
Enterprise
DevOps
Framework
Shamayel M. Farooqui

Transforming IT Operations

CA Press

ENTERPRISE DEVOPS
FRAMEWORK

TRANSFORMING IT OPERATIONS

Shamayel M. Farooqui

Enterprise DevOps Framework: Transforming IT Operations

Shamayel M. Farooqui				
Banjara Hills, Telangana, India		

ISBN-13 (pbk): 978-1-4842-3611-6 		 ISBN-13 (electronic): 978-1-4842-3612-3
https://doi.org/10.1007/978-1-4842-3612-3

Library of Congress Control Number: 2018951263

Copyright © 2018 by CA. All rights reserved. All trademarks, trade names, service marks, and
logos referenced herein belong to their respective companies.

The statements and opinions expressed in this book are those of the author and are not necessarily
those of CA, Inc. (“CA”).

No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system,
without the prior written permission of the copyright owner and the publisher.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is availa-
ble to readers on GitHub via the book’s product page, located at www.apress.com/9781484236116.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3612-3
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484236116
http://www.apress.com/source-code

I would like to dedicate this book to

My loving dad and mom, Dr. M. Jowad Farooqui
and Mrs. Zeba Farzana, for making me the

person I am today and for always making
me believe that I am special.

My dear wife Zeeshan and my sons, Ashaz and Zidan,
for always giving me a reason to smile.

My paternal and maternal grandfathers,
M. Hafeez Farooqui and Mohammed Abul Hasan,

for showing me how to lead a life for which you
will be remembered for a long time after you are gone.

Contents
About the Author ��� vii

About the Technical Reviewer �� ix

Foreword �� xi

Acknowledgments�� xiii

Introduction��� xv

Chapter 1:	 How IT Operated: People, Processes, Technology����������������� 1

Chapter 2:	 Automation: Baby Steps Towards IT Transformation����������� 5

Chapter 3:	 Challenges Faced Early On ��11

Chapter 4:	 Era of the Bots ��27

Chapter 5:	 Hopping on the Cloud��45

Chapter 6:	 Mastering the Cloud��57

Chapter 7:	 Innovate or Perish��73

Chapter 8:	 Evolution of Teams��87

Chapter 9:	 Accelerating Towards DevOps��95

Chapter 10:	 Conclusion: The New Era��107

Index��119

About the Author
Shamayel M. Farooqui is a serial innovator
who thrives on building creative solutions to
solve complex IT problems. He has successfully
led IT teams that specialize in enabling DevOps
within an organization by using the power of
automation. The teams he has managed have
been responsible for developing automation for
business process automation and Cloud man-
agement, including application migration on pub-
lic Cloud. He designed an innovation framework
to simplify the process of driving innovation in
an enterprise and has been at the helm of intro-
ducing a disruptive approach for modernizing IT

processes and to ensure business is optimized by using these practices. He is
well versed with Cloud technology and is at the forefront of the adoption of
IaaS and PaaS within his organization.

Shamayel has also designed and architected the automation framework for
implementing process automation solutions. He has delivered process auto-
mation as a service for his organization, which was used to drive multiple opti-
mization initiatives successfully to reduce operational costs and risks for IT.
He has been a champion for running lean IT and has played the role of a men-
tor by coaching many IT engineers on automation and innovation practices.

Shamayel has a master’s degree in computer science from Loyola University,
Chicago, and a certification from MIT’s Sloan Executive Education, titled
“Innovation of Products and Services: MIT’s Approach to Design Thinking.”

About the Technical
Reviewer

Raghu Ram Burra has 22+ years of experi-
ence in the software technology, software ser-
vices, and solution delivery industry. Raghu has
led large global multicultural teams to deliver
innovative technology solutions using agile man-
agement processes and tools. He has led enter-
prise digital transformation initiatives at large
global enterprises that included Omni channel
digital experience, API/PaaS solutions, digital
modernization using micro services, DevOps
transformation, in-memory computing, Big Data
Analytics, AI, and robotic automation.

In his current role at CA as Senior Director,
Global Information Systems, he is responsible

for the public and private Cloud offerings including CA Dev Cloud (IaaS and
PaaS Offerings) and CA AWS as a Service (AWSaaS) and partners with CA’s
product development teams to maximize the value from the applications/solu-
tions used by our product teams, including operationalizing new PaaS and SaaS
offerings that are foundational to help support CA’s digital transformation.

Raghu received his M.S. in computer science from the University of Cincinnati,
OH, and a Bachelors in Engineering from BIT, Mesra, India.

Foreword
It’s easy and comfortable doing things the way they’ve always been done.
However, not creating impactful change through continuous improvement
often creates decline in performance and output in any organization. Over
time, doing things the same way decreases engagement and creates errors
that erode credibility and reduce productivity caused by repetition-induced
lack of focus. In this reality, how do organizations that left to their own devices
mostly prefer to operate in the clichéd modes of “why fix it when it’s not bro-
ken” or to take a “not-invented-here approach” to create meaningful change.
Evolving to a DevOps culture is a material change in how people in teams
think, interact, and deliver outcomes. It’s the evolution to a culture that is
required for success.

Creating a culture that allows an organization to respond effectively to chang-
ing business needs while not making the journey onerous for the people who
make up the organization is the goal of every leader. The vision of transfor-
mational change is materially enabled by the belief and progressive mindset
of change agents who bring change alive and make outcomes better. Grit,
commitment, and resilience are the core attributes of these individuals who
make it happen. A DevOps transformation is brought about by a change in
thinking and practices of team members and accelerated by the leadership of
key individuals who embrace the vision and concepts. When this happens, the
outcomes are better than what people thought could be accomplished at the
beginning of the journey.

This book by Shamayel provides perspectives and lessons that are valuable in
multiple scenarios and fit multiple personas.

•	 If the reader is someone responsible for creating the
vision and delivering outcomes, the book will provide
insights into what good looks like and into provide head-
lights into potential pitfalls they may experience in the
transformation journey.

•	 For someone who is in the middle of a DevOps transfor-
mation, this book will provide examples that will validate
and provide solutions to challenges they may currently
be facing.

Forewordxii

•	 If the reader is looking to be that change agent, it’ll pro-
vide perspectives on approaches they could adopt to
influence outcomes across and above from a organiza-
tional hierarchy view.

Using a golf tournament metaphor, this book provides an "inside-the-ropes"
view into how influencing people and improving how work gets done leads to
better team engagement, leading to strong business outcomes.

Mahendra Durai

Senior Vice President - IT, CA Technologies

Acknowledgments
My heartfelt gratitude to my colleagues and mentors Uday Bikkasani and
Mahendra Durai for their invaluable input and support throughout the jour-
ney of writing this book.

Thank you, Raghu Ram Burra, for playing your part as the technical reviewer
for this book and ensuring the book stays relevant to the current and future
of IT.

Thank you, Apress team; you have made it possible for me to publish this
book with all the guidance and support you provided.

I would also like to express my indebtedness to my alma mater, Little Flower
High School, Hyderabad. The teaching staff at this prestigious institution has
played a key role in laying the foundation and instilling the confidence in me to
aspire for excellence in all my endeavors.

A big shout-out to my friend and ex-colleague, Archana Suresh, who spent
long hours coediting this book during the initial stages to help me get started
on the right foot.

Introduction
The IT industry in Its Current State
In today’s world, a number of companies are focusing on optimizing their
IT operations. Access to all forms of data, the ability to perform meaningful
analytics on this data, and collaboration across different teams to make use of
these analytics have become critical for running a successful IT shop. The IT
services and the platforms on which these services are hosted have drastically
evolved in the last decade with the adoption and enhancement of technolo-
gies like Cloud and containers.

How can an IT company stay relevant in this tsunami of changes that con-
tinue to hit the market? Although the new technologies definitely bring better
features, it is no easy task to stay abreast while adopting them and get real
benefits out of them. And this problem gets further magnified if you are an
enterprise whose IT works the traditional way, running huge monolithic legacy
apps supported by multiple processes on traditional hosting platforms, which
are quickly becoming outdated.

There are a number of companies trying to upgrade their technology centers
in order to brace themselves for the disruptions of the modern-day IT world.
This is being done for many reasons, like reducing the cost of hosting and sup-
porting their applications or business services, enabling efficient collaboration
between globally distributed teams, to function with lean team structures and
to be able to provide a good user experience.

This often means that these companies need to embrace modern practices of
DevOps and Agile frameworks and strengthen these practices with the latest
tools and technologies. By adopting this approach, they are able to convert
the "good old admin" job into a more dynamic and modern-day "Reliability
Engineer" who has a holistic view and understanding of how the different lay-
ers in IT are connected with each other. This in turn helps them deliver IT
services with more speed and accuracy and improve upon the quality of the
services they offer.

Introductionxvi

How Traditional IT Functions and How the
Imbalance Has Crept In
Without doubt in any IT organization, there are umpteen number of business
processes that are a part of the day-to-day functioning. The range of these
processes could be extremely varied. For example, one of them could be
addressing all the actions that need to be performed when an employee joins
the company (e.g., the different kinds of access needed, placing orders and
tracking the assets for the new employee, enabling his telecom and confer-
encing tools, etc.). Another example would be of how the service desk team
handles priority tickets for a new acquisition, and yet another example could
be of how an administrator manages a request received for building a new
firewall to protect the critical resources of the company.

Generally speaking, these processes have been introduced at various points
since the inception of the company and are shaped by multiple factors work-
ing along with the actual problem they are solving. There are always a number
of constraints and influences that are taken into account before a process is
built. These influences can vary from being financially driven to being deter-
mined by the people involved, geographic locations, current industry trends,
and so forth. Many a time, it happens that a process that probably seemed very
efficient at the time it was introduced seems highly obsolete or redundant
when revisited some time later.

Unless revised often enough, over time some of these processes tend to
become heavy. Factors like dependencies on a select individual(s) to execute
the processes or collaboration between multiple teams executing steps that
may no longer be relevant add to the weight of these processes.

Any organization that wants to stay relevant in today’s fast-changing world
needs to be highly efficient and proactive about circling back on its processes
and methods and keeping them current. This is a very important trait of a
company that is achieving continued and sustainable success.

These were some of the challenges that my company was grappling with back
in 2013. Personally speaking, my employment contract with a large American
enterprise was about to expire and this meant I was in a state of flux, profes-
sionally speaking. As a stopgap arrangement, I had accepted the role of an
infrastructure automation engineer.

Thinking back now, at that point I was as clueless as an Eskimo in a desert, not
really comprehending the magnitude of this change. Little did I know that this
simple reassignment of duties would alter my professional destiny and snow-
ball into the huge organizational transformation process that was to follow.

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3_1

C H A P T E R

How IT
Operated: People,
Processes,
Technology
When I began my new position in 2013, IT was running in a traditional
manner. That meant there were large teams focused on specific domains of IT
operating independently. This led to them not fully grasping the overall impact
of their work or aligning with the goals of the organization.

There was hardly any creativity at play and every task would end up being
done in the most mechanical and staid way. Collaboration was more of an
effort than the default practice. Teams would often work in silos and had very
low visibility into the other teams’ current undertakings and their roadmaps.

1

https://doi.org/10.1007/978-1-4842-3612-3_1

Chapter 1 | How IT Operated: People, Processes, Technology 2

People
While speaking about various scenarios, I would also like to give you examples
of the typical mindset of an employee back then. There were many employees
who had been with the company for a very long time and had been doing the
same kind of work for most of their careers. Many individuals owned a certain
piece of some business function, which gave them a false sense of security
about their jobs.

My colleague Ravi was the epitome of such a mindset. He had been with the
company long enough to know critical details about quite a few processes.
If ever you sought this information from him, his reluctance to share would
be obvious. This led to frustrating and sometimes humorous situations on
the floor.

For instance, before a scheduled automated process could run, he would
manually complete the task. He would then smugly declare the automation
ineffective! If anyone tried to challenge the effectiveness of the same, his
favorite line in response would be, “This is how we’ve been working for the
past so many years and if that were not good enough, how did we function
well this long?”

In hindsight, his defensive behavior was mostly to reinforce his position
as an indispensable piece of that project. We saw similar behavior being
demonstrated by others across the employee spectrum. And this did not
augur well for the healthy functioning of the teams.

Another instance that comes to mind is one of the conference calls I was a
part of. There was an issue of very high priority with one of our services that
needed immediate resolution and all the relevant employees were dialed into
a call. When a request for certain information from a database was made
by one of the meeting attendees, the database admin nonchalantly opened a
search window and began searching for one of the simplest queries that was
in turn projected on a screen for all to see. Needless to say one of the senior
leaders was very vexed at the incompetence and the indifferent attitude to
professionalism.

These instances illustrate how with time, different practices in an organization
can become chaotic and dysfunctional. The worst thing that could happen
at a workplace is for employees to stop caring about their organization.
The moment people lose motivation, quality and productivity both take
a hit. Innovation and creativity are lost somewhere within the negativity
that spreads faster than mold on stale bread. It is very important for an
organization to realize that any change they want to introduce needs to
be enabled and blessed by their employees. Without this, transformation
will be superficial and may not reach standards expected of a successful
workplace.

Enterprise DevOps Framework 3

It may be easy to state that those scenarios should not have reached the low
they had or that fixing them should not have been an insurmountable task.
But the fact was that over time with changing landscapes and multiple platforms
being introduced, numerous hands operating in the environment, and hosts of
tools deployed in the system amid highly dynamic market conditions, things got
slipshod.

Processes and Technology
Work was getting done but it was not easy. For instance, I would like to
share details about how the infrastructure change deployment process was
executed.

Executing an infrastructure-related change required performing the following
activities:

•	 Gathering the list of affected devices

•	 Determining the different variants in the list

•	 Understanding the business impact of the change

•	 Defining clearly the steps to implement the change

•	 Finding the right change window

•	 Determining the stakeholders and the impacted users

•	 Putting a test plan in place to validate the change and a
rollback plan to address any failures

Each of these tasks seemed challenging with no proper support provided by
any of the technologies that were implemented. With minimal automation
implemented, most of these tasks were performed manually. As with most
manual processes these tasks were time consuming, sometimes error prone,
and not built to change the environment.

Incident management was another area where we had an improvement
opportunity. Improving the configuration of the alerts to reduce false positives
and capturing outage notifications consistently also required improvements.
These gaps translated to an opportunity to streamline and improve the
Network Operations Center (NOC) team without adding people.

To support the teams through these challenges, a number of tools were
deployed. These tools had the capability to discover the current landscape,
manage and support it, and detect any aberrations early enough before they
caused any major impact.

However, we needed to improve the process and people flows to get the most
out of these tools. For instance, high-end tools performing tasks like discovery
of assets, monitoring system health, and collecting metrics from these systems

Chapter 1 | How IT Operated: People, Processes, Technology 4

were all in place and required the right integration, and effective leverage of
the data that was being produced needed improvement. The result was some
outages on some business-critical services that could have been prevented.

Based on the demands of work, a lot of which was created by false-positive
alerts, team members expended minimal effort on the right kind of work
and couldn’t find the time to shake things up and drive strong improvements.
Innovation did not exist and team morale was low in this group.

This state of affairs required an overhaul. Also, the current structure was not
sustainable, foreboding a potential crash if requirements were to scale up. And
scaling was not the only concern—there were careers at stake. The industry
was evolving, more so now, at a rapid pace.

The same admins who were much sought after in the industry four or five
years ago were suddenly on the verge of becoming obsolete because they had
not kept up with the changes and trends in the IT industry. It was not enough
to be an expert on just one technology, tool, or platform. For example, in
the present day, it is not uncommon to expect an MS Windows purist like an
Exchange admin to be able to perform a basic level of troubleshooting for
UNIX platforms.

There are many other similar examples where multiplatform knowledge is
a must for individuals to survive in the current times. Without a compelling
vision and strategy to drive continuous change, it’s easy to be comfortable in
the status quo.

A few leaders within the organization had assessed the situation and decided
change was required. The leaders were savvy enough to realize that change
had to start somewhere and were courageous enough to take those bold
steps to make them happen. They were also ready to accept small failures if it
meant there was hope of achieving some big success. This paved the way for
the advent of greater things to come.

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3_2

C H A P T E R

Automation:
Baby Steps
Towards IT
Transformation
As the organization realized the need for transformation, the focus shifted
toward developing a strategy to get things started. Optimizing the way different
teams operated felt like the first of many things that would need to be done.
The way to achieve this was quickly decided to be driven through automation.

Often, having a dedicated team to implement automation within an enterprise
is thought of as a luxury rather than a necessity. In my company, Aditya, our
VP of internal IT infrastructure and technology office, recognized the need
for change. He knew that the time had come for this luxury to be made
a necessity and he wanted us to focus on transforming IT functions. The
immediate strategy to get things going was by aggressively automating our way
out of the current state.

2

https://doi.org/10.1007/978-1-4842-3612-3_2

Chapter 2 | Automation: Baby Steps Towards IT Transformation6

I was hired as a part of this strategy and was expected to drive automation
for the organization. My expertise in different programming languages and the
work I had done in my previous role had landed me this opportunity. I would
later realize that taking up this new role was one of the best career decisions
I had made. This role helped me tap a latent passion for driving optimization
by means of automation. It also helped me hone a skill to identify areas where
change was needed.

Looking back, after my high school, I knew that I wanted to be associated
with software programming for the rest of my life. Back then, I was invariably
attracted to the unlimited potential that good software could offer and equally
intrigued by how complex it was to write a good piece of code. My choice of
academic courses hence veered toward building those skills.

During my Master’s program at Loyola University, Chicago, there were two
courses that I really enjoyed. The first was the software engineering course
facilitated by Associate Professor William L. Honig. That course left a lasting
impression on me because it was all about how a team should function, which
I had never really thought much about in the past. The course attendees were
divided into five member teams and every member had to choose a specific
role to perform on the team. I picked up the role of a developer as I was
very passionate about programming. Other roles in the project were those
of a typical development team—a team lead, a quality assurance engineer, a
developer, and so on.

The second course that I enjoyed was called Extreme Programming, which was
focused on the usage of XML and its integration with the Python language.
This was the first time I had come across Python, but it has since stayed with
me. This class was taught by Professor George K. Thiruvathukal, who has been
an inspiration for me purely because of the energy and passion he infused in
his job every day. We would be assigned very interesting projects during the
course such as creating a “calendar” application, for example. Building these
solutions from scratch would mean we had to wear multiple hats at various
stages of the project. The challenges we would face and the solutions we
would ultimately create would be extremely engaging and satisfying.

These two courses among the others left an impression on me and probably
sparked that interest to develop solutions that would be fully focused toward
solving a problem or addressing a requirement in an innovative way.

Shifting back to the story of my new job, I was part of a team that would
manage implementation of different tools, and I was responsible for owning
software that helped with process automation. This allowed me to see the big
picture. I had an opportunity to closely inspect and understand how different
teams and processes operated and the challenges different teams faced. I
was the lone member responsible for implementing process automation to

Enterprise DevOps Framework 7

help create capacity for all the other IT teams. The leaders had done their
homework on creating the best possible strategy to drive this transformation.
The strategy was based on their vision of what they wanted to achieve and
also on how some other organizations across the industry achieved success in
driving similar changes. How this strategy would work in our organization was
not very clear though, as each organization works differently and what works
in one organization is not guaranteed success in a different organization.
Even with a sound thought process backing this transformation process, it
was still an experiment to some extent, but one that was not too expensive
or disruptive to perform. Achieving even limited success in this would far
outweigh any setbacks or failures it might run into. The die had been cast and
the risk seemed pretty low.

As far as I was concerned, the road toward introducing automation was not
clear-cut as there were no internal references to fall back on. I was counting
on the support and faith from management to back me up and the domain
knowledge of the many experts I was surrounded with.

The initial challenge for automation was to be able to identify the ideal use
cases. My development background did not equip me with the right exposure
to understand the challenges in the IT operations world yet. I would soon
realize the amount of effort that is needed by the IT folks working behind the
scenes to allow an enterprise to function.

While identifying use cases, it often happened that what we thought was a
good automation opportunity either turned out to be too complicated or was
not feasible due to technical challenges. A good number of proof of concepts
(POCs) had been performed by implementing hypothetical situations, but most
of them remained in the conceptual state and never made it to production
workloads.

Pressure was mounting on me, and most of it was self-created. Given that I
had worked with product teams in agile mode in the past, a couple of weeks
with no deliverables to talk about seemed like a highly nonproductive period.
Thankfully, things changed for the better.

The Big Breakthrough
The service desk team had come up with a requirement to help them with
managing the process for an employee who was moving out. This gave us
our first major automation use case, which we called the “HR Exit” process.
The process involved integrating a number of end points both internal and
external to the company. Some of these systems included active directory,
telecommunication system, ERP, internal applications, servers, and many more.
Connectors to these systems were implemented by using various techniques

Chapter 2 | Automation: Baby Steps Towards IT Transformation8

such as performing REST and SOAP Application Programming Interface (API)
calls, executing queries on databases, and remotely executing commands and
scripts on systems by using default operating system utilities such as WMI and
SSH. Writing scripts for each end point was not too complex a job, but all of
these had to be tied and orchestrated together.

It became clear that all these scripts that were written for automation needed
to be managed efficiently. Ignoring this would mean that the automation,
implemented to optimize and simplify processes, could complicate matters.

This is where the tool CA Process Automation came into the picture. CA
Process Automation is an automation platform that provides inbuilt connectors
and features for orchestrating IT automation solutions. With the help of this
tool and some scripts that I implemented in a few popular scripting languages
such as Python, PowerShell, and VB, one of the first automation solutions was
born.

The manager at the service desk team assigned a subject matter expert (SME),
Joe, for this process, and we worked in collaboration to deliver the first cut
of the automated HR Exit process. Joe would later join me to form the very
first version of what later became one of the largest engineering teams within
my organization.

Although Joe was working with the service desk team and had little exposure
to coding or programming, he had a very analytical and creative mind. Joe’s
skills would be of tremendous use in the future, because automation is often
about thinking out of the box, and creativity figures high in the top skills to
have in a good automation engineer.

Joe definitely exemplified this definition to the hilt. He would often instantly
come up with ingeniously simple ideas to solve a complex problem that to
him seemed the very obvious approach to take. This quality of his helped
us in engineering the solution for processing the exit requirements of a
departing employee. I still remember the very first demo we performed for
my immediate team after implementing the HR Exit automation process. CA
Process Automation did a good job in capturing the state of a process that
was underway. The workflows that were running would display in sequence,
the current step being executed marking each completed step as a success
or failure.

The looks on the faces of my peers during the demo and the compliments
that followed after were very gratifying. After all, I was a new member in a
relatively unknown world, working with some very seasoned professionals.
Getting recognized by my peers meant a lot. It felt like Joe and I had struck
gold on our very first strike!

Enterprise DevOps Framework 9

It was a little too soon to be celebrating, though, as the solution was still just
a POC and would have to go through a series of enhancements and hardening
before it could be made production-ready. But we had already made an impact.
We had shown that it was possible and a lot of opportunities existed for us
to look at more closely.

Having received a positive response, Joe and I worked together to swiftly
convert the solution from being just a concept to a production-ready solution.
This solution was then used as a platform and a reference for a number of
solutions that were implemented later on.

More Use Cases
Soon enough, working with some other colleagues across multiple teams, I was
able to identify the next set of solutions that would need to be automated.
Many of these solutions were focused toward automating processes around
infrastructure management and operations. These solutions were less
processes and more utilities for teams that consisted of network and system
admins.

One such solution worth mentioning was the P2V process (converting
a physical server to a virtual server). For this requirement, we used the
development toolkit provided by VMWare. Although the most complex
part of this process was the actual server conversion itself, the scope was
much larger than that. We also were required to manage the preconversion
and postconversion process specific to our organization, which consisted of
integrations with other end points such as the configuration management
systems and domain controllers.

When the request for this automation came to us, the odds were certainly
not in our favor! The scope of the work was undefined; no one was in a
position to confidently state exactly what needed to be done and what was
possible to achieve. I was in untested waters not knowing which way to swim.
To make things worse, the solution was expected to be delivered in a matter
of a few days.

I had partnered with Isac, a VMWare expert, for this and together we burned
the midnight oil for quite a few days to get this implemented. The first thing
we did was to define the scope for ourselves followed by understanding the
feasibility of what was achievable. Together, we were able to pull off what
seemed like an impossible task, and we gave a demo of the solution to the
stakeholders well within the stipulated time.

The solution was appreciated by all stakeholders and both Isac and I were
recognized for the passion and the skill that we displayed. Unfortunately, the
solution was never really used as the priority and the direction for the project
had changed and it was no longer required. The upside to this was that during

Chapter 2 | Automation: Baby Steps Towards IT Transformation10

the implementation of this process, we gained a lot of knowledge that came
very handy later on. Often, we learn a lot more from failures we face rather
than the success we see.

