

Learning ASP.NET Core 2.0

Build modern web apps with ASP.NET Core 2.0, MVC, and EF Core 2

Jason De Oliveira
Michel Bruchet

BIRMINGHAM - MUMBAI

Learning ASP.NET Core 2.0

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2017

Production reference: 1111217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78847-663-8

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Jason De Oliveira

Michel Bruchet

Copy Editor

Safis Editing

Reviewer

Alvin Ashcraft

Project Coordinator

Prajakta Naik

Commissioning Editor

Merint Matthew

Proofreader

Safis Editing

Acquisition Editor

Chaitanya Nair

Indexer

Aishwarya Gangawane

Content Development Editor

Akshada Iyer

Graphics

Jason Monteiro

Technical Editor

Abhishek Sharma

Production Coordinator

Deepika Naik

Foreword
If I find the right solution, you have to offer me a coffee!—An informal discussion
between a software development veteran and a newbie around the coffee machine.

Working as a professional in software development for over 20 years, I have been
lucky to be an actor and user of .NET technologies since the early beginnings. While
working on many software development projects as tech-lead and application
architect, I was also one of the first MSDN seminar and DevDays speakers in France
and Switzerland, teaching and explaining the amazing new features of C# Beta 1 a
long time ago.

I still remember the first French edition of the Professional Developer Conference
(PDC) in 2001, where Microsoft's evangelists showed the first public demo of .NET,
C#, and ASP.NET (it was Web Forms era). Every attendee, who were mostly
developers, writing rich VB6 client applications or web applications using ASP,
VBScript, or Visual InterDev, had discovered how easy it was to write .NET
applications using the already well-known paradigms from VB6. However, they also
learned how professional tooling offered by .NET and Visual Studio together with
modern languages such as C, C++, or Java could lead to more productivity and
efficiency. It was a big success.

As a result, I spent a lot of time learning and acquiring deep knowledge of .NET, the
CLR, and other CLR languages (C#, VB.Net, and C++/CLI) either through
professional projects, personal applications, blog posts, or by speaking about various
subjects during technical events and conferences.

At that time, high-quality technical information was concentrated on some reference
websites (with special tributes to the fabulous Dotnet Guru, TechHeadBrother).

Since then, the internet and its major application—the web—became essential to the
world economy. Then, cloud computing appeared. It allowed exceptional growth,
faster than ever, which not only transformed software hosting and development
practices, but also business models. Time-To-Market became very important, which
meant that the development of applications and services had to be done in an
extremely short and fast time scale to have an advantage over the competition.

Regardless of the size of the project, it became inevitable to envision continuous
delivery, continuous integration, test automation, and build pipelines. Topics such as
Scale-out, microservices and clouds patterns, operating system agnostic
technologies, IaaS/PaaS/SaaS, API cultures, and other trendy subjects had to be
considered and integrated in application architecture and design decisions.

Today, choosing a development technology is not guided by the hosting operating
system anymore, but instead by the matching of application requirements and the
richness of the technical ecosystem around that technology (developer community,
additional software packages, compatibility and interoperability with other
technologies and so on).

.NET succeeded in its evolution (or maybe even its revolution?) mainly because it
was adapted to match these new requirements and development processes. It
transformed from an open and standardized platform (since 2002: ECMA-334 and
ECMA-335, with the shared source CLI 'Rotor' implementation, then ISO-23270
since 2003) into a new multi-platform technology. With .NET Core and ASP.NET
Core, it reached even farther by fully embracing the collaborative open source
development concepts and methodologies. This allows .NET to remain on the top list
of 'first-class citizen' technologies, seamlessly adapted to cloud providers (Microsoft
Azure, Amazon AWS and so on).

The fast-changing characteristics of development technologies entails to quickly
identify trustable information sources and reliable learning channels for newbies and
even for more experienced developers. This continuous knowledge quest is one of
the most interesting and inspiring tasks of our job.

The internet contains such a vast quantity of information with more or less
documented code samples (from few lines to thousand lines of code) and varying
quality, that finding the right information to a problem is a challenge by itself.

As the saying goes: too much information, kills the information. If you need a guided
journey for a technology, ranging from the starting point to the target line, the
choices can be very limited or lost in a crowd of information.

Being able to trust professionals who make their professional experiences accessible
through a didactic book is an awesome gain of time and productivity, which will also
increase the quality of your future code.

During these past few years, I had the opportunity to collaborate with Jason and
Michel at multiple times. Whether it be in the Microsoft Most Valuable Professional
(MVP) and Regional Director (RD) worldwide community, or through joint
professional projects.

I feel perfectly safe letting you start a fabulous journey with ASP.NET Core 2.0 and
this book.

Good reading … and you will no longer have to thank veterans with caffeinated
drinks anymore … you will become a veteran yourself!

Nicolas Clerc
Cloud Architect, Microsoft France

About the Authors
Jason De Oliveira works as a CTO for MEGA International (http://www.mega.com), a
software company in Paris (France), providing modeling tools for business
transformation, enterprise architecture, and enterprise governance, risk, and
compliance management. He is an experienced manager and senior solutions
architect, with high skills in software architecture and enterprise architecture.

He loves sharing his knowledge and experience via his blog, speaking at
conferences, writing technical books, writing articles in the technical press, giving
software courses as MCT, and coaching co-workers in his company. He frequently
collaborates with Microsoft and can often be found at the Microsoft Technology
Center (MTC) in Paris.

Microsoft has awarded him for more than 6 years with the Microsoft® Most
Valuable Professional (MVP C#/.NET) award for his numerous contributions to the
Microsoft community. Microsoft seeks to recognize the best and brightest from
technology communities around the world with the MVP Award. These exceptional
and highly respected individuals come from more than 90 countries, serving their
local online and offline communities and having an impact worldwide.

Feel free to contact him via his blog if you need any technical assistance or want to
talk about technical subjects (http://www.jasondeoliveira.com).

Jason has worked on the following books:

.NET 4.5 Expert Programming Cookbook (English)
WCF 4.5 Multi-tier Services Development with LINQ to Entities (English)
.NET 4.5 Parallel Extensions Cookbook (English)
WCF Multi-layer Services Development with Entity Framework (English)
Visual Studio 2013: Concevoir, développer et gérer des projets Web, les gérer
avec TFS 2013 (French)

http://www.mega.com/
http://www.jasondeoliveira.com

I would like to thank my lovely wife, Orianne, and my beautiful daughters, Julia and
Léonie, for supporting me in my work and for accepting long days and short nights
during the week, and, sometimes, even during the weekend. My life would not be the
same without them!

Michel Bruchet works as an application architect for MEGA International (http://ww
w.mega.com), a software company in Paris (France), providing modeling tools for
business transformation, enterprise architecture, and enterprise governance, risk, and
compliance management. He has more than 20 years of experience as a senior
architect, working on complex projects in IT and development departments.

Michel has published several publications on the internet (SlideShare, LinkedIn, and
more). He has worked for big companies in France, such as Sanofi, Pierre et
Vacances – Center Parcs, Banque de France, BPCE, and BNP.

He is also the main driving force and mastermind behind the Ingenius Solution,
which provides efficient e-business solutions to customers around the world.

I would like to thank my family for accepting that I had to work hard and, sometimes,
until late into the night in my free time to write this book!

http://www.mega.com/

About the Reviewer
Alvin Ashcraft is a software developer living near Philadelphia, PA. He has
dedicated his 22-year career to building software with C#, Visual Studio, WPF,
ASP.NET, HTML/JavaScript, UWP, and Xamarin apps and SQL Server. He has
been awarded as a Microsoft MVP nine times; once for Software Architecture, seven
times for C# and Visual Studio & Tools, and for Windows Dev in 2018-2019. You
can read his daily links for .NET developers on his blog at alvinashcraft.com and
UWP App Tips blog at www.uwpapp.tips.

He currently works as a Principal Software Engineer for Allscripts, developing
clinical healthcare software. He has previously been employed with several large
software companies, including Oracle, Genzeon, and Corporation Service Company.
There, he helped create software solutions for financial, business, and healthcare
organizations using Microsoft platforms and solutions.

He was a technical reviewer for NuGet 2 Essentials and Mastering ASP.NET Core
2.0 by Packt.

