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Preface

Even as you read this content, there is a revolution happening behind the scenes

in the field of big data. From every coffee that you pick up from a coffee store to
everything you click or purchase online, almost every transaction, click, or choice of
yours is getting analyzed. From this analysis, a lot of deductions are now being made
to offer you new stuff and better choices according to your likes. These techniques
and associated technologies are picking up so fast that as developers we all should
be a part of this new wave in the field of software. This would allow us better
prospects in our careers, as well as enhance our skill set to directly impact the
business we work for.

Earlier technologies such as machine learning and artificial intelligence used to sit

in the labs of many PhD students. But with the rise of big data, these technologies
have gone mainstream now. So, using these technologies, you can now predict which
advertisement the user is going to click on next, or which product they would like

to buy, or it can also show whether the image of a tumor is cancerous or not. The
opportunities here are vast. Big data in itself consists of a whole lot of technologies
whether cluster computing frameworks such as Apache Spark or Tez or distributed
filesystems such as HDFS and Amazon S3 or real-time SQL on underlying data using
Impala or Spark SQL.

This book provides a lot of information on big data technologies, including machine
learning, graph analytics, real-time analytics and an introductory chapter on deep
learning as well. I have tried to cover both technical and conceptual aspects of these
technologies. In doing so, I have used many real-world case studies to depict how
these technologies can be used in real life. So this book will teach you how to run a
fast algorithm on the transactional data available on an e-commerce site to figure out
which items sell together, or how to run a page rank algorithm on a flight dataset

to figure out the most important airports in a country based on air traffic. There are
many content gems like these in the book for readers.

[ vii ]




Preface

What this book covers

Chapter 1, Big Data Analytics with Java, starts with providing an introduction to the
core concepts of Hadoop and provides information on its key components. In easy-
to-understand explanations, it shows how the components fit together and gives
simple examples on the usage of the core components HDFS and Apache Spark. This
chapter also talks about the different sources of data that can put their data inside
Hadoop, their compression formats, and the systems that are used to analyze

that data.

Chapter 2, First Steps in Data Analysis, takes the first steps towards the field of
analytics on big data. We start with a simple example covering basic statistical
analytic steps, followed by two popular algorithms for building association rules
using the Apriori Algorithm and the FP-Growth Algorithm. For all case studies, we
have used realistic examples of an online e-commerce store to give insights to users
as to how these algorithms can be used in the real world.

Chapter 3, Data Visualization, helps you to understand what different types of charts
there are for data analysis, how to use them, and why. With this understanding, we
can make better decisions when exploring our data. This chapter also contains lots of
code samples to show the different types of charts built using Apache Spark and the
JFreeChart library.

Chapter 4, Basics of Machine Learning, helps you to understand the basic theoretical
concepts behind machine learning, such as what exactly is machine learning, how it
is used, examples of its use in real life, and the different forms of machine learning.
If you are new to the field of machine learning, or want to brush up your existing
knowledge on it, this chapter is for you. Here I will also show how, as a developer,
you should approach a machine learning problem, including topics on feature
extraction, feature selection, model testing, model selection, and more.

Chapter 5, Regression on Big Data, explains how you can use linear regression to
predict continuous values and how you can do binary classification using logistic
regression. A real-world case study of house price evaluation based on the different
features of the house is used to explain the concepts of linear regression. To explain
the key concepts of logistic regression, a real-life case study of detecting heart disease
in a patient based on different features is used.

[ viii ]




Preface

Chapter 6, Naive Bayes and Sentimental Analysis, explains a probabilistic machine
learning model called Naive Bayes and also briefly explains another popular model
called the support vector machine. The chapter starts with basic concepts such as
Bayes Theorem and then explains how these concepts are used in Naive Bayes.

I then use the model to predict the sentiment whether positive or negative in a set
of tweets from Twitter. The same case study is then re-run using the support vector
machine model.

Chapter 7, Decision Trees, explains that decision trees are like flowcharts and can be
programmatically built using concepts such as Entropy or Gini Impurity. The golden
egg in this chapter is a case study that shows how we can predict whether a person's
loan application will be approved or not using decision trees.

Chapter 8, Ensembling on Big Data, explains how ensembling plays a major role in
improving the performance of the predictive results. I cover different concepts
related to ensembling in this chapter, including techniques such as how multiple
models can be joined together using bagging or boosting thereby enhancing the
predictive outputs. We also cover the highly popular and accurate ensemble of
models, random forests and gradient-boosted trees. Finally, we predict loan default
by users in a dataset of a real-world Lending Club (a real online lending company)
using these models.

Chapter 9, Recommendation Systems, covers the particular concept that has made
machine learning so popular and it directly impacts business as well. In this chapter,
we show what recommendation systems are, what they can do, and how they are
built using machine learning. We cover both types of recommendation systems:
content-based and collaborative, and also cover their good and bad points. Finally,
we cover two case studies using the MovieLens dataset to show recommendations to
users for movies that they might like to see.

Chapter 10, Clustering and Customer Segmentation on Big Data, speaks about clustering
and how it can be used by a real-world e-commerce store to segment their customers
based on how valuable they are. I have covered both k-Means clustering and
bisecting k-Means clustering, and used both of them in the corresponding case

study on customer segmentation.

Chapter 11, Massive Graphs on Big Data, covers an interesting topic, graph analytics.
We start with a refresher on graphs, with basic concepts, and later go on to explore
the different forms of analytics that can be run on the graphs, whether path-based
analytics involving algorithms such as breadth-first search, or connectivity analytics
involving degrees of connection. A real-world flight dataset is then used to explore
the different forms of graph analytics, showing analytical concepts such as finding
top airports using the page rank algorithm.

[ix]
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Chapter 12, Real-Time Analytics on Big Data, speaks about real-time analytics by first
seeing a few examples of real-time analytics in the real world. We also learn about
the products that are used to build real-time analytics system on top of big data.

We particularly cover the concepts of Impala, Spark Streaming, and Apache Kafka.
Finally, we cover two real-life case studies on how we can build trending videos
from data that is generated in real-time, and also do sentiment analysis on tweets by
depicting a Twitter-like scenario using Apache Kafka and Spark Streaming.

Chapter 13, Deep Learning Using Big Data, speaks about the wide range of applications
that deep learning has in real life whether it's self-driving cars, disease detection, or
speech recognition software. We start with the very basics of what a biological neural
network is and how it is mimicked in an artificial neural network. We also cover a lot
of the theory behind artificial neurons and finally cover a simple case study of flower
species detection using a multi-layer perceptron. We conclude the chapter with a
brief introduction to the Deeplearning4j library and also cover a case study

on handwritten digit classification using convolution neural networks.

What you need for this book

There are a few things you will require to follow the examples in this book: a text
editor (I use Sublime Text), internet access, admin rights to your machine to install
applications and download sample code, and an IDE (I use Eclipse and Intelli]).

You will also need other software such as Java, Maven, Apache Spark, Spark
modules, the GraphFrames library, and the JFreeChart library. We mention the
required software in the respective chapters.

You also need a good computer with a good RAM size, or you can also run the
samples on Amazon AWS.

Who this book is for

If you already know some Java and understand the principles of big data, this book
is for you. This book can be used by a developer who has mostly worked on web
programming or any other field to switch into the world of analytics using machine
learning on big data.

A good understanding of Java and SQL is required. Some understanding of
technologies such as Apache Spark, basic graphs, and messaging will also
be beneficial.
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Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

A block of code is set as follows:

Dataset<Row> rowDS = spark.read().csv("data/loan_train.csv");
rowDS.createOrReplaceTempView ("loans") ;
Dataset<Row> loanAmtDS = spark.sqgl ("select c6 from loans") ;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Dataset<Row>data = spark.read() .csv("data/heart disease data.csv");
System.out.println ("Number of Rows -->" + data.count());

Warnings or important notes appear in a box like this.
v

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

If you have any questions, don't hesitate to look me up on LinkedIn via my profile
https://www.linkedin.com/in/rajatm/, I will be more than glad to help a fellow
software professional.

[xi]
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Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

N oGk

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

*  WIinRAR / 7-Zip for Windows

* Zipeg / iZip / UnRarX for Mac

» 7-Zip / PeaZip for Linux
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Big-Data-Analytics-with-Java. We also have other code

bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!
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Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand

the changes in the output. You can download this file from https://www.
packtpub.com/sites/default/files/downloads/BigDataAnalyticswithJava
ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.
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Big Data Analytics with Java

Big data is no more just a buzz word. In almost all the industries, whether it is
healthcare, finance, insurance, and so on, it is heavily used these days. There was

a time when all the data that was used in an organization was what was present

in their relational databases. All the other kinds of data, for example, data present
in the log files were all usually discarded. This discarded data could be extremely
useful though, as it can contain information that can help to do different forms of
analysis, for example, 1og files data can tell about patterns of user interaction with
a particular website. Big data helps store all these kinds of data, whether structured
or unstructured. Thus, all the 1og files, videos, and so on can be stored in big data
storage. Since almost everything can be dumped into big data whether they are 1og
files or data collected via sensors or mobile phones, the amount of data usage has
exploded within the last few years.

Three Vs define big data and they are volume, variety and velocity. As the name
suggests, big data is a huge amount of data that can run into terabytes if not peta
bytes of volume of storage. In fact, the size is so humongous that ordinary relational
databases are not capable of handling such large volumes of data. Apart from data
size, big data can be of any type of data be it the pictures that you took in the 20
years or the spatial data that a satellite sends, which can be of any type, be it text
or in the form of images. Any type of data can be dumped into the big data storage
and analyzed. Since the data is so huge it cannot fit on a single machine and hence
it is stored on a group of machines. Many programs can be run in parallel on these
machines and hence the speed or velocity of computation on big data. As the
quantity of this data is very high, very insightful deductions can now be made
from the data. Some of the use cases where big data is used are:

* In the case of an e-commerce store, based on a user's purchase history
and likes, new set of products can be recommended to the users, thereby
increasing the sales of the site

[11]




Big Data Analytics with Java

Customers can be segmented into different groups for an e-commerce site
and can then be presented with different marketing strategies

On any site, customers can be presented with ads they might be most likely
to click on

Any regular ETL-like work (for example, as in finance or healthcare, and so
on.) can be easily loaded into the big data stack and computed in parallel on
several machines

Trending videos, products, music, and so on that you see on various sites are
all built using analytics on big data

Up until few years back, big data was mostly batch. Therefore, any analytics job that
was run on big data was run in a batch mode usually using MapReduce programs,
and the job would run for hours if not for days and would then compute the output.
With the creation of the cluster computing framework, Apache Spark, a lot of these
batch computations that took lot of time earlier have tremendously improved now.

Big data is not just Apache Spark. It is an ecosystem of various products such as
Hive, Apache Spark, HDFS, and so on. We will cover these in the upcoming sections.

This book is dedicated to analytics on big data using Java. In this book, we will be
covering various techniques and algorithms that can be used to analyze our big data.

In this chapter, we will cover:

General details about what big data is all about
An overview of the big data stack—Hadoop, HDFS, Apache Spark
We will cover some simple HDFS commands and their usage

We will provide an introduction to the core Spark API of RDDs using a few
examples of its actions and transformations using Java

We will also cover a general introduction on Spark packages such as MLlib,
and compare them with other libraries such as Apache Mahout

Finally, we will give a general description of data compression formats such
as Avro and Parquet that are used in the big data world

[2]



Chapter 1

Why data analytics on big data?

Relational databases are suitable for real-time CRUD operations such as order
capture in e-commerce stores but they are not suitable for certain use cases for which
big data is used. The data that is stored in relational databases is structured only but
in big data stack (read Hadoop) both structured and unstructured data can be stored.
Apart from this, the quantity of data that can be stored and parallelly processed in
big data is massive. Facebook stores close to a tera byte of data in its big data stack
on a daily basis. Thus, mostly in places where we need real-time CRUD operations
on data, we can still continue to use relational databases, but in other places where
we need to store and analyze almost any kind of data (whether 1og files, video files,
web access logs, images, and so on.), we should use Hadoop (that is, big data).

Since analytics run on Hadoop, it runs on top of massive amounts of data; it is
thereby a no brainer that deductions made from this are way more different than
can be made from small amounts of data. As we all know, analytic results from
large data amounts beat any fancy algorithm results. Also you can run all kinds
of analytics on this data whether it be stream processing, predictive analytics,

or real-time analytics.

The data on top of Hadoop is parallelly processed on multiple nodes. Hence the
processing is very fast and the results are parallelly computed and combined.

Big data for analytics

Let's take a look at the following diagram to see what kinds of data can be stored in
big data:

Hadoop Ecosystem
(HDFS, Spark, Map
Reduce, Solr, Hive etc.)

[31]
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As you can see, the data from varied sources and of varied kinds can be dumped into
Hadoop and later analyzed. As seen in the preceding image there could be many
existing applications that could serve as sources of data whether providing CRM
data, log data, or any other kind of data (for example, orders generated online or
audit history of purchase orders from existing web order entry applications). Also as
seen in the image, data can also be collected from social media or web logs of HTTP
servers like Apache or any internal source like sensors deployed in a house or in the
office, or external source like customers' mobile devices, messaging applications

such as messengers and so on.

Big data — a bigger pay package for Java
developers

Java is a natural fit for big data. All the big data tools support Java. In fact, some of
the core modules are written in Java only, for example, Hadoop is written in Java.
Learning some of the big data tools is no different than learning a new API for Java
developers. So, putting big data skills in their skillset is a healthy addition for all the
Java developers.

Mostly, Python and R language are hot in the field of data science mainly because of
the ease of use and the availability of great libraries such as scikit-learn. But, Java,
on the other hand has picked up greatly due to big data. On the big data side, there is
availability of good software on the Java stack that can be readily used for applying
regular analytics or predictive analytics using machine learning libraries.

Learning a combination of big data and analytics on big data would get you closer to
apps that make a real impact on business and hence they command a good pay too.

Basics of Hadoop — a Java sub-project

Hadoop is a free, Java-based programming framework that supports the processing
of these large datasets in a distributed computing environment. It is part of the
Apache Software Foundation and was donated by Yahoo! It can be easily installed
on a cluster of standard machines. Different computing jobs can then be parallelly
run on these machines for faster performance. Hadoop has become very successful
in companies to store all of their massive data in one system and perform analysis
on this data. Hadoop runs in a master/slave architecture. The master controls the
running of the entire distributed computing stack.

[4]
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Some of the main features of Hadoop are:

Feature name

Feature description

Failover support

If one or more slave machines go down, the task is transferred
to another workable machine by the master

Horizontal scalability

Just by adding a new machine, it comes within the network
of the Hadoop framework and becomes part of the Hadoop
ecosystem

Lower cost

Hadoop runs on cheap commodity hardware and is much
cheaper than the costly large data solutions of other companies.
For example some bigger firms have large data warehouse
implementations such as Oracle Exadata or Teradata. These
also let you store and analyze huge amounts of data but their
hardware and software both are expensive and require more
maintenance. Hadoop on the other hand installs on commodity
hardware and its software is open sourced.

Data locality

This is one of the most important features of Hadoop and is the
reason why Hadoop is so fast. Any processing of large data is
done on the same machine on which the data resides. This way,
there is no time and bandwidth lost in the transferring of data.

There is an entire ecosystem of software that is built around Hadoop. Take a look at
the following diagram to visualize the Hadoop ecosystem:

Analytics Batch

Stream Machine Learning NoSql and Search
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As you can see in the preceding diagram, for different criteria we have a different
set of products. The main categories of the products that big data has are shown
as follows:

Analytical products: The whole purpose of this big data usage is an ability
to analyze and make use of this extensive data. For example, if you have
click stream data lying in the HDFS storage of big data and you want to find
out the users with maximum hits or users who made the most number of
purchases, or based on the transaction history of users you want to figure
out the best recommendations for your users, there are some popular
products that help us to analyze this data to figure out these details. Some
of these popular products are Apache Spark and Impala. These products are
sophisticated enough to extract data from the distributed machines of big
data storage and to transform and manipulate it to make it useful.

Batch products: in the initial stages when it came into picture, the word "big
data" was synonymous with batch processing. So you had jobs that ran on
this massive data for hours and hours cleaning and extracting the data to
probably build useful reports for the users. As such, the initial set of products
that shipped with Hadoop itself included "MapReduce", which is a parallel
computing batch framework. Over time, more sophisticated products
appeared such as Apache Spark, which also a cluster computing framework
but is comparatively faster than MapReduce, but still in actuality they are
batch only.

Streamlining: This category helps to fill the void of pulling and manipulating
real time data in the Hadoop space. So we have a set of products that can
connect to sources of streaming data and act on it in real time. So using these
kinds of products you can make things like trending videos on YouTube or
trending hashtags on Twitter at this point in time. Some popular products in
this space are Apache Spark (using the Spark Streaming module) and Apache
Storm. We will be covering the Apache Spark streaming module in our
chapter on real time analytics.

Machine learning libraries: In the last few years there has been tremendous
work in the predictive analytics space. Predictive analytics involves usage of
advanced machine learning libraries and it's no wonder that some of these
libraries are now included with the clustering computing frameworks as
well. So a popular machine learning library such as Spark ML ships along
with Apache Spark and older libraries such as Apache Mahout are also
supported on big data. This is a growing space with new libraries frequently
entering the market every few days.
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NoSQL: There are times when we need frequent reads and updates of data
even though big data is involved. Under these situations there are a lot of
non-SQL products that can be readily used while analyzing your data and
some of the popular ones that can be used are Cassandra and HBase both of
which are open source.

Search: Quite often big data is in the form of plain text. There are many use
cases where you would like to index certain words in the text to make them
easily searchable. For example, if you are putting all the newspapers of a
particular branch published for the last few years in HDFS in PDF format,
you might want a proper index to be made over these documents so that they
are readily searchable. There are products in the market that were previously
used extensively for building search engines and they are now integratable
with big data as well. One of the popular and open source options is SOLR
and it can be easily established on top of big data to make the content easily
searchable.

The categories of products we have just depicted previously is not extensive. We
have not covered messaging solutions and there are many other products too apart
from this. For checking on extensive lists refer to a book that specifically covers
Hadoop in detail: for example, the Hadoop Definitive Guide.

We have covered the main categories of products, but let's now cover some of the
important products themselves that are built on top of the big data stack:

Product Description

HDEFS

HDEFS is a distributed filesystem that provides high-performance access to
data across Hadoop clusters

Spark The Spark cluster computing framework is used for various purposes such
as analytics, stream processing, machine learning analytics, and so on, as
shown in the preceding diagram.

Impala Real-time data analytics is where you can fire queries in real time using this

on big data; this is used by data scientists and business analysts.

MapReduce | MapReduce is a programming model and an associated implementation

for processing and generating large datasets with a parallel, distributed
algorithm on a cluster.

Sqoop This helps to pull data from structured databases such as Oracle and push
the data into Hadoop or HDFS

Oozie This is a job scheduler for scheduling Hadoop jobs

Flume This is a tool to pull large amount of streaming data into Hadoop/HSFS

Kafka Kafka is a real-time stream processing engine which provides very high
throughput and low latency.

Yarn This is the resource manager in Hadoop 2
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Distributed computing on Hadoop

Suppose you put plenty of data on a disk and read it. Reading this entire data
takes, for example, 24 hours. Now, suppose you distribute this data on 24 different
machines of the same type and run the read program at the same time on all the
machines. You might be able to parallelly read the entire data in an hour (an
assumption just for the purpose of this example). This is what parallel computing is
all about though. It helps in processing large volumes of data parallelly on multiple
machines called nodes and then combining the results to build a cumulated output.
Disk input/output is so slow that we cannot rely on a single program running on
one

machine to do all this for us.

There is an added advantage of data storage across multiple machines, which is
failover and replication support of data.

The bare bones of Hadoop are the base modules that are shipped with its default
download option. Hadoop consists of three main modules:

* Hadoop core: This is the main layer that has the code for the failover,
data replication, data storage, and so on.

HDEFS: The Hadoop Distributed File System (HDFS) is the primary storage
system used by Hadoop applications. HDFS is a distributed filesystem that
provides high-performance access to data across Hadoop clusters.

* MapReduce: This is the data analysis framework that runs parallely on top
of data stored in HDFS.

As you saw in the options above if you install the base Hadoop package you will get
the core Hadoop library, the HDFS file system, and the MapReduce framework by
default, but this is not extensive and the current use cases demand much more then
the bare minimum products provided by the Hadoop default installation. It is due to
this reason that a whole set of products have originated on top of this big data stack
be, it the streaming products such as Storm or messaging products such as Kafka or
search products such as SOLR.

HDFS concepts

HDFS is Hadoop's implementation of a distributed filesystem. The way it is built, it
can handle large amount of data. It can scale to the extent where the other types of
distributed filesystems, for example, NFS cannot scale to. It runs on plain commodity
servers and any number of servers can be used.
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HDFS is a write once, read several times type of filesystem. Also, you can append
to a file, but you cannot update a file. So if you need to make an update, you need
to create a new file with a different version. If you need frequent updates and the
amount of data is small, then you should use other software such as RDBMS

or HBASE.

Design and architecture of HDFS

These are some of the features of HDFS:

Open source: HDFS is a completely open source distributed filesystem and is
a very active open source project.

Immense scalability for the amount of data: You can store petabytes of data
in it without any problem.

Failover support: Any file that is put in HDFS is broken into chunks (called
blocks) and these blocks are distributed across different machines of the
cluster. Apart from the distribution of this file data, the data is also replicated
across the different machines depending upon the replication level. Thereby,
in case any machine goes down; the data is not lost and is served from the
other machine.

Fault tolerance: This refers to the capability of a system to work in
unfavorable conditions. HDFS handles faults by keeping replicated copies of
data. So due to a fault, if one set of data in a machine gets corrupted then the
data can always be pulled from some other replicated copy. The replica of
the data is created on different machines, so even if the entire machine goes
down, still is no problem as replicated data can always be pulled from some
other machine that has the copy of it.

Data locality: The way HDFS is designed, it allows the main data processing
programs to run closer to the data where it resides and hence they are faster
as less network transfer is involved.

[o]
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Main components of HDFS

There are two main daemons that make up HDFS. They are depicted in the
following diagram:

Disk1
NameNode & —Disk2
——Disk3
DataNode DataNode DataNode

VAA/IANTANN

Digcl Disc2 Disc3 Disc4

As you can see in the preceding diagram, the main components are:

* NameNode: This is the main program (master) of HDFS. A file in HDFS
is broken in to chunks or blocks and is distributed and replicated across
the different machines in the Hadoop cluster. It is the responsibility of the
NameNode to figure out which blocks go where and where the replicated
blocks land up. It is also responsible for clubbing the data of the file when the
full file is asked for by the client. It maintains the full metadata for the file.

* DataNodes: These are the slave processes running on the other machines
(other than the NameNode machine). They store the data and provide the
data when the NameNode asks for it.

The most important advantage of this master/slave architecture of HDFS is failover
support. Thereby, if any DataNode or slave machine is down, the NameNode figures
this out using a heartbeat signal and it would then refer to another DataNode that
has the replicated copy of that data. Before Hadoop 2, the NameNode was the single
point of failure but after Hadoop 2, NameNodes have a better failover support. So
you can run two NameNodes alongside one another so that if one NameNode fails,
the other NameNode can quickly take over the control.
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HDFS simple commands

Most of the commands on HDFS are for storing, retrieving, or discarding data on it.
If you are used to working on Linux, then using HDFS shell commands is simple, as
almost all the commands are a replica of the Linux commands with similar functions.
Though the HDFS commands can be executed by the browser as well as using

Java programs, for the purpose of this book, we will be only discussing the shell
commands of HDFS, as shown in the following table:

Command

What it does

mkdir

This helps you to make a directory in HDEFS:
hdfs dfs -mkdir /usr/etl

You always start the command with hdfs dfs and then the actual
command, which is exactly similar to the Linux command. In this case, this
command makes a directory et1 inside the /usr directory in hdfs.

put

This helps you to copy a file from a local filesystem to hdfs:
hdfs dfs -put dataloadl.txt /usr/etl

This copies a file dataloadl.txt to /usr/etl directory inside hdfs

1s

This helps you to list out all files inside a directory:
hdfs dfs -1ls /usr/etl (lists out files inside /usr/etl)

rm

This helps you to remove a file:
hdfs dfs -rm /usr/etl/dataload.txt
(deletes dataload. txt inside /usr/etl)

du -h

This helps you to check the file size:
hdfs dfs -du -h /usr/etc/dataload.txt

chmod

This helps you to change the permissions on all:
hdfs dfs -chmod 700 /usr/etl/dataload.txt

This only gives the owner of the file complete permissions; rest of the users
won't have any permissions on the file.

cat

This helps you to read the contents of a file:
hdfs dfs -cat /usr/etl/dataload.txt

head

This helps you to read the top content (few lines from top) of a file:
hdfs dfs -head /usr/etl/dataload.txt

Similarly, we have the tail command to read a few lines from the bottom
of a file.

mv

This helps you to move a file across different directories:

hdfs dfs -mv /usr/etl/dataload.txt /usr/input/
newdataload. txt

[11]



Big Data Analytics with Java

Apache Spark

Apache Spark is the younger brother to the MapReduce framework. It's a cluster
computing framework that is getting much more attraction now in comparison
to MapReduce. It can run on a cluster of thousands of machines and distribute
computations on the massive datasets across these machines and combine

the results.

There are few main reasons why Spark has become more popular than MapReduce:

» It is way faster than MapReduce because of its approach of handling a lot of
stuff in memory. So on the individual nodes of machines, it is able to do a lot
of work in memory, but MapReduce on the other hand has to touch the hard
disk many times to get a computation done and the hard disk read/write is
slow, so MapReduce is much slower.

* Spark has an extremely simple API and hence it can be learned very fast.
The best documentation is the Apache page itself, which can be accessed
at spark.apache. org. Running algorithms such as machine learning
algorithms on MapReduce can be complex but the same can be very simple
to implement in Apache Spark.

* It has a plethora of sub-projects that can be used for various other operations.

Concepts

The main concept to understand Spark is the concept of RDDs or Resilient
Distributed Dataset.

So what exactly is an RDD?

A resilient distributed dataset (RDD) is an immutable collection of objects. These
objects are distributed across the different machines available in a cluster. To a Java
developer, an RDD is nothing but just like another variable that they can use in their
program, similar to an ArrayList. They can directly use it or call some actions on it,
for example, count () to figure out the number of elements in it. Behind the job, it
sparks tasks that get propagated to the different machines in the cluster and bring
back the computed results in a single object as shown in the following example:

JavaRDD<String> rows = sc.textFile("univ_rankings.csv") ;
System.out.println("Total no. of rows --->"+ rowRdd.count()) ;

[12]
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The preceding code is simple yet it depicts the two powerful concepts of Apache
Spark. The first statement shows a Spark RDD object and the second statement
shows a simple action. Both of them are explained as follows:

* JavaRDD<Strings>: This is a simple RDD with the name rows. As shown in
the generics parameter, it is of type string. So it shows that this immutable
collection is filled with string objects. So, if Spark, in this case, is sitting on
10 machines, then this list of strings or RDD will be distributed across the 10
machines. But to the Java developer, this object is just available as another
variable and if they need to find the number of elements or rows in it, they
just need to invoke an action on it.

* rows.count (): This is the action that is performed on the RDD and it
computes the total elements in the RDD. Behind the scene, this method
would run on the different machines of the cluster parallelly and would club
the computed result on each parallel node and bring back the result to the
end user.

RDD can be filled with any kind of object, for example,
S Java or Scala objects.

Next we will cover the types of operations that can be run on RDDs. RDDs support
two type of operations and they are transformations and actions. We will be covering
both in the next sections.

Transformations

These are used to transform an RDD into just another RDD. This new RDD can later
be used in different operations. Let's try to understand this using an example as
shown here:

JavaRDD<String> lines = sc.textFile("error.log") ;

As shown in the preceding code, we are pulling all the lines from a 1og file called
error.log into a JavaRDD of strings.

Now, suppose we need to only filter out and use the data rows with the word error
in it. To do that, we would use a transformation and filter out the content from the
lines RDD, as shown next:

JavaRDD<String> filtered = rowRdd.filter(s -> s.contains("error"));
System.out.println ("Total no. of rows --->"+ filtered.count());
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As you can see in the preceding code, we filtered the RDD based on whether the
word error is present in its element or not and the new RDD filtered only
contains the elements or objects that have the word error in it. So, transformation
on one RDD produces another RDD only.

Actions

The user can take some actions on the RDD. For example, if they want to know the
total number of elements in the RDD, they can invoke an action count () onit. It's
very important to understand that until transformation, everything that happens
on an RDD is in lazy mode only; that is, to say that the underlying data remains
untouched until that point. It's only when we invoke an action on an RDD that

the underlying data gets touched and an operation is performed on it. This is a
design-specific approach followed in Spark and this is what makes it so efficient.
We actually need the data only when we execute some action on it. What if the user
filtered the error log for errors but never uses it? Then storing this data in memory
is a waste, so thereby only when some action such as count () is invoked will the
actual data underneath be touched.

Here are few common questions:

*  When RDD is created, can it be reused again and again?

An RDD on which no action has been performed but only transformations
are performed can be directly reused again and again. As until that point

no underlying data is touched in actuality. However, if an action has been
performed on an RDD, then this RDD object is utilized and discarded as
soon as it is used. As soon as an action is invoked on an RDD the underlying
transformations are then executed or in other words the actual computation
then starts and a result is returned. So an action basically helps in the return
of a value.

*  What if I want to re-use the same RDD even after running some action on it?

If you want to reuse the RDD across actions, then you need to persist it or,

in other words, cache it and re-use it across operations. Caching an RDD is
simple. Just invoke an API call persist and specify the type of persistence. For
example, in memory or on disk, and so on. Thereby, the RDD, if small, can
be stored in the memory of the individual parallel machines or it could be
written to a disk if it is too big to fit into memory.

An RDD that is stored or cached in this way, as mentioned earlier, is
reusable only within that session of Spark Context. That is, to say if your
program ends the usage ends and all the temp disk files of the storage of
RDD are deleted.
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So what would you do if you need an RDD again and again in multiple
programs going forward in different SparkContext sessions?

In this case, you need to persist and store the RDD in an external storage
(such as a file or database) and reuse it. In the case of big data applications,
we can store the RDD in HDFS filesystem or we can store it in a database
such as HBase and reuse it later when it is needed again.

In real-world applications, you would almost always persist an RDD in
memory and reuse it again and again to expedite the different computations
you are working on.

What does a general Spark program look like?
Spark is used in massive ETL (extract, transform, and load), predictive
analytics, or reporting applications.
Usually the program would do the following:
1. Load some data into the RDD.

2. Do some transformation on it to make the data compatible to handle
your operations.

Cache the reusable data across sessions (by using persist).

Do some actions on the data; the action can be ready-made or can be
custom operations that you wrote in your programs.

Spark Java API

Since Spark is written in Scala, which inherently is written in Java, Java is the big
brother on the Apache Spark stack and is fully supported on all its products. It has
an extensive API on the Apache Spark, stack. On Apache Spark Scala is a popular
language of choice but most enterprise projects within big corporations still heavily
rely on Java. Thus, for existing java developers on these projects, using Apache Spark
and its modules by their java APIs is relatively easy to pick up. Here are some of the
Spark APIs that java developers can easily use while doing their big data work:

Accessing the core RDD frameworks and its functions
Accessing Spark SQL code

Accessing Spark Streaming code

Accessing the Spark GraphX library

Accessing Spark MLIib algorithms
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Apart from this, Java is very strong on the other big data products as well. To show
how strong Java is on the overall big data scene, let's see some examples of big data
products that readily support Java:

* Working on HBase using Java: HBase has a very strong java API and data
can easily be manipulated on it using Java

* Working on Hive using Java: Hive is a batch storage product and working
on it using Java is easy as it has a good Java API.

* Even HDFS supports a Java API for regular file handling operations
on HDFS.

Spark samples using Java 8

All our samples in the book are written using Java 8 on Apache Spark 2.1. Java 8 is
aptly suited for big data work mainly because of its support for lambda's, due to
which the code is very concise. In the older versions of Java, the Apache Spark Java
code was not concise but Java 8 has changed completely.

We will encourage the readers of this book to actively use the Java 8 API on Apache
Spark as it not only produces concise code, but overall improves the readability and
maintainability of the code. One of the main reasons why scala is heavily used on
Apache Spark was mainly due to the concise and easy to use APIL. But with the usage
of Java 8 on Apache Spark, this advantage of Scala is no longer applicable.

Loading data

Before we use Spark for data analysis, there is some boilerplate code that we always
have to write for creating the sparkConfig and creating the sparkContext. Once
these objects are created, we can load data from a directory in HDEFS.

For all real-world applications, your data would either reside in HDFS or
X in databases such as Hive/HBase for big data.

Spark lets you load a file in various formats. Let's see an example to load a simple
CSV file and count the number of rows in it.

We will first initialize a few parameters, namely, application name, master (whether
Spark is locally running this or on a cluster), and the data filename as shown next:

private static String appName =LOAD DATA APPNAME";
private static String master =local";
private static String FILE NAME =univ_rankings.txt";\
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Next, we will create the sparkContext and Spark config object:

SparkConf conf =new
SparkConf () . setAppName (appName) . setMaster (master) ;
JavaSparkContext sc =new JavaSparkContext (conf) ;

Using the SparkContext, we will now load the data file:

JavaRDD<String> rowRdd = sc.textFile(FILE NAME) ;

Data operations — cleansing and munging

This is the task on which the data analyst would be spending the maximum amount
of time on. Most of the time, the data that you would be using for analytics will come
from log files or will be generated from other data sources. The data won't be clean
and some data entries might be missing or incorrect completely. Before any data
analytic tasks can be run on the data, it has to be cleaned and prepared in good shape
for the analytic algorithms to run on. We will be covering cleaning and munging in
detail in the next chapter.

Analyzing data — count, projection, grouping,

aggregation, and max/min

I assume that you already have Spark installed. If not, refer to the Spark
documentation on the web for installing Spark on your machine. Let's now use some
popular transformation and actions on Spark.

For the purpose of the following samples, we have used a small dataset of university
rankings from Kaggle.com. It can be download from this link: https: //www.
kaggle.com/mylesoneill/world-university-rankings. It is a comma-separated
dataset of university names followed by the country the university is located at.
Some sample data rows are shown next:

Harvard University, United States of America
California Institute of Technology, United States of America
Massachusetts Institute of Technology, United States of America ..

Common transformations on Spark RDDs
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We will now cover a few common transformation operations that we frequently run
on the RDDs of Apache Spark:

1.