Isac and I went on to become very good friends from there on as both of us
had developed a mutual respect for each other’s talent and our passion for
work. It is moments like these that leave an imprint in your mind and form
partnerships at the workplace that last forever.

By this time, Joe had improved his coding skills and was churning out good-
quality code and quickly identifying probable candidates for automation,
particularly within the customer-facing IT service delivery side. Aditya had
taken note of our work and made a swift decision that had a long-lasting and
game-changing impact.

Aditya worked with my would-be boss, Anil, and they let me build a team and
gave Joe the option to join as my first teammate. Joe didn’t bat an eyelid and
partnered with me instantly. After a few more successful implementations,
two more very talented resources were added to our team, Sid and Vince.
The new team members were not only good at automation, scripting, and
adopting new technologies, but were also highly motivated individuals who
were looking for opportunities to prove themselves.

Sid was very high in his creative quotient, and he was very clever at authoring
smart scripts and delivering solutions to the point. Vince was more meticulous
in his approach: he was good at planning and also very quick in learning new
technologies. As a group, we were unstoppable as each one of us brought
different skills to the table and were collectively putting our weight behind a
common goal. All of us were just about ready to ride the transformation wave
that was set in motion.

The journey had begun!!

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3_3

C H A P T E R

Challenges
Faced Early On
The automation team shaped up well and was geared up to delivering the
promise of automation. But this came with its share of challenges. It would
have been unwise for us to assume that every other team would be as excited
and as motivated as the automation team about this transformation journey.
We were too early in the journey to be able to share any success stories
with other teams that could have given them the confidence to embrace this
change.

Accountability and Ownership
We faced resistance from some teams when we brought up discussions
around automation opportunities in their teams’ work areas. It was extremely
difficult for us to make them realize that issues like service outages and
process bottlenecks that they frequently experienced could be resolved
through automation. Also, for certain employees, as a result of working on
repeatable tasks, boredom related to their work had crept in. This resulted
in bringing down the motivation levels for those employees. The zeal to own
a process and make improvements around it seemed to be dwindling. In
certain cases when issues surfaced, responsibility would be deflected to other
members within their team or members of the other teams. This attitude was
contagious and had the potential to become endemic.

3

https://doi.org/10.1007/978-1-4842-3612-3_3

Chapter 3 | Challenges Faced Early On12

At times it so happened that, when there was an outage or a service
interruption, the network team would be the first to be put under the scanner
with very little evidence justifying this behavior. It was rather convenient to
assume that network-related issues were at the root of the problem. “The
network seems to be slow” was a line that often used to come up during the
discussions around determining the real cause of the problems. This would
create a new tangent for troubleshooting the problem, which resulted in a lot
of time being wasted as the focus of fixing the problem would now be around
improving the network performance, whereas the real issue could have been
completely different. The issue would ultimately be resolved by rolling back
a change made at the application level or at an infrastructure level. But, there
would be limited visibility into why the issue surfaced in the first place and
what exactly was done to resolve it, as there were many hands working in
multiple directions to resolve it.

The reluctance to take responsibility by some employees was evident and was
plaguing the work atmosphere. I would attend many meetings and conference
calls where this behavior was displayed. When individuals were called out for
not handling responsibilities effectively, not taking the initiative to improve their
areas, or not doing enough to find opportunities to automate, they would get
extremely defensive. There was disgruntlement about other employees trying
to trivialize their work and not understanding the challenges and complexities
of the respective teams.

Championing Automation
There was definitely a need to evangelize for automation, and we also felt that
this was needed globally in our organization. Even though our organization
operated in multiple global locations, in its early days the automation team
operated from a particular office location, and this was limiting their area of
influence. To improve the coverage of automation and to get the larger team
on board, we decided to have Joe travel to our headquarters located in New
York. The sole purpose was for Joe to connect with as many teams and as
many individuals as possible and to be the automation champion. We wanted
to position him as someone who could work with the various teams in this
location and help them improve their work efficiency by driving automation in
their respective areas of influence. As a part of his preparation for this trip, Joe
did well by connecting with the different teams before his travel and setting
up a series of meetings and discussions with many key leaders and influencers
across the organization working from that location.

Change, when introduced, almost always faces resistance. It’s the same in most
organizations and we faced our share of resistance as well. As noble as our
thoughts were when we sent Joe on this odyssey, the sailing was not as smooth
as we had wished. Even with all the preplanning and arrangements Joe had

Enterprise DevOps Framework 13

made, he was unable to get much traction from the teams. Session attendance
was minimal and those who attended were close to hostile at times. The
most common question we faced around automation was “Will we lose our job
once our work gets automated?” This was a tricky question to answer. While
there are no two ways about automation eating into jobs, the reason we were
driving automation in our organization was much more encompassing than
reducing head counts and driving savings from it. With automation, we were
trying to drive efficiency into the system. In some industries, automation is
a proven model to scale operations. Many organizations have increased the
head counts of their skilled labor after introducing automation as they were
able to scale up their business. Scaling up meant more manpower would be
needed. The requirement for the employees would be to upskill themselves
as the machines would now be performing the routine mundane tasks and
humans would need to focus on the next set of challenges to be solved.

Driving this point home to a set of nervous and reluctant employees was
an arduous task. The other common comment we would get was “we have
fully optimized our work and there is nothing more to achieve with automation.”
Having said this, the teams would try to shut down the conversation about
automation even before it really began. We had to be shamelessly persistent
at times with certain teams to make any inroads into their areas of work. It
would often be like trying to find a chink in the armor and make our way
through that perceived weak spot. Often, the chink in the armor would take
the form of one or two employees who supported the idea of automation
and were motivated to drive that positive change in their teams. The other
motivating factor for these employees was the opportunity to do something
interesting and learn something new. We observed the emergence of a
pattern of how the adoption of automation by different teams would need
to be managed, and each interaction with the different teams was a learning
opportunity for us.

Bullheaded Approach to Drive Automation
The organization was trying to keep up with the changing landscape in
terms of the technologies hitting the industry and our adoption of those
technologies. With little scope for expanding the teams because of budget
constraints, creating capacity for the existing employees to start transitioning
toward adopting newer technologies was emerging as a big challenge, one
which we hoped automation would be able to help with. Our aim was to
automate as much of the current work as possible to create capacity within
the teams to start exploring newer technologies and accomplishing bigger
tasks. This was the message we tried hard to convey to the teams with little
success. By the time Joe concluded his trip to the New York headquarters,

Chapter 3 | Challenges Faced Early On14

he had spent time with many teams and individuals spreading the word on
automation. He returned home with mixed feelings, not knowing what to
expect next. I remember the disappointment he expressed to me when he
later recalled some of his interactions on the trip. For quite some time, he was
unable to fathom why automation generated such resistance from colleagues
who were other wise quite easy to work with.

Even with all the resistance he faced, he was still able to get a buy-in for better
collaboration over automation from a handful of teams. Immediately, we
started cashing in on the little bit of momentum that was generated by Joe’s
trip and shortlisted the next set of automations that would be focused upon
by the automation team. What worked in our favor was the fact that there
were a lot of inefficiencies then in the system and the teams were mostly
focused on keeping the “lights green.” Most of these teams had no plan for how
they were going to create the required capacity in their teams to tackle the
more challenging requirements that were expected of them. This meant there
was plentiful work readily available for the automation team to get started. As
a result, we were provided with a golden opportunity to make a long-lasting
impact in a short period of time by automating the simple processes or the
notoriously famous “low-hanging fruits” first and showcase the big returns from
these automations. This was a chance that we would not let pass us by, and we
delivered some solutions quickly to further the momentum.

Ignorance Can Be Bliss
As the automation team was not fully aware of or influenced by the complexities
of the other teams’ day-to-day work, the issues these teams faced did not
appear to be too complex to solve. This irked many people because they felt
that it trivialized the value of their work. The automation team proposing new
ways to simplify the work these teams had been doing for years didn’t sit well
with most of them. Ultimately, the teams needed to open up and embrace
automation wholeheartedly, and we needed to make them feel as much a
part of this process as the automation team. We felt the need to collaborate
even more and to connect with the teams in a more casual setting. We tried
out a few things such lunch-and-learn sessions and brown-bag brainstorming.
Conversations started flowing well over a slice of pizza. With the help of these
casual interactions, we finally managed to break the ice and set up follow-up
discussions. We often went into these discussions with data from our ticketing
system and made the teams realize how much time they were spending on
performing very rudimentary and repetitious tasks. Opinions started changing
and people became much more receptive and appreciative of the helping hand
that the automation team was trying to provide.

Enterprise DevOps Framework 15

With time both sides, that is, the automation team and the teams we were
working with, had matured in their perception of automation. The underlying
tension eased as many employees realized that the intention behind this
whole transformation effort was noble. Each one of us was trying to do the
right thing to help the organization. We grew better at understanding how
automation workflows integrated with existing processes, identifying the next
set of possible automation opportunities got relatively easier, and the support
from the teams was much stronger.

The Engagement Process
With the help of these interactions with the teams, we carved out a process to
carry out our optimization initiatives powered by automation. It was important
that the teams were involved right from the first step. This was often the key
to have their buy-in to the automation of a specific use case in their areas. The
process could be defined as follows, and as shown in Figure 3-1,

•	 One or more members of the automation team would
reach out to the other teams to initiate the process.
These team members would be interviewed about their
pain points and asked to identify the top two or three
processes that consumed most of the time within their
team.

•	 An “Automation Consultant” would be assigned from the
automation team to drive this process.

•	 The teams were asked to appoint a SPOC (Single Point of
Contact) who would provide details of the process and
drive initiatives for their respective teams.

•	 Together, the Automation Consultant and the team
SPOC would define the requirements and identify the
integration points to help understand the complexity of
the solution.

•	 The Automation Consultant would then take the lead in
designing the proposal for automation and get it reviewed
by the Team SPOC and at times by the architects within
the teams.

Chapter 3 | Challenges Faced Early On16

•	 This would be followed by the build process or the
implementation phase. During the implementation, a
number of connectors and other utilities would be built.
These would then be classified into two categories:

•	 Generic components, which could be shared by
other solutions, for example a solution performing
file-related operations or a solution performing
activities on a remote system.

•	 Solution-specific components, which were specific to
a particular requirement. For example, a connector
for a telecom solution or to a particular network
device.

•	 The different components that were built would be
orchestrated within the CA Process Automation (PAM)
tool.

•	 The solution would then be tested in the development
environment and signed off by the respective team
members before being pushed out for production.

■■ Note  It did take us a good number of iterations to come up with this model, and the model has

never stopped evolving to this day.

Enterprise DevOps Framework 17

F
ig

u
re

 3
-1

. 
A

ut
om

at
io

n
fr

am
ew

or
k

Chapter 3 | Challenges Faced Early On18

This exercise had its share of challenges. Initially, the teams were uncomfortable
revealing the challenges they faced. As I mentioned earlier, there was an early
phobia of automation among the teams as they thought it meant a reduced
head count. A few others in the teams thought the tasks they performed were
far too complicated to be automated. They would undermine the power of a
good piece of code and the orchestration technologies out there. But to be
fair to them, they had not seen real automation in action within their field to
display full faith in automation just yet.

I remember a team lead telling me: “My application is different from the others;
there is nothing that can be automated here.” Ironically, a few months later, the
very first instance of a “code deployment automation” that we implemented
was for that particular application! It later became a reference solution for
many similar implementations. That particular colleague is now a very good
friend of mine and she is a true believer in automation and also has become
an outspoken evangelist for automation and its benefits. I sometimes wonder
if she distinctly remembers those very words she spoke! I do not bring it up,
lest she gets embarrassed about it. Together, we have now deployed umpteen
number of automations and I admire her for the way she has transformed
herself and adopted to the new way of doing things.

Without full support from the teams, we would get only pieces of information.
Incomplete data often kept us guessing on the full scope of the automation
opportunity. This resulted in multiple follow-ups on our end to gain useful
data points from them. A technique we had mastered with a good success rate
was to identify that one resource/team member who was actually excited
about being a part of the whole automation process. He would become our
go-to person and would provide us with starting points and guide us toward
asking the right set of questions to the right people. Once the automation
was delivered, we would make sure that we highlighted the contributions
of this individual and get him his due recognition. This approach would
encourage others to be more participative in future automation opportunities.
The momentum kept on building, and most of the teams and individuals
started aligning with the automation strategy of the organization.

We did fall back on the leadership team on occasion to propagate the
importance of automation and push their teams to start collaborating with us.
Short programs had been launched that encouraged and rewarded employees
who were pioneers of automation within their teams.

Bullseye
Some areas where we succeeded in delivering quick value were the service
desk support team, the NOC, the systems admin team, and the application
support teams. The use cases that were automated ranged over a large set of
areas. The following are a few of those use cases.

Enterprise DevOps Framework 19

Use Case 1: Incident Management Automation
Problem Statement: The monitoring systems currently in place were
detecting a large volume of issues in the environments. The operations team
in place was not able to keep up the pace in resolving these incidents reported
by monitoring systems. This was resulting in a delay in resolving the incidents
and was adversely affecting the business services.

Solution: A number of autofix solutions implemented by the automation
team were able to fix a large number of incidents reported by the monitoring
systems without any human intervention. Most of these solutions ran in real
time and hence were fixing the issues as soon as they surfaced. This resulted
in a highly efficient operations model, and the MTTR (Mean Time to Recovery)
was greatly reduced, resulting in happy customers.

Use Case 2: New Server Build Process
Problem Statement: When a request for building a new server was placed
by our organization’s customers to host their application, the turnaround time
from our provisioning team was proving to be a major point of dissatisfaction
for the customers. There were multiple steps involved between when a
request was received by the provisioning team and when it could be handed
over to the customer, and almost all of them were manual.

Solution: A number of optimization opportunities were identified in the new
server build process by the automation team. The process was first broken
down into four different phases:

	1.	 Acquire

	2.	 Deploy

	3.	 Manage

	4.	 Retire

Each of these phases was then brought under the automation radar. The end
solution that was delivered was highly optimized and proved to be one of the
most successful solutions built by the automation team. More details on this
solution are provided in the later chapters on DevOps and Cloud.

Use Case 3: Managing a Load Balancer
Problem Statement: During a planned (or unplanned) change or a
maintenance activity, usually executed during weekends, application teams
often had to reach out to the Network team. The Network team’s on-call
resources would help to disable and enable the respective application servers
from the load balancers to perform the activity.

Chapter 3 | Challenges Faced Early On20

The Network team would be paged a couple of times during this activity,
which resulted in a cost and time loss. This was an expensive approach to a
simple requirement. Besides, there were challenges involved in getting a quick
response from teams and all this had to be coordinated by the NOC team.

Solution: The automation team built a solution that would empower the NOC
team as well as the Application support teams to perform basic operations
like adding or removing a server from a load balancer without any support
or help from the Network team. The solution was delivered in the form of
a simple web form to make it user friendly. As this eliminated the need to
page the network team and have them perform the activity, it proved to be
popular with the Application support teams as well as the Network team. The
solution reduced the time and cost involved by a whopping 15X times!

Use Case 4: Code Deployment
Problem Statement: Developers would reach out to deployment teams
to deploy the latest code on the app servers. This process involved a formal
request that was created and addressed by the support teams. Precious time
was lost between requests getting processed. The support teams had to drop
what they were working on and pick this up as any requirements from the
developers would be a high priority item.

Solution: The solution that was delivered would intercept a new deployment
request and perform an automated deployment of the latest code, as well as
notify the respective parties of the progress and the end status. Again, all of
this was achieved with zero human intervention and had a high ROI (return
on investment) as the time lost between submitting a request and someone
picking up the ticket to resolve was completely eliminated.

What we delivered then was not the most efficient way of implementing an
automated delivery solution, which we learned about later in our DevOps
journey. Nevertheless these kind of solutions made the adoption of DevOps
much easier as the solutions and teams were primed for better efficiency by
these automations. This was our first take on continuous deployment and
with time these practices evolved into a highly advanced solution.

Automation Train Well on Its Way
Building these kind of solutions meant that work that used to take a few hours
or days to complete, would now be completed in a few minutes or maybe
even in seconds. This efficiency was achieved by empowering the support
teams. A simple user interface would be tied to the automations that needed
on-demand execution. This utility was then handed over to the actual team

Enterprise DevOps Framework 21

that was requesting the activity. The wait time was thus eliminated and the
processes became lean and fast.

These solutions became very popular as they provided wheels under the feet
of teams who were now able to meet their deadlines faster. There were
occasions when due to change in processes or technology the automation
would deprecate, but in between cycles of being built and being deprecated,
the solution often delivered huge value, which justified the time invested in
building those solutions.

After adding two new members to the automation team, the speed with
which solutions were being implemented improved significantly. Sid with his
expertise in Perl and Python coding along with good exposure to UNIX, was
able to contribute on solutions being developed for multiple platforms. Vince
was an expert in RedHat platform and had excellent shell scripting knowledge
and Cloud expertise. These were very apt skills to have when our immediate
focus was on infrastructure-related automation.

Our team consisted of four members then, each with different skills that
spread across a wide range of technologies. What most of us had in common
was expertise on the UNIX platform and good coding/scripting skills. These
traits had become the differentiating factor for the team in an organization
predominantly had admins and support resources who, although highly
proficient in their areas of expertise, had little to no coding or scripting skills.

Evolving into a More Advanced Automation Team
The automation team was delivering solutions in many different areas, both
technology and process oriented. An important gain from delivering these
solutions was the positive effect on the mindset of employees. When a new
process was introduced, participation and acceptance from the teams were now
significantly higher. All involved in the process were committed to making sure
that the automation initiative was as comprehensive and efficient as possible.

The tables had turned, and the automation team no longer had to reach out
to other teams and ask for work. As a matter of fact, too many automation
requests began coming in, which meant that the team had to be scaled up in
a short period of time.

Initially, we kept track of the work coming our way by use of traditional
ways like MS Excel or plain text files. For each new request we would enter
information like the summary, point of contact in the team, automation
consultant representing the automation team, ROI (Return On Investment),
ETA (Estimated Time of Arrival), comments, and so on. Although quite basic,
this information helped us track the effort in a somewhat organized manner.
We started publishing dashboards with this information to various leaders
and stakeholders.

Chapter 3 | Challenges Faced Early On22

Automation, a Simple Four-Step Process
As time passed, we gained more experience with automating various kinds
of processes and moved toward using a more organized approach toward
automation. We began evolving into using more processes around managing
the entire automation life cycle rather than focusing on just implementing a
solution. This was derived from the automation engagement model that was
discussed in detail earlier in this chapter, but was simplified into four key steps.

The steps were as follows and as shown in Figure 3-2:

•	 Identify

•	 Evaluate

•	 Build

•	 Govern

Identifying the right opportunities was the first step in the process. This
often proved to be the most difficult step as it involved a lot of time and effort.
Doing groundwork to identify which teams needed help and what processes
needed optimization was often the first stage.

This was sometimes accomplished by analyzing data emerging out of service
desk tickets that had data around change management, incident management,
and request management. Also, interviewing different team members helped
in this phase.

IT Automation

• Identify
• Evaluate
• Build
• Govern

Figure 3-2.  Steps followed during automation of processes

Enterprise DevOps Framework 23

Evaluating the value of automating a shortlisted process was the next step
and often the most important one. Once an opportunity was identified, a few
check boxes needed to be ticked before it moved to the implementation phase.
This was based on the business value that would be realized by automating
the solution.

At a high level, the business value of the solution would be determined by
understanding the capacity created for the teams and the quantum of risk
mitigated.

The number of hours saved for each process, the complexity of implementing
the automation, the count of manual errors that were eliminated, and the
number of changes made though the automation became factors that
contributed toward coming up with an ROI of automating the process. This
would determine if going ahead with the automation was viable for business.

The Building process pretty much remained the same as explained a little
earlier in the engagement process. Early on in the process, we anticipated the
need for building certain solutions that would be required across multiple
use cases and made accommodations for reusing those in the build process.
This proved to be really helpful as we started implementing more and more
solutions.

Governing the solutions became highly critical. As the automations started
taking over, the dependency on these automations increased heavily. Teams
now started focusing on tasks that were not yet automated and assuming that
automation was doing its job. Every once in a while we would have an instance
when an automation job failed or did not work as expected. If proper alerts
and monitoring were not implemented for these solutions, the failures would
not be detected and there would be a huge impact. We needed to maintain
proper documentation around each automation solution, which helped us
identify the owner for that solution, its impact, and the troubleshooting steps
in the event of the solution failing. Also, a manual failover option had to be
identified in case the automation was experiencing any challenges.

Managing the Automations was the next step. Once a process for
building automations was determined, creating new automations became
relatively easier. For the automation team and for the platform teams for
whom the automations were being developed, it also became critical that they
understood what role they had to play in the process of solution development
and supporting the solutions. A few of us from the automation team put our
heads together to bring some clarity on this, which is depicted in Figure 3-3.

Chapter 3 | Challenges Faced Early On24

Roles and Responsibilities
Most of the solutions that the automation team developed involved two main
stakeholders. One was the automation team itself, as they would be building
the solution, and the second was the team that owned the process that was
being automated.

Automation Team Responsibilities
The automation team was tasked mostly with creating the new solutions,
identifying any reusable modules that already existed that could be used in
the new solution, and identifying and marking any new modules that were
to be built for the new solution as reusable modules. To facilitate this, the
automation team was tasked with assigning one automation expert for every
process to be automated.

The automation team was also responsible for creating awareness and
spreading automation by acting as trainers and consultants for automation.
Multiple training sessions were held by the automation team around the
process for automation and the tools and technologies that were involved in
building the automation.

Process Owner Team
The teams that owned the process that was being automated were tasked
with assigning a SPOC from their team to lead the automation initiative.
The SPOC would be the interface between the two teams and would be
responsible for defining the requirements for automation and for bringing in
the subject matter expertise requirements for the process being automated.

Consulting

Training

Ideation IT Automation
Consultant

Automation
Team

IT Functions

Orchestration

Test

Maintenance

Governance

Business Analysis
Build Reusable

Modules

Figure 3-3.  Roles and responsibilities

Enterprise DevOps Framework 25

The SPOC would also be responsible for ensuring that the testing of the
process was complete and provide a sign-off once the solution was developed.
Finally, once the solution was in production, the SPOC would need to ensure
that support for the processes was provided in an effective manner. This piece
was often challenging, and the automation team used to play a major role in
this phase of an automation life cycle as they were the most well equipped
for debugging and identifying any ongoing issues with automations in general.

It took time for many of our users to understand that even though the process
was automated, the ownership of the process still lay with teams for whom the
solution was developed and not with the automation team. Although defining
the roles and responsibilities did not fully solve the problem of ownership, it
did help in putting some basic structure in place that could be built upon as
time passed. We definitely improved on this aspect with time, and this was
mainly due to the change in the mindset of the people.

Making automation more accessible for the various teams who were now
increasingly adopting automation and the housekeeping activities around
these automation solutions were becoming increasingly challenging. Collating
the solutions so that they are easy for the end users was a major challenge.
Managing the access to these automation solutions also became very important.
By automating the processes we had simplified the processes to a great extent,
it had now become possible for team members who were not experts in a
particular technology and who did not fully understand the impact of the change
to be able to perform complex tasks. Domain- or function-based segregation
became important for all the automations that were rolled out so that one team
did not have access to solutions built for and owned by another team.

Summary
In this chapter, I have called out a number of challenges that we faced while
trying to increase our impact with automation. It is quite evident from our
experience that most of the challenges that we faced were nontechnical. In
fact, when automating a process, the one aspect we would be least worried
about would be the technical feasibility. This was because technical feasibility
was very easy to determine, and unless the technology involved was primitive
there would be one way or another we would figure out to automate the
process. What was challenging was to get a process in place that would drive
the maximum value of these automations that we were building.

Mastering the art of effective automation comes with experience, and there
will be a number of challenges that any organization will face when they set
out on this journey.

In the next chapter, I touch upon how we evolved into a more advanced stage
of automation and how building solutions like ITBot became table stakes for
the automation team.

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3_4

C H A P T E R

Era of the Bots
As the automation team’s expertise on building automation improved,
we started spreading our wings even further by building more creative
and complex automation workflows that were better aligned with the
user demands and requirements. Many opportunities were identified while
interacting with other teams for building solutions aimed at improving
operational efficiency. The automations were grouped into larger solutions
based on the different problems they were addressing and were termed as
the automation bots by the team. Most of these automations were running
as workflows in CA Process Automation, which did a great job in helping
orchestrate the automations.

ITBot
Though CA Process Automation was great at orchestrating the solutions
and had a shortened turnaround time compared to scripting solutions from
scratch, we had identified one major gap in this tool that was hampering the
adoption of automation. We needed to simplify the means by which these
solutions were accessible to the users. At that point in time, the users would
have to navigate through multiple pages and make quite a few clicks before
they could reach the exact solution they were seeking. This would deter some
users from using the automation and instead, they would go back to their old
manual means of executing the desired task.

In order to overcome these challenges, we built a web interface that we called
“ITBot.”

