = darr[0];
 Double fundedAmt = darr[1];
 series.add(annualInc, fundedAmt);
 }
 dataset.addSeries(series);
 return dataset;

To maintain conciseness, we are not showing you the full code here, but the full code
can be found on our GitHub code repository. You can also refer to Chapter 3, Data
Visualization, where we covered the code for building charts in detail.

Chapter 8

[227]

This would print the following chart:

As you can see in the previous graph, and as expected, when the annual income
increases the funded amount also generally increases.

To draw a better graph with fewer outliers we have only taken the
income range up to 200k above. This is to consider the fact that only a
low percentage will have income above that range. As you can see in the
graph, most people have an income of less than 100k.

There is a column for grade in the dataset. The grading of loans is an important
concept as we believe that it directly impacts the loan amount funded. To check the
value of grades we will check the number of loans that are bad loans, that is, they are
not fully paid, and then check their grades on a bar chart.

Ensembling on Big Data

[228]

Making a bar chart with JFreeChart is simple. From our dataset that we collected
earlier, we will select loans with a bad status and check their count by firing a SQL
query, as follows:

Dataset<Row> loanAmtDS = spark.sql("select grade,count(*) from loans
where
loanStatus = 0.0 group by grade");

Next, we collect data from this dataset and fill this data into a
DefaultCategoryDataset of JFreeChart and return. This JFreeChart dataset object
is then used to populate a bar chart component. To maintain brevity, we are not
showing all of the code here.

final DefaultCategoryDataset dataset = new DefaultCategoryDataset();
List<Row> results = loanAmtDS.collectAsList();
for (Row row : results) {
 String key = row.getString(0);
 dataset.addValue(row.getLong(1) , category , key);
}
return dataset;

This would print the chart as follows:

As you can see in the previous chart, most loans in the categories B, C, and D have
defaulted or are bad loans.

Chapter 8

[229]

Finally, we will see one more piece of data exploration before diving into predictive
analytics on this dataset. We will see which zip code resulted in the maximum
number of default loans, and we will pick the top ten such zip code and plot them on
a bar chart. The code is very similar to the bar chart we drew previously for bad loan
counts by grade. The query to pull the defaulted loan count by zip code will change,
as follows:

Dataset<Row> loanAmtDS = spark.sql("select zipCode,count(*) loanCount
from loans
where loanStatus = 0.0 group by zipCode order
by loanCount desc limit 10");

This would print the chart as follows:

As you can see in the previous chart, California has the maximum number of bad
loans, followed by Florida and New York, and so on.

The bar chart for zipCode shown previously just shows the number of
bad loans issued by different US states from Lending Club, but it does
not show the overall performance of defaulted loans by state. To figure
that out, you need to find the ratio of loans approved versus the loans
defaulted.

Ensembling on Big Data

[230]

We have just scratched the surface of data exploration. There is plenty of more
stuff that you can do here, for example, you can use the remaining features that are
present in this dataset for further exploration. We leave it to the readers to practice
more of this stuff on their own.

Let's now finally get into the details of training our random forest model on
this dataset.

Training and testing our random forest model
Before we train our model, we need to create the boiler plate code for creating the
SparkSession object. For conciseness, we are just showing you the instance name as
follows, for the full code, refer to our GitHub repository:

SparkSession spark = ...

Next, we load the dataset from HDFS (as this is a big data analysis case study, the
data would be stored in HDFS or some other big data filesystem). Since the data is in
the CSV format and contains double quotes (with double quotes containing commas
internally, too), it's better to use the Spark CSV inbuilt package to load this data. If
you want to extract this CSV without using any package then you would require
cleaning of data, as this data contains special characters within the quotes:

Dataset<Row> defaultData = spark.read().csv("hdfs://datasets/
LoanStats3a.csv");

This would load the CSV data into your defaultData dataset object. Next, we
convert it back to rdd and run a mapper function on that rdd. This is done to extract
data from this rdd and populate it into a Java POJO object. It is here we clean our
data as well. To maintain brevity; we are not showing you the full code for
this mapper:

JavaRDD<Row> rdd = defaultData.toJavaRDD();
JavaRDD<LoanVO> data = rdd.map(r -> {
if(r.size() < 100) return null;
LoanVO lvo = new LoanVO();
 String loanId = r.getString(0).trim();
 String loanAmt = r.getString(2).trim();
 ...

As you can see previously, we convert our dataset to rdd first and then invoke the
mapper function on it. Within this lambda function, we are first checking whether the
column count is good or not. If the column count is less that means we have missing
data, but to keep things simple we will simply discard it by returning null. Finally,
we build an instance of LoanVO POJO and also instantiate variables where we store
extracted data.

Chapter 8

[231]

Next, we run three rules on this data for cleaning it, as follows:

if(null == annualInc || "".equals(annualInc) ||
null == loanAmt || "".equals(loanAmt) || ...) return null;

if(loanAmt.contains("N/A") || loanId.contains("N/A") || ...)
return null;

if("Current".equalsIgnoreCase(loanStatus)) return null;

First we remove the variables that have null values. If we locate any null value in
our features we discard that row. Next, we check whether the N/A field is present
in the data; this dataset contains some such fields. Even those fields are considered
useless for our training and we discard that row, too. Finally, we check the status of
the loans; if the loan status is current that means the loan is still in process and it is
neither paid fully nor defaulted, and hence we ignore this data.

Next, we start setting the values of the extracted data into our POJO object:

lvo.setLoanAmt(Double.parseDouble(loanAmt)); lvo.
setLoanId(Integer.parseInt(loanId));
 ...
lvo.setLoanStatusStr(loanStatus);

if(loanStatus.contains("Fully")) lvo.setLoanStatus(1.0);
else lvo.setLoanStatus(0.0);

As you can see, we trade the loan status field in a special way for our models - we
use numerical data for the loan status, and hence for a fully paid loan we put 1.0
and for the remaining ones we put 0.0. Finally, we return the POJO object that is
filled with the extracted data. Along with the map method we also have a filter
method that will filter out any null data that was returned; this method is useful for
ignoring data that was ignored due to the specific rules described previously:

return lvo;
}).filter(f -> {
if(f == null) return false;
 else return true;
});

As you saw in this example, we mostly discarded bad or missing data to keep things
simple. You can also use techniques to fix the data such as replacing it with mean
values or nearest values.

Ensembling on Big Data

[232]

Now we convert our rdd to a dataset as we are using the Spark ML API, which
works on dataset objects:

Dataset<Row> dataDS = spark.createDataFrame(data.rdd(), LoanVO.class);
dataDS.createOrReplaceTempView("loans");

Next, we will index the given results and store them in a new column using the
StringIndexer class provided by Apache Spark. As the API shows we just need
to provide the input column where the indexer can read the data, and the output
column where it can generate the full output after running or fitting on the entire
dataset:

StringIndexerModel labelIndexer = new StringIndexer()
 .setInputCol("loanStatus")
 .setOutputCol("indexedLabel")
 .fit(dataDS);

This dataset has lots of features as it is a real-word dataset, but we are only using
loan amount, annual income, home ownership, funded amount, and grade for
training our model. Recall that grade and home ownership are categorical fields
with discrete string values as the output, but our models are mathematical and
understand only numerical data. Therefore, we need to convert our categorical
values to numerical values. To do this, we will use a handy StringIndexerModel
provided by the Apache Spark features package:

StringIndexerModel gradeIndexer = new StringIndexer()
 .setInputCol("grade")
 .setOutputCol("gradeLabel")
 .fit(dataDS);

StringIndexerModel homeIndexer = new StringIndexer()
 .setInputCol("homeOwnership")
 .setOutputCol("homeOwnershipLabel")
 .fit(dataDS);

As you can see in the previous code, we provided the input and output columns
and fitted this StringIndexerModel on the entire dataset. It would then convert
our categorical values to numbers.

Chapter 8

[233]

Just like other machine learning models, our random forest model also works on a
vector of values. We need to convert our features data into vectors containing this
data. We will use the VectorAssembler class from the Spark features package, and
this class will convert our features into the vector form when provided with an array
of our feature names. The feature names are nothing but the column names within
our dataset:

String[] featuresArr =
{"loanAmt","annualInc","fundedAmt","gradeLabel","homeOwnershipLabel"};

VectorAssembler va = new
VectorAssembler().setInputCols(featuresArr).setOutputCol("features");

This VectorAssembler would pull the data from these columns and create a vector
out of it. We need to now split out dataset into training and test dataset pieces. We
will invoke the randomSplit method on our dataset and split the data. We are using
80% of the data for training and the remaining for testing:

Dataset<Row>[] splits = dataDS.randomSplit(new double[] {0.8, 0.2});
Dataset<Row> trainingData = splits[0];
Dataset<Row> testData = splits[1];

80/20 split for training and test data is usually a good starting point
and is also known as Pareto Principle. We can always test with different
training and test data variations. As you would do that, you would see
that with more training data you can always train your models well but
then you won't be able to see variations in your test results as the amount
of test data is less now. So to match a perfect balance an 80/20 principle
for dividing data is usually a good starting point.

Next, we build the instance of our classifier, in our case it is
RandomForestClassifier. We provide the input column where the classifier can
read the data and the output column where it can store its output. Since we are
dealing with a random forest that will create multiple trees for us in an ensemble, we
will also specify the number of trees to build as 100 (you can change this value as per
your need):

RandomForestClassifier rf = new RandomForestClassifier()
 .setLabelCol("indexedLabel")
 .setFeaturesCol("features")
 .setImpurity("entropy").setNumTrees(100);

Ensembling on Big Data

[234]

We specified the impurity or the split criterion as entropy; you can also
use gini here.

We had earlier converted our output labels to indexes using a string indexer. Our
results would be in the form of indexes too; we can convert them to proper strings
using an index to string converter which also part of the Spark feature package.
Again provide the input and output columns:

IndexToString labelConverter = new IndexToString()
 .setInputCol("prediction")
 .setOutputCol("predictedLabel")
 .setLabels(labelIndexer.labels());

Finally, we hook up all these workflow steps in our machine learning program using
the pipeline API shown as follows. We provide all the instances of the objects that we
created earlier to our pipeline object:

Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[] {labelIndexer,gradeIndexer,homeIndexer,
va, rf,
labelConverter});

Next we provide the training data to the pipeline workflow. This would run the
training data through all the workflow steps provided to the pipeline earlier.
This would also return an instance of PipelineModel object:

PipelineModel model = pipeline.fit(trainingData);

Let's finally make predictions on this model by running it on the test data:

Dataset<Row> predictions = model.transform(testData);
Predictions.show();

Let's see the first few rows of our predicted results:

Chapter 8

[235]

Note the columns containing our features (in vector form) and the raw prediction
which is nothing but a probability and finally the actual prediction which is a binary
as 1 or 0.

From the perspective of big data we can always store our trained model to
external storage and recreate it back to make prediction using this storage.
We can also store the results we have just generated into an external
storage for example, in Parquet format so that later we can further
analyze and query the results.

We have seen now that the output result is also a dataset which can be
queried for further analysis. Let's now pull some statistics from the output
results and figure out how accurate our random forest model is. Apache
Spark provides us with a handy-out-of-the-box class for this and it is called as
MulticlassClassificationEvaluator, and we just need to provide it with the
actual results, the predicted results and the metric we are looking for (in our case
we are interested in figuring out accuracy hence our metric is Accuracy). Finally,
we can invoke the evaluate method on this class and it will give us the result
of this metric Accuracy:

MulticlassClassificationEvaluator evaluator = new
MulticlassClassificationEvaluator()
 .setLabelCol("indexedLabel")
 .setPredictionCol("prediction")
 .setMetricName("accuracy");
double accuracy = evaluator.evaluate(predictions);
 System.out.println("Accuracy = " + (100 * accuracy));
 System.out.println("Test Error = " + (1.0 - accuracy));

As seen in the preceding code we have printed the Accuracy and the Test Error
and the results would be as follows:

Accuracy = 84.4386853575215
Test Error = 0.15561314642478496

Around 84% accurate, which is pretty bad for a machine learning approach. Our
aim from this chapter is to give enough tools to the readers to get started on this
ensembling approach and work on tuning these models for better results.

As we mentioned before Gradient boosted trees can give better performance though
they cannot be as parallelly trained as a random forest. Let's try to see this in action.

Ensembling on Big Data

[236]

Training and testing our gradient boosted tree
model
The use of gradient boosted tree model in place of the random forest is easy. Pretty
much all the code shown previously is same except that we replace the random
forest model with the gradient boosted classifier and fit it into the same pipeline API
as we covered in the previous section. The code for the same is shown next and in
the code we create the instance of the gradient boosted classifier and provide it the
column where it can read the features and a column where it can print the predicted
results. We also provide the split criterion, that is, entropy:

GBTClassifier rf = new GBTClassifier()
 .setLabelCol("indexedLabel")
 .setFeaturesCol("features").setImpurity("entropy");

After running this model we again collect the predicted results and using the
multi-classification evaluator we figure out the accuracy of this classifier. The code
is again exactly similar to the previous section code. The result would be printed as:

Accuracy = 84.61628588166373
Test Error = 0.15383714118336267

Approximately 85%, as you can see the performance is slightly improved. The
readers should tweak the model parameters further or change the features further to
check this. Gradient Boosting is a very powerful approach and has been successfully
deployed in many production systems. There is one more algorithm called as
XGBoost which is even more popular or perhaps the most popular one. We
urge the users to read more on the XGBoost algorithm.

Even though we have covered Random forests and Gradient
boosting by using classification techniques, these algorithms can
very well be applied for regression as well.

Before we finally wrap this chapter, I would like to touch on one point regarding
how we could deploy these models to a production system. For deploying machine
learning models in production we generally train the model on historical data and
store it in external storage. When needed we rebuild the model from the external
system and run the test data for predictions on it. The models are run using the
spark-submit command, in fact training and storage of the model are also run
using the spark-submit job. We covered some of this in Chapter 1, Big Data
Analytics with Java.

Chapter 8

[237]

Summary
In this chapter, we learnt about a very popular approach called ensembling in
machine learning. We learnt how a group of decision trees can be parallelly built,
trained, and run on a dataset in the case of random forests. Finally, their results can
be combined by techniques like voting for classification to figure out the best voted
classification or averaging the results in case of regression. We also learnt how a
group of weak decision tree learners or models can be sequentially trained one after
the other with every step boosting the results of the previous model in the workflow
by minimizing an error function using techniques such as gradient descent. We also
saw how powerful these approaches are and saw their advantages over other simple
approaches. We also ran the two ensembling approaches on a real-world dataset
provided by Lending Club and analyzed the accuracy of our results.

In the next chapter, we will cover the concept of clustering using the k-means
algorithm. We will also run a sample case study and see how a retail store can
categorize their customers into important groups based on this approach.

[239]

Recommendation Systems
When you go to a bookstore to buy books, you have a particular book in mind
generally, which you are interested in buying and you look for that particular
book in the bookshelves. Usually, in the book store, the top selling books at that
point in time are kept upfront and the remaining inventory is kept on the shelves
arranged (sorted). A typical small bookstore can have say a few thousand books
or maybe more. So, in short, the limit to which the physical products are available
is right in front of you as a customer and you can pick and choose what you like
at that moment. Also, physical stores keep top products in front as they are more
sellable, but there is no way the products can be arranged according to the choice
or preference of a customer coming to a physical store. However, this is not the
case when you go to popular online e-commerce store such as Amazon or Walmart.
There could be a million if not a billion products on Amazon when you go to buy
stuff on it. In fact, the range of information available in the case of an e-commerce
store is so much that there is a need of an elegant way to present the most useful
information to the customer when he is browsing the website so as to make him do
a purchase on the site. Putting the top products from a set of millions of products (as
it was done in physical stores) is not an elegant way as the space on the webpage the
user is browsing is limited. To solve this issue most online e-commerce stores use
recommendation systems.

When it comes to machine learning, one of the first references of its extensive usage
that comes to mind are the use of recommendation systems. As the name suggests,
these are software systems that recommend useful entities to end users. These
useful entities can be anything whether they are songs or movies, or even articles
on a tutorial website. In this chapter, we will study the following details about
recommendation systems:

• Concepts, use cases, and types of recommendation systems
• Content-based recommendation system concepts
• A simple content-based recommendation system case study

Recommendation Systems

[240]

• Collaborative recommendation systems concepts
• Exploring the MovieLens movie review datasets
• Recommending movies to users using collaborative filtering

Recommendation systems and their
types
Before we dig deeper into the concepts of the recommendation system, let's see two
real-world examples of recommendation engines that we might be using on a daily
basis. The examples are shown in the following screenshots. The first screenshot is
from Amazon.com, where we can see a section called Customers who bought this
also bought, and the second screenshot will be from YouTube.com, where we are
seeing a section called Recommended:

As you can see in the screenshot which we have taken from http://www.amazon.
com, it shows a list of books on Java. So if you search for keyword Core Java on
Amazon.com for buying books, you will get a list books on Core Java. If you select
one of those core java books now and click on it, you will be directed to the page
where you will get the full description about the book: its price, author, reviews,
and so on. It is here, at the bottom of this section you will get a link as shown above
where it is mentioned Customers who bought this item also bought. So Amazon.com
here is giving suggestions or recommendations to its customers so that they can
also simultaneously look into other items along with the one they are interested
in purchasing.

Amazon.com
YouTube.com
http://www.amazon.com
http://www.amazon.com
Amazon.com
Amazon.com

Chapter 9

[241]

Now let's see an image from another famous website www.youtube.com that
frequently uses the concept of making recommendations to its users.

As you can see in the image Youtube.com is showing recommended videos to its
users and these videos for recommendations are figured out on the basis of the taste
or liking of their users (based on what they watched in the past).

Both these websites Amazon and YouTube contain billions of items. They have both
figured out a unique and useful way of displaying items to their customers based
on their taste. So if you go to www.youtube.com, you can see some suggestions of
videos (under the Recommendations section in the image) you might like on the
right side of the screen and similar to this when you are browsing some product on
Amazon you also get suggestions of other products that you might like to buy. This
is a very useful technique given that these websites have millions if not billions of
products then how do they figure out which products or videos the users would like.
This is all what recommendation systems are all about. Recommendation systems
are everywhere these days whether in e-commerce where they display the products
the users might be interested in, or in music sites where they show you the next song
you might like to play or they create an auto-playing playlist based on your taste,
for example, as in Pandora or on fashion-related websites they might show you the
next piece of fashionable items that might appeal to you. In fact, their use is so much
that it is said that on a giant e-commerce store the recommendation systems are
responsible for driving a lot of their sale.

http://www.youtube.com
Youtube.com
www.youtube.com

Recommendation Systems

[242]

Consider this when you go to Amazon.com to buy a book and
you are browsing it, you might see a similar book that was
published may be fifty years earlier. This old book might turn
out to be more appealing to you and you might buy it. The point
here is that Amazon.com uses recommendation systems power
to pull this old book from their inventory and show it to you.
However, the same thing is just not possible on a physical store
where the inventory is limited and there is no way to connect
items that might belong to the same taste.

As the name suggests, the recommendation systems gives recommendations or
suggestions to the users regarding products they might like. There are various ways
which is figured out either based on the click history of the users or based on the
ratings they gave to other products on these websites. In all cases, some form of
machine learning techniques are used to predict based on historical data of user's
browse history or product transactions.

There are two types of recommendation systems, namely:

• Content-based recommendation systems
• Collaborative recommendation systems

We will cover both in detail in the upcoming sections.

Content-based recommendation systems
In content-based recommendations, the recommendation systems check for similarity
between the items based on their attributes or content and then propose those items
to the end users. For example, if there is a movie and the recommendation system
has to show similar movies to the users, then it might check for the attributes of the
movie such as the director name, the actors in the movie, the genre of the movie,
and so on or if there is a news website and the recommendation system has to show
similar news then it might check for the presence of certain words within the news
articles to build the similarity criteria. As such the recommendations are based on
actual content whether in the form of tags, metadata, or content from the item itself
(as in the case of news articles).

Amazon.com
Amazon.com

Chapter 9

[243]

Let's try to understand content-based recommendation using the following diagram:

As you can see in the preceding diagram, there are four movies each with a specific
director and genre. Now, look at Movie - 1 and Movie - 3. Both these movies have
the same director as well as genre, thus they have a very strong similarity. Thereby,
when somebody sees Movie - 1, then Movie - 3 can be recommended to him. Now,
look at Movie - 4 which has a director that is different from Movie - 1 and Movie
- 3 but its genre is similar to Movie - 1 and Movie - 3. Thereby Movie - 4 is more
similar to Movie - 1 and Movie - 3 as compared to Movie - 2 (because Movie - 2
has a totally different director as well as a different genre), and hence it can be
the second recommendation to Movie - 1 after Movie - 3. This is all what content
recommendation is in simple terms.

Figuring similarity by looking at the preceding diagram is easy for human beings,
but how does a computer figure this out. To figure out similarity between items
using their attributes, simple mathematical technique or formulas are used, such
as cosine similarity, Euclidean distance, Pearson coefficient, and so on. From the
perspective of machine learning models, we need to create a vector of features and
then find the distance between these vectors using these mathematical formulas.

Recommendation Systems

[244]

Let's try to understand the concept of finding similarity using an example. Let's
suppose we have three movies with the following two properties, that is, their
average rating by the viewers and the rating they received on how much action is
there in the movie:

Star Wars Average Rating = 5, Action = 5
Independence Day Average Rating = 4, Action = 4
Love at First Sight Average Rating = 5, Action = 1

Now, our job is to find how similar are these movies to each other. Using the
properties or attributes some mathematical formulas can be applied that could
give us the similarity value. Some of these formulas are as follows:

• Euclidean Distance: This is a very simple concept of plotting the properties
on a chart. In the preceding example, we have two properties only, so we
can plot them on a two-dimensional chart on x/y axis as shown in the
following diagram:

Chapter 9

[245]

As you can see, we have plotted the images on the x and y axis with x being
the average rating and y being the action rating and the x and y coordinates
are also written next to the points. Now, using the naked eye, which points
do you think are closer together? As you can see, point (4,4) or movie
Independence Day is closer to point (5,5) which is Star Wars. This is not a bad
prediction as anybody who has seen these movies will know that both are
action-packed awesome movies.
To calculate this distance between the points, you can use the Euclidean
formula as follows:

Thus, the distance between Star Wars and Independence Day is =

And the distance between Star Wars and Love at First Sight is =

As the distance, between Star Wars and independence day is 1.4,
which is less than the other distance (that is, 4), these movies are
closer or more similar.

Even though we have used only two properties here but
the formula can be used on n number of properties in the
same way. Just keep adding more and more properties
within the square root function.

Recommendation Systems

[246]

• Pearson Correlation: This is one of the most popular methods of finding
similarity between two datapoints and is heavily used in real applications.
This measure tries to find the linear relationship between two datapoints
as such it's not a good measure to check similarity between nonlinear
datapoints. What it tries to do is to figure out the best fit line between
the datapoints. If the line hits all the datapoints that means the entities
represented by these datapoints are very similar, else they are less similar.
It gives better results than the Euclidean method as in the case of Euclidean
method the weight of the user's rating is not taken into account. That is to
say that some users might be rating their movies very highly when they like
them while other users even when they like some movie they might not give
that high a rating. This might lead to movies getting bad scores even when
the viewers liked them. In the case of Euclidean method, this would result in
a bad distance calculations as Euclidean Distance just cares for the value of
distance into account and does not take into account the tendency of scoring
or rating by the users (that is to say, for example, some people might have a
tendency to always give a score above 3, so the worst movie they watched
might have a score of 3). Pearson's Correlation coefficient is not affected by
this issue as it cares about the best fit line and not about the actual distance
between the data points themselves.

Let's try to understand this using the same small dataset that we used in
the Euclidean Distance, that is, for the movies Star Wars, Independence
Day, and Love at First Sight. We will plot the Star Wars on the x axis and
corresponding other movies on the y axis. Next, we will plot the average
rating and action value for each movie, so for Star Wars and Independence
Day the average rating coordinates will be (5,4) and (5,4) on the (x,y)
axis. The charts for Star Wars versus both the movies is shown in the
following diagram:

Chapter 9

[247]

As you can see in the preceding charts for the Independence Day and Star
Wars movies, the best fit line collides with the datapoints and they are very
similar while in the case of Star Wars versus Love at First Sight the best fit
line is far away from the datapoints and hence they are much less similar.
The exact value of similarity can be calculated using the Pearson's correlation
mathematical formula as follows:

Here r is the Pearson Correlation value and x represents a dataset of n values
as (x1, x2, x3…..) and y represents dataset of n values as (y1,y2,y3……). So if
you want to find the Pearson Coefficient between say Star Wars and Love
at First Sight, the values (or vectors) will be (average rating, action) for
each movie, that is,(5,5) and (5,1). You might have observed that this is not
a simple formula, but since this is being very popular, it is part of almost all
the popular statistic libraries and is also available in the Spark RDD statistic
module (in Spark MLlib).

Other than these two, there are more mathematical approaches
for finding similarity such as Cosine Similarity, Jaccard
Coefficient, and so on. We would encourage the users to read
more about them on the Net or in other machine learning books.

Now, we have seen how a content-based recommendation system can be built using
these mathematical formulas, but if you see closely, this approach requires you to
compare each movie against each other and find the distance. For small amount
of data, this is fine, but in the case of big data with millions of data points these
calculation amounts will explode and this would become a very slow approach.
To solve this, we can use collaborative recommendations as we will see in the
next section.

But still under what condition would you use a Content Recommender?

Recommendation Systems

[248]

The Content Recommender solves the cold start problem. A cold start problem is
nothing but when there is not much historical transaction data to look at. As in the
preceding case, we just compared the movies using their properties to each other
but we did not have any transaction data (like the ratings on those movies given by
the site customers). Content Recommender as such is very good for completely new
websites that do not have much web traffic, so they do not have user's transactional
data, yet they want to give recommendations to the users for better user interactions.

So much for the theory, let's dig into an actual code.

Dataset
For this chapter, we are using the very popular movielens dataset, which was
collected by the GroupLens Research Project at the University of Minnesota.
This dataset contains a list of movies that are rated by their customers. It can be
downloaded from the site https://grouplens.org/datasets/movielens.
There are few files in this dataset, they are:

• u.item:This contains the information about the movies in the dataset.
The attributes in this file are:

Movie Id This is the ID of the movie
Movie title This is the title of the movie
Video release date This is the release date of the movie
Genre (isAction, isComedy,
isHorror)

This is the genre of the movie.
This is represented by multiple flats such
as isAction, isComedy, isHorror,
and so on and as such it is just a Boolean
flag with 1 representing users like this
genre and 0 representing user do not like
this genre.

• u.data: This contains the data about the users rating for the movies that
they have watched. As such there are three main attributes in this file
and they are:

Userid This is the ID of the user rating the
movie

Item id This is the ID of the movie
Rating This is the rating given to the movie by

the user

https:/grouplens.org/datasets/movielens

Chapter 9

[249]

• u.user: This contains the demographic information about the users. The
main attributes from this file are:

User id This is the ID of the user rating the movie
Age This is the age of the user
Gender This is the rating given to the movie by the user
ZipCode This is the zip code of the place of the user

As the data is pretty clean and we are only dealing with a few parameters, we are
not doing any extensive data exploration in this chapter for this dataset. However,
we urge the users to try and practice data exploration on this dataset and try creating
bar charts using the ratings given, and find patterns such as top-rated movies or top-
rated action movies, or top comedy movies, and so on.