Filter: This applies a function to each entry of the RDD, for example:

JavaRDD<String> rowRdd = sc.textFile(FILE NAME) ;
System.out.println (rowRdd.count ()) ;

As shown in the preceding code, we loaded the data file using Spark context.
Now, using the filter function we will filter out the rows that contain the
word Santa Barbara as shown next:

JavaRDD<String> filteredRows = rowRdd.filter(s ->

s.contains ("Santa Barbara")) ;
System.out.println(filteredRows.count ()) ;

Map: This transformation applies a function to each entry of an RDD.
In the RDD we read earlier we will find the length of each row of data using
the map function as shown next:

JavaRDD<Integer> rowlengths = rowRdd.map(s -> s.length());

After reading the length of each row in the RDD, we can now collect the data
of the RDD and print its content:
List<Integer> rows = rowlengths.collect () ;

for (Integer row : rows){
System.out.println (row) ;

}

FlatMap: This is similar to map, except, in this case, the function applied to
each row of RDDs will return a list or sequence of values instead of just one,
as in case of the preceding map. As an example, let's create a sample RDD of
strings using the parallelize function (this is a handy function for quick
testing by creating dummy RDDs):

JavaRDD<String> rddX = sc.parallelize(

Arrays.asList ("big data", "analytics", "using java"));

On this RDD, let's split the strings by the spaces between them:
JavaRDD<String[]> rddY = rddX.map(e -> e.split(" "));

Finally, £1atMap will connect all these words together into a Single List of
object as follows:

{"big", "data", "analytics", "using", "java"}

JavaRDD<String> rdd¥2 = rddX.flatMap(e ->
Arrays.asList (e.split (" ")) .iterator());
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We can now collect and print this rddy2 in a similar way as shown here for
other RDDs.

5. Other common transformations on RDDs are as follows:

Other transformation Description

Union This is a union of two RDDs to create a single one. The
new RDD is a union set of both the other RDDs that are
combined.

Distinct This creates an RDD of only distinct elements.

Map paritions This is similar to a map as shown earlier, but runs sepa-
rately on each partition block of the RDD.

Actions on RDDs

As mentioned earlier, the actual work on the data starts when an action is invoked.
Until that time, all the transformations are tracked on the driver program and sent to
the data nodes as a set of tasks.

We will now cover a few common actions that we frequently run on the RDDs of
Apache Spark:

e count: This is used to count the number of elements of an RDD.

For example, the rowRdd. count () method would count the rows in
row RDD.

* collect: This brings back all the data from different nodes into an array on
the driver program (It can cause memory leaks on the driver if the driver is
low on memory.). This is good for quick testing on small RDDs:
JavaRDD<String> rddX = sc.parallelize(

Arrays.asList ("big data", "analytics", "using java"));
List<String> strs = rddX.collect() ;

This would print the following three strings:
'Big data

Analytics

Using java'

* reduce: This action takes in two parameters and returns one. It is used
in aggregating the data elements of an RDD. As an example, let's create a
sample RDD using the parallelize function:

JavaRDD<String> rddX2 =
sc.parallelize (Arrays.asList ("1","2","3"));
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After creating the RDD rddx2, we can sum up all its integer elements by
invoking the reduce function on this RDD:

String sumResult = rddX2.reduce((String x, String y)->

{

return»»+ (Integer.parselnt (x) + Integer.parselnt(y));

3N

Finally, we can print the sum of RDD elements:

System.out.println ("sumResult ==>"+sumResult) ;

* foreach: Just as the foreach loop of Java works in a collection, similarly this
action causes each element of the RDD to be accessed:

JavaRDD<String> rddX3 = sc.parallelize(

Arrays.asList ("element-1", "element-
2", "element-3")) ;

rddX3.foreach(f -> System.out.println(f));

This will print the output as follows:

element-1
element-2
element-3

Paired RDDs

As HashMap is a key-value pair collection, similarly, paired RDDs are key-value
pair collections except that the collection is a distributed collection. Spark treats these
paired RDDs specially and provides special operations on them as shown next.

An example of a paired RDD:

Let's create a sample key-value paired RDD using the parallelize function:

JavaRDD<String> rddX = sc.parallelize(
Arrays.asList ("videoNamel, 5", "videoName2,6",
"videoName3, 2", "videoNamel,6")) ;

Now, using the mapTopair function, extract the keys and values from the data rows
and return them as an object of a key-value pair or simple a Tuple2:

JavaPairRDD<String, Integer> videoCountPairRdd = rddX.
mapToPair ( (String s)->{

String[] arr = s.split(",");
return new Tuple2<String, Integers(arr[0],
Integer.parselnt (arr[1]));

13N
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Now, collect and print these rules:

List<Tuple2<String, Integer>> testResults =

videoCountPairRdd.collect () ;

for (Tuple2<String, Integer> tuple2 : testResults) {
System.out.println(tuple2. 1);

}
This will print the output as follows:

videoName2
videoName?3
videoNamel

Transformations on paired RDDs

Just as we can run transformations on plain RDDs we can also run transformations
on top of paired RDDs too. Some of the transformations that we can run on paired
RDDs are explained as follows:

* reduceByKey: This is a transformation operation on a key-value paired RDD.
This operation involves shuffling across different data partitions and creates
anew RDD. The parameter to this operation is a cumulative function, which
is applied on the elements and an aggregation is done on those elements to
produce a cumulative result.

In the preceding RDD, we have data elements for video name and hit counts
of the videos as shown in the following table:

Video name Hit counts.
videoNamel 5
videoName?2 6
videoName3 2
videoNamel 6

We will now try to run reduceByKey on the paired RDD to find the net hit
counts of all the videos as shown earlier.

We will be loading the data into an RDD in the same way as shown earlier.
Once the data is loaded, we can do a reduceByKey to sum up the hit counts
on the different videos:

JavaPairRDD<String, Integer> sumPairRdd =
videoCountPairRdd.reduceByKey ((x,y)-> X + V) ;
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After the transformation, we can collect the results and print them as
shown next:

List<Tuple2<String, Integer>> testResults = sumPairRdd.collect () ;

for (Tuple2<String, Integer> tuple2 : testResults)
System.out.println("Title : "+ tuple2. 1 +

", Hit Count : "+ tuple2. 2);

}

The results should be printed as follows:

Title : videoName2, Hit Count : 6
Title : videoName3, Hit Count : 2
Title : videoNamel, Hit Count : 11

* groupByKey: This is another important transformation on a paired RDD.
Sometimes, you want to club all the data for a particular key into one iterable
unit so that you can later go through it for some specific work. groupByKey
does this for you, as shown next:

JavaPairRDD<String, Iterable<Integer>> grpPairRdd =
videoCountPairRdd.groupByKey () ;

After invoking groupByKey on videoCountPairRdd, we can collect and
print the result of this RDD:

List<Tuple2<String, Iterable<Integer>>> testResults = grpPairRdd.
collect () ;

for (Tuple2<String, Iterable<Integers>> tuple2 : testResults) {

System.out.println("Title : "+ tuple2. 1 );
Iterator<Integer> it = tuple2. 2.iterator();
int i =1;
while (it.hasNext ()) {
System.out.println("value "+ 1 +" : "+ it.next());
1++;

}
}

And the results should be printed as follows:

Title : videoName2
value 1 : 6
Title : videoName3
value 1 : 2
Title : videoNamel
value 1 : 5
value 2 : 6
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As you can see, the contents of the videoNamel key were grouped together
and both the counts 5 and ¢ were printed together.

Saving data

The contents of an RDD can be stored in external storage. The RDD can later be
rebuilt from this external storage too. There are a few handy methods for pushing
the contents of an RDD into external storage, which are:

* saveAsTextFile(path): This writes the elements of the dataset as a text file
to an external directory in HDFS

* saveAsSequenceFile(path): This writes the elements of the dataset as a
Hadoop SequenceFile in a given path in the local filesystem — HDFS or any
other Hadoop-supported filesystem

Collecting and printing results

We have already seen in multiple examples earlier that by invoking collect () on
an RDD, we can cause the RDD to collect data from different machines on the cluster
and bring the data to the driver. Later on, we can print this data too.

When you fire a collect on an RDD at that instant the data from the distributed nodes
is pulled and brought into the main node or driver nodes memory. Once the data

is available, you can iterate over it and print it on the screen. As the entire data is
brought in memory this method is not suitable for pulling a heavy amount of data

as that data might not fit in the driver memory and an out of memory error might be
thrown. If the amount of data is large and you want to peek into the elements of that
data then you can save your RDD in external storage in Parquet or text format and
later analyze it using analytic tools like Impala or Spark SQL. There is also another
method called take that you can invoke on the Spark RDD. This method allows

you to pull a subset of elements from the first element of the arrays. Thereby take
method can be used when you need to view just a few lines from the RDD to check if
your computations are good or not.

Executing Spark programs on Hadoop

Apache Spark comes with a script spark-submit in its bin directory. Using this
script, you can submit your program as a job to the cluster manager (such as Yarn)
of Spark and it would run this program. These are the typical steps in running a
Spark program:

1. Create a jar file of your Spark Java code.
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2. Next, run the spark-submit job by giving the location of the jar file and the
main class in it. An example of the command is shown next:

./bin/spark-submit --class <main-class> --master <master-
urls<application-jars>

Some of the commonly used options of spark-submit are shown in the
following table:

spark-submit options | What it does

--class Your Java class that is the main entry point for the spark
code execution.

--master Master URL for the cluster

application-jar Jar file containing your Apache spark code

For additional spark-submit options, please refer to the Spark
s programming guide on the web. It has extensive information on it.

Apache Spark sub-projects

Apache Spark has now become a complete ecosystem of many sub-projects.
For different operations on it, we have different products as shown next:

Spark sub-module | What it does

Core Spark This is the foundation framework for all the other modules. It has the
implementation for Spark computing engine, that is, RDD, executors,
storage, and so on.

Spark SQL Spark SQL is a Spark module for structured data processing. Using
this you can fire SQL queries on your distributed datasets. It's very
easy to use.

Spark Streaming This module helps in processing live data streams, whether they are
coming from products such as Kafka, Flume, or Twitter.

GraphX Helps in building components for Spark parallel graph
computations.

MLlib This is a machine learning library that is built on the top of the Spark

core and hence the algorithms are parallelly distributable across the
massive datasets.
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Spark machine learning modules

Spark MLlIib is Spark's implementation of the machine learning algorithms based on
the RDD format. It consists of the algorithms that can be easily run across a cluster of
computer machines parallelly. Hence, it is much faster and scalable than single node
machine learning libraries such as scikit-1learn. This module allows you to run
machine learning algorithms on top of RDDs. The APl is not very user friendly and
sometimes it is difficult to use.

Recently Spark has come up with the new Spark ML package, which essentially
builds on top of the Spark dataset APIL. As such, it inherits all the good features of
the datasets that are massive scalability and extreme ease of usage. If anybody has
used the very popular Python scikit library for machine learning, they would realize
that the API of the new Spark ML is quite similar to Python scikit. From the Spark
documentation, Spark ML is the recommended way for doing machine learning
tasks now and the old Spark MLIib RDD based API would get deprecated in

some time.

Spark ML being based on datasets allows us to use Spark SQL along with it. Feature
extraction and feature manipulation tasks become very easy as a lot can now be
handled using Spark SQL only, especially the data manipulation work using plain
SQL queries. Apart from this, Spark ML ships with an advanced feature called
Pipeline. Plain data is usually in an extremely raw format and this data usually goes
through a cycle or workflow where it gets cleaned, mutated, and transformed before
it is used for consumption and training of machine learning models. This entire
workflow of data and its stages is very well encapsulated in the new feature called
as Pipeline in the Spark ML library. So you can work on the different workflows
whether for feature extraction, feature transformation or converting features to
mathematical vector format and gel together all this code using the pipeline API

of Spark ML. This helps us in maintaining large code bases of machine learning
stacks, so if later on you want to switch some piece of code (for example, for feature
extraction), you can separately change it and then hook it into the pipeline and this
would work cleanly without changing or impacting any other area of code.

MLIib Java API

The MLIib module is completely supported in Java and it is quite easy to use.

Other machine learning libraries

There are many machine learning libraries currently out there. Some of the popular
ones are scikit-learn, pybrain, and so on. But as I mentioned earlier, these are
single node libraries that are built to run on one machine but the algorithms are not
optimized to run parallelly across a stack of machines and then club the results.
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How do you use these libraries on big data in case there is a particular
algorithm implementation that you want to use from these libraries?

On all the parallel nodes that are running your Spark tasks, make sure the
/>~ particular installation of the specific library is present. Also any jars or
executables that are required to run the algorithm must be available in the
path of the spark-submit job to run this.

Mahout — a popular Java ML library
Apache Mahout is also a popular library and is open source from the Apache stack.
It contains scalable machine learning algorithms. Some of the algorithms can be used
for tasks such as:

* Recommendations

* (lassfications

* (lustering
Some important features of Mahout are as follows:

* Its algorithms run on Hadoop so they work well in a
distributed environment

* It has MapReduce implementations of several algorithms

Deeplearning4j — a deep learning library
This library is fully built on Java and is a deep learning library. We will cover this
library in our chapter on deep learning.

Compressing data

Big data is distributed data that is spread across many different machines. For
various operations running on data, data transfer across machines is a given. These
are the formats supported on Hadoop for input compression: gzip, bzip, snappy, and
so on. While we won't go into detail for the compression piece, it must be understood
that when you actually work on big data analytics tasks, compressing your data will
be always beneficial, providing few main advantages as follows:

* If the data is compressed, the data transfer bandwidth needed is less and as
such the data would transfer fast.

* Also, the amount of storage needed for compressed data is much less.
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* Hadoop ships with a set of compression formats that support easy
distributability across a cluster of machines. So even if the compressed files
are chuncked and distributed across a cluster of machines, you would be able
to run your programs on them without loosing any information or important
data points.

Avro and Parquet

Spark helps in writing the data to Hadoop and in Hadoop input/output formats.
Avro and Parquet are two popular Hadoop file formats that have specific
advantages. For the purpose of our examples, other than the usual file formats

of data, such as log and text format, the files can also be present in Avro or
Parquet format.

So what is Avro and Parquet and what is special about them?

Avro is a row-based format and is also schema based. The schema for the structure
of the data row is stored within the file; due to this, the schema can independently
change and there won't be any impact on reading old files. Also, since it is in
row-based format, the files can easily be split, based on rows and put on multiple
machines and processed parallely. It has good failover support too.

Parquet is a columnar file format. Parquet is specifically suited for applications
where for analytics you only need a subset of your columnar data and not all the
columns. So for things such as summing up/aggregating specific column Parquet
is best suited for such operations. Since Parquet helps in choosing only the columns
that are needed, it reduces disk I/ O tremendously and hence it reduces the time for
running analytics on the data.

Summary

In this chapter, we covered what big data is all about and how we can analyze it.

We showed the 3 Vs that constitute big data: volume, variety, and velocity. We also
covered some ground on the big data stack, including Hadoop, HDFS, and Apache
Spark. While learning Spark, we went through some examples of the Spark RDD API
and also learned a few useful transformations and actions.

In the next chapter, we will get the first taste of running analytics on big data. For
this, we will initially use Spark SQL, a very useful Spark module, to do simple yet
powerful analysis of your data and later we will go on to build complex analytic
tasks while learning market basket analysis.
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Let's take the first steps towards data analysis now. Spark has a very useful module,
Spark. Apache Spark has a prebuilt module called as Spark SQL and this module is
used for structured data processing. Using this module, we can execute SQL queries
on our underlying data. Spark lets you read data from various datasources whether
text, CSV, or Parquet files on HDFS or also from hive tables or HBase tables. For
simple data analysis tasks, whether you are exploring your datasets initially or
trying to analyze and cut a report for your end users with simple stats this module
is tremendously useful.

In this chapter, we will work on two datasets. The first dataset that we will analyze
is a simple dataset and the next one is a more complex real-world dataset from an
e-commerce store.

In this chapter, we will cover the following topics:

* Basic statistical analytic approaches using Spark SQL
* Building association rules using the Apriori algorithm
* Advantages and disadvantages of using the Apriori algorithm

* Building association rules using a faster and more efficient
FP-Growth algorithm

Datasets

Before we get our hands wet in the world of complex analytics, we will take small
baby steps and learn some basic statistical analysis first. This would help us get
familiar with the approach that we will be using on big data for other solutions as
well. For our analysis initially we will take a simple cars JSON dataset that has
details about a few cars from different countries. We will analyze it using Spark SQL
and see how easy it is to query and analyze datasets using Spark SQL. Spark SQL is
handy to use for basic analytics purposes and is nicely suited on big data. It can be
run on massive datasets and data can reside in HDFS.
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To start with a simple case study we are using a cars dataset. This dataset can

be obtained from http://www.carqueryapi.com/. It can be obtained from link
http://www.carqueryapi.com/api/0.3/?callback=?&cmd=getMakes. This
datasets contains data about cars in different countries. It is in JSON format. It is not
a very big dataset from the perspective of big data but for our learning purposes to
start with a simple analytics case study it suits our requirements well. This dataset
has four important attributes shown as follows:

Attribute name Attribute description

make id The type of car, for example Acura, Mercedes
make display Name of the mode of the car

make is_common Check if the makel is a common model

(marked as 1 if it is a common model else 0)

make_country Country where the car is made

We are using this data only for learning purposes. The cars dataset can be

replaced by any other dataset too for our learning purposes here. Hence
= we are not bothered about the accuracy of this data and we are not using

it other than for our simple learning case study here.

Also here is a sample of some of the data in the dataset:

Sample row of dataset Description
{ Here, the make_id or type of car is
"make-id":"acura", acura and it is made in the country
"make display": "Acura", USA.
"make is common":"1",
"make country" : "USA"
}
{ Here, the car is of type AlfaRomeo
"make-id":"alfa romeo", and itis made in Italy.
"make display": "AlfaRomeo",
"make is common":"1",
"make country" : "Italy"

}
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Data cleaning and munging

The major amount of time spent by a developer while performing a data analysis
task is spent in data cleaning or producing data in a particular format. Most of the
time, while performing analysis of some log file data or getting files from some other
system, there will definitely be some data cleaning involved. Data cleaning can be

in many forms whether it involves discarding a certain kind of data or converting
some bad data into a different format. Also note that most of the machine learning
algorithms involve running algorithms on a mathematical dataset, but most of

the practical datasets won't always have mathematical data. Converting text data

to mathematical form is another important task that many developers need to do
themselves before they can apply the data analysis tasks on the data.

If there are problems in the data that we need to resolve before we use it, then this
approach of fixing the data is called as data munging. One of the common data
munging tasks is to fix up null values in data and these null values might represent
either bad data or missing data. Bad or missing data is not good for our analysis as
it can result in bad analytical results. These data issues need to be fixed before we
can use our data in actual analysis. To learn the concepts of how we can fix our data
before we use it in our analysis let's pick up the dataset that we are using in this
chapter and fix the data before analyzing these datasets.

Most of your time as a developer performing the task of data analysis on big data
will be spent on making the data good for training the models. The general tasks
might include:

* Filtering the unwanted data: There are times when some of the data in
your dataset might be corrupted or might be bad. If you can fix this data
somehow, then you should, else you will have to discard it. Sometimes the
data might be good but it might contain attributes that you don't need. In
this case, you can discard these extra attributes. You can also use the Apache
Spark's £ilter method to filter out the unwanted data.

* Handling incomplete or missing data: Not all data points might be present
in the data. In such a situation, the developer needs to figure out which data
point or default data point is needed when the data point is not available.
Filling missing values is a very important task especially if you are using this
data to analyze your dataset. We will look at some of the common strategies
for handling missing data.

* Discarding data: If a lot of attributes in the data are missing, one easy
approach is to discard this row of data. This is not a very fruitful approach
especially if there are some attributes within this row that are meaningful,
which we are using.
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Fill some constant value: You can fill in some constant generic value for
missing attributes; for example, in your car, if you have entries as shown in
the following table with empty make_id and empty make_display:

Dataset one sample row

{

nmake_id n ; nn ,

"make display "; "",
"make country" ;" JAPAN"

}

If we discard these entries, it won't be a good approach. If we are asked to
find the total number of cars from JAPAN in this dataset, then we will use the
following code:

make_country = 'JAPAN'.

To counter this and use this data, we can fill in some constant value such as
Unknown in this field. So the field will look like this:

{ "make id ";"Unknown", "make display "; "UnKnown", "make country"
;" JAPAN" }

As shown earlier, we have filled the Unknown keyword wherever we saw
empty data as in the case of make_id and make_display.

Populate with average value: This might work in some cases. So if you have
a missing value in some column, you can take all the values with good data
in that column and find an average and later use this average value as a
value on that item.

Nearest Neighbor approach: This is one of my favorite approaches, and
once we cover the KNN algorithm in this book we will cover this topic
again. Basically, you find data points that are similar to the one with missing
attributes in your dataset. You then replace the missing attributes with the
attributes of the nearest data point that you found. So suppose you have
your data from the dataset plotted on a scatter plot, as shown in the
following screenshot:
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The preceding screenshot shows some data points of a dataset plotted on the
x and y axis on a scatter plot. Look at the datapoint as shown by the arrow
with Point A as label. If this datapoint has some missing attributes, then we
find the nearest data point to it which in this case is datapoint B as shown by
the other arrow (which has Point B as a label). From this datapoint, we now
pull the missing attributes. For this approach, we use the KNN algorithm or
the K Nearest Neighbor algorithm to figure out the distance of one data point
from another based on some attributes:

Converting data to a proper format: Sometimes you might have to convert
data from one format to another for your analytics task. For example,
converting non-numeric numbers to numeric numbers or converting

the date field to a proper format.

Basic analysis of data with Spark SQL

Spark SQL is a spark module for structured data processing. Almost all the
developers know SQL. Spark SQL provides an SQL interface to your Spark data
(RDDs). Using Spark SQL you can fire SQL queries or SQL-like queries on your big
data set and fetch data in objects called dataframes.

A dataframe is like a relational database table. It has columns in it and we can
apply functions to these columns such as groupBy, and so on. It is very easy to
learn and use.
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In the next section, we will cover a few examples on how we can use the dataframe
and run regular analysis tasks.

Building SparkConf and context

This is just boilerplate code and is the entry point for the usage of our Spark SQL
code. Every spark program will start with this boiler plate code for initialization.
In this code we build the Spark configuration and then apply the configuration
parameters (like application name and master location) and also build the
SparkSession object. This SparkSession object is the main object using

which you can fire SQL queries on your dataset.

SparkConf sconf = new sparkConf () .setAppName (APP_NAME) .setMaster (APP_
MASTER) ;

SparkSession spark = SparkSession.builder () .config(sconf)
.getOrCreate () ;

Dataframe and datasets

Dataframe is a collection of distributed objects organized into named columns. It is
similar to a table in a relational database and you can use Spark SQL to query itin a
similar way. You can build dataframes from various datasources such as JSON files,
CSV files, parquet files or directly from Hive tables, and so on.

A dataset is also a collection of distributed objects, but is essentially a hybrid of

a Resilient Distributed Dataset (RDD) and a dataframe. An RDD or resilient
distributed dataset is a distributed collection of objects, is similar to an array list in
Java except that it is filled with objects that are distributed across multiple machines.
Spark provides low level API to interact with this distributed object. Dataframe on
the other hand is a higher level abstraction on top of RDDs and they are similar

to relational database tables which store data in that format. SQL queries can be
fired on top of dataframes. As we mentioned before a dataset object is a hybrid of
dataframe and RDD and it supports firing SQL queries similar to dataframes and
also applying RDD functions such as map, filter, and flatMap, similar to RDDs.
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Load and parse data

Spark APl is very extensive. We can load data out of the box in different formats
and can clean/munge the data as we require and use it in our analysis tasks. The
following code shows us ways of loading different datasets. Here we are loading
data from a JSON file. This builds Dataset <Row> which is similar to a table in a
relational database, it has a set of columns:

Dataset<Row> carsBaseDF = spark.read() .json("src/resources/data/cars.
json") ;
carsBaseDF.show () ;

Now we will register this dataframe as a temporary view. Just registering it as a temp
table in SparkContext means we can fire queries on it just as you execute queries on
an RDBMS table. That's as simple as it gets. To use this dataset row as a relational
database table and fire queries on it, just use the createOrReplaceTempView method
shown as follows:

carsBaseDF.createOrReplaceTempView ("cars") ;

Now this data is available as a table cars just like a relational database table and you
can fire any SQL queries on it such as select * from cars to pull all the rows.

Analyzing data — the Spark-SQL way

Let's now dive into a few examples. You can find more examples in the
accompanying code in the GitHub repository too. For brevity, I am not showing
the boilerplate code for sparkContext again and again. I will be just referring to
SparkSession object as spark:

* Simply select and print data: Here we will just execute a query on the cars
table and would print a sample result from the entire dataset of results. It's
exactly similar to firing a select query on a relational database table:

Dataset<Row> netDF = spark.sqgl("select * from cars");
netDF.show () ;

[35]



First Steps in Data Analysis

The result will be printed as follows:

e e e e e s o
|make_country| make_display| make_id|make_is_common |
s b bbb e s Ll D et el LU LD P L DL L L e e e L L S LD L
| Italy| Abarth| abarth| a|
| UK | AC| ac| a|

usa| Acura| acura| 1]
| Italy| AlfaRomeo| alfa-romeo| 1|
| UK | Allard| allard| 9|
s el e L D R R L L L Ll el b Bl LS PR R R R L L s
only showing top 5 rows

Filtering on data: Here I will show two simple ways for filtering the data.
First we will select a single column and print results from the top few rows.
For this we will use the spark session and fire a SQL query on the cars table.
We will be selecting only the two columns make_country and make_display
from the cars table shown next. Also, for printing the first few rows, we will
use a handy spark method show (), which will print the first few rows of the
result set:

Dataset<Row> singleColDF =
spark.sql ("select make country,make display fromcars")
singleColDF.show () ;

7

The output is as follows:

The results printed are

J//Result of Selected columns :
fmmmmm——————— fommmmm—————— = ——— +
|make_country| make_display|
o - o +
I Ttaly| Abarth |
| UK | AC |
| Usa| Acura]|
| Ttaly| AlfaRomeo |
| UK| Allard|
e Fommmmmmmmmm——=—-—- +
only showing top 5 rows

Total count: Here we will find the total rows in our dataset. For this we will
use the count method on the dataset. The count method when executed on
the dataset returns the total number of rows in the dataset.

System.out.println("Total Rows in Data --) " + netDF.count() ;
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The output is as follows:

Total Rows in dataset :155

e Selective data: Let's fetch some data based on some criteria:

[e]

Fetch the cars made in Italy only: We will fire a query on our car
view with a where clause specifying the make_country as 'Italy':

Dataset<Row> italyCarsDF =
spark.sql ("select * from cars where make country 'Italy'"};
italyCarsDF.show(}; //show the full content

The result will be printed as follows:

o e e o e 5B St o mim e i e m +
|make_country |make_display| make_id|make_is_common |
fmmmmmm memmdm e m e ————— fmmmmmmm - frmmmmm e m———- +
| Italy| Abarth| abarth| C)
| Ttaly| AlfaRomeo| alfa-romeo| 1]
| Italy| Autobianchi|autobianchi| @]
| Italy| Bizzarrini| bizzarrini| al
| 1raly| sugarrd|  bugarei| 1]
| Italy| De Tomaso| de-tomaso| a8
| Italy| Ferrari| ferrari| 1|
| Ttaly| Fiat| fiat| 1|
|

i e e A B S = e e e e e o B +

Fetch the count of cars from Italy: We will just use the count method
on the dataset we received in the previous call where we fetched the
rows that belonged only to country 'Ttaly":
System.out.println("Data on Italy Cars");

System .out. println ("Number of cars from Italy in this
data set --> " +

italyCarsDF. count ();

This will print the following:

Number of cars from Italy in this dataset --» 17

[37]



First Steps in Data Analysis

[e]

Collect all data and print it: Now discard the show () function as
it is just a handy function for testing and instead of that let's use a
function that we will use to get the data after firing the queries.
List<Row> italyRows = italyCarsDF.collectAsList () ;

for (Row italyRow : italyRows) {
System.out.println("Car type -> " + italyRow.getString(l) ;

}

This will print out all the types of cars that are made in Italy as
shown (we are only showing the first few cars here)

Car type -» Abarth

Car type -» AlfaRomeo
Car type -» Autobianchi
Car type -» Bizzarinni
Car type -» Bugatti

* Total count of cars from Japan in the dataset: We selected records that
belong to Italy. Let's find the total count of cars from Japan in the dataset.
This time we will just pull the count and not the total data for Japanese cars:

Dataset<Row> jpnCarsDF =

spark.sql ("select count (*) from cars where make country =

'Japan'") ;

List<Row> jpnRows = jpnCarsDF.collectAsList () ;
System.out.println("Japan car dataset -----~ > "o+

jpnRows.get (0) .getLong (0) ;

As shown, we build a dataframe by searching only for Japanese cars, and
next we print the count of these rows. The result is as follows:

| Japan car dataset ------ > 15 |

* Distinct countries and their count: Just like we use the distinct clause in
SQL we can use the distinct clause in this big data Spark SQL query. If
the result is small, as in this case, we can do a collect () and bring the data
result in the memory of the driver program and print it there.
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Using the following code, we will print the distinct countries in this dataset
of cars:

Dataset<Row> distinctCntryDF = spark.sqgl("select distinct make
country from

Carg") ;

List<Row> distinctCtry = distinctCntryDF.collectAsList () ;
System.out.println("Printing Distinct Countries below") ;

for (Row drow : distinctCtry)
System.out.println (drow.get (0) .toString() ;

System. out. println( "Total Distinct Countries ; " +
distinctCtry.length) ;

}

And the result is printed as follows:

Printing Distinct Countries below
Denmark

Serbia

India

LK

Total Distinct Countries : 23

Group by country and find count: Now, let's try to find the number of cars

from each country and sort it in descending order. As most Java developers

have used SQL before, this is a simple group by clause along with an order
by for ordering by count in descending order as shown:

Dataset<Row> grpByCntryDF = spark.sqgl("select
make country,count (*) cnt from Cars order by cnt
desc") ;

As seen we fired a simple group by query and counted the number of
countries in the dataset and finally sorted by the count in descending
order. We will now print the first few rows of this dataset:

grpByCntryDF . show ()
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The result should be printed as follows:

uk , 39

USA , 29

Italy , 17
Germany , 16
Japan , 15
France , 8
South Korea , S
Netherlands , 3
China , 3
Sweden , 3
Russia , 3
India , 2
Czech Republic , 2

There is a saying that a picture says a thousand words. Let's plot this in a bar
chart and see how easy it is to visualize this data by country:

Number of Cars

Numbers of cars by country.

|
Germany Japan France China Russia Nether Sweden India Ukraine

lands

UsA Italy

Country

As you can see from the graph, it is very easy to figure out that the UK has
the maximum number of cars in this dataset followed by USA.

We will be covering graphs for visualization in detail in the next chapter.

* Country with maximum number of car listings: First, select a list of count

of cars grouped by country and then register it as a temp table. We call this
temp view as CAR_GRP_BYCNTRY. Now, we fire a query on top of this view
CAR_GRP_BYCNTRY to select the max count and from the max count figure
out the country shown as follows:
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DataSet<Row) grpByAggDF = spark.sql("select make country, count (
*) as cnt

from cars group by make country order by cnt desc");
grpByAggDF.createOrReplaceTempView ("CAR GRP_ BYCNTRY") ;

DataSet<Row) countryWithMaxCarDF = spark.sql("select n.make
country,n.cnt

From CAR GRP BYCNTRY n, (select max(cnt) as m from CAR GRP_BY
CNTRY)

c where n.cnt = c.m") ;

countryWithMaxCarDF.show () ;

This will print the result as follows:

R ittt +-=-+
|make_country|cnt]
e et +---+
| uk| 39|
s f= ==

Saving data to external storage: The results obtained via Spark SQL queries
can easily be dumped into external storage for future use. You can re-read
the external stored files and build the dataframes again and fire queries on
top of them.

Saving to file (as JSON or Parquet): As discussed earlier, Spark helps us
store/read the content in various formats. Here I will show storing the
results in JSON or Parquet format.

1. Select the cars from Italy and save them to external storage as
JSON: First we load the json dataset. Once the dataset is loaded,
we register it as a temporary view. Now we fire our queries on that
and create a new dataset. Finally, we can dump this dataset into an
external storage using the format of data we want to use.
Dataset<Row> carsBaseDF =
spark.read () .json("src/resources/data/cars.json")
carsBaseDF.createOrReplaceTempView ("cars") ;

Dataset<Row> italyCarsDF =
spark.sqgl ("select * from cars where make country='Italy' ");

italyCarsDF.write () .format ("json") .save ("C:/temp/italycars")
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As shown in the last line of the preceding code, we specify the format
of storage that is, json and save it to an external directory. If you go
to this external directory, you will see that there is a folder named
italy cars and within that there will be a file starting with the
word 'part' (that is, this depicts the partitioned data; in case of large
datasets, the data is partitioned into multiple files). Some of the lines
from this data are shown as follows:

{"make country": "Italy","make display":"Abarth", "make
id":"abarth", "make is common":"0"}

{"make country":"Italy", "make display":"AlfaRomeo", "make
id":"alfaromeo", "make is common":"1l"}

{"make country":"Italy", "make display":"Autobianchi", "make
id":"autobianchi", "make is common": "0"}

Take a look at the make_country attribute in the preceding code, all
are Italian cars.

2. Save as parquet: We can also store the data we stored earlier as J[SON
in other formats. This is just a simple change. We will change the
format of the storage to parquet and the rest of the code remains
the same:

italyCarsDF.format ("parquet") .save ("resources/temp/pgt/
italyData") ;

When we store data to an external directory, it does not matter

from a big data perspective whether the directory is on a filesystem
or the directory belongs to a place in HDFS. In fact, in real-world
applications, you will be partitioning and storing the data mostly on
HDFS in some form (for example, as parquet or JSON, and so on).

M Hadoop runs on various other filesystems such as
Q Amazon S3, so the output files can be saved to these
filesystems as well.

Saving to HDFS: The files that we are saving on the operating
system filesystem can also be pushed to HDFS or to any third-party
filesystem such as Amazon S3:

Here we will see how we can save the dataframe on HDFS:

italyCarsDF.write () .format ("parquet") .save ("<PATH IN
HDFS>") ;
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If you execute the preceding code from a machine that is on big data
stack and uses HDFS filesystem, it will then create and insert the data
on HDFS.