4

https://doi.org/10.1007/978-1-4842-3612-3_4

Chapter 4 | Era of the Bots28

ITBot was developed as a simple HTML wrapper for the different automation
solutions that were implemented in CA Process Automation. We simplified
the UI shown in Figure 4-1 to address the challenges mentioned in the
preceding and positioned it as a one-stop automation portal where different
teams came to execute their automation. We further enhanced it to
incorporate the ability to send notifications and to be able to report the
status of automations.

Just building automation solutions is not sufficient; the value of the solution
lies in the consumption of the solution and this is where the delivery and the
accessibility of the solution plays a key role.

ITBot happened to be the first of the many other bots and automation
applications that the team later implemented. The delivery of this solution
had lit a spark in the team and they started looking at the delivery piece of
automation solutions in a totally different light.

ITBot was not an instant success in improving automation user experience
(UX) as I had hoped it would be. Many employees felt this was a redundant
solution because it just provided an alternate means of accessing solutions
that could otherwise be accessed from the CA Process Automation directly.
The pain that I thought ITBot was providing relief for was not felt as acutely
by others. Users who were accustomed to the existing solutions continued

Figure 4-1.  ITBot: the automation portal

Enterprise DevOps Framework 29

accessing the solutions through the CA Process Automation portal. But this
also highlighted a bigger problem. There were not many people depending
on automation yet or really using the automation solutions that were being
put in place to help them out. Part of this can be attributed to human nature.
As humans we are generally hesitant to change the way we work even if
the current process is time consuming or complex. Familiarity with the steps
involved in executing a task and the reluctance to break away from that set
pattern comprise perhaps one of the major hurdles to introducing a change.
Any new process is almost always assumed to bring with it complexity, and
people tend to avoid adopting it until there is no other choice left.

ITBot had a modern look and feel, and we had done a decent job of segregating
the solutions for individual teams by providing each of the teams a “tile”
to access their team-specific solutions. This helped them to easily navigate
through the multiple solutions on the portal and save time. ITBot became
popular for accessing the newer solutions that we were rolling out but was
not immediately accepted for the ones that were already in place.

We did not want to force people to use the automated solutions by shutting
other means of performing the task. Our focus shifted toward improving
adoption by making the new processes as easy to use as possible by addressing
their UX aspects. This was done by engaging the users more, observing the way
they executed a task, and identifying the latent needs that could be addressed
by the solutions to make them more appealing to its user base. By doing
this, we were able to drive more people toward using the automations and
we observed a steady growth in the adoption of automation. More adoption
meant that the dependency on automation was also growing and we had to
build solutions that were highly resilient and accurate. The ease of use of the
ITBot portal and the comprehensiveness of the solutions it provided attracted
more users toward it. This helped with the overall adoption of automation in
the organization.

Soon enough, almost all the users of the automation solutions started using
ITBot, and it became the de facto portal for automation. We kept on adding
new solutions to the portal as and when we built them. We also realized
that building ITBot for just our organization’s consumption was not enough
as there was a broader community outside our organization that was using
CA Process Automation, and our knowledge could be beneficial to them as
well. There was already a program in place that was the brainchild of a few
key leaders in the company that created a channel to encourage collaboration
between the IT department and the product development teams. A team was
put in place in the IT segment of the company working dedicatedly toward
driving more product sales for the organization. One of the ways this team was
driving the program was by focusing on improving the internal adoption of the
products our organization was building to sell externally. The idea was to test

Chapter 4 | Era of the Bots30

out the products internally first and find any bugs or identify any enhancement
opportunities for the products so the required quality improvements could be
incorporated before the products were sold externally.

The automation team felt it was important to pass our observations and
challenges to the product development team of CA Process Automation. We
started engaging them and performed a demo of ITBot for them. The product
team immediately acknowledged the significance of a functionality like ITBot
within the product. They put this requirement in their backlog and prioritized
it high. The very next release of CA Process Automation came with a new
add-on utility, “Solution Suite,” which mimicked the functionality of ITBot.
The automation team was thrilled that not only were we driving value in the
organization by optimizing process with automation but we were also able to
influence the revenue-generating stream of our company by providing inputs
to the product teams. This success story further strengthened the credibility
of the team and proved that we were heading the right direction.

FixIT
Hot on the heels of the success of ITBot, we rolled out a self-help end-user
solution named FixIT. FixIT targeted resolving end-user problems in a more
efficient manner by providing a self-help website. The service desk team was
getting bombarded with a number of calls reporting issues with end-user systems.
The problems were wide ranging, from system slowness to access issues.

Most of the time, fixing these issues was quite straightforward but the process
put in place to manage this was not the most efficient. The process worked
as follows:

•	 On experiencing any issues with his/her machine, the
user would reach out to service desk by phone or initiate
the process by creating a ticket.

•	 This would be followed by a service desk analyst
addressing the concern by having a phone conversation
with the user to start the troubleshooting process.

•	 The analyst would often request remote access to
the user’s machine. This was needed to diagnose the
problem and to download and install a package on the
user’s machine.

This process was highly time consuming and was a ripe candidate for
automation. The service desk team managers had to constantly stay on top
of their teams’ available capacity based on a number of such requests coming
their way, and this was turning out to be a costly affair.

Enterprise DevOps Framework 31

In order to solve this problem, the automation and the service desk teams did
a couple of brainstorming sessions and came up with a design for a self-help
solution. Together, we performed some analytics on the requests received by
the service desk team to understand where the volume was with respect to the
issues being reported. The top ten solutions were selected based on this analysis
and then addressed in the very first release of FixIT. The before-after state of
introducing the FixIT solution in the organization is captured in Figure 4-2.

Figure 4-2.  FixIT before-after state

Chapter 4 | Era of the Bots32

The users were now able to resolve most of the common issues themselves
by simply visiting the website (refer to Figure 4-3) and running the executables
listed on the site. The service desk team was now redirecting the users to
FixIT when they received a call and the issues were getting resolved much
faster. With time, more and more solutions were added to FixIT and the user
adoption of FixIT kept on improving.

Also, as a practice whenever a new service or a product was rolled out for
the employees, the service desk team and the service/product release team
came up with a simple three-step process to improve the success of the new
service being introduced. The process would address any challenges with user
experience and also address the challenges around adoption of the solution.
The process was as follows:

•	 Identify what changes are expected for the end user.
For instance, do they need to install new software or
require a license to be deployed on their systems?

•	 Create an automation package for the change that needed
to be deployed.

•	 Proactively push the package on the end-user’s machine
using remote management tools; in cases where this was not
possible, the solution would be added to FixIT and the end
users would be informed about the details of this solution.

Figure 4-3.  FixIT portal

Enterprise DevOps Framework 33

Based on what I have seen, when developing a self-help portal, it is very
important that you closely observe the journey of the users experiencing the
problem, measures he or she usually takes to resolve it, and the complexity of
delivering a solution.

A self-help solution should be driven by two important factors:

•	 Improving the user experience

•	 Improving the efficiency of the service teams

If either of these boxes is not checked then the value of providing the self-help
solution is greatly diminished and needs a retrospection immediately.

InfraBot
In 2014, Aditya and I traveled to Las Vegas to attend the annual conference of
one of the biggest Cloud vendors. For me, the event stood out because of the
participants. My experience until then made me think that a conference like
this would attract a lot of people from the management and leadership teams
who would be making business decisions, and hence it was important for them
to attend such events. But this event was different. We saw an army of young
participants in terms of their experience in the IT field who showcased a com-
pletely different approach toward thinking about solving traditional problems.
It was evident that their motivations were beyond just keeping lights green for
their organization.

Each of the participants supremely confident, focused, and ready to take
the challenges of modern IT head on. New technologies meant more
opportunities for them and the Cloud platform had a whole ecosystem of
solutions and challenges that needed to be resolved and designed for, which
appealed to their basic instincts. Most of them were either developers trying
to leverage Cloud to their advantage by building modern-day applications or
from back-end operations teams looking for opportunities to simplify the
challenges of running datacenters.

Aditya and I attended some of the breakout sessions about new Cloud
offerings and got a chance to interact with quite a few participants. These
interactions left an impression on both of us. We followed a divide-and-
conquer approach where Aditya attended the business tracks and I attended
the technical tracks. We did this for two days and would have discussions
on how some of these sessions were relevant for us and how we should be
adopting the new technologies out there.

Chapter 4 | Era of the Bots34

Aditya was one of those leaders you come across rarely in your career. If I
had to describe him in two words, I would use “positively disruptive.” He had
worked his way up from the ground of the IT chain, starting his career as a
database admin. He had a very good understanding of how business should be
built and supported from the bottom up. He had an acute understanding of
picking up what new-era technologies were going to be relevant in the future
and needed to be invested in. Seeing a young creative mind would always
excite Aditya.

Anil (my manager at that time) and I were mostly on the receiving end of Aditya’s
creativity and had some memorable brainstorming sessions together. He would
just pull us into his office and start shooting all these crazy challenging ideas,
most of which would initially really scare me as I knew it meant I would be the
one implementing them. But soon, I realized that these were the discussions
that became the inspiration and the seed for most of the good things our
teams would later be implementing and be remembered for.

Though the Cloud conference had lasted for only two and a half days, it had left
a lasting impression on us. The event energized us with a craving to pivot and
improve the efficiency of our own organization by leveraging these attractive
futuristic offerings. Our focus moved toward identifying the biggest challenge
we were facing at that time.

Swiftly, Aditya narrowed it down to managing changes on infrastructure
efficiently, as this was something that had been bothering us for a long time.
There were multiple occasions when a business service was interrupted and
the root cause was zeroed down to a change that was pushed on a server by
an admin. Questions like “Was the change tested in a development environment
effectively to test its effectiveness?” and “Was the impact of the change properly
evaluated?” were very uncomfortable for the teams, as there would be no clear
answers. The biggest challenge we observed was the different configurations
of the servers, which were a major hindrance in deploying any changes to test
environments and relating the results with the production environments.

Configuration Drift
Although every new server was built from a standard hardened base image
created by our engineering teams, over a period many hands would operate
on the server to make these small, incremental changes. Also, these changes
would be tracked or correlated effectively. Within a few months, the
configurations would start deviating heavily from the expected standard state.
This led to complications with understanding how a server or an application
would behave when a change was required to be made to the server. This is
how we understood and experienced Configuration Drift.

Enterprise DevOps Framework 35

Configuration drift is a term that describes a process where changes are
implemented to software and hardware components in datacenter environments
that are not tracked or recorded properly. Over a period of time, this introduces a
lot of complexity in managing datacenters when making any more changes to the
components as the impact of making the changes cannot be gauged accurately.

Figure 4-4 illustrates how configuration drift results in configuration differences
between servers that were created with the same baseline.

Recollecting all these challenges the teams were facing, Aditya challenged the
team with a new requirement. He suggested that we implement a modern-day
solution that would have two key high-level features: Discover and Validate.

•	 Discover: Provide real-time information on the current
state of the datacenter. This meant providing answers for
the following questions:

•	 How many servers are running on the physical
datacenters managed by our organization versus on
Cloud?

•	 How many of these servers are running on
Windows OS, UNIX, or any other platform?

Figure 4-4.  Configuration drift

Chapter 4 | Era of the Bots36

•	 What is the environment distribution for these
servers? Determine how many servers are running
production services versus any QA or dev services.

•	 Determine and map the relationships between the
servers and the applications. This would need to
be highly dynamic and much more real-time than a
static CMDB (Configuration Management Database)
in order to keep up with the changes being
introduced on a frequent basis in the environment.

•	 Validate: Continuously measure all server configurations
in our datacenter and detect whenever a deviation from
the desired state was introduced.

Aditya and I spent the evening after the Cloud conference talking more about
the solution. We discussed the challenges this solution would be addressing,
what the solution would look like, and also how pleasant life would be once
it was implemented. Later that night, after I had put some thought into the
approach we would need to take for delivering this solution, I made a call to
my team back in India, who had just started their day at work. I updated them
on the discussion Aditya and I had and the new challenge he had thrown at us.
We had a long discussion on the solution design and talked about how we felt
the solution could work.

Vince and Sid agreed to drive this effort and engage the rest of the team.
Even though the team was not clear on why this had suddenly become a
priority, they were excited enough to commit on delivering a POC within
three days. I remember not sleeping well that night, but it was not stress that
kept me up, it was the surge of thoughts that were coming to my head on
how we can keep enhancing this solution and how it could be the one solution
that solves most if not all of our problems at work.

That is one evening that I remember very clearly, especially the discussion I
had with Aditya and the phone call that I made later. It turned out to be one
of the defining moments for the automation team. The idea turned out to
be the seed that grew into something really big and impactful. With more
discussion we were pretty clear on the requirements for this solution. The
team started working on a detailed plan for its implementation. The first
thing we did was to go to the drawing board to finalize the design for the
solution. Refer to Figure 4-5 for the solution design.

Enterprise DevOps Framework 37

At a high level, the solution was designed to work as follows:

Baselining. Identify the baseline values for all
properties we wanted to measure a system’s health on.

Discovery. A data discovery mechanism was put in
place to obtain the current state of these properties
from each server.

Rule Engine. A rule engine was designed to compare
the current state of the properties with the baseline
and highlight the inconsistencies.

Since the solution helped us automate the management of our infrastructure,
we called it “InfraBot.” The most critical piece of this solution was the rule
engine, which would perform the comparison between current state and
desired state. Multiple rules were created to check the health of a server
from different perspectives like its performance, security outlook, alignment
to standards, and so forth. A “rule” would basically define what parameters
should be compared between the discovered set of data and the baseline
data. For each property we wanted to compare, we added a new rule. A
rule would determine what properties from the server would be required
to be discovered. The discovery process was initially performed at a 24-hour
interval but was later optimized to an impressive 30-minute interval.

Case Study: Antivirus Coverage for Datacenter
The following is an example of how the InfraBot added value in the organization.

Figure 4-5.  InfraBot architecture

Chapter 4 | Era of the Bots38

Problem Statement
Protecting all servers in a datacenter with antivirus is a must for an organization.
There are different ways in which an antivirus coverage for a server might be
ineffective. While the vendors provide a means of checking the health for its
agent, it is not always fully integrated with the processes of the organization
and can pose a challenge to manage the antivirus coverage for the thousands
of servers present in the datacenters.

Solution on InfraBot
In order to solve the preceding challenge, we created the following within
InfraBot.

•	 A new rule was created on InfraBot that checked the
expected state of the different system services and the
processes running on the server related to the antivirus
software.

•	 A provision to include multiple parameters apart from
the service checks like the configuration of the software
and the connectivity (or heartbeat) of the antivirus agent
with the central server.

These checks would give us enough information to depict a clear and complete
picture of the health of a particular application, which contributed to the
overall well-being of the server.

Multiple times a day, these checks would be performed on every server where
the antivirus was expected to work. Any of the checks failing would trigger a
notification to the team managing the antivirus solution.

Business Value
Proactive detection of antivirus health is very critical to prevent any security-
related incidents and is an obvious advantage of having a solution like the one
described in the preceding.

The solution also helped in highlighting the gaps before they turned into an
incident captured by a monitoring solution and needed to be addressed as a
critical failure in the system. This approach would give the teams addressing
these gaps a breathing space to fix the solutions at a comfortable time rather
than on a tight deadline measured on SLAs (Service Level Agreements).

Enterprise DevOps Framework 39

Expanding InfraBot
As the automation team did not have domain expertise across all the required
areas in IT to comprehensively determine the checks needed to be performed
on a server, we started interviewing other teams to understand if they wanted
to add rules for their particular areas of expertise. The solution was received
well, and we got a pretty good set of new rule suggestions from the teams we
had reached out to. A rule was added in InfraBot for each new requirement
that came our way. While implementing a rule, we would also associate the
rule with an owner. An owner would be the team responsible for managing
that particular configuration of the server. The owner of each rule would now
be responsible for ensuring that any failures in the rules they owned were
addressed and dealt with in a timely fashion.

Based on the inputs we received from multiple teams, within a short period
of time we ended up creating more than sixty different rules. The rules would
perform different types of checks on a server like the capacity usage, operating
system patches, service state, user account configurations, integration with
configuration management system, firewall settings, and many more. This was
a proactive way of dealing with anomalies in the system rather than reacting
to those anamolies after the damage was done.

During the implementation of InfraBot, we realized that we were not fully
equipped with the right tools in our environment to deliver a complete
solution and also to be able to scale it. To overcome this shortcoming, we
adopted some open source configuration management. The first version of
the InfraBot was rolled out within four months from the time the idea was
conceptualized. Since then, the solution has been highly valuable by proactively
highlighting the gaps in the datacenter and helping to resolve those gaps before
any service interruption or outage occurs. Measuring the full impact of this
solution was never going to be easy, as not all findings would have resulted in
an outage. Nevertheless, with each failure caught and resolved, there was one less
potential vulnerability in the environment to worry about and that itself was a huge
success for the solution.

With time, this solution became a “household utility,” so to say, for most of the
operations and support teams. Almost all the data that the teams wished to
have access to for a server or an application including the existing gaps on
them was available on InfraBot. Most of the teams would visit this site at least
once a day to get this information and to define their work backlog for the
day. Improving the quality of this solution was a continuous process, and the
solution kept on maturing over a period of two years with inputs from the
various teams that were using it.

Chapter 4 | Era of the Bots40

ScoBot
As we tightened our grip on the efficiency of operations in the organization,
one area that was constantly emerging as a threat to derail all the good
work by different teams was the constant threat of failing the compliance
requirements for the organization, as these requirements are pretty intense.
As any large organization, we were also bound to abide by the guidelines
provided by some widely adopted governance standards. While adhering
to these standards appears to be a mean task to accomplish, most of them
have been put in for a good reason. If an organization plays according to the
rules of these standards, then automatically this ensures that most of the risk
and vulnerabilities in the system are eliminated. The challenge lies in how
effectively this can be accomplished.

For an enterprise like ours, there is a lot of complexity and diversity in the
technologies and processes in the environment, which makes it extremely challenging
to follow these high standards to the hilt. There is never a clear-cut black-and-
white distribution of the overall environment with respect to the existing
infrastructure, services, and data, which could make life easy when applying the
expected standards. There are different levels of criticality defined for different
applications based on parameters like the users of the applications and the
sensitivity of the data residing on these systems. Based on this classification,
different governance and compliance standards needed to be applied in these
systems.

Depending on the industry an organization falls under, there are different
compliance regulations that apply. Some of these standards are as follows:

•	 SOX Compliance

•	 SEC

•	 PCI Compliance

•	 HIPAA Compliance

•	 FERPA

•	 GLBA

•	 FISMA

SOX 404 or the Sarbanes-Oxley Act Section 404 was one of the standards
that our organization was expected to comply with. The emphasis of SOX
controls is mostly along the lines of protecting access to sensitive data
pertaining to financial transactions. Although SOX compliance was already an
area of high focus for us, managing the requirements required a good amount
of work and was challenging. The overall focus of an audit is to evaluate
the measures in place for the effectiveness of the controls defined by SOX.

Enterprise DevOps Framework 41

Any findings meant that there was risk associated with the environments we
were managing. Also, as these findings have to be reported externally for a
publicly held organization, they had the potential to damage the credibility of
the organization. Aditya and his manager Mike were very keen on eliminating
any gaps in the environment and bring down the audit findings to zero.

Mike was a no-nonsense leader and was highly respected across the
organization for his success rate with delivering on his promises. He was a
leader who would make sure that he provided you with all support needed
to deliver on your commitments and be successful in your endeavors. What
this also meant was that this left no room for excuses by anybody later on. He
would expect you to call out any challenges or roadblocks you were facing as
soon as they were encountered and do his utmost to help resolve them. Mike
and Aditya had put down eliminating SOX audit findings as one of their top
priorities and committed to this as one of their goals for the next fiscal year.
Both believed in putting their money where their mouth was and invested in
forming a new team, IT Compliance & Governance (C & G), to help achieve
the target of zero compliance findings.

The C & G team started their work by first putting effort into understanding
more about the different controls that applied to our organization. They also
started analyzing the challenges faced by the teams in the past to determine
any shortcomings in the environment. Soon a pattern started to emerge.
In a number of cases, the gap was not in the process that was defined for
implementing the control. The gaps that emerged were mostly in the practice
or execution of these processes, and this was because there was a dependency
on humans following the defined processes. Although most of the time people
did follow the defined processes, we had to eliminate even the slightest chance
of the process not being followed. Not always is a human error because of
bad intent. On the contrary, many times a human error occurs as people are
trying to be more efficient by finding ways of doing things faster like providing
a solution to a customer in the shortest possible time. Unfortunately, this
sometimes results in employees not following all the steps defined for the
process. This results in a violation of the set process and ultimately will be
considered an audit finding.

A SWAT (SOX Workflow Automation Team) that had members from the
C & G and the Automation team was put in place to eliminate the human
dependencies in following the compliance guidelines. Joe led this effort from
the automation side and was expected to collaborate with a number of
other teams who were stakeholders for the defined processes. During their
evaluation of the different processes, the C & G had also determined the
extent of manual intervention required for each of the controls and the scope
for automating those steps. The SWAT quickly got into action and started
designing automation processes for each of the controls that were applicable.
As the work gained momentum, most of the jobs were now controlled

Chapter 4 | Era of the Bots42

by scripts operating remotely, and this resulted in tightening the access to
different systems and applications for the admins who would have performed
those steps manually earlier. The requests for elevated access to any of these
critical systems was better controlled. All sorts of guardrails were being put in
place by implementing monitoring solutions in the servers and application and
integrating the solutions with the service desk portal to map access requests
to these systems. In order to manage these automation solutions effectively, a
web portal was designed by Joe along with the C & G. Sticking to the theme
of bots, this portal was called “ScoBot,” SOX Controls Bot.

The scope of ScoBot was restricted to a select few sensitive applications
that fell under the SOX guidelines.

When automating a process, keeping the scope as small as possible is always a
good approach since this helps in delivering the solution faster and more accurately.
Measuring the impact of a new solution is also easier if the scope is well defined
and well contained.

Eventually, with the help of ScoBot, the management of compliance requirements
was simplified considerably and the environment was hence secured further.
The solutions were slowly scaled up and covered a much larger landscape
than initially was the case. The goal of eliminating the complexity associated
with adhering to the compliance requirements was almost realized but for a
few hiccups we would face at times, which would result in further enhancing
the automations covered in ScoBot.

Summary
The mentioned bots were not the only ones that were built. This practice
turned out to be contagious and influenced other teams. Some of these teams
had started building their own bots and portals, which helped them make
their day-to-day work more efficient. Teams that did not have the means or
resources to build their own solutions would reach out to the automation
team to help them with their requirements. In such cases, we would determine
if these requests could be served within any existing bots or if it needed a new
solution to be put in place.

The introduction of the bots in the environment was a crucial phase in the
transformation, as the bots not only improved the efficiency of the overall operations
but also helped in creating a culture of automation and innovation across the
multiple teams.

Enterprise DevOps Framework 43

Not all the bots survived the test of time, as some of them were more wishful
than practical, fading away as their adoption rate and hence business value
they were generating proved to be low. InfraBot and ITBot were the two bots
that proved to be the most valuable of the first generation of bots. But these
would soon be challenged with the more evolved solutions that would be built
in the not-so-distant future.

The success with the bots helped create capacity in the teams and gave us
the confidence to aim higher. We were chugging along on our journey toward
transforming into an organization that operates on modern-day practices and
technology. The next step for us was to rapidly adopt the technologies in the
market that would help us compete with the best, and our adoption of Cloud
was a big step toward this.

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3_5

C H A P T E R

Hopping on
the Cloud
The momentum that started earlier had set the ball in motion and times
were changing. Automation was now the flavor of the season. Many teams
started realizing the potential of automation and were now more swift in their
approach toward identifying and automating the areas that were plaguing their
respective teams. Also, the automation team had developed a good reputation
for itself by delivering high-value solutions. There was enough work identified
for the automation team and the next few quarters were mostly blocked
for the requests that were received from the different teams. More requests
would pour in with each passing day. The automation team members, with
their varied skill sets and creative mindset, were able to tackle requests for
most of the IT functions. There were a lot of reusable modules that were
built as a part of earlier deliverables that turned out to be of great value in
implementing solutions faster.

Each member of the automation team brought something different and new
to the table. Every individual had his/or her own approach and methods
of implementing solutions, which made work enormously interesting and
enjoyable for the rest of the team. A culture of helping others in the team
reach the same heights as one has achieved had developed in the team.
Teammates would make sure that the others in the team were succeeding
and would provide all the support that was required to make that happen.
A lot of cross-training happened quite frequently within the team where
experts in one area would be training others in their areas of expertise.

5

https://doi.org/10.1007/978-1-4842-3612-3_5

Chapter 5 | Hopping on the Cloud 46

Also, there were a lot of brainstorming sessions that would be conducted
in the form of simple stand-ups or extended meetings in conference rooms.
During these sessions, a lot of good ideas would be exchanged and discussed,
which would benefit all the participants. I have always believed that a sign
of a healthy team is when debates are frequent, but conflicts are rare. By these
parameters, we definitely displayed the attributes of a healthy team and this
trait of the team augured well for its further development.