I would like to thank my wonderful wife, Stelene, and our three amazing daughters
for their support. They were very understanding while I read and reviewed these
chapters on evenings and weekends to help deliver a useful, high-quality book for the
ASP.NET Core developers.

https://www.alvinashcraft.com/
http://www.uwpapp.tips/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1788476638.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving
our products!

https://www.amazon.com/dp/1788476638

Table of Contents
Preface

Once upon a time, NGWS and the .NET Framework

What this book covers

What you need for this book

Who this book is for

Conventions

Reader feedback
Customer support

Downloading the example code

Errata

Piracy

Questions

1. What is ASP.NET Core 2.0?
ASP.NET Core 2.0 features

Cross-platform support

Microservice architecture

Working with Docker and containers

Performance and scalability

Side-by-side deployments

Technology restrictions

When to choose ASP.NET Core 2.0

Summary

2. Setting Up the Environment
Visual Studio 2017 as a development environment
How to install Visual Studio 2017 Community Edition

First steps with Visual Studio 2017

Creating your first ASP.NET Core 2.0 application in Visual Studio 2017

Creating your first ASP.NET Core 2.0 application via the command line

Visual Studio Code as a development environment
How to install Visual Studio Code on Linux

Creating your first ASP.NET Core 2.0 application in Visual Studio Code

Creating your first ASP.NET Core 2.0 application in Linux

Summary

3. Creating a Continuous Integration Pipeline in VSTS
Continuous integration, continuous deployment, and build and release pipeline
s

Using VSTS for continuous integration and continuous deployment

Creating a free VSTS subscription and your first VSTS project

Organizing your work via work items

Using Git as a version control system

Using feature branches

Merging changes and resolving conflicts

Creating a VSTS build pipeline

Creating a VSTS release pipeline

Summary

4. Basic Concepts of ASP.NET Core 2.0 - Part 1
Building the Tic-Tac-Toe game

Conceiving and implementing your first Tic-Tac-Toe feature

Targeting different .NET Framework versions in the .csproj files of your proj

ects

Using the Microsoft.AspNetCore.All metapackage

Working with the Program class
Working with the Startup class

Preparing the basic project structure

Creating the Tic-Tac-Toe home page
Giving your web pages a more modern look by using Bower and layout pages

Creating the Tic-Tac-Toe user registration page
Using dependency injection for encouraging loose coupling within your applica
tions

Creating the Tic-Tac-Toe user service

Working with middlewares

Working with static files

Using routing, URL redirection, and URL rewriting

Adding error handling to your applications

Summary

5. Basic Concepts of ASP.NET Core 2.0 - Part 2
Client-side development using JavaScript

Optimizing your web applications and using bundling and minification

Working with WebSockets for real-time communication scenarios

Taking advantage of session and user cache management

Applying globalization and localization for multi-lingual user interfaces

Configuring your applications and services

Using logging

Implementing advanced dependency injection concepts

Building once and running on multiple environments

Summary

6. Creating MVC Applications
Understanding the Model View Controller pattern

Models

Views

Controllers

Unit tests

Integration tests

Creating dedicated layouts for multiple devices
Using View Pages, Partial Views, View Components, and Tag Helpers

Using View Pages

Using Partial Views

Using View Components

Using Tag Helpers

Dividing web applications into multiple Areas
Applying advanced concepts

Using view engines
Providing better quality by creating unit tests and integration tests

Adding unit tests

Adding integration tests

Summary

7. Creating Web API Applications
Applying Web API concepts and best practices

Building RPC-style Web APIs

Building REST-style Web APIs

Building HATEOAS-style Web APIs

Summary

8. Accessing Data using Entity Framework Core 2
Getting started with Entity Framework Core 2

Establishing a connection

Defining primary keys and foreign keys via Data Annotations

Using Entity Framework Core 2 Migrations

Creating, reading, updating, and deleting data

Summary

9. Securing ASP.NET Core 2.0 Applications
Implementing authentication

Adding basic user forms authentication

Adding external provider authentication

Working with two-factor authentication

Adding forgotten password and password reset mechanisms

Implementing authorization

Summary

10. Hosting and Deploying ASP.NET Core 2.0 Applications
Hosting applications
Deploying applications in Amazon Web Services

Deploying applications in AWS Elastic Beanstalk
Deploying applications in Microsoft Azure

Deploying applications in Microsoft Azure App Services
Deploying applications into Docker containers

Deploying applications into Docker containers using Docker for Windows a

nd Docker Enterprise Edition

Publishing images to the Docker Hub

Summary

11. Managing and Supervising ASP.NET Core 2.0 Applications
Logging in ASP.NET Core 2.0 applications

Logging in Microsoft Azure

Logging in Amazon Web Services
Monitoring ASP.NET Core 2.0 applications

Monitoring on-premises and in Docker

Monitoring in Microsoft Azure

Monitoring in Amazon Web Services

Summary

Preface
Everyday, software developers, application architects, and IT project managers work
on building applications as quickly as possible to be a leader in their respective
markets: time to market is of utmost importance. Unfortunately, the quality and
performance of those applications are often not as expected, since they have not been
fully tested, optimized, and secured.

During the past few years, ASP.NET has evolved into becoming one of the most
consistent, stable, and feature-rich frameworks available in the market for web
application development. It provides all expected characteristics you can think of
concerning performance, stability, and security out of the box.

For some time now, the IT market has been changing. Compliance with different
standards is now required and customers expect industrialized, high-performing, and
scalable applications, while developers ask for frameworks that allow higher
productivity and extensibility to adapt to specific business needs. This has lead
Microsoft to completely rethink their web technologies accordingly.

As a result, Microsoft has built ASP.NET Core, which gives developers the capacity
to do the following:

Creating applications and compile them in a specific environment, but then run
them in any environment (such as Linux, Windows, or macOS)
Using third-party libraries with additional functionalities
Working with various tools, frameworks, and libraries
Adopting the most up-to-date best practices for frontend development
Developing flexible, responsive web applications

ASP.NET Core 2.0, together with Microsoft Visual Studio 2017, includes several
features to make your life as a web developer easier and more productive. For
example, Visual Studio offers project templates, which you can use to develop your
web applications. Visual Studio also supports several developments modes,
including using Microsoft Internet Information Services (IIS) directly to test your
web applications during development time and using a built-in web server and
developing your web applications over FTP.

With the debugger in Visual Studio, you can run through your application and step
through the critical areas of your code to find problems. With the Visual Studio
Editor, you can effectively develop user interfaces.

And when you are ready to deploy your application, Visual Studio makes it easy to
create a deployment package for deployment on Azure, Amazon Web Services, and
Docker, or any other platform including Linux and macOS. These are but a few of
the features built into the ASP.NET Core framework when paired with Visual
Studio.

This book provides the latest best practices and ASP.NET Core guidance to get you
up to speed quickly. Each section of this book presents specific ASP.NET Core 2.0
features in an easily readable format with detailed examples. The step-by-step
instructions yield immediate working results. Most of the key features of ASP.NET
Core are illustrated using succinct, easily understandable, and reusable examples.
The examples are rich to illustrate features without being overbearing.

In addition to showing ASP.NET Core features by example, this book contains
practical applications of each feature so that you can apply these techniques in the
real world. After reading this book and applying the exercises, you will have a great
head start into building efficient web applications that include modern features, such
as MVC, Web APIs, custom view components, and tag helpers.

We hope this book will help you in your daily job as a developer and reading it will
give you as much joy as writing it has given us.

Once upon a time, NGWS and the
.NET Framework
The following is a little bit of history to explain how the .NET Framework has
evolved over the years and why you have to consider the .NET Core Framework
today:

Microsoft has started working on what we know now as the .NET Framework in the
late 1990s and has released a first beta version of .NET Framework 1.0 in late 2001.

Originally, the framework was named NGWS for Next Generation Windows
Services (internal codename Lightning/Project 42). In the beginning, developers
could only use VB.NET as a programming language. More than 10 Framework

versions later, a lot has been achieved. Today, you can choose between a large
number of languages, frameworks, and technologies.

In the beginning, InterDev was the primary development environment to develop
ASP Pages, and you had to use a command-line VBC compiler tool to compile your
code.