4. Re-read the stored data: Let's now re-read the Italian cars data that
we stored to external storage earlier. We will select and print the
Italian cars data but this time read the data from external storage that
is the external JSON file italyData. json. This file can also reside on
HDFS too, apart from the normal filesystem:

DataFrame newItalyCarsDF =

sglCtx.read () .format ("json") .json ("resources/temp/italyData.
jSOn") ;

newltalyCarsDF.registerTempTable ("italy cars");

DataFrame italyCarsDF = sglCtx.sqgl("select * from italy
cars") ;

italyCarsDF.show () ;

As you can see in the preceding code, we just loaded our data
back from the external JSON file. We registered the dataframe as a
temporary view and fired another query on it too.

Spark SQL for data exploration and analytics

Whatever we have depicted earlier using Spark SQL is a simple form of analytics
that can both be used in real-world analytics as well as for exploring your data.

So you can easily use Spark SQL and run queries for counting your data, finding
distinct values or grouping your data to find counts, and so on by categories. Even
though these are simplistic tasks, yet they are very powerful and in many use cases
perhaps these are the only analytics pieces you might need.

Next let's look into a more complex analytics problem. In this problem we will try
to analyze what is in the shopping basket of a consumer and based on that we will
build some deductions and rules.

Market basket analysis — Apriori algorithm

When we shop at any store, we get a receipt of all the items we bought. This receipt
is one transaction and it can have a very unique ID called transaction ID in the
shopping store's database. Note that the store can be an online e-commerce store
too. They keep all these transactions in a database to later study them.
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This transaction history is valuable information for the shop owners or the
e-commerce stores. It tells them about the buying patterns of the customers. Using
this information, they can figure out which items sell the most, or which items go
together. This will help them to arrange items accordingly in the different isles in
their shop. For example they can keep chocolate cookies near to the isle containing
milk as they know that lots of people who buy milk generally tend to buy chocolate
cookies too. Similar to this, an online store can display items that go together, as
shown next from one sample ecommerce store:

Whole Vitamin D Milk, Pasteurized

=
The items shown under this section are the
About the product _‘ one’s that are frequently bought together with
» Fresh Milk “ "Milk".
= Gluten Free

* Dairy Pure

@0 bought this item also bought

- ’
Cucumber, Medium Dairy Pure, 2% Reduced Organic Bananas, 1bunch  Iceberg Lettuce, 1 Head
i vir vyl Fat Milk, Pasteurized, {min. 5 ct.) 88 8 aWET

Gallon, 128 oz
28

Suppose we get a list of few such transactions containing users buying different
items, as shown in the following table:

Transaction ID Items bought (in each transaction)

12761 Chocolate cookies, milk, and papaya

32343 Apples, milk, and diapers

43787 Chocolate cookies, apples, milk, and diapers
77887 Apples and diapers
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As you can see there are four transactions in the preceding table.

Now, let's try to analyze this transaction set and while analyzing we will also study
a very popular data mining algorithm called Apriori algorithm. We will go step-by-
step through this evaluation:

* Item frequency: Find the frequency of each item within this transaction list.
Frequency is nothing but the number of times this item is bought within this
set of transactions. The values are shown as follows:

Item Number of times it was sold | Support
Milk 3 % =0.75
Chocolate cookie | 2 2/4=0.5
Apples 3 Y% =0.75
Papaya 1 Ya=0.25
Diapers 3 % =0.75

From this count of number of items sold, we can see that milk, diapers, and
apples are each sold three times and papaya is sold only once. Thus, papaya
is quite an infrequent item and is not sold much; hence, it does not look
important for the purpose of analysis at all.

But what does the data in the last column under Support mean?
For studying the Apriori algorithms and its analysis, we must learn a few
concepts. Let's try to understand these concepts now:

* Support: In simple terms, support just shows the ratio of the number of
times a particular item or set of items is sold divided by the total number of
transactions as shown:

Support for an item Number of transactions where this item or items were sold
Total Number of Transactions

example :

Support for Milk Number of Transactions containing Milk - 3/4 =0.75

Total Number of Transactions
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Minimum support: If you look at the preceding set of transactions, you can
easily see that there are a lot of combinations for items. So milk goes with
chocolate cookies, milk goes with apples, chocolate cookies go with apples,
and so on. As you can see, there are lots of combinations that you can build
based on this small transaction history dataset itself. But an actual store has
lots of items. If we try building this combination of items across the whole
product list of the store (based on their transactions), you can easily make
out that the amount of combinations and calculations would soon reach to
an unmanageable quantity.

To facilitate in reducing the number of combinations to analyze, the Apriori
algorithm asks the users to set a minimum support ratio below which they
can discard the item or item sets with that support level.

Thus, if the minimum support is 0.5 (that is, the item should be present in
minimum of half of the transactions), then we can discard the items that do
not meet this minimum support value and create the most frequent item set
from the previous set shown as follows:

Number of times Support Description
Item .
item was sold
3/ = 1
Milk 3 s =0.75 Selected as the value is greater

than minimum support

Chocolate cookie | 2

2/4=05 Selected as the value is greater
than minimum support

Apples 3 % =0.75 Selected as the value is greater
PP than minimum support
Papava 1 Ya=10.25 Discarded as the value is less
pay than minimum support
3 = 1
Diapers 3 o =0.75 Selected as the value is greater

than minimum support

As you can see, we discarded Papaya as it was mentioned in only one
transaction and its support value is lower than the minimum support
value. But this brings up an important question.

What is the rule behind choosing only frequently sold items or items that are
frequently sold together?

Here comes an important rule from the Apriori algorithm, which states

that, "If an item set is frequent then its subsets will be frequent too". As an
example, if milk and apples are mentioned frequently in many transactions,
then their subsets, that is, just apples and just milk are also mentioned in a lot
of transactions and hence are frequent too.
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Association rule: Before we dig deeper into this analysis approach, let's try
to understand what an association rule is.

An association rule is an if..then..else type of statement that will link
unrelated data within a database. So if we say "If we buy an item A, then
we are most likely to buy another item B", then this is an association rule.

Association rules are written as follows:

A=>B

That is, if the Left Hand Side (L.H.S) is present, then Right Hand Side
(R.H.S) is most likely going to be present.

An example of an association rule could be as follows:
{Chocolate cookies, Milk} => {Apples}

Thus, if somebody buys chocolate cookies and milk, then they are likely to
buy apples.

If we have a transaction dataset of millions of transactions with thousands if
not millions of items sold, we will have a huge number of association rules.
Managing such a vast number of rules is a waste of computation effort, as
not all rules will hold good, so let's now try to find how good our association
rules are.

How good is an association rule?

From the preceding transaction dataset based on different combinations of
items, we can figure out a lot of association rules as shown earlier. But do we
know which ones are really good enough and which we can utilize?

To figure out which rules are good enough for us to use, we use the concept
of confidence. Thus, we will try to figure out how much confidence we have
in arule.

Confidence: Confidence is the measure of goodness of our association rule.
Thus, for a given association rule {A} => {B} within a set of transaction is
defined as the proportion of transactions that contain A and also contain Y.

Thus, for {A} => {B}, the confidence value is as shown :

Support of ( {A} U {B})
Support of {A}

Confidence for {A} => {B} is
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Support of {A} U {B} shows the value of support from
K= transactions where both A and B are found.

Let's try to calculate confidence for the following rule:
{Chocolate cookie, Milk} => {Apple}

The confidence for this rule will be calculated using the following three steps:

1. First we calculate the support for chocolate cookies, milk, and
apples as:

Support of {Chocolate cookie, milk, apples} = Y2=0.25
2. Then we calculate the support for chocolate cookies and milk as:
Support of {Chocolate cookie, Milk} = 2/4 = 0.5

Finally we calculate the confidence for our association rule as:
Confidence for {Chocolate cookie, Milk} => {Apple} = 0.25/0.5=0.5

Converting this real value result of 0.5 to a percentage we get the value as 50
percent. Thus we have 50% confidence on this association rule.

Full Apriori algorithm

In the previous steps, we saw how item frequency is found and we went over the
concepts of how support, minimum support, and confidence is calculated. Now, let's
look at the full Apriori algorithm given that we have the minimum support level that
we want to run this algorithm on. Apriori algorithm comprises the following steps:

1.
2.

First find the frequent items and item sets.

Discard the item sets that have a frequency lesser than our minimum
support level.

Figure out the association rules from these item sets and figure out their
confidence levels.

Discard the rules that have confidence lesser than the value we are looking
for and sort the association rules in descending order with values with higher
confidence listed on top.
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We will now put these steps into action and walk through an entire Apriori
implementation on a sample dataset that we showed earlier:

* Dataset: Let's get back to our example dataset and solve the full problem
now and build the association rules. As you must have noticed, we had put
a minimum support of 0.5. After removing the items that did not meet the
minimum support, we got a frequent item set shown as follows.

Item Number of times it was sold Support
Milk 3 % =0.75
Chocolate cookie 2 2/4=05
Apples 3 ¥ =0.75
Diapers 3 Y%=0.75

* Apriori implementation: After we collect the single items, we form the
subsets of these items by combining them and forming combinations. The
combinations can be shown as follows:

Our individual items are => { chocolate cookie, milk , Apples, diapers }
From these items, we can now make combinations as { chocolate cookie, milk }, {

chocolate cookie, apples }, { apples, diapers }, and so on.

The full list is shown in the following table. We also collect the Support for these item
sets. Support will be the transaction containing these item sets divided by the total
number of transactions:

Item sets Number of times these item Support
sets are seen in the transactions

Chocolate cookies and milk 2 2/4=05
Apples and milk 2 2/4=05
Diapers and milk 2 2/4=05
Apples, chocolate cookies 1 Y2=10.25

Chocolate cookies and diapers 1 Ya =0.25
Apples and diapers 2 2/4=05
Apples, chocolate cookies, and milk 1 Yy =0.25
Chocolate cookies, diapers, and milk 1 Yo =0.25
Apples, chocolate cookies, diapers, 1 Yy =0.25
and milk

Apples, diapers, and milk 1 Ya =0.25
Apples, chocolate cookies, and diapers | 1 Y4 =0.25
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As shown, we will reject all the item sets or combinations that do not meet our
minimum support value. In our case, we use the minimum support value as 0.5
hence some of the item sets (in grey color in the preceding table) are rejected.

So now our set of combinations that passed our minimum support value will be
as follows:

Item sets Number of times these Support
item sets are seen in the
transactions
Chocolate cookies and milk | 2 2/4=05
Apples and milk 2 2/4=05
Diapers and milk 2 2/4=05
Apples and diapers 2 2/4=05

From these combinations, we now form the association rules. As we said earlier, the
association rule is like an if . . . else statement, which states that if the left hand side
happens then the right hand side might happen, that is:

'if somebody bought apples' => 'they might buy milk.

We can write this rule as:

{apples} => {milk}

As we can see, this rule denotes if L.H.S happens, then R.H.S is possible.

But how do we know that the rule that we have depicted here is good enough?

Enter the confidence value that we had explained earlier. So how do we find our
confidence in the preceding rule? We will use the following formula:

Support of L.H.S and R.H.S both = Support for both Apples and Milk
Support of L.H.S only Support for Apples only
Result=(2/4) = 2/3=10.66

(%)

Thus, our confidence in this rule {Apples} => {Milk} is 0.66 or 66%.
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Now, let's see all the rules based on the combinations we selected earlier:

Left Hand Side (LHS) | Right Hand Side (RHS) Confidence
Chocolate cookies Milk 2/4=10r100%
2/4
Milk Chocolate cookie 2/4 =0.66
3/4
Apples Milk 0.66
Milk Apples 2/4 /% =0.66
Diapers Milk (2/4) / (%) = 0.66
Milk Diapers % / ¥ =1 (this is 100%)
Apples Diapers Ya /% =1
Diapers Apples % /% =1

As you can see, the minimum confidence in our rules is 66% or 0.66.

What if the user says that they are only interested in rules with a minimum
confidence level of 80% ?

In this case, we will filter out the rules that have lesser confidence than this, and we
will have the following rules from the preceding tables.

Note, here we will write the rules in the proper format.

So our final result is as follows:

Rule Confidence
{ Chocolate cookies, Milk } 1
{ Milk, Diapers } 1
{ Apples, Diapers } 1
{ Diapers, Apples } 1

Implementation of the Apriori algorithm
in Apache Spark

We have gone through the preceding algorithm. Now we will try to write the

entire algorithm in Spark. Spark does not have a default implementation of Apriori
algorithm, so we will have to write our own implementation as shown next (refer to
the comments in the code as well).
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First, we will have the regular boilerplate code to initiate the Spark configuration
and context:

SparkConf conf = new SparkConf () .setAppName (appName) .
setMaster (master) ;

JavaSparkContext sc = new JavaSparkContext (conf) ;

Now, we will load the dataset file using the Sparkcontext and store the result in a
JavaRDD instance. We will create the instance of the Aprioriutil class. This class
contains the methods for calculating the support and confidence values. Finally,
we will store the total number of transactions (stored in the transactionCount
variable) so that this variable can be broadcasted and reused on different
DataNodes when needed:

JavaRDD<String> rddX = sc.textFile (FILE NAME) ;
AprioriUtil au = new AprioriUtil();
Long transactionCount = rddX.count () ;

Broadcast<Integer> broadcastVar = sc.broadcast (transactionCount.
intvalue());

We will now find the frequency of items. By frequency we mean the number of
times the item and its combination with other items is repeated in the transactions.
The UniqueCombinations class instance contains the utility methods for helping us
find the item combinations, which we later use to find their frequency in the dataset
of transactions. As shown in the following methods, we first find the combinations
and later use the combination values as the key so that we can run reduceByKey
operations to sum up their frequency count as follows:

UniqueCombinations uc = new UniqueCombinations() ;

JavaRDD<Map<String, String>> combStrArr = rddX.map(s ->
uc.findCombinations(s)) ;

JavaRDD<Set<String>> combStrKeySet = combStrArr.map(m -> m.keySet());
JavaRDD<String> combStrFlatMap = combStrKeySet.flatMap ((Set<String> f)
->

f.iterator()) ;

JavaPairRDD<String, Integer> combCountIndv = combStrFlatMap.
mapToPair (s -> new Tuple2(s, 1)) ;

JavaPairRDD<String, Integer> combCountTotal = combCountIndv.
reduceByKey ( (Integer x, Integer y) -> x.intValue() + y.intValue()) ;

Now we will collect the items and their count as well as the item combinations
and their count and store them in a Map for future use within the program.

To make the collection available across different DataNodes, we put this Map
in a Broadcast variable:

Map<String, Integer> fregMap = combCountTotal.collectAsMap () ;
Broadcast<Map<String, Integer>> bcFregMap = sc.broadcast (fregMap) ;
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Now we will be filtering items with frequency less than support:

Support is the number of minimum counts or frequency of
e an item.

JavaPairRDD<String, Integer> combFilterBySupport = combCountTotal.
filter(c -»>
c._2.intvValue() >= 2);

Since we are interested in association rules where we want to depict that if one item
or items are present then another item might also be present, we are interested in a
combination of items only; hence, we will filter our rules with just a single item
init:

JavaPairRDD<String, Integer> fregBoughtTogether = combFilterBySupport.

filter(s -»>

s._1.indexOf(",") > 0);

Let's start building the actual association rules now. For this, we will go over

the items of frequently bought together RDD and we would invoke a flatMap
method on it. This f1atMap function would break the individual rows into a
collection of objects. On this collection, we will invoke a method getRules from
our UniqueCombinations class. This method getRules would break the items into
left hand side and right hand side combinations and store in a Rule object. Finally,
we will figure out the support of the left-hand side value, support of the right-hand
side value and the confidence value of this rule and store the rule in a collection and
return the result in RDD:

JavaRDD<Rule> assocRules = fregBoughtTogether.flatMap(tp -> {
List<Rule> rules = uc.getRules(tp. 1);
for (Rule rule : rules) {
String lhs = rule.getLhs() ;
String rhs = rule.getRhs() ;
Integer lhsCnt = bcFregMap.value () .get (lhs);
Integer rhsCnt = bcFregMap.value () .get (rhs) ;
Integer lhsRhsBothCnt = bcFregMap.value() .get (tp._1);
double supportLhs = au.findSupport (lhsCnt, broadcastVar.value()) ;
double supportRhs = au.findSupport (rhsCnt, broadcastVar.value()) ;
double confidence = au.findConfidence (lhsRhsBothCnt, 1lhsCnt) ;
rule.setSupportLhs (supportLhs) ;
rule.setSupportRhs (supportRhs) ;
rule.sgsetConfidence (confidence) ;

}

return rules.iterator() ;

13N
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We will start printing our association rules now:

At this point, we can also filter out the rules that do not meet
S our minimum confidence criteria.

List<Rule> rulesColl = assocRules.collect();
for (Rule rl : rulesColl) {
System.out.println(rl.getLhs() + " => " + rl.getRhs() + " , " +

rl.getConfidence()) ;

}

We will now see the uses and any disadvantages of this algorithm:

* Use of Apriori algorithm: Apriori can be used in places where the number of
data transactions is small. It's a simpler algorithm and is easy to maintain on
small amounts of data.

* Disadvantages of Apriori algorithm: Even though Apriori algorithm is easy
to code and use, it has some disadvantages:

o

The main disadvantage of Apriori algorithm is that it is slow.

For such a small dataset as we used earlier there were so many
combinations. Thus, on a very large dataset, it can generate millions
of combinations and so computation-wise it can be slow.

If the number of counts of items sold or combinations sold increases
(which will happen as items do get sold), then the algorithm will
have to rescan the entire dataset and do the computation again.

Thus, as you can see, Apriori algorithm is a good choice for
=" smaller datasets.

Efficient market basket analysis using
FP-Growth algorithm

The Apriori algorithm is slow and requires lot of computation power. When the
number of transactions is very high, the item combination count explodes and
becomes too expensive to compute. Hence, Apriori is not a practical approach on
very large datasets.
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To avoid the pitfalls in Apriori, the FP-Growth algorithm was developed. This
algorithm is especially suited for big data operations and goes well with Apache
Spark and MapReduce. Spark comes with a default implementation of FP-Growth
algorithm in its MLIib library.

Let's now try to understand the concepts behind the FP-Growth algorithm.
What is a FP-Growth algorithm?

FP-Growth algorithm builds on top of the Apriori algorithm and is essentially an
improvement on top of it. It avoids the pitfalls of the Apriori algorithm and is very
fast to run on large datasets. The FP-Growth algorithm uses a different approach
than Apriori and reads the databases of transactions only twice as compared to
Apriori (which has to read the database multiple times) and hence it is much faster.
The algorithm reads through the dataset of transactions and creates a special data
structure called FP-Tree. An example of a Dtree is shown next:

{}

Chocolates : 3

Milk : 2 Bread : 2

Sugar: 2
Bread : 1

As you can see in the preceding diagram, Chocolates has the number 3 next to it.
This number depicts the number of transaction encountered until that particular
row of the dataset.

Unlike normal search trees, the Node in the Dtree can be repeated As you
= can see in the preceding diagram, the node Bread is repeated in this tree.
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The approach to using the FP-Growth algorithm for market basket analysis can be
described in two steps:

*  Build the FP-Tree

* Find frequent item sets using this FP-Tree
Let's now go through the full FP-Growth algorithm step-by-step:

* Transaction dataset: So let's suppose we get a list of a few transactions
containing users buying different items shown in the following table:

Transaction ID Items bought in each transaction

12761 Chocolate cookies, milk, and papaya

32343 Apples, milk, and diapers

43787 Chocolate cookies, apples, milk, and diapers
77887 Apples and diapers

77717 Milk and oranges

* Calculating the frequency of items: Now, let's find the frequency of each
item in the datasets. Frequency is nothing but the number of times the items
show up with in the set of transactions. For example, apples show up three
times in the preceding transactions, hence the frequency is three. The full set
of values is shown in the following table:

Item Frequency

Chocolate cookie
Milk
Papaya

Apples

Diapers

[ NS K SL Y NS TS

Oranges

* Assign priority to items: Now assign a priority to each item in the preceding
list. The item which has more frequency in the dataset is given a higher
priority. The priority of the items are shown in red color in the
following table:
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Item Frequency Priority
Chocolate cookie 2 4
milk 4 1
papaya 1 5
Apples 3 2
diapers 3 3
oranges 1 6

Array items by priority: Now we go back to the transaction list we had in
10.1 and arrange the items in the order of priority with the highest priority
items coming first and lowest one in the end as shown in the following table:

Transaction ID | Items bought Items according to priority
12761 Chocolate cookie, milk, and papaya | Milk, chocolate cookie, and
papaya

32343 Apples, milk, and diapers Milk, apples, and diapers

43787 Chocolate cookie, apples, milk, and | Milk, apples, diapers, and
diapers chocolate cookie

77887 Apples and diapers Apples and diapers

77717 Milk and oranges Milk and oranges

Building the FP-Tree: Once you have arranged the items in the sort order
according to priority, it is the time to build the FP-Tree.

We will start building the FP-Tree by going from the sorted list of first
transaction items downward until we cover all the transactions. The
steps are listed as follows:

1. The first transaction is {Milk, chocolate cookie, papaya }
(in the order of priority).
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For FP-Tree, the initial node is always null or blank and the
remaining nodes root out from it. While writing the item in the node,
we write the count of its occurrence until that transaction. So since
{Milk, chocolate cookie, papaya } is the first transaction only,
the occurrence count of all the items will be 1 until this transaction
and the tree would be as shown next:

Step - 1 {}

Milk - 1

Chocolate
Cogkie : 1

Papaya : 1

As you can see in the preceding diagram, the FP-Tree starts with a
null node and at each node element you can see the count of that
element (up to that transaction).

2. Now pull the second transaction and take the items and see if you
need to walk through the same path of the tree; if not, then you create
a new path. If you walk through the same path, then you increase
the item counts in the entry that already exist. If you are going on
a new path in the tree, then you put the item count as if it's the first
transaction:
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Diapers - 1

Papaya : 1

As you can see in the preceding diagram, Milk was on the same path
twice so we increased its value by 1 whenever it occurred across the
same path in a different transaction. Also, we treat items on a new
path as new items and add a new count of 1 to them. On the new
path, the items can be repeated.

Now we pick the third transaction and plot it on the tree. Note that
none of the existing paths start with Chocolate Cookie; hence, we
create a new path. This new path will contain items that we already
mentioned in the FP-Tree earlier. This is the main difference between
an FP-Tree and a normal search tree. It can contain repeated items as
we mentioned earlier:

Step -3

Papaya : 1

w2 \
Apples -1

Chocolate
Cogkie : 1

Chocolate
Cookje -1

Milk - 1
Diapers - 1

Diapers - 1
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4. Remaining steps: Plotting the remaining transactions on the tree will
show the full FP-Tree as shown next:
Apples - 1 {1
——\h-q—"'mm-colale
il - 3 Cookje -1
Diapers - 1 \ Apples - 1
Apples -1
Chocolate
Cogkie : 1 \
Oranges - 1
Mikc - 1
Diapers - 1 \
Papaya : 1
Diapers - 1
{Milk, Oranges} starts with the existing node Milk, so we increase its
i count further to 3.

As you can see, the whole set of transactions is now fitted into one
small tree. In a way, FP-Tree can compress a huge list of transactions
into a sorted tree structure. This tree structure in some cases can be
easily fitted into a computer's memory for fast computations. In the
case of big data, huge FP-Trees can be distributed across a cluster

of machines.

We have seen the full FP-Tree now but we need to find out a few
more details about the tree as mentioned next.

How do you validate whether the FP-Tree that you have built is
good or not?

The count of the total number of items should exactly match the
count of the items in the original transaction. Thus, as you can
see in the preceding diagram, the count of Milk is 4.

_ Count of Milk Items from the FP-Tree is = Count on First Milk Node + Count on
& Second Milk Node =3 +1=4.
A

Hence, this is correct as it matches the original count of Milk transactions
from the dataset.
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What about the count of Diapers?

As you can see, the diaper's node is mentioned 3 times in the
preceding diagram. Hence, the count of diapers is 3 and this matches
the original count of diapers in the transaction dataset.

Identifying frequent patterns from the FP-Tree: Before we find the frequent
patterns from the FP-Tree, let's check what the minimum support is on which
we want to find the frequent patterns. Let's try to evaluate the pattern at a
minimum support of 0.4.

If the minimum support is 0.4, then what will the support be? Let's see in the
following formula:

Support = minimum support * Number of total transactions
Therefore, Support = 0.4 *5 =2

After we have the minimum support or support value we can start mining the
conditional patterns from the FP-Tree we built earlier.

Mining the conditional patterns: To mine the conditional patterns, we will
go over the tree recursively from the leaf nodes onwards, that is, from the
bottom of the tree upwards. However, the path that we will mention and use
for patterns will always be from the top of the root node to the node we are
evaluating.

Let's see the Full FP-Tree again along with the frequencies of each item:

Apples - 1

Diapers - 1

chocolate cookie 2

0 milk a
/ \Chocolate papaya @
ilk -3

Cookje -1

\ Apples 3
Apples -1 diapers 3

Apples - 1 oranges @
Chocolate

Cogkie : 1

Mitk - 1 Less Than
Diapers - 1 Support So
N Remove.

Diapers - 1

We will traverse the tree from the bottom upwards, but first we reject the
items whose frequencies are lesser than our minimum support value,
that is, 2.

Hence, as shown in the preceding diagram (in red crosses), Oranges and
Papaya are rejected.
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Now, let's start building the conditional pattern base and conditional
FP-Tree.

Let's start with each item and traverse the tree upwards from the leaf nodes
and find the conditional patterns. We will pick one node Diaper and traverse
up and we leave it up to our readers to traverse remaining nodes and figure
out the same. The approach would be exactly the same as we'll explain for
the node Diaper. The reader can later match their results with the result that
our actual Apache Spark FP-Growth program produces.

. Aslalso mentioned earlier, for the purpose of explaining
% this, I am only using the leaf node Diapers. For brevity in this
L section of the book, I leave it to the readers to do the same for
other items in the dataset.

* Conditional patterns from leaf node Diapers: The leaf node Diapers can be
reached by the following paths as shown in the following figure:

Diapers - 1

Conditienal Patterns for '‘Diapers’

1. {Apples : 1}
2. {Milk, Apples : 1}
3. {Chocolate Cookie, Apples, Milk: 1}

In the preceding figure, the blue, green, and purple lines denote the various
paths by which Diapers can be reached in the FP-Tree and the number of its
occurrences within that path. Each path denotes a conditional pattern. Hence,
all the conditional patterns for diapers are:
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Item

Conditional patterns

Diapers

{ Apples : 1}, {Milk, Apples :
Cookie, Apples, Milk : 1}

1}, {Chocolate

Now that you have the conditional patterns, let's look at our next question:

How will you make the conditional tree out of the conditional pattern you

found for diapers?

Making the conditional tree is simple. Just use the conditional patterns as a
new dataset (given the condition that diapers are already selected). So, with
this new dataset, we'll now make the conditional tree, but first we'll make the
header table with the item frequencies and priorities.

Item Frequency (or count) Priority
Apples 3 1
Milk 2 2
Chocolate cookie 1 3

Now, let's make the tree again iterating the transactions:

Apples: 1

Conditional FP-Tree for 'Diapers” using transactions

Apples 1

{ apples : 1}, {Milk, Apples : 1}, {Chocolate Cockie, Apples, Milk: 1}

Chnr.-nlau
ki : 1

ples -1

Milk : 1

As you can see, this is our Conditional FP-Tree for Diapers based on the conditional

patterns we found for it.
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Now, let's again build the Conditional Patterns Base, Conditional FP Tree, and
Frequent Item sets from the tree shown in the preceding table:

Item Conditional Conditional Frequent item Meets 'support'
Pattern FP-tree sets
Apples {Milk : 1}, - None of the
{Chocolate items meet
Cookie : 1} minimum
support
Milk {Chocolate - - None of the
Cookie, items meet
Apples : 1 } minimum
support
Chocolate No Items - - No items

Cookie

As all the Conditional Pattern items below the minimum support count are rejected,
there are no frequent item sets from the Conditional-FP tree. Here, we just checked
the combination and rejected the combinations, but we have not evaluated the
individual items yet. The individual items from the conditional pattern of diapers
had some values greater than the minimum support as shown in the following table:

Item Frequency (or Count) Priority Meets 'Support'
Apples 3 1 Yes
Milk 2 2 Yes
Chocolate cookie | 1 3 No

We have eliminated all the items that did not meet the minimum
s support here as well.

As you can see, only two items are above the minimum support and they are
{ppples : 2} and {Milk : 2}.

Thus, we get the frequent item set for diapers as shown next:

{Apples, Diapers : 3}, {Milk, Diapers : 2} and the combination of apples
and milk along with diapers, that is, {Apples, Milk, Diapers}.
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So, finally, we have the list of association rules for the item Diapers. But our
algorithm is not finished yet. We need to repeat the same approach for the other
items. Similar to what we did for diapers earlier, we have to go over all the other
items in the list of our main Header Table, that is, our original list of items. For
refreshing your memory, I have shown the same list of transactions again:

Items from main transaction Frequency Priority
dataset

Milk 4 1
Apples 3 2
Diapers 3 3
Chocolate cookie 2 4

As shown in the preceding table, we have the original list of items and their
frequency. We have also reshown the priority here. From this we find Conditional
Patterns, Conditional FP-Tree, frequent itemsets for the remaining items, that is,
chocolate cookie, apples, and milk in a similar way as we did for Diapers.

I have discarded oranges and papaya in the preceding table as

they don't meet the minimum support. This is our assumption
s that if the items are infrequent, their combinations would be

infrequent too, hence they are completely discarded.

FP-Growth algorithm has some clear advantages over Apriori; we will list the
following advantages below:

What are the advantages of using FP-Growth over Apriori?

FP-Growth is a very popular algorithm and it is much more popular than
Apriori because:

* It only requires you to scan the transaction dataset two times for building
the FP-Tree. On the other hand, in Apriori, you have to scan the transaction
dataset again and again. If the number of transactions in the dataset is very
high, which is quite possible for a big data project, then Apriori will become
just too slow to handle. On the other hand, FP-Growth will be much faster in
this case.

* FP-Growth compresses the transaction data in the form of an FP-Tree data
structure; hence, it can fit in memory too in certain cases if the data is good
enough to fit in memory. In this case, it will become even faster.
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* There is a parallel version of FP-Growth algorithm (this is the version
that Spark uses). It distributes the FP-Growth computation on a cluster
of machines and this version is massively scalable.

Running FP-Growth on Apache Spark

Apache Spark implements a parallel version of FP-Growth called as PFP. In this
version, the dataset of transactions is broken and distributed across a cluster of
machines. So the frequency count of operations is individually done on the cluster
of machines. Later the result of the frequency count is combined. This algorithm
now groups the transactions into different groups. The groups are individually
independent in such a way that FP-Trees can be locally built based on them on
different machines of the cluster. Later, the results can be combined for the frequent
itemsets. Thus, this implementation is massively scalable. For a complete description
of the algorithm, refer to the research paper mentioned on Spark documentation at
https://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.
html. Even though the algorithm is distributed underlying the principle of finding
frequent item sets the technique is still the same.

The Spark Java code for the same algorithm is shown next.

We are using the same transaction dataset as we used in our FP-Growth
= example earlier.

We will build the sparkContext with instance sc. Next, using this instance we load
our dataset of transactions:

JavaRDD<String> data =
sc.textFile("resources/data/retail/retail small fpgrowth.txt");

Now, break each row of transaction into individual items and store these items as a
list of strings per row in a Spark RDD object called transactions:

JavaRDD<List<String>> transactions = data.map (
new Function<String, List<String>>() {
public List<String> call (String line) {
String[] parts = line.split(" ");
return Arrays.aslList (parts);
}
}
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Now create an instance of FP-Growth algorithm that is provided by Apache Spark
and is present in the MLIib API of Spark:

On the FP-Growth instance, see how we are setting the value of the
Y MinSupport as 0.4.

FPGrowth fpg = new FPGrowth() .setMinSupport (0.4) .setNumPartitions (1) ;

Now, run the FP-Growth algorithm instance on the transactions RDD object we
built earlier. This would create the FP-Tree and create the association rules internally
and store the results in a FPGrowthModel object:

FPGrowthModel<String> model = fpg.run(transactions) ;

Get the list of frequent items and print them. You can get this list from the
FPGrowthModel instance you built earlier:

for (FPGrowth.FregItemset<String> itemset:
model . fregItemsets () .toJavaRDD () .collect ())

System.out.println("[" + itemset.javaltems() + "], " + itemset.
freq());

}

Now define the minimum confidence value and apply it to get the association rules
from the FPGrowthModel object:

double minConfidence = 0.0;
for (AssociationRules.Rule<Strings> rule

: model.generateAssociationRules (minConfidence) .toJdavaRDD () .
collect()) {

System.out.println (
rule.javaAntecedent () + " => " + rule.javaConsequent() + ", " +
rule.confidence()) ;

}
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And the results would be printed as follows:

[apples, milk] => [diapers], 1.0
[milk] => [diapers], 0.5

[milk] => [apples], 0.5
[milk] => [chocolate], 0.5
[apples] => [diapers], 1.0
[apples] => [milk], 0.66
[diapers, apples] => [milk], 0.66
[diapers] => [apples], 1.0
[diapers] => [milk], 0.66
[diapers, milk] => [apples], 1.0
[chocolate] => [milk], 1.0

Summary

We started this chapter on a simple note by going over the very basic yet very power
simple analytics on simple datasets. While doing so, we also learned a very powerful
module of Apache Spark called Spark SQL. Using this module, Java developers can
use their regular SQL skills and analyze their big data datasets.

After exploring the simple analytics piece using spark-sql, we went over two
complex analytic algorithms: Apriori and FP-Growth. We learned how we can
use these algorithms to build association rules from a transaction dataset.

In the next chapter, we will learn the basics of machine learning and get an
introduction to the machine learning approach for dealing with a predictive
analytics problem.
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It's easier to analyze your data once you can view it. Viewing data requires putting
your data points in charts or graphs that you can visualize and figure out the various
details. You can also generate charts/graphs after running your analytic logic. This
way you can visualize your analytical results as well. As a Java developer you have
lots of open source tools at your disposal that you can use for visualizing your data
and the results.

In this chapter we will cover:

* Six types of charts and their general use and concepts
* Sample datasets used in building the charts
*  Brief JFreeChart introduction

* Anexample of each type of chart using the JFreeChart and Apache Spark API
on big data

Data visualization with Java JFreeChart

JFreeChart is a popular open source chart library built in Java. It's used in various
other open source projects as well such as JasperReports (open source reporting
framework). You can build a number of popular charts such as pie charts, time series
charts, and bar charts to visualize your data with this library.