Content-based recommender on MovieLens
dataset
We will build a simple content-based recommender using Apache Spark SQL and
the MovieLens dataset. For figuring out the similarity between movies, we will
use the Euclidean Distance. This Euclidean Distance would be run using the genre
properties, that is, action, comedy, horror, and so on of the movie items and also run
on the average rating for each movie.

First is the usual boiler plate code to create the SparkSession object. For this we
first build the Spark configuration object and provide the master which in our case
is local since we are running this locally in our computer. Next using this Spark
configuration object we build the SparkSession object and also provide the
name of the application here and that is ContentBasedRecommender.

SparkConf sc = new SparkConf().setMaster("local");
SparkSession spark = SparkSession
 .builder()
 .config(sc)
 .appName("ContentBasedRecommender")
 .getOrCreate();

Recommendation Systems

[250]

Once the SparkSession is created, load the rating data from the u.data file. We are
using the Spark RDD API for this, the user can feel free to change this code and use
the dataset API if they prefer to use that. On this Java RDD of the data, we invoke a
map function and within the map function code we extract the data from the dataset
and populate the data into a Java POJO called RatingVO:

JavaRDD<RatingVO> ratingsRDD =
spark.read().textFile("data/movie/u.data").javaRDD()
 .map(row -> {
 RatingVO rvo = RatingVO.parseRating(row);
 return rvo;
 });

As you can see, the data from each row of the u.data dataset is passed to the
RatingVO.parseRating method in the lambda function. This parseRating
method is declared in the POJO RatingVO. Let's look at the RatingVO POJO first.
For maintaining brevity of the code, we are just showing the first few lines of the
POJO here:

public class RatingVO implements Serializable {
 private int userId;
 private int movieId;
private float rating;
private long timestamp;
 private int like;

As you can see in the preceding code we are storing movieId, rating given by the
user and the userId attribute in this POJO. This class RatingVO contains one useful
method parseRating as shown next. In this method, we parse the actual data row
(that is tab separated) and extract the values of rating, movieId, and so on from it. In
the method, do note the if...else block, it is here that we check whether the rating
given is greater than three. If it is, then we take it as a 1 or like and populate it in the
like attribute of RatingVO, else we mark it as 0 or dislike for the user:

 public static RatingVO parseRating(String str) {
 String[] fields = str.split("\t");
...
 int userId = Integer.parseInt(fields[0]);
 int movieId = Integer.parseInt(fields[1]);
 float rating = Float.parseFloat(fields[2]);
if(rating > 3) return new RatingVO(userId, movieId, rating,
timestamp,1);
 return new RatingVO(userId, movieId, rating, timestamp,0);
}

Chapter 9

[251]

Once we have the RDD object built with the POJO's RatingVO contained per
row, we are now ready to build our beautiful dataset object. We will use the
createDataFrame method on the spark session and provide the RDD containing
data and the corresponding POJO class, that is, RatingVO. We also register this
dataset as a temporary view called ratings so that we can fire SQL queries on it:

Dataset<Row> ratings = spark.createDataFrame(ratingsRDD, RatingVO.
class);
ratings.createOrReplaceTempView("ratings");
 ratings.show();

The show method in the preceding code would print the first few rows of this dataset
as shown next:

Next we will fire a Spark SQL query on this view (ratings) and in this SQL query
we will find the average rating in this dataset for each movie. For this, we will group
by on the movieId in this query and invoke an average function on the rating
column as shown here:

Dataset<Row> moviesLikeCntDS = spark.sql("select movieId,avg(rating)
likesCount from ratings group by movieId");

The moviesLikeCntDS dataset now contains the results of our group by query. Next
we load the data for the movies from the u.item data file. As we did for users, we
store this data for movies in a MovieVO POJO. This MovieVO POJO contains the data
for the movies such as the MovieId, MovieTitle and it also stores the information
about the movie genre such as action, comedy, animation, and so on.

Recommendation Systems

[252]

The genre information is stored as 1 or 0. For maintaining the brevity of the code, we
are not showing the full code of the lambda function here:

JavaRDD<MovieVO> movieRdd = spark.read().textFile("data/movie/u.
item").javaRDD()
 .map(row -> {
 String[] strs = row.split("\\|");
 MovieVO mvo = new MovieVO();
 mvo.setMovieId(strs[0]);
 mvo.
setMovieTitle(strs[1]);
...
 mvo.setAction(strs[6]);
 mvo.setAdventure(strs[7]);
 ...
 return mvo;
});

As you can see in the preceding code we split the data row and from the splitted
result, which is an array of strings, we extract our individual values and store in the
MovieVO object. The results of this operation are stored in the movieRdd object, which
is a Spark RDD.

Next, we convert this RDD into a Spark dataset. To do so, we invoke the Spark
createDataFrame function and provide our movieRddto it and also supply the
MovieVO POJO here. After creating the dataset for the movie RDD, we perform an
important step here of combining our movie dataset with the moviesLikeCntDS
dataset we created earlier (recall that moviesLikeCntDS dataset contains our movie
ID and the average rating for that review in this movie dataset). We also register this
new dataset as a temporary view so that we can fire Spark SQL queries on it:

Dataset<Row> movieDS = spark.createDataFrame(movieRdd.rdd(),
MovieVO.class).join(moviesLikeCntDS, "movieId");
movieDS.createOrReplaceTempView("movies");

Before we move further on this program, we will print the results of this new dataset.
We will invoke the show method on this new dataset:

movieDS.show();

Chapter 9

[253]

This would print the results as (for brevity we are not showing the full columns in
the screenshot):

Now comes the turn for the meat of this content recommender program. Here we
see the power of Spark SQL, we will now do a self join within a Spark SQL query
to the temporary view movie. Here, we will make a combination of every movie to
every other movie in the dataset except to itself. So if you have say three movies in
the set as (movie1, movie2, movie3), this would result in the combinations (movie1,
movie2), (movie1, movie3), (movie2, movie3), (movie2, movie1), (movie3, movie1),
(movie3, movie2). You must have noticed by now that this query would produce
duplicates as (movie1, movie2) is same as (movie2, movie1), so we will have to write
separate code to remove those duplicates. But for now the code for fetching these
combinations is shown as follows, for maintaining brevity we have not shown the
full code:

Dataset<Row> movieDataDS =
spark.sql("select m.movieId movieId1,m.movieTitle movieTitle1,m.action
action1,m.adventure adventure1, ... "
+ "m2.movieId movieId2,m2.movieTitle movieTitle2,m2.action action2,m2.
adventure adventure2, ..."

Recommendation Systems

[254]

If you invoke show on this dataset and print the result, it would print a lot of
columns and their first few values. We will show some of the values next(note that
we show values for movie1 on the left-hand side and the corresponding movie2 on
the right-hand side):

Did you realize by now that on a big data dataset this
operation is massive and requires extensive computing
resources. Thankfully on Spark you can distribute this
operation to run on multiple computer notes. For this, you can
tweak the spark-submit job with the following parameters
so as to extract the last bit of juice from all the clustered nodes:

spark-submit executor-cores <Number of Cores>
--num-executor <Number of Executors>

The next step is the most important one in this content management program. We
will run over the results of the previous query and from each row we will pull out
the data for movie1 and movie2 and cross compare the attributes of both the movies
and find the Euclidean Distance between them. This would show how similar both
the movies are; the greater the distance, the less similar the movies are. As expected,
we convert our dataset to an RDD and invoke a map function and within the lambda
function for that map we go over all the dataset rows and from each row we extract
the data and find the Euclidean Distance. For maintaining conciseness, we depict
only a portion of the following code. Also note that we pull the information for both
movies and store the calculated Euclidean Distance in a EuclidVOJava POJO object:

JavaRDD<EuclidVO> euclidRdd = movieDataDS.javaRDD().map(row -> {
 EuclidVO evo = new EuclidVO();
 evo.setMovieId1(row.getString(0));
 evo.setMovieTitle1(row.getString(1));
 evo.setMovieTitle2(row.getString(22));
 evo.setMovieId2(row.getString(21));

Chapter 9

[255]

 int action = Math.abs(Integer.parseInt(row.getString(2)) –
Integer.parseInt(row.getString(23)));
 ...
double likesCnt = Math.abs(row.getDouble(20) - row.getDouble(41));

 double euclid = Math.sqrt(action * action + ... + likesCnt *
likesCnt);
 evo.setEuclidDist(euclid);
 return evo;
});

As you can see in the bold text in the preceding code, we are calculating the Euclid
Distance and storing it in a variable. Next, we convert our RDD to a dataset object
and again register it in a temporary view movieEuclids and now are ready to fire
queries for our predictions:

Dataset<Row> results = spark.createDataFrame(euclidRdd.rdd(),
EuclidVO.class);
results.createOrReplaceTempView("movieEuclids");

Finally, we are ready to make our predictions using this dataset. Let's see our first
prediction; let's find the top 10 movies that are closer to Toy Story, and this movie
has movieId of 1. We will fire a simple query on the view movieEuclids to find this:

spark.sql("select * from movieEuclids where movieId1 = 1 order by
euclidDist
asc").show(20);

As you can see in the preceding query, we order by Euclidean Distance in ascending
order as lesser distance means more similarity. This would print the first 20 rows of
the result as follows:

Recommendation Systems

[256]

As you can see in the preceding results, they are not bad for content recommender
system with little to no historical data. As you can see the first few movies returned
are also famous animation movies like Toy Story and they are Aladdin, Winnie the
Pooh, Pinocchio, and so on. So our little content management system we saw earlier
is relatively okay. You can do many more things to make it even better by trying out
more properties to compare with and using a different similarity coefficient such as
Pearson Coefficient, Jaccard Distance, and so on.

If you run this program on your computer or laptop from our GitHub
repository, you would realize that it is not a very fast program. This is
because it involves too many comparisons between the datapoints to find
the similarity between them. As such we need a more efficient algorithm
to calculate the recommendations. Next we will see one such algorithm
for making faster recommendations.

Collaborative recommendation systems
As the name suggests, these kinds of recommendation systems are based on
collaborative inputs from different users, their browsing criteria, the ratings they
gave to different products, the products they purchased, and so on. The idea is that
if we have historical data of the users' browsing history, then based on that browsing
history we can figure out patterns that depict the choice or preference of the users
and based on that we can find other people with similar preferences. Now, we can
propose new products to these people (that they have not checked yet) based on the
fact that the users who are similar to them have shown preference for them. Let's try
to understand the concept of collaborative filtering (this is the name of the approach)
using the following diagram:

Chapter 9

[257]

As you can see in the preceding diagram the User-A watched and liked three movies
but User-B which is similar to User-A (as User-B rated the movie Star Wars as highly
as User-A did) has watched only one. So the two movies from User-A that User-B
has not watched can be recommended to User-B. Thus, a collaborative system would
propose User-B to watch Independence Day and RoboCop. This is a very simplistic
depiction of collaborative filtering, but the base idea depicted is correct.

This is all what collaborative filtering is all about. In short, it can be depicted in the
following few steps:

• A user views, browses, rates, or buys on a website. All these transactions of
the user are recorded

• From these transactions, patterns are then extracted to figure out the
preferences of the users

• Next, the users with similar preferences are figured out by cross matching
their preferences to each other and finding the similarity between them
(recall the mathematical formulas for similarity shown in the preceding
content-based systems)

• Similar users thus figured out are now recommended with products that
they have not browsed, or rated yet based on the fact that other similar users
have used these products. Since they are similar to each other, they can be
shown each others' choices (products), which they have not seen yet, as it is
assumed that being of similar taste they might like that too

In the preceding example we covered an example of user-
based collaborative filtering. However, there is another
approach of Item Based Collaborative Filtering. It does
comparison between item to item based on collaborative
data, that is, past transactions data based on the items or
products.

There are some clear advantages and disadvantages of collaborative filtering over
content-based recommenders and they are listed next.

Advantages
• They have clear advantage of showing recommendations to users that might

not be themselves related. For example, if a user likes star wars movie and
also likes playing the video game Halo, the user might be presented with
this recommendation on the e-commerce sites. But the same is not true with
content managed systems, as the two products are not related at all—one is a
movie and the other is a video game.

Recommendation Systems

[258]

• Since they don't require product comparison among each other as they are
based on other users past data (like ratings they gave), they can be made to
be very fast specially on big data when cluster computing frameworks such
as Apache Spark is used.

Disadvantages
• They suffer from the clear disadvantage of cold start problem. Basically, they

require some user data initially to work on as such on totally new websites
with no user history of data, they won't be useful.

• They do not take the actual content of the items into account when making
recommendation and hence are not content aware.

A recommender system directly impacts the business and as such it is used in
almost all big web stores such as Amazon, Netflix, and so on. As such the main use
case or real-world usage of these systems come in places where plenty of data is
involved, in other words big data is involved. We have now seen the basic concept
of collaborative filtering, we will now try to understand how it is used on big data
specially using Apache Spark cluster computing.

Alternating least square – collaborative filtering
Apache Spark provides an inbuilt algorithm for collaborative filtering and it is
based on the approach of alternating least square. Before we look deeply into
this approach, let's look at the basic concept of matrix factorization. This is an old
algebraic approach for breaking or decomposing a big matrix into smaller individual
matrices. These smaller matrices can be multiplied together to produce the bigger
matrix. Let's try to understand this using a simple example shown next.

On the left-hand side, we have a big matrix and on the right-hand side we have
two smaller matrices that when multiplied together produce the bigger matrix. This
is what is matrix factorization. We have split the bigger matrix into two smaller
matrices for easier and better representation:

As it is an inbuilt algorithm in Apache Spark, the code for this is straightforward,
yet it is very good in terms of predictive results and also this algorithm is highly
scalable, so various portions of the algorithm can be parallelly run on multiple nodes.

Chapter 9

[259]

The concept of the algorithm is simple and is shown by the following steps:

1. Get the original matrix of the user and item combinations: Thus, on the
rows you will have users and on the columns you will have the items (for
example, movies). The entry into the row and column of the matrix would
depict the rating or any other entity the user has assigned to the item (or
movie). An example of such a matrix is shown as follows:

As you can see in the preceding matrix, the rows are represented for the
users and the columns are represented for the movies. The entries within
the matrix are the values of rating given to the movies by the users. The ?
sign depicts missing entries where the user has not rated the movies. So for
predictive analytics algorithm, the job is to predict the rating of movies for
these missing entries and the highest rated movies for the prediction will
become the recommendation for the users.

From the perspective of collaborative filtering, let's understand the
preceding matrix. Let's look at the two users User-1 and User-4. Both
these users have rated the movie Movie-5 with rating 3 and Movie-2
with a high rating of 5 and 4 respectively. Thus it does look like both
these users have a similar taste, as they have near similar ratings for
movies they watched. Now User-4 has watched two extra movies that is,
Movie-3 and Movie-4 which User-1 has not watched, so these movies can
be recommended to User-1. Also to find the similarity between User-1
and User-4 and also between other users, Pearson Coefficient, Euclidean
Distance, and so on can be used.

Recommendation Systems

[260]

2. Do matrix factorization on this sparse matrix and break it into two smaller
matrixes: This matrix is sparse and huge and on a massive big data dataset
level it will have many missing entries. It's a good idea to use matrix
factorization and convert it into dense smaller matrixes. The matrix can be
broken into smaller matrixes as shown next:

As you can see in the preceding diagram, a large matrix is broken (factorized)
into smaller matrixes. The first n X k matrix is for the users and the next m X
k matrix is for the movies. These matrixes are filled with the numbers that we
figured out and the multiplication of these matrixes would give the matrix on
the left-hand side.

3. To figure out the rating for a user at index u of the matrix and for a movie
at index i: This is easy, just grab the value at the u location from the (n,k)
matrix and value at the i location from the (m,k) matrix and multiple them
together. This would give us the predicted rating. This way we can figure
out the predicted rating for all the missing entries.

We saw how this approach can be used to figure out the predictive results.
One important piece we have not covered yet is, "How do we figure out the
factorized matrixes?"

We would try to explain the concept of factorization in simple words. As you recall
that we initially broke our large user/movies matrix into two smaller manageable
user factors (we call it user factors) matrix and movie factors matrix. Next we need to
figure out the values in these user factors and movie factors matrix.

Chapter 9

[261]

An approach for this is to assign a high value; (since our max rating is 5) we can
assign and initialize the user factor matrix with these values and as for k, we can
randomly choose some value for k say 10. Next, we keep this x factors matrix as
constant and we now figure out the values in the movie factors matrix. Next, we
multiply these matrixes and figure out the mean squared error. Now, our task is
to figure out the best fit values in the user factor matrix and movie factors matrix
so that the mean squared error is minimized. To avoid overfitting, the concept of
regularization is also introduced in the formula (so a certain level of bias is added
so as to avoid overfitting, just consider this as an optimization technique so that
our model does not get overfitted). Now this was the first step, next what we do
is we keep the calculated movie factors matrix as a constant and calculate the user
factors matrix again using the minimizing function of mean squared error and
regularization combination. We alternate (hence the name alternating) between the
matrixes by keeping one constant and figuring out the values of the other one at a
time while constantly minimizing the error value. Finally, we will come at the values
of user factors and movie factors beyond which the error difference (mean squared
error) won't change much and hence these will be the best figured out user factors
and movie factors matrixes.

From the perspective of Spark, you might have figured out that these alternate
matrix computations can be done parallelly on multiple nodes and hence it is chosen
as part of the default algorithm in Spark for recommendations. Also, this algorithm
gives very good results even in case of very sparse user/movie matrixes.

We have omitted the math involved in the calculation of this ALS
algorithm simply to keep the complexity low in the preceding text as we
believe this to bean introductory book for Java developers in analytics.
For more details on this topic, we would urge the users to check out the
research papers on the ALS algorithm in sites such as Google scholar or
arvix.org.

Here comes the main piece of this algorithm.

Let's start going over the code of the algorithm now.

First is the usual boiler plate code to create the SparkSession object. For this we
first build the spark configuration object and provide the master which in our case
is 'local' since we are running this locally in our computer. Next using this spark
configuration object we build the SparkSession object and also provide the name
of the application here and that is ContentBasedRecommender.

SparkConf sc = new SparkConf().setMaster("local");
SparkSession spark = SparkSession
 .builder()

arvix.org

Recommendation Systems

[262]

 .config(sconf)
 .appName("CollaborativeRecommendMovies")
 .getOrCreate();

Using this SparkSession object, now fetch the data from the file containing the
movies data (their ID and their respective titles). We will pull this data in a Java RDD
object and fire a map function on that RDD and pull the data into a Java value object
called MovieVO:

JavaRDD<MovieVO> movieRdd = spark
 .read().textFile("data/movie/u.item").
javaRDD()
 .map(row -> {
 String[] strs = row.split("\\|");
 MovieVO mvo = new MovieVO();
 mvo.setMovieId(strs[0]);
 mvo.setMovieTitle(strs[1]);
 return mvo;
 });

We will convert this RDD into a dataset and also register it as a temporary view as
we will be later needing it while firing predictive queries:

Dataset<Row> movieDS = spark.createDataFrame(movieRdd.rdd(), MovieVO.
class);
 movieDS.createOrReplaceTempView("movies");

We will now fetch the data from the file containing the user movie ratings values
(u.data file in dataset). After the file is loaded into the RDD, run a map function on
the RDD and using this function from each row extract the data for the user ratings
and store in a RatingVO Java value object:

JavaRDD<RatingVO> ratingsRDD = spark
 .read().textFile("data/movie/u.data").javaRDD()
 .map(row -> {
 String[] fields = row.split("\t");
 if (fields.length != 4) {
 return null;
 }
 int userId = Integer.parseInt(fields[0]);
 int movieId = Integer.parseInt(fields[1]);
 float rating = Float.parseFloat(fields[2]);
 long timestamp = Long.parseLong(fields[3]);
 return new RatingVO(userId, movieId, rating, timestamp);
}).filter(f -> f != null);

Chapter 9

[263]

As you can see, whenever a missing data field is obtained (in the lambda function
where we check for lesser parameters), we return a null value and we filter out this
row. Thus, for this use case, we are filtering and removing missing data.

Next, convert this Spark RDD containing the Java rating POJO objects into a dataset
using the createDataFrame method and using the randomsplit method, split this
dataset into training dataset and test datasets separately:

Dataset<Row> ratings = spark.createDataFrame(ratingsRDD, RatingVO.
class);
Dataset<Row>[] splits = ratings.randomSplit(new double[]{0.8, 0.2});
Dataset<Row> training = splits[0];
Dataset<Row> test = splits[1];

Now it's time to build the recommendation model. We will use the Apache Spark
that provides Alternating Least Square (ALS) algorithm from the Spark ML library.
This algorithm, as we discussed in a previous section, is an example of collaborative
filtering. After the instance of the algorithm ALS is created, we supply the necessary
parameters to it:

ALS als = new ALS()
 .setMaxIter(10)
 .setRegParam(0.01)
 .setUserCol("userId")
 .setItemCol("movieId")
 .setRatingCol("rating");

The specific parameters are explained in the following table:

Maximum Iterations This is the maximum number of iterations to run; the
default value is 10

Reg Param This specifies the regularization parameter; the default
value is 1.0

User Column This is the column to read the user ID from
Item Column This is the column to read the item ID or movie ID from
Rating Column This is the column to read the explicit rating from, given

by the user

Once our model instance is built and configured, next is the time to fit the model
on the training data. This would help the model internally and build its knowledge
base, based on which it can later make predictions:

ALSModel model = als.fit(training);

Recommendation Systems

[264]

Now it's time to run the model on test data, using the transform function on
the model. We will also run the show method to print the first few lines of the
predicted results:

Dataset<Row> predictions = model.transform(test);
predictions.show();

After running the show method, the results would be printed as follows:

As you can see in the preceding algorithm, it is making predictions about what
would the user rate the movies as. It's easy to figure out that whatever predicted
ratings are high in value, the user might like these movies. Let's now find out one
random user, say userId equal to 633 and for this user let's find the movies for
which predicted ratings are greater than 3, and we would assume that the user
would like these movies.

For this, we would register the preceding predictions dataset as a temporary view
called predictions and fire a simple Spark SQL select query on it as shown next. In
the query, we would sort the results by showing the highest rated predictions first:

predictions.createOrReplaceTempView("predictions");
spark.sql("select m.movieTitle,p.* from predictions p,movies m where
p.userId =
633 and p.movieId = m.movieId order by p.prediction desc").show();

As you can see in the preceding query, we also needed a join with the movie table so
that we could extract the actual movie name from it.

Chapter 9

[265]

This would print the predicted results for the user as follows:

We have seen the predicted results, let's now see how good our predictions are.
For this, we will use the RegressionEvaluator class provided by Apache Spark.
We will be concentrating on the parameter rmse or root mean squared error (which
is nothing but mainly the difference between the predicted and actual value). We
will provide this metric to the regression evaluator, that is, rmse and the actual and
predicted columns. We would next run the evaluations on the predicted or test
dataset and print the value of error to console:

RegressionEvaluator evaluator = new RegressionEvaluator()
 .setMetricName("rmse")
 .setLabelCol("rating")
 .setPredictionCol("prediction");
Double rmse = evaluator.evaluate(predictions);
 System.out.println("Root-mean-square error = " + rmse);

Try to tweak the preceding parameters to get better results in terms of
accuracy from the recommendation model.

Recommendation Systems

[266]

The example we just depicted for the recommendations on top of the MovieLens
dataset is an example of explicit dataset. In this dataset, we had explicit entries of
ratings by the users and using that we were easily able to gauge at the predictions.
However, if you check in real life how many times did you rate a YouTube video
after watching it. It's a very rare thing to do and many users don't rate the videos
after watching it. Hence, we need more and different parameters for making
predictions. These parameters can be something like the number of times the movie
is watched, the number of people who add it to their wish list, the number of people
who ordered the DVD, and so on. The model from the Spark ALS model supports
the notion of implicit dataset and we can specify that as a parameter and use the ALS
model from Spark for implicit datasets too.

With this, we come to an end to our chapter on recommendation engines. We urge
the users to read more documentation on this on the web or on research papers such
as arvix.org—this is a very upcoming and growing area of work.

Summary
In this chapter, we learned about recommendation engines. We saw the two types of
recommendation engines, that is, content recommenders and collaborative filtering
recommenders. We learned how content recommenders can be built on zero to
no historical data and are based on the attributes present on the item itself, using
which, we figure out the similarity with other items and recommend them. Later,
we worked on a collaborative filtering example using the same MovieLens dataset
and the Apache Spark alternating least square recommender. We learned that
collaborative filtering is based on historical data of users' activity, based on which
other similar users are figured out and the products they liked are recommended to
the other users.

In the next chapter, we will learn two important algorithms that are part of the
unsupervised learning world and they will help us form clusters or groups in
unlabeled data. We will also see how these algorithms help us segment the
important customers in an e-commerce store.

arvix.org

[267]

Clustering and Customer
Segmentation on Big Data

Up until now we have only used and worked on data that was prelabeled that
is, supervised. Based on that prelabeled data, we trained our machine learning
models and predicted our results. But what if the data is not labeled at all and we
just get plain data? In that case, can we carry out any useful analysis of the data at
all? Figuring out details from an unlabeled dataset is an example of unsupervised
learning, where the machine learning algorithm makes deductions or predictions
from raw unlabeled data. One of the most popular approaches to analyzing this
unlabeled data is to find groups of similar items within a dataset. This grouping of
data has several advantages and use cases, as we will see in this chapter.

In this chapter, we will cover the following topics:

• The concepts of clustering and types of clustering, including k-means and
bisecting k-means clustering

• Advantages and use cases of clustering
• Customer segmentation and the use of clustering in customer segmentation
• Exploring the UCI retail dataset
• Sample case study of clustering for customer segmentation on the

UCI retail dataset

Clustering and Customer Segmentation on Big Data

[268]

Clustering
A customer using an online e-commerce store to buy a phone would generally type
those words in the search box at the top of the site. As soon as you type your search
query, the search results are displayed at the bottom, and on the left-hand side of
the page you get a list of categories that you might be interested in based on the
search text you just entered. The sub-search categories are shown in the following
screenshot. How did the search engine figure out these sub-search categories just
based on the searched text? Well, this is what clustering is used for. It's a no-brainer
that the site's search engine is advanced and must be using some form of clustering
technique to group the search results so as to form useful sub-search categories:

As seen in the preceding screenshot, the left-hand side shows the categories (groups)
that are generated once the user searches for a term such as car. The left-hand side
looks quite relevant as we are seeing sub-categories for car accessories, Toys &
Games, Electronics, and so on.

Let's try to define clustering in formal terms. Clustering is a popular form of an
unsupervised learning algorithm and is used to discover and club similar entities
(like movies, customers, products, likes, and so on) into groups or clusters. Within a
group, the items are similar to each other based on certain attributes they possess. To
depict clustering visually, let's look at the scatter plot shown as follows. This scatter
plot shows the prices of houses versus their living area:

Chapter 10

[269]

As you can see in the preceding graph, there are three ellipsoids. These ellipsoids
depict clustered groups within these datasets. Within these clusters, the data points
selected will be similar. The similarity of the datasets is calculated based on the
similarity finding mathematical formulas and approaches that we discussed earlier,
like Euclidean distance, Pearson coefficient, Jaccard distance, cosine similarity, and
so on.

Though we have shown just one example previously, clustering in general has many
practical uses and is used in many real-world use cases, as follows:

• Customer segmentation: Clustering can be used to segment customers, for
example, of online e-commerce stores.

• Search engines: Clustering is used to form smaller groups of sub-search
categories that can help users looking for specific items via a search engine.
We covered these use cases in the introduction of clustering.