The first version of our beloved Visual Studio development environment was
published in February 2002, bringing with it a common runtime environment for the
Windows client and Windows server family (NT 4, Windows 98, Windows ME,
Windows XP, and then Windows 2000).

Around the same time, Microsoft provided a lighter framework, named Compact
Framework, to execute Windows CE on Windows Mobile. The last version was
published in January 2008 as Version 3.5 RTM before it was replaced by newer
mobile technologies.

The first .NET SDK was published in April 2003 as .NET Framework 1.1 and was
included in Visual Studio 2003. It was the first version to be included in the
Windows Server OS and shipped together with Windows 2003.

.NET Framework 2.0 was released in January 2006 during the time of Windows 98
and Windows Me. It provided a major upgrade to the Common Language Runtime
(CLR). It was the first version to fully support 64-bit computing and fully integrate
with Microsoft SQL Server. It also introduced a new Web Pages Framework,
providing features such as skins, templates, master pages, and style sheets.

.NET Framework 3.0 (WinFX) was released in November 2006. It included a new
set of managed code APIs. This version added several new technologies to build new
types of applications, such as Windows Presentation Foundation (WPF), Windows
Communication Foundation (WCF), Windows Workflow Foundation (WWF), and
Windows CardSpace (later integrated into Windows Identity Foundation).

.NET Framework 3.5 extended the WinFX features one year later in 2007. This
version included key features such as Linq, ADO.NET, ADO.NET Entity
Framework, and ADO.NET Data Services. Furthermore, it shipped with two new
assemblies that would later be the foundation of the MVC framework:
System.Web.Abstraction and System.Web.Routing.

.NET Framework 4.0 was published in May 2009; it provided some major upgrades
to the Common Language Runtime (CLR) and added Parallel extension to improve
support parallel computing, dynamic dispatch, named parameters, and optional
parameters, as well as code contracts and the BigIntegerComplex numeric format.

After the release of .NET Framework 4.0, Microsoft released a set of improvements
to build microservices in the form of the Windows Server AppFabric framework.
Essentially, it provided an InMemory distributed cache and an application server
farm.

.NET Framework 4.5 was released in August 2012; it added a so-called Metro style
application (which later evolved into Universal Windows Platform applications), the
Core features, and the Microsoft Extension Framework (MEF).

Concerning ASP.NET, this version was more compatible with HTML5, jQuery, and
provided bundling and minification for improved web page performance. It was also
the first to support WebSockets and asynchronous HTTP requests and responses.

.NET Framework 4.6.1 was released in November 2015; it required Windows 7 SP1
or later, and was an important version. Some of the new features and APIs included
were support for SQL Connectivity for AlwaysOn, Always Encrypted, and improved
connection resiliency when using Azure SQL Databases. It also added Azure SQL
Database support for distributed transactions using the updated System.Transactions
APIs and provided many other performance, stability, and reliability related fixes in
RyuJIT, GC, and WPF.

.NET Framework 4.6.2 was released in March 2016; it added support for paths
longer than 260 characters, FIPS 186-3 DSA in X.509 certificates, and localization
of data annotations, and the resources files were moved to the App_LocalResources
folder. Additionally, the ASP.NET session provider and local cache manager were
made compatible with the asynchronous framework.

.NET Framework 4.7 was released in April 2017; it was included in the Windows 10
Creators update. Some of the new features included enhanced cryptography with
elliptic curve cryptography and improved Transport Layer Security (TLS) support,
especially for version 1.2. It also introduced the object cache store, which enabled
developers to provide custom providers easily by implementing the
ICacheStoreProvider interface.

There was also a better integration between the application and the memory monitor
and the famous memory limits reactions, which enables developers to observe the
CLR when it truncates objects cached in memory and overrides the default behavior.

Then, Microsoft developed a completely new .NET Framework with open source
multi-platform in mind from the beginning. It was introduced as ASP.NET 5 and
later renamed ASP.NET Core Framework.

The first release, 1.0, was announced by Richard Lander (MSFT) in June 2016; the
ASP.NET MVC and Web API frameworks were merged into a single framework
package that you could easily add to your projects via NuGet.

The second release, .NET Core Framework 1.1, was published in November 2017; it
ran on more Linux distributions, its performance was improved, it was released with
Kestrel, the deployment on Azure was simplified, and the productivity was
improved. Entity Framework Core started to support SQL Server 2016.

Note that .NET Core Framework 1.0 and 1.1 will be supported by Microsoft until
June 2019.

The latest release of the .NET Core Framework is 2.0. A first preview version was
released in May 2017. A second preview version—published in June 2017 and the
final version, on which this book is based—was released in August 2017.

Microsoft has vastly improved the .NET Core Framework. The improvements and
extensions are the result of the vision for .NET Core 2.0; it enables you to use more
of your code in more places.

The following improvements are included in .NET Core 2.0:

Massive API increase (>100%) relative to .NET Core 1.x
Support for .NET Standard 2.0
Support to reference .NET Framework libraries and NuGet packages
Support for Visual Basic

Furthermore, the .NET Standard 2.0 brings these new features:

Bigger API surface—it's extended to cover the intersection between .NET
Framework and Xamarin. This also makes .NET Core 2.0 much bigger as it
implements .NET Standard 2.0. The total number of APIs added to .NET

Standard is ~20,000.
It can reference existing .NET Framework libraries. The best thing is—no
recompile required, so this includes existing NuGet packages.
.NET Core supports more Linux distribution. Samsung is working to provide
support for the mobile OS Tizen.
And, most importantly, .NET Core is the fastest application runtime available in
the .NET world.

Also, note that most of the regular libraries are available on GitHub. They can be
forked and rebuilt by anyone who wants to extend or change any standard behaviors.

What this book covers
This book is organized into multiple chapters that explain ASP.NET Core 2.0
features in an easy and understandable format with practical examples. Most of the
key features of ASP.NET Core 2.0 are illustrated using succinct, efficient examples
and step-by-step instructions yield immediate working results.

You don't have to read the chapters in any order to find the book useful. Each
chapter stands on its own, except for the first chapter, which details the fundamentals
of ASP.NET Core—you might want to read it first if you've never ventured beyond
desktop application development.

The following topics will be covered throughout the book:

Chapter 1, What is ASP.NET Core 2.0?, describes the features and functionalities of
ASP.NET Core 2.0, but also the technical restrictions, which should allow you to
understand in which cases it could be a good fit for your own needs and what to
expect.

Chapter 2, Setting Up the Environment, gives a detailed explanation of how to set up
your development environment and how to create your first ASP.NET Core 2.0
application. You will learn how to either use Visual Studio 2017 or Visual Studio
Code, how to install the runtime, and how to use Nuget to retrieve all necessary
ASP.NET Core 2.0 dependencies.

Chapter 3, Creating a Continuous Integration Pipeline in VSTS, shows how to set up
a complete Visual Studio Team Services (VSTS) Continuous Integration Pipeline.
You will learn how to fully automate building, testing, and deploying your
applications using VSTS in the cloud.

Chapter 4, Basic Concepts of ASP.NET Core 2.0 – Part 1, explains the basic structure
and concepts of ASP.NET Core 2.0 applications. It shows how everything works
internally and what classes and methods can be used to override basic behavior. It
also provides the theoretical background for all the other chapters.

Chapter 5, Basic Concepts of ASP.NET Core 2.0 – Part 2, following up on the
concepts covered in Chapter 4, Basic Concepts of ASP.NET Core 2.0 – Part 1, this

chapter delves deeper into essential ASP.NET Core 2.0 concepts. You will learn
about components and features offered by ASP.NET Core to build responsive web
applications.

Chapter 6, Creating MVC Applications, provides all the concepts and everything
necessary to create your first ASP.NET Core 2.0 MVC application. You will learn
the specifics of MVC applications and how to implement them efficiently.
Additionally, you will see how unit tests and integration tests will help you build
better applications with fewer bugs, resulting in lower maintenance costs.

Chapter 7, Creating Web API Applications, covers the Web API Framework and
provides everything essential to create your first ASP.NET Core 2.0 Web API. You
will see different Web API styles, such as RPC, REST, and HATEOAS, and learn
when to use them and how to implement them in an effective way.

Chapter 8, Accessing Data Using Entity Framework Core 2, shows how to access
databases using Entity Framework Core 2, while using all the advanced features
(Code First, Fluent API, Data Migrations, InMemory Databases, and more) it offers.