JFreeChart builds the axis and legends in the charts and provides automatic features
such as zooming into the charts with your mouse. For simple chart visualizations
that the developer can use to build the models (using lesser data) JFreeChart is

good but for extensive data visualization that you need to ship to your customers

or end users you are better off with an elaborate data visualization product such as
Tableau or QlikView over big data. Although we will cover some of the charts from
JFreeChart, this chapter is by no means an extensive take on JFreeChart.
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For this book and its examples, we use these charts extensively for visualizing our
datasets. In most of the cases, the boilerplate code (the code involved in building

the chart) is the same and we will just change the dataset. From this dataset, we will
pull the data and provide it in the format (read the type of dataset object) that the
JFreeChart library requires and pass it to the chart object that we need. For most of our
examples and practicing, this should be enough. For advanced data visualizations, we
are better off using advanced data visualization tools such as Tableau or QlikView.

Using charts in big data analytics

It is said that a picture is worth a thousand words. In terms of big data, the amount
of data is so high that by just plainly looking at raw data it is extremely difficult to
figure out any trends in data. However, the same data when plotted on a chart is
much more comprehensible and easier to identify trends or relationships within
data. As an example, let's take a look at a simple time-series chart showing house
prices versus year.

house price

1989 1993 1997 2001 2005 2009 2013

As you can see from the preceding chart, the house price almost kept rising after
1989 and reached its peak at around 2007, and after that it started falling before
starting to rise again around 2009 onwards. It's not a bad analysis since 2007 was
around the time we had the recession.

From the perspective of data analysis, charts are used mainly for two purposes:

1. For initial data exploration: Any raw data has to be explored first before it
gets analyzed. Initial data exploration helps us in figuring out:

o

Any missing data
°  Null data

o

Erroneous data

[70]



Chapter 3

°  Outliers (erroneous or special points in data)

° Italso helps us in making simple deductions from data such as count
of rows in the dataset, average or mean calculations, percentiles, and
so on

2. For data visualization and reporting: Making charts for exploration is
mainly for the purpose of initial study of the data before it can be properly
transformed for proper analysis via different algorithms. But you might have
requirements to store the results of the data in different forms of reports or
dashboards. This chapter mainly serves the purpose of data exploration and
we do not dig into data reporting as it is a much bigger issue and beyond the
scope of this book. For advanced data visualization and reporting, you can
refer to tools such as FusionCharts, D3.js, Tableau, and so on.

Time Series chart

This is a simple chart used for measuring events over time or in other words it is a
series of statistical observations that are recorded over time. Visualizing your data
this way would help you figure out how the data changes with respect to time in the
past and you can also make predictions regarding the values that might occur in the
future when time changes. Let's now see some sample Time Series charts in action.

Before giving examples of time series charts, let's understand the dataset used for the
time series chart examples.

All India seasonal and annual average
temperature series dataset

In this dataset, we have India's seasonal temperature captured on monthly/annual
basis from 1901 to 2015. The dataset is downloaded as a JSON file from https://
data.gov.in/catalog/all-india-seasonal-and-annual-mean-temperature-
series. You can also find the sample dataset in the GitHub code accompanied with
this book.
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This dataset comprises two json objects as shown next:

* Fields: This json object contains the fields and labels for the data within the
dataset. These are the fields present in the dataset as shown in the following
table. I am only showing the indexes that we are using in the charts.

Table index Label

0 Year

1 Temperature in Jan

2 Temperature in Feb

3 Temperature in March

4 Temperature in April

13 Average Annual Temperature

* Data: This json object contains the actual data in the form of a JSON array
object. For simplicity, I have removed the fields object and put the data
object in a single row so that it will be easy to process with Apache Spark.
So, our data is of a single row as follows:

{rdatam:"1901","22.40","24.14","29.07","31.91","33.41","33.18","31
21"

-}

Simple single Time Series chart

Let's see a simple Time Series chart of average monthly temperature versus months
in 2015. So, on the y axis, we will have the average temperature and on the x axis we
will have the months of 2015 as shown in the following diagram:

TimeSeries -Temperatures vs Months (2015)

4

Avd. Temperature

Jan-2015 Mar-2015 May-2015 2015 Sen-2015 Nov-2015

Months (2015)
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As you can see in the preceding diagram, the temperature spikes in the month of
May which is quite true as these are very hot months in India. The graph also shows
in general, the trend of the flow of data as you can also see the temperature keeps on
going up until the mid of May and then it starts falling as the months get colder.

Now, let's create this chart via the JFreeChart library. Creating a JFreeChart chart
requires some simple steps as follows:

1. Create a dataset in the format that is needed by the JFreeChart API:

o

Load the dataset using Apache Spark: Before starting any Spark
program we build the Spark Context and Spark configuration first.
So we will build the Spark config and JavasparkContext object

SparkConf sparkConf = new
SparkConf () . setAppName ("TimeSeriesExample")
.setMaster ("local") ;

JavaSparkContext ctx = new
JavaSparkContext (sparkConf) ;

As we are going to use the Spark SQL queries to pull data from our
dataset, for ease of usage wel will next create the sQLContext object
of Spark using the previously created JavasparkContext object.

SQLContext sqglContext = new SQLContext (ctx) ;

After building our sQLContext object we are now ready to load our
dataset from the dataset file. To the sqlContext object, we provide
the format of the data that we are trying to load, in our case it is json
format and we also provide the location of the file. The sqlcontext
object will load the data and store it in a dataset variable.
Dataset<Row> df = sglContext.read() .format ("json").
json("data/india temp.json");
df.createOrReplaceTempView("india temp") ;

Next, query the dataframe you created and pull all the data:
Dataset<Row> dfc = sglContext.sqgl ("select explode(data) from
india temp") ;

°  Now, filter only the data for the year 2015:

JavaRDD<Row> rdd = dfc.javaRDD() ;

mmnn

JavaRDD<Row> filterRdd = rdd.filter(s -> {
if("2015".equals (s.getList (0) .get (0) .toString()))
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return true;
return false;

1)
Finally, fill this data into a TimeSeries object and return the results:

final TimeSeries series=new TimeSeries ("Jan-Dec2015") ;
List<Row> filterList = filterRdd.collect () ;
for (Row row : filterList) ({

List<String> items = row.getList (0);

for(int i =1; i <=12; i++){

series.add (new Month (i,

Integer.parselnt (items.get (0))),
new Double (items.get (i)));

}
}

return new TimeSeriesCollection (series) ;

2. Create the chart object: As you can see in the following code, we
build a Time Series chart by invoking createTimeSeriesChart on the
chartFactory object and it is in this object that we also pass the chart name,
x axis label, y axis label along with the dataset object itself. The library that we
are using that is JFreeChart, extracts data from the dataset objects and starts
building the chart using the other parameters specified in the method too.

chartFactory.createTimeSeriesChart ("TimeSeries Temperatures
vs Months (2015) ","Months (2015)","Avg. Temperature",
dataset, false, false, false) ;

Finally, we have some boilerplate code that connects all this together. So, in
this code, we build the dataset and pass it to the chart object. Finally, we add
the chart object to the chart panel that is again pushed on the content pane.

final JFreeChart chart = createChart (dataset) ;
chart.getPlot () . setBackgroundPaint (Color .WHITE) ;
final ChartPanel chartPanel =new ChartPanel (chart) ;
chartPanel.setPreferredSize (new
java.awt .Dimension (560,370)) ;
chartPanel.setMouseZoomable (true, false) ;
setContentPane (chartPanel) ;

For the full code of this example, refer to the code in the GitHub repository.
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Multiple Time Series on a single chart window

If you show multiple charts in the same window, then you can easily visualize the
comparison of variations of data over time. Here, I will show two Time Series charts
in the same window. In one chart, we will see Avg Temp versus Months for 2014
and in the other chart we will see Avg Temp versus Months for 2015 as shown in the
following diagram:

| 2] Time Series Management - O X

Year vs Avg Temp

Avg Temp
g o=

Year

As you can see in the preceding diagram, it is easy to visualize the graphs for the
years 2014 and 2015 and see how the temperature varies between the two. The blue
line is the chart for the year 2014 and the red line is the chart for the year 2015.

For building any JFreeChart as shown in the examples in this book, most of the code
needed to actually create the graph is almost boilerplate with a few configuration
changes as needed. The main piece of the code is the createDataset () function. It is
here that you need to pull the data from your data files or other sources of data and
fill them into an object that the JFreeChart, which specific chart component needs. As
long as the data is compliant with the dataset component that the chart requires, you
can easily prepare the chart.

So, for the multiseries chart component, we would just change the createDataset ()
method. Let's now go through the code of this method.
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First, we create an instance of DefaultX¥Dataset and load the data using Spark.
Once the data is loaded, we register the dataframe as a temporary view and query it
to pull the data.

private XYDataset createDataset ()
{
DefaultXYDataset ds = new DefaultXYDataset () ;
SparkConf sconf = new
SparkConf () . setAppName (APP_NAME) .setMaster (APP_MASTER
) ;
SparkSession spark = SparkSession.builder ()
.config(sconf)
.getOrCreate () ;
Dataset<Row> df = spark.read() .format ("json") .json/(
"data/india temp.json") ;
df .createOrReplaceTempView("india temp");
Dataset<Row> dfc = spark.sqgl ("select explode (data) from
india temp") ;

JavaRDD<Row> rdd = dfc.javaRDD () ;

Next, we filter the data for the years 2014 and 2015 using the following code:

JavaRDD<Row> filterRdd = rdd.filter(s -> {
if("2015".equals (s.getList (0) .get (0) .toString()))
return true;
else
if ("2014".equals (s.getList (0) .get (0) .toString()))
return true;
else return false;
P
After the data for the years 2014 and 2015 is extracted, we fill this data in our
DefaultXYDataset object and return it with the help of the following code:

List<Row> filterList = filterRdd.collect() ;
int j = 0;
for (Row row : filterList) (
double[] [] series = new double[2] [13];
List<String> items = row.getList (0) ;
for(int i = 1 ; i <= 12 ; i++) {
series[0] [i] = (double)i;

series[1] [i] = new Double (items.get (1))
}

ds.addSeries ("Series-" + j, series);

I

jo=3 + 1;
}

return ds;

}
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Bar charts

A bar chart shows variations in quantity of some entity using rectangles either
drawn vertically or horizontally on a chart. As you visualize the different lengths of
rectangles on the chart, it is easy to figure out which category is more and which one
is less. Bar charts have three main advantages:

*  You can see the data relationships in the x and y axes

* You can easily compare the values among different categories

*  You can also use them to visualize trends

As an example, take a look at the following bar chart, which shows the number of
cars made by different countries (as shown in cars. json dataset):

Which car do you like?

Aaumiber of Cars

L L k i E | | 8] i 4| | [ E L

Coumntry

As you can see in the preceding chart, this dataset has a maximum number of cars
from the UK followed by the USA, followed by Italy, and so on.

Let's explore this example further with the actual code. The cars.json dataset that is
analyzed by the preceding chart, has the following format:

{"make id":"abarth", "make display":"Abarth", "make is
common":"0", "make country":"Italy"}

{"make id":"ac", "make display":"AC", "make is common":"0", "make
country":"UK"}
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{"make id":"acura", "make display":"Acura", "make is common":"1", "make
country":"USA"}

{"make id":"alfa-romeo", "make display":"Alfa
Romeo", "make is common":"1", "make country":"Italy"}

This dataset contains information about cars from different countries. It has a json
object per row and within the json object it has details for one particular car. Some
of the main attributes within one json object are shown in the following table:

Attribute name Description

make display Display name of car, the name used in 'Ads'".
make_country Country where the car is made

make id Name of car or model name

To build the bar chart, we follow similar steps to what we discussed in the preceding
Time Series chart. Let's see how to do it:

1. Create the dataset: We will load the cars. json file using Apache Spark
and build a dataset object (from JFreeChart library). Here is the code for
that (before we write the main code for our Spark program we build the
SparkSession object)

SparkSession spark = SparkSession
.builder ()
.appName ("Learning charts for
analytics")
.config("spark.some.config.option", "some-value")
.getOrCreate() ;

Now we have our SparkSession object ready. Using this SparkSession
object, we next go on to load our dataset from the dataset file.

First we load the dataset json file into a dataframe and register it as a

temporary view:

Dataset<Row> cdf =

spark.read () .format ("json") .json("data/cars.json") ;
cdf.createOrReplaceTempView ("cars") ;
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Next we query it to pull the temp view to pull the countries and the number
of cars in each country:

Dataset<Row> cdfByCountry = spark.sql("select make country,
count (*) from cars group by make country");

Finally, we fill this data into a dataset object. This dataset object is used
later by the actual chart object:

final DefaultCategoryDataset dataset =
new DefaultCategoryDataset () ;
List<Row> results = cdfByCountry.collectAsList () ;
for (Row row : results) ({
dataset.addvalue( row.getLong(l) , category ,
row.getString(0) ) ;

}

return dataset;

2. Create the chart component and fill it with the dataset object: Using the
JFreeChart API, we choose the type of chart we want to build and fill it with
the dataset object we built earlier. We also specify the configuration of the
chart such as the chart size, where we will display it (like at the center of the

screen):
JFreeChart barChart = ChartFactory.createBarChart (
chartTitle,
"Country",
"Number of Cars",
createDataset (),

PlotOrientation.VERTICAL,
true, true, false);

ChartPanel chartPanel = new ChartPanel ( barChart ) ;
chartPanel.setPreferredSize (new java.awt.Dimension (
560 ,
367 ) );
setContentPane ( chartPanel ) ;

3. Finally, we just display the chart and center it on the screen. For the full code
of this chapter, refer to the accompanied code in GitHub.

So, when would you use a bar chart?

Bar charts help to set up clear demarcations on your data and help to outline
those in a pictorial form. When you plot a bar chart, you can easily figure out how
data values compare to each other based on different criteria and it will help in
understanding your underlying data better.
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Histograms

A Histogram is a special kind of bar chart. A histogram depicts some quantitative
value on the x axis and frequency of that value on the y axis. The main feature of a
histogram is that in a histogram, the x axes are grouped into bins and we treat each
bin as a category. Thus, for a particular value, we take both the x axis bin and the
frequency on the y axis into account.

Let's try to understand a histogram using the same cars. json dataset, which we
used earlier. For the quantitative variable on the x axis, we will be using the number
of cars grouped by each country and depict that on the x axis. The Y axis will denote
the frequency of the number of counts, that is, the percentage or probability of
countries with that amount of cars in the dataset. The diagram is as shown next:

Histogram

Frequency
= — — [ —_
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£
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Number of cars

As you can see in the preceding chart, the maximum number of countries have a
number of cars between 0 and 10 count. Next is the countries with cars between
10 and 20 count, and the remaining few between 20 and 30, and then 30 and 40.
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When would you use a histogram?

For the purpose of data analytics histograms can be heavily used in the early data
exploration phase and they give us a rough estimate of the density of our data.
Thereby, from the preceding chart, you can figure out that our dataset has a lot of
countries with only a few cars and there are only a few countries with lots of cars.
If you check in the cars. json dataset you will see that the US and the UK have the
maximum number of cars in this dataset. Sometimes, from a big data perspective,
you might have to filter your data on this basis and segregate it, else your machine
learning models might get trained with only one specific kind of data item that
belongs to categories with a majority and hence they have to be normalized before
being fed to predictive algorithms. We have explained this phenomenon in future
chapters too.

There are particular shapes of histograms like symmetrical, right skewed
(which we have in our preceding chart), left skewed, and so on. For more
descriptions of histograms, please refer to the content on Wikipedia.

How to make histograms using JFreeChart?

In the following steps, we will see how to code a histogram using the JFreeChart
library. We are using the same cars. json dataset here, which we previously used
in the bar charts.

1. Create the HistogramDataset object to store data for the histogram: The
approach here is also the same. First, we load the JSON file cars.json. Next,
we register it as a dataframe temporary view and query it to pull the data
and group the data by the make_country of cars. Next, we fill this data in a
HistogramDataset object.

Dataset<Row> df = sglContext.read() .format ("json")
.json("data/cars.json") ;
df .createOrReplaceTempView ("cars") ;

Dataset<Row> dfc = sglContext.sqgl ("select make country,count (*)
from cars group by make country");

JavaRDD<Dataltem> dataltems = dfc.javaRDD() .map(s -> new
DatalItem(s.getString(0), new
Double (s.getLong (1)) .doubleValue())) ;
List<DatalItem> dataltemsClt = dataltems.collect() ;

double[] values = new double[dataltemsClt.size()];

for(int i = 0; i < values.length ; i++)

values[i] = datalItemsClt.get (i) .getValue() ;
}

int binSize = values.length / 5;
HistogramDataset dataset = new HistogramDataset () ;
dataset.setType (HistogramType . FREQUENCY) ;
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dataset.addSeries ("Histogram",values,binSize) ;
return dataset;

2. Create the histogram chart object and provide the dataset to this chart object:

private JFreeChart createChart (HistogramDataset dataset) {

String plotTitle = "Histogram";
String xaxis = "Number of cars";
String yaxis = "Frequency";

PlotOrientation orientation = PlotOrientation.VERTICAL;

boolean show = false;

boolean toolTips = false;

boolean urIs = false;

JFreeChart chart = ChartFactory.createHistogram( plotTitle,
xaxis, yaxis,dataset, orientation, show, toolTips,
urIs) ;

int width = 500;
int height = 300;

return chart;

Line charts

These types of charts are useful in regression techniques as we will see later.
It's a simple chart represented by a line that shows the changes in data either
by time or some other value. Even Time Series charts are a type of line chart.
Here is an example of a Time Series chart:

Max Temp vs Year

Max Temperatue

1901 1902 1903 1904 1905 1906 1907 1908 1909 191
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This line chart is a simple chart showing Max Temp versus Year, In this case, max
temperatures are from 1901 to 1910. The chart shows that the temperature did not
change drastically within these 10 years.

To build this line chart, we have used the same 211 India seasonal and annual
min/max temperature series dataset as explained in the preceding Time Series
charts. For building the charts, the steps are again the same:

1. Loading the chart dataset and creating a JFreeChart-specific dataset.

o

We will create a similar createbataset method and return our
DefaultCategoryDataset object
private DefaultCategoryDataset createDataset () {

DefaultCategoryDataset dataset = new
DefaultCategoryDataset () ;

Next, we go on to build our boilerplate code for creating the
SparkSession.

After building the Sparksession, load the india_temp.json dataset
and register it as a temporary view.

Dataset<Row> df =
sglContext.read () .format ("json") .json("data/india_ temp.j
son") ;

df .createOrReplaceTempView("india temp") ;

Now, fire a query on this view to pull the first 10 records:
Dataset<Row> dfc = sglContext.sqgl ("select explode (data)
from

india temp limit 10");

Collect the data and put it into the dataset object:

List<Row> rows = dfc.collectAsList() ;
for (Row row : rows) {
List<String> datalList = row.getList (0) ;
dataset.addvalue (new
Double (dataList.get (12) .toString()),
"Max Temp", dataList.get (0).toString/()
)i
}

return dataset;
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°  Code to load the chart: Create the 1ineChart object and fill it with
the dataset object (see where the createDataset () method is
invoked):

JFreeChart lineChart =
ChartFactory.createLineChart (chartTitle, "Year", "Max
Temperatue",
createDataset (), PlotOrientation.VERTICAL, true, true,
false) ;

lineChart.getPlot () .setBackgroundPaint (Color .WHITE) ;

ChartPanel chartPanel = new ChartPanel (lineChart) ;
chartPanel.setPreferredSize (new java.awt.
Dimension (560, 367));

So, when will you use Time Series charts? Whenever you have data points that refer
to time, you can use this chart. As mentioned earlier, it will help you study the past
data. Also, using the Time Series plot, you can estimate the future value.

Scatter plots

One of the most useful charts for data analysis are scatter plots. These charts are
heavily used in data analysis, especially in clustering techniques, classification, and
so on. In this chart, we pick up data points from the data and plot them as dots on
a chart. In simple terms, scatter plots are just data points plotted on x and y axes as
shown below. This helps us figure out where the data is more concentrated or in
which direction the data is actually flowing.

This is very useful for showing trends, clusters, or patterns, for example, we can
figure out which data points lie closer to each other. As an example, let's see a
scatter plot next that shows the price of houses versus their living area.

As you can see from the graph, you will generally see that prices are going in the
upward direction as the area is increasing. Of course, there are other parameters for
the price to consider too; however, for the sake of this graph, we only used the living
area. You can also see that there is a concentration of a lot of points in the 200K-500K
price range and between 1000-1500 sqft area. Thereby, you can make a quick guess
that a lot of people like to buy within this range of sqft area.
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price for Living Areal

Price

Lindnighrea

Making scatter plots with JFreeCharts is easy. As with other charts, we build the
required dataset and chart component. We populate the chart component with the
data we require and then plot the graph. For that, we follow few steps:

1.

The code for creating the dataset component is shown next. The steps are
simple, just load data via Spark from a text file. From the data, pull the living
area and price and convert it to double. Now populate this data in a dataset
object that is provided by JFreeChart.

°  We will create the same createbDataSet method but this time we
return the XYDataset object using this code:

private XYDataset createDataSet (String datasetFileName)

°  Next, we have the boilerplate code to create Spark context and load
the textFile for the dataset.

JavaRDD<String> dataRows = sc.textFile (datasetFileName) ;

°  Extract the living area and price and convert to double:

JavaRDD<Double [] > dataRowArr =
dataRows.map (new Function<String, Doublel[]>() {
@Override
public Double[] call(String line) throws
Exception {
String[] strs = line.split(",");
Double[] arr = new Double([2];
arr[0] = Double.parseDouble(strs[5]);
arr[l] = Double.parseDouble(strs([2]);
return arr;
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}
IS

°  Collect the data and fill it into the dataset object:

List<Double[] > dataltems = dataRowArr.collect() ;
XYSeriesCollection dataset =new XYSeriesCollection() ;
XYSeries series= new XYSeries("real estate item");
for (Double[] darr : dataltems) {
Double livingArea = darr[0];
Double price = darr[1];
series.add(livingArea, price);

dataset.addSeries (series) ;
return dataset;

2. Finally, create the chart component that you want to use from
JFreeChart. In this case, it is a scatter plot as seen by the ChartFactory.
createScatterPlot method:

private JFreeChart createChart (XYDataset inputDataSet) {
JFreeChart chart = ChartFactory.createScatterPlot ("price for
Living Areal", "LivingArea", "Price", inputDataSet,
PlotOrientation.VERTICAL, true, true, false);
XYPlot plot = chart.getXYPlot() ;
plot.getRenderer () .setSeriesPaint (0, Color.green) ;
return chart;

We are going to use the scatter plot heavily in our data analytics.
This chart is also used along with other charts such as line charts to
. figure out how the data is properly segregated. As an example, refer
% to the following chart. Here the line chart is trying to divide the data
s points into categories. This can be used in classification to figure out
the points into categories or labels based on whether they lie on the
left-hand side of the line chart or right-hand side. You will see more
of this in the coming chapters.
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Now that you have seen scatter plots, let's answer a few simple questions:
When will you use a scatter plot?

Whenever you want to plot your data points on the x and y axes to figure out where
the points are concentrated (that is, clustered), or which direction the patterns are
flowing (that is, trends), or how data points are related to each other (that is, nearest
neighbors), you can use a scatter plot. This plot will show you a cloud of data points
that you can then use to figure out the correlations as mentioned earlier.

In the preceding example, you showed the graph only on the x and y axes, what if we
have more features to take into account?

House prices are not just based on the living space area. There are many other
features that can impact the price of a house. As an example, some of the additional
features could be:

*  Number of bathrooms

* Age of the house

* Zip code where it is located

* Condition of the house —whether it requires any additional maintenance
work or not
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So how would you plot a scatter plot when the number of features is high? When the
number of features is very high, any feature size more than four or five is not easily
comprehensible by human beings. This is because it is not easy for us to visualize 4-
or 5-dimensional graphs. In real life use cases the features can be in the thousands, if
not more. In such a scenario, a chart is represented by a figure called a hyperplane.
A hyperplane is a plane or an area that you will try to fit within the n--dimensional
space where n represents the number of features. So if you have two features, you
will have a 3-dimensional graph with a simple hyperplane bifurcating your data
points (represented by scatter points) as shown next:

Y

Sugar
Levels

As you can see in the preceding 3D graph, the x1 axis shows the Age of a person, the
x2 axis shows his Weight, and the y axis show the Sugar Levels of the person. The blue
area depicts a hyperplane that is fitted to the data points for best case prediction. When
the Weight and Age of a person is given what could be his Sugar Levels?

We are not covering 3D charts in this chapter, but there are good 3D
chart libraries both in Java or otherwise that you can use to plot graphs
- as shown earlier. Also, for even more dimensions, such as four or
five dimensions, it's difficult to visualize it on a graph, but there are
algorithms you can still fit in the hyperplane, though you won't be able
to visualize the graph. In this case, you can plot the features with the data
points in several separate graphs.

Box plots

Another very useful type of charts is box chart. Before looking into box charts, let's
revise some simple mathematical concepts next. You can skip this page and directly
go to the chart as well.
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Suppose you have an array of numbers as shown here:

int [] numbersArr = { 5, 6, 8, 9, 2 };

Now, from this array, we have to find the following simple math stats:

Min: This is just the minimum value from the array and as you can see it is 2
Max: This is the maximum value from the array and this as you can see, is 9

Mean: This is the mean value of the array elements. Mean is nothing but the
average value. Hence in this case it is the sum of array elements divided by
the number of elements in the array.

(5+6 +8+9+2) /5=%86

Median: If we sort the preceding array in ascending order, the values
would be:

int[ ] numbersArr = ( 2, 5, 6, 8, 9 ),
The value located at the middle of the dataset array depicts the median. As
such, the median depicts a value in the array such that 50% of the values in

the array are lesser than this and the other 50% of the values are greater
than this.

Thus, in our case the median is 6.

Lower quartile: This depicts the value in the datasets such that 25% of values
are lesser than this value. For ease of depiction, let's take a slightly bigger
array for checking this:

int [] numbersArr = { 11,5, 6, 8, 9, 2,7 };

Now, if we sort this array, we will get the following:
{ 2,5, 6,7,8,9,11 };

Let's see at which index point in the array the first 25% of the values will lie. To
figure this out, we find the index point where the first 25% of the values end. For this,
we will use the length of the array and find 25% of that. We will later round off this
value to the closest number and that value will be the index point in the array where
25% would occur. Therefore, the formula will be as follows:

Number of elements in the array * (25 /100) = 7 * (25/100) = 2

So until the 2nd value of the array's 25% values are covered and since lower quartile
refers to the value below which 25% values in the dataset are covered, we take the
next value from our preceding sorted array, that is, the third value and hence it is 6.
Thus, our lower quartile value is 6.
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Upper quartile: This depicts the value in the datasets such that 25% of values
are greater than this value. Let's refer to the same array as earlier and find
this. I have used the sorted array as follows:

{ 2,5,6,7,8,9,11 '} =>the value is '9'

The calculation of upper quartile that is shown above can be easily done
using plain old Java code too. For this, we will build a simple quartile
function in Java and in it we will consider the the lower percent as 25% and
the highest as 75%. As soon as we enter the functions we will first check if
the parameters passed are good or not, else we will throw an exception:

public static double quartile(double[] wvalues, double
lowerPercent) {
if (values == null || values.length == 0) ({
throw new IllegalArgumentException("The data array
either is null or does not contain any data. ");

}

Next, we will now order the values and calculate our value by using the
Math.round function and finally we will return the result:

double[] v = new double[values.lengthl];

System.arraycopy (values, 0, v, 0, values.length);
Arrays.sort (v) ;

int n = (int) Math. round (v.length * lowerPercent / 100);

return vI[n];

}

Outliers: In statistics terms, an outlier is a value in the dataset that is

very different from other values. It depicts that the data is not normally
distributed and there are variations in the data and that you should be
careful in applying analytic algorithms to that data, especially the algorithms
that think that the data is normally aligned and has no abnormal values.
Outlier points can therefore, indicate bad data or some errors in data.

Now that we have seen these simple math stats functions, let's dive into box charts.

So, what are box charts or box and whiskers charts?

It is a very convenient way in statistics to depict numerical data in terms of their
quartiles, minimum, maximum, and the outliers. The whiskers or the lines that
stretch out from the main chart rectangle boxes depict the values that stretch out
beyond the upper and lower quartiles.
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The following figure depicts one simple box chart:

median
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As you can see in the preceding figure, the rectangle is built with third and first
quartile and the line within the rectangle depicts the median value. Also, the edges
stretching out and the whiskers on them depict the minimum and maximum values.

Now, the outliers on the chart can be shown as simple points as shown in the

following figure:

oo

5

8

Qutliers:More than 1.5 times
upper quartile.Depicts data
points that are swaying away, it
could be erroneous data too.

QOutlier: Less than 1.5 times lower
quartile.

Box charts are very useful for studying numerical data and give a good overview of
data distribution.
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Let's try to understand the box charts using a realistic example. Suppose there is
a fictitious website xyz . com that generates plenty of web traffic and you want to
analyze the numerical hit counts in a generic way using some simple graph. The
following table shows the stats of average hit count per day in a month:

Month Hit count per day in the month
January {25, 35, 45, 55, 60, 54, 34 ...}
February {86, 90, 45, 55, 60, 54, 34 ...}

March {54, 64, 89, 55, 60, 54, 34 ...}

These stats are stored in a CSV file that is pulled and parsed using Apache Spark.

One row of a file is shown in the figure that follows.

If we now draw a box and whiskers chart on top of this data for the months between

January and March, the chart would look like this:

Hit Counts
a

Website Hit Counts between Jan-Feb

FEB HARCH
Months:

W Hit Count by Month Series
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As you can see in the preceding chart, the outliers are marked by circular dots at the
top of the chart. Also, as you can see for March, the maximum value was 150 and for
February the minimum was 70.

JFreeChart has a very handy way to show all the stats such as mean, average,
median, maximum, and minimum for a box chart. To see this, just mouse over on a
particular chart and it will show you the details in a tooltip as shown in the following
figure for January and so on.

Website Hit Counts between Jan-Feb

160

110 X 117 Mean: 121.4 Median: 117 Min: 90 Max. 160 Q1: 100 Q3: 140

Hit Counts

100
80
80
70

JAN FEB MARCH
Months

|. Hit Count bw Month ‘:nripql

As you mouse over, the overlay window depicts the summary of stats such as min,
max , first quartile (that is, Q1), and so on.

JFreeCharts have the API for box plots. As with other charts, we build the required
dataset and chart component. We populate the chart component with the data we
require and then plot the graph. The following are the steps we will use to build the
chart for the dataset shown earlier:

1. The code for creating the dataset component is shown next. To create a box
chart, we need a dataset of type BoxAndWhiskerCategoryDataset:

°  First we will create the createSampleDataset method that returns
our specific dataset object:

private BoxAndWhiskerCategoryDataset createSampleDataset ()
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Next, we initialize our Spark sqlcontext using our boilerplate code.
Using the sqlContext, we now load the dataset file and extract
tokens from it as strings (see the map method).

sc.textFile("data/website hitcounts.csv");
JavaRDD<String[]> vals = rdd.map(s -> s.split(","));

Next, we collect these values and fill our dataset object with the data:

List<String[]> data = vals.collect();
final DefaultBoxAndWhiskerCategoryDataset dataset =
new DefaultBoxAndWhiskerCategoryDataset () ;

for (Stringl[] dataltem : data) ({

final List list = new ArrayList();

for (int i = 1 ; i < dataltem.length ; i++)
list.add (Double.parseDouble (dataltem[i])) ;

}

dataset.add(list, "Hit Count by Month
Series", dataltem[0]) ;

}

return dataset;

Finally, we create the chart component that you want to use from JFreeChart.
In this case, it is a box chart as shown in the following code:

[e]

First, we invoke createSampleDataset and store the result in a
BoxAndWhiskerCategoryDataset variable.

final BoxAndWhiskerCategoryDataset dataset =
createSampleDataset () ;

Next, for this specific chart, we have used ItemRenderer;
this renderer object helps us customize this chart. So we can
specify the details of the ToolTip renderer, or the specific
custom x axis and y axis.

final CategoryAxis xAxis = new CategoryAxis ("Months") ;
final NumberAxis yAxis = new NumberAxis ("Hit Counts") ;

yAxis.setAutoRangeIncludesZero (false) ;
final BoxAndWhiskerRenderer renderer = new
BoxAndWhiskerRenderer () ;
renderer.setFillBox (true)
renderer.setToolTipGenerator (new
BoxAndWhiskerToolTipGenerator ()) ;
renderer.setMeanVisible (false) ;
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We hook all the custom details of x axis, y axis, and the renderer in
the category plot. Finally, we pass the categorypPlot object to our
JFreeChart object.

final CategoryPlot plot =
new CategoryPlot (dataset, xAxis, yAxis, renderer);
final JFreeChart chart = new JFreeChart (

"Website Hit Counts between Jan-Feb",

new Font ("SansSerif", Font.BOLD, 14),

plot,
true
) ;

final ChartPanel chartPanel = new ChartPanel (chart) ;

For full code, you can refer to our GitHub repository.

Advanced visualization technique

For advanced data visualization, commercial tools such as Tableau or FusionCharts
can be used. These are very good in making dashboards and reports that can be used
by businesses in their presentations or demos. In fact, for business needs, specifically
for presentations or demos, we would urge the users to go with commercial tools
such as Tableau or FusionCharts as they can be used to make very good reports

and presentations. However, if you have specific advanced charting needs such

as making three-dimensional charts or creating graphs or trees in Java, we can use
advanced Java charting libraries such as Prefuse or VIK Graph toolKkits.

. Covering these advanced libraries in detail is beyond the scope of this

% book. Hence, we will only give specific brief outline on these libraries.

%~ Readers who are interested in these libraries can refer to their specific
websites for more information.

Prefuse

This is an open source set of tools that is used for creating rich, interactive data
visualizations in the Java programming language. It supports a rich set of features
for data modeling, visualization, and interaction. It provides optimized data
structures for tables, graphs, trees, and so on. The library is a little old but its

code is available on GitHub at https://github.com/prefuse/Prefuse.
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Data Visualization

IVTK Graph toolkit

As its wiki says, the Visualization ToolKit (VTK) is an open source, freely available
software system for 3D computer graphics, image processing, and visualization
used by thousands of researchers and developers around the world. It's an extensive
visualization library that might be considered for your big data analytics work. You
can check out this library at http://www.vtk.org/download/.