• Data exploration: In the data exploration phase, clustering can be used.
• Finding epidemic breakout zones: There are studies where clustering has

been applied to find zones of disease breakout areas based on the availability
of statistical data.

• Biology: To find groups of genes that show similar behavior.
• News categorization: Google News does this to categorize news

automatically into groups such as sports news, technology related news,
and so on.

Clustering and Customer Segmentation on Big Data

[270]

• Summarization of news: First, we can find custom groups in the news and
then find the centroid and use it to summarize the news.

Even though we have listed a few sample use cases of clustering, we have just
scratched the surface of clustering. There are plenty of other uses of clustering
in real life.

Now that we know what clustering is, let's see the type of clustering we can perform
on big data.

Types of clustering
There are many types of clustering algorithms, but for the purpose of this chapter we
will only be dealing with the three main types of clustering, and they are as follows:

• Hierarchical clustering
• k-means clustering
• Bisecting k-means clustering

Next, we will cover each one of these in their own sub-section.

Hierarchical clustering
This is the simplest form of clustering and can be explained using the
following steps:

1. The concept of hierarchical clustering is very simple; first, we find the
distance between all the data points based on their attributes. To find the
distance we can use any algorithm like the Euclidean distance.

2. Next, we find the two most similar points based on this distance and
combine them in a group.

3. Next, we find the average or centroid of this group and, using this centroid
we again find the distance of this point with respect to other points in the
dataset. The closest point is again found and the previous cluster is now
combined with the new data point to form a new cluster.

4. This process keeps on repeating until we find the required number of clusters
we are looking for.

Chapter 10

[271]

Hierarchical clustering is explained using the following diagram:

As can be seen in the preceding diagram, in the first image we just have a few data
points, then, as mentioned in the hierarchical clustering steps previously, we figure
out the distance between all the points. Between the shortest distance between two
points we build our first cluster, and this is shown within the smallest ellipsoid in
the second image (that is, cluster C-1). Next, we find the centroid of this cluster, and
using that centroid, we again find the distance with respect to all the other points
find the shortest distance from this centroid and draw a circle or mark the cluster.
This time we build the cluster C-2, as shown in the third image from the left above.
This process continues until we figure out the other clusters C-3 and C-4.

Hierarchical clustering gives very good results in terms of cluster accuracy (that
is, clubbing similar items within a cluster), however as you may have guessed,
hierarchical clustering is a highly computationally intensive approach, as you have
to perform a lot of calculations to figure out the similarity between the data points.
On a big data dataset, this is quite infeasible as too many computations would
slow down this approach tremendously. On a small dataset, this approach can be
used with good results. As this approach doesn't make much sense with a big data
dataset, we won't be covering this approach further. Next, we will look into one of
the most popular clustering forms known as k-means clustering.

Clustering and Customer Segmentation on Big Data

[272]

K-means clustering
As we saw in the previous diagrams, on a scatter plot, the data points that were
similar in nature were usually placed close to each other on that chart. This is the
main idea behind k-means clustering, where k random centroids of clusters are
picked, and based on those centroids their nearest data points are figured out
and put in a group or cluster. Thus, the name k-means clustering. To optimize
this clustering process further, centroids of clusters that have been discovered are
calculated by taking the average of all the other data point attributes. These k-means
clustering average points or new centroids are then used as the new k points, and the
nearest points are figured out to form new k clusters. This process is repeated until
you cannot change the value of these centroids (the average values) further.

The whole concept of k-means clustering is depicted in the following diagram:

As we saw in the previous diagram, our task here is to find just 2 clusters (so k = 2) in
these data points. The forming of clusters in the previous diagram is done with the
following steps:

1. First, the data points of the dataset are plotted on a scatter plot (this is
covered by the leftmost image with the dots depicting the data points).

2. Next, the two (that is, k) cluster centroids are chosen randomly. These are
shown by the triangles.

Chapter 10

[273]

3. After choosing the cluster centroids randomly, the nearest datapoints are
figured out and put into two cluster groups. These clusters are named C-1
and C-2 in the previous diagram and are also shown using ellipsoids. The
ellipsoids cover the datapoints within them.

4. To optimize the clusters further, in the last diagram on the bottom right-hand
side, the triangles are put on the average points of the previous clusters, the
distances are now figured out from these points to the other points, and the
clusters are redrawn. You should now be able to see that the C-1 cluster had
just two data points, but now has three.

To calculate the distance between the data points, any
mathematical approach like Pearson coefficient, Euclidean
distance, and so on, can be used.

K-means clustering is a much faster approach than hierarchical clustering as it does
not require the program to calculate the similarity coefficients between data points
again and again. Due to this, it can be used to run on very large datasets. This is the
main reason k-means clustering is built into the machine learning library of Spark
and is a standard algorithm that ships with it.

There is one drawback of k-means clustering and that is the randomness of choosing
the k clusters. So, if next time you randomly choose some other k points, you would
get a different set of clusters.

In the next section, we will see another form of clustering that can give better
performance than k-means clustering.

Bisecting k-means clustering
This clustering technique is a combination of hierarchical clustering and k-means
clustering. The main purpose of this clustering approach is to enhance the accuracy
bottleneck of the k-means clustering. This algorithm is more accurate than the
normal k-means clustering algorithm and is faster than the hierarchical clustering
algorithm as it requires fewer iterations.

The concept of this technique is simple: it first starts by putting all the datapoints
into a single cluster. Next, within that cluster, it further bifurcates the data into
two smaller clusters using k-means clustering, that is, by taking k = 2. From these
two clusters, it figures out the sum of mean squared errors (SMEs). It picks the
cluster with the lowest mean squared errors, that is, it picks the cluster that has the
maximum similarity between the items. The algorithm is made to run for a fixed
number of times until the required numbers of clusters is reached.

Clustering and Customer Segmentation on Big Data

[274]

The technique is depicted in the following diagram:

As seen in the previous diagram, the bisecting k-means happened on the sample
dataset (shown in the scatter plot with data points on the left-hand side on top).
The bisecting k-means steps that occurred in the previous diagram can be
explained as follows:

1. First, all the data points were put in a single cluster called C-1.
2. Next, the mean squared error (MSE) of all the datapoints within this cluster

were calculated.
3. After this, C-1 was bifurcated into two clusters, C-2 and C-3 (as shown in

the second diagram on the right-hand side). K-means clustering was used to
bifurcate C-1 into two sub-clusters, C-2 and C-3.

To choose the sub-clusters C-2 and C-3, we calculate the
total MSE of the two sub-clusters formed. The clusters with
the lowest mean squared error are the most similar and,
therefore, are selected.

4. We repeat the step of bifurcation on the sub-clusters until the total number of
expected clusters is reached.

Chapter 10

[275]

As you saw previously, this approach is a combination of hierarchical and k-means.
It gives comparable results to hierarchical clustering and is much better than the
pure randomness involved in k-means clustering.

We have now seen some of the most common clustering techniques, so let's now
utilize them on a case study for customer segmentation.

Customer segmentation
Customers for any store either offline or online (that is, e-commerce) all exhibit
different behaviors in terms of buying patterns. Some might buy in bulk, while
others might buy lesser quantities of stuff but the transactions might be spread out
throughout the year. Some might buy big items during festival times like Christmas
and so on. Figuring out the buying patterns of the customers and grouping or
segmenting the customers based on their buying patterns is of the utmost importance
for the business owners, simply because it lays out the customers' needs in front of
them and their importance. They could selectively market to the more important
customers, thereby giving prime care and importance to the customers that generate
maximum revenue for the stores.

Figuring out the buying patterns of the customers from historical data (of their
purchase transactions) is easy for an online store as all the transaction data is
readily available. Some approaches that people use for this are easy like firing some
simple queries on their databases to generate reports, but in this chapter, we will
be discussing an advanced approach to customer segmentation that has become
popular in the recent years. Recency, Frequency, and Monetary (RFM) analysis
is an approach we are going to use to figure out our important customers and
their buying patterns, and later we will use this to segment or group them using
clustering algorithms.

RFM and the terms are explained in the following table:

Recency This value depicts how recently the customer has purchased. We will
be using this as the most recent purchase date and calculating the
difference between the current date and this date, so the net value
for this will be an integer representing the number of days since last
purchase.

Frequency This value depicts how many times the customer has purchased. We
will be using it as the count of the number of times the customer has
purchased within a year.

Monetary This value depicts the amount the customer has spent overall in the
store. We will store this as the amount depicted by multiplying the
cost of items and the quantity sold to the customer.

Clustering and Customer Segmentation on Big Data

[276]

Dataset
For our case study on customer segmentation using clustering, we will be using a
dataset from UCI repository of datasets for a UK online retail store. This retail store
has shared its data with UCI and the dataset is freely available on their website. This
data is essentially the transactions of different customers made on the online retail
store. The transactions were made from different countries and the dataset size is
good (thousands of rows). Let's go through the attributes of the dataset:

Attribute name Description
Invoice number Invoice number; a number uniquely assigned to each

transaction
Stock code Product (item) code; a 5-digit integral number uniquely

assigned to each distinct product
Description Product item name
Quantity Quantity of items purchased in a single transaction
Invoice date Date of the transaction
Unit price Price of the item (in pounds)
Customer ID Unique ID of the person making the transaction
Country Country from where the transaction was made, such as

United Kingdom or France

Before we dive into customer segmentation for this dataset, let's explore this data
first and learn about it.

Data exploration
In this section, we will explore this dataset and try to perform some simple and
useful analytics on top of this dataset.

First, we will create the boilerplate code for Spark configuration and the
Spark session:

SparkConf conf = ...
SparkSession session = ...

Next, we will load the dataset and find the number of rows in it:

Dataset<Row> rawData = session.read().csv("data/retail/Online_Retail.
csv");

Chapter 10

[277]

This will print the number of rows in the dataset as:

Number of rows --> 541909

As you can see, this is not a very small dataset but it is not big data either. Big data
can run into terabytes. We have seen the number of rows, so let's look at the first few
rows now.

rawData.show();

This will print the result as:

As you can see, this dataset is a list of transactions including the country name from
where the transaction was made. But if you look at the columns of the tables, Spark
has given a default name to the dataset columns. In order to provide a schema and
better structure to the data, we will convert and store the data per row into a Java
object (JavaBean). We will cover this code in detail in the next section for actual
clustering. But for now, we will just show you that we have converted and stored
the data into a Java RDD of Plain Old Java Object (POJO) and converted it into a
dataset object:

JavaRDD<RetailVO> retailData = …
Dataset<Row> retailDS = session.createDataFrame(retailData.
rdd(),RetailVO.class);

We will register this dataset as a temporary view so that we can fire data exploration
queries on it:

retailDS.createOrReplaceTempView("retail");

Clustering and Customer Segmentation on Big Data

[278]

Next, we fire our first query to group the number of data rows by country in this
dataset. We are not interested in data rows where the count is less than one thousand
(as this dataset is large, this is a good case):

Dataset<Row> dataByCtryCnt = session.sql("select country,count(*) cnt
from retail group by country having cnt > 1000");
 dataByCtryCnt.show()

By invoking a show method on this dataset, as shown previously, the following
results will be printed:

The data we got in the previous output is best explained through a bar chart. We will
show the chart as follows. We will not show you the code for the chart, to maintain
brevity, but it is part of our GitHub repository:

Chapter 10

[279]

As you can see, the previous transaction data in this dataset contains the maximum
number of data items from the United Kingdom. Thus, it makes sense to concentrate
and perform clustering only on this data for our simple case study. We will filter the
country to the United Kingdom, so let's now discover the basic stats about the sold
items, for example, the average price or maximum price of items sold, as well as the
average or maximum quantity sold.

To do this, we will fire a simple select query on all the columns, filter on United
Kingdom, and finally run a describe and show on the dataset obtained, as follows:

Dataset<Row> ukTransactions = session.sql("select * from retail where
country = 'UK'");
ukTransactions.describe("unitPrice","quantity").show();

This will print the general stats such as count, mean, minimum, and maximum
values on the columns unit price and quantity:

As you can see, the quantity values do not make much sense; this is probably due
to bad data. The standard deviation in the quantity also shows that there are lots of
bulk orders, which might lead us to the conclusion that most of the customers on
these websites are corporate customers and not individuals.

Finally, there is one more important piece of information that we must check from
data exploration for clustering, and that is checking if outliers are present in the data.
Clustering, as such, is sensitive to the presence of outliers and in a big dataset like
this we should discard any outliers or they might get clustered in a group of their
own resulting in bad clustering. To figure out outliers, you can use different types of
charts like box charts or histograms on the data. From the Spark side, you can use the
filter function to filter out the outliers based on items like quantity, price, and so
on. Clustering results will improve once the outliers are removed.

Let's now finally perform the clustering on this dataset and segment the customers
into five different groups.

Clustering and Customer Segmentation on Big Data

[280]

Clustering for customer segmentation
Here, we will now build a program that will use the k-means clustering algorithm
and will make five clusters from our transactional dataset.

Before we crunch the data to figure out the clusters, we have made a few important
assumptions and deductions regarding the data to preprocess it:

• We are only going to do clustering for the data belonging to the United
Kingdom. The reason being, most of the data belongs to the United Kingdom
in this dataset.

• For any missing or null values, we will simply discard that row of data. This
is to keep things simple, and also because we have a good amount of data
available for analysis. Leaving a few rows should not have much impact.

Let's now start our program. We will first build our boilerplate code to build the
SparkSession and Spark configuration:

SparkConf conf = ...
SparkSession session = ...

Next, let's load the data from the file into a dataset:

Dataset<Row> rawData = session.read().csv("data/retail/Online_Retail.
csv");

We have used the csv method to read the data. This helps us read the
csv data nicely, especially when the data has quotes in it. The csv reader
package within Spark takes care of the double quotes, quotes, and so on,
by default. We won't have to write any extract code for that.

As we mentioned in the data exploration phase, we are only going to run clustering
on the data for the United Kingdom, so we will filter out the rows for United
Kingdom as follows:

Dataset<Row> rawDataUK = rawData.filter("_c7 = 'United Kingdom'");

Next, we will convert this dataset into a Java RDD and fill it with a RetailVO POJO
Java object. This POJO contains the following entries (to maintain brevity, we will
show only the first few lines of code here):

public class RetailVO {
 private Integer quantity;
 private String invoiceDate;
 private Double unitPrice;

Chapter 10

[281]

 ...
 private long amountSpent;
 private long recency;

As you can see, apart from the regular columns of the dataset that are mapped to
this POJO (RetailVO), we have additional entries for the total amount spent by the
customer, as well as the number of days that have passed since the customer made
their last purchase.

We will invoke the mapper on the Java RDD and will tie a Java lambda function
within it. We will read and extract the data from each row of the dataset and we will
fill the data into an instance of a Java POJO called RetailVO (the code is the same as
we showed previously):

JavaRDD<RetailVO> retailData = rawDataUK.javaRDD().map(row -> {
RetailVO retailVO = new RetailVO();
 String invoiceNo = row.getString(0);
 String stockCode = row.getString(1);
 String description = row.getString(2);
 ...

As you can see, we are pulling the value from the row object and storing it in the
JavaBean. Next, we check if any value is null or missing; if it is, then we simply
return null from this lambda function:

if(null == invoiceNo || "".equals(invoiceNo.trim()) ||
 null == stockCode || "".equals(stockCode.trim()) || ...) {
 return null;
}

We also convert the unit price to double and calculate the total amount spent (by
multiplying the quantity purchased with the unit price of the item) and set it in the
Java object:

Double unitPriceDbl = Double.parseDouble(unitPrice);
 retailVO.setUnitPrice(unitPriceDbl);
 Integer quantityInt = Integer.parseInt(quantity);
 retailVO.setQuantity(quantityInt);
 long amountSpent = Math.round(unitPriceDbl * quantityInt);
 retailVO.setAmountSpent(amountSpent);

Clustering and Customer Segmentation on Big Data

[282]

We also calculate the recency value here, that is, the days passed since the last
purchase. Since this dataset is quite old, we are using 2012 as the year to keep
the days count value reduced:

SimpleDateFormat myFormat = new SimpleDateFormat("MM/dd/yyyy");
Date date1 = myFormat.parse(invoiceDate);
Date date2 = myFormat.parse("12/31/2012");
long diff = date2.getTime() - date1.getTime();
long days = TimeUnit.DAYS.convert(diff, TimeUnit.MILLISECONDS);
 retailVO.setRecency(days);
 return retailVO;
}).filter(rowObj -> null != rowObj);

As you can see, we used the SimpleDateFormat class to figure out the recency value
in days. In addition, from the RDD, we are filtering out all the null values, thus
missing values in the dataset are simply discarded and not used in clustering.

Next, we will create a dataset out of this:

Dataset<Row> retailDS = session.createDataFrame(retailData.rdd(),
RetailVO.class);

We will also register this dataset as a temporary view to fire queries on this:

retailDS.createOrReplaceTempView("transactions");

We will fire the query to figure out the minimum value of the recency time per
customer. We are only interested in the most recent purchase as per the RFM values
we discussed earlier. We use the min function on the transactions view we created
earlier and group the transactions by customer ID. We also register the resulting
dataset as a temporary view called recencyData:

Dataset<Row> recencyDS = session.sql("select customerID,min(recency)
recency from
transactions group by customerID");
recencyDS.createOrReplaceTempView("recencyData");

Next, we find the frequency, which is the total count of transactions per customer.
Again, we will run a group by query with a count on it. We will also register it as a
temporary view called freqData:

Dataset<Row> freqDS = session.sql("select customerID,count(*)
frequency from transactions group by customerID");
freqDS.createOrReplaceTempView("freqData");

Chapter 10

[283]

After finding the frequency, we find the monetary or the total amount spent by the
customer on all their transactions. We will again run a group by query and sum up
all the amounts spent by customers:

Dataset<Row> monetoryDS = session.sql("select
customerID,sum(amountSpent)
 spending from transactions group by customerID");
monetoryDS.createOrReplaceTempView("spendingData");

Now let's pull and combine all this data for recency, frequency, and monetary
amount per customer into a single dataset. For this, we will fire a query on the views
we created earlier and join them using the customerID field:

Dataset<Row> resultDS = session.sql("select r.customerID, r.recency,
f.frequency,
s.spending from recencyData r, freqData f, spendingData s where
r.customerID = f.customerID and f.customerID = s.customerID");

We can run a show method on this dataset, as follows:

resultDS.show();

This will print the following values:

As you can see the values differ a lot in terms of number. As by default clustering
internally mostly uses the Euclidean distances the calculated similarity result might
be impacted on as higher number values will get more weightage than others. So, to
fix this issue we need to normalize these values.

Clustering and Customer Segmentation on Big Data

[284]

Before we normalize the values let's first extract these features and put them into a
vector form and later we can normalize the values in this vector. To create a vector
representation of these features we invoke the VectorAssember class from the Spark
ml package and provide the three columns from the previous dataset that have to be
part of the vector. We also provide the resulting output column name and name it
as features:

VectorAssembler assembler = new VectorAssembler().setInputCols(new
String[]
{"recency","frequency","spending"}).setOutputCol("features");

We will run transform on the entire dataset and this will transform the three values
(recency, frequency, and monetory) in vector format:

Dataset<Row> datasetWithFeatures = assembler.transform(resultDS);

Now, on these vectorized features we run our normalizer. There is a very nice
normalizer bundled in Spark ML library. This normalizer would convert the output
of the vector features into an output belonging to a similar scale. To this normalizer
we supply the input data from the features column and it will print the normalized
values in an output column:

Normalizer normalizer = new Normalizer().setInputCol("features").
setOutputCol("normFeatures");

After forming the normalizer lets run it on the dataset that contains the features in
vector form. The output of this transformation is also stored in a dataset. We will run
a show method on this dataset to see the normalized values:

Dataset<Row> normDataset = normalizer.transform(datasetWithFeatures);
normDataset.show(10);

This will print the first ten normalized values as follows:

As you can see the features are normalized and stored in a new vector under the
column normFeatures.

Chapter 10

[285]

We will also register this dataset as a temporary view and we will later use it in our
analytics queries on the predicted clusters:

normDataset.createOrReplaceTempView("norm_data");

Now its time to build the actual clustering algorithm and we are using k-means
algorithm. Create an instance of k-means which is available in the Spark ML package
and supply the necessary parameters like the value of k (number of clusters) and the
column where the features can be read, that is, normFeatures in our case:

KMeans km = new KMeans().setK(5).setSeed(1L).
setFeaturesCol("normFeatures");

Now fit the model on our dataset and this will generate a KmeansModel instance:

KMeansModel kmodel = km.fit(normDataset);

Finally run the transformation to collect the predicted clusters:

Dataset<Row> clusters = kmodel.transform(normDataset);

Let's see the first few rows of this predicted clusters dataset. We will invoke the show
function on this dataset:

clusters.show()

This will print the first few rows as follows:

As you can see the predicted clusters are named from zero to four (hence five
clusters). The predicted cluster number is stored in the prediction column.

We will register the predicted dataset as a temporary view called cluster to further
analyze the clustered results:

clusters.createOrReplaceTempView("clusters");

Clustering and Customer Segmentation on Big Data

[286]

Let's now find how many items are assigned per cluster in our dataset. To do this,
we will run a group by query on our view for clusters and do a count of items
per cluster:

session.sql("select prediction,count(*) from clusters group by
prediction").show();

This will print the result as follows:

As you can see our groups are nicely distributed.

As you can see the number of total customers in the groups
is very low. This again gives the conclusion that most
of these are corporate customers who are making large
transactions on the website.

Now let's try to find who the valuable customers, are for the online store and let's
check the group they fall into. To do this we will fire a query and search on group 2.
We would suggest that the reader does simple analytics on other groups as well:

session.sql("select * from norm_data where customerID in (select
customerID from
clusters where prediction = 2)").show();

Chapter 10

[287]

As you can see this group contains the customers who have spent the highest
amounts. These customers are valuable as they spend a lot as compared to other
customers (you can check this by analyzing the other groups similarly).

With this we have built a customer segmentation solution for our retail dataset using
k-means clustering. But what if we want to change the algorithm and use bisecting
k-means clustering.

Changing the clustering algorithm
We mentioned the bisecting k-means algorithm. This algorithm is bundled in the
Spark ML library. To change our regular k-means algorithm to this algorithm and
run the customer segmentation code with it, we just need to change the portion of
the code where we create the instance of the k-means algorithm and apply it on the
dataset to make the cluster predictions. All remaining code remains the same. So the
changed code for the algorithm will have the usual instance creation of the algorithm
followed by setting the parameters like the number of clusters that we are looking for
and the column from where the algorithm can read the input features. Later we will
again fit and transform the model on the dataset:

BisectingKMeans bkm = new
BisectingKMeans().setK(5).setSeed(1L).setFeaturesCol("normFeatures");
BisectingKMeansModel bkmodel = bkm.fit(normDataset);
Dataset<Row> clusters = bkmodel.transform(normDataset);

Now if we run our query for counting the items in each cluster we will get the results
as follows:

You will notice that these results are much better than k-means simply because
bisecting k-means is a better performer than plain k-means algorithm.

Clustering and Customer Segmentation on Big Data

[288]

We can also check some of the items present in the cluster 2 and this will print some
items from it as follows:

If you look closely at these results and cross compare them with the results we got
for our results with plain k-means you would find that these results are different
than normal k-means.

With this we have covered our case studies in this chapter. We would mention to the
users that we have just scratched the surface of clustering in this chapter and it is a
very wide topic and entire books have been written on it. We would urge the users to
research more on this topic and practice on different datasets.

Summary
In this chapter, we learnt about clustering and we saw how this approach helps to
group different items into groups with each group having items which are similar
to them in some form. Clustering is an example of unsupervised learning and there
are lots of popular clustering algorithms that are shipped by default in the Apache
Spark package. We learnt about two clustering approaches, the first being k-means
approach where items that are closer to each other based on some mathematical
formula like Euclidean distance and so on were grouped together. We also learnt
about bisecting k-means approach which is essentially and improvement on the
regular k-means clustering and is creating by being a combination of hierarchical
and k-means clustering. We also applied clustering on a sample dataset of retail
from UCI. On this sample case study we segmented the customers of the website
using clustering and tried to figure out the important customers for an online
e-commerce store.

In the next chapter, we will learn about an important and powerful concept from our
computer science and that is graph and their application in analytics using big data.

[289]

Massive Graphs on Big Data
Graph theory is one of the most important and interesting concepts in computer
science. Graphs have been implemented in real life in a lot of use cases. If you use a
GPS on your phone or a GPS device and it shows you driving directions to a place,
behind the scenes, there is an efficient graph that is working for you to give you
the best possible directions. In a social network, you are connected to your friends
and your friends are connected to other friends, and so on. This is a massive graph
running in production in all the social networks that you use. You can send messages
to your friends, follow them, or get followed, all in this graph. Social networks or a
database storing driving directions all involve massive amounts of data, and this is
not data that can be stored on a single machine; instead, this is distributed across a
cluster of thousands of nodes or machines. This massive data is nothing but big data
and, in this chapter, we will learn how data can be represented in the form of a graph
so that we can perform analysis or deductions on top of these massive graphs.

In this chapter, we will cover:

• A short refresher on graphs and their basic concepts
• A short introduction to the GraphStream library for representing

graph charts.
• A short introduction to graph analytics, its advantages, and how Apache

Spark fits in
• An introduction to GraphFrames library that is used on top of Apache Spark
• Building graphs using GraphFrames library
• Case study on graph analytics on top of airports and their flights data.
• Finding the top airports using the PageRank algorithm

Before we dive deeply into each individual section, let's look at the basic graph
concepts in brief.

Massive Graphs on Big Data

[290]

Refresher on graphs
In this section, we will cover some of the basic concepts of graphs; this is supposed
to be a refresher section on graphs. This is a basic section; hence, if you already know
this information, you can skip this section. Graphs are used in many important
concepts in our day-to-day lives. Before we dive into the ways of representing a
graph, let's look at some of the popular use cases of graphs (though this is not a
complete list):

• Graphs are used heavily in social networks
• In finding driving directions via GPS
• In many recommendation engines
• In fraud detection in many financial companies
• In search engines and in network traffic flows
• In biological analysis

As you must have noted earlier, graphs are used in many applications that we might
be using on a daily basis.

Graphs are a form of a data structure in computer science that help in depicting
entities and the connection between them. So, if there are two entities, such as
Airport A and Airport B and they are connected by a flight that takes, for example,
a few hours, then Airport A and Airport B are the two entities and the flight
connecting them that takes those specific hours depicts the weightage between
them or their connection. In formal terms, these entities are called vertexes and the
relationships between them are called edges. So, in mathematical terms, a graph
G = {V, E}; that is, a graph is a function of vertexes and edges. Let's look at the
following diagram for a simple example of a graph:

Chapter 11

[291]

As you can see, the preceding graph is a set of six vertexes and eight edges, as
shown next:

Vertexes = {A, B, C, D, E, F}

Edges = {AB, AF, BC, CD, CF, DF, DE, EF}

These vertexes can represent any entities, for example, they can be places, with
the edges being distances between the places; or they could be people in a social
network, with the edges being the type of relationship, for example, friends or
followers. Thus, graphs can represent real-world entities like this.

The preceding graph is also called a bidirected graph because, in this graph, the
edges go in either direction, that is, the edge from A to B, can be traversed both ways
from A to B as well as from B to A. Thus, the edge in the preceding diagram that is
AB can be BA, and AF can be FA too. There are other types of graphs, called directed
graphs, and in these graphs, the direction of the edges goes in one way only and
does not retrace back. A simple example of a directed graph is shown as follows:

As seen in the preceding graph, the edge A to B goes only in one direction, as does
the edge B to C. Hence, this is a directed graph.