Chapter 9, Securing ASP.NET Core 2.0 Applications, explains how to use the built-in
ASP.NET Core 2.0 features for user authentication and how to extend them by
adding external providers. If you need to secure your applications, then this chapter
is where you want to go.

Chapter 10, Hosting and Deploying ASP.NET Core 2.0 Applications, is about the
various options you have when it comes to hosting and deploying your ASP.NET
Core 2.0 web applications on premises and in the cloud. You will learn how to
choose the appropriate solutions for a given use case, which will allow you to make
better decisions for your own applications.

Chapter 11, Managing and Supervising ASP.NET Core 2.0 Applications, is finally
going to be a chapter on how to manage and supervise your production-ready
applications after deployment. It will greatly aid you in diagnosing problems for
your ASP.NET Core 2.0 web applications during runtime and reduce the time to
understand and fix bugs.

What you need for this book
You will either need Visual Studio 2017 Community Edition or Visual Studio Code,
which are both free of charge for testing and learning purposes, to be able to follow
the code examples found within this book. You could also use any other text editor
of your choice and then use the dotnet command-line tool, but it would be advised to
use one of the development environments mentioned earlier for better productivity.

Later in the book, we will work with databases, so you will also need a version of
SQL Server (any version in any edition will work). We advise using SQL Server
2016 Express Edition, which is also free of charge for testing purposes.

There might be other tools or frameworks that will be introduced during the
following chapters. We will explain how to retrieve them when they are used.

If you need to develop for Linux, then Visual Studio Code and SQL Server 2016 are
your primary choices, since they are the only ones running on Linux.

Additionally, you will need an Azure Subscription and Amazon Web Services
Subscription for some of the examples shown within the book. There are multiple
chapters dedicated to show you how to take advantage of the cloud.

Who this book is for
This book is for developers who would like to build modern web applications with
ASP.NET Core 2.0. No prior knowledge of ASP.NET or .NET Core is required.
However, basic programming knowledge is assumed. Additionally, previous Visual
Studio experience will be helpful but is not required, since detailed instructions will
guide you through the samples of the book. This book can also help people who
work in infrastructure engineering and operations to monitor and diagnose problems
during the runtime of ASP.NET Core 2.0 web applications.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Start Visual Studio 2017, open the Tic-Tac-Toe ASP.NET Core 2.0 project you
have created, create three new folders called Controllers, Services, and Views, and
create a subfolder called Shared in the Views folder."

A block of code is set as follows:

 [HttpGet]
 public IActionResult EmailConfirmation (string email)
 {
 ViewBag.Email = email;
 return View();
 }

Any command-line input or output is written as follows. The input command might
be broken into several lines to aid readability, but needs to be entered as one
continuous line in the prompt:

sudo apt-get install code

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Open
Visual Studio 2017, go to the Team Explorer tab, and click on the Branches button".

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://w
ww.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpu
b.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your email address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for macOS
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at the following repositories:

https://github.com/JasonDeOliveira/Learning-ASP.NET-Core-2.0/commits/master

https://github.com/PacktPublishing/Learning-ASP.NET-Core-2.0

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/JasonDeOliveira/Learning-ASP.NET-Core-2.0/commits/master
https://github.com/PacktPublishing/Learning-ASP.NET-Core-2.0
https://github.com/PacktPublishing/

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.com/su
bmit-errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/
support and enter the name of the book in the search field. The required information
will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

What is ASP.NET Core 2.0?
The first preview release of ASP.NET came out almost 15 years ago as part of the
.NET Framework. Since then millions of software developers have used it to build
and run all types of great web applications. Over the years Microsoft has added and
evolved many of its features until coming up with a complete redesign of the
ASP.NET Framework called ASP.NET Core in June 2016. After ASP.NET Core
1.0 and 1.1, version 2.0 is the third and latest installment of ASP.NET Core. Let's see
what it offers and when it makes sense to use it in your projects.

ASP.NET Core 2.0 is a new open-source and cross-platform framework for building
modern cloud-based applications, such as web applications, Internet of Things
(IoT) applications and even mobile backend.

ASP.NET Core 2.0 applications run on the .NET Core Framework as well as on the
full .NET Framework. The ASP.NET Core Framework was architected to provide an
optimized development framework for applications, which have to be deployed
either within the cloud or on-premises. It consists of modular components with
minimal overhead, so you retain a high degree of flexibility when conceiving and
implementing your software solutions. You can develop and run your ASP.NET
Core 2.0 applications on Windows, Linux, and macOS.

In the following diagram you can see how the different .NET Framework versions
and components work together:

ASP.NET Core 2.0 includes several architectural changes that result in a much
leaner and more modular framework when compared to the framework that came
before it. It is no longer based on System.Web.dll, instead, it uses a set of granular and
well factored NuGet packages. This allows optimizing of applications to include just
the NuGet packages that are really needed.

The benefits of a smaller application surface area include:

Better security
Reduced dependencies between components
Improved performance
Decreased optimized financial costs in a pay-for-what-you-use cloud consumer
world

As a developer, when building applications based on the classic .NET Framework,
you must choose between six application models (WPF, Windows Forms, Web
Forms, Web MVC, Web API, and Xamarin), which can be confusing and not very
productive.

With the release of the ASP.NET Core 1.0 and 1.1, this was optimized and reduced
to three different application models, with the drawback that you cannot share code
between them.

With ASP.NET Core 2.0, the number of application models was further reduced to
two and code is now sharable, meaning that you can now reuse more than 90% of
your code. For you as a developer, this makes you more productive and allows for

switching between application models quickly and easily.

In this chapter, we will cover the following topics:

ASP.NET 2.0 features
Cross-platform support
Microservice architecture
Working with Docker and containers
Performance and scalability
Side-by-side deployments
Technology restrictions
When to choose ASP.NET Core 2.0

ASP.NET Core 2.0 features
The new Microsoft.AspNet.Core.All package contains all ASP.NET Core 2.0 features
in a single library. It includes authentication, MVC, Razor, monitoring, Kestrel
support and many others. They are explained in more detail later in the book.

Note that if you want to selectively add packages one by one, you can
still reference them manually instead of using the single packages that
contain it all but then you will miss several advantages as you will see
here.

The runtime store is an important new component shipped with ASP.NET Core 2.0.
It contains compiled packages, which were compiled using the native machine
language and it is key for improved performance. All applications using the
Microsoft.AspNet.Core.All package benefit from it, because they do not need to be
deployed with all the dependent packages anymore. Everything is already there, so
their deployment size will be reduced and their execution time will be optimized.

ASP.NET Core 2.0 allows you to create well-factored and testable web applications
that follow the Model-View-Controller (MVC) pattern. We have dedicated a full
chapter to this topic later in the book.

Furthermore, you can build HTTP services with full support for content negotiation
using custom and built-in formatters such as JSON or XML as well as RESTful
services.

ASP.NET Core 2.0 fully supports Razor which contains an efficient language for
creating your views and Tag Helpers enable server-side code to participate in
creating and rendering HTML elements in Razor files.

Model binding automatically maps data from HTTP requests to action method
parameters and model validation automatically performs client and server side
validation.

In terms of client-side development, ASP.NET Core 2.0 is designed to integrate
seamlessly with a variety of client-side frameworks including AngularJS,
KnockoutJS, and Bootstrap.

Additionally, it provides the following fundamental improvements:

ASP.NET MVC and Web API have been combined into a single framework
Modern client-side frameworks and development workflows
Environment-based configuration system ready for cloud hosting
Built-in dependency injection functionalities
New light-weight and modular HTTP request pipeline
Host the same application in IIS, self-host, Docker, Cloud and even in your own
processes
Hosts multiple versions of an application or a component side-by-side
Ships entirely as NuGet packages
New tooling that simplifies modern web development
Simplified csproj file, making it easier to work with development environments
other than Visual Studio (on Linux and macOS, for example)
The Program.cs class has been extended to fully automate the integration of
Kestrel, the setting of the ContentRootPath, loading the configuration files,
initializing the logging middleware, and other steps by only calling a single
method
The Startup.cs has been simplified by moving logging and configuration into
the WebHost builder initialization

Cross-platform support
As explained before, the ASP.NET Core 2.0 framework has been built, from the
beginning, with cross-platform support in mind. It supports a wide variety of
operating systems and technologies such as Windows, Linux, macOS, Docker,
Azure, and others.