Other libraries

Apart from these, there are several other popular open source data visualization
libraries written in other languages, for example, matplotlib in Python or D3 js in
JavaScript. All these have different flavors and are useful to use on your big data
analytics operations. D3.js is very famous and we would recommend you to use it if
you are comfortable with JavaScript.

Summary

In this chapter, we covered six basic types of charts, namely, Time Series charts,
bar charts, line charts, histograms, and scatter plots. These charts are extensively
used in the data exploration phase to help us better understand our data. Visually
understanding our data this way can help us easily figure out anomalies in our
dataset and give us insights into our data that we can later put to use for making
predictions on new data. Each chart can be used for specific needs such as:

* Time Series charts show us how our data changes with respect to time

* Bar charts show us the trends in our data and histograms help us find the
density of our data

*  Box charts help us find the minimum, maximum, median values in our
numerical data, and also help us figure out the outlier points

* Scatter plots help us figure out patterns in our data or how our data points
are concentrated

Java provides us with various open source libraries that we can put to use for
making these charts. One such popular library is JFreeCharts that is heavily used in
making charts using Java. We briefly covered an introduction of this library followed
by making each type of chart using this library. We have followed a simple pattern
in building these charts. We have loaded our datasets using Apache Spark and then
used the JFreeChart library to build the charts. We believe that Java developers
working on big data might find it easier to use a Java charting library initially for
data exploration before they move on to more advanced charting solutions like D3.js
and FusionCharts.
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However, we are not restricting developers and they are free to use any framework
of their choice for building the charts. Our aim for this chapter was to show you
how different type of charts can be used in data exploration. In any analytics
project that the readers might be involved in, depicted data using charts is a must,
understanding the types of charts that can be used is as important as making the
charts themselves. You can download the examples from our GitHub page and run
these examples for practising these charts.

In the next chapter, we will study the basics of machine learning and learn how to
handle a machine learning problem and the general approach in solving a machine
learning problem.
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Any form of any analytical activity depends heavily on the presence of some clues
or data. In today's world data is bountifully available. Due to the broad availability
of various devices (such as mobile devices), IoT devices, or social network, the
amount of data generated day by day is exploding. This data is not all waste; it can
be used to make lots of deductions. For example, we can use this data to figure out
what particular ad the user might click on next or what item the user might like to
purchase along with the item they are already purchasing currently. This data can
help us figure out a knowledge base that can directly impact the core business in
many useful ways, hence it is very important.

This chapter is action-packed and we will try to cover a lot of ground while learning
the basics. In this chapter, we will cover:

* Basic concepts of machine learning such as what machine learning is, how it
is used, and different forms of machine learning

* We will look at some real-life examples where machine learning has been
successfully used

* We will learn how to approach a machine learning problem and will see the
steps involved in working on a typical machine learning problem

e  We will learn to select features from data

* Finally, we will see how to run a typical machine learning model on a big
data stack
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What is machine learning?

Machine learning is a form of artificial intelligence where a computer program learns
from the data it is fed or trained with. After learning from this data it internally
builds a knowledge base of rules and based on this knowledge base it can later make
predictions when it is fed new data. Machine learning is part Al, part data mining,
and part statistics, but overall the criterion is to teach a machine to make new
decisions based on past data it is trained with. So, for example, if we teach a machine
some data regarding the inventory statistics of a store throughout the year then you
might be able to tell things such as in which months the items sell more or which
items sell more often. Also, it can tell the shop owner if they are selling one
particular item more than other items; it can also show this to the customer

s0 as to increase sales.

The concept of making new predictions is very important as we can now make
predictions such as in which zone or area a marketing campaign should be launched
tirst, or which segment of customers would be most interested in our new product;
or if we increase our advertising budget by say a few percent then how much of an
increase in sales we'll see. Such machine learning can directly impact business in a
very positive way as it is totally coupled with real business use cases.

As we mentioned earlier, machine learning is part programming, part statistics,
and part mathematics. Inference from data involves studying of existing data
patterns, which is statistics, and doing this via a computer requires programming.
Today machine learning is used in a lot of places to directly impact business. In
fact, it is one of the hottest technologies to work in currently. Whether it is self-
driving cars, suggestive searches, or customer segmentation based on their buying
patterns, businesses are using more and more machine learning technology. Due

to the tremendous interest in this technology in recent years a lot of new tools and
frameworks have originated for machine learning and this is great for developers as
now they have access to lots of resources for machine learning.

Before we delve into the code of machine learning algorithms let's look at some real-
life examples of machine learning.

Real-life examples of machine learning

Machine learning usage is almost everywhere and it is growing as we read this book
now. Here are some of the popular examples of machine learning usage where it has
been running for years now:

* Machine learning at Netflix: Let's look at the following screenshot from
Netflix. Look at the section Because you watched Marco Polo; it lists some
movies or serials that might be of similar taste and would appeal to the user.
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* How does Netflix figure this out? Basically, Netflix is keeping an eye on what
the user is watching and based on that they try to figure out the user's likes
and dislikes. Once a pattern of user likes is discovered a new set of movies
are shown to them for viewing. In short, Netflix is analyzing user viewing
patterns and then giving suggestions to the users:

i Marco Polo

L ]
mmco$ DEST

ONE HUNDRED EYES &

* Spam filter: Spam filters that are used in our email account on a daily basis
are a result of a good use of machine learning algorithms. Take a look at the
following screenshot. Here we are showing two emails; one is spam and the
other is not. The spam filter uses a special algorithm that uses some words
(underlined in red) to figure out if an email is spam or not:

From: lotterywinnen@lotowin.com From: jamesb@abc.com

Te: johnm@abe.com To: johnmi@abc.com

Subject: You just won a Million dollars ! Subject: star wars movie !

In & random pick on a Jgiiery using your email address Hey Buddy,

you are a clear winner. Please claim your victory of a On coming friday evening both me and alfred are
L"I.”i?ido”a” by clicking here planning to go for the new star wars movie. do you

wanna join us ).

Span MNon- span

* Hand writing detection on cheques submitted via ATMs: This is a popular
on cheque submitted via ATMs" usage implemented across a lot of banks
already. Some of the best uses of machine learning are simple yet so powerful
that they directly impact the day to day lives of many people. For example
in this case when the user deposits a hand written cheque in an ATM
machine, the ATM machine figures out the amount deposited by reading
the handwritten amount from the cheque and the actual numbers in it.
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For figuring the numbers from the cheque complex machine learning algorithms
are used, but the whole process is very transparent and seamless for the end users.
Look at the following figure, it shows a user depositing a cheque and receiving a
receipt. The receipt shows the printed copy of the cheque, but before that it shows
the amount that it read from the check:

Bank Receipt

Amount on the Check : 255

Copy of the Check that was deposited /

/

This amount was scanned and read
from the handwriting on the check.

A bank receipt sample

Check deposit through the ATM
machine

We will now go over the many types of machine learning algorithm.

Type of machine learning

There are three types of machine learning algorithm and within each type we have
sub types. We will now go over the types of machine learning;:

Supervised learning: In this form, we have data that is labeled with results.
The model is trained or fed with this prelabeled data. Based on this set of
results the model internally builds its own knowledge and rule set. Using this
knowledge that the model has learnt from existing data it can now classify a
new set of data for the various labels. In simple terms this is what supervised
learning is all about. And as the name says, the model is supervised with
pre-existing data to make new predictions.

Let's try to understand this with a simplistic example of a spam detection
system. As seen in the following diagram, a set of words is used to form a
dataset. The set of words is labeled as GOOD or SPAM. This dataset is fed to
a model that builds its knowledge or rules based on this dataset. We call this
training a SPAM Detector Model. Once the model is trained it can classify a
new set of words as GOOD or SPAM:
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Job, S

Big Data chineLearning ->

Casino , Lottery ->

Use the training data to train a
Model

SPAM Detector Model

Now suppose a new email arrives, this new email can be broken into a set of
words and those words can then be analyzed by this trained model to detect
whether the email is spam or not, as shown in the following diagram:

A new email arrives that contains the following words
‘Millon dollar Lottery’ and ‘new casino’

Words are extracted from the email

Trained SPAM dectector Model
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Supervised learning models are of different types. We will go over the
different types of supervised learning now.

Here are a few types of supervised learning algorithm:

o

Classification: In classification we have to predict to which category
a particular set of data or attributes belong. So for example, if you
take the iris dataset with three varieties of the same flower and
teach your model to make prediction with that data, then later when
you feed a new set of data to your model it will be able to classify the
variety of flower based on the three varieties and the data that it was
fed earlier.

Regression: Regression is also a form of supervised learning as it is
also based on existing data. But in the case of regression the value
you are predicting is continuous in nature and not predicted from a
set of categories as in the case of classification. Hence if you take the
same iris dataset and build a model by feeding attributes such as
sepal length, sepal width, and type of variety of flower, then later if
you are given the type of flower and sepal length you might be able
to predict a value for the continuous value sepal width.

* Unsupervised Learning: In this form we do not have any training data
for the model. This is to say the model directly acts on the data, instead of
making predictions about the data. We try to figure out the combinations
or relationship between the data. Clustering is one form of unsupervised
learning. With clustering we try to form groups between the data. These
groups comprise data points that are similar to each other. For example,
using clustering we can figure out islands of users that buy a product
together, or figure out the area of epidemic in a region, and so on. Let's try to
discuss clustering with an example. Let's look at the following graph, which
shows the various datapoints that are collected for some disease outbreak
in a region. All the datapoints are currently plotted in this two-dimensional
graph as follows:
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The preceding figure shows unclustered data in two dimensions for simplicity.
Suppose the datapoints show the occurrence of disease in some region. Our task then
is to group the data so that we can make some deductions from it. To group the data
into different groups we run unsupervised clustering algorithms on these and try to
figure out three specific groups within this region of disease outbreak. The groups so
detected could be as follows:
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The preceding figure shows the clustering results after the algorithm is run
on the raw dataset to figure out three groups. The three groups are shown
in three different colors in the graph. Each could be some different form of
deduction from the data, for example, the red color group might depict the
region or area of severe form of the disease outbreak:

* Semi supervised learning: Semi supervised learning falls between
supervised learning and unsupervised learning. In the cases of supervised
learning we have a labeled dataset used for training and in unsupervised
we have a completely unlabeled dataset that we use for finding the patterns.
But in semi supervised learning we have a portion of the dataset that is
labeled and another portion of the dataset that is completely non-labeled.
Researchers have found that using a mixture of labeled and non-labeled data
can sometimes produce great predictive results. In this book, however, we
will be using mostly supervised and unsupervised learning algorithms.

Let's try to understand the concept of supervised and unsupervised learning
algorithms using a simple case study now.

A small sample case study of supervised and
unsupervised learning

Let's discuss a pollution detection system. Suppose we have an IoT device or any
device that can capture the pollution levels or air quality levels and it is installed on
various corners in the city. The role of this device is to pull the air quality levels at
frequent intervals and store the results in files. These files can later be copied in a
backend system where our analysis jobs can run on top of them. Also suppose we
are collecting data for the following features: air quality levels, number of vehicles,
location of the device, time of day, and the traffic congestion level.

Now suppose we have two analytic tasks on top of this data:

* Based on the features we have to predict if the number of vehicles is
increased say two folds and time of day is in the afternoon when all the
factories in the city are opened and producing toxic gases. What would be
the air quality levels?

This is clearly the case of supervised learning. We had a set of data initially
where we had some features such as number of vehicles, air quality, time of
day, and so on. We can feed this data into a machine learning model (model
is a program or algorithm) and let it build its knowledge based on existing
data. This knowledge is nothing but the relation between different data
points based on which the program can make predictions in the future
when the data changes.
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So we can build and store a machine learning model. The next time if we
need to predict air quality for a new set of features we can feed the set of
features to the model and it can send us air quality levels.

This is pretty much what is going to happen in smart city projects that are on
the increase recently.

Task 2 is figuring out zones of high pollution levels within the city: This is an
example of unsupervised learning where we do not have a result set and we
need to just analyze the data and come up with a set of analytics. So in this
case we figure out the air quality levels across different devices and figure
out which quality levels appear to be similar and build zones based

on these. This in other words is called clustering and is an example of
unsupervised learning.

We have now seen the types of machine learning, let's now explore the typical steps
in approaching a machine learning problem.

Steps for machine learning problems

A typical machine learning problem requires a set of steps to go through before we
can start making an analysis using the machine learning models. The steps involved
in the machine learning problems are:

1.

Understanding the problem: Evaluating the problem at hand is a very
important task. This step is basically used in understanding the problem
and laying out the expectations from the outcome. This is basically where
we analyze what we are trying to achieve from using machine learning for
our problem.

Collecting the data: From the perspective of big data there are various

ways of data collection. Data can be copied to HDFS or can be present in

the NoSQL database HBase. Data that is stored in HDFS does not require

to be frequently changed; however in HBase you can store data that can

be changed and later reused. Data can be brought into Hadoop by variety

of different ways, for example, you can bring in data in real time using
messaging technologies such as Kafka or you can do a batch transfer of data
via tools such as Flume or simple SFTP. We will be covering data ingestion in
detail again in this chapter.
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3.

Cleaning and munging the data: When you work on a machine learning
problem, it is best to first analyze the dataset at hand figure out what kind

of data it is that you are going to train your model on. There could be some
fields that might be null and have to be dealt with or some data that is not
needed at all and can be filtered out. There could also be some data that is
not in numeric format and needs to be converted into proper numeric format
throughout to be fed to the models later. Analyzing and spending time on
the data that is later fed to the models goes a long way towards making your
models more qualitative in terms of predicted results.

We covered this topic in Chapter 2, First Steps in Data Analysis, as well. Data
is usually in raw format and contains some missing or bad values. Since our
machine learning models take in mathematical numerical input, feeding
raw or bad data to them would result in errors. Hence data has to be first
converted into proper form or format before it can be consumed for data
analysis. There are various ways of data cleaning and munging. Apache
Spark has a handy API whereby you can create separate data cleaning
Spark jobs and push the clean data back to HDFS for analysis.

Exploring the data and breaking the data later into training and test data:
Initial data exploration is very important as it gives you the initial insights

of the data and is a very important step in data analysis. Initial exploration
involves plotting the scatter plots, or figuring out the number of rows in
your dataset and you also do simple analysis as was shown in Chapter 2, First
Steps in Data Analysis, using spark-sql. Exploring big data by writing simple
spark-sql queries or plotting charts helps you better understand your data
before you start running heavy analytics pieces on it.

After you have run your initial data exploration break the data into two
parts, one for training your models and the other part for testing on your
models so as to check how well you have trained your model.

Choosing, training, and storing models: Choosing the right tool for the job is
always of utmost importance. Think of the different models as different tools
that you can use for different types of tasks; every tool or model has a unique
set of features and drawbacks and it is your job as a data analyst to figure
out the best fit for a particular use case. Apart from choosing a good model
training the model with good data is very important too. Most of the models
are mathematical and require data in number format, so make sure that

data is in proper format (handle missing/nulls too) before feeding it to your
models to train them. Once the models are trained they have to be stored
(mostly external as in HDFS for big data models) so that they can be utilized
later and applied on a new set of data.
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In real-world applications you would almost always use a group
_of models. Applying a set of tools for a particular task where
a the subtasks are handled by individual tools best suited for the
L= job helps in getting a better job done, similar to applying a set of
models (using techniques such as ensembling and so on almost
always yields better results).

6. Evaluating the results and optimizing the models: Use the model that you
have trained and stored in the previous step and apply it on the test data
that you had kept earlier. Check how good your model is by using different
evaluation techniques (such as root mean squared error and so on). Our aim
is to bring down the error in our model predictions and reach a suitable level
where our errors are minimized.

To bring down the errors we will have to try different models, or change the
input parameters of the models, or use a different set of features. In many
cases it's a big trial and error process and this will consume a lot of time.

You will see that beyond a certain point the error levels wont
decrease further and as such that would be your maximum
% precision level. Also a good amount of data almost always beats
e the best-of-the-breed algorithms. The larger the data the better the
knowledge set of the algorithms will become.

7. Storing and using the results: Once the models are good enough to be
utilized, run them on your actual data now and store the results in external
storage. Big data gives you various options to store your data. For example,
you can store the results in Parquet format on HDFS, or as CSV or plain text
in HDEFS, or dump to the HBase data. The results stored in HDFS this way
can be re-analyzed using spark-sql or using some real-time data analytics
tools such as Impala.

We have seen the steps of running a typical machine learning problem, but still there
are a few important questions unanswered and these questions are important for our
understanding of big data and running machine learning algorithms on it. We will
now explore some of those questions.
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Choosing the machine learning model

Choosing the model depends upon the task we have at hand. If you have existing
data available to train your models then you would be using one of the supervised
learning algorithms either for classification or regression. If the end results are
continuous in nature then you would use one of the regression algorithms and if the
end results are one of some specific discrete values then you would use a classifier
model. However, if there is no training data available and you still want to

analyze your data then you would use some algorithms from the unsupervised
learning models.

Within each type of machine learning technique, whether it's supervised learning or
unsupervised learning, there are plenty of models to choose from. Before we look
into the technique of choosing the model, let's look at two important concepts:

* Training/test set: It's a very useful practice and something that you almost
always have to use. We would split the training data that we have into two
separate sets. The first set we would use for training our model and the
remaining set we would use to test our model. Since the remaining set will
be totally new data for our model to test on, based on the error in predictions
we can gauge the suitability of our model and improve upon it. Apache
Spark provides us a handy method to split our dataset.

First we load the data in a dataset object and then on the dataset object we
invoke the randomsplit function providing the training and test set size (as
shown by the ratio of 0.9 and 0.1). 12345 is the seed value used to randomly
split the data:

Dataset<Row>data=

spark.read () .load("data/sample.txt") ;
Dataset<Row> [] splitss=

data.randomSplit (newdouble[]{0.9,0.1},12345);

As seen in the preceding code, the splits holds two values. The first value
in the array is the training data and the other is the test data.

However, even a plain training/test data holdout approach is prone to

a common problem called overfitting. The reason is that we as a user of
the model can still keep on tweaking it until it performs well on the test
data. Thereby our model will perform nicely on this training and test data
combination, but might again failout on new data. In order to train our
model well we need to make our model touch as much data as possible for
training, but still be good on new data. If we use too little data for training,
our model might under fit, that is, it won't be nicely trained and would
give bad predictions and if we use all the data it might overfit. A common
approach to deal with this is to use cross validation.
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Cross validation: Cross validation uses the concept of training/ test datasets
also, but in this approach, we build multiple pairs of training and test
dataset. K-fold cross validation is a common technique for cross validation
and in this approach we build k pairs of training and test combinations. We
train the model on the k training sets and test on each of the individual k test
sets. Next we take the average of the error in predictions on each of the test
sets and this is called the cross validation error. Our aim as model trainers is
to reduce this cross validation error so that our model performs better.

For selecting a model you would first select it based on the type of problem at hand,
that is, either a classification or regression or unsupervised learning algorithm. Once
you have the algorithms you should train and test them with the cross validation
approach and pick the model with the least amount of error on prediction results.

Let's now look at the types of features we can extract from our datasets.

What are the feature types that can be extracted
from the datasets?

We will now list some of the main types of features that you will be dealing with on
a day to day basis as a data analyst:

Categorical features: These are discrete variables, that is, they are bound
and have definite values. They are present as labels or strings to depict the
outcome of a set of data points in a dataset row. For example in a dataset
containing the health records of patients a feature like blood pressure might
be represented in categorical form as high, low or normal. There are machine
learning algorithms like decision trees and random forest that can consume
categorical features as-is. However there are other algorithms like logistic
regression that are purely mathematical and would require even the discrete
categorical features to be converted to numeric format before training on
them. For such algorithms we can convert categorical features to numerical
format as shown:

1. Extracting features from categorical variables (continuous
numbers): These are variables that are non-numeric. As most of the
machine learning algorithms run on mathematical numeric numbers
we need to convert the categorical non-numeric features to numeric
features.
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As an example, let's look at the following rows of data from some
sample dataset that checks the health of a person based on some
parameters or features and then tells if a person has a disease or not:

Sample data (to show examples of categorical data)
6,148,72,35,0,33.6,0.627,50, "has disease"
1,85,66,29,0,26.6,0.351,31, "no disease"
8,183,64,0,0,23.3,0.672,32, "has disease"

This is a classic example of a binary classification dataset. But as we know
most of our binary classifier models (programs that can learn from existing
data and build the ruleset), only work on mathematical data so we can't feed
the last value, that is, "has disease" and "no disease" to our classifier models.
Since "has disease" and "no disease" are the only two categorical values in
this dataset, we can safely turn them into numerical values as "1" and "0"
thereby the dataset would become:

Sample data (to show examples of categorical data)
6,148,72,35,0,33.6,0.627,50, 1
1,85,66,29,0,26.6,0.351,31, 0

8,183,64,0,0,23.3,0.672,32, 1

The previous example can now work well in this case of binary
classifications.

2. Extracting features from categorical variables (non-continuous
numbers): In the previous point we showed you how to use
continuous numbers 0 and 1 in a binary classification problem to
replace categorical values. But does the use of continuous numbers
(that is, numbers in order 1, 2, 3) work in all cases? The simple
answer is no and in fact in some case continuous numbers can cause
machine learning algorithms to produce erroneous results.

Not all categorical variables can have continuous numeric values
as that might cause the models to treat them as numbers in order.
Consider this example of a dataset row:

Dataset containing multiple categories of data points.
12,15,16,178,36,89, "New Jersey"

12,15,23,178,36,89, "Texas"

37,33,44,12,12,33, "New York"
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Suppose the rows of data show few values based on which we classify
whether the state referred here is New York, Texas, or New Jersey. Now if
we just blindly put the values as 0 for New Jersey, 1 for Texas, and 2 for New
York it won't be correct. The reason for this is that these are not continuous
values; there is no relation between New Jersey, Texas, and New York.
Hence we should replace them with non-continuous numbers that do not
depict any kind of relationship like one number being greater than other

(so it should have more emphasis), hence if New Jersey is say 14, Texas can
be 50, and New York can be 6. None of these numbers show any kind of
continuous relationship.

. However, if you had categorical labels for movie ratings
& such as bad, good, and awesome, you could replace them
P with continuous numbers such as 1, 2, 3. Thus 3 being
awesome has a value greater than the other two.

* Numerical features: These features are as real numbers or integers and can
be extracted from raw data for analysis. Most machine learning models are
dependent on numerical data. But even with numbers you might want to
transform the numbers into a particular range to feed to your models.

* Text features: Features can also be extracted from plain text. Text can
be in the form of comments on a topic, in the form of some reviews such
as Amazon reviews for its products, or they can be as messages sent on
Facebook, WhatsApp, or Twitter. This text is valuable as we can analyze this
to figure out things such as current trends or the overall review of a product
or movie, or do sentimental analysis of a set of text messages, and so on from
text using Natural Language Processing (NLP) techniques.

Apart from these, features can be images and videos too. But these
% features have to be converted into different numbers using special
techniques that are beyond the scope of this book.

We have seen the types of features; let's now look at the main methods of extracting
the features.
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How do you select the best features to train your
models?

Feature selection is a very important task and it is tightly coupled with the predicted
results. Especially in the case of big data analysis a dataset can contain thousands

of features. We cannot use all the features as it can slow down the computation
tremendously as well as yielding improper results. Besides this some of the features
might be unnecessary or redundant. To overcome this problem various techniques
on the feature selection side can be used to select a subset of features. Doing this
would help us train our models better as well as reduce the problem of overfitting.

. Opverfitting is the problem where our models are nicely fitted or trained
% on the training data. As such they work very well on instances on the
<8 training data for prediction results, but they work poorly on any new set
of the data (that is, new data that the model has not seen before).

Feature selection techniques are different from feature extraction as in feature
selection we reduce the number of features we are using to train our models, but in
feature extraction we are only interested in choosing features from our raw data.
To depict the importance of features let's take a small example of a dataset shown
as follows:

Age Diabetic | Heart Exercise | Smokes | Talks fluent |Random
disease English variable

42 No No No Yes Yes $t@

45 Yes No Yes Yes No -

68 Yes Yes No No Yes test

Now suppose somebody asks us to write a machine learning program that will teach
a model to predict the age of people based on the features depicted in the preceding
dataset. Look at the features shown — Diabetic, Heart disease, Exercise, and Smokes
do make sense as they impact the age of a person. But what about Talks fluent
English and Random variable. Random variable contains only garbage variables,
not good to teach to the model and Talks fluent English is completely irrelevant. So
we should discard these features and not use them to teach our model or else we will
get bad results. This is what feature engineering is all about, choosing or building a
proper set of features to teach your models with. It is a broad topic and entire books
have been written on it. We will try to cover this in as much detail as possible as part
of this book.

[114]



Chapter 4

As part of feature selection there are three important techniques for feature selection
and Apache Spark provides API methods for those techniques. The techniques that
are used for feature selection are:

Filter methods: As the name suggests we filter out the irrelevant features
and choose only the relevant ones. There are many techniques by which we
can only select a subset of the features we have and still get good predictions.
There is a big advantage of choosing fewer features as it helps train our
models faster, it helps in avoiding overfitting, and it might help in getting
better results as with more features we might overfit and wrongly train our
models. Simple statistical methods are used to correlate the features with the
outcome variable and the features are selected based on that. Some of the
filter methods are:

[e]

Pearson coefficient: Pearson correlation is a simple method used
for understanding a relation of a feature with respect to its outcome
or response variable. It measures linear correlation between two
variables that are both continuous in nature (that is, numerical).
The resulting value lies in [-1;1], with -1 meaning perfect negative
correlation (as one variable increases, the other decreases), +1
meaning perfect positive correlation, and 0 meaning no linear
correlation between the two variables.

Spark comes with some handy pure statistical functions built into
its statistics package. The pearson coefficient function is also built
inside it and using this function from the statistics package of Spark,
you can apply it on RDD's of data. As an example, let's look at the
following code:

First we create two datasets seriesx and seriesy with some
sample data:

JavaDoubleRDDseriesX = jsc.parallelizeDoubles (
Arrays.asList (1.0, 2.0, 3.0, 3.0, 5.0));
JavaDoubleRDDseriesY = jsc.parallelizeDoubles (

Arrays.asList (11.0, 22.0, 33.0, 33.0, 555.0));
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Now we find the correlation between these two datasets and we find it using
the statistics.corr method from the statistics package of Apache Spark.
Next we print out the result:

Double correlation =
Statistics.corr(seriesX.srdd(), seriesY.srdd(), "pearson");

System.out.println("Correlation is: " + correlation);

Correlation is: ©.8500286768773001

Chi-square: When both the feature and the response are categorical
then the chi-square method for feature selection can be used. It is a
statistical test applied to the groups of categorical features to evaluate
the likelihood of correlation or association between them using their
frequency distribution. Using this method is simple, we calculate the
chi-square distribution between each feature and the response and
figure out if the response is independent of the feature or not. If the
response is related to the feature then we keep it or else we discard it.
Spark ML comes with the chi-square feature selector built in. Let's try
to understand it using an example.

Suppose we have a dataset as follows (the column on the left shows
the set of numerical features and the column on the right shows the
response, this is just some sample data for this example):

Features (4 features per row) Response
[0.0, 0.0, 18.0, 1.0] 1.0
[0.0, 1.0, 12.0, 0.0] 0.0
[1.0,0.0,15.0,0.1] 0.0

Now our task is to find out which among the four features is the
top feature for predicting the outcome response (right column in
the table).

For this first create the dataset (here we are creating a dataset using
sample data shown in the preceding table and providing a schema
for that data; the full code is in our GitHub repository for this):

Dataset<Row>df=spark.createDataFrame (data, schema) ;
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Now create an instance of chisgselector and set the number of top
features that you want from it:

ChiSgSelectorselector=newChiSgSelector ()
. setNumTopFeatures (1)

.setFeaturesCol ("features™")

.setLabelCol ("clicked")

.setOutputCol ("selectedFeatures") ;

Now apply this chi-square selector to the dataset we loaded earlier
and extract the top features from it. Store the result in another dataset
and finally print out the results from this dataset:

Dataset<Rows>result=selector.fit (df) .transform(df) ;

System.out.println("ChiSgSelector output with top
"+selector.getNumTopFeatures ()

+" features selected");
result.show () ;

The results will be printed as shown:

R e e L e e +
| id| features|clicked|selectedFeatures|
e et it +----=--- R +
| 7|[0.0,0.0,18.0,1.0]]| 1.0| [18.0]]
| 8|[0.0,1.0,12.0,0.0]| 0.0| [12.0]]
| 9|[1.0,0.0,15.0,0.1]]| 0.0| [15.0]]
e o ————— e ———— +

Note: Apache Spark comes bundled with other feature selection
methods such as VectorSlicer and RFormula, please refer
to the official Spark documentation for information on those.

Wrapper methods: The concept of wrapper methods is simple. We pick

a machine learning model and train it with a subset of features. Next, we
record the error in our predictions and check how the errors change by
choosing a different set of features (by removing or adding features from or
to our original subset). We keep on doing this until we reach an optimum
set of features .As such this method is very computationally expensive

and it takes a long time to run and check. Correlation methods on the

other hand are much faster, but they do not bring such good results as
wrapper methods.
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There are some common examples of wrapper method approaches. We will
explain some of them now:

[e]

Forward Selection: The concept is quite simple. We pick a machine
learning model (it can be a decision tree) and train it with no features.
We now check how the predictions are and the predictive results
error rate is. Next, we keep on adding one feature at a time and keep
on checking the error rate. If the feature improves the performance of
a model, then we keep it; if not we remove it. Thus, it is an iterative
and computationally expensive process, but it helps us build a good
set of features.

The feature set thus obtained might be tightly coupled with
the model you have trained with. As such they might not be

good for the other models. Also, this technique is prone to

overfitting where by the models are good in predicting on
training data, but predict badly on new test data.

Backward elimination: This approach is just the opposite of forward
selection. Here we pick a model and train it with all the features

and next we keep on removing one feature at a time and observe

the results. We remove the features that have no impact on model
performance. This approach also suffers from the same problems as
those of forward elimination.

Apart from these there are other approaches such as recursive feature
elimination. We urge the readers to check on Wikipedia for more
information on these.

* Embedded methods: As the name suggests these are methods that are inbuilt
or embedded within the machine learning algorithm itself. Thus, all features
are fed to the model and models containing the embedded method will pick
the best subset of features by themselves. These embedded methods combine
the qualities of wrapper as well as filter methods both. Some of the popular
examples of embedded methods are lasso and ridge regression. These
methods lasso and ridge regression have inbuilt penalization functions to
reduce overfitting.

Note: Regression in statistics refers to the technique

of adding additional information to improve the
s

performance of a model.
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We have seen now how to select the models and how to select its features. Let's now
see how we can run a complete machine learning algorithm on big data.

How do you run machine learning analytics on big
data?

The real usage of machine learning comes mainly in the form of big data. Over a
period of time you will realize that more data beats best-of-the-breed algorithms.
More data means more criteria's and more knowledge that can be fed to the models
and they will then produce better results. Most of the companies that are heavily
using some form of analytics for business decisions are now also using or getting
into big data. The reasons are:

In some cases, it might be completely impossible to run the analytics on
traditional datasets, for example, consider the case of storing video's and
images. Relational databases have a capacity beyond which storing data in
them just does not makes any sense and they won't scale beyond a certain
point. Hadoop is especially suitable for storing this kind of complex data
such as videos and images.

Now what if your task is to analyze the videos and images and extract out
any vulgar content such as porn images or videos. There are different forms
of machine learning like deep learning that you can use to classify images
into porn and filter them out. To run analytics jobs of this scale where
millions of images and videos are involved is specially suited for running on
big data with cluster computing frameworks such as Apache Spark.

Hadoop is open source, so it is easily available and there are lots of vendors
that sell support for big data stacks such as Hortonworks, Cloudera, MapR,
and others.

Network cost is low due to parallel computing and data locality.

Parallel jobs reduce the total execution time of computations considerably.
Earlier, a lot of computations for example computations on spatial data or
genomic data used to take days when processed through sequential batch
jobs but now can be run much faster as they can be processed in parallel
now. Easy rollback and failover support from different parallel jobs.

We have seen the advantages of running a machine learning problem on big data.
Let's now see how we can run a typical machine learning problem on big data. We
will try to cover the individual steps in detail.
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Getting and preparing data in Hadoop

Hadoop is a very open ecosystem as such data can be fetched into it from various
datasources and by various methods. It has a plethora of products now that can be
used for batch analysis of data as well as real-time analysis of the data. There are
plenty of sources from which data can be collected and pushed into Hadoop for
storage, for example, all the images, videos, tweets, logs, or data from existing apps
can be dumped into Hadoop. So Hadoop becomes a big storage engine for regular
apps data as well as social media apps data and here all this data can then

be analyzed to provide useful business intelligence.

Relational

Databases
Flume,
SFTP

Logs from
webservers,
other apps.

Data from Any other third

social media
party apps

Other
internal or
thirdparty
apps

As seen in the preceding figure, there are various sources from which data can be
pulled into Hadoop. Also various technologies such as Flume, SFTP, Kafka, and so
on can be used to transfer data from sources into Hadoop. We will cover some of
these sources and data transfer techniques now:

*  Flume: Using Flume you can directly copy the 1og files or other data files
to HDFS.

* FTP: You can FTP the files to some location on the shell (Linux shell, and so
on) and can later push this file to HDFS.
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Note: If you are playing around with a large dataset and planning
to run data analytics on it you can explore the option of simply
"~ FTPing the file and later pushing it to HDFS manually.

* Kafka: You can publish the data to a Kafka topic and this data will be pushed
by Kafka to HDEFS. This is more of a real-time method that is generally used
in event driven systems, for example, if you want to collect tweets from
Twitter and every few seconds or at intervals you want to publish them to
HDFS then Kafka is great for such usage.

You can use Apache Spark's Spark Streaming API to read the data from the
Kafka topics and store them on HDFS.

* HBase: This is the default database that ships along with most Hadoop
bundles. Data can be inserted into this database and then can directly be
consumed for analysis. This is the main database that comes into action
when you are sending a message to your friend on Facebook.

* Hive: This is a batch solution. So if you push data into it it stores the data
in a Hive datawarehouse that is kept inside HDFS. Hive has an SQL engine
inbuilt so you can fire SQL queries for analysis. Hive is slow as it is batch
and internally for queries it fires MapReduce jobs, but it is still used in many
places due to its good support for SQL.

* Impala: This is a more real-time option This product was built by Cloudera.
It is very fast and is an excellent product for quick real-time data analytics on
big data.

For running the examples in this book we would suggest you
copy the files to HDEFS.

- For this you need to copy the file to the Linux or Unix shell first
@@%\ and later push them to HDFS using the following command:
s~
Hdfsdfs -put <FILE NAME><HDFS LOCATION>

This will pull the file from the shell and push it to the HDFS
location.