CORE: Cloud Operations and Reliability
Engineering
The team was enjoying exposure to a broad spectrum of work, solving the
various kinds of challenges that came our way. But just like any other exciting
story, a twist in the tale was soon to come. A new organizational strategy
announcing the migration to Cloud from an on-premises datacenter for
hosting business applications was revealed. The direct impact of this decision
to our area of focus was not something the automation team had anticipated
by any measure.

In order to meet the demands of the current times, our organization had
decided to move ahead with a Cloud-first strategy. At a high level, this meant
that all new applications would now be deployed on the Cloud instead of
the on-premises datacenter, and a migration path would be created for the
existing applications to move them to the Cloud as well. The long-term goal
was to shrink the on-premises datacenters as much as possible. A decision as
big as this sent mixed signals across different teams. The teams supporting the
current on-premises environment were getting nervous. They were not sure
what the future would hold for them if the company moved toward adopting
Cloud.

An immediate need was felt for a team that would be able to support the
Cloud platform. Not many resources within the existing teams had the skills
and expertise to manage Cloud, and hiring external resources would mean a
large investment. During those times, finding the right resources in the market
in a short period of time who could support the demands of managing the
Cloud was next to impossible. Cloud technology had just hit a purple patch
in terms of its adoption. Cloud engineering and support-related skills were
one of the hottest skills in the market. Getting good recruits would mean a
sustained effort for a long period of time, and we did not have much time on
our hands.

This is when a smart move by both Aditya and Anil turned out to be a
masterstroke. This move would not only make the transition to Cloud
possible but also make the Cloud adoption strategy an overwhelming success.

Enterprise DevOps Framework 47

Aditya had done his homework on the Cloud adoption requirements for an
enterprise. In fact, he had a head start on most of the other technical resources
in the company in terms of understanding the usage of Cloud and any related
technologies. He not only had done intensive research in terms of how other
companies have adopted Cloud but also had registered for a personal account
with one of the popular Cloud vendors and had started experimenting in
the environment. After going through some of the best practices across the
industry and understanding how other organizations successfully transitioned
to Cloud, he paired up with Anil and played his move.

A tactical team was formed by hand-picking some of the best of the employees
from various existing teams. The focus was to try and cover all the technical
areas that would be needed for running a Cloud-based datacenter. I was lucky
to be not only selected for this team but also given the privilege and added
responsibility of leading this team of experts. At that time, though, it did seem
more of a challenge than a privilege. Going ahead, there were just too many
unknowns and challenges, whether the technology we were going after or the
new members within the team I would be working with. Almost everything
seemed new. All of a sudden, from leading a set of employees who had no
more than three or four years of IT-related experience, I was now supposed to
lead a set of highly seasoned professionals who were much smarter and more
experienced than I was in most of the areas. This definitely added pressure on
me, but at that stage in my career I was looking forward to a significant role and
prepared myself to give my best shot given a chance. Apart from the existing
members of the automation team, the team now comprised resources from
the network team, the systems team, and the application support team. We
also recruited one experienced Cloud and configuration management expert.
I was now leading two teams, the CORE (Cloud Operations & Reliability
Engineering) team and the automation team.

The CORE team was responsible for managing the Cloud datacenter. They were
expected to manage all tasks related to supporting the Cloud environment, all
the way from L0 to L4 (basic operations to advanced engineering requirements).
As a part of our transition to Cloud, in collaboration with the education team,
we worked out a training program to upskill the different teams on their
Cloud knowledge. There were basic trainings offered for all employees across
the IT teams, and the CORE team members were sent for advanced training
once they completed the basic track. Working with the other experts in the
organization, the CORE team had put the high-level as well as the detail-
level design in place to address areas like the network segmentation, security
requirements, and the application deployment needs. Reference architectures
were being developed to help with migration of applications to the Cloud
depending on the type of the applications.

Chapter 5 | Hopping on the Cloud 48

Smog Around the Cloud
Very early during the transition phase, we realized that not all complications
and challenges could be anticipated up front. While the Cloud vendors did
offer a highly efficient platform, the onus was on us as Cloud users to account
for some of the most important architectural components that were expected
to be table stakes by the application teams moving their applications to Cloud.

The architectural components, which I also will refer to as hazards in a burst
and hops model context, were as follows:

•	 Availability

•	 Resiliency

•	 Security

•	 Elasticity

•	 Scalability

I refer to them as hazards because addressing the challenges associated with
the hazards would often slow us down in our migration to Cloud. The high
expectations from the application owners meant that we had to think out
of the box and wear a hat that was different from what we were wearing as
a part of the operations team earlier for an on-premises environment. For
instance, DR (disaster recovery) on Cloud was a gray and confusing area.
There were so many different combinations of things that could go wrong in
terms of the global distribution of the services offered on Cloud. We had a
number of discussions just to understand what should be done to provide a
DR capability on the Cloud. Each option that we discussed had its own set
of challenges. While there was clearly a best way to implement a solution in
terms of it being the most reliable or secure solution, not always can the best
be defined from just one perspective. We had to offer the best solution in
terms of addressing the requirements associated with all the hazards listed in
the preceding and do this in a short period of time. Also we had to steer clear
from the pitfall of overengineering solutions, as there was enough resiliency
built into most of these Cloud offerings. In order to address this, we followed
an approach that I later started referring to as the burst and hops model.

The Burst and Hops Model
The approach that got us moving ahead on Cloud migration while keeping an
eye on the multiple requirements that needed to be addressed was to look
at the criticality and the value associated with each hazard. We would often
keep moving ahead with deployments to the Cloud, making good ground in
a short period of time by focusing very little on the hazards. Our aim would
be to make sure that we are offering a certain capability to our customers

Enterprise DevOps Framework 49

within a short period of time and not slow down that process just to address
the requirements that hazards would bring forth for us. The scope of these
hazards would be different for different use cases. Also, depending on the
application, the criticality of the hazards would change. For example, if an
application was stateless, in the sense that it did not have dependency on
storing data, it was not important to create a data replication solution for it.
Similarly, the level of elasticity that was needed for different applications would
be different depending on the variance of traffic that was expected. For any
new migration to Cloud, we would analyze these aspects and create a delivery
based on an initial burst (Figure 5-1).

The burst would basically be a defined duration of time during which we
would be going ahead with the migration of one or more applications to
Cloud, giving little importance to the hazards along the way. This would enable
us to define the scope of the migration upfront with high accuracy. The risks
associated with ignoring the hazards would be called upfront by us. The scope
of a burst addressing some of the hazard-related requirements would depend
on what is an acceptable risk to the business on a temporary basis. A typical
length of a burst would range from three to nine weeks, during which we
would have migrated or deployed one or more applications to the Cloud.
Once the deployment was successful, we would then start addressing the
hazard-related requirements for the deployment to decrease the risk index
associated with it. The scope of this activity would be very well defined in
terms of it addressing a specific requirement of a hazard. This is what I called
a hop (Figure 5-2).

Figure 5-1.  Burst

Chapter 5 | Hopping on the Cloud 50

A hop would ideally last one or two weeks, at the end of which we would
make sure that there was a significant decrease in the risk associated with the
application based on the requirements of an associated hazard. This meant
that the risk index of an application was basically an equation that took into
account the length of the burst and the number of hops that were performed.
Generally, this meant that the shorter the length of the burst and the greater
the number of hops, the lower the risk. With each new deployment, we would
create a reference architecture that would help with future deployments.
This greatly helped in reducing the risk that would be associated with the
future bursts as addressing some of the hazard-related requirements would
now not be too complex since we had solved for it in one of our previous
hops for a previous burst. Figure 5-3 shows us a series of bursts and hops. This
process can be used for delivering a project on time and with good quality.

The burst and hops model was pretty much the de facto mode in which the
CORE team operated for a long time without actually calling it that during
that time. The idea of having a CORE team had clicked, and the migration
to Cloud was mostly uneventful in terms of introducing any major service

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Hops

R
i
s
k

I
n
d
e
x

Hops

Acceptable Risk Threshold

Figure 5-2.  Hops

Figure 5-3.  Bursts and hops

Enterprise DevOps Framework 51

interruptions. Managing the first few applications gave us good lessons, and in a
short period of time we were able to perform a lot more migrations along the
way optimizing the environment for better security, capacity, and governance.

CORE, from a second wing of the automation team, had slowly become more
of a parent team and the automation team slowly got fully absorbed within
CORE. The combination proved to be a bonus, as there were a number of
opportunities realized for automating operations on Cloud and the team was
able to churn out those solutions at a rapid pace. This process was further
accelerated with the help of the extensive API support provided by the Cloud
vendors. A number of operations were simplified with automation and were
transitioned to the respective operations teams so CORE could focus on
the next challenging task. The model worked pretty well, and soon CORE’s
involvement in Cloud operations was left to supporting only advanced
requirements, as the simple and repeated tasks were moved to the operations
team. This created bandwidth for CORE to continue with their exploratory
and innovative work.

Migrating to the Cloud brought a number of advantages, most of which
provided more agility for delivering our services. Before the adoption of public
Cloud in our organization, a typical request for a new server would take at
least a few weeks, and in some cases even months if hardware needed to be
procured from external resources. This period would be very frustrating for
the application teams, who were ready with their code and would be waiting
on the servers to deploy it. Now, with Cloud in the mix, similar requests for
servers would be addressed in a matter of a few hours. Eventually, we were
able to deliver a fully hardened server addressing the requirements of the
users in less than an hour. This kind of speed was unprecedented and really
added wings to building the DevOps momentum for us, which by the way was
picking up steam in the organization. What this transformation also brought
along with it was streamlined processes and a transparency with respect to
what can be expected upon submitting a request. This meant overall reduction
in the time spent in supporting and troubleshooting the infrastructure area
and in nursing customer needs. These were welcome side effects and helped
a number of teams focus on further strengthening other areas of operations
and eventually increase service efficiencies.

The CORE team had developed a good reputation across the organization,
and most of the other teams now wanted to align with our work and get a
piece of the new technologies we were working on. From being a team that
was isolated in the past, we had turned into a group that other teams wanted
to be associated with. This had its repercussions too. Some of the other
teams felt that CORE was overshadowing what their teams were delivering
and was also receiving a lot of attention from the management.

Chapter 5 | Hopping on the Cloud 52

Because the CORE team was comprised of experts from various IT areas, a
lot of times the skills required to deliver a particular solution were all found
internally within the team. We would seldom reach out to the other teams
for help. This further deepened the chasm that was being created. Concerns
were raised by different teams and their leaders about how they felt the need
to be included in the solutions being worked upon by CORE. As this concern
started growing, I had to make some changes in the way we operated and
make sure that we were more inclusive of other teams while implementing
solutions.

We soon realized that this was one of the traits that a successful team had
to incorporate in the modern world of DevOps. The more collaborative
you are, the more chances you have for overall adoption and growth toward
DevOps. Also, the additional domain expertise these teams brought in was
tremendously useful. Since many of them were old hands in the company,
the specifics of each of their areas were best known to these teams, and by
collaborating with them, we were able to develop formidable solutions to the
exact needs of the organization.

Celebrating Small Wins
In all the hustle-bustle, one thing we made sure was that we never forgot to
celebrate the small victories. In fact, most of the time we did not need a reason
to celebrate! There are a number of published articles that talk about why it
is important to celebrate every step and every progress that is achieved in
your journey toward a long-term goal. For me, the importance of celebrating
small wins was instilled by both Anil and Aditya. Every time we announced
the roll-out of a minor automation by the team, we would be immediately
recognized by these two leaders. This would further motivate the CORE
team to deliver more and would also encourage other teams to start working
in an incremental fashion like the CORE team did.

The fun did not stop at just being recognized by the leaders. As a team,
we would go out for luncheons and dinners when we felt we delivered
something worthwhile. We would also have team outings at fun places,
which would prove to be highly successful in building team spirit and would
contribute to improving collaboration within the team. These events
helped to ease the tension among individuals who had developed any kind
of friction from being part of a high-performing team and subjected to the
constant pressures that come with it. These events would also at times
bring to light some hidden talents of the individuals and give them a chance
to showcase it to their peers.

Enterprise DevOps Framework 53

The time spent by the team members outside the work environment was very
helpful in building comradeship. The individual personalities would be on full
display during these events, and this would help the team members to learn
more about their peers, whom they would otherwise look at very differently
in a work environment. The bonds built and the trust formed during these
times would result in greatly improving the teamwork and collaboration at
work. This always made me encourage the team to plan such events and
activities.

We almost had unsaid roles defined for the individuals when the time came
to plan and execute these events. Vince among most others would make sure
that the event was planned in an orderly fashion and that every detail was
taken care of well in time. Joe would entertain us with his musical talents
during the outing and also make sure that everyone had fun by creating a list
of activities and conducting them successfully. Sid with his witty one-liners
would bring in the humor.

I also remember one of our teammates then, Chris, who was very fond of
food. Personally, it seemed to me that the scientists at NASA were wasting
their time looking for black holes millions of light years away when there was
one right inside my dear friend Chris’s belly! Chris loved food and could eat
quite a lot. We would jokingly say that Chris uploads all the calories to the
Cloud and does not keep any storage on-premises.

Another memory I recollect of a fun team outing was when the team was
playing a game of truth or dare at an offsite location. Being the daredevil that I
thought I was, I had chosen to go with a dare and was instantly served a curve
ball by the team. I sheepishly chickened out from the dare and as a punishment
for that, was made to improvise a towel into a cape and run around the room
pretending to be Superman. This dare for which I could not muster up the
required courage was basically to make a phone call to my wife and tell her
that I have had enough and wanted to walk out of our marriage! There was
no way I was going to do that. I am still not sure if I was more scared of saying
that to her and upsetting her or if it was my own fear of the response I would
get after saying it. Either way, one thing I was sure of was that I would not be
executing that dare. My manager, Anil, however proved why he was the boss
and took it up. He lucked out, however, as his better half did not answer the
call or so he said. We’ll probably never know the truth about that one.

Anil had joined us as a midlevel management resource and was responsible
for managing the infrastructure of our organization along with the different
platforms built on this infrastructure. He swiftly started making his mark by
identifying a number of loose ends and tying them up. He came in with a repu-
tation of being extremely focused on removing any roadblocks that prevented
things from getting done. He was perceived as an aggressive leader who did
not hesitate in talking tough and taking even tougher actions when required

Chapter 5 | Hopping on the Cloud 54

to keep things moving. He was a good idol to have, and I wished to emulate
him in terms of his collaboration and delivery skills. He was one of the first
managers who had a positive influence on me in terms of imparting knowl-
edge of management skills. Until then, most of the lessons I had picked from
my previous managers pertained to what a good manager should not be like!
In that sense I have no second thoughts about saying that Anil was the first
“leader” I had as my direct manager.

Anil and I were on the same mental wavelength on many fronts and connected
well on what the end goal should be like. Our methods and thoughts often
did not sync completely, but both of us accepted that. In fact, the reason
some of the ideas reached fruition was because we’d have healthy debates
and challenged each other’s perspectives many a time. There were times
when at the end of those debates I would end up wondering if I did the right
thing by getting into these energetic discussions with my manager, but Anil
made it clear that he never took those conversations personally. He always
appreciated my passion and motivation behind those thoughts. I remember
quite a few of his coaching moments where he taught me how to handle
certain tricky situations to get the job done and how to balance aggression
with compassion. He went on to advise me on how to help your listener
understand your point and have him realize his responsibility toward enabling
me in delivering solutions for the organization.

I have realized that for an organization to function effectively, diversity in all
aspects is important. We have heard about diversity in terms of gender, region,
and so on. Another important aspect of diversity we need is in terms of the
way one works or what I call aptitude diversity (see Figure 5-4). This can
be explained in the following manner.

Enterprise DevOps Framework 55

I have always believed that the one thing that keeps me excited about my work
is to have the freedom to innovate. I believe this is an inherent trait for some,
and if this aspect of their professional life is not fulfilled, then there are chances
that they will very quickly get demotivated about work and eventually either
quit or fade away into oblivion and become a highly ineffective contributor to
the team. Now, what having this trait means in terms of work is that if there
is a requirement to be met and one of the ways of solving this is by delivering
a solution that is extremely high on its creative/innovative quotient but is
risky in terms of the guarantee in success, an individual like myself (depicted
as type 1 in Figure 5-4) would perhaps still lean toward opting for it. There is
definitely a higher chance of failure in terms of ROI for this approach, but it
also means that at the end of the delivery there are a number of lessons learnt
by the team involved that will be helpful in the future.

On the other end of the spectrum, we have individuals (depicted as type 2 in
Figure 5-4) who are highly focused on getting the work done and would like to
eliminate any risk that they feel could hinder them from delivering the solution.
While this might seem the most effective option for an organization, often
what happens is because the focus is so high on not failing, new approaches are
not explored and the age-old practices are persisted with. In the long run, this
could hamper the organization in evolving as a new-generation company and
also could have a deterring effect on the creative individuals in the company.

Figure 5-4. Aptitude diversity

Chapter 5 | Hopping on the Cloud 56

Summary
I have just defined two ends of the spectrum based on only one of the
dimensions in this multidimensional world of aptitude diversity. While not
all personas that fall in this diverse area might be effective, there is no one
persona that is a best fit. An organization to be successful needs a healthy mix
of these different personas. And this is not something you need to hunt hard
for while hiring. Humans by nature are varied, and in a given set of individuals
you will always by default find a good mix of these varied aptitudes. What
we need to do to achieve success with a diverse team is the freedom for
the individuals to work by sticking to their aptitudes. If we force someone to
adopt a different aptitude, you are challenging their inherent nature and that
creates a lot of friction and often ends badly. This theory made sense when
we applied it to the successful partnerships we would see in our organization
between individuals. For example, in the partnership between Anil and me,
one focused on delivery (type 2) and the other tried to squeeze in some
aspect of innovation in the process (type 1). Also in this spectrum was Aditya,
who was more toward the center, trying to balance creativity with guaranteed
success toward the business delivery (can be considered as type 3), making
sure he is not creating roadblocks for either of these personalities he saw in
the organization.

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3_6

C H A P T E R

Mastering
the Cloud
Adopting public Cloud was a major step in the transformation journey for our
organization. The decision to move to Cloud was based on driving agility and
optimization in the overall infrastructure operations space. But merely moving
to Cloud does not guarantee these benefits. Cloud technology needs to be
utilized in a highly organized manner to seek its benefits; otherwise there is
every possibility that Cloud can become a cost and a security burden for an
organization.

Early Days on the Cloud
Within just a couple of months of starting our journey of Cloud migration, we
had been successful in migrating quite a few applications to the Cloud. Some
of these applications were highly critical to the organization, and any outage
on them would have a big business impact. In fact, the very first application we
migrated was one of the most critical applications, which was the Single Sign
On (SSO) application. The thought process behind picking this application as
one of our pilots was that while deploying a complex application on Cloud we
would encounter a number of challenges that would need to be solved. Once
we were able to successfully deploy our SSO on Cloud, the next migrations
would be somewhat simpler. This was because the challenges that we would
face with the next migrations would have most probably been encountered
earlier and we would have found the solutions to them.

6

https://doi.org/10.1007/978-1-4842-3612-3_6

Chapter 6 | Mastering the Cloud 58

The SSO application was serving more than 20 other important applications,
and if anything went wrong with this service, most of the other critical
applications would be affected. The stakes were quite high but we were
quietly confident about delivering what was needed. The initial days after the
migration to Cloud were rough and we did have a few hiccups in running the
services in a stable fashion, but these challenges were not big enough to cause
any major concerns.

We realized that a lot of our future adoption of Cloud was dependent on
running this application smoothly on the Cloud and ensured that the team
was available to support this 24 × 7. While the CORE team was responsible
for enabling the platform to support this application, a bigger role during
the migration was played by the Application support team. If there was any
other team that was keeping pace with the CORE team in terms of learning
new technologies and practices for successful adoption of Cloud, it was the
application support team. This team consisted of members working from
different parts of the world who were extremely talented and proficient in
their areas of expertise. Most of the time, the first team that would be paged
when anything went wrong would be this team. The individuals in this team
were very prompt in responding to any issues and were ably led by Jay at one
location and two other engineers, Abe and Tim, at the other location. Jay was
considered one of the most hardworking and valuable employees on Aditya’s
team, and even though he was in a management role leading a team of more
than 20 employees, he was still always the first to check in during emergencies
and was able to lead the calls on the technical front.

Abe and Tim were more thinkers than engineers, and their job was to stay one
step ahead in terms of emerging designs and technologies. They had an very
good chemistry between them in terms of the approach they would take to
problem solving and coming up with creative solutions to challenges. I always
looked forward to seeing them whenever I traveled to their office locations.
I have spent really good times brainstorming as well as partying with them.
Our conversations would be quite weird in terms of the times when they
would pop up. We could be having fun partying late in the night and suddenly
the conversation would drift toward how some technology or design pattern
had emerged and what we would need to do to start using it. The rest of the
group would wonder what was wrong with us. With talented and interesting
individuals like them, we felt that we could tear down any obstacle that came
our way and have fun while doing that.

In a way, going with SSO as one of the first solutions migrated to Cloud
was also a feasibility test for Cloud adoption. If we were able to run SSO
successfully from Cloud, then it meant we would be able to run most of
the other applications also as they were much simpler in terms of their
architecture and other requirements. This was not the normal strategy for
moving to Cloud adopted by other companies. Many companies would follow

Enterprise DevOps Framework 59

the crawl-before-you-walk model by deploying the simplest applications
to the Cloud first. But there were not enough references that we could
obtain that would justify one approach over the other, and to us that did not
appear the right way forward. We went ahead with what we felt was apt for us,
and indeed while migrating some of the complex applications first there were
a lot of lessons we benefitted from.

For example, we understood how to create a globally distributed architecture
that would ensure that users from different parts of the world are not facing
any latency issues in the applications deployed on Cloud. Also, some of
these applications required an on-premises footprint along with their Cloud
presence. For this requirement, we had to put up a design where some parts
of the application would work on Cloud and the rest on-premises. Designing
and executing each of these migrations taught us something more about
Cloud that would be very useful in future.

Scaling on Cloud
The momentum around migration seemed to be gaining steadily. We were
already building our roadmap of the next applications to be deployed on
the Cloud while the first few applications were stabilizing. Every time a new
application was deployed on Cloud, the operations teams made sure there
were enough eyes and automation in place to resolve issues or outages as early
as possible. For newly migrated applications as well as existing applications on
Cloud, the teams made sure all related services were up and running at any
given time and there was enough control and automation in place to make
sure the best IT standards were implemented. This often meant keeping a
constant vigil on all the changes that went in and having the ability to make
sure that our processes and implementations were still relevant and optimized
to the best of their capabilities.

However, with the handful of applications we had migrated to Cloud, we
had our hands full deploying and supporting them. We realized that Cloud
is only a viable option for running services if we could use it at scale in an
efficient manner. Although by this time our team had grown with a set of five
fresh college graduates it was highly impractical from a business point of view
to expect the operations team to expand in proportion to the ballooning
environment. The only way this seemed possible was to manage the increasing
operational demands with the help of automation.

We started exploring the various options around automation. There were
some references across the industry that proved to be useful and we started
adopting those. Then there were certain requirements that we felt were
not addressed by any solution readily available in the market. For these
requirements, we started building our own automations.

Chapter 6 | Mastering the Cloud 60

Top Focus Areas for Cloud Management
From our experience so far with managing Cloud, we felt that operating on
Cloud at scale had some fundamental requirements to be taken care of. The
key focus areas that surfaced were as follows:

•	 Governance and security

•	 Cost and capacity optimization

•	 Backups, recovery, and reliability

Most of the operations and engineering work that has to be performed on the
Cloud was driven by one of these three areas. The following are some details
on the focus of each of these three items.

Governance and Security
Enforcing governance standards on Cloud is a major challenge. There are
usually many hands operating on the environment and making changes to the
environment. Not safeguarding the environment by putting proper controls in
place means that there is every possibility that new vulnerabilities and risks are
being introduced. Also, a number of business processes depend on following
certain practices like tagging resources on Cloud properly and segregating the
different application environments properly. Failure in managing this effectively
could have a major detrimental effect on the quality of the overall Cloud
environment.

Cost and Capacity Optimization
One of the major drivers for Cloud adoption is the agility that Cloud provides.
But this agility could prove to be a two-edged sword if there are no proper
capacity management controls implemented. Because it is extremely easy to
create resources on Cloud, it often means that there is every possibility that
people might go overboard in their zeal to create resources fast on Cloud and
get careless with the cleanup required with wrongly provisioned resources as
well as resources that are no longer needed. This is a very common trend that
is observed with Cloud users and needs to be managed proactively.