ASP.NET Core 2.0 currently supports the following Linux distributions:

Ubuntu 14, 16
Linux Mint 17, 18
Debian 8
Fedora
CentOS 7.1 and Oracle 7.1
SUSE Enterprise Server 64 bits
OpenSuse 64 bits

Concerning macOS, it currently only supports (other versions might be added later):

macOS 10.11
macOS 10.12

For application development, you may develop on Windows using Visual Studio or
Visual Studio Code and then deploy your ASP.NET Core 2.0 application to your
target system.

Note that the target system can use a completely different underlying
operating system. For instance, you can develop and test on Windows
and then deploy your applications to a Linux server for performance,
stability or cost reduction reasons.

If you choose so, you can of course directly develop on Linux and macOS using
several system-specific source code editors. On Linux, you could use Visual Studio
Code, VIM/VI, Sublime, or Emacs for example. On macOS, you could use Visual
Studio for Mac, Visual Studio Code or any other Mac-specific text editor.

The Visual Studio 2017 or Visual Studio Code developer environments would be the
preferred choice though, since they provide everything necessary to be highly

productive and to be able to debug and understand your code as well as navigate
within it easily. That is why we are going to use those IDEs throughout the rest of
the book.

After building your application, you can use several web servers to run it. Here are
some examples:

Apache
IIS
Kestrel self-host
Nginx

Microservice architecture
Microservices also known as the microservice architecture, is an architectural layout
that structures an application as a collection of loosely coupled services, which
implement business capabilities. It can be used to build e-commerce system,
business application, and IOT.

ASP.NET Core 2.0 is the best candidate when you want to embrace this system
architecture. The ASP.NET Core 2.0 framework is lightweight and its API surface
can be minimized to the scope of a specific microservice. A microservice
architecture also allows you to mix technologies across service boundaries, enabling
for a gradual transition to ASP.NET Core.

Notice that microservices built with ASP.NET Core 2.0 can work together with
services using other technologies such as the full classic .NET Framework, Java,
Ruby, and even other more legacy technologies. This is a big advantage when you
need to progressively transform monolithic applications into more (micro)service-
oriented applications.

You are not bound to a specific underlying infrastructure, instead, you have a wide
choice since ASP.NET Core 2.0 supports nearly all the technologies that you can
think of today. Additionally, you can modify the infrastructure when needed so there
is no technological lock-in for applications that have been developed based on it.

Your primary choice for orchestrating and managing microservices written in C#
efficiently and at high scale, on-premises, and in the cloud, should be Microsoft
Service Fabric. It was conceived exactly for that and is used by Microsoft for various
Azure services (SQL Database, and more) for many years already.

A microservices Docker container approach might also fit your needs, we are going
to explain its use cases in the next paragraphs. To sum it up, ASP.NET Core 2.0 is
the ideal choice for implementing and hosting your microservices in any kind of
technical environment.

Working with Docker and
containers
Docker and containers are everywhere at the moment. Everybody is speaking about
them and there are so many use cases where they seem to be a great fit. They provide
an efficient, lightweight and self-contained approach for packaging applications with
their dependencies while re-using the underlying operating system files and
resources.

They are a perfect fit for microservice architectures, but can also be used for any
other application archetypes. They work exceptionally well together with ASP.NET
Core 2.0 applications since both have been conceived with modularity, performance,
scalability, lightweight nature, and efficiency in mind.

Note that Docker container images including ASP.NET Core 2.0
applications are much smaller than images with classic ASP.NET
applications, meaning that they are faster to deploy and to start-up.

Both, Docker containers and the ASP.NET Core 2.0 framework, provide full cross-
platform support (Windows, Linux, and macOS). Furthermore, you can host your
containers on-premises and in the cloud. You can use Azure for example, either via
IAAS deployments or via Azure Container Services, which additionally allows for
mixing and matching different operating systems and technologies.

Performance and scalability
If you need the best possible performance and support high scalability scenarios then
you need to absolutely use ASP.NET Core 2.0 and the underlying .NET Core
Framework. ASP.NET Core 2.0 has been built from the ground up for high
performance and high scalability scenarios. It really shines in these areas and it can
be considered as the best choice.

It is ten times faster than classic ASP.NET, you can even think of it to be the fastest
web application runtime in the .NET world currently available!

Furthermore, it provides the best solution for microservices architectures, where
performance and scalability are extremely important. No other technology is as
efficient while consuming such low system resources, which also leads to reduced
infrastructure and cloud hosting costs.

Side-by-side deployments
If you want to be able to install applications with dependencies on different versions
of the .NET Framework, then you should consider using the ASP.NET Core 2.0
framework, since it provides 100% side-by-side deployment capabilities.

Side-by-side deployments of different .NET Core and ASP.NET Core versions allow
for having multiple services and applications on the same server. Each of them can
be using their own dedicated versions of the respective frameworks, thus eliminating
risks and saving money when doing application upgrades and common IT
operations.

Technology restrictions
Please look carefully at the technologies shown in this section. If you use a
technology or framework within your current application, which is listed here and
which is not (yet) supported, then you might find it difficult or even impossible to
migrate to ASP.NET Core 2.0.

Not all current .NET Framework technologies are available in ASP.NET Core 2.0
and some might never be ported over, since they do not comply with the new .NET
Core specific paradigms and patterns.

The following list shows the most common technologies not directly found in
ASP.NET Core and .NET Core, knowing that some can be used via the multi-
targeting features:

ASP.NET Web Forms applications: The legacy Web Forms technology is
only available using the full classic .NET Framework, you cannot use ASP.NET
Core and .NET Core for these types of applications.
ASP.NET Web Pages applications: They are not included in ASP.NET Core
2.0 as such, but it is possible to use the Razor web pages engine to provide the
same functionalities.
ASP.NET SignalR applications: Currently, ASP.NET SignalR is not available
for ASP.NET Core. However, you can find a first preview version in the
corresponding server-side and client library GitHub repositories, so they should
be included in one of the next releases.
WCF Services: ASP.NET Core 2.0 contains a WCF client for accessing WCF
services, but creating WCF services is not supported. This feature might be
added in future releases though.
Workflow Services: Windows Workflow Foundation, Workflow Services, and
WCF Data Services are not supported and there are no plans for adding them to
ASP.NET Core in the future.
WPF and Windows Forms applications: Windows Presentation Foundation
and Windows Forms cannot be built with ASP.NET Core, it would go against
the cross-platform paradigm. You could, however, replace your WPF
applications by UWP applications provided by the XAML2 Universal standard.

Not all .NET languages are currently supported by ASP.NET Core 2.0. For example,

F# does not have any tooling support. Visual Basic support has been added in the
latest version of Visual Studio 2017. There will be more and more languages that
will be supported.

In addition to the official ASP.NET Core roadmap, there are other frameworks and
technologies, that are planned to be ported over to .NET Core in the next months. To
get further information on what will be ported over and what will not, go to the
GitHub repository of the .NET Core Libraries (https://github.com/dotnet/corefx).

For those that are planned, there is no assurance that they will really get ported over,
though. But you will find a good indication of what you can expect in the next
versions of ASP.NET Core. Note that you can, in some cases, use the multi-targeting
features of ASP.NET Core 2.0 for being able to call frameworks that are currently
not directly supported by ASP.NET Core 2.0.

If you care about a specific framework or component that you need within your
projects, consider participating in the discussions on GitHub. Maybe others will have
the same requirements and Microsoft decides to prioritize their .NET Core migration
accordingly.

Some Microsoft services, and even some third-party platforms, do not support
ASP.NET Core. For example, some Azure services such as Service Fabric Stateful
Reliable Services and Service Fabric Reliable Actors require the full classic .NET
Framework.

Also, sometimes ASP.NET Core SDKs are not provided or not yet available. In the
meantime, you can always use the equivalent REST APIs instead of the client SDKs
and then replace them later. Be assured, all Azure services are going to support
ASP.NET Core in the future as can be seen on the respective product roadmap.

https://github.com/dotnet/corefx

When to choose ASP.NET Core 2.0
After having seen the various features and functionalities provided by ASP.NET
Core 2.0, you could ask yourself if it will replace the full classic .NET Framework in
the future. It is true that ASP.NET Core 2.0 and the underlying .NET Core
Framework provide some major enhancement and performance improvements, but
there are still some specific scenarios, where those new application patterns do not
apply and where the full .NET Framework will be the best and sometimes even the
only choice.