We have seen how we bring data into Hadoop, let's now see how we prepare this
data in Hadoop.
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Preparing the data

Data might be completely raw when it is first brought in Hadoop. As we discussed
earlier data has to be cleaned and munged thoroughly before it can be consumed
by machine learning models. In Hadoop, and generally in data warehousing, raw
data is initially copied to a staging area (temporary area) and then some Spark jobs
or MapReduce jobs can be run on them to clean the data and republish the data into
HDFS.

Formatting the data

From the perspective of the data 'form' we must compress the data before it can

be dumped into HDFS. There is no restriction though on the type of data that

can be stored in Hadoop. You can store data in text, JSON, binary, or any other
format. However, for applications in production we normally prefer data in some
compressed format for example Avro or Parquet format. The reason being that the
compressed data will take less space and it would need less network bandwidth for
data transfer. We would recommend that the users use formats of data that are well
suited for Hadoop itself, for example, Avro, Parquet, or SequenceFile. Apart from
compression there is one other major advantage of using these specific compression
formats on Hadoop and that is they support partitioning, thus an Avro file can be
easily split and spread across multiple machines without corrupting the data it
holds. Please refer to Hadoop documentation for more details on this.

Note: If you are going to run lot of aggregation analytical tasks such as

aggregating on specific columns then it's better to use Parquet format as
—" it is well equipped for cases where we require fewer columns for data

analysis.

Storing the data

After the data is properly cleaned and formatted it can be stored in Hadoop, as was
shown in the previous figure, either directly in HDFS (in Parquet, Avro, or any other
format) or it can be passed to HBase or Hive.

While storing the data in Hadoop you might have to check how you partition the
data as this is a very important step and it guides the performance of an application
running on top of this data. For example, if you are storing data dumps from various
dates then you can partition the data on date, that is, you can store it as:

<HDFS_DIR>/data_ingestion date=<DATE Value>
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Here HDFS_DIR is the director containing the HDEFS folder that begins with data_
ingestion_date= and after this equals sign we have the actual date when the data
dump was taken.

This helps to partition the data by date and the advantage of partitioning is simple
yet very powerful. So suppose you need the data only for the last two days and then
you just need to check the folders for the last two days in HDFS and you can simply
ignore the remaining folders. This would mean that if you had been taking a dump
of your data every day for few months or years and putting each days data in its
specific folder (that could have a 'days date' as its name) in HDFS, you would
simply ignore that old data and only take the latest data for last two days. This
would highly expedite the queries or jobs run on data as the amount of data
analyzed is reduced now.

Data partitioning on Hadoop is a very important topic and please refer to
A the Hadoop official documentation for more information on it.

In this section, we have covered how we can fetch data into Hadoop and how we can
prepare it so that is ready to train our machine learning models. In the next section,
we will see how machine learning models can be trained on big data.

Training and storing models on big data

Most data scientists from the Python world are used to working on libraries such as
scikit-learn and these are mainly single node libraries that do not work well on big
data. Big data requires specially built machine learning algorithms that are designed
to work on a cluster of multiple machines. Apache Spark ships with a lot of machine
learning algorithms bundled in its machine learning library. These algorithms are
specially designed to work on a cluster of distributed machines as such they are best
suited for big data analysis. Since Apache Spark is a relatively new library not all the
algorithms are available. So if you want to use a machine learning algorithm from
some other library then you need to use the jar file in which it is bundled and put
it in the classpath of all the datanodes that are running your Spark jobs. This way on
each datanode where your Spark job runs the specific JAR would be available.

These are the steps to build and train a model on big data:

* Choose the model: If the model is present in the Spark implementation
choose it first and build your Spark program on top of it. If the model is not
present in the default Spark machine learning library then use the library you
want to use and write your Java program on top of it. Next you can invoke
your Java program using a Spark job, you just need to provide this jar in the
classpath for the Spark job.
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* Train the model: Train the model on the clean data that you prepared earlier
and test it on the test data. After making different iterations of testing your
model when your model is good you can store it.

* Store the model: After the model is trained it should be kept in external
storage so that later it can be repicked and used for testing. This way you
won't have to train a new model again when you want to do some prediction
results again.

In the case of big data models, storage is a very important
*  operation as the amount of data involved is huge; you cannot
%“ retrain the model again on the same data. So it's better to
’ train and keep a good performing model in external storage
and reuse it when needed.

In Spark ML all the machine learning algorithms have the save methods using
which a trained or fitted model can be exported to external storage and later reused.
Let's see an example of this API:

Here we have a Logistic Regression Model:

LogisticRegressionlr=newLogisticRegression () ;

After creating the model, we train it on some training data:

LogisticRegressionModelmodell=1r.fit (training) ;

Once the model is ready and trained, now you can store it to its HDFS location
(for example, as on hdfs://testapp/modelstore/temp):

modell.write () .overwrite () .save ("hdfs://testapp/modelstore/temp") ;

Now once the model is saved in this external location on HDFS, you can always
deserialize it and bring it back into an object of the same model type by recreating it
from external storage:

LogisticRegressionModelmodelFromExternalStore =
LogisticRegressionModel.load ("hdfs://testapp/modelstore/temp")

As seen here, each Spark ML model contains a handy function 1oad using which
the model can be loaded from external storage like HDFS. Apache Spark has a very
extensive machine learning API that is suitable for feature extraction from raw data,
feature selection, machine learning algorithms, and some utility functions. We will
learn more about this API in the next section.
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Apache Spark machine learning API

Spark ML is Apache Sparks library for machine learning analysis. This library
contains machine learning algorithms that are pre-designed to run on a cluster of
distributed machines. This feature is something that is not available on the other
popular machine learning libraries such as scikit-learn as such these are single node
libraries. To run these third-party single node libraries via Spark you will have to
ship their code on each individual machine that is running a Spark job. You can do
this via the spark-submit job.

Apart from this Spark machine learning algorithms are massively scalable and
are much easier to write and maintain as compared to older versions of machine
learning algorithms built on top of map reduce. Algorithms built on top of
MapReduce were slower, much more complicated in terms of code, and

were hard to debug and maintain.

We will go over the specific details of the Spark ML API now.

The new Spark ML API

The initial machine learning algorithms of the Apache Spark (MLlib API) were
highly centered around the RDD API. But over a period of time they started
concentrating on the DataFrame API, hence in this book all machine learning
algorithms are based on machine learning algorithms run using the DataFrame
piece. Those people coming from a scikit background will find the DataFrame API
much similar to the one they use. Overall the DataFrame machine learning API is
very simpler to use and maintain, it has handy tools for feature transformations
and extractions.

Note: As of Spark 3.0 the MLIib RDD API will be fully deprecated hence
% we encourage the users to concentrate on using the DataFrame machine
A .
learning API wherever they can.

At a higher level, the Spark ML API contains the following tools:

* Machine learning algorithms: Spark contains the implementation for some
popular machine learning algorithms, for example, for Logistic Regression,
Naive Bayes, clustering, and so on. The API is very developer friendly and is
very easy to use. If you have used libraries such as scikit-learn you will find
lots of similarity in terms of usage. The following is an example of sample
code where we load the dataset and apply a k-means clustering algorithm:
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We are going to first load our dataset from a file and store it in a dataset
variable dataset:

Dataset<Row> dataset = spark.read().format ("libsvm") .load("data/
mllib/sample_kmeans_data.txt");

Next we create a KMeans algorithm instance and apply the algorithm to the
dataset:

KMeanskmeans = new KMeans () .setK(2) .setSeed(1L) ;
KMeansModel model = kmeans.fit (dataset) ;

Our task here was not to explain the code or algorithm to you, but we just
wanted to show how easy it is to use the Spark ML code. We just need to
load the dataset in the proper format and instantiate an algorithm and apply
to it. We can also pass custom parameters to our algorithm.

Features handling tools: Feature engineering is one of the most important
fields within the machine learning arena. It's not the number of features,

but the quality of features that you feed to your machine learning algorithm
that directly affects the outcome of the model prediction. Spark ships with
feature handling tools that help in doing feature extraction, transformation,
and selection. It's a very handy set of prebuilt feature tools and we discussed
them in detail in an earlier section in this chapter.

Model selection and tuning tools: These are methods that are specifically
used in choosing a model as well as tuning its performance. Cross validation
is built into the Spark ML package and can be used to best train a model and
hone its performance.

Utility methods: The API contains some utility methods to do some basic
statistics as well as some other basic utility methods.

Some of the useful utility methods are:

Method Details

Statistics.colStats() This method returns an instance of

MultivariateStatisticalSummary, which
contains the column-wise max, min, mean, variance,
and number of nonzeros, as well as the total count. This
method is applied on an instance of RDD[Vector] and
is part of the Statistics package with Apache Spark
MLIib.

Statistics.corr () We covered this in a previous section too. Spark

provides methods to calculate pearson as well as
spearmans coefficient and these methods are present in
the Statistics package only.
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Method Details

RandomRDDs These contain factory methods for random data
generation, very handy in prototyping and testing a
model with some randomly generated data.

Summary

This chapter was action packed on machine learning and its various concepts. We
covered a lot of theoretical ground in this chapter by learning what machine learning
is, some important real-life use cases, types of machine learning, and the important
concepts of machine learning such as how we extract and select features, training our
models, selecting our models, and tuning them for performance by using techniques
such as training/test set and cross validation. We also learnt how we can run our
machine learning models specifically on big data and what Spark has to offer on the
machine learning side in terms of an APL

In the next chapter, we will dive into actual machine learning algorithms and we
will learn a simple yet powerful and popular linear regression algorithm. We will
understand it by using an example case study. After studying linear regression we
will study another algorithm logistic regression and we will also try to learn it by
using a sample case study.
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Regression is a form of machine learning where we try to predict a continuous value
based on some variables. It is a form of supervised learning where a model is taught
using some features from existing data. From the existing data the regression model
then builds its knowledge base. Based on this knowledge base the model can later
make predictions for outcomes on new data.

Continuous values are numerical or quantitative values that have to be predicted

and are not from an existing set of labels or categories. There are lots of examples of
regression where it is heavily used on a daily basis and in many cases it has a direct
business impact. Some of the use cases where regression can be used are the following:

* To estimate the price of a product based on some criteria or variables

* For demand forecasting, so you can predict the amount of sales of a product
based on certain features such as amount spent on advertising, and so on

¢ To estimate the hit count of an e-commerce website
* To predict the value of a house based on features such as number of rooms,
living area, and so on

As you can see in the preceding cases, all the values predicted are continuous
numerical values and even though the model is trained with data from existing
values the outcome value is quantitative and does not lie from a predefined set
of values.

In this chapter, we will cover:

* The basics of regression, including what regression is and how it is used in
machine learning

* We will learn about linear regression and see a real-world example of how
we can predict housing prices using linear regression
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We will improve our linear regression model by using some
standard techniques

We will briefly introduce other forms of regression techniques and explain
their benefits

After covering linear regression to predict continuous values we will learn a
popular machine learning approach logistic regression

Using logistic regression we will study a real-world example of detecting
heart disease in patients using a UCI dataset

We will improve our model by using standard approaches

Finally, we will also see the benefits of using logistic regression and in which
places it can be used

Linear regression

As we mentioned earlier, regression is a technique for predicting continuous values
based on certain inputs or variables. With linear regression, we try to learn from data
that can fit into a straight linear line. For example, we can try to predict the amount
in sales of a product based on variables such as amount spent on advertising,
number of hits received on the e-commerce website, price of the product, and
percentage offered in terms of sale price. To explain linear regression let's use a
simple example using a sample fictitious data of the count of likes on a Facebook
post versus the number of times it was shared, as shown in the following table:

Count of likes Number of times shared
100 10
200 20
300 30
400 40
500 50
600 60
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Let's try to plot this data on a line chart:
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As you can see in the preceding figure, the data points are linear, which means

that they linearly go up. In other words, an independent variable count of likes,
when changed causes the value of a dependent variable that is number of shares to
change. Thus, if we know a future value of the count of likes we can predict the value
of the number of shares based on historical data that can be fed to a mathematical
function. This linear mathematical function can be created based on the historical
data. Now suppose I ask you to predict the value of shares count given that a
particular Facebook post's likes count was 450. As seen by the arrow in the chart you
can predict this value from the preceding line chart. The corresponding shares count
comes to 45.

The preceding diagram depicts a very simple form of simple linear regression.
Let's now dig a little deeper into simple linear regression.
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What is simple linear regression?

Simple linear regression is a simple form of regression where we try to predict the
value of one dependent variable based on changes to another variable. If we have
a dataset with the value of the variables (x) and the labels (y) then simple linear
regression can be represented by a mathematical formula:

y=ax+b
Using this formula, we try to predict the value of y when we get a new value of x.

For the purpose of our dataset, we will plot our dataset into a scatter plot, as shown
in the following figure. All the data points will show up on the scatter plot. Then we
will try to draw a simple line through the data points on the chart and try to find a
best fit line. We will later use this line to predict the value of a datapoint given the
variable x:
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The preceding graph shows the line through the data and this line depicts the
formula y=ax+b.

If we want to use the line to make predictions on future values, we need to find the
values of the parameters a and b.

How do you find the values of 2 and b in the preceding equation (y = ax + b)?
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The common approach for finding a and b is by making several lines through the
data (scatter plot), as shown in the following figure. From the data points we now
calculate the distance to our best fit line.

We have depicted this in the following figure using the lines between the data points
and our prediction line.

Essentially, this is just the difference between the predicted value and the actual
value. To compute the total error we sum up this error value for all our predicted
data points. There is a problem however: some values are positive and some are
negative. Due to this when you try to add the negative and positive numbers, the
negative value would be subtracted from the positive one and this would reduce
the absolute overall value of the error. To fix this issue, we take the squared of the
error for each predicted and actual value difference, so this will always result in a
positive number. Later, we sum up all the errors to find the net error. Taking the
mean (average) of this net error would return the mean squared error, as shown in
the following figure:

30 40 50 60 m

The preceding graph just shows one line and for the predicted values on that line we
calculate the error (squared of error) and sum up the total errors. We do this again
by creating a new line through our dataset and again, calculating the total error. We
will keep on repeating this until we find our best fit line with minimal error (or after
which point the error value does not change much).

If we take the squared root of mean squared error we get root
mean squared error and this value is quite popular in our
regression calculations.
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Up until now we have discussed only one feature, what if the number of features is
more than one?

In this case, to best represent our data instead of a single line we will have
something called a hyperplane. Let's see an example of a hyperplane,
as shown in the following figure:

Y

Hyperplane

X1 : Number of facebook likes on Post
X2 : Number of comments on Post
Y : Number of Shares of Post (dependent
variable)

As you can see in the preceding chart, both the number of comments (X2 axis) and
number of Facebook likes (X1 axis) are responsible for the quantity of share count

(Y axis). In this case instead of the best fit line representing the data we have a best
fit hyperplane (three-dimensional in this specific case) representing the data. When
the number of input variables (that is, X1 and X2) is more than one we call this linear
regression multiple linear regression. We have seen that linear regression has been
used for data points that are spread out linearly and can be depicted using a best fit
line. However, what if the data points are like in the following figures?

y y

X X

Y is depicted by Quadratic function here Yis depicted by Polynomial function here

[134]




Chapter 5

As seen in the preceding figures, we have a curvial relationship and a polynomial
relationship. Both are still depictable by a linear regression model. In this case,
the mathematical function depicting the outcome will change. If you see the
polynomial relationship it fits the data nicely, but that does not mean it will
produce great predictions simply because it fits nicely on training data, how this
would perform on test data (that is, a totally new piece of data) is not known yet.
The curvial relationship shown in the first figure is represented by the following
mathematical formula:

Y=a+bx+cx2

(In this case, we need to find the parameters g, b, and ¢, we can use the same mean
squared error principle as we used previously)We have seen some concepts of linear
regression and now let's see its uses.

Where is linear regression used?

Linear regression has a number of practical uses. Some of the uses are listed here:

* Linear regression can be used in businesses to make estimates of
product prices.

* Linear regression as it is depicted by linear graphs can be used to depict
trends of items, for example, trending sales of an item over a period of time.

* It can be used in sales forecasting, for example, if the price of a product is
reduced by some percentage linear regression can be used to forecast the
amount in sales.

* In the field of finance linear regression is used in risk analysis.

* Linear regression can be used to predict the healthcare cost involved for
individuals based on some variables. This information is very useful for
health insurance companies as they can predict earlier how much cost might
be involved in giving insurance to a person.

So much for the theory, let's dig deep into a real-life case study of linear regression.
To run our samples we will use the Java code on the Apache Spark MLIib library.
We will be showing an example of multiple linear regression and for simple linear
regression we leave it as a task for the readers of this book, please check out the code
on the main Apache Spark MLIib page and it has great working examples on it. Also
note simple linear regression is inherently so simple that you can directly write a
program on it and run it or use a SimpleLinearRegression class from the Apache
Commons - project.
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We are using Spark only to show the users how we can run these algorithms in
parallel on big data, other programs such as SimpleLinearRegression from Apache
commons are suited for running on smaller datasets. We are using the latest Apache
Spark MLIib API using the Dataset object and not the RDD-based MLIib API. We
encourage users to do the same too as the RDD MLIib API will be deprecated in
Apache Spark 3.

Predicting house prices using linear regression

This is a sample case study where we will train our linear regression model using a
training dataset. Once the model is trained, we will feed new test data to it to predict
the house price for us based on the new data input. For this case study we will be
using a dataset from http://www.kaggle.com. The steps that we will use in running
our full algorithm of regression are as follows:

1. Collecting the data from the data source: In our case, since it is a file we
can simple copy it to HDFS since it is a big data project and Apache Spark
expects the file to be on HDFS or another big data filesystem to mimic a real-
world application.

. The data in HDFS can be in any format such as plain text,
% CSV, Avro, or Parquet. Hadoop supports a variety of
%~ formats. Please refer to Chapter 1, Big Data Analytics with Java
where we briefly covered a few of the popular formats.

Cleaning and munging the data.
Exploring the data for initial insights.

Building and training the regression model and storing the model to external
storage on HDFS.

5. Reloading the model from HDEFS and running predictive analytics for the
price of house.

6. Evaluating our results.

We will now look into the full analysis of this sample application.
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Dataset

The dataset contains house sale prices for King County, which includes Seattle. It
includes homes sold between May 2014 and May 2015. This dataset has been used
from kaggle.com and it can be downloaded from this link: https://www.kaggle.
com/harlfoxem/housesalesprediction. Kaggle.comis a famous site that hosts
data science competitions for developers and has plenty of datasets for learning
analytics. This King County house sale dataset is a great dataset for evaluating
regression models. Let's try to run our regression algorithm on this dataset.

There are many features in the dataset, but the main features that we will be

using are shown here:

Feature name Description

Bed_rooms Number of bedrooms
Bath rooms Number of bathrooms
Sqft Living Living area in squared feet
Saft_lot Lot area in squared feet
Price Price of the house

Data cleaning and munging

Before we use any dataset for our machine learning tasks we have to make sure
the data is in proper format. Most of the algorithms that we use rely on using
mathematical data. Hence, data that is in string format as labels and so on needs to
be converted into proper mathematical format before it can be fed to the machine
learning algorithm.

Our first step for data cleaning is to load the data and visualize the first few lines
and see if some garbage data is there or some missing values that you can visualize.
Fortunately for us this dataset is pretty clean and it has no missing values. Also all
the data points in it are numbers. Let's explore our data a little bit before we finally
run regression on it.

Exploring the dataset

Before undergoing any machine learning task we must analyze the dataset first.

In the event of some missed features or bad data we must clean the features data first
before using it for training the models. Before we run any analytics job on our data
we need to build our Spark configuration and Spark session object as shown in
the following code:

SparkConf c¢ = new SparkConf () .setMaster("local”) ;

SparkSession session = SparkSession
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.builder ()
.config(c)
.appName ("chp 5")
.getOrCreate() ;

Once the sparksession is built, let's run some simple analytics on data using Spark
SQL as follows:

* Number of rows in this dataset: Using the sparksession object load the
dataset using the csv method as it is in CSV format. Next invoke count ()
and find the total rows in this dataset:

Dataset<Row>data = Spark.read() .CSV("data/kc_house data.CSV”);
System.out.println ("Number of Rows -->" + data.count());

And the output is as follows:

17793703 U1 17:3Z INFU DAGSCNEduIers Job I TINISNed: COUNT @t HOUSINEUaTaEXpIoTe.
17/83/@3 ©1:17:32 INFO CodeGenerator: Code generated in 31.059641 ms

Mumber of Rows --»> 21614

17/83/83 01:17:32 INFO SparkContext: Invoking stop() from shutdown hook

17/83/83 01:17:32 INFO SparkUI: Stopped Spark web UI at http://192.168.1.6:4040

* Average price of houses per zip code sorted by highest on top: For this we
will register the dataset generated in the previous step as a temporary view
named houses and then we will fire a simple group by query on this view.
We will group the columns by zip code and find the average price per zip
code and will later sort with the highest on top as follows:

data.createOrReplaceTempView ("houses”) ;
Dataset<Row>avgPrice = Spark.sgl("select cl6é zip code,avg(_c2)
avgPrice
from houses group by c¢l6 order by avgPrice desc”);
avgPrice.show() ;

And the result would be printed as:

17/@3/03 01:34:31 INFO CodeGenerator: Code generated in 36.
+------- e i T e +
| zipcode| avgPrice|
+------- e i T e +
| 98039] 2160606 .6|
| 98004]|1355927.0820189274|
| 98040|1194230.09212765958 |
| 98112| 1095499.342807435 |
| 98102] 901258.2666666667]
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For more elaborate data exploration and with graphs please refer to what
% we covered in Chapter 2, First Steps in Data Analysis and Chapter 3, Data
g Visualization and practice the code here.

Running and testing the linear regression model

For this example, we have used the dataframe machine learning APL It is an
upcoming API from Apache Spark and it is built on the lines of the scikit-learn
library. It is easy to use the machine learning algorithms on dataframe objects and
they are massively scalable. Let's go through the code now.

We have the dataset now, so first we build the SparkSession and store it in a Spark
object. For brevity I am not showing the full boilerplate code here:

SparkSession Spark = SparkSession.builder()..

Next load up the data from the dataset's CSV file (kc_house_data.Csv). After
loading the dataset in the Spark dataset object we register it as a temporary view in
Spark to fire queries on it:

Dataset<Row>fullData = Spark.read() .CSV("data/kc_house data.CSV”) ;
fullData.createOrReplaceTempView ("houses”) ;

. Hereyoucandoa fullData.printSchema () to see the schema (the
column names, and so on) in the dataset. By default Apache Spark will
= give some columns names to the columns loaded in this CSV file and they
will start with _c¢1, <2, and so on.

Now filter out the columns that we need by firing a Spark SQL query:

Dataset<Row>trainingData = Spark.sql ("select c3 bedrooms, c4
bathrooms, c¢5 sqgft living, cé6 sgft lot, c¢2 price from houses”);

This is an important step. Note that our machine learning algorithm requires data
in a particular form. Our machine learning algorithm from Apache Spark requires
data to be in Dataset<Row> form only, but within the row object, the first value is
the label or outcome of data (that is, if we are predicting the price so our outcome or
label is price) and finally in the next value we pass a vector and this vector object is
filled with the data of the features that we are feeding to our model.
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In the following code, we converted the dataframe to RDD first and later fired a
map transformation on it. We invoke a Java 1ambda function and using that we
are creating objects in the proper form as follows:

JavaRDD<Row>training = trainingData.javaRDD() .map(s -> {

return RowFactory.create (Double.parseDouble (s.getString(4) .
trim()),

Vectors.dense (
Double.parseDouble (s.getString(0) .trim() ),

Double.parseDouble (s.getString (1) .trim()),
Double.parseDouble (s.getString(2) .trim() ),

Double.parseDouble (s.getString(3) .trim()))
) ;

This model is a fully mathematical model and it needs to be fed with only
) numbers. Hence, we are converting all the feature values and the label
% outcomes to be numbers (double) first.
A~ If you have values in your datasets that are categorical or non numbers

then before feeding them to your models you need to convert them to
numbers first.

Since this is the new machine learning dataframe API, it has the dependency of the
data to be present in DataSet<Row> format. Hence we convert our preceding training
data RDD back to a Dataset object. First we defined the schema of the values that
we have in our gavarDD. Using this schema next we build the Dataset object by
invoking createDataFrame on a Spark session:

StructType schema = new StructType (new StructField[] {

new StructField("label”, DataTypes.DoubleType, false, Metadata.
empty () ),

new StructField("features”, new VectorUDT(), false, Metadata.empty())

3N

Dataset<Row>trn = Spark.createDataFrame (training, schema);
trn.show() ;
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We have invoked a trn.show () here to show us the first few values in our dataset
now. It will show up as a list of labels and features as follows:

e b L e L L e R L]
| label | features|
R e e it
| 221906.0|[3.0,1.0,1188.0,5.._|
| s2geee.0|[2.0,2.25,2578.0,...|
| 180000.0][2.0,1.0,770.0,10...]
| sesep0.0|[4.9,3.0,1960.0,5...|
| s1ee06.0|[3.0,2.0,1680.0,8. . _|
|1225000.0|[4.0,4.5,5420.8,1. .. |

We will split our dataset into two parts, one for training our model and the second
part for testing our trained model as to how good it is. We keep 90 percent of the
data for training and the remainder for testing:

Dataset<Row>[] splits = trn.randomSplit (newdouble[] {0.9, 0.1},
12345) ;

Dataset<Row>trainingMain = splits[0];
Dataset<Row>testMain = splits[1];

Now build our regression model and provide the parameters:

LinearRegression 1lr =

new LinearRegression() .setMaxIter (50) .setRegParam(0.3).
setElasticNetParam(0.5) ;

Train the model on the training data:
LinearRegressionModel lrModel = lr.fit (trainingMain) ;

Now test how good our training of the models is and how good the parameters we
have chosen are. We will print the trained model coefficients and also print the root
mean squared error. We will use the handy LinearRegressionTrainingSummary
class that does these calculations for us and prints the root mean squared error:

System.out.println("Coefficients: "

+ lrModel.coefficients() + " Intercept: " + lrModel.intercept());
LinearRegressionTrainingSummary trainingSummary = lrModel.summary () ;
System.out.println("RMSE: " + trainingSummary.

rootMeanSquareddError () ) ;
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This would print the coefficients and root mean squared error as follows:

Coefficients: [-64534.41523975349,8313.685443179289,314.60167605661406, -0.37592410488893885] Intercept: 90080.21844645533
RMSE: 257859.12249611464

As we discussed the root mean squared error before, we should
*  try our model with different features and different parameters
% and see how our root mean squared error behaves. Our target is
to reduce the root mean squared error, if it is going down then
our model is getting better.

Finally, run our trained model on the test data split we had. After running the model
using the transform function record the results of the model in the rows object, as
shown in the following snippet, and collect and print the results:

Dataset<Rows>results = lrModel.transform(testMain) ;
Dataset<Row>rows = results.select ("features”, "label”, "prediction”);
for (Row r: rows.collectAsList())

System.out.println("(" + r.get(0) + ", " + r.get(l) + ") " + ",

prediction=" + r.get(2));

}

This would print the results as follows:

05

Look at the preceding printed results. A few values are predicted relatively well, for
example, the second row from the top where the predicted results is quite near the
actual value. Let's explore two values from this result:
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Features and actual value Predicted value Description
[3.0,2.5,2390.0,6435.0], 432500.0 666740.1204811503 Values are widely off
[3.0,2.5,1650.0,2787.0], 433190.0 435306.25133833074 | Values nearly match

As you can see in the preceding table, one value was close and the other was widely
off. This is what machine learning is about; we need to get the best predicted results
that are good for most cases. It takes years of practice on the part of data scientists to
evaluate models that bring awesome predicted results. There are plenty of practical
examples (for example, in the case of Amazon. com their website is full of predicted
suggestive results that are very good) that are used in real life where the machine
learning algorithms have been so finely optimized that they bring very good
predictive results.

To fix our preceding results we need to try and test different feature combinations
and do things such as cross-validation on the data and also tweak the parameters we
pass to the model. Our aim in this book is to give you good introductory information
on the predictive models and we would expect that the readers take it from there
and practice with different models and different features and try to come up with
the best results.

Next we will learn a very popular classification model, logistic regression.

Logistic regression

This is a popular classification algorithm where the dependent variable (outcome) is
categorical. Even though it has the word regression in its name, it is a classification
technique. Using this technique, we can train a model on some training data and the
same model we can later use on new data to classify it into different categories. So,
if you want to classify data into categories such as 1/0, Yes/No, True/False, Has
Disease/No Disease, Sick/Not Sick and so on, logistic regression is a good classifier
model to try in these cases. As per these examples, logistic regression is typically
used for binary classification, but it can also be used for multiclass classification too.

The approach used by this algorithm is quite simple. We apply the data from the
dataset onto a mathematical optimization function and this function will later make
the data fall either in a 0 category or 1 category. Later on when we get a new piece of
data we apply the same function to that new data and see where it falls, and based
on that we predict its category.

Let's now try to dig deep into the concepts of logistic regression by asking a
few questions.
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Which mathematical functions does logistic
regression use?

There are many mathematical functions that can be used with logistic regression.
Basically, we will be feeding our parameters to this mathematical function and it
will give an output of either 1 and 0, or 1 and -1. Based on this output we will be
able to figure out which category is the output. We will be mainly discussing the
sigmoid function.

A sigmoid is a mathematical function. It is defined by the following
mathematical formula:

I

¥

l+e~

Here:

* e: The natural logarithm base (also known as Euler's number)

* x: The x-value of the sigmoid's midpoint

* L:The curve's maximum value (you can see the curve in the following figure)
* k: The steepness of the curve (you can see the curve in the following figure)

This function is also called a sigmoidal curve. If it is plotted on the x and y axes it is
an S-shaped curve shown as follows:

0:5
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As seen in the preceding figure, it's an S-shaped graph and the graph starts from -6
and goes to +6 values. Its center lies at 0.5 (which is the value on the y axis). It's a
very simple yet powerful function that states that if our value or outcome value

is greater than 0.5 then we have the result as '1', and if it is less than 0.5 then the
result is 0.

Sigmoid is one of the functions we have covered here. There are other
% mathematical functions that are used in logistic regression, for example,
’ the Heaviside Step function.

Thus logistic regression is basically an optimization technique that crunches your
data to fall on either side of the boundary of a mathematical function. You can use
this boundary condition, that is, greater or less than 0.5, as seen in the preceding
graph, to figure binary classifications for labels such as sick/healthy, customer clicks
the ad / customer avoids the ad, customer buys the product / customer ignores the
product, and so on. In mathematical terms it is a probabilistic approach whereby

the mathematical function figures out the probability of outcome and when it is
beyond a certain value (as in our case it is 0.5) it is classified as one value or else

the other value.

Logistic regression in use here is a binary classification technique where the output is
of two kinds, but logistic regression can also be used as a multiple class classification
technique. In a multiple class classification technique, the output can be of multiple
kinds, for example, customer buys, ignores, or adds a product to their wish list.
Thus, there are three categories here.

As we mentioned earlier, before feeding our features to the sigmoid function we
multiply them with weights and then sum them up. But how do we calculate these
weights? Calculation of proper weights or regression coefficients is important as
based on that our logistic regression model performs. So naturally we get another
question on this now. How do we calculate the regression coefficients?

We will briefly explain the two ways (though there are more ways) used to finding
the regression coefficients or weights:

* Gradient ascent or descent: I won't go into the details of the math involved
here much. For detailed reference on these approaches refer to the content
on Wikipedia.
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Gradient ascent is an iterative technique whereby we try to find the max
point within a graph. To find the max point we will move in the direction

of the gradient using some mathematical function. To move one step ahead
every time along this path we would require a step function. We would try
to minimize the loss or the cost function. As it is an iterative approach we can
set up a maximum number of iterations beyond which this approach would
stop. Similar to gradient ascent that finds a max function, a gradient descent
finds a minimum function.

. After arequired number of iterations are done and your model is
& ready run the predictive results and plot the results on a line that is
L superimposed on the scatter plots of the data. This will show you

how well the data is partitioned using this approach.

Stochastic gradient descent: The performance of the gradient ascent
algorithm that was discussed previously is not very good because it re-
evaluates the full data points on each run. To avoid this we use the stochastic
gradient. This algorithm is very similar to the gradient descent one except
that in this one we will update the weights or regression coefficients using
only one instance at a time. For more information on this approach refer

to Wikipedia.

Let's now try to find the uses of logistic regression.

Where is logistic regression used?

Logistic regression is a very useful technique. Here are some of its uses:

Logistic regression is the base for more complex algorithms such as
neural networks

Logistic regression is used in medical sciences and social sciences, for
example, whether a patient has a disease or not

Logistic regression can be used in business too, for example, in e-commerce
apps, it can be used to predict things such as whether the user will click on
an ad or not, and so on
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Predicting heart disease using logistic regression

Disease detection is an interesting problem and one that has been very active in the
research field too. In most of the research papers on automatic disease detection
machine learning is actively used to predict the occurrence of the disease based on
various attributes. For this case study we will try to predict the occurrence of heart
disease based on various parameters that the machine learning model is trained
on. We will be using a heart disease dataset that is explained in the next section,
for training our model.

For the full steps of how we can run a machine learning model on big
. data, refer to Chapter 4, Basics of Machine Learning, where we talk about
% how data can be shipped into HDFS and how you can run the models
L= using Spark and store the results in Parquet or other formats. Finally,
the results can be consumed using products such as Impala to query the
results in real time.

Dataset

The heart disease dataset is a very well-studied dataset by researchers in machine
learning and it is freely available at the UCI machine learning dataset. Though there
are 4 datasets in this, [ have used the cleveland dataset that has 14 main features;
we are only using 5 of those. The dataset is in a CSV file and the features or attributes
are as follows:

Feature Description

Age Age of the person

Sex Male or female (1 = male; 0 = female)
cp Chest pain type:

value '1": typical angina
value '2": atypical angina
value '3'": non-anginal pain

value '4": asymptomatic

trestbpss Resting blood pressure (in mm Hg on admission to the hospital)
chol serum cholesterol in mg/dl
num Diagnosis of heart disease (angiographic disease status):

value 0: < 50% diameter narrowing (means 'No Disease')

value 1: > 50% diameter narrowing (means 'Disease is Present'’)
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Data cleaning and munging

The files contain data that has to be adapted into the format that the model requires.
As it is a mathematical model it requires all numbers. In our dataset we have two
main problems, as follows:

Missing data: Some of the data points have null or no values and these
would cause a null pointer exception to occur if we feed them to the model.
In Chapter 2, First Steps in Data Analysis, we discussed a few strategies to deal
with missing data, please refer to that chapter if you need to go through
those details again. For now we will take a simplistic approach out of those
approaches, we will replace the missing values with the mean value for that
particular data column.