A simple linked list data structure, or a tree data structure, are also forms
of graph. In a tree, nodes can only have children and there are no loops;
while there is no such rule in a general graph.

Massive Graphs on Big Data

[292]

Representing graphs
Visualizing a graph makes it easily comprehensible, but depicting it using a program
requires two different approaches:

• Adjacency matrix: Representing a graph as a matrix is easy and has its own
advantages and disadvantages. Let's look at the bidirected graph that we
showed in the preceding diagram. If you represented this graph as a matrix,
it would look like this:

The preceding diagram is a simple representation of our graph in matrix
form. The concept of matrix representation of a graph is simple—if there is
an edge to a node, we mark the value as 1, else, if the edge is not present,
we mark it as 0. As this is a bi-directed graph, it has edges flowing in one
direction only. Thus, from the matrix, the rows and columns depict the
vertices. There, if you look at the vertex A, it has an edge to vertex B,
and the corresponding matrix value is 1.
As you can see, it takes just one step or O[1] to figure out an edge between
two nodes. We just need the index (rows and columns) in the matrix and
we can extract that value from it. Also, if you looked at the matrix closely,
you would have seen that most of the entries are zero, hence this is a sparse
matrix. Thus, this approach eats a lot of space in computer memory in
marking even those elements that do not have an edge to each other,
and this is its main disadvantage:

• Adjacency list: An adjacency list solves the problem of space wastage of the
adjacency matrix. To solve this problem, it stores the node and its neighbors
in a list (linked list), as shown in the following diagram:

Chapter 11

[293]

To maintain brevity, we have not shown all the vertices, but you can make out from
the diagram that each vertex stores its neighbors in a linked list. So, when you want
to figure out the neighbors of a particular vertex, you can directly iterate over the
list. Of course, this has the disadvantage of iterating when you have to figure out
whether an edge exists between two nodes or not. This approach is also widely
used in many algorithms in computer science.

We have briefly looked at how graphs can be represented, let's now look at some
important terms that are used heavily on graphs.

Common terminology on graphs
We will now introduce you to some common terms and concepts in graphs that you
can use in your analytics on top of graphs:

• Vertices: As we mentioned earlier, vertices are the mathematical terms for
the nodes in a graph. For analytic purposes, the vertices count shows the
number of nodes in the system, for example, the number of people involved
in a social graph.

• Edges: As we mentioned earlier, edges are the connection between vertices
and edges can carry weights. The number of edges represents the number of
relations in a graph system. The weight on a graph represents the intensity
of the relationship between the nodes involved; for example, in a social
network, the relationship of friends is a stronger relationship than followers
between nodes.

Massive Graphs on Big Data

[294]

• Degrees: Represent the total number of connections flowing into, as well as
out of a node. For example, in the previous diagram, the degree of node F is
four. The degree count is useful, for example, in a social network graph it can
represent how well a person is connected if his degree count is very high.

• Indegrees: This represents the number of connections flowing into a node.
For example, in the previous diagram, for node F, the indegree value is three.
In a social network graph, this might represent how many people can send
messages to this person or node.

• Outdegrees: This represents the number of connections flowing out of a
node. For example, in the previous diagram, for node F, the outdegree value
is one. In a social network graph, this might represent how many people can
send messages to this person or node.

Common algorithms on graphs
Let's look at the three common algorithms that are run on graphs frequently and
some of their uses:

• Breadth first search: Breadth first search is an algorithm for graph traversal
or searching. As the name suggests, the traversal occurs across the breadth
of the graphs, that is to say, the neighbors of the node from where traversal
starts are searched first, before exploring further in the same manner. We will
refer to the same graph we used earlier:

If we start at vertex A, then, according to a breadth first search, next, we
search or go to the neighbors of A, that is, B and F. After that, we will go to
the neighbor of B, and that will be C. Next, we will go to the neighbors of
F, and those will be E and D. We only go through each node once, and this
mimics real-life travel as well, as to reach a point from another point, we
seldom cover the same road or path again.

Chapter 11

[295]

Thus, our breadth first traversal starting from A will be {A , B , F , C , D , E }.
Breadth first search is very useful in graph analytics and can tell us things
such as the friends that are not your immediate friends but just at the next
level after your immediate friends, in a social network; or, in the case of a
graph of a flights network, it can show flights with just a single stop or two
stops to the destination.

• Depth-first search: This is another way of searching, where we start from
the source vertices and keep on searching until we reach the end node or the
leaf node, and then we backtrack. This algorithm is not as performant as the
breadth first search, as it requires lots of traversals. So, if you want to know
whether node A is connected to node B, you might end up searching along a
lot of wasteful nodes that do not have anything to do with the original nodes
A and B before coming to the appropriate solution.

• Dijkstra's shortest path: This is a greedy algorithm to find the shortest path
in a graph network. So, in a weighted graph, if you need to find the shortest
path between two nodes, you can start from the starting node and keep on
picking the next node in the path greedily to be the one with the least weight
(in the case of weights being distances between nodes, as in city graphs
depicting interconnecting cities and roads). So, in a road network, you
can find the shortest path between two cities using this algorithm.

• PageRank algorithm: This is a very popular algorithm that came out from
Google and is essentially used to find the importance of a web page by
figuring out how connected it is to other important websites. It gives a page
rank score to each website based on this approach and, finally, the search
results are built based on this score. The best part about this algorithm is
it can be applied to other areas of life too, for example, in figuring out the
important airports on a flight graph, or figuring out the most important
people in a social network group.

Enough the basics and the refresher on graphs. In the next section, we will see how
graphs can be used in the real world in massive datasets, such as social network
data, or in data used in the field of biology. We will also study how graph analytics
can be used on top of these graphs to derive exclusive deductions.

Plotting graphs
There is a handy open source Java library called GraphStream, which can be used to
plot graphs, and this is very useful, especially if you want to view the structure of
your graphs. While viewing, you can also figure out whether some of the vertices are
very close to each other (clustered), or in general, how they are placed.

Massive Graphs on Big Data

[296]

Using the GraphStream library is easy. Just download the jar from http://
graphstream-project.org and put it in the classpath of your project. Next, we
will show a simple example demonstrating how easy it is to plot a graph using
this library.

This library is extensive and it will be a good learning experience to
explore this library further. We would urge readers to further explore this
library on their own.

Just create an instance of a graph. For our example, we will create a simple
DefaultGraph and name it SimpleGraph. Next, we will add the nodes or vertices of
the graph. We will also add the attribute of the label that is displayed on the vertice:

Graph graph = newDefaultGraph("SimpleGraph");
 graph.addNode("A").setAttribute("ui.label", "A");
 graph.addNode("B").setAttribute("ui.label", "B");
 graph.addNode("C").setAttribute("ui.label", "C");

After building the nodes, it's now time to connect these nodes using the edges. The
API is simple to use and on the graph instance we can define the edges, provided an
ID is given to them and the starting and ending nodes are also given:

 graph.addEdge("AB", "A", "B");
 graph.addEdge("BC", "B", "C");
 graph.addEdge("CA", "C", "A");

All the information for nodes and edges is present on the graph instance. It's now
time to plot this graph on the UI, and we can just invoke the display method on the
graph instance, as shown next, and display it on the UI:

 graph.display();

This will plot the graph on the UI as follows:

http://graphstream-project.org
http://graphstream-project.org

Chapter 11

[297]

Massive graphs on big data
Big data comprises a huge amount of data distributed across a cluster of thousands
(if not more) of machines. Building graphs based on this massive data has different
challenges. Due to the vast amount of data involved, the data for the graph is
distributed across a cluster of machines. Hence, in actuality, it's not a single node
graph, and we have to build a graph that spans across a cluster of machines. A graph
that spans across a cluster of machines would have vertices and edges spread across
different machines, and this data in a graph won't fit into the memory of one single
machine. Consider your friend's list on Facebook; some of your friend's data in your
Facebook friend list graph might lie on different machines, and this data may just be
tremendous in size. Look at an example diagram of a graph of 10 Facebook friends
and their network, shown as follows:

As you can see in the preceding diagram, for just 10 friends the data can be huge,
and here, since the graph was drawn by hand, we have not even shown a lot of
connections to make the image comprehensible. In real life, each person can have,
say, thousands of connections. So, imagine what would happen to a graph with
thousands, if not more, people on the list.

Massive Graphs on Big Data

[298]

For the reasons we have just seen, building massive graphs on big data is a different
ball game altogether, and there are a few main approaches to building these massive
graphs. From the perspective of big data, building massive graphs involves running
and storing data parallely on many nodes. The two main approaches are bulk
synchronous parallely and the Pregel approach. Apache Spark follows the Pregel
approach. Covering these approaches in detail is out of the scope of this book. If you
are interested in these topics, you should refer to other books and the Wikipedia
page for the same.

Graph analytics
The biggest advantage to using graphs is you can analyze those graphs and use them
to analyze complex datasets. You might ask, what is so special about graph analytics
that we can't do using relational databases. Let's try to understand this using an
example. Suppose we want to analyze your friends network on Facebook, and pull
information about your friends such as their name, their birth date, their recent likes,
and so on. If Facebook had a relational database, then this would mean firing a query
on a table using the foreign key of the user requesting this info. From the perspective
of a relational database, this first level query is easy. But what if we now ask you to
go to the friends at level four in your network and fetch their data (as shown in the
following diagram). The query to get this becomes more and more complicated from
a relational database perspective, but this is a trivial task on a graph or graphical
database (such as Neo4j). Graphs are extremely good in operations where you want
to pull information from one end of the node to another, where the other node lies
after a lot of joins and hops. As such, graph analytics is good for certain use cases
(but not for all use cases; relational databases are still good in many other use cases):

Chapter 11

[299]

As you can see, the preceding diagram depicts a huge social network (though it
might just be depicting a network of a few friends). The dots represent actual people
in a social network. So, if somebody asks to pick one user on the left most side of
the diagram, see and follow host connections to the right most side and pull the
friends at the, say, 10th level or more, this would be something very difficult to do
in a normal relational database and doing it and maintaining it could easily get out
of hand.

There are four particular use cases where graph analytics is extremely useful and
used frequently (though there are plenty more use cases too):

• Path analytics: As the name suggests, this analytics approach is used to
figure out the paths as you traverse along the nodes of a graph. There are
many fields where this can be used—the simplest being road networks and
figuring out details such as the shortest path between cities, or in flight
analytics to figure out the flight taking the shortest time or direct flights.

• Connectivity analytics: As the name suggests, this approach outlines how
the nodes within a graph are connected to each other. So, using this, you
can figure out how many edges are flowing into a node and how many are
flowing out of the node. This kind of information is very useful in analysis.
For example, in a social network, if there is a person who receives just one
message, but gives out, say, ten messages within his network then this
person can be used to market his favorite products, as he is very good at
responding to messages.

• Community Analytics: Some graphs on big data are huge. But, within
these huge graphs, there might be nodes that are very close to each other
and are almost stacked in a cluster of their own. This is useful information
as based on this you can extract communities from your data. For example,
in a social network if there are people who are part of a community, say
marathon runners, then they can be clubbed into a single community
and further tracked.

• Centrality Analytics: This kind of analytical approach is useful in finding
central nodes in a network or graph. This is useful in figuring out sources
that are single-handedly connected to many other sources. It is helpful in
figuring out influential people in a social network, or a central computer
in a computer network.

From the perspective of this chapter, we will be covering some of these use cases in
our sample case studies, and for this, we will be using a library on Apache Spark
called GraphFrames.

Massive Graphs on Big Data

[300]

GraphFrames
The GraphX library is advanced and performs well on massive graphs, but,
unfortunately, it's currently only implemented in Scala and does not have any direct
Java API. GraphFrames is a relatively new library that is built on top of Apache
Spark and provides support for dataframe (now dataset) based graphs. It contains
a lot of methods that are direct wrappers over the underlying sparkx methods. As
such, it provides similar functionality to GraphX, except that GraphX acts on the
Spark RDD and GraphFrame works on the dataframe, so GraphFrame is more user-
friendly (as dataframes are simpler to use). All the advantages of firing Spark SQL
queries, joining datasets, and filtering queries are supported on this.

To understand GraphFrames and represent massive big data graphs, we will take
baby steps first by building some simple programs using GraphFrames, before
building full-fledged case studies. First, let's see how to build a graph using Spark
and GraphFrames on a sample dataset.

Building a graph using GraphFrames
Consider that you have a simple graph as shown next. This graph depicts four
people Kai, John, Tina, and Alex and the relationships they share, whether they
follow each other or are friends.

We will now try to represent this basic graph using the GraphFrame library on top of
Apache Spark and, in the meantime, we will also start learning the GraphFrame API.

Chapter 11

[301]

Since GraphFrame is a module on top of Spark, let's first build the Spark
configuration and spark sql context for brevity:

SparkConfconf= ...
JavaSparkContextsc= ...
SQLContextsqlContext= ...

We will now build the JavaRDD object that will contain the data for our vertices, or
the people Kai, John, Alex, and Tina, in this small network. We will create some
sample data using the RowFactory class of the Spark API and provide the attributes
(ID of the person, and their name and age) that we need per row of the data:

JavaRDD<Row>verRow =
sc.parallelize(Arrays.asList(RowFactory.create(101L,"Kai",27),
 RowFactory.create(201L,"John",45),
 RowFactory.create(301L,"Alex",32),
 RowFactory.create(401L,"Tina",23)));

Next, we will define the structure or schema of the attributes used to build the data.
The ID of the person is of type long, the name of the person is a string, and the age of
the person is an integer, as shown next in the code:

List<StructField>verFields = newArrayList<StructField>();
 verFields.add(DataTypes.createStructField("id",DataTypes.LongType,
true));
 verFields.add(DataTypes.createStructField("name",DataTypes.
StringType,
true));
 verFields.add(DataTypes.createStructField("age",DataTypes.
IntegerType, true));

Now, let's build the sample data for the relationships between these people, and
this will, basically, be represented as the edges of the graph later. The data item of
relationship will have the IDs of the persons that are connected together and the type
of relationship they share (that is, friends or followers). Again, we will use the Spark-
provided RowFactory, build some sample data per row, and create the JavaRDD with
this data:

JavaRDD<Row>edgRow = sc.parallelize(Arrays.asList(
 RowFactory.create(101L,301L,"Friends"),
 RowFactory.create(101L,401L,"Friends"),
 RowFactory.create(401L,201L,"Follow"),
 RowFactory.create(301L,201L,"Follow"),
 RowFactory.create(201L,101L,"Follow")));

Massive Graphs on Big Data

[302]

Again, define the schema of the attributes added as part of the edges earlier. This
schema is later used in building the dataset for the edges. The attributes passed
are the source ID of the node, destination ID of the other node, as well as the
relationType, which is a string:

List<StructField>EdgFields = newArrayList<StructField>();
 EdgFields.add(DataTypes.createStructField("src",DataTypes.
LongType,true));
 EdgFields.add(DataTypes.createStructField("dst",DataTypes.
LongType,true));
 EdgFields.add(DataTypes.createStructField("relationType",DataTypes.
StringType,true));

Using the schemas that we have defined for the vertices and edges, let's now
build the actual dataset for the vertices and the edges. To do this, first create the
StructType object that holds the schema details for the vertices and the edges data
and, using this structure and the actual data, we will next build the dataset of the
vertices (verDF) and the dataset for the edges (edgDF):

StructTypeverSchema = DataTypes.createStructType(verFields);
StructTypeedgSchema = DataTypes.createStructType(EdgFields);

Dataset<Row>verDF = sqlContext.createDataFrame(verRow, verSchema);
Dataset<Row>edgDF = sqlContext.createDataFrame(edgRow, edgSchema);

Finally, we will now use the vertices and the edges dataset, pass it as a parameter to
the GraphFrame constructor, and build the GraphFrame instance:

GraphFrameg = newGraphFrame(verDF,edgDF);

The time has now come to look at some mild analytics on the graph we have
just created.

Let's first visualize our data for the graphs; let's look at the data on the vertices. For
this, we will invoke the vertices method on the GraphFrame instance and invoke
the standard show method on the generated vertices dataset (GraphFrame will
generate a new dataset when the vertices method is invoked).

g.vertices().show();

Chapter 11

[303]

This will print the output as follows:

Let's also look at the data on the edges:

g.edges().show();

This will print the output as follows:

Let's also look at the number of edges and the number of vertices:

System.out.println("Number of Vertices : " + g.vertices().count());
System.out.println("Number of Edges : " + g.edges().count());

This will print the result as follows:

Number of Vertices : 4
Number of Edges : 5

GraphFrame has a handy method to find all the indegrees (outdegrees or degrees):

g.inDegrees().show();

Massive Graphs on Big Data

[304]

This will print the indegrees of all the vertices, as shown next:

Finally, let's look at one more small thing on this simple graph. As GraphFrames
works on the datasets, all the dataset handy methods, such as filtering, map, and so
on can be applied to them. We will use the filter method and run it on the vertices
dataset to figure out the people in the graph with an age greater than thirty:

g.vertices().filter("age > 30").show();

This will print the result as follows:

Well, enough of basic graphs using GraphFrames.Now let's get into some realistic
use cases for graph analytics.

Graph analytics on airports and their flights
As is evident from the name of this section, the airports are vertices and the flights
connecting them are their edges, and these entities can easily be put on a graph.
Once we have built this graph, we can start analyzing it.

For our analysis in this section, we will be using many datasets, and they are
explained in the next section.

Chapter 11

[305]

Datasets
As part of the analysis done for this case study, we will be using the following
datasets, as shown next. All these datasets have been obtained from the OpenFlights
airports database (https://openflights.org/data.html).

• Airports dataset: This dataset contains information about the various airports
used in this case study. There are many attributes but we only use a subset of
them, hence, we will explain only the ones that we use next. We urge you to
check out the other attributes, such as, latitude and longitude, further in your
analysis:

Attribute Description
Airport ID This is the ID given to the airports per row in this dataset
Airport IATA code This is the three-letter IATA (International Air Transport

Association) airport code, which is null if not assigned/
unknown

Airport ICAO code This is the four-letter ICAO (International Civil Aviation
Organization) airport code, which is null if not assigned

Airport name This is the name of the airport
Country This is the country in which the airport is located
State This is the state in which the airport is located

• Routes dataset: This dataset contains information about the routes
between the airports mentioned earlier. The attributes that we use
from this dataset are:

Attribute Description
Airline This is the two-letter (IATA) or three-letter (ICAO) code of the

airline
Airline ID This is the unique OpenFlights identifier for the airline
Source airport This is the three-letter (IATA) or four-letter (ICAO) code of

the source airport
Source airport
ID

This is the unique OpenFlights identifier for the source airport

Destination
airport

This is the three-letter (IATA) or four-letter (ICAO) code of
the destination airport

Destination
airport ID

This is the unique OpenFlights identifier for the destination
airport

https://openflights.org/data.html

Massive Graphs on Big Data

[306]

• Airlines dataset: This dataset contains information about the airlines that are
represented in this dataset. The attributes present in this dataset are:

Attribute Description
Airline ID This is the unique OpenFlights identifier for this airline
Name This is the name of the airline
IATA This is the two-letter IATA code, if available
ICAO This is the three-letter ICAO code, if available
Country This is the country or territory where the airline is incorpo-

rated.

We will now start analyzing these datasets in the next section.

Graph analytics on flights data
Before we run any analyses, we will build our regular Spark boilerplate code to get
started. We will create the SparkSession to start loading our datasets:

SparkConfconf = ...
SparkSession session = ...

Once our SparkSession object is built, next, we will load our airports dataset.
Since this dataset is in CSV format, we will load it with the CSV package present
inside the Spark API. This will create a dataset of row objects. We will also print the
first few values of this dataset to see how the data looks:

Dataset<Row>rawDataAirport = session.read().csv("data/flight/airports.
dat");
 rawData.show();

This will print the data shown as shown in the succeeding image. The data shows the
name of the airports, as well as in which country and state they are located:

Chapter 11

[307]

As you can see in the preceding screenshot, the data has default columns. Next, we
will load each row of data into a JavaBean object and create an RDD of these Java
objects. For brevity, we will not show the entire code here, but you can see that we
are extracting the data from each row of the dataset and putting it into an Airport
Java object. The main fields in this Java object (that you can see in our GitHub
repository) are the AirportID, country, and the airport name:

JavaRDD<Airport>airportsRdd =
 rawDataAirport.javaRDD().map(row -> {
 Airport ap = newAirport();
 ap.setAirportId(row.getString(0));
 ap.setState(row.getString(2));
 ...
 returnap;
 });

Since GraphFrame uses dataframes (or datasets), we convert this Java RDD into a
dataset object. As this dataset has airports data that we will be later using in our
analytical queries, we will also register this dataset as a temporary view:

Dataset<Row>airports = session.createDataFrame(airportsRdd.
rdd(),Airport.class);
airports.createOrReplaceTempView("airports");

The airports dataset object we just saw is nothing but our dataset of
vertices that we will use in our graph.

After loading the data for the airports, it's now time to load the data for the routes,
and these routes will be the edges of our graph. The data is loaded from the routes.
dat file (which is in CSV format) and loaded into a Dataset object:

Dataset<Row>rawDataRoute = session.read().csv("data/flight/routes.
dat");

Again, we load this routes data into a Route JavaBean. This JavaBean has attributes
such as the airport ID from where the flight originates (that is, the Src attribute) on
the airport ID of the flight's destination (that is, the 'dest' attribute).

JavaRDD<Route>routesRdd =
 rawDataRoute.javaRDD().map(row -> {
 Route r = newRoute();
 r.setSrc(String)
 r.setDst(String)
...
 returnr;
});

Massive Graphs on Big Data

[308]

We will convert this routesRdd object to a dataset, which will serve as the dataset of
our edges for the graph:

Dataset<Row>routes = session.createDataFrame(routesRdd.rdd(), Route.
class);

Now, let's see the first few attributes of our route's dataset by invoking the show
method on the routes dataset object.

 routes.show();

This will print the output as shown here (it will print the source node and the
destination node codes):

It's now time to build our GraphFramegf object by providing the vertices dataset and
the edges dataset (that is, airports and the routes):

GraphFramegf = newGraphFrame(airports, routes);

It is important that you have an ID attribute in your vertice
and a corresponding Src and dest attribute in your edge
depicting object. These attributes are used internally by
GraphFrames to build the graph object.

Now you have your GraphFramegf object ready. Let's now quickly see whether the
object is good or not. To do this, we will just pull the vertices from this object and
print the first few rows of the vertices in our graph:

gf.vertices().show();

Chapter 11

[309]

This will print the vertices (and their attributes), as shown in the following output:

This dataset contains data on flights from many countries. We can filter on just the
country as USA and figure the first few lines of flights for the USA. To do this, we
can use the handy filter method available on the graph dataframe:

gf.vertices().filter("country = 'United States'").show();

This will print the flights from the USA, as follows:

Now, let's find the total number of airports in the USA. For this, we will just invoke
the count method on top of the filter and this will return the count of rows, which is
nothing but the count of the airports only in the USA:

System.out.println("Airports in India ---->" + gf.vertices().
filter("country =
'United States'").count());

This will print the number of airports in the USA as follows:

Airports in USA ----> 1435

Massive Graphs on Big Data

[310]

We have seen how easy it is to look at the data of vertices and edges in a graph using
GraphFrames. Let's dig a little deeper and find the number of flights that are going
out of Newark Airport in New Jersey, which has the IATA code 'EWR' (if you recall
the number of channels going out of an entity in a graph represents the outdegrees,
so, in this case, we have to find the out degrees of the airport vertice Newark (with
the code 'EWR'):

gf.outDegrees().filter("id = 'EWR'").show();

This will print the number of edges leading out of the airport 'EWR' (or outdegrees),
and this is nothing but the flights going out of this airport:

So, 253 flights are going out of the airport EWR according to this dataset. You can
cross-verify the value you obtain by getting all the edges and checking the src
(source) entry on all the edges; this will also give the flights that originate at the
'EWR' airport. The code for this is also a one-liner as shown next:

System.out.println("Flights leaving EWR airport : " + gf.edges().
filter("src =
'EWR'").count());

Now, let's find the top airports with the highest inbound and outbound flights count.
To do this, we will first find the degree (that is total degree) of all the flights using
GraphFrames. We will then register this dataset as a temporary view. Finally, we
will query this temporary view, join it with the temporary view of airports and
figure out the states which have the airports with the highest inbound and
outbound flights count:

gf.degrees().createOrReplaceTempView("degrees");
session.sql("select a.airportName, a.State, a.Country, d.degree from
airports a,
degrees d where a.airportIataCode = d.id order by d.degree
desc").show(10);

As seen here, we first pull the degrees from the GraphFrame instance, register this
as a temporary view, and later fire the query to pull the data for the top 10 airports,
containing the airport name, state, country, and the degree count. This will print the
result as follows:

Chapter 11

[311]

As you can see, Atlanta and Chicago have the airports with the highest number of
flights. This information can actually be validated using a Google search too to check
out how good our dataset and its results are. Atlanta airport is supposedly a very
busy airport.

The tabular data is good, but once this data is plotted on a graph, it becomes even
more comprehensible. So, let's plot the top airports on a bar chart. To do this, we
will use the same code as we used earlier to plot bar charts; just the source of data
and dataset creation operation will change. To maintain the brevity of the code, we
are not show the code for chart creation here, but readers can find that code in the
GitHub directory of the code bundle for charts:

Massive Graphs on Big Data

[312]

As you can see, the airport in Atlanta has the highest number of flights, followed by
Chicago and Beijing.

Now, we will dive into a very simple but important concept of a graph, and that is
the use of triplets. Three entities the source vertice, the destination vertice, and the
edge combined together form a triplet. In a graph, there can be many triplets and
GraphFrame provides a handy method to pull all the triplets present in a graph.
Apart from giving details of the source, destination, and the edge, the triplets
dataset also provides information on their respective attributes as well.

Using this triplet information, we will now find direct flights between USA and India
and look at their details. To do this, we will first figure out all the triplets from the
GraphFrames datasets. Next, we will filter out the triplets that have a starting vertice
of country 'United States' and a destination vertice with the country as 'India'.
We will register this dataset of triplets as a temporary view called "US_TO_INDIA":

gf.triplets().filter("src.country = 'United States' and dst.country =
'India'")
.createOrReplaceTempView("US_TO_INDIA");

Next, we will query this temporary view and pull out the information for the starting
city of the direct flight, the destination city, and the airline name. To do this, we will
also join with the airlines temporary view to pull the airline name out from it:

session.sql("select u.src.statesource_city, u.dst.state
destination_city,a.airlineName from US_TO_INDIA u, airlines a where
u.edge.airLineCode = a.airlineId").show(50);

This will print out the result of the query on the console as shown next:

As you can see from the data, there are five direct flights from the US to India. This
information is actually quite accurate, as we confirmed it with data available on the
internet, so this says a lot about our dataset—that it is, in fact quite good.

Chapter 11

[313]

Let's now use a graph algorithm and see how it can help us with our trips. Earlier,
we pulled a dataset of triplets. Using that dataset, we will figure out whether there is
a triplet that exists between San Francisco (SFO) and Buffalo (BUF). In other words,
we are trying to figure out whether there is a direct flight between San Fransisco and
Buffalo in this dataset. So, we first pull all the triplets from the GraphFrame instance,
and later ,we apply the filter to figure out whether a triplet exists between the source
'SFO' and the destination 'BUF':

gf.triplets().filter("src.airportIataCode='SFO' and
dst.airportIataCode='BUF'").show();

This will print the result as follows:

As you can see, the results are empty. Thus, there is no direct flight between SFO and
BUF (Buffalo) in this dataset. If a direct flight is not available, then let's try to find a
flight that takes a stop from SFO to some other airport and finally goes on to Buffalo.