Migrating your whole existing applications to ASP.NET Core right from the start
might be difficult or even impossible to do. You should think about how to transform
your applications progressively to lower the risk of failure or over-complexification
and give yourself time to really understand the new patterns and paradigms.

You could start for instance by only using ASP.NET Core 2.0 for all new
developments, then see how to migrate your legacy code later and sometimes even
leave it be since there will be no real benefits for migrating it over. If you are really
interested in the migration topic, please consider the appendix, since we have a full
chapter dedicated to this important topic.

ASP.NET Core and the .NET Core Framework get more and more framework and
client library support each day. Microsoft, tool and framework vendors, and the
different developer communities work hard to provide a large set of functionalities
for allowing feature-rich and high performing web applications. Everybody wants to
work on this promising technology that could shape the future in a sustainable way.

The possibility to use .NET Core and .NET Framework libraries together at the same
time when using .NET Standard 2.0 extends the possibilities even more and gives
developers a temporary solution until every important feature and every major
framework will be available in .NET Core.

To recap what has been discussed in this chapter, you should use ASP.NET Core 2.0
for your server applications when:

You have cross-platform needs
You are specifically targeting microservices

You want to use Docker containers
You need high performance and highly scalable applications
You need to put multiple applications with different .NET versions side by side
The presented technical restrictions do not apply to your application
requirements

Summary
In this chapter, you have learned about the ASP.NET Core 2.0 framework and its
features. You have seen that it includes everything necessary to work efficiently in a
cross-platform environment while using microservices architectures and container
technologies such as Docker.

Furthermore, you have learned that it provides very good performances and
exceptional scalability for your web applications and that even side-by-side
deployments are supported.

At the end, we have talked about technical restrictions and when it is advisable to use
the ASP.NET Core 2.0 framework.

In the next chapter, we will talk about how to set up your development environment
including either Visual Studio 2017 or Visual Studio Code as an integrated
development environment.

Setting Up the Environment
You have decided to learn about ASP.NET Core 2.0, the most advanced and efficient
cross-platform web application framework on the market today. A very good choice!
You are surely eager to start programming right away, but before we can begin, we
must set up the required technical prerequisites and tools.

In this chapter, we are going to introduce Visual Studio 2017 Community Edition
and Visual Studio Code, and then install either one of them as a development
environment. Then, we are going to build a simple sample application based on the
ASP.NET Core 2.0 Framework.

In this chapter, we will cover the following topics:

Visual Studio 2017 as a development environment
How to install Visual Studio 2017 Community Edition
Creating your first ASP.NET Core 2.0 application in Visual Studio and via the
command line
Visual Studio Code as a development environment
How to install Visual Studio Code on Linux
Creating your first ASP.NET Core 2.0 application in Visual Studio Code
Creating your first ASP.NET Core 2.0 application in Linux

Visual Studio 2017 as a
development environment
As a developer, you need an environment for your daily development tasks, and
Microsoft Visual Studio 2017 is just that. It provides a very efficient and productive
Integrated Development Environment (IDE) for creating new software projects
and developing, debugging, and testing them. It will help you to build high-quality
applications in a very quick and intuitive way. Many of its features have been built
around common development tasks and how to streamline and optimize them within
a single tool.

You can create web applications, web services, desktop applications, mobile
applications, and many other types of applications not covered within this book.

Additionally, you can use a wide range of programming languages such as C#,
Visual Basic, F#, JavaScript, and even Java.

There are different editions of Visual Studio 2017, each with their own unique
features and licenses. The Visual Studio 2017 Community Edition, for instance, is
free of charge but cannot be used for applications running in production
environments. The main goal of this version is private usage and learning purposes.

The Visual Studio 2017 Professional and Enterprise Editions contain everything,
including the necessary licenses, to build and run applications in production
environments.

The Visual Studio 2017 Professional Edition contains a subset of all features that are
offered in the Enterprise Edition. It is usually sufficient to start with this edition and
then upgrade to the Enterprise Edition if necessary.

The Visual Studio 2017 Enterprise Edition contains a lot of additional features to
improve developer productivity even more, such as live dependency validation,
testing, architecture diagrams, architecture validation, code cloning, and many
others. If you need these features, then you need to use this edition.

Note that multiple versions of Visual Studio (2013, 2015, 2017, 2017

Preview, and more) can be installed side by side on a developer
machine, which has earlier versions of the Visual Studio IDE installed.

Traditionally, Visual Studio was released only for Windows, but a macOS version
has existed since 2016 called Visual Studio for macOS. You can use it for
developing your .NET applications on this operating system.

The Visual Studio 2017 Community Edition is exactly what we need for trying out
and understanding the examples illustrated in this book, so that is why we are going
to use this edition throughout the rest of the chapters.

How to install Visual Studio 2017
Community Edition
Visual Studio 2017 Community Edition is installed like any other Windows
application.

Note however that you need administrator rights during the
installation. These rights will not be required when developing with
Visual Studio later.

For the Visual Studio 2017 Community Edition installation, you can choose between
the following three different Visual Studio 2017 installation modes:

The Express Installation installs all of the components that are considered
default components by Microsoft in an easy and quick way. If you need specific
Visual Studio features not found in this list, then you need to use the Custom
Installation.
The Custom Installation gives you full choice over every Visual Studio 2017
feature you can install. You may, for instance, install complementary features
such as Visual C++, F#, SQL Server Data Tools, the mobile platform, and
several other SDKs, as well as specific language packs.
When using the Offline Installation, you can install Visual Studio 2017
without any network connections. This is very handy when you cannot connect
to the internet and nonetheless want to prepare a developer machine. In this
case, you have to prepare an external support, such as a mobile hard disk or a
USB key, and put the Visual Studio 2017 installer files on it beforehand.

One way to prepare such an external support is to download the necessary Visual
Studio installer (Community, Professional, or Enterprise Edition) from the Visual
Studio website, https://www.visualstudio.com/downloads/, and extract its contents into a
folder. Then, you retrieve the various install packages by executing the command
<executable name> --layout in a command-line window. After some time, everything is
downloaded and you have an external support that can be used for offline
installations.

Note that you can use the same procedure to download all of the

https://www.visualstudio.com/downloads/

installation files to a central network storage and then create a shared
folder for being able to install Visual Studio 2017 from within your own
network to optimize installation times and lower network bandwidth
needs.

We will now see how to install Visual Studio 2017 Community Edition manually by
using the downloaded setup program from the Microsoft Visual Studio website
mentioned previously:

1. Start the Visual Studio 2017 Community Edition setup program and you will
see a list of various installable workloads. By default, you will see Windows,
web and cloud, mobile and gaming, and other toolsets:

2. Choose your desired components and they will get installed in the next steps. If
that is all you need, then there is nothing else to be done. As explained before,
this is the Express Installation.

3. If you need to customize the installed components, to either add or remove
individual components, then you have to click on Individual components.
Obviously, you will then be doing what is called a Custom Installation:

4. When you have finished selecting your desired workloads and components, the
installation will start. The installation time is dependent on the number of
workloads and components you have selected, as well as your internet
connection speed, if you are not using the Offline Installation method described
previously:

For more advanced scenarios, like automating and scripting the Visual Studio 2017

installation, you can start the setup program via the Command Prompt. There is a
variety of command-line parameters, which help to define what needs to be installed
where.

Following is a list of some of the command-line parameters with a brief description
of what they do. Please go to https://docs.microsoft.com/en-us/visualstudio/install/use
-command-line-parameters-to-install-visual-studio to get more information, as well as a
full list of all existing command-line parameters:

Parameter Description

/AddRemoveFeatures This adds the features selected

/AdminFile This specifies a file to install silently

/CreateAdminFile
This specifies to generate a silently response file after your
installation

/CustomInstallPath This specifies the target path

/ForceRestart This forces your PC to restart

/Full This installs all the features

/noweb This disables internet searching features and downloading

/ProductKey This specifies the key to be used

https://docs.microsoft.com/en-us/visualstudio/install/use-command-line-parameters-to-install-visual-studio

First steps with Visual Studio 2017
After installing Visual Studio 2017, you are now able to explore everything it has to
offer for improving developer productivity. Following is a list of some of the
features that are provided.