Categorical data: The last parameter num has categorical string data in it. We
can only feed numerical data to our model. For this we need to convert this
string data to numbers. This categorical data signifies whether the user has a
disease or not as such it can be depicted by binary values whereby 1 means
has disease and 0 means no disease.

Data exploration
Let's do some initial data exploration on the data:

Number of items in the dataset: It's a relatively small dataset and we will
load the dataset and run a count on the number of rows:
Dataset<Row>data = Spark.read().CSV("data/heart disease_
data.csv”) ;
System.out.println ("Number of Rows -->" + data.count());

Number of Rows --»> 383

Number of women and men in the dataset: We will now find the total
number of men and women in this dataset. For this, we will register the
previous dataset as a temporary view and fire a Spark SQL group by query
on it as follows:
Dataset<Row>menWomenCnt = Spark.sql ("select _cl sex,count (*)

from
heartdiseasedata group by _cl1”);

menWomenCnt . show () ;
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P +
| sex|count(1)]
e +
[1.0] 206 |
10.0| 97|
oo — - +

[ % In our dataset 1 = male and 0 = female. ]

Average age of women and men: Let's find the average age of men and
women in this dataset:

Dataset<Row>menWomenAvgAge =

Spark.sql ("select _cl sex,avg(_c0)
from

heartdiseasedata group by _cl1”);
menWomenAvgAge . show () ;

R e it +
| sex|avg(CAST( c® AS DOUBLE))|
R e it +
[1.9] 53.83495145631068 |
|o.0| 55.72164948453608 |
B i +

Minimum age of women and men with the disease: Let's find the minimum
age of women and men that have the disease:

Dataset<Row>menWomenMinAge =

Spark.sqgl ("select cl sex,min(_c0)
from

heartdiseasedata group by cl1”);
menWomenMinAge . show () ;

Fo-mmmmmm— - +
| sex|count(1) |
Fo-mmmmmm— - +
[1.9] 206 |
|e.a| 97|
Fo-mmmmmm— - +
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We will leave it to the users to do more analysis on the data. As you can
see, you can get valuable information just by exploration. For example,
we saw that the minimum age for men with disease is 5 years less than
%»‘ women in this dataset; if we have more data than this dataset then even
’ data exploration can give extremely useful results. Also you can plot
graphs based on this data and the visualization of those graphs is quite
insightful too.

So much for the data exploration piece; let's now dig into the logistic regression
algorithm and see how it helps us predict the presence of heart disease given
some data.

Running and testing the logistic regression model

The code for the model is very similar to what we showed for linear regression
except that the type of model has changed in this case. We will start by building the
SparkSession object, we call it Spark and later using that object, we will pull only
the columns or features that we need to train our models with:

Our model is a mathematical model and it feeds only on numbers. So
% make sure before feeding and training the model it has only numbers in
g the dataset.

SparkSession Spark = SparkSession.builder()..

Next, load up the data from the dataset's CSV file (kc_house_data.Csv). After
loading the dataset in the Spark Dataset object, we register it as a temporary
view in Spark to fire queries on it:

Dataset<Row>fullData = Spark.read().CSV("data/heart disease data.
csv”) ;

fullData.createOrReplaceTempView ("heartdiseasedata”) ;

. Hereyoucandoa fullData.printSchema () to see the schema (the
% column names, and so on) in the dataset. By default, Apache Spark will
" give some column names to the columns loaded in this CSV file and they
will start with _c¢1, ¢2, and so on.

Now filter out the columns that we need by firing a Spark SQL query:

Dataset<Row> selFeaturesdata = Spark.sqgl("select _cO0 age,_cl sex,_c2
cp,_c3
sgft_lot, _c4 price,_cl3 has_disease from heartdiseasedata”) ;
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After selecting the features that we need, we will convert all the features data into

a number and put it into a vector object. Since our model requires a row object, we

fill the row object with the outcome (from this training data) and the features into a
vector as follows:

JavaRDD<Rows>vectorsData = selFeaturesdata.javaRDD() .map(s -> {

return RowFactory.create ((Double.parseDouble (s.getString(5) .
trim()) >

? 1.0 : 0.0, Vectors.dense(

Double.parseDouble (s.getString(0) .trim() ),

Double.parseDouble (s.getString (1) .trim()),
Double.parseDouble (s.getString(2) .trim()),
Double.parseDouble (s.getString(3) .trim()),
Double.parseDouble (s.getString(4) .trim()))

)i
3N

Now we convert this JavaRDD back to a dataframe as our new dataframe machine
learning API requires it to be in dataset format:

StructType schema = new StructType( new StructField[] ({

new StructField("label”, DataTypes.DoubleType, false, Metadata.
empty ()),

new StructField("features”, new VectorUDT(), false, Metadata.empty())

3N

Dataset<Row>trn = Spark.createDataFrame (vectorsData, schema);
trn.show() ;

We have invoked a trn.show () here to show us the first few values in our dataset
now. It will show up as a list of labels and features as follows:

[151]



Regression on Big Data

We will split our dataset into two parts, one for training our model and the second
part for testing our trained model as to how good it is. We keep 90 percent of the
data for training and the remainder for testing;:

Dataset<Row>[] splits = trn.randomSplit (newdouble[] {0.9, 0.1},
12345) ;

Dataset<Row>trainingData = splits[0];
Dataset<Row>testData = splits[1];

Now build our logistic regression model. We have checked that even with
the default configuration this model performs well, so we have not done any
extensive tweaking with the parameters here:

LogisticRegression lr = new LogisticRegression() ;

Now train the model on the training data:

LogisticRegressionModel 1lrModel = lr.fit (trainingData) ;

Now run our trained model on the test data split we had. After running the model
using the transform function record the results of the model in the rows object, as
shown in the following snippet, and collect and print the results:

Dataset<Row>results = lrModel.transform(testData) ;
Dataset<Row>rows = results.select ("features”, "label”, "prediction”);
for (Row r: rows.collectAsList())

System.out.println("(" + r.get(0) + ", " + r.get(l) + ") " + ",
prediction=" + r.get(2)) ;

}

This would print the results as follows:

([35.0,1.0,2.0,122.0,192.6], 6.8) , prediction=0.0
([39.0,0.0,3.0,94.0,199.0], 0.0) , prediction=0.0
([47.0,1.0,3.0,130.0,253.0], 0.8) , prediction=0.0
([51.0,0.0,3.0,130.0,256.0], 0.8) , prediction=0.0
([51.0,1.0,3.0,125.0,245.8], 0.8) , prediction=0.0
([52.0,0.0,3.0,136.0,196.0], 0.8) , prediction=0.0
([52.0,1.0,3.0,138.0,223.0], 0.8) , prediction=0.0
([55.0,1.0,2.0,130.0,262.0], 6.8) , prediction=0.0
([56.0,0.0,2.0,140.0,294.0], 0.8) , prediction=0.0
([56.0,1.0,2.0,120.0,236.0], 0.8) , prediction=0.0
([60.0,0.0,3.0,120.0,178.0], 0.8) , prediction=0.0
([67.0,0.0,3.0,115.0,564.0], 0.8) , prediction=1.0
([67.0,0.0,3.0,152.0,277.6], 0.8) , prediction=0.0
([68.0,1.0,3.0,118.06,277.6], 0.8) , prediction=1.0
([42.0,1.0,4.0,136.0,315.6], 1.8) , prediction=1.0
([43.0,0.0,4.0,132.0,341.0], 1.8) , prediction=0.0
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False positive is a very dangerous predictive outcome in a disease dataset
like this. A false positive states that the diseases are not present (as per
the predictive results); however, in reality the disease is there. Thereby
% the false positive from a logistic regression model perspective is very bad
g for a predictive result. To counter this a little bit you can set a minimum
probability beyond which only a certain result will be marked as positive
or negative.

Now let's quickly check with a simple way as to how many of our predictions were
good according to this model. For this we will take the total data rows in our test
data and divide the number of wrong results with that and calculate the percentage
of wrong results. The smaller the value the better our model is:

inttestDatalLength = new Integer ("" + rows.count()) ;
intwrongResultsCnt = 0;
for (Row r: rows.collectAsList())

if (r.getDouble (1) != r.getDouble(2)) wrongResultsCnt =

wrongResultsCnt + 1;

}

doublepercentOfWrong = (wrongResultsCnt * 100)/testDatalength;
System.out.println("Percent of wrong results -->" +
percentOfWrong) ;

And the result is printed as follows:

Percent of wrong results --> 16.0

As you can see, our model gave 16% bad results. As such this model is not good for
disease prediction. We need a much better accuracy if we need to make this model
make some useful predictions. As for the readers, we would encourage the reader to
try different models on the same dataset and observe the error rate for practice.
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Summary

In this chapter, we studied two very popular machine learning algorithms, namely
linear regression and logistic regression. We saw how linear regression can be used
to predict continuous values such as sales counts, estimating the price of products,

and so on. We also ran a sample case study using the linear regression approach

to predict the prices of houses. We later learned about logistic regression and ran a

sample using a popular heart disease dataset used for studying machine learning.

In the next chapter, we will learn two more supervised learning algorithms that are
used heavily in classification. The first algorithm that we will study is Naive Bayes
and then we will learn about the support vector machine algorithm.
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Sentiment Analysis

A few years back one of my friends and I built a forum where developers could

post useful tips regarding the technology they were using. I wished I knew about
the Naive Bayes machine learning algorithm then. It could have helped me to filter
objectionable content that was posted on that forum. In the previous chapter, we saw
two algorithms that can be used to predict continuous values or to classify between
discrete sets of values. Both the approaches predicted a definite value (whether it
was continuous or discrete), but they did not give us a probability of occurrences

of our best guesses. Naive Bayes gives us the predicted results with a probability
attached to it, so in a set of results for same category we can pick the one with the
highest probability.

In this chapter, we will cover:

* General concepts about probability and conditional probability. This section
will be basic and users who already know this can skip this section.

*  We will cover the bayes theorem upon which the Naive Bayes algorithm
is based.

*  We will look into the concepts of Naive Bayes and see some real-life
use cases.

* After this we will use a simple example to understand the concepts of a
Naive Bayes algorithm.

* Finally, we will run a real-world sample case study on a Twitter dataset for
sentimental analysis. For this we will be using a standard machine learning
algorithm, and the big data toolsets such as Apache Spark, HDFS, parquet,
Spark ML, and Spark SQL.
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While doing sentiment analysis (we will explain this in
% detail within this chapter) we will cover a lot of features
"~ on text analysis on top of big data.

* Before we get into the details of the Naive Bayes algorithm we must
understand the concepts of conditional probability.

Conditional probability

Conditional probability in simple terms is the probability of occurrence of an event
given that another event has already occurred. It is given by the following formula:

P(B|A)=P(A and B)/P(A)

Here in this formula the values stand for:

Probability value Description

P(B|A) This is the probability of occurrence of event B given
that event A has already occurred.

P(A and B) The probability that both event A and B occur.

P(A) This is the probability of occurrence of an event A.

Now let's try to understand this using an example. Suppose we have a set of seven
figures as follows:

A A A

As seen in the preceding figure, we have three triangles and four rectangles. So if we
randomly pull one figure from this set the probability that it belongs to either of the
figures will be:

P(triangle) = Number of Triangles / Total number of figures =3 /7
P(rectangle) = Number of rectangles / Total number of figures =4 /7

Now suppose we break the figure into two individual sets as follows:
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Set-2

Set-1

As seen in the preceding figure, we have two sets each with their own individual
figures. Now suppose we pull a figure from Set-1 then what is the probability that
it is a triangle? There are two events involved here, the first event is the event of
pulling a figure from the Set-1 and the second event is that the set chosen is Set-1.
We know that the set chosen is Set-1 as described by the problem hence the second
event has already occurred. Thus we can write the formula as follows:

P(triangle and set-1) = Number of triangles in set-1/ Total figures = 2/7

P(set-1) = Number of figures in set-1/ total number of figures =5/ 7

Therefore,

P(triangle | set-1)= P(triangle and set-1) / P(set-1) = (2/7)/(5/7) =2/5=0.4

Thus, our conditional probability of pulling a triangle from Set-1 is 0.4. We have seen
what conditional probability is, and now it's time to learn the bayes theorem.

Bayes theorem

The Bayes theorem is based on the concept of learning from experience, that is, using
a sequence of steps to come to a prediction. It is the calculation of probability based
on prior knowledge of occurrences that might have led to the event. Bayes theorem is
given by the following formula:
P(A4|B)= P(B|A)P(A)
P(B)
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Where:

Probability Value | Description

P(A | B) Conditional probability of event A given that event B has occurred.
PB | A) Conditional probability of event B given that event A has occurred.
P(A) Individual probability of event A without regard to event B.

P(B)

Individual probability of event B without regard to event A.

Let's understand this using the same example as we used previously. Suppose we
picked one green triangle randomly from a set then what is the probability that it
came from Set-1?

Before we run the bayes theorem formula we will first calculate the individual
probabilities:

Probability of randomly picking a set from one of the two sets, Set-1
and Set-2

Since there are two sets only this probability is

=05

ta | —

Probability of picking a triangle from any set

Number of Triangles _ 3 —0.43

Pl Triangle) =
( gle) Total Figures Count 7

Probability of picking a triangle given that it came from Set-1

P(Triangle | Set _1)= P(set) =5 0.4
Now we will go to our original bayes formula and find the probability we are
looking for, that is

P(Triangle| Set 1) P(Set 1) 0405

P(Set 1| Triangle) = - =
' P(Triangle) 0.43

=047

Thus, the probability that the triangle came from Set_1 is 0.47 or 47%.

To find that the triangle came from Set_2 is simple as it would be the
remaining probability and we can delete it from 1. Thus

P(Set _2|Triangle)=1- P(Set, | Triangle) =1-0.47 = 0.53
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So the probability that the triangle came from Set_2 is 0.53 or 53%.

* As the probability of picking the triangle from Set_2 is higher than the
probability of picking it from Set-1, thus we can predict that the triangle
came from Set_2.

Before we knew which set the triangle belonged to, the probability of pulling the
triangle was 40% or 0.4. But once we knew what bucket the figures belonged to, the
probability increased to 53% when it is pulled from Set_1. This makes sense too
right, once we know which set the bucket belongs to it becomes a little easier to
figure out whether it's a triangle or not, and hence the increase in probability. And
this is what bayes theorem is all about, where a new probability is figured out as a
consequence of a set of sequences (which in our case was depicting which set the
figure belonged to).

Also, if you closely look at the preceding results you would realize that we just
solved a classification problem. Thus, we gave a few attributes (figure type, that is,
triangle) and asked the user to classify between two discrete values, that is, Set_1
and Set_2.

For a full blown classification problem we will have many more features

as compared to the single feature (the figure type, that is, triangle or
s> .
rectangle) shown previously.

We will next look at the Naive Bayes algorithm that is based on this probability
principle of bayes theorem.

Naive Bayes algorithm

Have you ever wondered how your Gmail application automatically figures out

that a certain message that you have received is spam and automatically puts it

in the spam folder? Behind the email spam detector, a powerful machine learning
algorithm is running, that automatically detects whether a particular email that you
have received is spam or useful. This useful algorithm that runs behind the scenes
and saves you wasted hours on deleting or checking these spam emails is Naive
Bayes. As the name suggests, the algorithm is based on the bayes theorem. The
algorithm is simple yet powerful, from the perspective of classification the algorithm
figures out the probability of occurrence of each discrete class and it picks the value
with the highest probability.
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You might have wondered why the algorithm carries the word Naive in its name.
It's because the algorithm makes some Naive assumptions that the features that are
present in a dataset are independent of each other. Suppose you have an email that
contains the word casino and gambling, this algorithm will make the assumption
that both these words are completely independent and occurrence of one will not
affect the occurrence of the other one in any way. Even in this example of casino
and gambling this assumption looks wrong since we all know that people go to
casinos mainly for gambling. Even though Naive Bayes makes such an assumption
of features being independent of each other the overall performance of the algorithm
is still pretty good and hence it is used in many real-life applications such as spam
filters. In the next section, we will see some of the real-life applications of

this algorithm.

Naive Bayes is used in a lot of practical real-life applications as follows:

* This algorithm is the base for many spam filters and spam classifiers. As such
it is used in many popular email clients, forum software, comments filtering
software, and so on for filtering spam content.

* Itis used in sentimental analysis of text to classify the emotion of a particular
piece of text (for example, a review of a product) whether it is a positive
emotion or a negative one.

* For document categorization, for example, to classify an article into
categories such as politics, sport, technology, and so on.

* This algorithm is fast to train and test; hence it is used in real-time prediction
scenarios to make fast predictions on events based data that is generated in
real time.

* Itis used in many recommendation systems to give useful suggestions of
content to the users.

* We have seen some of the real-life use cases of Naive Bayes; we will now
learn some of its advantages and disadvantages.

Advantages of Naive Bayes

Even though Naive Bayes looks like a simple algorithm, it can give tough
competition to many of the similar popular machine learning algorithms.
Some of its major advantages are:

* Itis simple and fast to train. It can be trained on smaller sets of data too.
Hence if you are looking for something very fast to try and train Naive Bayes
is a good choice to go for first.
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* Since it can be trained fast it is also useful in real-time prediction systems as
well. For example, in terms of big data if you have a real-time event transfer
system such as Kafka that is hooked to transfer data around, you can predict
on this data in real time using the Naive Bayes algorithm.

* If the assumption of independent features holds good on the dataset that
you are working on, and then it can give good competition to other machine
learning algorithms such as logistic regression in terms of performance.

* It can make both binary and multi class classification.

* It can be trained to work in parallel (as you can see its implementation in
Apache Spark also works in parallel), and do to this it can easily scale on
massive datasets especially in the case of big data datasets.

We have seen the advantages of this algorithm; let's now look at some of its
drawbacks.

Disadvantages of Naive Bayes

We have seen that Naive Bayes makes some strong assumptions on the dataset
features, as such, it has some drawbacks too. We will explore some of those
drawbacks now:

* Naive Bayes assumes that the features in the dataset are completely
independent of each other. This goes well in some datasets where the
features are relatively independent, but in datasets where the features
are tightly coupled or related, it can give bad performance in terms of
predictions. Suppose you like sugary drinks and salty drinks, the Naive
Bayes can predict well whether you will like a drink or not when given a
sugary drink or salty drink. But suppose you don't like drinks that contain
both sugar and salt, then in this case Naive base would predict badly as
it considers both the features independent and cannot relate both of the
features together.

* If there is a response variable in the test data, but correspondingly it does not
have value in the training data then it would assign it a probability of zero. In
this case it won't be able to make a prediction. To solve this, a value is added
to the zero probability and this is called a smoothing factor (it is called a
Laplace Estimation).

We have now gone through some of the basic concepts of the Naive Bayes algorithm,
and we have seen that this algorithm is extensively used in text analysis. So we will
try to understand its usage by looking at a real-life example of sentimental analysis,
which is a form of text analysis. Before diving directly into the algorithm, we will
study some of the basic concepts regarding sentimental analysis.
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Sentimental analysis

As we showed in the previous examples, Naive Bayes has extensive usage in
text analysis.

One of the forms of text analysis is sentimental analysis. As the name suggests

this technique is used to figure out the sentiment or emotion associated with the
underlying text. So if you have a piece of text and you want to understand what
kind of emotion it conveys, for example, anger, love, hate, positive, negative, and so
on you can use the technique sentimental analysis. Sentimental analysis is used in
various places, for example:

* To analyze the reviews of a product whether they are positive or negative

* This can be especially useful to predict how successful your new product is
by analyzing user feedback

* To analyze the reviews of a movie to check if it's a hit or a flop

* Detecting the use of bad language (such as heated language, negative
remarks, and so on) in forums, emails, and social media

* To analyze the content of tweets or information on other social media to
check if a political party campaign was successful or not

Thus, sentimental analysis is a useful technique, but before we see the code for our
sample sentimental analysis example, let's understand some of the concepts needed
to solve this problem.

For working on a sentimental analysis problem we will be using some

techniques from natural language processing and we will be explaining
T some of those concepts.

Concepts for sentimental analysis

Before we dive into the fully-fledged problem of analyzing the sentiment behind text,
we must understand some concepts from the NLP (Natural Language Processing)
perspective.

We will explain these concepts now.
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Tokenization

From the perspective of machine learning one of the most important tasks is feature
extraction and feature selection. When the data is plain text then we need some way
to extract the information out of it. We use a technique called tokenization where the
text content is pulled and tokens or words are extracted from it. The token can be a
single word or a group of words too. There are various ways to extract the tokens,

as follows:

* By using regular expressions: Regular expressions can be applied to textual
content to extract words or tokens from it.

* By using a pre-trained model: Apache Spark ships with a pre-trained model
(machine learning model) that is trained to pull tokens from a text. You can
apply this model to a piece of text and it will return the predicted results as a
set of tokens.

To understand a tokenizer using an example, let's see a simple sentence as follows:
Sentence: "The movie was awesome with nice songs"
Once you extract tokens from it you will get an array of strings as follows:

Tokens: ['The', 'movie', 'was', 'awesome', 'with', nice', 'songs']

. The type of tokens you extract depends on the type of tokens
% you are interested in. Here we extracted single tokens, but
e tokens can also be a group of words, for example, 'very nice',
'not good!, 'too bad', and so on.

Stop words removal

Not all the words present in the text are important. Some words are common words
used in the English language that are important for the purpose of maintaining the
grammar correctly, but from conveying the information perspective or emotion
perspective they might not be important at all, for example, common words such

as is, was, were, the, and so. To remove these words there are again some common
techniques that you can use from natural language processing, such as:

* Store stop words in a file or dictionary and compare your extracted tokens
with the words in this dictionary or file. If they match simply ignore them.

* Use a pre-trained machine learning model that has been taught to remove
stop words. Apache Spark ships with one such model in the Spark feature
package.
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Let's try to understand stop words removal using an example:
Sentence: "The movie was awesome"

From the sentence we can see that common words with no special meaning to
convey are the and was. So after applying the stop words removal program to this
data you will get:

After stop words removal: [ 'movie', 'awesome', nice', 'songs']

In the preceding sentence, the stop words the, was, and with
L are removed.

Stemming

Stemming is the process of reducing a word to its base or root form. For example,
look at the set of words shown here:

car, cars, car's, cars'

From our perspective of sentimental analysis, we are only interested in the main
words or the main word that it refers to. The reason for this is that the underlying
meaning of the word in any case is the same. So whether we pick car's or cars we are
referring to a car only. Hence the stem or root word for the previous set of words
will be:

car, cars, car's, cars' => car (stem or root word)

For English words you can again use a pre-trained model and apply it to a set of data
for figuring out the stem word. Of course there are more complex and better ways
(for example, you can retrain the model with more data), or you have to totally use

a different model or technique if you are dealing with languages other than English.
Diving into stemming in detail is beyond the scope of this book and we would
encourage readers to check out some documentation on natural language

processing from Wikipedia and the stanford nlp website.

To keep the sentimental analysis example in this book simple we
@’@‘\ will not be doing stemming of our tokens, but we will urge the
’ readers to try the same to get better predictive results.
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N-grams

Sometimes a single word conveys the meaning of context, other times a group of
words can convey a better meaning. For example, 'happy' is a word in itself that
conveys happiness, but not happy' changes the picture completely and 'not happy'
is the exact opposite of 'happy'. If we are extracting only single words then in the
example shown before, that is 'not happy', then 'not' and 'happy' would be two
separate words and the entire sentence might be selected as positive by the classifier
However, if the classifier picks the bigrams (that is, two words in one token) in this
case then it would be trained with not happy' and it would classify similar sentences
with 'not happy' in it as 'negative'. Therefore, for training our models we can either
use a unigram or a bigram where we have two words per token or, as the name
suggests, an n-gram where we have 'n' words per token, it all depends upon which
token set trains our model well and improves its predictive results accuracy.

To see examples of n-grams refer to the following table:

Sentence The movie was awesome with nice songs

Uni-gram ['The', 'movie', 'was', 'awesome', 'with', 'nice', 'songs']
Bi-grams ['The movie', 'was awesome', 'with nice', 'songs']
Tri-grams ['The movie was', 'awesome with nice', 'songs']

For the purpose of this case study we will be only looking at unigrams to keep our
example simple.

By now we know how to extract words from text and remove the unwanted words,
but how do we measure the importance of words or the sentiment that originates
from them? For this there are a few popular approaches and we will now discuss
two such approaches.

Term presence and Term Frequency

Term presence just means that if the term is present we mark the value as 1 or else
0. Later we build a matrix out of it where the rows represent the words and columns
represent each sentence. This matrix is later used to do text analysis by feeding its
content to a classifier.
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Term Frequency, as the name suggests, just depicts the count or occurrences of the
word or tokens within the document. Let's refer to the example in the following table
where we find term frequency:

Sentence The movie was awesome with nice songs and nice
dialogues.

Tokens (Unigrams only for now) [The', 'movie', 'was', 'awesome', 'with', 'nice',
'songs', 'and', 'dialogues']

Term Frequency [The =1', 'movie =1, 'was =1, 'awesome = 1', 'with
=1', 'nice = 2', 'songs = 1', 'dialogues = 1']

As seen in the preceding table, the word 'nice' is repeated twice in the preceding
sentence and hence it will get more weight in determining the opinion shown by
the sentence.

Bland term frequency is not a precise approach for the following reasons:

* There could be some redundant irrelevant words, for example, the, it, and
they that might have a big frequency or count and they might impact the
training of the model

* There could be some important rare words that could convey the sentiment
regarding the document yet their frequency might be low and hence they
might not be inclusive for greater impact on the training of the model

Due to this reason, a better approach of TF-IDF is chosen as shown in the
next sections.

TF-IDF

TF-IDF stands for Term Frequency and Inverse Document Frequency and in simple
terms it means the importance of a term to a document. It works using two simple
steps as follows:

* It counts the number of terms in the document, so the higher the number of
terms the greater the importance of this term to the document.

* Counting just the frequency of words in a document is not a very precise way
to find the importance of the words. The simple reason for this is there could
be too many stop words and their count is high so their importance might get
elevated above the importance of real good words. To fix this, TF-IDF checks
for the availability of these stop words in other documents as well. If the
words appear in other documents as well in large numbers that means these
words could be grammatical words such as they, for, is, and so on, and
TF-IDF decreases the importance or weight of such stop words.
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Let's try to understand TF-IDF using the following figure:

Frequency of Terms

doc-1
Terms with J1_Common Grammatical words like 'is', 'it’,
lowTFADF 7 they etc.

doc-2

Words that are rare but truly depict

“'?5er'tirneml or emotion e.g 'bad movie

Terms with
doc-3 High TF-IDF / ‘pleasant songs’, "nice sushi' etc.

O 00 v

doc-4

As seen in the preceding figure, doc-1, doc-2, and so on are the documents from
which we extract the tokens or words and then from those words we calculate the
TF-IDFs. Words that are stop words or regular words such as for, is, and so on,
have low TF-IDFs, while words that are rare such as 'awesome movie' have higher
TE-IDFs.

TF-IDF is the product of Term Frequency and Inverse document frequency.
Both of them are explained here:

Term Frequency: This is nothing but the count of the occurrences of the
words in the document. There are other ways of measuring this, but the
simplistic approach is to just count the occurrences of the tokens. The simple
formula for its calculation is:

Term Frequency = Frequency count of the tokens

Inverse Document Frequency: This is the measure of how much information
the word provides. It scales up the weight of the words that are rare and
scales down the weight of highly occurring words. The formula for inverse
document frequency is:

Total Number of Documents
Inverse Document Frequency = log

Number of Documents containing the Term

TE-IDF: TF-IDF is a simple multiplication of the Term Frequency and the
Inverse Document Frequency. Hence:

TF-IDF=Term Frequency * Inverse Document Frequency
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This simple technique is very popular and it is used in a lot of places for text analysis.
Next let's look into another simple approach called bag of words that is used in text
analytics too.

Bag of words

As the name suggests, bag of words uses a simple approach whereby we first extract
the words or tokens from the text and then push them in a bag (imaginary set)

and the main point about this is that the words are stored in the bag without any
particular order. Thus the mere presence of a word in the bag is of main importance
and the order of the occurrence of the word in the sentence as well as its grammatical
context carries no value. Since the bag of words gives no importance to the order of
words you can use the TF-IDFs of all the words in the bag and put them in a vector
and later train a classifier (Naive Bayes or any other model) with it. Once trained, the
model can now be fed with vectors of new data to predict on its sentiment.

We have seen the steps that we will be using for sentimental analysis, let's now start
digging into the code. We will look at our dataset first.

Dataset

Our dataset contains a single file with lots of movie reviews and the corresponding
sentiment, that is, whether the review is positive or negative. The file contains data
that is tab separated. Some of the first few lines from the dataset are shown here:

The Da Vinci Code book is just awesome.

i liked the Da Vinci Code a lot.

I loved the Da Vinci Code, but now I want something better and different!..
i liked the Da Vinci Code a lot.

I liked the Da Vinci Code but it ultimatly didn't seem to hold it's own.

e e

As seen in the preceding screenshot, the dataset is mostly text data and text data is
generally huge in size if you are trying to pull text from sources such as social media,
log files, and so on. As such for text analysis a big data stack is best. Storing the text
data in HDFS is a good option as HDFS is highly scalable. Our dataset file size is not
huge, but to mimic a big data environment let's now put the file in HDFS using the
following command:

hdfs -dfs put <Filename><HDFS DIR NAME>

As we can see, we use the hdfs command to put the file from the operating system
file system to the hdfs directory.

We will now do some general data exploration on the file.
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Data exploration of text data

To explore our model we will first load our dataset from HDFS. To do this we will
first create the Sparksession (using Spark configuration) and then load the text file
using the sparkContext as follows. We will not show the boiler plate code though
the full code can be seen in the GitHub package for this book:

SparkConf c = ...
SparkSession spark = ...

JavaRDD<String> data =
spark.sparkContext () .textFile("hdfs://data/sa/training.txt",
1) .toJavaRDD () ;

As we can see, we load a JavaRrDD object with text data that is loaded from a
textFile in hdfs.

The data exploration piece is not tied to any specific package from Spark.
% So we should feel free to use both the RDD API or Spark dataset API for

our exploration.

Next, we fire a map function on this JavarDD and the map function is then applied
to each row of data. Each row is a sentence within the dataset along with a label of
sentiment. From this row of data the sentiment and the sentence are extracted (they
are tab separated) and stored in a Java POJO object called Tweetvo. The JavarRDD
object is now a distributed list of these POJOs:

JavaRDD<TweetVO>tweetsRdd = data.map (strRow -> {
String[] rowArr = strRow.split("\t");
String realTweet = rowArr[1l];

TweetVOtvo = new TweetVO() ;
tvo.setTweet (realTweet) ;
tvo.setLabel (Double.parseDouble (rowArr [0])) ;

returntvo;
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Let's now find the number of rows in our dataset:
System.out.println (" Numbers of Rows --> " + tweetsRdd.count()) ;
This would print the result as follows:
Number of Rows --> 7086
Next we create a dataframe out of our RDD using the following code:

Dataset<Row>dataDS = spark.createDataFrame (tweetsRdd.rdd (), TweetVO.
class) ;

After creating the dataframe let's see the first few lines of our data:

dataDS.show (5) ;

This would print the first five lines of data as follows:

17/87/12 89:808:38 INFO CodeGenerator:

[R TR Y

only showing top 5 rows

17/07/12 ©9:008:38 INFO SparkContext:

We will now count the number of positive labels versus the number of negative
labels or sentiments in the dataset we have. For this first we register our dataset as
a temporary view and then fire an SQL query on it using the group by function to
count the labels:

dataDS.createOrReplaceTempView ("tweets") ;
Dataset<Row> saCountDS =
spark.sqgl ("select label sentiment, count (*) from tweets group by
label") ;

saCountDS.show() ;

[170]



Chapter 6

This would print the output as follows:

17/67/12 89:87:83 INFO CodeGenerator:

T T +
| sentiment|count(1) |
T PR — +
| 0.0]  3091]
| 1.8]  3995]
T T +

17/07/12 ©9:87:83 INFO SparkContext:

As seen here, the number of positive reviews (depicted by 1) are more than the
number of negative review (depicted by 0).To view the count of labels in a better
way we will plot this on a bar chart. For this we will reuse the SQL query that we
just depicted previously and fill the results of this query into a chart object (specific
to JFreeChart). We will create an instance of DefaultCategoryDataset used by
the bar charts and later we will collect the data from the sacountDs dataset created
previously. We will iterate over this data and from each data row we will extract
the label and the corresponding count value of the sentiment and fill it into the

defaultCategoryDataset object:

finalDefaultCategoryDataset dataset = new DefaultCategoryDataset (

)i

List<Row> results = saCountDS.collectAsList() ;
for (Row row : results)
String key = "" + row.getDouble (0) ;
if (null == key) key = " (Empty Values)";
else 1if("1.0".equals(key)) key = "Positive";
else key = "Negative";
dataset.addvValue (row.getLong(l) , category , key );

return dataset;

. For maintaining the brevity of the code we are not showing the
& code for the full chart here. For the full code refer to the code in
L

our GitHub repository. Also you can refer to the previous
Chapter 5, Regression on Big Data that we covered on charts.
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This would then create the chart as follows:

|| Negative and Positive sentiments count. — ] =

Negative and Positive sentiments count.

4,000
3,800
3,600 1
2,400 |
3,200
3,000 |
2,500 1
2,600
2,400 |
2,200 |
2,000 1
1,800
1,600 |
1,400 |
1,200 |
1,000
200 |
600 |
400 |
200 |
0

Sentiments Count

Megative Positive
Type of Sentiment

As seen in the preceding bar chart, the number of positive sentiments is more than
the number of negative sentiments.

As we have mostly text data, let's now see how many words there are in our dataset
and we will count these number of words. Also we will try to sort the top words.

To create a word count program:

1. We first create our dataset of data in the same way as we did initially in our
data exploration section:

Dataset<Row>tweetsDs = spark.createDataFrame (tweetsRdd.rdd(),
TweetVO.class) ;

After loading the dataset we create a Tokenizer instance. This class is
provided in the Spark ML package and it is a pre-trained model to extract
tokens from textual content. In our case, it would extract words from each
row of sentences. As seen in the following code, we provide the column
where the tokenizer would read the data from and the column where it
would output its results:

Tokenizer tokenizer

= new Tokenizer () .setInputCol ("tweet").
setOutputCol ("words") ;
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Next we run this tokenizer and store its results in a new Dataset object:
Dataset<Row>dataDs = tokenizer.transform(tweetsDs) ;

Next we extract the column that has the results of our tokenizer.