To find a one-stop flight, we will use our standard graph search algorithm technique,
and that is breadth first search. Using the breadth first search, we will find the
vertices from SFO that are located two steps away from SFO and figure out whether
one of them is 'BUF' (Buffalo). If it is, then we have found our one-stop flight to
Buffalo from San Francisco. To code this, we will invoke the breadth first method
on the GraphFrame instance, provide the starting vertice of the breadth first search,
and the end point or end vertice of the breadth first search. We will also provide
the number of levels to which the breadth first search should proceed, and this is
nothing but the path. In our case, we set this value to two, as we want the search
to stop at the second level (one-stop flight). Finally, after setting the parameters on
the breadth first search on the graph, we will invoke the run method to run this
operation on the underlying dataset.

Dataset<Row>sfoToBufDS = gf.bfs().fromExpr("id = 'SFO'").toExpr("id =
'BUF'").maxPathLength(2).run();

As you can see, the result of the breadth first search is also in the form of a dataset
and we store it in a variable. Next, we register this dataset as a temporary view called
sfo_to_buf:

sfoToBufDS.createOrReplaceTempView("sfo_to_buf");

Massive Graphs on Big Data

[314]

Finally, we will query on top of this temporary view to figure out the starting state
of the vertice, the connecting state, and finally, the state where the flight ends (in our
case, this is Buffalo). We will also print the output to the console by invoking the
show method.

session.sql("select distinct from.state , v1.state, to.state from
sfo_to_buf").show(100);

This will print the result on the screen as follows:

As you can see, even though there is no direct flight to Buffalo from San Francisco,
still, you can take many single-hop flights, depending upon your requirements. For
example, you can take a flight to Washington and from there take another flight
to Buffalo.

Next, we will find the most important airports present in this dataset. To calculate
the importance of an airport, we will use the PageRank algorithm. As you will
recall, this algorithm is the same one that is used by Google for their search engine.
It is used to give importance to a website link and, based on that importance, links
show up on the search page. To calculate importance, the algorithm checks for the
connections of a website to other websites and checks how important the other
websites are. The concept is that an important website will link to another important
website only. PageRank can be used in other cases as well as in a graph to figure out
the importance of vertices, based on how they are connected to other vertices.

Chapter 11

[315]

The best part about the usage of this algorithm is that it is bundled by default in
the GraphFrame library and can be used directly by invoking it on the GraphFrame
instance. So, we invoke the PageRank method on the GraphFrame instance, supply
the necessary parameters of the maximum number of iterations (we keep this at five;
you can play with this value), and reset the probability as 0.15. The code to run
PageRank on the graph is a single-liner as shown next:

Dataset pg = gf.pageRank().resetProbability(0.15).maxIter(5).run().
vertices();

As you can see, we invoked the PageRank method on GraphFrame, then supplied
the necessary parameters, and invoked the run method to run the algorithm on the
underlying dataset. Finally, we extract the vertices from the result obtained from the
PageRank algorithm. This result is shown next:

As you can see, the last column has the PageRank calculated value. The greater the
value, the better the PageRank of the entity is. The values are distributed as per the
rows in the dataset. We need a better way to query the results and figure out the top
entries of the airports with the highest PageRank. To do this, we will register the
resulting dataset as a temporary view and fire a query to pull out all the details in
the descending order of their PageRank, where the highest ranked are listed first and
then the remaining ones.

pg.createOrReplaceTempView("pageranks");

session.sql("select * from pageranks order by pagerankdesc").show(20);

Massive Graphs on Big Data

[316]

This will print the result as follows:

As you can see, the most important airports are Atlanta airport, followed by Chicago,
and so on.

The graphs that we have dealt with in this dataset are huge and have lots of edges. If
you will check a graph on a social network, it will be much, much bigger. Oftentimes,
the need is to analyze a smaller dataset. GraphFrame provides a functionality
out-of-the-box, by means of which we can break the gigantic graphs into smaller
manageable graphs so that we can analyze them separately. This approach is known
as pulling out subgraphs.

The concept is very simple from the point of view of the GraphFrames library. As the
GraphFrame instance is built using a dataset of vertices and a dataset of edges, we
can always build a fresh instance of GraphFrames by providing a fresh instance of
vertices and edges. For the purpose of a subgraph, we can filter out the big vertices
and extract the vertices we are interested in; and, similarly, we can filter out the
edges we need and build a GraphFrame object with those.

In the code example shown next, we will filter out the vertices of United Kingdom,
that is, we are only extracting the airports of United Kingdom. We also register the
vertices dataset as a temporary view so that we can further query on it:

Dataset<Row>ukVertices = gf.vertices().filter("country = 'United
Kingdom");
 ukVertices.createOrReplaceTempView("ukAirports");

Chapter 11

[317]

We also pull the edges dataset from the original GraphFrame object and register it as
a temporary view as well:

 gf.edges().createOrReplaceTempView("ALL_EDGES");

Next, we filter the edges that do not start and end in the United Kingdom as we are
only interested in the airports in the United Kingdom, and the domestic flights that
flow within the United Kingdom:

Dataset<Row>ukEdges = session.sql("select * from ALL_EDGES where srcId
in (select airportId from ukAirports) and dstId in (select airportId
from ukAirports)");

We can now build our GraphFrame object by creating the new GraphFrame instance
with these vertices and edges specific to airports in the United Kingdom only:

GraphFrameukSubGraph = newGraphFrame(filtered, ukEdges);

We can selectively use this subgraph to run selective analytics only on the United
Kingdom data.

Let's now plot this graph using the GraphStream library to see how it looks on the
user interface. To do this, we will create an instance of the GraphStream library:

Graph graph = newSingleGraph("SimpleGraph");

We will collect the vertices of the United Kingdom subgraph, iterate over them and
populate the graph nodes of the GraphStream instance. We keep the airport state
location as the name of the node:

List<Row>ukv = ukSubGraph.vertices().collectAsList();
for (Row row : ukv) {
graph.addNode(row.getString(2)).setAttribute("ui.label", row.
getString(8));
}

We will also collect the edges data from the subgraph, iterate over this list, and
populate the edges of the graph with the airport ID from where the edge starts and
the airport ID from where the edge ends.

List<Row>uke = ukSubGraph.edges().distinct().collectAsList();
Map<String, String>keys = newjava.util.HashMap<>();
for (Row row : uke) {
if(!keys.containsKey(row.getString(9) + row.getString(5))) {
graph.addEdge(row.getString(9) + row.getString(5), row.getString(9),
row.getString(5));
 keys.put(row.getString(9) + row.getString(5), "KEY");
}
}

Massive Graphs on Big Data

[318]

This would populate the graph of GraphStream with proper data for nodes
and edges.

As you might have seen in the preceding code, we have used a HashMap
to filter out duplicate edges from being added to the graph edges. This
is done because of an error that was coming from GraphStream due to
duplicate keys.

Finally, you can display this graph on the screen using the display method of
GraphStream:

graph.display();

This would print the graph on the display as follows:

As you can see, all the nodes belong to United Kingdom only. There are some empty
edges because the routes dataset that we have do not have any connecting flights
between these airports.

Chapter 11

[319]

From the image you can notice there are clearly connected nodes that are
meshed up a bit. We're leaving it to you to further beautify this graph by
filtering out the UK airports that do not appear in the routes at all and
only use the airports in the vertices that appear in the edges, as this would
print a better graph for display.

With this we come to an end of our chapter on building graphs on massive
datasets. Graph analytics is a big topic and certainly cannot be covered in just one
chapter of a book—an entire book can be written on this topic. Here are some of the
resources that we would recommend if you want to explore further in the field of
graph analytics:

• Learning Neo4j book from Packt publishers
• Free course on Graph Algorithms from Stanford in Coursera
• Graph analytics on big data course on Coursera
• Apache Spark graph processing book from Packt publishers
• Mining of massive datasets free book by Stanford

Summary
In this chapter, we learned about graph analytics. We saw how graphs can be built
even on top of massive big datasets. We learned how Apache Spark can be used
to build these massive graphs and in the process we learned about the new library
GraphFrames that helps us in building these graphs. We started with the basics of
graphs as to how graphs can be built and represented and later we explored the
different forms of analytics that can be run on those graphs be it path-based analytics
involving algorithms such as breadth first search or connectivity analytics involving
the degrees of connection. A flight dataset was used to explore the different forms of
graph analytics while using a real-world dataset.

Up until now, we have mostly used the data and the program in a batch mode. In the
next chapter, we will see how big data can even be used in our analysis at real time.

[321]

Real-Time Analytics
on Big Data

At some point in time we might all have used insurance quotes. To get insurance
quotes for a car we fill in the details about us and based on our credit history and
other details the application gives you the insurance quotes in real time. This
application analyzes your data in real time and based on it predicts the quotes.
For years, these applications have followed mostly rule-based approaches with a
powerful rule engine running behind the scenes, more recently these applications
have started using machine learning to analyze data further and make predictions
at that point in time. All these predictions and analysis that happen at that instance
or point in time are real-time analytics. Some of the most popular websites, such as
Netflix or famous ad networks, are all using real-time analytics and with the coming
of new devices as part of the Internet of things or IoT wave, collection and analysis of
data in real time has become the need of the hour. Now, we need powerful products
that can tell us how the air quality in a zone at that instance in time is or the traffic
status on a particular highway at a particular time.

With real-time analytics in mind in this chapter, we will cover the following:

• Basic concepts of real-time analytics and covering some real-world use cases.
• How business analysts or data scientists can run fast performing queries in

real time on big data. Here we will cover brief introduction on products such
as Apache Impala.

• Basic concept of Apache Kafka and how it gels between data collectors and
data analysers.

• Spark Streaming and how it can be used to analyze the data from
Apache Kafka.

Real-Time Analytics on Big Data

[322]

• Finally, we will cover some sample case studies as follows:
 ° Trending videos in real time
 ° Sentimental analyses on tweets in real time

• Before we get into the details of real-time analytics, let's dive into some of the
main concepts of real-time analytics.

Real-time analytics
As is evident from the name, real-time analytics provides analysis and their results
in real time. Big data has mostly been used in batch mode where the queries on
top of the data run for a long time and the result is later analysed. The approach is
changing lately, mainly due to the new requirements pertaining to certain use cases
that require immediate results. Real-time requires a separate set of architecture that
caters to not only data collection and data parsing, but also data analyzing at the
same time.

Let's try to understand the concept of real-time analytics using the
following diagram:

As you can see, today the sources of data are plenty whether it's mobile devices,
websites, third-party applications, or even the Internet of Things (sensors). All
this data needs a way to propagate and flow from the source of their devices to
the central unit where the data can be parsed, cleaned, and finally ingested. It is
at this ingestion time that the data can also be analyzed and deductions can be
made from it. The analysis made on the real-time data can be of various kinds
whether predictive analysis, or general statistics such as figuring out quantiles or
aggregations over a period of time or within a time window.

Chapter 12

[323]

There are certain clear use cases of big data real-time analytics due to which this type
of analytical approach has picked up so much steam. Some of those use cases are:

• Fraud analytics: Detecting fraud in real time is a high priority and one of
the top use cases of real-time analytics. Fraud that is detected a few days
late might already have done the damage, therefore, catching it earlier on
and taking the appropriate action might save data loss or loss of any other
resources, such as money. One of the simplest examples could be catching
credit card fraud in real time.

• Sensor data analysis (Internet of Things): With the usage of Internet of
Things on the rise there are a lot of devices such as sensors, and so on, which
not only collect data in real time, but also transmit it. This data can be picked
up and analyzed in real time. For example, in the case of smart cities this data
from sensors can tell the amount of air pollutants in the air at a certain point
in time.

• Giving recommendations to users in real time: By analyzing the click
stream of the users in real time the current interests of the users can be
figured out and accordingly recommendations can be made to the users of a
website or mobile app in real time

• Real-time analytics in healthcare: We have so many healthcare devices that
monitor healthcare statistics in real time, for example, the wearables that we
wear, pacemakers installed inside bodies, and so on. All these devices emit
data that can be tracked, ingested, and monitored. This is a huge amount of
data that needs to be tracked in real time to generate alerts, for example in
the case of abnormal conditions.

• Ad-processing in real time: Internet ads can be processed in real time using
the big data stack. The system can check the user's historical patterns of net
access and based on that show exclusive ads targeting the customers.

Apart from the use cases shown in the preceding list there are plenty of other use
cases that require real-time analytics usage.

Real-time analytics require a different set of products from the big data stack and we
will introduce some of those in the next section.

Real-Time Analytics on Big Data

[324]

Big data stack for real-time analytics
For real time data ingestion, processing, and analysis we need a separate set of
products from the big data stack. The big data stack is very large and whole lot of
private as well as open source vendors are involved. As such, there are plenty of
products in this space. Covering all of these products is beyond scope of this book,
but we will give a very brief introduction to products and solutions that we will be
using in this chapter.

There are various products suitable for each purpose whether real time SQL queries,
real time data ingestion, or parsing streaming data. Some of the popular ones are:

• Apache Impala
• Apache Drill
• Apache Kafka
• Apache Flume
• HBase
• Cassandra
• Apache Spark (Streaming Module)
• Apache Storm

There are many more products apart from the ones mentioned previously. Each of
the product works in a different category of its own and we will be giving a brief
introduction to these products in the upcoming sections.

Real-time SQL queries on big data
We have mostly used Spark-SQL in this book until now and we also mentioned that
Apache Hive can be used to fire SQL queries on big data. But mostly all these queries
and products are batch only. That is to say they are slow to use on big data. We
need a separate set of products if we need to fire fast SQL queries on big data and
those that have performance similar to SQL query tools on RDBMS. There are now
tools available that help us fire fast SQL queries on top of your big data. Some of the
popular ones are:

• Impala: This product is built by the company Cloudera and it helps in firing
real time fast queries on big data. We will cover this briefly in our next
section.

• Apache Drill: Apache Drill is another product that is used to fire real time
SQL queries on top of big data. The underlying data can lie in any of the
different systems and formats for example the data can reside in HBase,
HDFS, Cassandra, or Parquet. Apache Apache Drill has a unique architecture
that helps it in firing fast SQL queries on top of this data.

Chapter 12

[325]

Real-time data ingestion and storage
There are also many products for data ingestion. These products connect to the
source of data and help in pulling data from them and transferring to the big data
systems like HDFS or NoSQL databases like HBase and Cassandra. Some of these
products are:

• Apache Kafka: Apache Kafka is a messaging technology similar to IBM
MQSeries or RabbitMQ except that it runs on big data and is highly scalable
due to its architecture. We will cover Kafka briefly in one of our upcoming
sections in this chapter.

• Apache Flume: Flume is a distributed and reliable service that can pick huge
streaming data from various sources and push to HDFS. We will not be
covering flume in this book.

• HBase: This is a massively scalable NoSQL database that runs on top of
HDFS and data that is gathered from sources such as Kafka and flume
can be directly pushed to it for analysis

• Cassandra: Flume is a distributed and reliable service that can pick huge
streaming data from various sources and push to HDFS. We will not be
covering Flume in this book.

Real-time data processing
There are products in the market that read the data from the stream as it arrives.
Thereby these process the data in real time. They might clean the data at that point
in time and ingest it into NoSQL databases such as HBase or Cassandra. There
are a few products in this space, but two stand out on the big data stack and are
quite popular:

• Spark Streaming: Spark has a module dedicated to dealing with real-time
data analysis. This module can be integrated with real-time data and can pull
in data from streams and analyze them. We will cover this in detail in our
next section.

• Storm: This is another product for real-time data analysis.

Real-Time Analytics on Big Data

[326]

A typical example of a real-time processing system is shown in the following figure:

The preceding architecture diagram shows that real-world architecture can be much
more difficult than this. According to this architecture diagram, there are various
sources of data such as mobile phones, third-party apps, and IoT sensors. All of these
can push their data to Kafka topics and data is thus transferred from the sources.
Using Spark Streaming we can read this data in mini batches from the Kafka topics.
This data can be cleaned and analyzed and at this time predictive models that were
pre-trained can also be applied on this data for predictive results. The data can also
be stored into a NoSQL database such as HBase for further analysis. The data in
HBase can be further indexed and used by a search framework such as SOLR for
firing search queries.

In the next section, let's use one of the SQL query engines on Hadoop and use it for
some simple data analysis in real time.

Real-time SQL queries using Impala
Impala is a very high performing SQL query engine that runs on top of big data that
is stored in Hadoop Distributed File System (HDFS). This tool is frequently used
by data scientists and business analysts who want to quickly query their big data
and do their analysis or generate reports. The other SQL query engines on top of
big data execute MapReduce jobs when SQL queries are fired, but Impala does not
follow this approach; instead it relies on its daemon process to cache data as well as
to process the queries. It is therefore much faster than traditional products such as
Hive. Another similar product is Apache Drill, which also provides faster SQL query
performance on top of big data:

Chapter 12

[327]

There are a few key advantages of using Impala:

• It has a very high performance on big data and its performance becomes
better if the underlying data is in compressed and columnar format like in
Parquet format.

• It can pull data from various data types on HDFS. For example, we can create
tables in Impala for data in Parquet format in HDFS, or we can create tables
in Impala for data in JSON format. It can even pull data directly from HBase.

• It provides JDBC support on Java and thereby using the Java API we can
build Java applications that directly fire queries on Impala tables.

• It can be integrated with Apache kudu for fast analytics on big data. Apache
Kudu is another product which is HDFS-like and is optimized specifically for
fast analytics using Impala.

While covering Impala in detail is beyond the scope of this book, we will quickly
cover a simple case study to show how powerful Impala is.

Flight delay analysis using Impala
This is a simple application that we will use in our analysis for firing SQL queries
in real time. We will be using the flight delay dataset (available openly from The
Bureau of Transportation statistics on this link https://www.transtats.bts.gov/
DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time).This dataset has
a lot of columns, the columns that we will be using in our analysis are:

Attribute Description
AirlineID An identification number for a unique airline carrier
Origin Origin airport
OriginState Origin airport state code
DepDelay Difference in minutes between scheduled and actual departure time
Dest Destination airport
DestState Destination airport state code
ArrDelay Difference in minutes between schedule and actual arrival time
Distance Distance between airports (miles)
Weather_delay Weather delay in minutes
Cancelled Cancelled flight indicator (1 = Yes)

https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time

Real-Time Analytics on Big Data

[328]

We first need to load this data in HDFS. You can directly copy the file to HDFS,
but our aim is to expedite our SQL queries on top of this data. Due to this we first
convert our data to Parquet and then we store it in HDFS. We converted the data to
Parquet first because Parquet stores data in columnar format and if we need to run
queries only on a few subset of columns it is way faster than the other formats like
plain text, CSV or even row formats like Avro. Also since data is stored in columnar
format so if an aggregation needs to be run on a few columns it is very fast as data
in a single column will be of the same type in Parquet and can be clubbed and
aggregated together easily.

Converting the data to Parquet can be done through a simple Spark Java program.
We will build the Spark context and load the data of the target dataset into a Spark
dataset object. Next we register this Spark dataset as a temporary view. Finally,
we select the attributes from the dataset we are interested in (we also provide good
names for the columns) using an SQL query. The results of this SQL query are again
stored in a dataset. We push the contents of this dataset into an external Parquet file:

Dataset<Row>rawDataAirline =
session.read().csv("data/flight/On_Time_On_Time_Performance_2017_1.
csv");
rawDataAirline.createOrReplaceTempView("all_data");

Dataset<Row>filteredData = session.sql("select _c8 airline_code, _c14
src, _c16
src_state, _c31 src_delay, c23 dst, _c25 dst_state, _c42 dst_delay,_
c54
distance, _c57 weather_delay, _c47 cancelled from all_data");

filteredData.write().parquet("<HDFS_FILE_PATH>");

Once the data is stored in HDFS, an external table can be created by Impala and
pointing to the source of this Parquet file location in HDFS. Creating an external
table in Impala is simple and can be done using the command shown as follows:

create external table logs (field1 string, field2 string, field3 string)

partitioned by (year string, month string, day string, host string)

row format delimited fields terminated by ','

location '/user/impala/data/logs';

Chapter 12

[329]

There are a few important concepts depicted in the SQL statement for creating the
preceding external table. We will briefly touch on those in the following table:

SQL key word Description
external The external keyword in the create table statement signifies that

this is an external table. That is to say the source of data of this table
lies outside like in HDFS. So if you manually delete a folder of this
data from HDFS then the data for the table is also deleted (you do
need to refresh the external table once for this).

Column name We need to provide the names of the columns and data types.
For detailed info on the data type supported refer to Impala
documentation.

partitioned This is a very important concept that helps in scalability and
performance of content on top of HDFS. In simple terms it means
cutting the data into chunks and storing it in separate folders with
particular names. Queries can then be made to be specific based on
certain data types that will look for particular folders only while
leaving some other folders. Therefore, the queries will become faster
as they now only have to touch a subset of data instead of an entire
set of dataset.

location This is location on HDFS where the actual external file or folder
containing the files is present on HDFS. Its is important to note that
file type can be of any type like JSON, text or even Parquet.

After setting up the external table it is time to query it using the Impala query
engine. Impala provides a JDBC interface using which you can access the data in the
table. For this you can write your Java program accessing the data from the Impala
table. You can also execute the SQL queries directly from the hue tool provided by
Cloudera and this tool can be used to fire queries on top of the Impala tables. The
Java program for database access on Impala has regular boiler plate code and can be
checked on the Cloudera website.

We can fire simple analytical queries to check how speedy the Impala query engine
is and whether it is good to use for your use cases in real time.

Hue is a web application that comes deployed with the Cloudera bundle
(it is an open source tool) and it gives an interface to your underlying data
systems like Impala and HBase. You can fire queries to these data systems
using Hue.

Real-Time Analytics on Big Data

[330]

Let's fire some analytical queries on our Impala table. First let's check how many
unique flights we have in this dataset. For this we will count the distinct source and
destination combinations in this dataset using the following query.

select count(*) from (select distinct origin,dest from flights)

This will print the total unique flights in our flights table.

You can also verify the speed of the Impala query, it should not take more than one
or two seconds. Let's now find a first few flights that got delayed by more than 30
minutes from the SFO airport.

select * from flights where dep_delay > 30 and origin = 'SFO'

This will print the result as:

As you can see previously a lot of flights did get delayed by more than thirty
minutes and some of them were flying to Phoenix and Orlando.

Chapter 12

[331]

Finally, let's run a group by query and count the number of flights cancelled in each
state and order it in descending order. So this way we have the state with maximum
flights cancelled listed first followed by other states and their flight cancelled count
in that order.

select origin_state, count(*) cnt from flights where cancelled > 0
group by
origin_state order by cnt desc

This will print the result as:

As you can see previously California and Florida had the maximum number of
cancelled flights as per this dataset. With this we conclude our section on discovering
Impala. A bigger coverage on Impala is beyond scope of this book and we would
recommend that users check out Impala and similar products like Apache Drill.
They have improved a lot over the years and can fire very fast queries on top of
big data now.

In the next section we will briefly introduce two technologies that are used heavily in
real-time analytics nowadays and they are Apache Kafka and Spark Streaming

Apache Kafka
Kafka is a distributed high-throughput messaging system. Like other messaging
systems it decouples the applications that want to interact with each other, so that
they can send messages to each other using Apache Kafka. It is massively scalable
as it supports partitioning across multiple nodes and unlike traditional messaging
technologies like IBM MQSeries it does not store any specific state (state storage
for example for message delivery confirmation is all left to the client invoking the
broker). It does support replication and is fault tolerant too.

Real-Time Analytics on Big Data

[332]

Kafka follows the publish-subscribe mechanism for data transfer. Thus, messages are
pushed to a Kafka topic and there can be multiple consumers for that topic that can
receive the data. We show an example of this approach in the following image:

As you can see in the preceding image multiple systems have subscribed to a Kafka
topic (to keep things simple we have omitted any extra module on the source of the
data side). Thus, multiple systems whether they are IoT sensors, third party apps
or websites can push their data to a Kafka topic. As shown in the preceding image
multiple subscribers can pull data from this topic and use this data. In the image,
we showed the same data can be used by third party apps as well as by real-time
analytic system that might be making real time predictions on this data.

Kafka is used in real life use cases in a lot of places. Listed below are some use cases
where Kafka can be used:

• Integration with IoT sensors: The Internet of Things is becoming very
popular these days, with a lot of devices like sensors that continuously collect
data from various sources. Kafka can be a mechanism used to transport this
massive data in real time from various such sensors into the Hadoop stack.
Data can be pulled from IoT sensors and pushed into Kafka topics.

• Social media real-time analytics: Social media data can also be collected and
pushed into Kafka and transported for analysis. For example, tweets from
Twitter can be pushed into Kafka topics based on hashtags and can be later
analysed in real time.

• Healthcare analytics: Apart from regular healthcare apps where data be
transferred across different applications using Kafka, the data collected from
the newer wearable devices can also be pushed to Apache Kafka topics for
further analytics.

Chapter 12

[333]

• Log analytics: There is valuable information present in the log files that can
help us predict things like when the application might break next or when
can we expect our load balancer to go down next. Data from the logs can be
streamed into Kafka topics and consumed.

• Risk aggregation in finance: Kafka can be used to store risk information
generated in real time and can transfer it across applications in the
finance field.

Next, we will see how to consume this data as it arrives in a Kafka topic in real time
using another Spark module that caters to real time data.

Spark Streaming
Streaming refers to the concept of receiving data as soon as it arrives and acting on
it. There are many sources that generate data in real time be they health care devices,
social networks, or IoT devices and there are many mechanisms (like Apache Kafka,
Flume) to transport this data as it is generated and push it to HDFS, HBase or any
other big data technology. Spark streaming refers to the technology of consumed
streamed data through Apache Spark, it is a separate module in Apache Spark API
for real time data processing.

The concept of Spark Streaming is simple and is shown in the following image:

Real-Time Analytics on Big Data

[334]

As you can see in the preceding image there might be various sources of data like
mobile phones and they transfer their data as streams (using Kafka, Flume or any
other technology). These streams of data are read at regular intervals as micro
batches by the Spark Streaming module. Within a span of time the stream of data is
represented as an RDD so Spark streaming receives a sequence of RDD. A whole lot
of operations like Map, FlatMap, and filter can be done on RDDs as we already saw
in chapter one, so the RDDs obtained via streaming can also be processed using these
operations. Apart from these Spark streaming supports applying machine learning
programs and graph algorithms to the streaming RDDs in real time.

Internally in Spark API this continuous sequence of RDDs is represented by an
abstraction called as DStreams, so a DStream encapsulates this distributed dataset of
RDDs and is essentially a sequence of RDDs. As seen in the preceding image since
this DStream has a sequence of RDDs as such it has methods like foreachRdd to
iterate over these RDDs. Once the RDDs are pulled from the DStream, all the
regular RDD functions, such as filter, Map or FlatMap can be applied on them
for further analysis.

Even though the name says Spark streaming, Spark streaming is not
true streaming as it uses micro batches as mentioned previously. 'Storm'
another popular product from Apache is truer form of streaming and is
very popular. In this book we will not be covering Apache Storm, but we
would recommend that the readers check out this product.