Start Visual Studio 2017 and the first thing you will see is the Visual Studio Start
Page. It displays by default a Get Started section with a list of help topics, the history
of projects you have recently worked on, a developer and community news feed, and
some shortcuts to common developer tasks, such as creating or opening projects:

The Start Page is fully customizable, so if you do not want to see the news section,
for example, containing developer news from Microsoft's official channels, then you
just have to close the collapsed list or remove it completely. You can customize the
Start Page much more, and you can look up the details in MSDN at https://msdn.micr
osoft.com/en-us/library/ff425532.aspx, should you be interested in doing so.

https://msdn.microsoft.com/en-us/library/ff425532.aspx

One of the most important features of Visual Studio is IntelliSense. It helps
developers to be much more productive by offering features like List Member,
Parameter Info, Quick Info, and Complete Word. It has been improved in Visual
Studio 2017 with some very interesting new features, since you can now filter by
type (class, namespace, or keyword) and by CamelCase search.

It is also possible now to select the best matching results from the list of results,
instead of just picking the top one:

The Code Refactoring and Live Code Analysis features of Visual Studio 2017
accelerate development and assure readable and maintainable code. For example,
you can add missing namespaces or remove unnecessary namespaces automatically:

Here is an example of a Code Refactoring suggestion:

As the name depicts, the Find All References feature allows a developer to easily
and quickly find all references of a method or an object. Coloring, grouping, and a
Peek Preview functionality aid visually to better navigate within your code and really
help to understand it:

The Peek Definition and Go to Definition features serve to examine the definition of
a method, interface, or class either within a popup window, without changing the
current window, or by directly opening the file containing the source code with the
requested definition. The Go To Implementation feature does the same, but navigates
to the implementation instead:

Another important feature, one of our favorite features, by the way, is Live Unit
Testing. It requires Visual Studio 2017 Enterprise Edition and allows you to
automatically run unit tests in the background after each modification or compilation
of your code. It can be configured and activated in the Test Settings. You can set, for
instance, the number of test processes, maximum duration for each test, and
maximum memory consummation:

There are many more interesting and exciting features in Visual Studio 2017, and we
invite you to visit the official Visual Studio web page at https://docs.microsoft.com/en
-us/visualstudio/welcome-to-visual-studio for more details. It is key for a developer to
know his developer IDE as best as he can and to familiarize himself with a lot of its
features which can then help him to do his job better and faster. So, do take some
time to look at this before you start developing your applications.

https://docs.microsoft.com/en-us/visualstudio/welcome-to-visual-studio

Creating your first ASP.NET Core
2.0 application in Visual Studio
2017
You have patiently read the previous chapters, understood what you will be learning
by reading this book, and prepared your developer machine. You are now ready to
create your first sample application.

Let's look at the different options you have for creating your first ASP.NET Core 2.0
application in more detail.

When creating a new project in Visual Studio 2017, the first thing you see is the
template explorer displaying a tree view for choosing between installed, language-
specific, and online templates.

After having selected the template source in the tree view, the different templates are
shown. For ASP.NET Core, you see Console App, Class Library, Unit Test Project,
xUnit Test Project, and ASP.NET Core Web Application (.NET Core), for example.

Since some of the templates integrate multiple application types, you sometimes
have to make additional choices to specify what exact type of application you want
to create. This is the case for ASP.NET Core web applications, since you have to
choose between an empty, Web API, Web Application, or Web Application (Razor
Pages) project template. Additionally, you can enable Docker support and change the
authentication mode between no authentication, an individual user account, a work
or school account, or Windows authentication.

The following are step-by-step instructions for creating your first ASP.NET Core 2.0
sample web application:

1. If the .NET Core 2.0 SDK is not yet installed, then download and install .NET
Core Preview 2 from https://www.microsoft.com/net/core/preview.

Note that this step might no longer be needed at the time of reading this
book, since it should have been released officially by then.

https://www.microsoft.com/net/core/preview

2. Start Visual Studio 2017.
3. Create a new project by clicking on File | New | Project:

4. Select as project template Visual C# | .NET Core | ASP.NET Core Web
Application (.NET Core):

5. You are now able to select the specific web application type. Select Web
Application (Razor Pages) and leave the Docker support (disabled) and
authentication (No Authentication) options unchanged:

Note that at the time of the elaboration of this book, only Visual Studio
2017 Preview 15.3 had support for ASP.NET Core 2.0. It should be
included in the standard version, though, and at the time of publication.

6. After the sample application project has been generated, a project start page is
displayed. Here, you can configure additional options such as connected
services (Application Insights, and more) and publishing targets (Microsoft
Azure App Services, IIS, FTP, Folder, and more). Leave everything unchanged:

7. You can now start debugging your application by pressing F5 or by clicking on
Debug | Start Debugging:

Creating your first ASP.NET Core
2.0 application via the command
line
In the previous section, you saw how to create your first ASP.NET Core 2.0 sample
application with Visual Studio 2017, and this should be the preferred method for
most common developers.

However, if you prefer using the command line or Visual Studio Code, which we are
going to introduce a little later in the book, then using Visual Studio 2017 is not
really an option. Luckily, .NET Core and ASP.NET Core 2.0 provide full support for
the command line. This might even be your only option on other operating systems
such as Linux or macOS. The same command-line instructions work on all the
different operating systems, so, once you get used to them, you can work on any
environment.

Let's see now how creating your first sample application using the Windows
command line works:

1. If the .NET Core 2.0 SDK is not yet installed, then download and install .NET
Core Preview 2 from https://www.microsoft.com/net/core/preview.

Note that this step might no longer be needed at the time of reading this
book, since it should have been released officially by then.

2. Create a folder for your sample application, mkdir aspnetcoresample.
3. Move into the created folder, cd aspnetcoresample.
4. Create a new web application based on the empty ASP.NET Core 2.0 web

application template, dotnet new web.

Previous versions of .NET Core required an additional -t parameter
for choosing the template (dotnet new -t web). If you get an error when
executing dotnet new web, it is a good indication that you need to install
.NET Core 2.0.

https://www.microsoft.com/net/core/preview

Note that you can verify your .NET version by entering dotnet (with no
parameters) if you are not sure about your environment, since it will
display the current .NET Core version.

5. Run the sample application by executing dotnet run:

6. Open a browser and go to http://localhost:5000. If everything worked correctly,
you should see a Hello World! page:

You have seen how to create your first sample application either by using Visual
Studio 2017 or the command line. You will now see how to use Visual Studio Code
and how it helps you when building an ASP.NET Core 2.0 application on Linux or
macOS.

Visual Studio Code as a
development environment
Visual Studio Code is a lightweight and powerful cross-platform development
environment for Windows, Linux, and macOS.

You can use a wide range of programming languages such as JavaScript, TypeScript,
and Node.js as well as C++, C#, Python, PHP, Go, and the .NET Core and Unity
runtimes via language and runtime extensions.

It comes with a streamlined, clean, and very efficient user interface. There is a file
and folder explorer on the left and a source code editor on the right, showing the
contents of files you have opened and are currently working on:

The user interface consists of the following areas:

Activity bar: Provides several different views and additional context-specific
indicators such as outgoing code changes when Git is enabled.
Sidebar: Contains a file and folder explorer for working on your projects.
Editor groups: This is the main area for working with your code and
navigating within it. Up to three source code editor windows can be opened side
by side at the same time.
Panels: Serves to display panels with output or debug information, errors and
warnings, or an integrated terminal.
Status bar: Additional information concerning projects and files you have
edited.

Please go to https://code.visualstudio.com/docs for additional information on Visual
Studio Code and its capacities and functionalities. It will be our primary choice for

https://code.visualstudio.com/

illustrating how to build ASP.NET Core 2.0 applications on Linux.

How to install Visual Studio Code
on Linux
We are now going to explain how easy and fast it is to install Visual Studio Code on
Linux. One of the most popular Linux distributions, Ubuntu 16.04, will serve as an
example.