After extracting the column we convert this dataset to a JavarRDD object and
invoke a flatMap function on it to flatten the list of words and store each
word in a string per row of this new JavaRDD:

JavaRDD<Object> words = dataDs.select ("words") .javaRDD () .flatMap (s
->s.getList (0) .iterator () );

Next we invoke a mapToPair function on this words JavaRDD so as to
create a pair of each word with the default value of 1 with the word
itself as the key:

JavaPairRDD<String, Integer>wpairs = words.mapToPair (w -> new
Tuple2 (w.toString(), 1) );

Finally, we invoke a reduceByKey to sum up the count of words:

JavaPairRDD<String, Integerswcounts = wpairs.reduceByKey((x,y) ->
X + V)

To analyze the results, we convert this RDD back to dataset so that we can
fire SQL queries on it. For this on the wcounts pair function we invoke a map
function and fill the results in wordvo POJO:

JavaRDD<WordVOs>wordsRdd = wcounts.map(x -> {
WordvVOvo = new WordvoO () ;
vo.setWord (x. 1);
vo.setCount (x._ 2);

returnvo;

3N

Next we create a dataframe out of this wordsrdd and register it as a
temporary view with the name as words. We are not showing this code for
brevity. On this words view we now fire a query to collect the top words
used, as shown in the following snippet:

Dataset<Row>topWords = spark.sqgl ("select word,count from words
order by count desc");

topWords. show () ;
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This would print the result as follows:

I

I

I

| harry| 2088

| potter| 2082|

I Vln;;l iggél Stop words shown between ellipses.
| brokeback| 1996]

| code| 1895]

| mountain| 18@3|

| love| 1542|

I
I
I
I

1517|
1305
1175|

It's no wonder that our top words are stop words such as i, the, and, and so on.
These words don't add much for sentimental analysis and as such should
be removed.

_ Weleave it for the users to fire further queries on our dataset
% and try out other things such as changing the case of the
= words, removing all the special characters, trying out different
token types like bigrams, and so on.

So much for the data exploration piece let's now dive into the actual code for
sentimental analysis.

Sentimental analysis on this dataset

In this program, we will do the following steps for sentimental analysis, as shown in
the following figure:
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Load Data

model

Train a Classifier

Y

Extract Tokens

Remove Stop
Words

Clean and Munge
|:> Data |:>

Find TF-IDF of the

<:| wrods

Predict Sentiment
using model on new
data.

As seen from the steps in the preceding diagram, our simple approach is:

* Load the dataset from HDFS in Spark

* Clean and filter the data from the dataset

* On each row of data use a tokenizer to parse the tokens
* Remove the stop words from the tokens

* Find the TF-IDF of the words and feed it to a classifier

* Finally test the model on some new data for sentiment prediction

Our approach is very simplistic and there is no rocket science
approach. Our aim is to just get the concepts laid out in front of
the users. In the real world, sentimental analysis is much more

complicated and is an active research area.

Finally, we will jump into the code now. Let's build the boiler plate code first for the

SparkSession:

SparkConf c= ...
SparkSession spark= ...

[

building the SparkSession.

For brevity we are not showing all the boiler plate code here for

]
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Next, we load the dataset from hdfs and store it in an RDD of strings:

JavaRDD<String> data = spark.sparkContext ().textFile("hdfs://data/sa/
training.txt", 1) .toJavaRDD() ;

Fire a map function on this RDD and extract data per row and store it in a POJO
(TweetVo class in our case):

JavaRDD<TweetVO>tweetsRdd = data.map (strRow -> {
String[] rowArr = strRow.split("\t");

String rawTweet = rowArr[1l];
String realTweet = rawTweet.replaceAll(",", "").replaceAll ("\"",
") replaceAll ("\\*", "") . replaceAll ("\\.", "").trim();

TweetVOtvo = new TweetVO() ;
tvo.setTweet (realTweet) ;
tvo.setLabel (Double.parseDouble (rowArr [0])) ;
returntvo;

13N

This code is similar to what we did in data exploration. The main point is we have
the data cleaning code also here where we remove the special characters from

the data. The raw data is part of the rawTweet object and we clean it to build the
realTweet object.

Remember we are using the new Spark ML package, which runs the machine
learning algorithms on the Spark dataframe. But we loaded our data into an rdd
class, hence we convert it into a dataframe now. To do so we invoke the spark
createDataFrame method and pass it the rdd as well as the POJO class:

Dataset<Row>tweetsDs = spark.createDataFrame (tweetsRdd.rdd (), TweetVO.
class) ;

Now we have the dataset ready to use for our training and testing. We break this
dataset into the individual training and testing datasets:

Dataset<Row>[] tweetsDsArr = tweetsDs.randomSplit (new double []
{0.8,0.2});

Dataset<Row> training = tweetsDsArr[0];

Dataset<Row> testing = tweetsDsArr[1];

Each row of our dataset is essentially an English sentence. Now create a tokenizer
and provide the input column to read the data from and an output column where
the tokenizer would store the new list of words after removing stop words:

Tokenizer tokenizer new Tokenizer () .setInputCol ("tweet").

setOutputCol ("words") ;
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If you individually execute this tokenizer and collect its output you will be able to
see its output as follows:

HEHEHEHEHEERE- - - START ---- HHHHEHHEHEHHE
Opinion --» 8.9
Sentence --» 0@ we rode bikes to hollywood and rented brokeback mountain which was also stupid

Tokens --»> [0, we, rode, bikes, to, hollywood, and, rented, brokeback, mountain, which, was, also, stupid]
FHEHFAHEFAAERA - - - END - - - - fHHHHEHEHRH

HHHEEHEHEEHEE - - - START - --- HHHHEHHEEHHHHS
Opinion --» 8.0
Sentence --> 1-BROKEBACK MOUNTAIN IS A STUPID MOVIE

Tokens --» [1-brokeback, mountain, is, a, stupid, movie]k—’ Tokens
B END - EHHHEHHH

FHEFEHEHEFREN - - - - START - - - - HHHEEHHE

Opinion --»> 8.9

Sentence --» 1@ Things I Hate About You + A Knight's Tale Brokeback Mountain =
Tokens --»> [1@8, things, i, hate, about, you, +, a, knight's, tale, , brokeback, mountain, =]
HEHHEHEREEREE - - - - END --- - $HHEHEHEHEHHEHE

As you can see, the reviews that are fed to the movie are broken into individual
words. The arrow shows the words that are tokenized.

Next, initialize a stop words remove object using this feature from the Spark ML
library. Again, provide the input and output columns:

StopWordsRemoverstopWrdRem =

new StopWordsRemover () .setInputCol ("words") .
setOutputCol ("updatedWords") ;

If we run this stop words remover individually and collect its output it will print the
results as follows:

HEHHEHEEREEERE - - START ---- sHHHHEHEHHEEE

Opinion --»> 8.@

Sentence --> B8 we rode bikes to hollywood and rented brokeback mountain which was also stupid

Tokens --»> [89, rode, bikes, hollywood, rented, brokeback, mountain, @ @ also, stupid]
After removing Stop Words --» [88, rode, bikes, hollywood, rented, brokeback, mountain, also, stupid]
HHHHEHEHERERE- - - END - - $HHEHHHHHHEHHE

HEHHEHEEREEERE - - START ---- sHHHHEHEHHEEE

Opinion --»> 8.@

Sentence --»> 1-BROKEBACK MOUNTAIN IS A STUPID MOVIE

Tokens --» [l-brokeback, mcuntain,@ stupid, movie]

After removing Stop Words --» [1-brokeback, mountain, stupid, movie]
HHHHEHEHERERE- - - END - - $HHEHHHHHHEHHE

FHEHHHEEHHRR - - - - START - - - - $HEHHEEREHERSHE

Opinion --» 0.8

Sentence --»> 1@ Things I Hate About You + A Knight's Tale Brokeback Mountain =

Tokens --» [18, things, i, hate, about, you, +, a, knight's, tale, , brokeback, mountain, =]
After removing Stop Words --» [1@, things, hate, +, knight's, tale, , brokeback, mountain, =]
AR - - - - END - - - - SHHHEHRHERHAHE
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As you can see in the preceding screenshot, the ellipses depict the stop words that
have been removed by the stop words remover feature of the Spark ML APL

As is the case with most machine learning algorithms in the Apache Spark package,
they work on an input set of features that are in the form of a feature vector. Due

to this we need to put our extracted words into a vector form. For this we will use

a HashingTF (though you can use CountVectorizer too) class provided by Apache
Spark. HashingTF is a Term Frequency generator and it creates a vector filled with
term or token frequencies. It is an optimized algorithm as it uses a hashing technique
for this; please refer to official Spark documentation for more details. As in other
cases the pattern is similar we provide the input and output column except in this
case we provide the number of features too:

intnumFeatures = 10000;

HashingTFhashingTF = new HashingTF ()
.setInputCol ("updatedWords")
.setOutputCol ("rawFeatures")
.setNumFeatures (numFeatures) ;

. HashingTF is similar to a hast table that stores the words as a key and
% their counts except that it maintains a distributed structure. The previous
= number of features depicts the bucket size of this hash table. The more the
buckets, the less the collisions and more words it can store.

We can use these term frequencies to train our simplistic model, but that won't be

good simply because the frequency of some useless words could be very high. To

better gauge at the importance of real good words we calculate their TF-IDF using
this vector of term frequencies created by HashingTF:

IDFidf = new IDF () .setInputCol ("rawFeatures") .
setOutputCol ("features") ;

After calculating our Inverse Document Frequencies we need to train our model
that it can build its probability levels based on these frequencies to figure out the
sentiment of the text. For this we train our Naive Bayes model. We provide the input
column where the model can read the TF-IDF frequencies vector and the output
column where it can store the predicted sentiment:

NaiveBayesnb = newNaiveBayes () .setFeaturesCol ("features") .setPredictio
nCol ("predictions") ;
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Finally, use the pipeline API to hook all this together:
Pipeline p = newPipeline() ;

Provide all the steps of the workflow tokenizer, stop words removal, and so on to
this Pipeline object:

p.setStages (new PipelineStage[]{ tokenizer, stopWrdRem, hashingTF,
idf,nb}) ;

Provide the training set of data to run through the workflow using the Pipeline
object and train the model:

PipelineModelpm = p.fit (training) ;

Finally, run the trained model on the testing dataset and store the predictions in a
dataset object:

Dataset<Row>updTweetsDS = pm.transform(testing) ;
updTweetsDS. show () ;

This will print the first few lines of the predictions as follows:

oo o oo e oo m e +

| features| rawPrediction|

oo o oo e + +

| (10000, [1702,2007. . . | [-460.73982498224. . . | [1.8,2.8831832778. .. | 0.0
| (10000, [493,2007, . .. | [-664.19237642734. . . | [@.99999999970668. . . | 0.0
| (16000, [1871,4420. . . | [-301.86338122585. . . | [@.99999999984274. . . | 8.0
| (10000, [2007,2069. . . | [-520.19457361779. . . | [2.80856472431555. . . | 1.9
| (16008, [1683,1402. .. | [-154.19765901965. . . | [1.8,1.7444214330. . . | 8.0|
| (10000, [1083,1402. .. | [-154.19765901965. . . | [1.8,1.7444214330. . . | 0.0
| (10000, [1883,1402. . . | [-154.19765901965. . . | [1.0,1.7444214330. .. | 0.0

To fit the content to page we are not showing all the columns in the prediction
results. The last columns show the predictions whether positive or negative,
that is, either 1 or 0.

* As Naive Bayes works on the principle of probability, there is an
% additional column for probability added onto the dataset that contains
T the conditional probability of each feature (word).
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So much for the predictive results. Let's now check how good our trained model
is. For this we will use the MulticlassClassificationEvaluator class provided
by the Spark framework and create an instance of this class. We will also provide
the actual label and the predicted label to this class along with the metric we are
interested in (in our case it is accuracy):

MulticlassClassificationEvaluator evaluator =

newMulticlassClassificationEvaluator ()
.setLabelCol ("label")
.setPredictionCol ("predictions™")
.setMetricName ("accuracy") ;

Next we calculate the accuracy value by invoking an evaluate method of the
evaluator on our dataset:

double accuracy = evaluator.evaluate (updTweetsDS) ;
System.out.println("Accuracy = " + accuracy) ;
System.out.println("Test Error = " + (1.0 - accuracy)) ;

This will print the output as follows:

Accuracy = B8.97538864159753086
Test Error = 0.8246913580824691357

The accuracy comes out to 0.97 or 97%, which is not bad at all for our simplistic
Naive Bayes classifier.

The approach we showed here is very basic. We would urge the users
% to try a different set of features, clean up the data further, and retest the
’ models to improve the accuracy.

We have now seen one popular algorithm called Naive Bayes, let's now briefly learn
another popular machine learning algorithm in the next section.
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SVM or Support Vector Machine

This is another popular algorithm that is used in many real life applications like
text categorization, image classification, sentiment analysis and handwritten digit
recognition. Support vector machine algorithm can be used both for classification
as well as for regression. Spark has the implementation for linear SVM which is a
binary classifier. If the datapoints are plotted on a chart the SVM algorithm creates
a hyperplane between the datapoints. The algorithm finds the closest points with
different labels within the dataset and it plots the hyperplane between those points.
The location of the hyperplane is such that it is at maximum distance from these
closest points, this way the hyperplane would nicely bifurcate the data. To figure out
this maximum distance for the location of the hyperplane the SVM algorithm uses a
kernel function (mathematical function).

As you can see in the image we have two different type of datapoints one clustered
on the X2 axis side and the other clustered on the X1 axis side. There is a unique
plane that separates the two closest points marked as A and B in the image. The
hyperplane which is actually a straight line in this two-dimensional image is the
solid line and the distance is shown by the perpendicular lines from the point A

and point B. The dashed lines which pass through point A and point B are another
hyperplanes which are not good as they do not segregate the data well. To figure out
the location of this hyperplane a mathematical kernel function is used. To learn more
about Support Vector Machine please refer to its documentation on Wikipedia.
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From Spark MLIIB 2.2 onwards there is a complete linear support vector machine
algorithm that is bundled inside the Spark machine learning library itself. We will
now use that linear support vector machine algorithm from Spark and do the same
sentiment analysis piece that we did earlier using Naive Bayes. Almost the entire
code that we discussed in the previous section using Naive Bayes algorithm would
remain the same and just the portion where we actually use the Naive Bayes model
would change.

As shown in the code we will build an instance of a Linearsvc model which is

a binary support vector machine classifier bundled inside Spark library. To this
instance we supply the necessary parameter of the name of the column where the
algorithm can read the vectorized features and the name of the column where the
algorithm can put the predicted results. In our case these columns are features
and predictions

LinearSVC linearSVM = new
LinearSVC() .setFeaturesCol ("features") .setPredictionCol ("predictio
ns") ;

After creating the instance of the model the remaining code is exactly the same as
what we did for Naive Bayes. We will put this model into the flow for pipeline API
of Spark and remove the old Naive Bayes model that we used earlier here as shown.

Pipeline p = new Pipeline() ;
p.setStages (new PipelineStage[]{ tokenizer, stopWrdRem,
hashingTF, idf, linearSVM});

Next we will just fit this pipeline model on the training data and run it on the test

data and finally verify the accuracy of our model. Since this code is exactly similar
to what we showed in the previous section please refer to the previous section for
this code.

The output of the dataset that stores the predictions from the SVM model is
as shown:

J87/13 98:12:44 INFO Codes
e e s S L] e
| label] tweet features| rawPrediction|predictions|
B it i St it il
| ©.8]|1@ Things I Hate ... |(10@@@,[2007,2869...|[1.73011184770@74. . . | 0.8|
| ©8.8]A couple of very ... |(10608,[2007,3189...|[1.24141630788482. . | 0.8|
| @.e|A futile mission ... |(10@@@,[2345,3326...|[-0.2558815088181. .. 1.8|
| @.8|A mother in Georg... |(10680,[161,294,4...][2.93919879710469. .. | 2.8|
| @.8|AND BROKEBACK MOU... |(1P@@8,[493,2007,...|[1.51484977982683. .. | 0.0|
| @.e|After school I we... |(1l2ee@,[1871,4420...|[1.90088379349260... | 2.8]|
| @.8|After the festivi... |(10@e@,[437,2087,...|[1.99976959365757... | 2.8|
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The output of the accuracy of the SVM classifier is as shown:

17/07/13 88:12:45 INFO DAGScheduler: Job 87
Accuracy = B.9846796657381616

Test Error = B8.81532833426183843

17/87/13 80:12:45 INFO SparkContext: Invoki

As shown in the result of the SVM classifier the performance of the classifier has
improved further and it is now 0.98 or 98 %. Support vector machine is a popular
model in many real world applications as it performs well. For more information on
this model please refer to Wikipedia.

Summary

This chapter covered a lot of ground on two important topics. Firstly, we covered

a popular probabilistic algorithm, Naive Bayes, and explained its concepts and
showed how it uses bayes rule and conditional probability to make predictions
about new data using a pre-trained model. We also mentioned why Naive Bayes

is called Naive as it makes a Naive assumption that all its features are completely
independent of each other, thereby occurrence of one feature does not impact the
other in any way. Despite this it forms well as we saw in our sample application. In
our sample application we learnt a technique called sentimental analysis for figuring
out the opinion whether positive or negative from a piece of text.

In the next chapter, we will study another popular machine learning algorithm called
decision tree. We will show how it is very similar to a flowchart and we will explain
it using a sample loan approval application.
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Decision trees are one of the simplest (and most popular) of machine learning
algorithms, yet they are extremely powerful and used extensively. If you have used

a flowchart before, then understanding a decision tree won't be at all difficult for
you. A decision tree is a flowchart except in this case, the machine learning algorithm
builds this flowchart, for you. Based on the input data, the decision tree algorithm
automatically internally creates a knowledge base of a set of rules based on which it
can predict an outcome when given a new set of data. In this chapter, we will cover
the following topics:

* Concepts of a decision tree machine learning classifier, including what a
decision tree is, how it is built, and how it can be improved

¢ The uses of the decision tree

* A sample case study using decision trees for classification

Let's try to understand the basics of decision trees now.

What is a decision tree?

A decision tree is a machine learning algorithm that belongs to the family of
supervised learning algorithms. As such, they rely on training data to train them.
From the features on the training data and the target variable, they can learn and
build their knowledge base, based on which they can later take decisions on new
data. Even though decision trees are mostly used in classification problems, they
can be used very well in regression problems also. That is, they can be used to
classify between discrete values (such as 'has disease' or 'no disease') or figure
out continuous values (such as the price of a commodity based on some rules).
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As mentioned earlier, there are two types of decision trees:

* Decision trees for classification: These are the decision tree algorithms
that are used in classification of categorical values, for example, figuring
out whether a new customer could be a potential loan defaulter or not.

* Decision trees for regression: These are the decision tree algorithms that
are used in the predicting continuous values, for example, what size loan (in
amount) can be given to a particular new customer based on certain criteria
or attributes.

Let's try to understand a decision tree using the perspective of a flowchart. In a
flowchart, we go from one flow to another based on rules, for example, if an event
has occurred, we choose one direction or the other. Similar to that, in a decision tree,
we have a bunch of rules (that are created by our machine learning classifier) and
that direct our direction of decision flow. Understanding a decision tree becomes
easy when we look at some examples. We will now try to understand a decision
tree using a simple example.

Suppose there are two people applying for a job position at Java in big data analytics.
Let's call these people Candidate A and Candidate B. Now suppose the candidates
have the following skillsets:

* Candidate-A: Java, big data, web applications
* Candidate-B: Java, big data, analytics on big data
Let's build a simple decision tree to evaluate which candidate is suitable for the

Java position, considering that only the candidate who has the desired skillset
will be selected.
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As you can see in the preceding diagram, the final decision — or candidate
selected —is Candidate-B, as he is the one whose skillset matches the desired skillset.
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This is as simple as a decision tree can be. It is just like a flowchart or tree structure
built on a set of rules. Upon following the rules from the top of the tree to the

leaf node, we can figure out the outcome and classify the end result. From the
perspective of machine learning, we build a model that is trained on a set of features
and labels (labels are the final outcome for these features). The model learns from
these features and builds its knowledge base for the set of rules needed for the tree.
Based on these rules, the model can then predict decisions on a new set of data.

Decision trees have been effectively used in a lot of industries. Here are some real-life
examples of decision trees:

* Inrisk analysis in financial systems

* Insoftware systems to estimate the development efforts on software modules
and for other purposes

* Inastronomy to discover galaxy counts, filtering noise from telescope
images, and so on

* In medical research for diagnosis, cardiology, and so on

* For text classification, building personal learning assistants, to classify sleep
patterns, and so on

As you saw in the preceding diagram, visualizing a decision tree is easy and helps us
easily figure out what an outcome will be. A decision tree built by a human being is
one thing, as we can visualize nicely, but a decision tree built by a computer program
is complex and requires a few techniques utilized from pure mathematics. Next, we
will study how a computer program builds a decision tree.

Building a decision tree

Up until recently, decision trees were one of the most used machine learning
algorithms. They have been used extensively with ensembled algorithms (we will
explain ensembling in the next chapter). Building a decision tree involves programs
that can read data from a dataset and then split the data into sections based on a rule.
This rule —or split rule —is figured out using mathematical techniques. To decide on
which feature is best suited to the split, the algorithm will split on every feature and
will pick the feature that makes elements within the two individual split sets most
similar to each other. Let's try to understand this using an example:
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Suppose you have a dataset of fruits with the following attributes:

Color Diameter Fruit (target variable)
Red 4 Apple

Orange 4 Orange

Red 1 Cherry

Red 5 Apple

Orange 3 Orange

Now, our task is to build a decision tree with this dataset of attributes (color and
diameter) and based on these attributes the decision algorithm should be able to
figure out the type of fruit when a new data point is given to it with a specific color
and diameter. As you can see, there are two features or attributes in this dataset
Color and Diameter. We will evaluate both cases when we split the dataset based
on these features as shown next:

* Splitting by color = 'red": Though there are two color types in this dataset
(red and orange), for brevity we are showing only the first red color type.
We will split the dataset based on this color and figure out how
homogeneous the split sets of data turn out to be.

Splitting on 'Color’ = 'red’ .
This is the value of colar,
diameter and the 'label’

(red, 4, Apple) (red, 5, Apple) (orange, 4, Orange) (orange, 3, Orange)

(red, 1, Cherry)

Only one item Cherry is the odd one out, rest most of
the items are homogeneous or of the same kind

Items are nicely split, all the items here are of the
same type i.e '‘Oranges’. Completely homogeneous
set. |

As you can see only "Cherry’ is the odd one among apples, rest
both the sets are homogeneous. This split looks good.
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As you can see in the preceding diagram, the split is quite good. Only cherry
is the item on the left-hand side that is out of place otherwise the split criteria
has nicely split the values and both the split sets are homogeneous or almost
homogeneous (that is, of the same type)

» Splitting by diameter > 3: Here I have used the value 3 because 3 is
the average diameter of the items. The split will be as shown in the
following diagram:

Splitting on diameter > 3

(red, 1, cherry) Tl et (red, 4, Apple) (orange, 4, Orange)

(red, 5, Apple)
A mixed split set. Completely non-homogeneous. One item 'Orange’ is odd one out here. Hence this is a
None of the items here are of the same type. mixed set of split items.

~
e e

As you can see in the preceding diagram, this is not a very good split as it
results in mixed sets. We want splits that are as homogeneous as possible.

For us human beings, visualizing a decision tree is easy and we can easily plot it on
a diagram using our human intelligence. But what about a computer program —how
does a computer program figure out the set of rules it should bifurcate decisions on?
We will now see how a computer program builds a decision tree based on the data it
is trained with.
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Choosing the best features for splitting the datasets

The accuracy of a tree depends upon how good a split it does. The best feature
chosen to split upon will directly impact the prediction results. There are
mathematical ways by which we can decide upon the split criteria and the
mathematical functions to use. The general approach that is employed to find

the best split feature is:

* First split the dataset by each feature one at a time

* Next, record how homogeneous each split set is by figuring out the
homogeneousness using a mathematical function such as entropy

or Gini impurity

* The feature that splits the datasets into most homogeneous split sets is the
best feature for the split and is chosen

The question that remains is, "How do we measure the homogeneousness of the
split sets?" To do so, we use two mathematical approaches called Gini Impurity
and Entropy. Now we will explain them in detail:

1. Gini Impurity: This is a measure of the probability of an item being correctly
labeled when it is randomly picked from a split set. If you have a split
set with k discrete classes of samples, then Gini Impurity is given by the

following formula:

k
Gini Impurity = 1- Z P’

i=1

Here, 7: is the probability of picking that class of sample from the split set.

Now, suppose we split on some criteria and our split set contains the following data
as shown in the following table:

Color Diameter Fruit (target variable)
Red 4 Apple

Orange 4 Orange

Orange 3 Orange

Red 5 Apple

Orange 3 Orange
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Thus, our split set has 3 Oranges and 2 Apples, which will be calculated as follows:
P(oranges) = 3/5
P(apples) = 2/5

Gini Impurity = 1- H%J + [%) } =048

We showed one such split earlier. What if the decision tree algorithm makes multiple
splits based on a feature?

In that case, we calculate the Gini Impurity of all the split sets. We later find the net
Gini Impurity of all the split sets using the following formula:

. ) » elementsinset . . .
Net Giniof Split Sets = Z —— * Giniof Set
" Total Elements

After finding the Gini of all the split sets, we find the GiniGain. This property tells
how much impurity is reduced by making the split. This is a simpler difference
between the Gini of the parent set and the Net Gini of the Split Sets. Thus, we can
say that:

GiniGain = Gini of the Parent Set - Gini of the split sets
The decision tree uses that split, which results in producing the maximum GiniGain.

1. Entropy: In simple terms, Entropy is the measure of mixedness or impurity
in a collection of examples. If there is a collection of examples with all the
items of the same type, then it is completely pure. Since, if you randomly pull
any item from it, it will be of the one type only. A pure collection like this has
an entropy of 0. Similarly, if there is a set with all the items of different types,
then it has one hundred percent impurity and the entropy will be 1. The aim
of the decision tree split is to generate a new set of split values where this
amount of Entropy is reduced. This concept of reduction of entropy based
on a split criterion (or rule) is called as information gain.
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2. If you have a set with xss different values in it, then the formula for Entropy
calculation is given by:

i
Entropy(X) = — Z P(z;)log, P(z;)
i=1

As seen in the preceding formula, if i is one such item in the set(x) then we find its
probability within the set and multiply it by the logarithmic of its probability (log to
the base 2). We do this for all the different discrete classes within the impure set and
sum up all the calculated values for each different class in the set.

Let's understand this with a simple example.

Suppose you have a set of different fruits such as:

Set(fruits) = {apples, apples, apples, orange, orange, orange, orange, orange}
On this set, we find the probability of pulling each fruit.

So, it will be calculated as follows:

Probability(apple) = 3/8

Probability(orange) = 5/8

So, the Entropy for the Set (fruits) will be:

. 3 3 (5 5
Entropy( fruits) =—|| — |log ,—+| — |log ,.— |=0.95
py( fruits) HSJ g2g (8] 5_8}
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Using this Entropy calculation, our decision tree would calculate the information
gain on each split. So specifically what the decision tree would do is shown in the
following diagram:

Parent Set - X
~
Color=Red — Entropy Set(x) = E(x) "~ Diameter > 3

/\ AN

Gt Set: A2 Set: B-1 Set: B-2
E(B1
E(A1) E(A2) e E(E2)
E(x) = Entropy of Parent Set

E(A1), E(A2) = Entropy of Split Subsets
E(B1), E(B2) = Entropy of Split Subsets

As you can see in the preceding diagram, the decision tree would perform the
following steps:

1.

First, the decision tree algorithm calculates the Entropy of a Parent Set.
In our case, as shown in the image, it is E(x).

Next, it splits the set based on a feature, for example, here we split on two
features separately one feature is Color and the other is Diameter.

After splitting, it finds the entropy of each split set. In the diagram, the split
sets Entropy is E(A1), E(A2), E(B1), and E(B2).

Finally, it finds the net Entropy of the split sets. This is calculated as follows:
n elementsin set

Net Entropy of Split Sets = Zr_ ol Elements * Entropy of Set

Here, i represents one Split Set and n the total number of Split Sets.

Finally, the information gain is calculated as the difference between the
parent Entropy and the new net split sets Entropy. The more the value the
better the split is. So the information gain in the preceding example (in the
image) is calculated for both split criteria (that is, color and diameter both)
and the one with the higher value is selected.
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Even though we have discussed only two approaches, we encourage

readers to check more information on other approaches for splitting such

as Chi-square and Gini index.

Building a perfect tree is computationally very expensive and hard at the same time.
To counter this, our task is to come up with a good enough tree that suits our need.

instead of a single tree algorithm. Hence, a combination of all these trees

A good enough tree is suited to more conditions, as in most applications
you would use techniques such as ensembling to use a group of trees

to figure out the predictive results will ultimately yield an excellent
solution as we will see in the next chapter.

Advantages of using decision trees

Decision trees are very popular machine learning models and we will now study
some of the advantages of using them:

As you have seen, they are very simple to build and use. They are essentially
asetof if...else statements that lead to a conclusive result.

The input can be of any type whether numeric or strings for checking the
decision type.

From the perspective of big data and distributed computing, it's easier to
build a decision tree model that can be distributed on a cluster of machines.
Thus, it can run parallely and can be very fast.

Apart from these advantages, decision trees also suffer from some problems.
Let's look at some of these problems now.

Disadvantages of using decision trees

All the machine learning algorithms come with a few pros and cons. Decision
trees are no exception to this. Let's look at some of the disadvantages of using
decision trees:

Decision trees suffer from the problem of overfitting. Overfitting is a generic
problem with many machine learning models. Due to overfitting, the models
get well acquainted to the data that they are trained with and they perform
extremely well on the training data, but the same models perform poorly on
any new data that was not part of the training set.
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* If there are too many decision rules, then the model can soon become quite
complex. Since we are dealing with big data, this problem is more common.

. You might have observed by now that as the number of decision rules
% increases more number of splits are required and hence the amount of
o computations required also increases. This will slow down the whole

process of decision tree computations.

Dataset

A loan approval dataset is a sample dataset that is freely available on the web
globally please. This is just a sample dataset, which contains rows of data with
various attributes. The outcome or response of each row shows whether the loan
application was approved or rejected. The attributes in each row of the dataset are

shown in the following table:

Attribute name Description

Loan ID This states the Loan ID, which is a unique variable
Gender This states the gender —male or female

Married This is the marital status —married or unarried
Dependents This states the number of dependents for the person
Education This states the educational qualification

Self employed

This states whether the person is self-employed

Applicant income

This states the income of the loan applicant

Coapplicant income

This states the income of the co-applicant of the loan

Loan amount

This states the amount of the loan

Loan amount term

This states the duration of the loan

Credit history

This states the credit history of the person applying for
loan (good or bad)

Property area

This states the area of property in case this is a
housing loan

Loan status

This states whether the application was approved
or rejected

[196]




Chapter 7

Data exploration

Before we dive into running our models for training and testing the dataset, let's
explore the dataset first for understanding the data. For this, we will first create the
Spark session instance and we will load our dataset from the dataset file. For brevity,
we will not show the boilerplate code for SparkSession creation.

SparkSession spark .
Dataset<Row> rowDS = spark.read().csv("data/loan/loan_train.csv");

Let's see the first few rows of our dataset by running the show () method:
rowDS . show ()

This will give us the following output:

R S e R — TR L TR
| _cB| 1| _c2| 3] 4| 5| _e6| _c7| _c8| _c9| _c1e| 11| _c12|
R — FRE—— S R — FRE——— Fomm et oo m oo TR
|LPea1ee2| Male| No| 8| Graduate| MNo| 5849| 8|null| 360 1] Urban| Y|
|LP@@10@3| Male|Yes| 1|  Graduate| HNo| 4583| 1508| 128| 36@] 1|  Rural|l N|
|LPea1ees| Male|Yes| 8| Graduate| Yes| 3eee| 8| ea| 360 1] Urban| Y|
|LPeeleee| Male|Yes| @|Not Graduate| MNo| 2583| 2358| 120| 3ee| 1| Urban| Y|
|LPea1ees8| Male| No| 8| Graduate| No| 6eee| 8| 141| 3ee| 1| Urban| Y|
|LPee1e11| Male|Yes| 2| Graduate| Yes| 5417| 419¢| 267| 3e@| 1| Urban| Y|
|LPB@1813| Male|Yes| @|Not Graduate| MNo| 2333| 1516| 95| 3&8| 1| Urban| Y|
|LPe@1014| Male|Yes| 3+| Graduate| No| 3@36| 2504| 158| 36@| @|Semiurban| N
|LPe@1018| Male|Yes| 2|  Graduate| No| 40@6| 1526| 168| 368] 1|  Urban| Y|

As you can see, Spark automatically names the columns as _co, _c1, and so on. You
can map this dataset to a schema and probably to some good column names. For us,
we will be using the same column names for our queries.

Next we will find the total rows in this dataset:
rowDS.createOrReplaceTempView ("loans") ;
This would print the output as follows:
Number of rows a 768

As you can see, it's a small dataset, but for learning purposes this is sufficient
for now.
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We will now find the number of males and females in the dataset:

Dataset<Row> maleFemaleDS = spark.sqgl("select cl gender,count(*) cnt
from loans group by cl1");
maleFemaleDS.show () ;

This would print the result as follows:

o e +-——+
l--null|-13]
|Femalel112|
|--Malel489|
- +———+

As you can see, there are thirteen null values in the gender column and this has to
be fixed. We will replace this with the median value in the column (of course, we
will round the value to the nearest number). Similar to this, you can group and find
the count of other columns too, this is a handy way for finding null value counts or
garbage values apart from the real good values. But Apache Spark has a great API
and it provides a very handy method for checking the details of your columns and
here is that method:

rowDS.describe (" cO" , "ol g2, m @3m, " g4, m oM gght nog7n
C8" S "_C9" s ll_clOIl , "_Cll" s ll_clzll) .ShOW() ;

And this would print the summary of all the columns including their count
(where the values were found) and their mean value.

Count is much lesser than the total values,
hence there are lots of missing values or null
values here.
oo Fommmmmm- - e ST
| summary | _eB|  _e1] _e2|
FE TR FRE—— .
|  coun