Backups, Recovery, and Reliability
Most of the Cloud providers have extremely evolved options when it comes
to backing up your environments and recovering from them. However, their
philosophy is that they provide the means for you to take backups and recover
from those, but you as consumers would still need to manage the schedules

Enterprise DevOps Framework 61

of those backups, as most organizations have their own custom policies with
respect to the frequency of the backups and the retention periods associated
with those backups. Also, applying proper policies that safeguard the backups
and periodically testing the quality of the backups is the responsibility of the
Cloud users.

For addressing the requirements of each of the preceding categories, we
built multiple automation scripts and would schedule them to run at specific
times or trigger based on certain events that occurred. These scripts were
initially written in Java and Python, which utilized the API suite provided by
the vendors. We later evolved into using more of NodeJS for these needs, as
that fit well into the web-based interface we wanted to integrate for these
solutions. For a time, the scripts served their purpose and helped manage
the scale on Cloud to a good extent. However, these different individual
automation scripts built by the team were now themselves getting difficult
to manage and monitor. While the team was churning out solutions at a high
pace, we were faced with the challenge of managing these solutions. Their
number kept on increasing and we were losing track of what solutions were
in place. In order to address this challenge, we decided to start consolidating
them into the high-level categories they served. As we had already identified
these categories the solutions fit into, we felt it would serve our purpose well
to group them accordingly. By doing this, we would be able to better manage
the solutions and also have an understanding of the value these solutions were
delivering.

Right from the onset of the Cloud adoption, the CORE team was inspired
by a few companies that had managed to place themselves as the technology
pioneers in the Cloud world. These were the companies who had been highly
successful in leveraging the benefits of Cloud. They had done so by very
innovative means. One such organization was Netflix. Netflix was able to run
its huge business operations by successfully utilizing the full potential of Cloud.
Netflix had mastered the art of Cloud usage by writing small automation
scripts to address the individual needs of core operations on Cloud. They then
started packaging these automations into a suite of solutions they called the
“Simian Army” and had open sourced these solutions. The Simian Army was
a bundle of smaller automation utilities that were popularly known as Netflix
monkeys. Users could install each of these monkeys individually and use them
to assist with their automation needs around areas like resiliency, security, and
some others. We actively used two of these monkeys, “Graffiti Monkey” and
“Security Monkey.” We also used a few other open source solutions developed
by other Cloud experts. Although not all of our needs were served by these
solutions, they were very helpful in some of the areas. But, there was still a
huge void in terms of the automation requirements we had for our specific
needs and the solutions readily available on the market.

Chapter 6 | Mastering the Cloud 62

As I mentioned earlier, we were filling these gaps by building our own automation
scripts and by now had built quite a few of them. Drawing inspiration from
the free offerings such as the “Simian Army” and from Hollywood, our team
started bundling these solutions into different packages, and together all these
packages were called the “Cloud Dragons” within our organization.

Dragons in the Cloud
I developed the first codebase for the dragons based on the initial automation
requirements that we had identified. The code was mostly written in Java, and
I created the libraries for each of the dragons. Vince and I worked diligently
for a few weeks to develop the solution. I would write the code based on the
priority of the requirement, which was often decided based on discussions
between Vince and me, along with some other members of CORE. Vince
would do the deployment of these scripts and perform a thorough testing of
the solution. Working this way, we were able to roll out quite a few solutions
within a matter of weeks. As the team grew, our coverage of operations with
automation kept growing as well. Once the new members joined us and were
done with their share of training, they would be ready to start contributing. I
transitioned the ownership of the dragon codebase to one of the new joinees,
Paula, who proved to be an excellent choice for the job. She was very quick in
grasping the current code and was almost instantly successful in adding a lot
more capabilities and resiliency to the dragons.

We based the theme of these dragons on the popular movie, How to Train Your
Dragon (2010). Based on the three categories we grouped these solutions
into, we created three dragons:

•	 Penny-Pincher Cost Management Dragon

•	 Snaptrapper Cloud Governance Dragon

•	 Cloudjumper Recovery Dragon

Penny-Pincher Cost Management Dragon
One of my responsibilities as the product owner for Cloud platform within the
organization was to ensure that the spend on the Cloud was highly optimized.
The Penny-Pincher Dragon was focused on managing the cost and capacity on
the Cloud. On Cloud, you pay for what you use, but if you do not put focused
effort toward leveraging this behavior of Cloud, you could end up wasting a lot
of money. We implemented quite a few solutions that helped us on this front.
Each of these solutions was now packaged under the Penny-Pincher Dragon,
and we continued to extend its capabilities with time.

Enterprise DevOps Framework 63

Snaptrapper Cloud Governance Dragon
Snaptrapper was the name of a dragon we borrowed from the movie How
to Train Your Dragon. In the movie, this was a multiheaded dragon who had a
reputation as a fierce and aggressive creature if provoked. We picked this name
for our compliance and security automations, as we had to look at governing
the Cloud platform from multiple perspectives, which was symbolized by the
many heads of the dragon. There were many stakeholders for the Cloud and
we had to make sure that all the best practices and security measures were
being implemented by all hands operating on the Cloud. We created a new
role in the organization to help with creating policies that were required
for governance around the Cloud environment and had intentionally not
made him a part of the CORE team. We wanted someone from outside the
team to keep an eye on how we operated. This employee would provide
us the requirements for the features that would need to be added to the
Snaptrapper.

Cloudjumper Recovery Dragon
One risk that we always felt threatened with on Cloud was if our Cloud account
were to get hacked or if our data were somehow lost. This could happen due
to multiple reasons, such as a Cloud admin not being vigilant enough about
how he/she secures his/her access on the Cloud or an accidental action taken
by an admin. Even though the likelihood of something like this might seem
low, it does happen. And it happens a lot more frequently than you would
think. There have been examples of companies shutting down or incurring
heavy financial losses due to these kinds of activities. While Snaptrapper’s job
was to make sure that our Cloud environment was highly secure, we decided
right from the early days of Cloud adoption that building in a recoverability
solution in the Cloud from any disasters that could strike would be high on
our list of to-dos. We were very clear that we wanted to build in enough
redundancy in the Cloud services for ourselves and provide our customers a
highly resilient environment. We came up with different flavors of automated
backup to ensure that we were protected from such events. Also, to give us
the confidence in our backup solutions, we would rigorously test our ability
to recover from them. Cloudjumper would take daily backups of our Cloud
accounts and create copies of the data and the configuration of the account.
This data would be persisted at different locations, so we made sure that
we would not get easily compromised. We automated our solutions to the
extent where we would be able to recover from those backups at the click
of a button.

Chapter 6 | Mastering the Cloud 64

Table 6-1 provides a detailed list of the features offered by all the dragons.

The dragons would work all night and day ensuring that the Cloud is at its best
at all times. They helped in creating capacity for the CORE team and the other
Cloud operations team, and we were able to keep moving ahead with the next
milestone we wanted to achieve. The dragons soon became quite well known
and were heralded as one of the success stories around innovation for our
organization. Our confidence was further bolstered when during our visits
to Cloud conferences across the globe, we got to interact with some of the
pioneers of the Cloud world. Upon exchanging ideas with them, I realized that
we were doing pretty well with our Cloud services and were on the cutting
edge of automation and innovation in the Cloud space. We took heart from all
of the positive vibes we were getting for our innovations and kept enhancing
our solutions and continued adding more features to the dragons.

Along with the many bots we implemented, the dragons were now adding to
the operational efficiency that automation was bringing to the organization.
We also built the solutions in such a way that they would complement each
other and integrate easily when needed. For example, the dragons would
be feeding off of each other’s strength to provide more holistic solutions.
Snaptrapper would make sure that all solutions were integrated properly with

Table 6-1.  Features Offered by the Dragons

Feature Dragon Best-Fit Environment

Smart Shutdowns Penny-Pincher Nonproduction

Detect and Eliminate Unused Resources Penny-Pincher All

Right-Sizing Resources Penny-Pincher All

Reserve Instances Penny-Pincher Production

Bulk Usage Discounts Penny-Pincher All

Configuration Backup Cloudjumper Production

Data Backups Based on Org. Requirements Cloudjumper Production

Automated Recoveries Cloudjumper Production

Automated DR Solution Cloudjumper Production

Financial Reports Snaptrapper All

Server Provisioning Snaptrapper All

Internal Chargeback Snaptrapper All

Compliance Audit Snaptrapper Production

Vulnerability Management Snaptrapper Production

Periodic Access Review Snaptrapper Production

Enterprise DevOps Framework 65

the Penny-Pincher and Cloudjumper services and call out any discrepancies
found in this. The data on InfraBot was helping manage some of the services
that Snaptrapper required. All the features of the dragons were created as
workflows and forms created in CA Process Automation and were exposed
to end users through ITBot.

Often in the serious space of the corporate world, it helps to add some fun
and color to the work. The dragons and the bots gave us a chance to do
exactly that. The team was now not only writing code but was also thinking
how they could get more creative with naming their solutions and designing
logos for them. This was helpful in bringing down the stress levels of the
individuals and provided a welcome distraction for them. Work was getting
more enjoyable and that’s not something you see often. Courtesy of the
bots and the dragons, our team was now looked upon even more as the one
forefronting the innovation wave. We definitely felt proud of this reputation
that had built with time and were keen to hold onto it.

Cloud Requirements at an Enterprise
If you are working for a large IT or software organization, chances are that
there are multiple teams having their own Cloud accounts and environments
that they are managing themselves. The simple process offered by the Cloud
vendors that allows the use of one’s own personal or corporate card to start
a new independent Cloud account is often taken advantage of by these teams,
as they want to keep moving ahead with agility and try to avoid slowing down
by internal processes of the organization. As a result of this, organizations
end up operating multiple accounts with the Cloud providers. Over time, this
could lead to inefficiencies in managing the Cloud services and also cause
confusion, as the standard process is not followed.

We landed in a similar situation. While CORE was busy optimizing the one
account that we were supporting, we learned that there were more than 50
different Cloud accounts that our company had been using for some time
now. This came as a surprise to us. But it also provided us with an opportunity
to share the practices that we were following to govern and optimize our
account with these teams.

We reached out to a few of the account owners and had limited success
obtaining details on the usage of the account. We did manage to get access to
some of the accounts, and upon reviewing the design and practices associated
with these accounts, we quickly realized that most of them needed to be
optimized in almost all the three areas I have mentioned earlier in the chapter.
For the first couple of accounts we got access to, we worked with the account
owners within our company and were able to reduce the spending by up to
40%. Also, we were able to identify a number of improvement opportunities
that would further eliminate chances of any critical security incidents occurring

Chapter 6 | Mastering the Cloud 66

in their environments and worked with the account admins to eliminate those
risks. This bolstered our belief that the practices and solutions that we had
developed for managing our Cloud accounts were highly beneficial and needed
to be applied for all the accounts that were operating within our organization.

We worked toward consolidating most of these accounts under a single
umbrella, which was overall governed by the CORE team. Small teams were
put in place to work on each individual account to identify opportunities for
optimizing and better securing them. This exercise was quite cumbersome as
we did not have right access to the accounts upfront and had to work our way
toward obtaining the access from their respective owners and their permission
to scan through these accounts. At times there were apprehensions by some
of the teams who managed their own accounts. They would be concerned
that we might come in and impose certain processes and controls on their
teams that would affect their efficiency.

While our intent was noble, we needed to improve the way we were being
perceived and needed to find a better way to align with these teams. We
decided that this could be achieved if we could be as unobtrusive as possible
and empower the teams to manage their own accounts efficiently. Handing
over automation scripts to them and expecting them to execute those
effectively was not a practical way to achieve this.

We decided that instead of handing over individual automation scripts and
expecting the account admins to run and manage these scripts, we would need
to build an easy-to-use, self-help-styled solution. We started consolidating
these individual automations into a Cloud solution suite that we called the
CloudAscent solution.

CloudAscent: Serverless Approach to Cloud
Management
CloudAscent is comprised of all the features that each of the dragons
contained (refer to Table 6-1) and is designed as a SaaS-modeled (Software
as a Service) multitenant solution. About the same time, AWS (Amazon Web
Services), which was one of the primary Cloud providers that we used and
was a market leader in the Cloud technology, rolled out a new set of services
that they called the serverless offerings. The serverless design was to use a
set of Platform as a Service (PaaS) resources to build an application. By doing
this, you could completely eliminate the need for managing servers at your
end, as AWS would be responsible for that. This was an extremely efficient
approach for us as an IT organization, as it eliminated the need for running
large datacenters. The nature of building a serverless application appealed to
us instantly, and we went on to design our first self-service Cloud management
solution, CloudAscent, using the serverless architecture.

Enterprise DevOps Framework 67

The backbone of the serverless architecture was these individual compute
services called AWS Lambda functions, which would be built as a microservice,
providing a small functionality for a larger application. A new terminology
was coined by the IT industry folks, FaaS (Function as a Service), to refer to
services like Lambda. CloudAscent used as many as 95 different functions and
was offered as a SaaS offering to all the different account owners within our
organization to manage their Cloud environments. We worked in a typical
startup mode during the entire implementation of CloudAscent. We defined
pseudotitles for each of the team members working on this project right from
a CEO to a VP of Development. The solution had its own internal website that
allowed users to register and start using the solution. A screenshot of the
website is captured in Figure 6-1.

We followed a number of startup practices like developing in small increments
focused on delivering the MVP (most valuable product). Practices like frequent
deployments with testing integrated at multiple steps during the process were
also followed. We benefitted from internal users for this solution, as we were
able to obtain the right feedback and direction from them in a timely fashion
for the solution to mature. The MVP of our solution captured the most critical
features that the dragons offered. We adopted the SOA (service-oriented

Figure 6-1.  CloudAscent

Chapter 6 | Mastering the Cloud 68

architecture) and built our solution writing one microservice at a time. By
doing this, we were able to incrementally add more features to the application
as and when they were ready without causing any disruption to the current
functionality of the application.

With the help of CloudAscent, we improved our coverage and control
of the multiple accounts in the organization. And by doing this, we made
considerable improvement in the overall effectiveness of our team, which
was responsible for managing Cloud platform for the entire organization.
Not all teams using Cloud would enable all the features offered by
CloudAscent. Each team had its own requirement on Cloud and they were
able to pick and choose what applied to their environment. CloudAscent
was an important milestone that we achieved in our Cloud journey, and
multiple teams and organizations benefitted from this innovation that the
CORE team delivered.

One important factor that contributed toward the success we were getting
with our adoption of Cloud was having the right partners. Looking at the rate
and scale at which we were adopting Cloud, our primary Cloud provider put
up a support team and structure for us that was able to support our advanced
requirements. A number of times, the actions we were performing on the
Cloud were the very first time someone had ever tried them, and there were
lessons for everyone involved in the process. We were unable to get the same
level of traction from some of the other Cloud providers, and hence the
adoption for those vendors remained low and they never really came close
to the rate and scale of our adoption of the primary vendor. This is a critical
piece of the puzzle during a transformation process. When companies start
moving to Cloud, one of the reasons they do so is to benefit from the agility
Cloud provides. If the partners in this journey are able to keep up the pace,
then the process becomes that much easier and the partnership strengthens
with each day. And if a partner is unable to provide the required support, then
they will be left behind.

While CloudAscent was quite successful in optimizing the operational work
for a Cloud account, there was another challenge that surfaced. There were a
number of new accounts that were cropping up in the organization created by
employees for their business needs and we did not have a proper framework
in place to manage these new accounts. This meant that with each new account
created there was the possibility of a nonstandard and potentially unoptimized
account getting introduced in our system. While we fixed the gaps in the
existing accounts, we now also had to ensure that any new accounts that were
getting created had to be managed effectively. To address this, we introduced
ClaaS.

Enterprise DevOps Framework 69

ClaaS: Cloud as a Service
Since the CORE team had gained enough expertise in managing Cloud
environment, we felt we were now in a position to address another critical
requirement for our organization. Across the industry, the awareness and
adoption of Cloud technology was growing, and with this, the demand for
owning a Cloud environment by the different teams within our company also
kept increasing. We knew that if we did not provide a service around this,
there would be a lot of haphazard and nonstandard implementations of Cloud
in the company and at some point we would be tasked with bringing this
chaos under control. As it was, there were multiple teams managing their
existing Cloud environments by themselves, and governing those was getting
quite complex. We were adamant on making sure that the situation did not
aggravate further and quickly formulated a solution for this.

We launched a service we called as ClaaS, which would enable employees
within the organization to request a new Cloud account. A new website was
launched with provided details on the service. A user would come to this
site and fill out a quick form that captured information around that Cloud
provider’s account they were requesting, the expected spend on the account,
and if the request was approved by their business heads. Once a request was
received, we created new account templates that would be used to create a
new account and would forward the details to the user. With this service, the
user would also benefit by having integration with CloudAscent and would
be able to manage their accounts effectively. We also offered more help in
securing and optimizing their accounts by lending one of our Cloud experts’
services to consult on the design and operational aspects for each of the
accounts.

While ClaaS was helping solve the problem for new accounts, we put a
roadmap to also bring the existing accounts in the organization under the
common umbrella of ClaaS. This exercise was very challenging and took us
about three or four quarters before we could get decent coverage of the
existing accounts under ClaaS. Most of the time, the employees who were
already managing their accounts felt that they were managing their accounts
effectively and did not need any help. There were a few initially who let us in
and provided us access to their accounts. We were immediately able to make
an impact and in some cases brought down the spend by 60%–70%. These
initial wins came in handy as references when we approached other Cloud
account owners, and we were able to build credibility as Cloud experts across
the organization.

Chapter 6 | Mastering the Cloud 70

CSS: Cloud Security Standards
Though CORE was implementing the security on Cloud, based on the industry
best practices and from their knowledge and expertise in Cloud, there was
still scope for improvement. We were not sure how to measure the security of
our environment and determine the risk the environment was vulnerable to
at any given point. This started becoming even more important as time passed
on and more and more critical applications and services started moving to
the Cloud. While we deployed a third-party solution to perform a continuous
audit of our accounts based on the industry best practices, we often would
run into queries by the application teams and by some of our leaders on
certain security-related aspects that were very specific to our organization.
The generic standards that the third-party solutions offered would not always
provide answers for those questions.

In order to overcome this challenge, the CORE team partnered with the
cyber security and vulnerability management teams in the organization and
came out with a Cloud Security Standards (CSS). The CSS was authored
specifically to take into account our company’s IT policy, and it was based on
the NIST Cybersecurity Framework. The CSS was developed keeping in mind
certain aspects relevant to our IT needs. For example, it had guidelines on
how to handle any sensitive data on the Cloud, the access management policy
for Cloud, PaaS security guidelines, and so on.

To start with, we put in a manual process to regularly audit our Cloud accounts
against these standards and determine the risks in the environment. Once the
risks were found, we would work toward resolving them on priority. In the
next couple of months, we worked toward automating this security scanning
process in order to be able to perform these audits on a more frequent
basis. As we were managing multiple accounts, a vulnerability that surfaced in
one account would often surface in some other account. We identified these
recurring kinds of vulnerabilities and started automating their remediation
processes.

Having a baseline is very important when you are trying to assess any system.
Without this, we would never be able to understand what quality parameter
we are comparing against. Putting the CSS in place was a critical step for us in
assessing the security of our Cloud environment. The CSS itself was a running
document, as any time the dynamics around Cloud security changed because
of vendor-side changes or any new risks that were identified, we would update
the CSS.

Enterprise DevOps Framework 71

Managing Multiple Uses of Cloud
Multiple Cloud environments in the organization meant that there were many
teams who were using the Cloud technology. Each of these teams had their
own need for or requirement from the Cloud. Some teams were running
production workloads on Cloud, while others were using Cloud for testing
and nonproduction purposes. There were a few teams from nontechnical
functions such as sales teams and education teams who would use the Cloud
temporarily for demos or as labs. With all these varied use cases, we realized
that a single governing system would not be ideal for such a wide user base.
The various governing standards that we put in place that assessed the security,
capacity management, and configuration management practices for Cloud had
to take this aspect into account as well.

In today’s world, one of the prime parameters for measuring the effectiveness
of a service or a solution is the UX (user experience) it offers. Even though
it is important to put controls in place when trying to impose standards
or better secure an environment, you need to empathize with the users
and make using the service a pleasant experience. For us, providing Cloud
services to the different customer bases, a one-size-fits-all kind of a solution
did not make sense. We had to customize our solutions based on the type
of Cloud usage we were catering to. Securing an environment that supports
critical production application would need a lot more stringent policies than
securing a noncritical environment. Applying strict policies could affect the
UX, as it often comes with extra controls and restrictions. While the users of
a production environment might be alright to live with those constraints, if the
same policies were applied to noncritical environments, we would be creating
a lot of dissatisfaction for the users. To avoid this, we came up with the idea of
identifying separate personas of Cloud users and mapping each persona with
a specific set of governance and security standards that would apply on them.

We called this as the Enterprise Cloud Governance Framework, and it went
hand in hand with the CSS I mentioned earlier. The framework would propose a
set of questions that the Cloud users would need to answer for themselves. This
would help identify which category their Cloud environment would fall into.
Once the category was determined, then we would understand the compliance
and security standard required for that environment. We also came up with
another standard that would determine the risk a Cloud environment was
prone to if certain guidelines in the CSS and the Enterprise Cloud Framework
were not met. With this approach, our influence on the environment owners
improved because they would be warned upfront about the vulnerabilities to
their environment. It would not be in the best interest of the account owners
to be aware of risks and not act upon them, and hence they would comply
with the recommendations that CORE would provide. Thus, with the help of
these processes and frameworks that we put in place, we were able to drive
efficiency and accountability in the Cloud management segment.

Chapter 6 | Mastering the Cloud 72

Summary
The adoption of Cloud is a major transition for any organization. The success
of this transition depends on many factors that are both technical and cultural
in nature. Having the right team led by the right set of individuals happens
to be one of the most basic requirements. As the Cloud provides agility and
flexibility inherently, it has the potential to scale up very fast. The challenges
associated with scaling on Cloud need to be addressed in a timely manner.
Automation happens to be at the forefront of scaling up on Cloud. In any
midsize or large organization using Cloud, multiple teams can end up with
their own Cloud accounts. A comprehensive insight into these different uses
as well as a common strategy across the organization for Cloud adoption
helps in reaping the full benefits of Cloud. The organization I was working at
had a lot of these things in place and hence was able to make steady and stable
progress in its adoption of Cloud.

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3_7

C H A P T E R

Innovate or
Perish
At different phases during the transformation journey, there were situations
and instances where the need for innovation in day-to-day work conducted
within the organization stood out. Following the age-old practices without
causing any disruptions to set processes seemed like a comfortable and a safe
approach for most. The momentum driving innovation within the organization
could use some acceleration, as it would help challenge the status quo and
could drive improvements by challenging these set practices. Though there
was innovation happening in certain pockets, there was still a lot of ground to
be covered on this aspect. Innovation as an inbuilt DNA trait needed to be
further inculcated in teams and in individuals.

Creating a culture of innovation and sustaining innovation practices needed
a carefully thought-through strategy and a high level of commitment by
employees at all levels.

We cannot solve our problems with the same thinking we used when we
created them.

This quote, sometimes attributed to Albert Einstein, perfectly defined the
challenge that the organization was going through. I remember an incident
during the early days of Cloud adoption in our organization that illustrates
this. Automation was still gaining momentum and we were identifying use
cases that could have a significant impact on the day-to-day work of the
employees within the company.

7

https://doi.org/10.1007/978-1-4842-3612-3_7

Chapter 7 | Innovate or Perish74

Rip and Replace
During a visit to one of our global offices, I was invited to a meeting where
a group of employees was going to discuss a chronic issue, “improving the
quality of CMDB,” that was plaguing our organization’s service quality. CMDB
typically becomes the backbone of a number of processes, as it is considered
to be the master source of inventory and the configuration of the items within
the inventory. Any asset present in the datacenter is expected to be captured
in the CMDB. This data is then used in a number of processes to drive overall
operations.

Attending this meeting turned out to be a novel experience for me, one that
helped me understand the current mindset of some of the employees. At
that time, my understanding of CMDB and its significance to the organization
was limited, hence I chose to be a silent participant for most of the meeting.
I sat my chair listening to others in the room during this revealing discussion
among six or seven colleagues who either owned CMDB or had some stake in
contributing to its quality. The discussion was mostly around applying bandages
to the existing process rather than addressing some core points that could
bring major improvements to the process.

I walked away from the meeting pondering what I had just witnessed. I had
very little to contribute to the meeting at that time, as I felt I had limited
knowledge to recommend anything yet and also was not sure how to share
my honest opinion around what I felt about the process to the individuals who
built it and lived with it for a number of years now. Based on the discussion
I sat through, I felt little hope that there would be any major improvements
we would achieve if we stuck to manual processes. There were definite
opportunities I identified to automate the process during the discussion
and I was determined to bring improvements to CMDB by understanding
more about the current process and CMDB’s role in the organization.