For gathering streaming data, the Spark Streaming module can be connected with
various data sources like Kafka, Flume and other third party components. To
integrate a component like Kafka with Spark Streaming you need to use the proper
jars specific to that component and integrate Spark Streaming with it. For readers we
have included a simple maven project in our GitHub repository and this would be
a pre-integrated project of Spark Streaming with Kafka that the readers can use for
their learning purposes.

For more detailed information on Spark Streaming please refer to the official
Spark documentation. Let's now see the typical use cases where Spark Streaming
can be used.

Chapter 12

[335]

Typical uses of Spark Streaming
Spark Streaming has few typical use cases where it can be directly used. Some of
them are listed as follows:

• Data collection and storage in real time: As mentioned earlier Spark
Streaming can be connected with various sources of real time data be they
social media, click stream data from websites or mobiles, or data from
sensors (Internet of Things). Data has to be shipped into products like
Apache Kafka, Flume, and so on and these products can then be integrated
with Spark Streaming. Spark Streaming can be used to clean and transform
this data and can also push it further to other databases or file systems.

• Predictive analytics in real time: This comes into picture when data is
already streamed and available in the Spark Streaming program for analysis.
Pretrained machine learning models can be applied in real time on the
streamed data. For example sentiment analysis can be done on tweets from
Twitter in real time.

• Windowed calculations: This is a very handy feature from Spark Streaming.
This allows you to collect the data in a predefined time intervals (window)
and do calculations on top of it. So if you want to see the clicks generated on
the website in last hour you can keep a time window of an hour and Spark
Streaming will conveniently split the data into the desired time window of
an hour. Once the data is available the data is in the form of RDDs and these
RDDs can be pulled out from the streams of data for further analysis like the
most used features of the website in the last hour.

• Cumulative calculations: If you want to keep cumulative or running
statistics in real time then out of the box Spark provides a feature for this.
Spark Streaming provides a feature to store the state and the new data
available can then be appended on this state for analysis. So suppose you
have clickstream data where in state you have stored the number of clicks
received on a feature like 'Trending Videos' then when the next micro batch
of data arrives Spark Streaming can extract the new hit counts on this feature
from the micro batch and can append to the stored state for a latest net hit
count on this feature at that time.

So much for the theory let's get into the code now. We will now try to understand
some real time use case while using some code and while doing that we will
also learn about Spark Streaming and real time predictive analytics and also get
information on Kafka integration with Spark.

Real-Time Analytics on Big Data

[336]

Base project setup
We have built a sample skeleton project that we will be using for our real-time
analysis use case. Our GitHub repository will contain the code pertaining to all our
use cases for real time analysis within this project.

This project setup is for readers to try out these components on a
Windows OS. If you already have access to a Hadoop installation with
all the components like Kafka, Spark, HDFS setup, you will probably not
need this skeleton setup and can directly run your Spark Streaming code
talking to these components and can also skip this section entirely.

For this base project setup we have a maven Java project with all the dependencies
being part of the pom.xml file. The setup of our project is shown in the
following image:

As you can see above our setup is simple. Let's go through the main points of
our setup

• We are using the default Kafka configurations: To test our code, you can
download and install the Kafka locally. Refer to the their quickstart guide
and start the zookeeper server, kafka-server and finally the default
Kafka producer program that ships along with the Kafka installation. While
explaining each component in detail is beyond scope of this book we will
briefly mention the steps for starting each component:

1. First start the zookeeper server with default configuration (that is
using default zookeeper.properties file).
zookeeper-server-start.bat <CONFIG_DIRECTORY>\zookeeper.
properties

2. Next start the kafka-server with default Kafka configuration (that is
using the default server.properties file)
kafka-server-start.bat <CONFIG_DIRECTORY>\server.properties

Chapter 12

[337]

3. Now create a topic on Kafka. We call our topic as test11 and we
set it up with default parameters with no replications and single
partition.
kafka-topics.bat --create --zookeeper localhost:2181
--replication-factor 1 --partitions 1 --topic test11

4. This will be the topic where you will publish your data and read from
Spark Streaming program. The data on this topic can be anything like
tweets, input on a form on a website and can be in any format like
text, JSON and so on.

5. After creating the topic finally start the default Kafka producer and
link it to this topic that is test11 in our case.
kafka-console-producer.bat --broker-list localhost:9092
--topic test11

6. Start typing on the console of the producer program shell to send
data to the topic.

As you can see previously, the same sentences are printed on the console. For our
sample, analytic application this would represent a set of tweets.

In a real world applications, we won't be using this producer but there
would be another program that would actually use the Twitter API and
fetch the tweets from Twitter and push it on the topics of Kafka.

• Maven Java project for Spark Streaming: Integrating Kafka and Spark
Streaming can sometimes give problems specially with jar mismatch issues.
Due to this we have a sample skeleton maven that can download the jars
needed for Spark Streaming and Java integration.

1. To setup this project, first import the project into your IDE (in our
case we used eclipse).

Real-Time Analytics on Big Data

[338]

2. Next run the sample SparkStreamingError.java from your IDE.
Let's go through the code of this sample. This will also serve as a first
sample on Spark Streaming and Kafka for us. In this sample example
we will read a set of sentences or log messages from Kafka and we
would filter out the messages that have the word 'exception' in them.
First some boiler plate code to build Spark configuration:
 SparkConf conf = ...

3. Next, we build the JavaSparkContext using this configuration:
 JavaSparkContext sc = new JavaSparkContext(conf);

4. Since we are going to use Spark Streaming we need the context
specific to Spark Streaming as the main entry point for our
application. So we build the Spark Streaming context and here we
specify the batch interval based on which the data will be pulled from
the source of data on a regular basis. In our case the batch interval is
two seconds (its given in micro seconds in the StreamingContext
constructor):
JavaStreamingContext ssc = new JavaStreamingContext(sc, new
Duration(2000));

5. For our sample program we are going to the use the Kafka topic
that we created earlier that is test11 and we are going to read the
data from it. The topics of Kafka from which data has to be read are
stored in a variable of type Set. We also create parameters for Kafka
connection and store them in a key value pair object or Map object.

 Set<String> topics = Collections.singleton("test11");
 Map<String, String> kafkaParams = new HashMap<>();
 kafkaParams.put("metadata.broker.list", "localhost:9092");

As you can see previously the main parameters to connect to Kafka
are the location of the Kafka broker that is the hostname and port on
which it is running.

Chapter 12

[339]

The Spark Kafka integration jar contains a class KafkaUtils using
which you can directly integrate Kafka with Spark Streaming. It helps
you build a connection with the Kafka broker. Here we just need to
provide the necessary parameters like streaming context, the type
of data transferred, kafkaparams containing the broker host and its
post and the topic name. The outputs received from this stream of
data is a DStream object and we call it directKafkaStream and this
is essentialy a sequence of RDDs. This stream of data is filled up RDD
objects and each RDD is essentially a paired RDD filled with a tuple.
JavaPairInputDStream<String, String> directKafkaStream =
KafkaUtils.createDirectStream(ssc,
 String.class, String.class, StringDecoder.class,
StringDecoder.class, kafkaParams, topics);

6. As we mentioned at the start of this section, we will filter out text
that contains the word exception. We will go over the content of this
DStream object and extract each RDD from it. For this we will invoke
a foreach method on this DStream object and within the Java lambda
function we will first print the number of records in each RDD that
we iterate through.
directKafkaStream.foreachRDD(rdd -> {
System.out.println("Number of records in this rdd : " +
rdd.count() + " records");

7. After printing the number of records in each RDD we will filter the
content of this individual RDD. For this we will extract the sentences
(log message) from this RDD. As we said the content of RDD is a
tuple so we extract the actual content of the log message and store it
in a variable rowLine. Next, we check that this log message contains
the word exception in it. If it does, then we return true else false.
rdd.filter(record -> {
String firstLine = record._1;
String rowLine = record._2;

System.out.println("rowLine ------> " + rowLine);
return rowLine.contains("exception");

Real-Time Analytics on Big Data

[340]

8. Finally we print each log message that was filtered out. For this we
just invoke foreach on the filtered RDD shown as follows and print
the content in it.
}).foreach(s ->
System.out.println("\n Error Text =>" + s._2 + "\n"));
});

9. Before the Spark Streaming program starts collecting the data
you will have to explicitly invoke the start method on the
StreamingContext object. We also need to wait for this computation
to terminate and hence we invoke awaitTermination on the
StreamingContext object.
 ssc.start();
 ssc.awaitTermination();

Now, we are all set let's run this program and type some text on the
producer to mimic log messages shown as follows:

10. As you can see previously we typed three messages on the console
and only one has the word exception in it. Finally, this will print the
output on our Spark Streaming program console.

Chapter 12

[341]

As you can see previously the ellipses contain the text that was
printed on the console.

With this we come to an end to our section on our setup for Spark Streaming and
Kafka integration. Let's now get into the real world by trying our some real world
use cases and seeing the power of Spark Streaming in action.

Trending videos
One of the popular features of Netflix is the trending videos. Using this feature,
you can see the top trending movies or videos in the last few hours. Similar features
are present on other websites as well for example to show what songs people are
currently listening or currently trending hash tags. Usually these type of features
require aggregating the stats for the feature over a certain time window. In the
case of trending videos you might also have to then find the max hit videos out of
those aggregated lists. In the real case scenario Netflix will be doing a much more
complex operation but we will keep things simple for the purpose of our small case
study here.

Real-Time Analytics on Big Data

[342]

Recall that we mentioned a feature from Spark Streaming called as windowed
calculations which allows us to collect data in windows of predefined time intervals
and then we can further work on the data contained in those windows.

A windowed operation can be explained as shown in the following image:

As we have seen in the preceding image a window represents data in a certain
period of time. So, if we say data in the last one hour window that means we want
data between the current time and the last one hour. Within this timespan there
might have been many mini batches of RDDs generated, but we are only interested
in the sequence of RDDs that belong to this time window. This is also depicted in the
preceding image where we are currently sequencing three sets of RDDs in a window
that ends at Time-6 and similar another window that ends at Time-3. Similarly, as
time progresses forward there could be multiple windows generated at say Time-7,
Time-8 and so on in that order.

For the purpose of this simple case study we assume that we have a source that gives
us a video ID and its hit count. So we will aggregate the hit counts of videos within a
window of an hour and find the videos with the most hits. This will become the most
trending videos for the users as Trending Now. Of course you can do more fancy
things on this by applying user recommendations on top of these videos to figure
out the video's that the users might like out of these videos and show those videos
list first to the users.

We will print this data as comma separate text on the kafka producer console and
at the same time read this data from the Spark Streaming program. The data on the
kafka producer console will look as shown below:

Chapter 12

[343]

Video-1, 1 Video ID and hit count (comma separated)
Video-2, 2 Video ID and hit count (comma separated)
Video-3, 5 Video ID and hit count (comma separated)

The screenshot for the same data when printed on the command console on
windows is shown as following:

Now its time to consume these messages from our Kafka topic in real time and run
some analytics on that data. We will create the Spark program for streaming data
using the Spark Streaming Context:

SparkConf conf = ...
SparkSession spark = ...
JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());

After building the JavaSparkContext we will now build the StreamingContext. It
is here that we provide the sliding interval. This is the time that will be used to build
the RDDs, so after every interval of this time RDDs will be build and attached to a
DStream (sequence). For our local testing purposes we keep the sliding interval as
10 seconds or 10000 milli seconds.

JavaStreamingContext ssc = new JavaStreamingContext(sc, new
Duration(10000));

To keep the output less verbose we mark the LogLevel as ERROR so that only error
logs are shown on the console.

sc.setLogLevel("ERROR");

Real-Time Analytics on Big Data

[344]

Next, we provide the Kafka parameters with the topic names and the broker details:

Set<String> topics = Collections.singleton("test11");
Map<String, String> kafkaParams = new HashMap<>();
kafkaParams.put("metadata.broker.list", "localhost:9092");

We will now get the DStream that holds all our RDDs collected and to get hold of
this DStream object we use the utility class KafkaUtils provided by the Kafka itself.
Using the KafkaUtils class, we can invoke a createDirectStream method and
create a DStream by providing it with the Kafka parameters (broker host, port
and so on).

JavaPairInputDStream<String, String> directKafkaStream =
KafkaUtils.createDirectStream(ssc,
 String.class, String.class,
StringDecoder.class, StringDecoder.class,
kafkaParams, topics);

As we showed in the preceding image DStream is built with sequence of RDDs
collected at regular intervals (sliding time). For windowed operations we will now
create a windowed stream on top of this original DStream. To do that we will invoke
the window method on top of the original DStream object and provide the duration
of the window. In our case we keep the duration less as 30 seconds as it is easy to
test it on local machine. So this window time will tell us the video IDs and their hit
counts in the last thirty seconds.

Creating the window stream is easy and we can just invoke the window methods
on the original DStream object and provide the window interval and in our case it is
thirty seconds.

JavaPairDStream<String, String> windowStream = directKafkaStream.
window(new Duration(30000));

Next our task is to analyze the RDDs that come within a window span. To do this we
will go over each rdd contained in a window and for this we will invoke the foreach
method on the windowed DStream object.

windowStream.foreachRDD(rdd -> {

To understand which window we are analyzing we will print the ID of the window
by using the method id() on the rdd

System.out.println("--- WINDOW ID --- " + rdd.id());

Chapter 12

[345]

We will now extract the strings (rows of data) contained within the rdd and for this
we will invoke the map method on the rdd. Since the rdd is a paired rdd, it has key
and value pairs. Within the map lambda function we will extract the value from the
paired rdd and we will split it to extract the video ID and the corresponding video
count. We will also store these values in a java value object called as VideoVO and
return this object from the map lambda function. So now our original rdd within the
DStream is converted to an new rdd containing these POJO's called as VideoVO.

JavaRDD<VideoVO> videoRDD = rdd.map(s -> {
String[] rowStr = s._2.split(",");
VideoVO tvo = new VideoVO();
 tvo.setVideoID(rowStr[0]);
 tvo.setVideoCount(Integer.parseInt(rowStr[1]));
 return tvo;
});

To use the power of Spark SQL and simplify our code, we will convert our rdd of
POJO's to a dataset object. We will invoke the createDataFrame method on the
spark session object for that.

Dataset<Row> videoDS = spark.createDataFrame(videoRDD.rdd(), VideoVO.
class);

Once our dataset is built, we register it as a temporary view called videos and now
this is ready to fire some queries on top of it.

videoDS.createOrReplaceTempView("videos");

Finally, we fire our spark.sql query on top of our temporary view and this time we
do a group by query. We do a group by on the videoID and a sum on the count of
the video hits. This is all done as part of the data we obtained within that window.
We also sort the results in descending order so videos with maximum hits line
up first.

spark.sql("select videoID,sum(videoCount) videoHitsCount from videos
group by videoID order by videoHitsCount desc").show();

Real-Time Analytics on Big Data

[346]

As you can see in the preceding query we also invoked a show method on the result
of the query and this would print our videos with high hits counts and in that order
as shown next:

As you can see previously our the results printed on the console show three different
windows and in each window we can see the videos with high hit counts lined up
first. This resulting data can be stored in the database or sent to the UI to be shown to
the customers.

Next in our final case study for real-time analytics we will see how we can apply
predictive analytics in real time.

Sentiment analysis in real time
We previously covered sentiment analysis and showed how we could train a model
over an existing set of data of tweets and later reuse the same model on a different
set of data to predict the sentiment whether positive or negative from the words
within the tweet. We will now try to do the same sentimental analysis except that
at this time we will do it in real time, so we will write a program that will wait for
arrival of tweets data on a Kafka topic. When the data is available it will be read by a
Spark Streaming program and processed.

Chapter 12

[347]

Spark provides an out of box feature by which a pretrained model can be saved in
external storage.

This trained model can be pulled from external storage (which can be on HDFS) and
rebuilt. After the model object is available it can be reapplied on the new set of data
and predictions can be made on it. In the new Spark API even the entire pipeline
or workflow can be persisted to external storage after it is trained on as set of data.
We will be using this feature of Apache Spark to store our pretrained sentimental
analysis pipeline to external storage.

We will not be covering sentimental analysis code here, as
we already covered that as part of Chapter 6, Naive Bayes
and Sentiment Analysis when we discussed the Naive Bayes
machine learning algorithm.

We have the sentimental analysis pipeline that is pretrained with a data of
tweets. The dataset contained tweets that were prelabeled for positive or negative
sentiments. To recap our training data is like shown in the following table:

Tweet text Sentiment (1 for positive and 0 for
negative)

The Da Vinci Code book is just awesome. 1
What was so great about the Da Vinci Code,
tell me ?

0

I loved the Da Vinci Code ! 1

As shown in the following code we first build the pipeline with the different steps
in the pipleline workflow entered as stages of the pipeline. To refer to these stages
please check the Chapter 6, Naive Bayes and Sentiment Analysis on the Naive Bayes
model where this is mentioned in detail.

Pipeline p = new Pipeline();
p.setStages(new PipelineStage[]{ tokenizer, stopWrdRem, hashingTF,
idf,nb});

Once our pipeline is read we fit it on the training data so as to train our pipeline and
the output of the training that is the trained model is the PipelineModel:

PipelineModel pm = p.fit(training);

Real-Time Analytics on Big Data

[348]

Once this model is trained or pretrained it can be stored in an external storage by
simply invoking the save method on the model and providing the HDFS location

 pm.save(<LOCATION_IN_HDFS>);

We would recommend trying this example on an environment with good
Spark or Hadoop setup like Cloudera environment, or MapR Sandbox.
If you run it on Windows you can run into some issues especially while
saving the model to external storage; it will require Hadoop libraries on
the classpath to do this.

Now, our model is pretrained and saved to external storage and it can be rebuilt
again from that location. Let's now work on actual Spark Streaming program.
You will be surprised as to how short yet how powerful this program is.

As usual, we will first build our boiler plate code for initiating the Spark
configuration and SparkSession. To maintain brevity we are not showing
the full code for these boiler plate code below.

SparkConf conf = ...
SparkSession spark = ...

We will build the JavaSparkContext using the spark session object.

JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());

As this is a Spark Streaming program that gathers data at real-time, we will next
build the JavaStreamingContext and provide the time interval after which next
micro batch of data will be pulled from the stream. We are going to pull the data
from a Kafka topic:

JavaStreamingContext ssc = new JavaStreamingContext(sc, new
Duration(10000));

Next, we load our model from external storage and store it in our PipeLineModel
object. Thus, our pm instance now has our pretrained model that we can use and
apply on our dataset.

PipeLineModel pm = pm.load(<HDFS_LOCATION>);

We have to provide the necessary parameters using which we can stream the data
from the Kafka topic as a DStream. To do this we first create a set of topics:

Set<String> topics = Collections.singleton("test11");

Chapter 12

[349]

Next we provide the KafkaParams containing the broker host and port.

Map<String, String> kafkaParams = new HashMap<>();
kafkaParams.put("metadata.broker.list", "localhost:9092");

Using the KafkaUtils class, we finally pull the DStream out of the Kafka topics at
intervals we set in the streaming context.

JavaPairInputDStream<String, String> directKafkaStream =
KafkaUtils.createDirectStream(ssc,String.class, String.class,
StringDecoder.class, StringDecoder.class, kafkaParams, topics);

Once you have received the first mini batch of data in DStream you can now go over
the items of the DStream using a foreachRDD method. Each item in the DStream is
an paired rdd (that is it is a tuple object) and from it we can extract the actual tweet.
Within the lambda function, we first print the details about the rdd and the amount
of data in it in terms on number of tweets.

directKafkaStream.foreachRDD(rdd -> {
System.out.println("--- New RDD with " + rdd.partitions().size()
 + " partitions and " + rdd.count() + " records");

Next, we invoke a map function on each of this paired rdd so that the map gets
invoked on every element that is stored within the rdd. Within this map function we
first pull out the tweet text and this is present in the second element of the tuble as
shown by s._2 in the code below. Next we populate this value in a TweetVO object.
Finally we return the TweetVO object from this map lambda function. So the output
rdd is now a distributed collection of TweetVO objects.

JavaRDD<TweetVO> tweetRdd = rdd.map(s -> {
String rowStr = s._2;
 TweetVO tvo = new TweetVO();
 tvo.setTweet(rowStr);
 return tvo;
});

We will now convert this rdd of TweetVO objects to a dataset object.

Dataset<Row> tweetsDs = spark.createDataFrame(tweetRdd.rdd(), TweetVO.
class);
tweetsDs.show();

Real-Time Analytics on Big Data

[350]

We also invoked the show method on our preceding dataset and this would print out
the first few lines available in our micro batch of tweet messages:

Finally, we now go ahead and apply our pre-trained model on the tweets that we
received using streaming. For this, we will invoke the transform method on the
tweets dataset that we collected using streaming.

Dataset<Row> predictedResult = pm.transform(tweetsDs);

The result of this transformation is also stored in the form of a dataset. Let's now see
how well our predicted model did. We can see the first few lines in our predicted
dataset by invoking a show method on it as shown next.

predictedResult.show();

This would print the result as:

We have omitted some columns in the preceding image but the main columns are
the first column which shows the actual message and the last column which shows
the predicted sentiment. In this case the sentiment is positive or 1.

Chapter 12

[351]

Apart from these we can also sent a negative sentiment containing text from the
Kafka producer console. For example, we can send a text as da vinci code is bad
and as we can see in the image below the sentiment would be predicted as negative
or 0.

You got your result in the dataset format. The users can also push this dataset to
external storage. For simplicity, we are pushing the results in parquet format to
HDFS. Even though this approach looks simple yet it is a very good approach simply
because parquet is very fast due to its columnar nature and compression also works
very well on parquet.

predictedResult.write().format("parquet").save(<HDFS LOCATION>);

Even though we have stored the results as parquet to HDFS the results
can also be stored in a NoSQL database like Cassandra or HBase and
further evaluated.

As we mentioned earlier for Spark Streaming the actual computation only start when
you specifically invoke the start method on the streaming context so next we finally
invoke the start method on the Spark Streaming context.

ssc.start();

We also invoke awaitTermination method on the Streaming context for proper
termination of the program.

ssc.awaitTermination();

Thus sentimental analysis can be easily applied on streaming data using Spark
Streaming. With this we come to the end of this chapter.

Real-Time Analytics on Big Data

[352]

Summary
In this chapter, we learnt about real-time analytics and saw how big data can be used
in real-time analytics apart from batch processing too. We introduced the product
Impala that can be used to fire fast SQL queries on big data which is usually stored
in Parquet format in HDFS. While looking at Impala we briefly did a simple case
study on flight analytics using Impala. We later covered Apache Kafka a messaging
product that can be used in conjunction with big data technologies and build real
time data stacks. Kafka is a scalable messaging solution and we showed how it can
be integrated with Spark Streaming module of Apache Spark. Spark Streaming
let's you collect data in mini batches in real time and it calls sequence of these mini
batches as streams. Spark Streaming is becoming very popular these days as it is
a good scalable solution that fits into the needs of many users. We finally covered
a few cases studies using Apache Kafka and Spark Streaming and showed how
complex use cases like real time predictive analysis can be easily done using the
API's of these products.

In the next chapter we will cover a module which becoming very hot these days and
it is called as deep learning.

[353]

Deep Learning
Using Big Data

In recent years, if there is something that has gained lot of traction and advancement
in the field of computer science research it is deep learning. If you pick up any of
the latest research papers, you will see that a lot of them are in fact in the field of
deep learning only. Deep learning is a form of machine learning that sat idle for
quite some time, until recently, when computations on multiple parallel computers
became more advanced. The technology behind the self-driving car or an ATM
recognizing a hand-written check is all done through deep learning in real life. So,
what exactly is deep learning? We will cover the basic details of deep learning in
this chapter. It is a form of machine learning that roughly mimics the working of a
human brain using neural networks. Deep learning is a vast field and a growing one
too, so this chapter should serve as a bare minimum for anyone trying to find a basic
introduction on the topic. More advanced descriptions are beyond the scope of this
chapter. However, unsurprisingly, many resources are now available on this topic
for free on the internet.

In this chapter, we will cover the following topics:

• Introduction to neural networks
• Perceptron and sigmoid neurons
• Multi-layer perceptrons
• How to improve the performance of neural networks
• How deep learning and neural networks mingle
• Use cases and advantages of deep learning
• First sample case study of flower classification
• Deeplearning4j library
• Where to find extra information in deep learning

Deep Learning Using Big Data

[354]

Introduction to neural networks
Our human brain has millions of neurons that talk and transfer signals to each
other. So, when one neuron calculates a signal and transfers it to another neuron, the
second neuron that is connected to the first neuron becomes their input and acts on
it. In this way, the initial input goes through various neurons while being altered at
each level until a final deduction can be made. You can think of our brain as a graph
of these neurons interconnected to each other, and sending signal or inputs to
each other.

Let's see how a typical neuron in the human brain looks:

This picture of a human neuron has been taken from Wikipedia and can be seen
at this link: https://en.wikipedia.org/wiki/Dendrite. The neuron has some
important components, as seen in the labels in the image. They are explained
as follows:

• Dendrite: These are hair-like parts. They connect the neuron to other
neurons, and they are used in taking input from other neurons.

• Cell Body: This is the place where the input received by dendrites is
acted upon.

• Axom Terminal: The output that is generated from this neuron is transmitted
out from the axom terminals to other neurons.

https://en.wikipedia.org/wiki/Dendrite

Chapter 13

[355]

In a human brain, we have millions of neurons like these. The neurons take in
input from many other neurons and process this input to generate an output that
is transmitted further. This process continues till an outcome is reached.

In an artificial neural network built using computers, the same approach of our
human nervous system is replicated. So, we have a computer program that mimics a
human neuron. We call it an artificial neuron. It is depicted in the following diagram:

As seen in the previous image, the circle represents an artificial neuron that takes
in input from various sources and performs processing on it (represented by X),
before finally generating an output. This artificial neuron is nothing but a computer
program or algorithm that is doing this functionality based on certain criteria, as we
will see further on in this chapter.

A mesh of such neurons connected together can mimic the working of our nervous
system, shown as follows:

Deep Learning Using Big Data

[356]

As shown in the previous image, there are many artificial neurons connected to
each other, transferring their computed result based on their input to other neurons.
As the input progresses through many neurons, an outcome is reached. We will be
covering the neural network later on in this chapter.

These artificial neural networks can be trained on historical data and, based on
that data; they can build up their knowledge base or set of rules and store them
internally. Based on this knowledge, they can make a prediction when given a new
piece of data. For example, if we have historical data for the stock prices of various
stocks from stock exchanges over the past few years, we can train a neural network
with this data. Upon training, this neural network can then make guesses about the
stock price of a stock based on various features.

As we mentioned previously, there is one vast difference between the artificial neural
networks and the human brain, that is, the human brain can work without data and
create new stuff, which is underlined as the creativity of humans. This is something
which is not possible (at least not for now) with artificial neural networks, as they
only work with historical data.

There are many ways in which an artificial neuron can be represented. We will
be concentrating mainly on a perceptron, which is one way of representing
artificial neurons.

Perceptron
A perceptron is a type of artificial neuron that is mathematical and programmatic.
It takes in many inputs and applies weights to them based on the importance of the
inputs, and then adds a bias before using this mathematical approach to figure out
a result. This result from the perceptron is then fed to a machine learning algorithm,
such as logistic regression. We call this algorithm as an activation function, which is
then is used to predict the final result of the outcome.