As my understanding on CMDB grew, it appeared that if broken down properly,
the process to manage it could be systematically automated by implementing
the following steps:

•	 Identify the different data sources and extract data from
these sources to feed into the database through scripts

•	 Ensure there are controls put in place where the only
option is for a human to enter the data

•	 Constantly validate the data in the database against an
asset’s (configuration item’s) current state

•	 Update any delta/gap found in the data automatically in
real time

Enterprise DevOps Framework 75

While defining the process was easy, shifting the mindset of the employees
and having them agree to this proposal was a task in itself. We had to roll
out our solution in a phased manner, which moved at a snail’s pace. We
would face challenges like getting access to the end systems to update the
data through automation, and we would be constantly questioned about the
quality of the data we were pulling from the systems and had to prove our
solution’s reliability multiple times before gaining trust from the stakeholders.
We implemented most of the solutions addressing the preceding steps,
but getting a nod from the respective process owners and the stakeholders
was extremely challenging and would slow us down. We ultimately did deliver
a solution that made a considerable impact in improving most of the quality
challenges in the CMDB. There still were some pieces that needed to be
addressed, which we did in due time.

The preceding example illustrated the importance of sometimes giving the
process a complete overhaul and not applying bandages to things that are
beyond repair.

Building an Innovative Team
The CORE team size had more than doubled after we hired a bunch of fresh
college graduates to help us with the increasing demands of automation and
Cloud engineering. The key skills we focused on for recruiting CORE team
were as follows:

•	 Proficiency in at least one programming language
along with sound computer science fundamentals.
The programming language often talked about by the
interviewees would be either Java or C++, as these were
the two languages that were a part of the curriculum in
the local universities.

•	 Analytical mindset. We often shortlisted the
candidates on this skill by giving them simple problems to
solve that would help us understand their approach to
problem solving and the aptitude the individuals displayed
when posed with a challenge.

•	 General technology awareness. We would be very
interested in learning if the individuals we were recruiting
have done any research or projects apart from the course
offerings in their colleges or universities. This would help
us gauge their passion and also help us in the process of
shortlisting candidates from a large pool of individuals
that was provided to us by our recruitment team.

Chapter 7 | Innovate or Perish76

This process of recruiting worked well for us, as the first set of five candidates
we hired turned out to be extremely proficient. Not only were they good
in their technical knowledge but they brought a burst of fresh energy into the
team. They were very keen to get started and were highly inquisitive about
how things worked in an enterprise and had an undying hunger for learning
more about the areas they would be contributing to. There was buzz around
the office corridors with the new recruits in place, and they would leave a
positive impression on almost everyone they interacted with. Without much
effort, we were quickly able to identify their individual strengths and mapped
them accordingly to the work areas they would be focusing on.

Innovation, a Survival Skill
When you are leading teams of highly talented individuals, it is essential that you
nurture and harness their creativity!

One of the strengths of the CORE team that set us apart from many other
teams was our ability to adopt new technologies. A common challenge
with adopting new technologies is the dearth of useful references to
help understand the technology and how to adopt it. We were able to
overcome this challenge by thinking out of the box. The team would
conduct brainstorming sessions and implement small, fun projects using
the new technologies that would help them learn. Once there was enough
understanding of the technology, it would then be applied to solve business-
related challenges. This approach became quite infectious in the team and
almost everyone was getting trained in using the creative part of their brain to
a good extent. I also believe that if we keep innovating regularly, a momentum
is created that automatically fuels more innovation, and this is what CORE
was experiencing. A number of other teams were also in the process of
adopting newer technologies in their respective areas. They realized that
they needed to up their game with respect to successfully delivering services
using these latest tools and solutions available in the technology space.

Earlier approaches such as engaging the services teams from the vendors or
reading the manuals of the products was just not sufficient any more. The
application of these products to solve real-world business problems was more
important than appreciating the long list of features offered by the solutions.
While an attractive GUI (graphical user interface) for an application definitely
helps, the real engineering and integrations these days are happening behind
the scenes. Most of the modern-day products offer APIs or CLIs (command-
line interface) that help in integration with other systems. There is a basic
level of coding expertise that is needed to be able to make effective use of
these offerings. The individuals and teams that realize this are successful in
making a fast-paced transition toward building more holistic solutions that

Enterprise DevOps Framework 77

are well integrated with all the required touch points and are not limited to
operating at a task level.

Integrating systems with each other is a key step when we are trying to
automate processes end to end. To be able to achieve an optimum state in
terms of automation, it is important to look at the process from multiple
perspectives and focus on finding creative ways to solve the problems
effectively. The teams that are able to do this thrive as they are able to
move beyond the mundane tasks that eat most of their time and look at
bigger challenges. Teams that are still caught up in the trap of keeping the
“lights green” and are not innovating tend to be left behind in terms of staying
relevant in the organization as well as keeping the team members motivated.

Innovation helps an organization flourish, as it can affect various aspects of the
business. At times, global organizations need different versions of processes to
be implemented across the different global regions they operate in, and this
needs out-of-the-box thinking. A practice that works with the culture and the
governance rules within one region might be totally unsuitable for a different
region. Also, with the right innovations, an organization can lead business
transformations by entering new fields sooner and can capture markets early.
Companies expanding based on acquisitions of other smaller companies
also require a lot of creative thinking apart from great business acumen.
Considering multiple perspectives to a possible acquisition opportunity helps
in determining the long-term benefit of a merger or an acquisition. Innovative
ways of keeping customers engaged in the build process and in the sales
cycles are proven ways of driving customer loyalty and generating long-lasting
revenue streams for a company.

Often, innovating is misunderstood to be a characteristic associated with
elites and can be confused with a quality displayed only by a genius. This kind
of thinking adds a lot of pressure on people and acts as a road block when
driving innovation in a company. The closer the masses feel they are to a
quality, the greater the chances of adoption. We need to help people realize
that a lot of times they are already innovating in their daily lives without
putting too much thought into it. For example, parents often come up with
their own creative ways to manage their children when raising them. There
is no set practice to bringing up kids, and each family has come up with their
own ways to make the process as simple and as efficient as possible. Within a
family, too, what worked for one child might not work for another, and they
have to keep evolving and thinking out of the box to handle many situations
that arise in this process. Innovating at work is no different.

Another misunderstanding associated with innovation is that innovation
means building something big and new that needs to have a huge impact. This
is notion is wrong and needs to be dismissed. Innovation is often identifying
the small opportunities and making each step a little more efficient. It is about

Chapter 7 | Innovate or Perish78

observing closely the minute details of a process and evolving toward building
solutions that make the process that much easier to execute.

Frameworks and technology are mere tools to achieve the desired state: the real
value lies in the thought process of the individuals designing the solution.

ShakeUp: Ideation in Action
Considering all of these perceived benefits of innovation, it is essential that an
organization should always strive to drive a culture of innovation by making
innovation one of its core areas of focus. Our organization was also beginning
to realize this and started investing toward driving innovation as one of the
DNA traits of the company. Several programs were introduced at different
levels and there was a lot of mentoring and coaching provided for individuals
to start developing their innovation quotient and bringing it to their day-to-
day job. Innovation had slowly become a quality that was no longer expected
to set you apart but more of a table stake. If someone were not trying to
innovate, then he would definitely stand out, but not for the right reasons.

Design Thinking
A common practice that the CORE team followed when they were faced
with a new challenge, such as the one I mentioned about CMDB earlier in the
chapter, was to get the team in a room and start brainstorming the different
ideas regarding how to solve it. With a large team bringing with it different
mindsets, these discussions would be extremely interesting and beneficial, as
we would start to understand the challenge from multiple perspectives.

In order to drive a culture of innovation in the company, Aditya encouraged
me to enroll in a course, “MIT’s Approach to Design Thinking,” offered online by
a private institute. The course was aimed at imparting the following lessons to
the course-takers:

•	 Understand the design thinking process

•	 Identify and assess customer opportunities

•	 Generate and evaluate new product and service concepts

•	 Design services and customer experiences

•	 Evaluate product development economics

Using some of the techniques I learned from the course around design
thinking, the team and I put in a process to drive innovation. We started
conducting a recurring ideation session where the entire team participated.
One of the motivations behind setting this session was to harvest any hidden

Enterprise DevOps Framework 79

ideas that the individuals might be carrying without realizing the potential. We
were hoping that these sessions would also be helpful in triggering interesting
team discussions that would inculcate a practice of listening to ideas from
others and building on them to enhance the ideas further. Within a couple of
iterations, we defined a format for this session along with means of capturing
the ideas in a template (see Table 7-1); we called it PEP, which stands for
Proposal - Edge - Plan.

•	 Proposal would focus on projecting or pitching an idea
to the team and helping them understand the challenge
it solves.

•	 Edge would focus on determining the business value of
the idea as well as the novelty of the idea. It would also
provide details around the advantages the idea had over
any existing similar solutions.

•	 Plan would give an idea about how the solution could
be turned into reality by providing details on the effort
estimations and any other budget requirements.

Apart from generating great ideas, these sessions also helped as a team-building
exercise, where the junior members would get a chance to learn about how
to connect ideas to the business to add value. Also, the sessions helped the
seasoned members of the team to come out of their narrow view of the
world they had been working in for the past years and think beyond it. The
sessions acted like a catalyst that woke up the hidden innovators within the
individuals, and hence we started calling these sessions ShakeUp. The name
resonated well with the motive of ideation and soon caught on across the
organization. We started expanding the awareness of this by inviting members
from other teams to join us in these brainstorming sessions and encouraged
them to take the learnings from the sessions back to their teams.

A number of ideas that we implemented as solutions to solve business-related
problems were either birthed or matured in these ShakeUp sessions. We
would share the PEP of an idea we thought was interesting either with our
leaders or with teams we thought it would be beneficial for. Later we moved
away from PEP to a more industry-wide format for pitching ideas, lean
canvas. We had come to know that lean canvas was the preferred choice

Table 7-1. A PEP Template

Proposal Edge Plan

My idea is … The business value is …..

Idea is unique because ….

This is how I think we can implement it…

Chapter 7 | Innovate or Perish80

for accepting ideas by some innovation programs in our organization and
was much more encompassing in terms of capturing details about an idea
than the PEP template we formulated. Aligning with lean canvas automatically
helped us in taking our ideas further if there was potential in the idea.

Lean canvas is a template that is adopted by many across the industry to
drive ideation and pitch ideas at different forums. The lean canvas focuses
on critical aspects of capturing and explaining an idea like the problem, the
solution, and the uniqueness of the idea.

Running an Ideation Program
The innovation wave caught on across the organization and a number
of teams started their own ideation sessions. Not every team was as
organized and as effective as the CORE team in terms of getting value out
of these sessions though. Running an ideation program is not easy. Some
of the skills I had acquired around design thinking concepts would come in
handy during these sessions. There are certain aspects that need to be well
thought about to make an ideation program effective and to motivate the
team to keep contributing and not feel disengaged from the program.

The typical challenges that one faces when running an ideation program are
as follows:

•	 Determining an effective format for conducting these
sessions.

•	 Running the program in a way that the majority of the
team participates in the proceedings and that they are
not dominated by a select few who are outspoken.

•	 Capturing the ideas effectively.

•	 Understanding the value of the ideas generated and tying
them with the business.

•	 Most important of all, bringing an idea to closure.

It is not necessary that all or even the majority of the ideas should be
implemented to determine the success of an innovation program. The most
important aspect is to keep the participants motivated and not make them
feel that their ideas are not going to make any difference and that they are
just wasting their time by participating in these sessions. People are bound
to be very passionate and emotional about the ideas that they put forth,
and it becomes hard for them to fathom the fact that their idea is not being
shortlisted for taking it further. In a business setup, it is critical to have an
honest dialogue around an idea with the idea provider(s) and to determine

Enterprise DevOps Framework 81

along with them if it actually adds value to the business. This would help in the
decision-making process, which decides if this idea is something that needs to
be pursued. Also upfront, it is important to make it clear what the objectives
of these sessions are and what kind of ideas are being sought after. If you can
execute these parts of the program successfully, chances are that the team
members will not lose motivation and will continue to have faith in these
programs. This would mean the innovation bandwagon keeps moving and the
organization keeps benefitting from it.

Ideation Framework
With all the experience we gained from running the ideation program for
CORE, we formulated a framework for scaling innovation in our organization
captured in Figure 7-1. We defined four key steps to drive innovation and
identified a set of ceremonies that would be needed to ensure the success of
each step.

Chapter 7 | Innovate or Perish82

F
ig

u
re

 7
-1

. 
Sh

ak
eU

p
fr

am
ew

or
k

Enterprise DevOps Framework 83

The four steps in the ideation program are the following:

	1.	 Inspiration

	2.	 Ideation

	3.	 Review

	4.	 Landing Ground

Inspiration phase is focused on creating an atmosphere of innovation and
ease for the employees to feel comfortable in bringing forth their idea in front
of others. Creating this comfort zone forms the most basic step, as without
achieving this, the participation in the program would be very low. The other
objective of this phase is to create an awareness among the employees about
the importance of innovation and why each one of them had to participate in
this initiative.

We identified a few ceremonies such as tech talks by experts, motivational
speeches by leaders, programs to recognize innovative workers at different
levels, and contests such as hackathons and ideathons to drive the success of
this phase.

Ideation phase was where the idea capturing would take place. We created
a web portal to drive the ShakeUp program, and on that portal we created
means for people to either enter a well-formulated idea, or state a problem
or a wish that they hoped someone would solve for them. We virtualized the
lean canvas by converting it into a webform on the portal, and the ideas would
be captured in the lean canvas format.

The ceremonies associated with the ideation phase were conducting more
hackathon-type events as well as having recurring pitch events in place where
people could walk in and pitch their ideas to a review panel.

Review phase was where the ideas would be processed. We anticipated
the fact that not every innovator would be able to compile a good lean canvas
to project their idea effectively. We only mandated two areas of the lean
canvas out of the total of nine areas captured in the lean canvas. A panel
was formed that consisted of employees who demonstrated innovative
thinking in the past to nurture the ideas. The expectation from the panel
members was to review the ideas on the ShakeUp portal and work closely
with the idea providers to further mature the idea. In the process, the panel
members were expected to leverage a set of SMEs from the domain the idea
belonged to (for example, an idea could be around improving cybersecurity
standards, in which case an SME from the cybersecurity space would be
engaged by the panel). Multiple rounds of discussions would be conducted
around an idea. The idea and the idea provider would benefit from this practice,
as different minds get in different perspectives and the idea keeps maturing
during this process. Also, all involved in this process would collectively further
enhance the lean canvas.

Chapter 7 | Innovate or Perish84

Landing Ground phase was basically where the life cycle of an idea with
respect to the ShakeUp program ended. We identified multiple areas where
an idea could add value and called them the “idea nesting grounds” or the
“landing grounds”. The decision on what landing ground an idea would end
up was made during the review phase, and this would be a collective decision
between the idea provider and the review panel. However, an idea provider
could chose not to follow the recommendation of the panel and could still
pursue a different landing ground for his or her idea if he or she wanted to.
The role of the panel is not to become a checkpoint but more of an enabler.
Once an idea is mapped to a landing ground, the scope of the program would
end, as the idea would be handed over to the appropriate landing ground
owners. From there onward, the landing ground owners would work directly
with the idea providers and put up a plan around the implementation of
the idea.

In order to make this program more interesting, we also introduced a bit
of gamification in it. For each activity a user performs on the portal, he would
be awarded points. Activities that could be performed included adding an idea,
stating a problem, “liking” an idea, and adding a “comment” on an idea. Also,
when the idea passes through each phase, it would be awarded certain points.
This would enhance the level of engagement in the idea throughout its life
cycle. The motive of embedding a point system was to be able to identify the
top innovative minds in the company and reward them in different ways. For
example, gamification could be used at different team levels to recognize the
individuals for their involvement in driving innovation in the organization. It
could also be used as a means of associating monitoring rewards to individuals
who are contribute innovative ideas. Another use would be to generate
healthy competition between peers to top the points table. While the use
cases are plenty, it was more important to make this framework available in
the solution so the different teams could use it in a way that suits them the
best. We also accounted for identifying patentable ideas to filter out ideas that
would add to the intellectual property of the organization and also provide
the required recognition to the individuals with exceptional ideas.

The program structure was appreciated by many teams, and most of them
wanted to participate in it. We started driving the overall innovation in the
organization based on this framework and were successful in creating a buzz
around innovation initially and in sustaining the initial hype by following the
practices defined in the program. We also faced challenges in certain areas of
the program such as keeping the momentum going, motivating the individuals
to keep participating in the program, reviewing the ideas on time (which
needed a lot of support from the panel members), and most importantly,
getting the buy-in from the different landing ground owners to take an idea
from ShakeUp and add it in their backlog to get the real value from the idea.

Enterprise DevOps Framework 85

Summary
In today’s world, for a business to succeed, innovation can no longer be
considered optional. Innovation helps organizations stay competitive and keep
delivering solutions that are relevant to changing times. While innovation has
now become a table stake, it is not easy to sustain. A concerted effort needs
to be put in, and it will need support at different levels in an organization.
It always helps to put in a framework to drive innovation, as it will help the
individuals know what to expect after participating in it. Applying practices
like design thinking to real-world problems opens up doors to solving these
problems efficiently by innovative means. Building teams with the right
skills and mindset can be very valuable to the organization and is definitely
something that should be invested in by every organization.

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3_8

C H A P T E R

Evolution of
Teams
As the process and methodologies being applied at the workplace started
evolving, the roles and the compositions of the teams also started changing.
The operations teams were challenged with matching up with the demands
of the transformation in the organization. New skills needed to be developed
and new approaches had to be defined. Even though it was not an easy thing
to do, many of the staff members were up for the challenge and started
putting serious efforts toward staying relevant. This was an extremely positive
development for both the organization and the employees. All involved were
making sure they were fighting hard not only to stay relevant but to be
pioneers in the process of IT support evolving in this new era of DevOps. As a
result of this, along with the other business functions, the recruitment process
was also evolving. The expectations around skills and aptitude from new hires
were now different.

With quite a few new recruits joining us directly out of engineering school, the
CORE team now had a sizeable number of members in its ranks. We had put
up a customized training program to make sure that these new team members
with almost no work experience were provided the right direction and skills
to enable them to complement the teams they were going to be a part of. A
major focus area during these training sessions was on honing the coding skills
of the individuals. The training content for these trainings would be based on
practical applications in the IT field to enable the individuals to be prepared for
addressing the real-world problems they would soon be facing.

8

https://doi.org/10.1007/978-1-4842-3612-3_8

Chapter 8 | Evolution of Teams88

Easing into a New Role
I believe that when new employees join your team, regardless of how
experienced they are and what their professional background is, helping them
understand their new role and what is expected from them becomes critical
to their successful integration in the team as well as the organization. I have
seen employees who have joined teams that are functioning well as a unit still
find it difficult to adjust, as they could end up feeling like outsiders trying to
break into a very tight group. Having clarity on the role and the deliverables
can help individuals create a place for themselves, which in turn helps them
build their confidence to finding footing in a new environment.

The new recruits, especially the fresh college graduates, were partnered with
an expert in their teams in the initial days to help ease them into their new
roles. They would shadow their seasoned partners for a while in order to get
exposure to the different technologies used by the teams as well as understand
the intricacies of how the organization worked and the different processes
and practices their teams were involved in. A number of training sessions
were conducted by the many teams in the organization. At any given time,
these teams would be working on multiple tools and technologies; training
team members on this would provide them with a very good opportunity to
learn and widen their knowledge base.

Of course, not every plan we made always worked to perfection. The
challenges around understanding the problems on the ground and coming
up with effective ways of optimizing those processes take a lot of time to
master. The relevant technical skills individuals come in with and the time
they invest in acquiring the skills required to make them successful in their
role are important factors for the individual’s as well as the team’s success. To
be successful in a role focused on driving automation for the organization, it
definitely requires having the right aptitude and mindset. The passion of the
employees and their dedication toward building the right skills and having a
positive mindset will ultimately determine their efficiency.

Modern-Day Team Outlook
One of the primary challenges that the CORE team faced was being able to pick
the right process to automate. This was challenging because most members
in the team were fairly new to automation and identifying opportunities to
automate required some practice in this space. Only a select two or three
in a team of ten-plus members were adept in this art so far, and we had to
marshal the rest of the resources in the right direction. This used to be a
bottleneck initially, but with time the other team members were able to learn
the tricks of the trade and were able to work independently. With the team
having enough head count and with each member having their own strengths

Enterprise DevOps Framework 89

and skills, we were able to take on larger initiatives that were far more varied
in nature.

For example, instead of just trying to automate testing reliability on a
datacenter’s storage replication, we planned on how we could automate a
full DR situation. Automating this had a much larger scope than automating
the replication processes and would cover many other major steps in the
process. For delivering solutions like this, we had to work more closely and
for extended periods with members from other teams. CORE was now
expanding its areas of influence across different functions true to its name,
Cloud Operation and Reliability Engineering.

Success with Reliability Engineering for us meant that we were creating an
atmosphere where there was trust in the organization’s ability to deliver solutions
that were both efficient and resilient.

The CORE members were gaining rich understanding of the IT world by
interacting with the experts from the other teams, and in return these domain
experts were learning new tricks of the trade in terms of automating their
day-to-day work and were also now starting to think of optimizing processes
on a larger scale. The interactions we had with these team members were
mutually beneficial, as there was something to learn for both sides. The concept
of optimizing work through automation, especially managing infrastructure
through code, was alien for a lot of them, and these interactions helped them
get a deeper understanding in these areas.

Collaboration within teams improved when they sat together across the table,
brainstormed the next challenge at hand, and worked toward the common
goal of delivering the best solution. Having all the stakeholders involved
throughout the solution development process was very important to achieve
the desired value out of any solution being implemented. This practice not
only helped in building the right solution but also in a way ensured that the
solution would have a good adoption rate, as no one would feel left out or
surprised. A few such exercises meant that the mindset of multiple teams
was now getting positively influenced. Individuals as well as the teams they
were part of now wanted to be the ones leading the innovation wave in the
organization. This change in the work culture was helping CORE be more
effective, as this was making our job much easier to execute. We no longer
were facing the high level of resistance from other teams for helping automate
pieces of their work. In fact, teams were now lining up solutions they wanted
to partner with CORE to automate.

With many teams focusing on optimizing their work through automation, the
transformation toward a modern-day DevOps-driven organization was well
underway. The system admins who previously knew only of a single means of
performing their respective duties, which was by logging into a server and

Chapter 8 | Evolution of Teams90

making a change, now started evolving their approach. New techniques were
being explored and creative solutions were being built.

Automation Center of Excellence (COE)
There were a host of technologies and tools that were at our disposal both
from the product catalogue of our company and from the open source market.
We did our due diligence in understanding what our requirements were and
how we wanted to operate, and based on this we adopted the right set of
tools to support us. The direction provided to us from our leaders was to not
hesitate in taking risk and to be undeterred by failures. The term that they
often used with us was to be ready to “fail fast.” This meant that if you found
something interesting enough to pursue, go ahead and satisfy your curiosity
but make sure that you do not invest in it to an extent where you burn down
too much time, energy, and resources. This helped in satisfying the innovation
zeal among the teams.

The CORE team operated as a COE for automation, helping drive the
automation efforts in all the other teams. Multiple teams would reach out
to us to brainstorm on optimizing processes managed by their teams. As
a COE for automation, CORE was forefronting some key initiatives in the
organization. These activities included the following:

•	 Training and upskilling other teams

•	 Advanced automation with infrastructure as code (IAC)

•	 Leading the transformation process

•	 Creating reference patterns for breaking down processes
before automating them

The remaining sections of the chapter are aimed at explaining these points
with some more details and a few examples.

Training Teams on Automation
Multiple teams placed requests to the CORE team to provide training on
implementing automation. We did our bit by conducting internal trainings for
teams on relevant technologies such as scripting, automation/orchestration
tools, Cloud, and so on. Any time we adopted a new technology to help with
automation, we would make it a point to conduct internal cross-training
sessions for other teams so they could benefit from those technologies as well.
Every individual had his/her own learning curve. The most challenging trainings
for the teams were those around a scripting or a programming language.

Enterprise DevOps Framework 91

Even though most of our colleagues in the organization were from a computer
science background, they had been in the IT world working as admins for a long
time and either never had the chance to write any code or had almost fully lost
touch with writing code.

IAC: Upping the Automation Ante
Having achieved success in most of the automation initiatives we had
undertaken, it was time to raise our game up a notch. We always had the
support and backing of most of the leaders, and now with the employees in
the field on our side as well, things were looking propitious, which gave us the
confidence to aim even higher. We no longer felt the need to have processes
implemented manually by admins.

The number one reason why our IT environment was in a not-so-optimal state was
because of humans. Humans are bound to be error prone as they get distracted
easily, can get physically and mentally tired, and tend to be careless.

By automating solutions, we put in a lot of effort to clean up the environment.
Performing the same task multiple times on multiple systems opened doors
for poor-quality implementation. Performing these tasks the same manual way
all over again did not make sense. Our drive to ensure that the quality of
the environment remained top class pushed us to get everything managed
and administered with the help of code. We had identified a few use cases
for ourselves that would drive the IAC model for us. These activities were
the ones that were most time consuming, as they comprised repeated tasks.
Having the ability to perform these with the help of code and in most cases
implemented as self-heal solutions strengthened our move toward automation
and minimized human dependency, which in turn eliminated human errors.

We put up a configuration management framework that involved installing an
agent on all the servers to help us with automating the config updates of the
systems. Any changes required on the servers could be delivered by means
of writing code and executing the code with the help of these agents sitting
on the servers. By doing this, we hoped that all configuration changes on
servers would be performed from a centrally managed system, which would
enable us to standardize the environment and also assist with rollback and
troubleshooting. We ensured that enough awareness of the tools used was
created and also offered multiple trainings to different teams so that they
could start leveraging these new services available to aid them.

Chapter 8 | Evolution of Teams92

Taking the Lead in the Transformation Process
Although not all members of the different teams were able to keep up with the
pace at which new technologies were being adopted and the processes were
evolving, there would be at least one or two members in each team who stood
out in terms of evolving with the changing times. They became flag bearers for
their respective teams when it came to transforming manual processes into
automated solutions. These employees had some particular traits that set them
apart from the rest. They believed that automation “actually” yielded results,
could be trusted, and was their friend. These employees were not afraid to
bet on what seemed like the unknown if it provided hope for something big.
Perhaps, it was “unknown” for others but an informed and intelligent decision
for them. The most important of the traits they possessed was the ability
to understand the big picture. This helped them easily comprehend details
of processes like the touchpoints, integrations, impact, and the optimization
opportunities. Once these attributes were identified, the process of automating
a particular solution became simple. This would open up doors for them to
start working on converting a process to an executable code.

These individuals became major influencers in the organization, as they were
trusted members of their teams and were able to get their peers excited
about the promise of automation and code. Employees were going online
and getting self-trained on the required technologies. The education team
in our organization, which was responsible for getting employees trained in
the right tools and technologies, was now receiving requests for providing
the training for all these new technologies that our teams were adopting.
Everyone wanted to deliver some automation and get noticed, which was a
win-win situation for all.

These were the times when we first saw signs of transformation taking effect.
The system admins who were earlier used to logging into a system console
and updating the configuration changes were now taking an evolved approach.
They were now looking at the automation frameworks in place to drive these
kinds of changes in the environment. They would partner with experts from
the CORE team to help author the appropriate scripts to perform those
changes using a common configuration management system. While not
everything worked as expected the first time these scripts were executed,
the teams would perform incremental updates to the scripts at times while
testing them on the lab machines to ensure the quality of the solutions. Once
tested thoroughly, it hardly took us any time to execute those scripts on the
production servers regardless of the number of servers this code needed to
be executed on.

Enterprise DevOps Framework 93

Breaking Down a Process for Automation
Success with one such solution would do wonders for the confidence of the
system admins and also would boost their confidence in automation and code.
The leaders of the teams would also make sure that they encouraged and
recognized the members in their teams who made an effort to challenge
the status quo and drive transformation in their teams. Slowly but surely, the
transformation was gaining momentum and was sweeping everyone in its way.
The admins were no longer looking at traditional ways of working.

For instance, the process for deploying a security patch on a set of servers had
evolved to a new process. Most of this process was automated and it made
the task of patching servers extremely easy to execute. The process consisted
of the following steps:

	1.	 Running a script first to discover the right group of
servers where the patch was applicable

	2.	 Deploying the patch on a set of test servers

	3.	 Validating these test servers after patching had completed

	4.	 Running validation scripts on the production servers to
make sure they were running fine before the patch was
deployed

	5.	 Proceeding with patching the production servers

	6.	 Running the validation scripts again on the patched servers
to make sure there were no regressions introduced in
the environment by installing the patch

	7.	 Running a security scan to make sure the vulnerability
had been remediated with the patch installation

	8.	 Incorporating notifications in the process to keep the
right parties informed of the changes and the impact

We were no longer operating with an average system admin team working
only toward keeping the ship afloat. We had now an evolved team working
with us manning the IT fortress, making sure that they were thinking
beyond the present by planning for introducing long-term resiliency. An
outage on a service that was caused by an “out-of-memory” scenario no
longer meant that the resolution for it was to assign more memory to
the server. These employees were now working as true engineers who were
hell-bent on understanding the root cause for the memory peaks in the
servers and delivering the “correct” solution, keeping multiple perspectives
in mind. The right steps to troubleshoot and resolve the issues were all being
scripted and tested thoroughly.

Chapter 8 | Evolution of Teams94

The support from all the other functional teams in the organization had a major
role to play in the success of this transformation. Teams such as application
support, network operations, and IT service management were all aligned in
supporting each other and driving the IAC concept. This was proof of a well-
known theory that if all forces are accelerating in the same direction, then the
velocity is highest.

Summary
It becomes important for an organization that all employees understand the
direction where the organization is headed and align themselves in this process.
The roles and responsibilities of all the teams need to be active participants in
the transformation process to make it successful. There is a natural evolution
that takes place for all involved in the journey, and the ones who survive are
the ones who take up the challenge of transformation and look at it as their
ticket to taking their careers further.

IAC is an important means of achieving operational efficiency for infrastructure
teams. There are quite a few tools, both open source tools and solutions
provided by tool providers, that can be used as the foundation for driving IAC
in a team. But the most important factor is the adoption of this approach by
the employees. IAC can seem highly complex for sys admins who have not
been used to writing scripts for the majority of their career. Having these
admins understand the need for adopting this approach and then providing
them the right training as well as the environment to ramp up their skills can
become the biggest hurdle. Easing the adoption of IAC on them by exposing
the admins to simple automations before embarking toward adopting it is a
good way to ensure that everyone is onboard and ready to contribute.

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3_9

C H A P T E R

Accelerating
Towards DevOps
In the previous chapter, I talked about how the teams in the organization
were moving toward adopting the IAC model. Once we started thinking in
terms of driving all infrastructure changes through code, we came to the
realization that the use of code is not limited to managing infrastructure-
related operations only. Because of the inherent capability code provides
with respect to scaling, standardization, integration, and automation, we were
more and more attracted to embedding code-driven implementations in
as many areas of our work as possible. This gave birth to the concept of
“Everything as Code.”

Everything as Code
Ben had joined our team as a Cloud admin and had spent the last three years
of his professional career managing and administering Cloud platform. Most of
this work of his involved him operating on the Cloud using the user interface
consoles provided by the Cloud vendors. He seemed to be in a confused state
of mind when we talked about locking the access to these user interfaces and
operating on Cloud purely using CLIs or by means of writing code to leverage
the rich APIs available for those platforms. He was even more surprised when
he saw the size of the team that was currently in place to manage the huge
scale of Cloud services at our organization.

9

https://doi.org/10.1007/978-1-4842-3612-3_9

Chapter 9 | Accelerating Towards DevOps96

He mentioned to us that at his previous employer, the size of the Cloud
environment was close to 30% of what he saw at our organization. And then he
added something very interesting. He said that the size of the team managing
that environment was close to three times that of the team managing Cloud
at our organization. This was music to our ears. We always took pride in the
efforts that we had put in place to optimize our Cloud environment, and
what Ben had told us validated our belief that we had achieved an extremely
evolved state in the work we were doing. It took Ben some time to realize
why we insisted that he sharpen his coding skills and he was extremely swift
in aligning with the practices we followed to go about our work.

Scaling on Cloud can only be achieved by proficient developers. If a system admin
can write code, then there is no better fit for the role of a DevOps engineer.

Another story I want to mention is that of Mary from the change management
team. She was responsible for making sure that the practices defined for
change management were adhered to by all teams. Her team mostly consisted
of employees with little to no coding skills but who were very well versed
with the requirements for an enterprise to meet the compliance standards.
By nature, these types of job functions in the organization had no integration
points with any development teams. But these were different times. Mary’s
team and the CORE team had partnered on a number of initiatives and her
team had developed a good sense of what can be achieved with coding.

Most of the manual work was now in the process of getting automated. A
number of solutions that we had built for the change management team
required integrations with multiple systems. Data exchanges between these
systems was a common requirement. Initially, this data was collected and
aggregated manually by Mary and her team by gathering inputs from multiple
systems. Although this was an age-old practice and had been working for a
long time, it was neither a scalable nor a reliable approach. Especially because
these solutions were for addressing the requirements for compliance, there
was absolutely no scope for any errors.

Joe and Mary countered this challenge by coauthoring simple scripts that pulled
data from these different systems, translating them into ingestible formats and
orchestrating workflows to make the solutions as human intervention free
as possible. Different data formats were relied on but the most popular were
json and csv (comma-separated values). This approach had empowered the
nontechnical teams to start contributing to the development work that was in
full swing with respect to optimizing the IT operations. A teammate of mine,
Henry, had termed this approach as the beginning of Everything as Code.

Henry’s thought process behind adopting this term was that he believed
the most evolved state of DevOps is when all communication between the
different stakeholders happens in the form of code. The exchanges would
evolve from raw textual artifacts that contained requirements and plans

Enterprise DevOps Framework 97

toward configuration and data files of a mutually agreed-upon format that
would be ideal to fit into any service orchestration platforms that were in
place. By doing this, the value coming out of these interactions between teams
would be enhanced multifold and would automatically help align the work to
the DevOps way of execution. We ourselves were nowhere close to achieving
this but it did help us in defining for ourselves a goal to work toward.

Culture at the Center of Transformation
The fact that employees like Mary and Ben were starting to transform
into believers in the DevOps philosophy and were driving it within their
respective teams was a big achievement for our organization. Various teams
and individuals displaying these traits augured well for the future, as the seeds
that were planted a couple of years ago were now bearing fruit. The thought
process of the people was changing. DevOps demands a change or evolution
in the culture of the organization, and the change in culture becomes the most
important parameter to gauge the success and value driven out of DevOps.

The way one needs to think about the culture of DevOps is to separate the
technology piece of the transformation from the process or execution part.
Teams within an organization are expected to become proficient in practicing
the following:

•	 Working toward Common Goals

•	 Understand the different value streams and align all
work toward the organizational strategy

•	 Make business value-driven improvements

•	 Agility in Execution

•	 Understand the pulse of the requirements during
execution

•	 Create customer feedback loops

•	 Constantly steer the solution toward changing
customer requirements

•	 Innovative and Creative Thinking

•	 Ability to step aside from the process and think out
of the box

•	 Not get influenced by set practices while designing
solutions

•	 Apply design thinking practices to create efficient
solutions

Chapter 9 | Accelerating Towards DevOps98

•	 Displaying Courage and Risk-Taking Ability

•	 Ability to try new things, risking failures

•	 Reward risk taking

•	 Fail fast and move on

•	 Decentralizing the Command Center

•	 Democratize decision-making without inducing
delays in the process

•	 Leave experts to take calls in their areas of
expertise

•	 High Trust

•	 Always believe your colleagues to have positive intent

•	 Don’t shy away from sharing any breakthroughs you
have achieved

•	 Open Organization

•	 Eliminate “me” and adopt “us” in discussions

•	 Candid and straight talk to eliminate assumptions
and misinterpretations

•	 Adopt other problems as your own

•	 Identifying the Right Problem to Solve

•	 Deep understanding of where the real problem is in
a process

•	 Understand the value driven from solving the
problem and determining the ROI

•	 Apply lean practice before automating or solving a
problem to reduce the scale

•	 Quantify success by determining measuring
parameters upfront

•	 Continuous Learning and Knowledge Sharing

•	 Keep abreast with the latest trends and technologies

•	 Create training platforms that are able to deliver
new trainings in a swift and effective manner

•	 Create platforms where teams can cross-train
and create a chain effect in terms of spreading the
knowledge

Enterprise DevOps Framework 99

•	 Frequent and Incremental Deployments

•	 Modular and loosely coupled designs

•	 Compact and shortened release cycles

•	 Automated integration and deployment

Technical Practices to Drive IT Home
Once there is clarity on how the culture fits in the successful adoption of
the DevOps framework, the focus needs to shift toward applying some of
those practices to determining how it affects the technical practices. Often,
cultural practices are not quantifiable and the means of overcoming this
is to understand how the culture is driving the execution on the ground
level. Effective execution is mostly a result of practices put in place and the
technology involved.

The technical practices that are highly conducive to successful adoption of
DevOps can be listed as follows.

Security Embedded Upfront Reduces Risk
The significance of a highly mature threat management system in an enterprise
can never be overstated. For too long, security has been treated as an
afterthought, and this not only introduces undue risk to the organization but
also acts as dead weight to the entire system. If security practices are not
thought about upfront in a system, then people find their own ways of trying
to either apply security at different stages in a totally broken fashion or totally
ignore their responsibilities toward securing the environment. Either of these
cases is undesirable and will have significant consequences to the well-being
of a company. Thus, it is very important that security features among the top
three items to consider when designing or introducing a new system.

With more and more companies now opting for a mixture of IaaS (Infrastructure
as a Service), PaaS, and SaaS offerings, the reliability of the Cloud providers
in embedding security practices is on the rise. But this by no means relieves
an organization of its own responsibilities toward securing itself. The Cloud
providers will only provide means of securing the accounts, but the security design
has to be prepared as per the requirement of the organization. An even bigger
challenge that follows is the execution of the security plan. The cybersecurity
team plays a critical role in defining the standards for an organization and has
to lead the way in ensuring that the processes and checkpoints in place are
extremely efficient. Proactive scanning, continuous audits, and a well-defined
remediation path for all threats need to be in place for a successful security
strategy. By having all these checks in place, the rolling out of DevOps practices
in an organization becomes that much easier and well integrated.

Chapter 9 | Accelerating Towards DevOps100

Effective Cloud Adoption
Cloud has not only deeply penetrated all industries but it is leading the way in
terms of enabling a highly efficient IT organization. The inherent traits of Cloud
like API support, integrated environment, and agile nature are conducive to
DevOps adoption and transformation. Actions like infrastructure provisioning
and purging, which were earlier thought to be complex tasks and acted as
bottlenecks, are extremely easy to execute on Cloud, and this by itself has
increased the turnaround times of IT teams multiple times. Adding integration
with systems that enable continuous deployment and automated testing
makes Cloud highly desirable for an organization that wants to adopt the
DevOps framework.

Microservices, a Perfect Fit for DevOps
Similar to the Cloud, microservices is another technology that was created
to promote the DevOps way of work. Small features developed on different
technologies and deployed in a continuous fashion on container platforms have
simplified application deployment by leaps and bounds. The portable nature of
containers and the ease of scaling the services on a container platform are
directly targeted at the key teachings of what a DevOps environment should
be like.

Slightly evolved but not as mature as the container technology, Function as
a Service (FaaS) is also quickly catching up. FaaS provides us with most of
the benefits of what a container-based microservice provides and also adds
to its advantages by removing the maintenance of infrastructure. The Cloud
providers take the full responsibility of providing the required resources to
execute this function, so as a result the end user gets unlimited resources that
are also cost efficient, as you are only charged for the duration of the function.

API-Driven Solutions for Easy Integrations
A big part of DevOps is about how one is able to optimize its delivery chain.
This requires a lot of integrations between the different components found
in a typical DevOps chain. From planning all the way to development, security
scanning, testing, integrations, and deployments, there are multiple tools and
systems involved in the process, and each of them needs to be able to talk
with at least one more tool in the process. Adopting solutions that expose
their services with a comprehensive set of APIs becomes key in automating
the delivery chain.

Enterprise DevOps Framework 101

Begin and End with Testing and Test Everything
Else in Between
Every step in the DevOps process needs to be validated and tested thoroughly.
Within a process, error handling, failover, and rollback are all dependent
on how extensively you have embedded the various testing and validation
practices. The following are the tests that need to be considered in a mature
DevOps environment:

•	 Code quality test

•	 Code security test

•	 Unit testing at functionality level

•	 Integration, build, and penetration tests

•	 Performance, regression, and scalability or stress tests

A good DevOps process will ensure that most of these testing requirements
are met. Having these tests ensures that the solutions delivered are robust
enough and can be relied upon.

While automating solutions, it is also important that the failure path is well
defined, as this keeps the chain functioning smoothly.

Adopting the Burst and Hops Model for Agility and
Quality
Agility plays a key role in defining the value you are able to generate from
your DevOps processes. The burst and hops model that was introduced in
Chapter 5 is a good framework to follow when you are looking to enable
DevOps. Burst and hops allows you to quickly create a workable solution
that will help give clarity toward the value being realized with the bursts
with your solution. With time and a few hops, you will then be able to
improve the overall quality of the solution. In case you realize that the bursts
are not giving you much return, then you can look at modifying the solution
or building a new model.

Adopting the burst and hops model allows you to fail fast, which is a critical attribute
of successful DevOps implementation.

http://dx.doi.org/10.1007/978-1-4842-3612-3_5

Chapter 9 | Accelerating Towards DevOps102

Completing the Circle with Automation
We have talked about how the beginning of transformation at my organization
was jump-started with effective automation. Automation forms the backbone
for the operational efficiency that can be achieved by adopting DevOps. There
are various stages of automation an organization evolves toward during its
journey in automation, and the effectiveness of the automation differs at
different stages. The evolution of the automation journey for our organization
is captured in the Figure 9-1.

These different phases of automation can be explained as follows:

•	 Task/Micro-Level Automation

	 This was the earliest stage in our journey, in which we
would identify individual tasks to automate. These tasks
would often be the slowest or the weakest piece in a
bigger process. By automating at the task level, we would
make the overall process a bit faster than it would take
to complete normally. While this kind of automation has
a good value, it often misses the larger picture and can be
considered as a bandage rather than a remedy.

•	 Service/Process Automation

	 This evolution from a task-level automation to a service-
level automation is a very natural process. In this automa-
tion, instead of automating one piece of the process, the
process itself comes under that radar of automation. For

Intelligent
Intelligent

Automation

Process
AutomationTask

Automation

VA
LU

E

Accelerate
DevOps

Scaling IT

Setting the
tone

Release
Automation

• Good place to get started
• Ini�ates automa�on thought

process
• Brings design thinking into

ac�on
• Narrow scope
• Faster deliverables
• Mostly helps individuals rather

than teams
• Value quickly gets lost in other

items picked by team

• Natural evolu�on from task
level automa�on

• Builds automa�on
momentum

• Scope and impact widens
• Improves cross team

collabora�on
• Has more misses than hits
• Successful deliverables have

a high ROI

• DevOps focused automa�on
• Tricky to get started as

mul�ple tools/processes
create confusion

• Ini�al pace is slow as
mul�ple teams are involved

• High impact with direct
alignment with business

• Accelera�ng agent for
DevOps framework
adop�on

• Can be replicated quickly
across mul�ple use cases

• An evolved state of
automa�on driven by machine
learning

• Difficult to achieve as it
requires deep understanding
of automa�on and machine
learning

• Needs to be driven by experts
in the automa�on and ML
space

• Each solu�on has an
extremely wide area of impact
and has a huge ROI

• Drives UX focusses automa�on

Figure 9-1.  Evolution of automation

Enterprise DevOps Framework 103

this kind of automation, it is important that the overall
effectiveness of the process is well understood, and we
need to be open toward modifying the original process
flow itself. Automating a process provides us a chance
to have another look at the process and make it leaner
or more effective from the previous lessons. Once the
process flow is determined, then all the tasks within the
process are fair game for automation. Automation at a
service or a process level yields much more return than
automating at a task level.

•	 Release Automation

	 When we talk about DevOps, then release automation
cannot be far behind. In fact, there are some schools
of thought that define release automation as 75% of
what DevOps means. While I am not of the opinion
that if one has a good CI/CD (continuous integration/
continuous deployment) process in place then there’s not
much left to do in terms of DevOps, I do believe that
release automation is one of the most critical and high-
value items that needs to be ticked before one can claim
victory over DevOps.

	 At a high level, release automation has a common flow
for most of the technologies and stacks, but during
implementation of release automation you quickly realize
that there can be so many variants of this automation,
which depend on the technologies and platforms in use.

•	 Smart/Intelligent Automation

	 After conquering the earlier stages of automation, we
had earned our right to start evaluating the next level,
which is intelligent automation. Intelligent automation is
basically using the advantages of concepts like machine
learning and artificial intelligence to increase the benefits
of automation. For instance, while it is good to have
an autoheal automation that falls in the service-level
automation, it still is a reactive approach. With intelligent
automation, we try to achieve a state where we are able to
predict and prevent an error in the system. This not only
eliminates the need to automate but more importantly
ensures that there are no service interruptions or
outages.

Chapter 9 | Accelerating Towards DevOps104

	 Getting started with intelligent automation is often quite
complex and it needs a good amount of investment along
with a visionary thought process to be able to look into
the future and tie it with the events in the past to make
the present better.

	 These stages of automation can be leveraged by
an organization to understand the current state of
automation it is operating in and what more remains to
be accomplished.

DevOps Is for Everyone
An important thing to remember when we talk about DevOps is that there
is no team or individual who should be left out or not touched by DevOps.
Participation is needed from every team, and every team will be affected by
DevOps in some way or another. For instance, if the engineering team is
creating a CI/CD pipeline to automate the deployments more frequently,
the teams that are automatically affected are the change management teams,
incident management teams, testing teams, and support teams like the service
desk team.

In the software deployment process, when you consider changing any of the
steps, whether designing, planning, testing or deployment, there is both a
trickle-down and a bubble-up effect to the steps that lead up to and follow
the deployment, and hence the impact is felt by most of the teams in the
organization. There are also instances when as a result of moving toward
DevOps, certain tasks of some teams might get eliminated, and this often causes
a panic in those teams. What is needed by the teams in situations like these
is to look at this as an opportunity to broaden their scope and pick up those
fringe or complex items that they never had the bandwidth to take up before.
When teams are successfully able to transform toward working in this mode,
then the negativity quickly turns into a positive feeling and starts benefitting
not only the individual team members but the organization as a whole.

To illustrate the preceding statement with an example, when the CORE
team optimized the process of provisioning and asset management for our
organization, they initially eliminated the work that the platform operations
team used to perform. There were at least five operations admins who were
kept busy by the influx of requests by application teams for new infrastructure.
These admins were provisioning the servers manually and spent most of their
time on these requests. Once this work was automated and transitioned to the
applications teams themselves as a self-serve solution, the operations team was
able to look at more complex tasks like Cloud resource configuration and security
improvement–related tasks. This gave them a chance to upskill themselves, with
the chance to become an expert in an in-demand technology.

Enterprise DevOps Framework 105

If the admins were stuck doing the provisioning, then they would have been
deprived of a great opportunity to build on their current skill set. Having
worked on such advanced tasks on Cloud, quite a few of these admins have
since been able to further their careers in Cloud as architects both within our
organization and externally. Every so often, I do get an opportunity to interact
with these individuals and they seem to be doing great in their respective
roles and have now become evangelists and champions within their teams and
organizations of modern practices of DevOps, whether automation, Cloud
usage, or something else.

Summary
The cycle of DevOps begins and ends with automation. While there is a lot
more to DevOps than automation, like culture and mindset change of the
organization, teams, and individuals, each of the steps in the journey needs
to be supported by automation. An extremely important part of adopting
DevOps is to understand what the journey for culture transformation will
look like for the specific organization as this journey tends to be different
for different organizations. It depends on the nature of business, how old an
organization is, the health of the organization, what the team structures are,
and what the mix is with respect to individual skill sets as well as mindsets.
Another factor that can contribute to this amalgam of things to consider for
DevOps is the region or regions from which the organization operates.

Once the cultural aspects of transformation are identified, tools and
technologies need to be considered. Here again, the organization needs to
identify its priorities and determine its current state with respect to adopting
new technologies. This will help in putting in some timelines and setting the
pace for adopting practices that take the organization closer toward the final
state of DevOps (which by the way is a myth, as there is no end state when
we talk about achieving the DevOps).

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3_10

C H A P T E R

Conclusion:
The New Era
For an organization, achieving an evolved state of efficiency in any of the
initiatives or practices it wants to adopt involves planning, perseverance,
focus, and a good amount of time. Akin to this, improving the efficiency of IT
operations by means of adopting DevOps is a long process that starts with
putting up a plan and needs to be followed up with sustained efforts from all
levels within the organization. The plan that worked for us involved focus on
five key areas as described in Figure 10-1.

10

https://doi.org/10.1007/978-1-4842-3612-3_10

Chapter 10 | Conclusion: The New Era 108

The order in which these areas is adopted is not of much significance, as
each area in itself needs continuous focus for a long period of time and will
at some point be implemented in parallel to at least one or more of the
other remaining areas. Also, each of the areas has an overlap in some way
with almost all others and the integration of all of these creates a perfect
ecosystem for driving DevOps.