The perceptron is depicted as follows:

Chapter 13

[357]

As you can see in the previous image, a perceptron depicts an artificial neuron
that takes in various inputs in binary form and multiplies them with a weight, w.
The weight is calculated based on the importance of the input. A bias value is also
added, along with the weights. Now, the entire combination is summed up by the
perceptron. Finally, the summed-up output is tested against a threshold value, and
we call this as an Activation Function. If the value is above a threshold, a deduction
is made. The bias is added to normalize the sum of the results of the weight and
input multiplication, which helps the perceptron to either go above or below
the threshold.

As the output of the perceptron is a binary output, a perceptron can be used
as a good linear binary classifier. Let's look at a very basic example of how a
perceptron works.

Suppose you want to look at admission into the computer science department of a
university. Your criteria are based on the following questions:

• How knowledgeable are the professors?
• Are extensive courses available on artificial intelligence?
• Is the campus good?

Now suppose you have three data items for these based on three different
universities:

University Good Professors Courses on AI Good Campus
College - A 1 1 0
College - B 0 1 1
College - C 0 0 1

Deep Learning Using Big Data

[358]

Let's assign the weights to the different features

• Good Professors = 4
• Courses on AI = 3
• Good Campus = 2

As you can see, the presence of good professors takes the highest priority in our case.

Now suppose our minimum threshold is five, and our bias is one, then the calculated
value of perceptrons for all the inputs based on our formula is:

Where b is the bias and the threshold needed for perceptron to fire (that is, the
perceptron takes its decision based on this value), w is the weight for each input,
and x is the actual input value.

And:

So, as seen in the equation for the result previously, the perceptron result is positive,
or 1. If the calculation result is greater than zero, it is zero. After going over the
mathematical formula, let's now apply this formula on our sample case study to
check which college the student would prefer to join. Again, our bias or threshold
value is -5.

University Good
Professors

Courses
on AI

Good
Campus

Calculation Result Perceptron
Output

College - A 1 1l 0 -5 + (4 * 1 + 3 *
1 + 2 * 0)

3 1

College - B 0 1 1 -5 + (4 * 0 + 3 *
1 + 2 * 1)

0 0

College - C 0 0 1 -5 + (4 * 0 + 3 *
0 + 2 * 1)

-3 0

Chapter 13

[359]

As we said previously, the threshold is 5, so in our case only in the first case, that is,
College - A does this meets the criteria (as the decision in the perceptron output is
positive). The student would therefore choose the computer course from this college.
As you can see, there is too much dependency on the first criteria of good professors.
If we lower the threshold to 4 then College - B would also be selected. Thus, as you
can see, even if we change the threshold by a small amount, it can have a big impact
on the outcome.

In short, a perceptron is a binary linear classifier that will classify the input into
one of the two binary categories. It will segment the result based on whether the
value is greater or lesser than the threshold; in our test case, the student would
either select the college or reject it. At this point, it looks like this base perceptron
is a great decision classifier, and in fact for many years after its inception, a lot of
people thought perceptrons to be a magic bullet that solved our artificial intelligence
problems. However, perceptrons have their own set of problems, which we will
discuss shortly.

Problems with perceptrons
A small change in the threshold value can have a big impact on the output of the
perceptron. As seen previously, if we change the threshold to just 4 from 5, that is,
we changed it by just 1 unit, we were able to select an extra college for the student.
This is a problem with perceptrons, and to handle this we use a sigmoid neuron.

The perceptron can be used to represent logical functions. We will show two simple
examples of how a perceptron can be used to represent two simple logical functions.

• Logical AND: If a perceptron has two input weights as 1 and 1 and we enter
a bias value as 1.5, then only when both the inputs that are passed to the
perceptron are 1 and 1 is the output positive. The following figure depicts
an AND function using a perceptron:

Deep Learning Using Big Data

[360]

We can test the perceptron with the following inputs. As you can see, it only
fires when both the inputs are 1:

Input - 1 Input - 2 Calculated Value Output
1 0 -0.5 0
0 1 -0.5 0
1 1 0.5 1

• Logical OR: Similar to logical AND, a logical OR can also be implemented,
as follows:

We can pass many inputs to this perception, but the output will only be
zero when both the inputs are zero. Let's look at the input and output in the
following table:

Input - 1 Input - 2 Calculated Value Output
1 0 0.5 1
0 1 0.5 1
1 1 1.5 1
0 0 -0.5 0

Here, the perceptron would fire even if only one of the inputs is 1.

As you have seen, a perceptron can be used to represent simple logical functions.
This made it quite popular when it was first invented. However, a famous research
paper came out of MIT where the writers showed how a perceptron cannot be
used to represent a XOR function. To build a XOR function you would have to use
multiple perceptrons instead of just a single one, and it is impossible to represent a
XOR with a single perceptron. We are not showing the XOR function here, but we
would urge readers to check out the details of how an XOR function is represented
using perceptrons on the web.

Chapter 13

[361]

We have discussed two solutions to the afore mentioned drawbacks; one being the
usage of sigmoid neurons instead of plain perceptrons, and the other being using a
combination of perceptrons instead of a single one. Next, we'll see what a sigmoid
neuron is.

Sigmoid neuron
We previously discussed the drawbacks of perceptrons and how they change their
output tremendously with subtle changes, which happens when it uses a linear
activation function (that is, it just checks output based on a threshold value). So,
the relation between input and output is steep. This is a problem that hinders the
learning capability of a perceptron, particularly if it is to be used in a machine
learning model. To make a perceptron successful as a learner, we have to make
subtle changes in its input and record its output only on the basis of that we can
figure out at what stage it has learnt the rule well enough to make predictions. If
even subtle changes cause vast variations in output, we will not be able to figure out
at which stage of variation the perceptron is giving its best prediction.

To fix the issue, instead of using a linear activation function that is based on whether
the output is greater or less than the threshold, a different activation function can be
used. One of the most popular functions available is the sigmoid function. Recall that
we studied sigmoid functions in the chapter on logistic regression. This is the same
sigmoid function, and it will convert any number fed to it, to fall as a real number
between 0 and 1; for example, 0.675 or 0.543. Sigmoid is used as an activation
function on the output of the perceptron and it will convert the output to a real
number between 0 and 1. The formula for the sigmoid function is

In this formula:

• e: the natural logarithm base
• x: the calculated value of the perceptron, that is,

https://en.wikipedia.org/wiki/Natural_logarithm

Deep Learning Using Big Data

[362]

Thus, as you can see, the sigmoid neuron is nothing but a modified perceptron, and
it is this neuron that is extensively used in artificial neural networks. This makes the
artificial neuron suited for learning purposes as you can make subtle changes in its
input without making extreme changes in its output, thereby avoiding the risk of
unnecessarily firing the neuron. There is tremendous use of this in algorithms like
gradient descent, where we try to reduce the error in the output by making subtle
and continuous changes in the input.

Let's see now how the sigmoid function is used along with a perceptron:

As you can see, the activation function now used is a sigmoid function. This causes
the output of the perceptron to fall into the range of 0 and 1 as real numbers.

As sigmoid neurons are better in performance for learning algorithms, they can be
combined with multiple sigmoid neurons to form complex learnings systems. These
can be used in various use cases for machine learning activities, such as handwritten
digit recognition, voice recognition, and so on.

Next, we will look into the concept of multiple artificial neurons.

Multi-layer perceptrons
Several sigmoid neurons can be connected and stacked in layers. These layers can
together take input and generate output. The output from these layers can be fed
further to other layers, which can be continued till you reach a layer that finally
generates output. In each layer, a new deduction can be made or each layer helps
in enhancing the learning capability of an artificial neural network. This set of
sigmoid neurons connected in layers is called a multi-layer perceptron. The
name is misleading, as these are essentially sigmoid neurons connected together.

Chapter 13

[363]

There are various ways in which these artificial neurons can be connected. For
example, the following image shows a multi-layer perceptron network, and this is
also called a feed forward network.

As seen in the previous image, this is a simple example of a single hidden layer
multi-perceptron network. This is also called feed forward because the flow of
computations is only going in one direction, that is, forwards. There are other kinds
of networks where the output is fed back to the neurons and so the direction of flow
is in two directions; such networks are called recurrent neural networks and they are
beyond scope for this introductory chapter.

Even though the preceding network roughly depicts a human brain or human neural
network system (as the human system is much more complex), it is still very useful
and is used in many practical applications. This type of network can be used in
different forms of machine learning techniques, such as classifications, regression, or
clustering. As seen, the network has one input where the input is fed to the neurons,
which is input that is next transferred to the hidden layer. All the neurons in the
hidden layer receive input from all the neurons in the input layer. After making
their computations on top of the data, the output from the sigmoid neurons of the
hidden layer is finally transferred to the output layer, where the finally deduction is
made. As the final output is received, recall that the output of the sigmoid neuron is
actually the probability with a range between 0 and 1. Thus, if the above network is
trying to predict a binary classification, for example, whether a stock should be held
or sold, then the two output neurons in the output layer can depict the probability of
hold and sold. Finally, classification would depend on which probability is higher.

Predicting a result is one thing, but predicting a good output is a whole different
story. The task of a neural network is to predict results that are as close to the
actual output as possible. Next, let's see how we can tone the accuracy of our
neural networks.

Deep Learning Using Big Data

[364]

Accuracy of multi-layer perceptrons
Improving the performance of this network so that its output gets closer and closer
to the expected result is done on a trial and error basis. The output of this network is
take and compare its output against the actual results. The difference between these
values gives us the error in our result. As we have seen in previous chapters, this can
be represented by mean squared error. To improve the performance of our neural
network, we have to come up with a combination of weights and biases which when
applied to the various neurons produce an output with minimum mean squared
error. The formula for mean squared error is simple and is depicted as:

In the formula, the n stands for the number of inputs, x is the input value, and y is
the function applied to the input to get the generated output, and finally, a is the
actual value of the result. Mean squared error is nothing but the difference between
the generated output and the actual output, and shows the amount of error in the
predicted result.

There are many other ways of finding the error between the actual
output and the generated output. But for the purpose of this introductory
chapter, we only use mean squared error as it has given good results in
many practical applications.

There are mathematical ways by which mean squared errors can be reduced. Two
of the most popular ways of reducing the error are gradient descent and stochastic
gradient descent.

Gradient descent is a mathematical approach of minimizing the cost of a
mathematical evaluation function. In our case, our cost is the mean squared error, so
by using gradient descent we would try to minimize this error. The following image
shows a graph of the error or the cost function versus the feature (coefficient), which
shows the error going up and down. In the case of a neural network, this coefficient
will be the weight applied to various inputs. The following image is simplistic as it
shows the error value versus just one coefficient, but in real-world applications, the
number of inputs can run into the thousands. Due to this, specific approaches like
Gradient Descent are a must when evaluating the best weight values:

Chapter 13

[365]

As seen in the previous image, the approach of gradient descent is simple. As we
can see, the graph shows how the error value will go down with the change in
coefficient, while beyond a certain change the error value will move up again. It
is due to this fact that the chart in the image has a step curve. If we want to find
the minimum point in this graph, we can increase the value of the coefficient by a
minimum amount and see the corresponding drop in error value. We can continue
doing this until the error starts rising further, and this way we would hit the
minimum point. This is similar to dropping a ball from the top of the chart and
seeing how where it would stop at the bottom of the curve. It is also depicted in the
arrows in the chart, where we can see how the value will go down. In mathematical
terms, a gradient value is calculated (formally called a delta), and this is multiplied
by the weights of the input to make a new prediction. The new error is computed.
This is done again and again until a minimum value is reached.

 There are two ways of working on the dataset with gradient descent:

• Full batch approach: In this approach, the entire dataset is used and a
minimum value is found. This is called gradient descent and it is a slow
process, as every time calculation is done it is on an entire dataset.

• Partial batch approach: In this approach, a subset of datapoints is used
for calculating the gradient (this is multiplied with the weights to reduce
the value of the cost function or error). As this uses only a subset of the
datapoints, this is much faster than the normal gradient descent approach.
This approach is very popular due to its performance and is called stochastic
gradient descent.

Deep Learning Using Big Data

[366]

The information we have provided in this chapter is very basic. We will
tell you at the end of the chapter where to find more information on
artificial neural networks.

We have discussed how we can build a multi-layer neural network and optimize it
to bring out good predicted results. However, we have not yet covered what exactly
deep learning is.

Deep learning
In the last section, we saw how a number of perceptrons can be stacked together in
multiple layers to start a learning network. We saw an example of a feed forward
network with just one hidden layer. Apart from just a single hidden layer, we can
have multiple hidden layers stacked one after the other. This would enhance the
accuracy of the artificial neural network further. When an artificial neural network
has multiple hidden layers (that is, greater than one), this approach is called deep
learning as the network is deep.

Deep learning is currently one of the most widely studied research topics and it is
practically used in many real-world applications.

Let's now see some of the advantages and real-world use cases of deep learning.

Advantages and use cases of deep learning
There are two main advantages of deep learning:

1. No feature engineering required: In traditional machine learning, feature
engineering is of the utmost importance if you want your models to work
well. There are teams of data scientists who spend a great amount of time
doing feature engineering to train their models well. From the perspective of
neural networks, they automatically learn the features from the data and they
do not require any feature engineering.

2. Accuracy: The accuracy of neural networks is the main reason why they are
so popular. They have a high level of accuracy and increase at a tremendous
pace along with the latest research.

Chapter 13

[367]

It is due to these main advantages that deep neural networks are often used in
real-world applications, and some of those applications are:

• Hand digit character recognition
• Time series type predictions, such as predicting weather, stock prices, or

share prices
• Self-driving cars
• Data compression
• General classification tasks like disease prediction, stock prediction,

and so on

So much for the theory. Let's now try to understand the concept of multi-perceptron
using a simple case study.

Flower species classification using
multi-Layer perceptrons
This is a simple hello world-style program for performing classification using multi-
layer perceptrons. For this, we will be using the famous Iris dataset, which can be
downloaded from the UCI Machine Learning Repository at https://archive.ics.
uci.edu/ml/datasets/Iris. This dataset has four types of datapoints, shown
as follows:

Attribute name Attribute description
Petal Length Petal length in cm
Petal Width Petal width in cm
Sepal Length Sepal length in cm
Sepal Width Sepal width in cm
Class The type of iris flower that is Iris Setosa, Iris Versicolour,

Iris Virginica

This is a simple dataset with three types of Iris classes, as mentioned in the table.

From the perspective of our neural network of perceptrons, we will be using
the multi-perceptron algorithm bundled inside the spark ml library and will
demonstrate how you can club it with the Spark-provided pipeline API for the easy
manipulation of the machine learning workflow. We will also split our dataset into
training and testing bundles so as to separately train our model on the training
set and finally test its accuracy on the test set. Let's now jump into the code of this
simple example.

https://archive.ics.uci.edu/ml/datasets/Iris

Deep Learning Using Big Data

[368]

First, create the Spark configuration object. In our case, we also mention that the
master is local as we are running it on our local machine:

SparkConf sc = new SparkConf().setMaster("local[*]");

Next, build the SparkSession with this configuration and provide the name of the
application; in our case, it is JavaMultilayerPerceptronClassifierExample:

SparkSession spark = SparkSession
 .builder()
 .config(sc)
 .appName("JavaMultilayerPerceptronClassifierExample")
 .getOrCreate();

Next, provide the location of the iris dataset file:

String path = "data/iris.csv";

Now load this dataset file into a Spark dataset object. As the file is in an csv format,
we also specify the format of the file while reading it using the SparkSession object:

Dataset<Row> dataFrame1 = spark.read().format("csv").load(path);

After loading the data from the file into the dataset object, let's now extract this data
from the dataset and put it into a Java class, IrisVO. This IrisVO class is a plain
POJO and has the attributes to store the data point types, as shown:

public class IrisVO {
 private Double sepalLength;
 private Double petalLength;
 private Double petalWidth;
 private Double sepalWidth;
 private String labelString;

On the dataset object dataFrame1, we invoke the to JavaRDD method to convert
it into an RDD object and then invoke the map function on it. The map function is
linked to a lambda function, as shown. In the lambda function, we go over each row
of the dataset and pull the data items from it and fill it in the IrisVO POJO object
before finally returning this object from the lambda function. This way, we get a
dataMap rdd object filled with IrisVO objects:

JavaRDD<IrisVO> dataMap = dataFrame1.toJavaRDD().map(r -> {
 IrisVO irisVO = new IrisVO();
 irisVO.setLabelString(r.getString(5));
 irisVO.setPetalLength(Double.parseDouble(r.getString(3)));
 irisVO.setSepalLength(Double.parseDouble(r.getString(1)));
 irisVO.setPetalWidth(Double.parseDouble(r.getString(4)));

Chapter 13

[369]

 irisVO.setSepalWidth(Double.parseDouble(r.getString(2)));

 return irisVO;
 });

As we are using the latest Spark ML library for applying our machine learning
algorithms from Spark, we need to convert this RDD back to a dataset. In this case,
however, this dataset would have the schema for the individual data points as we
had mapped them to the IrisVO object attribute types earlier:

Dataset<Row> dataFrame = spark.createDataFrame(dataMap.rdd(), IrisVO.
class);

We will now split the dataset into two portions: one for training our multi-layer
perceptron model and one for testing its accuracy later. For this, we are using the
prebuilt randomSplit method available on the dataset object and will provide the
parameters. We keep 70 percent for training and 30 percent for testing. The last entry
is the 'seed' value supplied to the randomSplit method.

Dataset<Row>[] splits = dataFrame.randomSplit(new double[]{0.7, 0.3},
1234L);

Next, we extract the splits into individual datasets for training and testing:

Dataset<Row> train = splits[0];
Dataset<Row> test = splits[1];

Until now we had seen the code that was pretty much generic across most of the
Spark machine learning implementations. Now we will get into the code that is
specific to our multi-layer perceptron model. We will create an int array that will
contain the count for the various attributes needed by our model:

int[] layers = new int[] {4, 5, 4, 3};

Let's now look at the attribute types of this int array, as shown in the following table:

Attribute value at
array index

Description

0 This is the number of neurons or perceptrons at the input layer of
the network. This is the count of the number of features that are
passed to the model.

1 This is a hidden layer containing five perceptrons (sigmoid
neurons only, ignore the terminology).

2 This is another hidden layer containing four sigmoid neurons.
3 This is the number of neurons representing the output label classes.

In our case, we have three types of Iris flowers, hence three classes.

Deep Learning Using Big Data

[370]

After creating the layers for the neural network and specifying the number of
neurons in each layer, next build a StringIndexer class. Since our models are
mathematical and look for mathematical inputs for their computations, we have to
convert our string labels for classification (that is, Iris Setosa, Iris Versicolour, and
Iris Virginica) into mathematical numbers. To do this, we use the StringIndexer
class that is provided by Apache Spark. In the instance of this class, we also provide
the place from where we can read the data for the label and the column where it will
output the numerical representation for that label:

StringIndexer labelIndexer = new StringIndexer().
setInputCol("labelString").setOutputCol("label");

Now we build the features array. These would be the features that we use when
training our model:

String[] featuresArr = {"sepalLength","sepalWidth","petalLength","pet
alWidth"};

Next, we build a features vector as this needs to be fed to our model. To put the
feature in vector form, we use the VectorAssembler class from the Spark ML library.
We also provide a features array as input and provide the output column where the
vector array will be printed:

VectorAssembler va = new VectorAssembler().setInputCols(featuresArr).
setOutputCol("features");

Now we build the multi-layer perceptron model that is bundled within the Spark
ML library. To this model we supply the array of layers we created earlier. This layer
array has the number of neurons (sigmoid neurons) that are needed in each layer of
the multi-perceptron network:

MultilayerPerceptronClassifier trainer = new
MultilayerPerceptronClassifier()
 .setLayers(layers)
 .setBlockSize(128)
 .setSeed(1234L)
 .setMaxIter(25);

The other parameters that are being passed to this multi-layer perceptron model are:

Block Size Block size for putting input data in matrices for faster
computation. The default value is 128.

Seed Seed for weight initialization if weights are not set.
Maximum iterations Maximum number of iterations to be performed on the

dataset while learning. The default value is 100.

Chapter 13

[371]

Finally, we hook all the workflow pieces together using the pipeline API. To this
pipeline API, we pass the different pieces of the workflow, that is, the labelindexer
and vector assembler, and finally provide the model:

Pipeline pipeline = new Pipeline().setStages(new PipelineStage[]
{labelIndexer, va, trainer});

Once our pipeline object is ready, we fit the model on the training dataset to train
our model on the underlying training data:

PipelineModel model = pipeline.fit(train);

Once the model is trained, it is not yet ready to be run on the test data to figure out
its predictions. For this, we invoke the transform method on our model and store
the result in a Dataset object:

Dataset<Row> result = model.transform(test);

Let's see the first few lines of this result by invoking a show method on it:

result.show();

This would print the result of the first few lines of the result dataset as shown:

Deep Learning Using Big Data

[372]

As seen in the previous image, the last column depicts the predictions made by our
model. After making the predictions, let's now check the accuracy of our model. For
this, we will first select two columns in our model which represent the predicted
label, as well as the actual label (recall that the actual label is the output of our
StringIndexer):

Dataset<Row> predictionAndLabels = result.select("prediction",
"label");

Finally, we will use a standard class called MulticlassClassificationEvaluator,
which is provided by Spark for checking the accuracy of the models. We will create
an instance of this class. Next, we will set the metric name of the metric, that is,
accuracy, for which we want to get the value from our predicted results:

 MulticlassClassificationEvaluator evaluator =
 new MulticlassClassificationEvaluator()
 .setMetricName("accuracy");

Next, using the instance of this evaluator, invoke the evaluate method and pass the
parameter of the dataset that contains the column for the actual result and predicted
result (in our case, it is the predictionAndLabels column):

System.out.println("Test set accuracy = " +
evaluator.evaluate(predictionAndLabels));

This would print the output as:

If we get this value in a percentage, this means that our model is 95% accurate.
This is the beauty of neural networks - they can give us very high accuracy when
tweaked properly.

With this, we come to an end for our small hello world-type program on multi-
perceptrons. Unfortunately, Spark support on neural networks and deep learning
is not extensive; at least not until now. Due to this, we will use another library
that is easily integrated with Spark and has extensive support for different types
of neural networks, like feed forward neural networks, recurrent neural network,
or convolution neural networks.

Chapter 13

[373]

Note: The types of neural network we have mentioned above are all part
of the Deeplearning4j library.

Let's take a brief look at the Deeplearning4j library.

Deeplearning4j
This is a Java library that is used to build different types of neural networks. It can
be easily integrated with Apache Spark on the big data stack and can even run on
GPUs. It is the only main Java library out there currently that has a lot of built-in
algorithms focusing on deep learning. It also has a very good online community
and good documentation, which can be checked on its website at https://
deeplearning4j.org.

There are lots of submodules within this Java library and we need some of those
sub modules for running our machine learning algorithms. To check out more detail
and running samples within Deeplearning4j, please refer to their documentation.
We will not cover Deeplearning4j API in this book, please refer to https://
deeplearning4j.org for more information on its documentation.

In order to generate the curiosity of the reader as to what all can be accomplished
with deep learning we will end the chapter with another simple sample case study of
hand written digit recognizition using neural networks. We will explain the concepts
involved along with the code.

As this is an introductory chapter we won't be covering all the concepts in
detail in the the next section. We would urge the users to refer to the book
"Deep Learning" from MIT press, for more information on deep learning.
The professors who wrote this book have been kind enough to give this
book for free at http://www.deeplearningbook.org .

https://deeplearning4j.org
https://deeplearning4j.org
https://deeplearning4j.org
https://deeplearning4j.org
http://www.deeplearningbook.org

Deep Learning Using Big Data

[374]

Hand written digit recognizition
using CNN
This is one of the classic "Hello World" type problem in the field of deep learning.
We already covered one very simple case study of flower classification earlier and in
this one we are going to classify hand written digits. For this case study we are using
the MNIST dataset. The MNIST database of handwritten digits is available at http://
yann.lecun.com/exdb/mnist/. It has a training set of 60,000 examples, and a test
set of 10,000 examples. Some of the sample images in this dataset are as shown:

A typical hello world neural network that we are building is to train our network
with the training set and to classify the images based on the test set. For this we will
use a CNN or convolutional neural network.

A convolutional neural network is a special type of feed forward neural network
and is especially suited for image classification. Explaining the entire concept of a
convolution network is beyond scope of this chapter but we will explain it briefly.

A digital image on a computer comprises of many pixels . Using the intensity of
these pixels in the various color formats for example RGB format we can represent
an image in a mathematical matrix form. This matrix of nested arrays is called as a
Tensor. Convoluntional networks consume these nested arrays of pixels or tensors
and are able to extract features from it. These features are later fed to a multi neural
network for further classification of these features. So, the ultimate aim of the
convolution layers is automatic feature extracton from images based on weights
and biases. For more information on convolutional neural networks refer to the
book "Deep Learning" which we mentioned in the previous section.

We will be using DeepLearning4j for building this CNN and recognizing the
handwritten digits. The next section will depict the code for this case study.

Diving into the code:
Before we look at the entire code we will get the setup ready in our IDE. For this
example we are using intellij but feel free to use any IDE of your choice.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Chapter 13

[375]

We will first create a maven project in intellij and we will use quickstart artefact for
the project creation. After creating the project the project window would open inside
intellij. Open the pom.xml file and add the dependencies, as shown:

<dependency>
 <groupId>org.deeplearning4j</groupId>
 <artifactId>deeplearning4j-core</artifactId>
 <version>0.8.0</version>
</dependency>

<dependency>
 <groupId>org.nd4j</groupId>
 <artifactId>nd4j-native-platform</artifactId>
 <version>0.8.0</version>
</dependency>

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.11</artifactId>
 <version>2.1.0</version>
</dependency>

<dependency>
 <groupId>com.beust</groupId>
 <artifactId>jcommander</artifactId>
 <version>1.72</version>
</dependency>

<dependency>
 <groupId>org.deeplearning4j</groupId>
 <artifactId>dl4j-spark_2.11</artifactId>
 <version>0.8.0_spark_2</version>
</dependency>

<dependency>
 <groupId>org.nd4j</groupId>
 <artifactId>nd4j-kryo_2.11</artifactId>
 <version>0.8.0</version>
</dependency>

It is important to use the version of DeepLearning4j we have mentioned
above, older DeepLearning4j libraries are not compatible with latest
apache spark and can give an error in runtime.

Deep Learning Using Big Data

[376]

After your maven pom.xml file is ready, now create a java class, we will call it
LenetMnistSparkSample.

Next, we create the two variables that we will be needed while running our code
on spark

@Parameter(names = "-batchSizePerWorker", description = "Worker size")
private int batchSizePerWorker = 16;

@Parameter(names = "-numEpochs", description = "Number of epochs for
training")
private int numEpochs = 15;

These parameters are explained in the table as shown:

Parameter Name Description
batchSizePerWorker This refers to the number of training examples per

worker in Spark.
numEpochs An epoch refers to one forward pass and one

backward pass of all the training examples

We will next load the SparkConf object and pass the master as local[*]. We also set
the application name. Finally we build the spark context using this configuration.

SparkConf sparkConf = new SparkConf();
 sparkConf.setMaster("local[*]");
 sparkConf.setAppName("DL4J Spark MLP Example");
JavaSparkContext sc = new JavaSparkContext(sparkConf)

DeepLearning4j out of the box provides a set of classes using which we can directly
load these datasets from their web locations. We will use one of these classes called
MnistDataSetIterator and pull the mnist dataset from its web location. As seen,
we create two instances in one instance we build the training set and in the other
instance we load the test set. The parameters passed to the constructor are the size of
the batch on each worker of Spark, whether training is needed or not (we pass it as
true) in this case the entire dataset of 60000 images is downloaded and used to train
our network and finally we pass the seed value.