In one of the earlier chapters, I talked about how the framework of DevOps
enables as well as promotes iterative business process improvements. Well,
in my experience the iterative approach applies equally well at the different
stages during the adoption of the DevOps framework itself.

Figure 10-1.  Key areas of focus to enable DevOps

Enterprise DevOps Framework 109

Back to the Beginning
While we were successful in making a lot of progress in terms of embedding
the DevOps culture and framework in the organization, it would have been
naïve for us to think that we were anywhere close to the finish line. All we had
managed to do was to build a strategy for bringing in DevOps practices, to lay
down a good foundation for enabling DevOps by identifying and implementing
the tools and technology, and to create some reference patterns for the teams
to follow when they are executing their work. We realized that the burst
and hops model applies to different areas of work, and we had now perhaps
reached the end of the first burst with regard to adoption of DevOps at our
organization. A number of hazards had been identified along the way, and we
would need to address them one at a time in the multiple hops that the teams
would now be working on.

The release automation piece is a good example to illustrate this. We had
developed a framework for executing CI/CD. This process would address
execution of the individual tasks like checking the code into a repository,
triggering automated as well as manual code reviews, followed by testing at
different stages, initiating security scans and conditional deployment to the
various environments. Along with defining the process, we were also able to
identify and provide the toolset and hosting platforms needed to enable this
framework. But after all this, there was a realization that the toughest part had
just begun. This toughest part was embedding the new process in the daily
routine of the different teams that were stakeholders in the process. In all
honesty, it was not easy for the CORE team itself to stick to these practices
at all times; it took us quite an effort to make this happen, and we are still not
fully there. I believe the first few hops for us in the future will be focused on
how we can onboard the other teams to align completely with the framework
we have put in place.

Reiterating the Basics
One of the ways to increase the adoption of the new solutions is to block
all the workarounds. In certain cases, this can be achieved by blocking access to
the various systems that often act as a gateway. By doing this, we can navigate
the admins onto the path we would like them to adopt without making it
appear that it is being forced onto them. Doing this is very tricky, though. An
approach like this could be perceived by people as extremely restrictive, which
takes us away from the core principle of DevOps, which is agility.

The trick lies is having people realize that this is the right thing to do. The
only way to achieve success in this regard is to make the teams understand
that the “DevOps” way is the easiest and most effective way to complete the
task. They need to realize that in the long run these solutions will provide
better integration and quality in the services being delivered, and that will help

Chapter 10 | Conclusion: The New Era 110

the teams to work in a more efficient manner. In order to achieve this, we
established partnerships with various teams for creating awareness around
the new DevOps practices they were expected to adopt. We would socialize
the framework that we had put in place by inviting the teams over to join us
for tech sessions. In these sessions, we would talk about different process
improvements and process changes that were being built to drive DevOps.
We would also perform demos for the solutions that were already in place.
This would help paint the overall picture for these teams and increase their
understanding of DevOps. The closer these discussions were to the area of
focus of these teams, the better they would grasp the essence of DevOps. It
was very clear that DevOps was going to mean different things for different
teams, and we would have to help the teams decode DevOps for their areas.

Moving from Point A to Point B
There were two areas where we felt we needed to put in extra effort to
increase the effectiveness of DevOps and to speed up its adoption. These
areas were

	1.	 Understanding the current state of each of the teams,
which would become the starting point for them

	2.	 Putting in a plan to help the team achieve the state that
they needed to evolve towards to operate in an advanced
state of DevOps

Every team had to honestly assess and accept where it stood currently in
terms of the overall efficiency of services and solutions it was churning
out. The next step would be to determine a goal they should be working
toward to drive maximum efficiency in the way it operated. This would help
in determining what path to adopt and what the journey would be like. Every
team would then have to take its own odyssey toward reaching the evolved
state it desired to achieve.

By obtaining a good understanding of these two aspects for a team, we believed
we would be able to identify the scope of work that was required to complete
the journey from the current state to the desired state. As an initial step in
this direction, we started engaging the leaders within the teams. This first step
itself would at times be very challenging, as the leaders of these teams felt
that all this talk about transformation was slowing them down from delivering
on their core responsibilities. We would tackle this by tying the practices of
DevOps to the job function of their teams and show them opportunities to
improve the overall quality of their work.

Enterprise DevOps Framework 111

During our discussions with these leaders and their teams, the following are
the areas we would usually focus on the following:

•	 Driving efficiency in the teams by adopting automation

•	 Enhancing governance for the solutions by designing
processes that had minimal chance of deviation

•	 Motivating the team members by having them realize
there is opportunity for them to learn and innovate

•	 Having the leaders realize that being at the forefront of
these initiatives in their teams gives them a chance to
create individual and team recognition and also invaluable
experience that will serve them well in the future

In most cases, these discussions proved to be quite fruitful and helped us get
out the door in terms of creating a customized plan for the respective teams.

The most important thing for achieving success in the adoption of DevOps is to
ensure that people believe it is going to help them.

If we were able to convince the teams that adopting DevOps was not going
to slow them down but instead allow them to work in a more agile fashion
and ensure that the services and solutions they were building would be much
more secure and resilient, then the remainder of the journey would be a lot
easier. It also helped the teams that when we engaged them in conversations
around DevOps, we focused on their area of focus and did not speak a generic
language. This helped eliminate ambiguity for them. They were in a much
better position to determine how to apply the practices of DevOps in their
day-to-day work. By understanding how their work will change, they were able
to act independently in terms of getting together as a team and chalking down
the path ahead. They were also able to overlay the transformation toward
DevOps with their teams’ respective roadmaps to make sure there is no
friction being introduced and their deliverables are not being missed.

Creating the Right Training Plans
Another realization that dawned on us was that we needed to create the right
skills within the teams to succeed in this journey. We engaged the education
team in the organization, which was responsible for creating the learning
platforms. We worked with the different teams to create a comprehensive
training plan that would not only enable these teams to get trained in the
required technical skills but also skill them in the required culture change
within their teams.

Chapter 10 | Conclusion: The New Era 112

A focused training plan is always helpful to speed the adoption of any new large
programs like Agile or DevOps.

The training methodology we adopted was completely revamped. We did not
want the training to be anything like the usual trainer-trainee–based training.
We felt that kind of training could at times make individuals perceive it as
simply another formality to be taken care of rather than as an opportunity to
learn something. We started converting the delivery means of these trainings
into workshops, which were more of a team activity. The teams would be
given specific tasks as part of these trainings, for which they would need to
collaborate and depend on one another’s ability to make everyone successful.
The trainings were less generic in nature and more focused on the type of
work and operations that went on in our organization.

Identify Opportunities to Improve Efficiency
When we get to the implementation part, DevOps works very differently for
different teams in an organization. To drive DevOps effectively, it is important
that you apply the right flavor of DevOps within each team. Multiple factors
need to be considered, such as the type of work the team is responsible for,
the organization’s priorities, and most importantly, the team dynamics.

By adopting all of these practices, the teams were in a much better position
to understand DevOps and the change that the organization wanted to
bring in. Once the teams understood how DevOps was going to change
their world, they started focusing on identifying opportunities within their
areas to implement the DevOps practices. Everything from infrastructure
management to compliance practices to security implementation was fair
game to the change. There is no one brush to paint with in terms of applying the
DevOps practices across teams. The teams were now realizing this and getting
comfortable with it.

Age-old legacy practices were challenged if they were reducing the team’s agility
or its ability to deliver. Practices like change management, deployment process,
asset discovery, and many more were constantly being discussed. New ways
to improve these practices were being designed. Shortlisted processes were
dissected, details were being captured in flow diagrams, and touchpoints were
identified. Owners for these touchpoints would be approached and brought
into the discussions so that everyone understood what the big picture was
and worked toward a common goal of improving efficiency by optimizing their
individual areas.

Team members would come up with plans for their teams of different time
durations. Some of these plans would be short term, ranging somewhere
between two and four weeks. Most of these would be focused on bringing
about a change in some of the individual tasks or steps within a larger process.

Enterprise DevOps Framework 113

Other plans were relatively long term, like a quarter or two. Any plans beyond
three quarters usually were broken down into smaller time periods, as we
believed that driving a program for more than that period went against the
practices of Agile, which we had now started relying on heavily. These long-
term plans were more focused on revamping a complete processes and were
targeted at bringing about a larger change in the way their team functioned.
These plans almost always included details around collaboration between
different teams, as this was critical to the success of these plans.

The goal of putting these plans in place was to identify the current state of
each of these processes, which were slowing down the organization’s ability to
keep moving ahead at the required pace, to determine the ideal end state, and
to chalk out what the journey would look like. Depending on the term of these
plans, the end state would at times be targeted as bringing about small changes
to certain processes or could be aimed at revamping a complete process itself.
In some cases, it could also mean getting rid of a process completely, as it was
acting as dead weight and was no longer needed or was redundant. Once we
understood what the end state should look like, we would then apply the
burst and hops approach to complete the journey from the current state to
the end state.

Conflict for Credit
With many teams now motivated to start operating in a DevOps fashion
and starting to drive it within their teams, the ownership for driving DevOps
as a framework in the organization became fuzzy. The CORE team was less
of a business process/function owner and more of an enablement team to
make other teams more efficient. As other teams started understanding
DevOps more, they built capabilities within their teams for automation and
other pieces in the DevOps puzzle to get more control over its adoption.
This was also at times driven with the aim of being able to showcase the
team’s achievements in making strides in the right direction. There were both
advantages and disadvantages to this approach.

Those teams that involved the CORE team and the other teams who were
stakeholders in the processes they were revamping at just the right time added
great value to the overall adoption of DevOps. This was because the plans
and roadmaps would be shared and the required adjustments were made to
remove any conflicts or duplication of work. This meant the team driving
the change was now acting as a turbo to the DevOps engine and helping to
accelerate the process.

There were some teams who still worked behind closed doors, not willing
to open up their plans or share the roadmaps initially. There was a feeling
that either the other teams were not skilled enough to add any value to their

Chapter 10 | Conclusion: The New Era 114

team’s plans or that the credit received for delivering the change would get
diluted. Helping teams that fell in this category was a little more challenging,
as they would be moving in a particular direction that was at times not aligned
with the plans and direction where others were heading. It would take a lot
more effort to align their individual plans with the organization’s plans. Not
many teams fell in this category though, and more often than not, with time
they would realize the benefits of sharing the roadmaps as early as possible
and reach out to other teams for help at the earliest.

The trick for the management to make the transformation as effective as
possible was to ensure that the right teams and the right individuals were
getting the required feedback as well as credit for the work they were putting
in. One step in the right direction on this cause would mean that the motivation
level increased by multiple times, while any mistake in this would put us behind
considerably, as a believer would now move into a doubter category. This
was a game that would need to be balanced constantly with little to no chance
for error.

Future Is Now
Even though we are occupied with implementing and streamlining the
items identified within different teams for enabling DevOps, we are
simultaneously creating a path for ourselves that will set us on course to
achieve further value out of the current DevOps movement in the future.
We are pursuing adoption of concepts like DevSecOps, Immutable
Infrastructure, Symptom- and Cause-Based Monitoring, and Service
Registry Code.

We believe that these are the next-generation concepts of DevOps and that
they will help us in the following manner:

•	 Embed security during every stage of building a solution
and providing services rather than leaving it as an item we
will circle back to at a later point once the functionality is
implemented or the environment has stabilized..

•	 Move away from the grind of the change deployment
processes to drive agility in operations.

•	 Ensure operations teams are only pulled into issues that
are genuine and need immediate attention by categorizing
problems based on impact to end-user services. We intend
to achieve this by implementing intelligent solutions and
integrations that are able to correlate multiple events
captured by the monitoring systems.

Enterprise DevOps Framework 115

•	 Use business as a primary driver while building solutions,
embed the principles of User Experience (UX) to better
understand the customer requirements and always take
a holistic approach by understanding the end to end
process and not solve the problem from only a particular
perspective. The best practices of UX along with Design
Thinking concepts are the areas we are looking towards
to guide us on this path.

Introducing DevSecOps
It’s often said that the only thing that is constant is change. While we were
blowing full steam toward adopting the DevOps preachings, a new pattern was
emerging in the industry. A number of prominent organizations were getting
hammered by attacks on their Cloud environments. There were cases where
either certain human actions were causing the environments to crash or the
lack of focus on security was leaving certain hidden doors open for hackers
to gate-crash the Cloud party in these organizations. Although security forms
an important piece in the overall preaching of DevOps, the lack of calling out
security explicitly at times during the execution was at times not bringing
enough focus on security, and often it would be left for “later.”

Across the industry, DevOps was being viewed only as a process improvement
for the delivery pipeline of products and improving the operational efficiency
of the companies by introducing automation. Great strides in a short period
of time were being made in those areas at the cost of large gaps left in the
security space. This was creating opportunities for the hackers to exploit,
and they were making merry by introducing all kinds of ransomware, Trojans,
and other kinds of malware into the systems. In order to bring the focus
on security, a new term started emerging, called DevSecOps. This brought
attention back to security at a time when everyone was solely focused on
speed. Organizations started assessing their current security profiles against
industry standards like the NIST security frameworks, COBIT, or the ISO
27000. Embedding the practices defined by these standards started becoming
table stakes for all organizations, and any new or existing process was evaluated
against these standards to determine its existence in the organization.

We started pivoting our DevOps implementation in this direction as well and
had to make the necessary adjustments to incorporate within our plans what
was needed to make this new requirement successful. Although DevSecOps
does not take away anything from what DevOps preaches, it adds an additional
layer of security to be incorporated in the overall DevOps practices. This new
layer though was not something that was easy to incorporate, as implementing
security almost always slows down everything else. This is the new task at
hand for our organization and I am looking forward to the challenges it brings
with it. After all, if there isn’t anything new coming in, then there is not much

Chapter 10 | Conclusion: The New Era 116

to be excited about. While the other teams are catching up on their learning
on DevOps, CORE with a few other frontliners are now trying the pave the
way for bringing in DevSecOps. I assume that the cycle of burst and hops is
going to play out all over again as expected and we are looking forward to the
ride ahead. I am hoping at some point soon we will be able to break away from
preachings of burst and hops too, and we would like to launch ourselves away
in a tangent like we have always done and discover an even more evolved way
of achieving big things in a small period of time.

Summary
In today’s world, the role of a CIO team has evolved from a mere support
function into a part of the organization that can act as the pacesetter for
the rest of the business functions. The technology and frameworks available
today have the ability to catapult organizations into achieving greatness in
their areas. During the journey of authoring this book, my focus all along has
been on giving a first-hand account of how an organization, no matter how big
or small it is, can drive DevOps to achieve this greatness. Although there is
no single or guaranteed way, there are certainly some must-dos that need to
be executed effectively.

These are as follows:

•	 Top-down approach: Drive DevOps as a value stream
from the top supported by the executive leadership team.
Investment in this area is perhaps the biggest favor the
leaders can do for the organization.

•	 Starting small: Create a small focused team whose
members are willing to get their hands dirty and
empower this team. It is important that this team starts
off by solving small problems and thus is able to generate
confidence in other teams to adopt their practices.

•	 Automation: At every step of implementing DevOps
practices, automation is going to surface. Ensure that you
have a strong automation framework in place that is able
to handle all the various types of automation requirements
that will surface during this journey. Zeroing in on the
tools to help with automation can prove to be a big asset
in one’s drive to achieve success in embracing DevOps.

Enterprise DevOps Framework 117

•	 Culture of innovation: This can prove to be the trickiest
to implement of all. There is no one way to do this. What
is needed for this to be successful is persistent support
and motivation at different levels in the organization.
Once there is innovation happening in an organization,
there is no limit to what it can achieve. Of everything
else I have mentioned in this section, innovation holds the
biggest value for the money.

•	 Empowering teams and embracing failure: There
is absolutely no way that everything that the teams try
comes out successfully. Failure should not be considered
as the end to what could have been but a step that takes
you closer towards achieving success in the future.
The biggest impediment to innovation can be the fear
of failure. The teams need to be given the confidence
that they are okay to try out things they feel will drive
business value and it is alright if they fail in this process.

•	 Filling the skill gap: The phrase “horses for courses”
cannot apply better anywhere else. It is extremely
important that the right people are picked for the right
job in the process. Upskilling the teams in terms of their
shortcomings in soft skills or technical skills plays a very
important role as well.

•	 Adopting Cloud: There is no two ways about this. Cloud
has become the starting point of adopting DevOps. Most
organizations of the future are going to work at least in
a hybrid Cloud environment if not in a complete Cloud
environment. The agility and feasibility of DevOps that
Cloud provides can in no way be ignored.

•	 Keeping one eye on the future: Adopting DevOps is
a like shooting a moving target. There is no one moment
in this journey where you can feel settled with the
requirements. There is always the need to constantly
evaluate what has changed and what is new out there.

I

© CA 2018
S. M. Farooqui, Enterprise DevOps Framework,
https://doi.org/10.1007/978-1-4842-3612-3

A
Accountability and ownership

automation champion, 12–13
bullheaded approach, 13–14
employees, 11
service interruption, 12

Advanced automation team, 21

Amazon Web Services (AWS), 66

Aptitude diversity, 54–55

Architectural components, 48

Automation process, 5–6, 20–21, 45, 93–94
build, 23
COE, 90
evaluating, 23
framework, 18
governing, 23
identifying, 22
management, 23
orchestration tools, 90
process owner team, 24–25
team responsibilities, 24
user interface, 20

B
Bullseye, 18

code deployment, 20
load balancer, 19
management automation, 19
server build process, 19

Burst and hops model, 101
hazards, 48
troubleshooting, 51

C
Center of Excellence (COE), 90

Cloud
adoption, 73
Dragons (see Dragons)
enterprise requirements, 65–66
management

backups, recovery, and
reliability, 60–62

cost and capacity optimization, 60
governance and security, 60

migration, 57–59
scaling, 59

Cloud as a Service (ClaaS), 69

CloudAscent, 66–68

Cloud Operations and Reliability
Engineering (CORE)

burst and hops model, 48–51
celebrating victories, 52–55
Cloud adoption strategy, 46
Cloud-first strategy, 46
collaboration, 52
smog, 48

Cloud Security Standards (CSS), 70

Collaboration, 1

Command-line interface (CLIs), 76

Comma-separated values (CSV), 96

Configuration drift
discover, 35
validate, 36

Configuration Management Database
(CMDB), 36

Index

https://doi.org/10.1007/978-1-4842-3612-3

120 Index

reliability solution, 75
role, 74
steps, 74

Crawl-before-you-walk model, 59

D
Database, 2

Decision-making process, 81

Deploying process, 93

DevOps
API-driven solution, 100
automation

release, 103
service/process, 102
smart/intelligent, 103
task/micro-level, 102

building strategy, 109
burst and hops model, 101
center of transformation

decentralizing command center, 98
execution, 97
goals, 97
incremental deployments, 99
innovative and creative

thinking, 97
learning and knowledge

sharing, 98
organization, 98
problems, 98
risk-taking ability, 98
trust, 98

Cloud adoption, 100
conflict for credit, 113–114
creating training plans, 111
effectiveness of, 110–111
efficiency, 112–113
embedded security, 99
engineer, 96
evolution of teams (see Team evolution)
key areas, 108
microservices, 100
reiterating basics, 109–110
software deployment process, 104
technical practices, 99
testing, 101

DevSecOps, 116

Dragons
Cloudjumper recovery, 63–65
Penny-Pincher cost management, 62
Snaptrapper Cloud governance, 63

E
Engagement process, 15–16

Enterprise requirements
ClaaS, 69
CloudAscent, 66–68
CSS, 70
multiple Cloud environments, 71

Everything as Code, 95–96

Expanding infraBot, 39

F
FixIT

before-after state, 31
portal, 32–33
process, 30

Function as a Service (FaaS), 67

G, H
Graphical user interface (GUI), 76

I, J, K
Ideation program

challenges, 80
decision-making process, 81
framework

gamification, 84
ideation phase, 83
inspiration phase, 83
landing ground phase, 84
review phase, 83
steps, 83

InfraBot, 33–34
antivirus coverage, datacenter, 37
architecture, 37
business value, 38
configuration drift, 34–36
solution, 38

Infrastructure as code (IAC) model, 91, 95

Infrastructure-related automation, 21

Configuration Management Database
(CMDB) (Cont.)

121Index

Innovation
CORE team

analytical mindset, 75
awareness, 75
proficiency, 75

design thinking, 78
lean canvas, 79
PEP, 79
shake up, 79

helps, 77
ideation program

challenges, 80
decision-making process, 81
framework, 83–84

Integrating systems, 77

ITBot, 27
automation portal, 28–30

L
Landing grounds, 84

Lean canvas, 79

M
Mean Time to Recovery (MTTR), 19

Most valuable product (MVP), 67

N, O
Nesting grounds, 84

Network Operations Center (NOC), 3

P, Q
People, 2–3

Phases of automation, 103

Platform as a Service (PaaS), 66

Processes and technology, 3–4

Proofs of concept (POCs), 7

Proposal-Edge-Plan (PEP), 79

P2V process, 9

Python language, 6

R
REST Application Programming Interface

(API), 8

Return on investment (ROI), 20

S
ScoBot, 40–42

Service registry code, 114

Single Point of Contact (SPOC), 15

Single Sign On (SSO) application, 57

SOAP Application Programming Interface
(API), 8

SOX Workflow Automation Team
(SWAT), 41

Subject matter expert (SME), 8

T, U
Team evolution

Automation Center of Excellence, 90
automation process, 93–94
CORE team, 87
IAC model, 91
optimizing process, 88
outlook, 88–90
training teams, automation, 90–91
transformation process, 92

Top-down approach, 116

Transformation process, 92

V, W, X, Y, Z
VMWare, 9

	Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Chapter
1: How IT Operated: People, Processes, Technology
	People
	Processes and Technology

	Chapter
2: Automation: Baby Steps Towards IT Transformation
	The Big Breakthrough
	More Use Cases

	Chapter
3: Challenges Faced Early On
	Accountability and Ownership
	Championing Automation
	Bullheaded Approach to Drive Automation
	Ignorance Can Be Bliss

	The Engagement Process
	Bullseye
	Use Case 1: Incident Management Automation
	Use Case 2: New Server Build Process
	Use Case 3: Managing a Load Balancer
	Use Case 4: Code Deployment

	Automation Train Well on Its Way
	Evolving into a More Advanced Automation Team

	Automation, a Simple Four-Step Process
	Roles and Responsibilities
	Automation Team Responsibilities
	Process Owner Team

	Summary

	Chapter
4: Era of the Bots
	ITBot
	FixIT
	InfraBot
	Configuration Drift
	Case Study: Antivirus Coverage for Datacenter
	Problem Statement
	Solution on InfraBot
	Business Value

	Expanding InfraBot

	ScoBot
	Summary

	Chapter
5: Hopping on the Cloud
	CORE: Cloud Operations and Reliability Engineering
	Smog Around the Cloud
	The Burst and Hops Model

	Celebrating Small Wins
	Summary

	Chapter
6: Mastering the Cloud
	Early Days on the Cloud
	Scaling on Cloud
	Top Focus Areas for Cloud Management
	Governance and Security
	Cost and Capacity Optimization
	Backups, Recovery, and Reliability

	Dragons in the Cloud
	Penny-Pincher Cost Management Dragon
	Snaptrapper Cloud Governance Dragon
	Cloudjumper Recovery Dragon

	Cloud Requirements at an Enterprise
	CloudAscent: Serverless Approach to Cloud Management
	ClaaS: Cloud as a Service
	CSS: Cloud Security Standards
	Managing Multiple Uses of Cloud

	Summary

	Chapter
7: Innovate or Perish
	Rip and Replace
	Building an Innovative Team
	Innovation, a Survival Skill
	ShakeUp: Ideation in Action
	Design Thinking
	Running an Ideation Program
	Ideation Framework

	Summary

	Chapter
8: Evolution of Teams
	Easing into a New Role
	Modern-Day Team Outlook
	Automation Center of Excellence (COE)
	Training Teams on Automation
	IAC: Upping the Automation Ante
	Taking the Lead in the Transformation Process
	Breaking Down a Process for Automation

	Summary

	Chapter
9: Accelerating Towards DevOps
	Everything as Code
	Culture at the Center of Transformation
	Technical Practices to Drive IT Home
	Security Embedded Upfront Reduces Risk
	Effective Cloud Adoption
	Microservices, a Perfect Fit for DevOps
	API-Driven Solutions for Easy Integrations
	Begin and End with Testing and Test Everything Else in Between
	Adopting the Burst and Hops Model for Agility and Quality
	Completing the Circle with Automation

	DevOps Is for Everyone
	Summary

	Chapter
10: Conclusion: The New Era
	Back to the Beginning
	Reiterating the Basics
	Moving from Point A to Point B
	Creating the Right Training Plans
	Identify Opportunities to Improve Efficiency

	Conflict for Credit
	Future Is Now
	Introducing DevSecOps

	Summary

	Index