 DataSetIterator iterTrain = new MnistDataSetIterator(batchSizePer
 Worker,
 true, 12345);
 DataSetIterator iterTest = new MnistDataSetIterator(batchSizePerW
 orker, true,
 12345);

Chapter 13

[377]

Next we convert the obtained dataset into a Java RDD of dataset objects. For this we
first create an ArrayList and populate it with dataset objects from the iterTrain and
iterTest instances. Next we use the Spark context parallelize method to load this
data in memory. This is not the best way to do this as it would not work in case of
huge datasets as it would load everthing in memory but for our small application it
is ok to use here. This would create the Java RDDs of training and testing data.

 List<DataSet> trainDataList = new ArrayList<DataSet>();
 List<DataSet> testDataList = new ArrayList<DataSet>();
 while (iterTrain.hasNext()) {
 trainDataList.add(iterTrain.next());
 }
 while (iterTest.hasNext()) {
 testDataList.add(iterTest.next());
 }

 JavaRDD<DataSet> trainData = sc.parallelize(trainDataList);
 JavaRDD<DataSet> testData = sc.parallelize(testDataList);

As mentioned earlier, for this case study we are using a convolutional neural
network. One of the first convolutional networks that was made was "Lenet
Network" and it was used to classify digits from the MNIST dataset only. We
are going to use this simple Cnn network. As shown we create a simple conf
instance and invoke the method getLenetCnnConfig. This method returns the
MultiLayerConfiguration object that wraps the whole Cnn network within it.

 MultiLayerConfiguration conf = getLenetCnnConfig();

Let's see the code for this getLenetCnnConfig. At the start of the method we specify
the local variables that are needed in this method.

public static MultiLayerConfiguration getLenetCnnConfig() {
 int nChannels = 1;
 int outputNum = 10;
 int batchSize = 64;
 int nEpochs = 1;
 int iterations = 1;
 int seed = 123;

Deep Learning Using Big Data

[378]

The attributes shown are

Variable Name Description
nChannels The number of input channels
outputNum The number of possible outcomes
batchSize The test batch size
nEpochs The number of training epochs
iterations The number of training iterations
seed The seed used in shuffling the data

For each neural network, we have to specify the learning rate which the size of the
variation made to the weights in each iteration. The smaller the value, the faster the
algorithm trains, while with a larger values the algorithm takes longer to learn but
performs better. We need to strike the right balance here. We specify the learning
rate in a HashMap object with the number of iteration and the learning rate for that.

 // learning rate schedule in the form of <Iteration #, Learning
 Rate>
 Map<Integer, Double> lrSchedule = new HashMap<Integer, Double>();
 lrSchedule.put(0, 0.01);
 lrSchedule.put(1000, 0.005);
 lrSchedule.put(3000, 0.001);

After creating the variables and specifying the learning rate now is the time
to build our convolutional neural network configuration. We start with the
NeuralNetConfiguration class and invoke the builder method on it to start
building our configuration. Next, we provide the parameters like seed and
iterations as we depicted previously and we need to build the network as shown:

 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(seed)
 .iterations(iterations)
 .regularization(true).l2(0.0005)
 .learningRate(.01)
 .learningRateDecayPolicy(LearningRatePolicy.Schedule)
 .learningRateSchedule(lrSchedule)
 .weightInit(WeightInit.XAVIER)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_
 GRADIENT_DESCENT)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .list()
 .layer(0, new ConvolutionLayer.Builder(5, 5)
 .nIn(nChannels)
 .stride(1, 1)
 .nOut(20)

Chapter 13

[379]

 .activation(Activation.IDENTITY)
 .build())
 .layer(1, new
 SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
.layer(2, new ConvolutionLayer.Builder(5, 5)
 .stride(1, 1)
 .nOut(50)
 .activation(Activation.IDENTITY)
 .build())
.layer(3, new
 SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
.layer(4, new DenseLayer.Builder().activation(Activation.RELU)
 .nOut(500).build())
.layer(5, new
OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVEL
OGLIKELIHOOD)
 .nOut(outputNum)
 .activation(Activation.SOFTMAX)
 .build()) .setInputType(InputType.
convolutionalFlat(28,28,1)) .backprop(true).
pretrain(false).build();

return conf;

 }

Let's go over some of the important parameters we depicted previously:

Parameter Description
Optimization
algorithm

This is the optimization algorithm that is used to optimize our weights
and biases for our neural network and in our case we are using
"Stochaistic Gradient Descent"

layer 0 A convolution layer
layer 1 A sub sampling layer
layer 2 Another convolution layer
layer 3 Another sub sampling layer

Deep Learning Using Big Data

[380]

Parameter Description
layer 4 A dense layer where a function like Relu is applied. Relu or Rectified

linear unit is an activation function like Sigmoid. More information on
this function can be found on this link: https://en.wikipedia.
org/wiki/Rectifier_(neural_networks).

layer 5 This is the final layer where the output is received.
Back
propagation

This specifies whether back propagation is used or not. It is used
to find the minimum value of the error function that is used to
calculate the error in prediction, this way we will get the best values
for the weights and the biases. More information can be obtained on
Wikipedia:https://en.wikipedia.org/wiki/Backpropagation

nOut This specifies the output type. In our case it is a vector holding 10 values
since we are predicting digits from 0 to 9.

Input Type This is the type of input which is a nested array representing the pixels
of the image in RGB format. Since the image is 28 by 28 in width and
height and it is black and white only thus the 3rd dimension value is "1"
and hence the array is of type [28,28,1].

For more detailed information on this configuration refer to the Deeplearning4j
documentation at https://deeplearning4j.org .

Next we create a training master class instance and this is used to specify how
the model would be trained across a cluster of machine (in our case it is multiple
threads on a single machine) on spark. Here we specify batchSizePerWorker which
is nothing but the number of samples used in training per worker or executor in
Apache Spark.

TrainingMaster tm = new
 ParameterAveragingTrainingMaster.Builder(batchSizePerWorker)
 .averagingFrequency(5)
 .workerPrefetchNumBatches(2)
 .batchSizePerWorker(batchSizePerWorker)
 .build();

Next create the Spark network instance using the SparkContext, configuration and
the training master instance.

 SparkDl4jMultiLayer sparkNet = new SparkDl4jMultiLayer(sc, conf, tm);

Now create iteration over the number of epochs you had configured. For each
iteration invoke the fit function on the training data this will make the neural
network learn the training features from the training data. After completing
we also print out that the epoch is completed.

 for (int i = 0; i < numEpochs; i++) {
 sparkNet.fit(trainData);
 }

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Backpropagation
https://deeplearning4j.org

Chapter 13

[381]

Now test how well you have trained your neural network in recognizing the digits
form the test dataset by running the evaluation on the test dataset. Deeplearning4j
provides an option to store the results of this evaluation in an Evaluation object:

 Evaluation evaluation = sparkNet.evaluate(testData);

Finally, we will print the result from the evaluation instance:

 System.out.println("***** Evaluation *****");
 System.out.println(evaluation.stats());

This would print the evaluation as:

After printing how many times the digit from the test dataset was recognized
correctly or not the evaluation instance would also print the accuracy of the
model as shown:

Deep Learning Using Big Data

[382]

As seen the accuracy of the model is around 99% which is very good for a machine
learning algorithm. This is also the key reason as to why deep learning has become
so popular. For other values in the result above refer to the documentation on
https://deeplearning4j.org.

With this, we come to an end of this sample case study using Deeplearning4j. Apart
from this library, readers who are interested in researching deep learning further can
check out the following books and resources as mentioned in the next section.

More information on deep learning
Deep learning is a vast topic and fast emerging as a new and upcoming research
field. There are lots of free resources available on the internet that users can reach
out to in order to increase their knowledge on this subject. Some of these resources
are as follows:

• Geoffrey Hinton is a famous researcher and professor at the University of
Toronto. He has made tremendous contributions to the field of artificial
intelligence. He has given away one free course on AI on Coursera. It's a
course we highly recommend.

• There are many other websites giving video courses on deep learning, such
as udemy and udacity.

• Two professors from MIT have provided an excellent free deep learning book
that can be read here: http://www.deeplearningbook.org/.

• There is also a free and easy-to-read book on neural networks
available online. The book is available here: http://
neuralnetworksanddeeplearning.com/.

These are just a handful of resources, but as this is a fast-growing field, it won't be
difficult to find more resources online.

With this, we come to an end of our introductory chapter on deep learning.

This also brings us to an end of this book. Hopefully it should have been a fun
journey for the readers as it was for me as a writer of this book. The book covered
a lot of real life case studies and sample code and we wish and believe that it will
serve as a good learning experience for our readers who are looking to make a career
change or are already working in the field of big data and analytics. We also believe
that this book would give an opportunity for the java developers who are new to the
concept of big data and machine learning to get a good grasp of these technologies
and take this knowledge and apply it in many real world projects.

https://deeplearning4j.org
http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

Chapter 13

[383]

Summary
This chapter gave a brief introduction to the field of deep learning for developers.
We started with how an artificial neural network mimics the working of our own
nervous system. We showed the basic unit of this artificial neural network, the
perceptron. We showed how perceptrons can be used to depict logical functions
and we later moved on to show their pitfalls. Later, we learnt how the perceptron's
usage can be enhanced by making modifications to it, leading us to the artificial
neuron, the sigmoid neuron. Further we also covered a sample case study for the
classification of Iris flower species based on the features that were used to train our
neural network. We also mentioned how the Java library Deeplearning4j includes
many deep learning algorithms that can be integrated with Apache Spark on the Java
big data stack. Finally, we provided readers with information on where they can find
free resources to learn more.

[385]

Index
A
Activation Function 357
advanced visualization technique

about 95
IVTK Graph toolkit 96
prefuse 95

Alternating Least Square (ALS) 263
Apache Kafka

about 331, 332
healthcare analytics 332
IoT sensors, integration 332
log analytics 333
risk aggregation, in finance 333
social media real-time analytics 332

Apache Spark
about 12
actions 14, 15
actions, on RDDs 19, 20
Apache Mahout 26
Apriori algorithm,

implementation 51-54
common transformations,

on Spark RDDs 18
concepts 12, 13
data, analyzing 17
data, loading 16, 17
data operations 17
data, saving 23
Deeplearning4j 26
FP-Growth algorithm, executing 66-68
machine learning modules 25
paired RDDs 20, 21
programs, executing on Hadoop 23, 24
results, collecting 23
results, printing 23

samples, Java 8 used 16
Spark Java API 15
subprojects 24
transformations 13

Apache Spark machine learning API
about 125
features handling tools 126
machine learning algorithms 125
model selection 126
tuning tools 126
utility methods 126

Apache Spark, machine learning modules
machine learning libraries 25
MLlib Java API 25

Apriori algorithm
disadvantages 54
implementation, in Apache Spark 51-54
using 54

artificial neural network 355

B
bagging 213-215
bag of words 168
bar chart

about 77-79
dataset, creating 78, 79

base project setup 336
default Kafka configurations, used 336, 337
Maven Java project, for Spark

Streaming 337-341
bayes theorem 157-159
bidirected graph 291
big data

Analytical products 6
Batch products 6

[386]

data analytics on 3
for data analytics 3, 4
Hadoop, basics 4-7
Machine learning libraries 6
NoSQL 7
Search 7
Streamlining 6
to bigger pay package, for Java

developers 4
big data stack

Flume 7
HDFS 7
Impala 7
Kafka 7
MapReduce 7
Oozie 7
Spark 7
Sqoop 7
Yarn 7

binary classification dataset 112
boosting 215, 216
bootstrapping 213
box plots 88-95

C
charts

for data visualization and reporting 71
for initial data exploration 70
used, in big data analytics 70

clustering
about 268-270
biology 269
customer segmentation 269
data exploration 269
epidemic breakout zones, finding 269
for customer segmentation 280-287
hierarchical clustering 270, 271
K-means clustering 272, 273
k-means clustering, bisecting 273-275
news categorization 269
news, summarization 270
search engines 269
types 270

clustering algorithm
changing 287, 288

code
diving 374-382

cold start problem 248
collaborative recommendation systems

about 256, 257
advantages 257
collaborative filtering 258-266
disadvantages 258

common transformations, on Spark RDDs
Filter 18
FlatMap 18
Map 18
other transformations 19

Conditional FP Tree 64
Conditional Pattern 64
conditional probability 156, 157
content-based recommendation systems

about 242-244
collaborative recommendation systems 256
content-based recommender,

on MovieLens dataset 249-256
dataset 248, 249
Euclidean Distance 244, 245
Pearson Correlation 246, 247

content-based recommender
on MovieLens dataset 249-256

context
building 34

customer segmentation
about 275
clustering 280-287

D
data

Apriori algorithm 43-47
average value, populating 32
basic analysis, with Spark SQL 33
cleaning 31, 201, 202
constant value, filling 32
converting, to proper format 33
discarding 31
formatting 122
Full Apriori algorithm 48
incomplete data, handling 31
loading 35

[387]

missing data, handling 31
munging 31, 201, 202
nearest neighbor approach 32
parsing 35
preparing 122
Spark SQL, for data exploration

and analytics 43
Spark-SQL way 35-43
storing 122, 123
unwanted data, filtering 31

data analytics
Apache Spark 12
distributed computing, on Hadoop 8
HDFS concepts 8
on big data 3

data exploration
about 197-200, 276-279
of text data 169-174

dataframe 34
DataNode 10
dataset

about 29, 30, 34, 168, 276
airlines dataset 306
airports dataset 305
data 72
data, munging 137
fields 72
full batch approach 365
partial batch approach 365
reference link 136
routes dataset 305
URL, for downloading 71

dataset, linear regression
average price per zipcode, sorting by

highest on top 138
data, cleaning 137
exploring 137
linear regression model, executing 139-143
linear regression model, testing 139-143
number of rows 138

dataset, logistic regression
categorical data 148
data, cleaning 148
data exploration 148-150
data, missing 148
data, munging 148

executing 150-153
testing 150-153

dataset object 205
datasets splitting

features selected 191
Gini Impurity 191-195

data transfer techniques
Flume 120
FTP 120
HBase 121
Hive 121
Impala 121
Kafka 121

data visualization
charts, used in big data analytics 70
with Java JFreeChart 69, 70

decision tree
about 185-188
advantages 195
building 188-190
data, cleaning 201, 202
data exploration 197-200
data, munging 201, 202
dataset 196
datasets splitting, features selected 191
disadvantages 195
for classification 186
for regression 186
model, testing 202-209
model, training 202-208

deep learning
about 353, 366
accuracy 366
advantages 366, 367
information 382
no feature engineering required 366
use cases 366, 367

Deeplearning4j
about 26, 373
Avro 27
data, compressing 26
Parquet 27
references 373

distributed computing
on Hadoop 8

[388]

E
edges 290
efficient market basket analysis

FP-Growth algorithm, used 54-60
ensembling

about 212
advantages 216
averaging 213
bagging 213-215
boosting 215, 216
disadvantages 216, 217
Gradient boosted trees (GBTs) 219-221
machine learning algorithm, used 213
random forest 218
types 213
voting 212

F
feature selection

backward elimination 118
chi-square 116
embedded method 118
filter methods 115
forward selection 118
pearson correlation 115
wrapper method 117

FP-Growth algorithm
array items, by priority 57
conditional patterns, from leaf node

Diapers 62-65
conditional patterns, mining 61, 62
executing, on Apache Spark 66-68
FP-Tree, building 57
frequency of items, calculating 56
frequent patterns, identifying from

FP-Tree 61
priority, assigning to items 56
transaction dataset 56
used, for efficient market basket

analysis 54-60
Frequent Item sets 64
Frequent Pattern Mining

reference link 66

Full Apriori algorithm
about 48
apriori implementation 49-51
dataset 49

G
Gradient boosted trees (GBTs)

about 217-221
data exploration 222-230
dataset, used 221, 222
gradient boosted tree model, testing 236
gradient boosted tree model, training 236
issues, classifying 221, 222
random forest model, testing 230-235
random forest model, training 230-235

graph analytics
about 298
centrality analytics 299
community analytics 299
connectivity analytics 299
datasets 305
GraphFrames 300
GraphFrames, used for building

a graph 300-304
on airports 304
on flights 304
on flights data 306-319
path analytics 299

graphs
adjacency list 292
adjacency matrix 292
common algorithms 294, 295
common terminology 293
plotting 295, 296
refresher 290, 291
representing 292, 293

graphs, common algorithms
breadth first search 294
depth first search 295
dijkstra shortest path 295
PageRank algorithm 295

graphs, common terminology
degrees 294
edges 293

[389]

indegrees 294
outdegrees 294
vertices 293

GraphStream library
reference link 296

H
Hadoop

basics 4-7
distributed computing on 8
features 5
Hadoop core 8
HDFS 8

Hadoop Distributed File System (HDFS)
about 8, 326, 327
data locality 9
DataNode 10
failover support 9
fault tolerance 9
Immense scalability, for amount of data 9
NameNode 10
Open Source 9

hand written digit recognizition
using CNN 374

HBase 326
HDFS concepts

about 8
architecture 9
components 10
design 9
simple commands 11

hierarchical clustering 270, 271
histogram

about 80
creating, JFreeChart used 81
using 81

human neuron
axom terminal 354
cell body 354
dendrite 354

hyperplane 88, 134

I
Impala

advantages 326
Apache Kafka 331, 332

flight delay analysis 327-331
Spark Streaming 333-335
trending videos 341-346
used, for real-time SQL queries 326

Iris dataset
reference link 367

IVTK Graph toolkit
about 96
other libraries 96

J
JFreeChart API

chart component, creating 79
chart object, creating 74
dataset loading, Apache Spark used 73
dataset object, filling 79

K
K-means clustering

about 272, 273
bisecting 273-275

L
linear regression

about 130, 131
dataset 137
used, for predicting house prices 136
using 135, 136

line charts 82-84
logistic regression

about 143
dataset 147
Gradient ascent or descent 145
heart disease, predicting 146
mathematical functions, used 144, 145
Stochastic gradient descent 146
used for 146

M
machine learning

about 100
analytics, executing on big data 119
Apache Spark machine learning API 125
at Netflix 100

[390]

categorical features 111
cross validation 111
data, obtaining in Hadoop 120
data, preparing in Hadoop 120
example 100, 102
features extracted from datasets 111-113
features, selecting to train models 114
Hand writing detection, on cheque

submitted via ATMs 101
issues 107, 108, 109
model, selecting 110, 111
models, storing on big data 123, 124
models, training on big data 123, 124
numerical features 113
semi supervised learning 106
spam filter 101
supervised learning 102
supervised learning, case study 106, 107
text features 113
training/test set 110
type 102
un-supervised learning 104, 105
unsupervised learning, case study 106, 107

massive graphs
graph analytics 298, 299
graph analytics, on airports 304
on big data 297

maths stats
lower quartile 89
max 89
mean 89
median 89
min 89
outliers 90
upper quartile 90

mean squared error (MSE) 274
median value 91
MNIST database

reference link 374
model

selecting 123
storing 124
testing 202-209
training 124, 203-207

multi-layer perceptron
about 362, 363
accuracy 364-366

used, for flower species
classification 367-372

multiple linear regression 134, 135

N
Naive Bayes algorithm

about 159, 160
advantages 160, 161
disadvantages 161

NameNode 10
Natural Language Processing (NLP) 113, 162
neural networks 354, 355, 356
N-grams

about 165
examples 165

O
OpenFlights airports database

reference link 305

P
paired RDDs

about 20, 21
transformations 21, 22

perceptron
about 356-359
issues 359
Logical AND 359
Logical OR 360
multi-layer perceptron 362, 363
sigmoid neuron 361, 362

PFP 66
prefuse

about 95
reference link 95

R
random forest 218
real-time analytics

about 322, 323
ad-processing 323
big data stack 324
fraud analytics 323
in healthcare 323

[391]

recommendations, giving to users 323
sensor data analysis (Internet

of Things) 323
real-time data ingestion

about 325
Apache Flume 325
Apache Kafka 325
Cassandra 325
HBase 325

real-time data processing
about 325, 326
Spark Streaming 325
Storm 325

real-time SQL queries
Apache Drill 324
impala 324
Impala, used 326, 327
on big data 324

real-time storage 325
Recency, Frequency,

and Monetary (RFM) 275
recommendation system

about 240-242
content-based recommendation

systems 242, 243
types 240-242

Resilient Distributed Dataset (RDD) 12, 34

S
scatter plots 84-88
sentimental analysis

about 162
bag of words 168
concepts 162
dataset 168
N-grams 165
on dataset 174-180
stemming 164
term frequency 165, 166
Term Frequency and Inverse Document

Frequency (TF-IDF) 166, 167
term presence 165, 166
text data, data exploration 169-174
tokenization 163

sigmoid neuron 361, 362
simple linear regression 131-134

smoothing factor 161
SOLR 326
SPAM Detector Model 102
SparkConf

building 34
Spark ML 125
Spark SQL

context, building 34
dataframe 34
data, loading 35
data, parsing 35
datasets 34
SparkConf, building 34
used, for basic analysis on data 33

Spark Streaming
about 333-335
base project setup 336
cumulative calculations 335
data collection, in real time 335
predictive analytics, in real time 335
storage, in real time 335
use cases 335
windowed calculations 335

stemming 164
stop words removal 163
Storm 334
sum of mean squared errors (SMEs) 273
supervised learning

about 102
classification 104
regression 104

Support Vector Machine (SVM) 181-183

T
tendency 246
term frequency

about 166
example 166

Term Frequency and Inverse Document
Frequency (TF-IDF) 166

about 167
inverse document frequency 167
term frequency 167

TimeSeries chart
about 71
all india seasonal 71, 72

[392]

annual average temperature series
dataset 71, 72

multiple TimeSeries, on single chart
window 75, 76

simple single TimeSeries chart 72-74
tokenization

about 163
pre-trained model, used 163
regular expression, used 163
stop words removal 163

trending videos
about 341-346
sentiment analysis, at real time 346-351

V
vertexes 290
Visualization ToolKit (VTK)

about 96
URL 96

W
windowed calculations 342

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Big Data Analytics with Java

	Why data analytics on big data?
	Big data for analytics
	Big data – a bigger pay package for Java developers
	Basics of Hadoop – a Java sub-project

	Distributed computing on Hadoop
	HDFS concepts
	Design and architecture of HDFS
	Main components of HDFS
	HDFS simple commands

	Apache Spark
	Concepts
	Transformations
	Actions
	Spark Java API
	Spark samples using Java 8
	Loading data
	Data operations – cleansing and munging
	Analyzing data – count, projection, grouping, aggregation, and max/min
	Actions on RDDs
	Paired RDDs
	Saving data
	Collecting and printing results
	Executing Spark programs on Hadoop
	Apache Spark sub-projects
	Spark machine learning modules
	Mahout – a popular Java ML library
	Deeplearning4j – a deep learning library

	Summary

	Chapter 2: First Steps in Data Analysis

	Datasets
	Data cleaning and munging
	Basic analysis of data with Spark SQL
	Building SparkConf and context
	Dataframe and datasets
	Load and parse data
	Analyzing data – the Spark-SQL way
	Spark SQL for data exploration and analytics
	Market basket analysis – Apriori algorithm

	Implementation of the Apriori algorithm in Apache Spark
	Efficient market basket analysis using
FP-Growth algorithm
	Running FP-Growth on Apache Spark

	Summary

	Chapter 3: Data Visualization

	Data visualization with Java JFreeChart
	Using charts in big data analytics

	Time series chart
	All India seasonal and annual average temperature series dataset
	Simple single Time Series chart
	Multiple Time Series on a single chart window

	Bar charts
	Histograms
	When would you use a histogram?
	How to make histograms using JFreeChart?

	Line charts
	Scatter plots
	Box plots
	Advanced visualization technique
	Prefuse
	IVTK Graph toolkit
	Other libraries

	Summary

	Chapter 4: Basics of Machine Learning

	What is machine learning?
	Real-life examples of machine learning
	Type of machine learning
	A small sample case study of supervised and unsupervised learning

	Steps for machine learning problems
	Choosing the machine learning model
	What are the feature types that can be extracted from the datasets?
	How do you select the best features to train your models?
	How do you run machine learning analytics on big data?
	Getting and preparing data in Hadoop
	Training and storing models on big data
	Apache Spark machine learning API

	Summary

	Chapter 5: Regression on Big Data

	Linear regression
	What is simple linear regression?
	Where is linear regression used?

	Logistic regression
	Which mathematical functions does logistic regression use?
	Where is logistic regression used?
	Predicting heart disease using logistic regression

	Summary

	Chapter 6: Naive Bayes and
Sentiment Analysis

	Conditional probability
	Bayes theorem
	Naïve bayes algorithm
	Advantages of naïve bayes
	Disadvantages of naïve bayes

	Sentimental analysis
	Concepts for sentimental analysis
	Tokenization
	Stop words removal
	Stemming
	N-grams
	Term presence and Term Frequency
	TF-IDF
	Bag of words
	Dataset
	Data exploration of text data

	Sentimental analysis on this dataset

	SVM or Support Vector Machine
	Summary

	Chapter 7: Decision Trees

	What is a decision tree?
	Building a decision tree
	Choosing the best features for splitting the datasets
	Dataset
	Data exploration
	Cleaning and munging the data
	Training and testing the model

	Summary

	Chapter 8: Ensembling on Big Data

	Ensembling
	Types of ensembling
	Bagging
	Boosting
	Advantages and disadvantages of ensembling

	Random forests
	Gradient boosted trees (GBTs)
	Classification problem and dataset used
	Data exploration
	Training and testing our random forest model
	Training and testing our gradient boosted tree model

	Summary

	Chapter 9: Recommendation Systems

	Recommendation systems and their types
	Content-based recommendation systems
	Dataset
	Content-based recommender on MovieLens dataset
	Collaborative recommendation systems
	Advantages
	Disadvantages
	Alternating least square – collaborative filtering

	Summary

	Chapter 10: Clustering and Customer Segmentation on Big Data

	Clustering
	Types of clustering
	Hierarchical clustering
	K-means clustering
	Bisecting k-means clustering

	Customer segmentation
	Dataset
	Data exploration
	Clustering for customer segmentation
	Changing the clustering algorithm
	Summary

	Chapter 11: Massive Graphs on Big Data

	Refresher on graphs
	Representing graphs
	Common terminology on graphs
	Common algorithms on graphs
	Plotting graphs

	Massive graphs on big data
	Graph analytics
	GraphFrames
	Building a graph using GraphFrames

	Graph analytics on airports and their flights
	Datasets
	Graph analytics on flights data

	Summary

	Chapter 12: Real-Time Analytics
on Big Data

	Real-time analytics
	Big data stack for real-time analytics
	Real-time SQL queries on big data
	Real-time data ingestion and storage
	Real-time data processing
	Real-time SQL queries using Impala
	Flight delay analysis using Impala
	Apache Kafka
	Spark Streaming
	Trending videos

	Summary

	Chapter 13: Deep Learning
Using Big Data

	Introduction to neural networks
	Perceptron
	Problems with perceptrons
	Sigmoid neuron
	Multi-layer perceptrons
	Accuracy of multi-layer perceptrons

	Deep learning
	Advantages and use cases of deep learning

	Flower species classification using
multi-Layer perceptrons
	Deeplearning4j
	Hand written digit recognizition
using CNN
	Diving into the code:

	Summary

	Index