If you do not have a physical or virtual installation of Linux Ubuntu available, you
can easily install it in Azure for trying out Visual Studio Code and understanding the
various ASP.NET Core 2.0 examples, and then connect via Microsoft Remote
Desktop app to it.

In this case, select the Linux Ubuntu 16.04 LTS image from the Azure Marketplace
and create a new Linux Ubuntu VM in Azure. Leave all of the default options, then
configure it to allow remote desktop connections (install compatible desktop, install
xrdp, open port 3389, and more):

Let's see how to install Visual Studio Code on Linux Ubuntu:

1. First, download the Linux Ubuntu install .deb package (64-bit) from https://go.m
icrosoft.com/fwlink/?LinkID=760868:

2. Open a new Terminal window in Ubuntu.
3. Install the downloaded package via sudo dpkg -i <file>.deb.
4. Then, enter sudo apt-get install -f.
5. Set Visual Studio Code as your default text file editor by typing the command

xdg-mime default code.desktop text/plain.

The installation will begin and automatically install the APT repository and
signing key for enabling automatic package updates, as well as Visual Studio
Code:

https://go.microsoft.com/fwlink/?LinkID=760868

You can also manually install the repository and signing key, update the package
cache, and then finally start the Visual Studio Code package installation, as follows:

1. Open a new Terminal window in Ubuntu:

 curl https://packages.microsoft.com/keys/microsoft.asc | gpg --
 dearmor>microsoft.gpg

 sudo mv microsoft.gpg /etc/apt/trusted.gpg.d/microsoft.gpg

 sudo sh -c 'echo "deb [arch=amd64]
 https://packages.microsoft.com/repos/vscode stable main" >
 /etc/apt/sources.list.d/vscode.list'

 sudo apt-get update

 sudo apt-get install code

2. Set Visual Studio Code as your default text file editor by typing the command
xdg-mime default code.desktop text/plain.

For more information and details on how to install Visual Studio Code
on other Linux distributions such as RHEL, Fedora, CentOS,
openSUSE, SLE, or others, please go to https://code.visualstudio.com/do
cs/setup/linux.

https://code.visualstudio.com/docs/setup/linux

Creating your first ASP.NET Core
2.0 application in Visual Studio
Code
You will now see how to initialize your first ASP.NET Core 2.0 application using
the built-in Visual Studio Code terminal window. Then, you are going to install all of
the necessary extensions to be able to run and debug it at the end:

1. Start Visual Studio Code; no folder has been opened in the Explorer viewlet
yet:

2. Click on Open Folder, and then click on Create Folder. Name the folder
aspnetcoremvcsample and click on OK:

3. Display the integrated terminal window via View | Integrated Terminal and
initialize a new ASP.NET Core 2.0 MVC project by entering dotnet new mvc:

4. When opening any of the C# files, you are asked to install additional project
dependencies and Visual Studio Code extensions. Do this to be able to build,
run, and debug your application in the next steps:

5. Modify the launch.json file in the .vscode folder and set the debugger to .NET
Core Launch (web):

6. Set a breakpoint somewhere in the code and start debugging by either pressing
F5 or clicking on the green flash in the Debugging viewlet. Try hitting the
breakpoint; everything should work correctly:

Creating your first ASP.NET Core
2.0 application in Linux
To create and run your first sample application using only the Terminal window in
Linux, you have to do the following steps:

1. If the .NET Core 2.0 SDK is not yet installed, then download and install .NET
Core Preview 2 from https://www.microsoft.com/net/core/preview for your Linux
distribution. Here is an example of how to do that for Ubuntu:

 sudosh -c 'echo "deb [arch=amd64]
 https://apt-mo.trafficmanager.net/repos/dotnet-release/
 xenial main" > /etc/apt/sources.list.d/dotnetdev.list'
 sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
 --recv-keys 417A0893
 sudo apt-get update
 sudo apt-get install dotnet-sdk-2.0.0-preview2-006497

2. Create a folder for your sample application,
mkdir ~/Documents/aspnetcoremvcsample.

3. Move into the created folder, cd ~/Documents/aspnetcoremvcsample.
4. Create a new web application based on the ASP.NET Core 2.0 MVC web

application template, dotnet new mvc:

5. Run the sample application by executing dotnet run:

https://www.microsoft.com/net/core/preview

6. Open a browser and go to http://localhost:5000:

Summary
In this chapter, you have learned how to set up your development environment to be
able to work with ASP.NET Core 2.0. You have seen how to install either Visual
Studio 2017 or Visual Studio Code.

You then created your first ASP.NET Core 2.0 web application in both development
environments, and you have even built a project in Linux to showcase the cross-
platform capabilities.

In the next chapter, we will talk about how to set up a continuous integration pipeline
by using Visual Studio Team Services, including work items and Git branches, as
well as build and release pipelines.

Creating a Continuous Integration
Pipeline in VSTS
Building great applications is not a trivial task. On the contrary, it is a difficult and
complex endeavor in which many actors need to efficiently work together to create
applications that correspond to high-end user expectations.

Today, everything moves very fast and time-to-market is very important for
success. This chapter is going to introduce methods, processes, and tools to help you
optimize your development processes, thus building high-quality software with short
release cycles.

Traditionally, building software is done by planning whole software projects from
beginning to end, writing detailed specifications, developing and testing (often in a
rush), while hoping that everything will work as expected (V-model).

Sometimes this approach works and sometimes it does not. When it does not work,
developers implement features while only testing manually, with the objective of
adding unit tests later. Then, at the end of the project, they have to speed up to assure
on-time delivery and often run out of time.

This leads to projects with significant technical, functional, and quality flaws, with a
high number of bugs and tremendous maintenance effort resulting in long release
cycles. In the worst case, end users will not like the delivered features, thus the final
product could be considered a complete failure.

There is a better way of doing things, something people have been talking about for
some time now, and that you surely have already heard of—Agile methodologies!

Agile methodologies, when combined with continuous integration (CI) and
continuous deployment (CD), provide solutions for building better software with a
fast time-to-market, lower maintenance costs, better overall quality, and higher
customer satisfaction.

While this book is not about Agile methodologies as such, we recommend
familiarizing yourself with the subject, and we are going to explain all of the tools

and processes that accompany and surround it.

In this chapter, we will cover the following topics:

Continuous integration, continuous deployment, and build and release pipelines
Using Visual Studio Team Services (VSTS) for continuous integration and
continuous deployment
Creating a free VSTS subscription and your first VSTS project
Organizing your work via work items
Using Git as a version control system
Creating a VSTS build pipeline
Creating a VSTS release pipeline

Continuous integration, continuous
deployment, and build and release
pipelines
When using continuous integration, development teams write code, which, after a
code review, gets integrated into a version control system, from where it is built and
tested automatically. This normally happens multiple times a day. Thus, a
development team can detect problems and bugs quickly and fix them as early as
possible, enabling what is commonly called Fail Fast.

Continuous deployment is a natural extension of continuous integration, since it
assures that every application modification after being built and tested is releasable.
It consists of automatically upgrading development, testing, staging, and production
systems.

A pipeline defines a complete development and release workflow. It contains all
of the steps required for conception, development, quality assurance, and testing,
until the delivery of the final product. It includes continuous integration and
continuous deployment processes for building high-quality applications in an
industrialized way.

Note that you can separate your development process into two different
pipelines, a build and a release pipeline, or have only one single
pipeline that does it all, depending on your specific needs.

There are various technologies and tools that help you to implement an efficient,
productive, fully-automated, and industrialized software development process based
on continuous integration and continuous deployment. We are going to use Visual
Studio Team Services in the following examples.

Using VSTS for continuous
integration and continuous
deployment
If you need to collaboratively work together and share code, plan and manage your
user stories and development tasks, track progress of your features and bugs, all in an
Agile environment, then VSTS is one of the solutions you can find in the cloud, and
perhaps even the best.

It supports many different programming languages (C#, Java, JavaScript, and more),
various development tools (Visual Studio, Eclipse, and more) and is scalable to any
team size.

Additionally, it is free of charge for up to five users in a private team project, which
is very helpful for trying out the examples shown in this book.

VSTS provides the following main features:

Work items and the Kanban board: Plan and assign work and tasks
Source code management: Share code in a version control system
Testing: Create and execute test plans containing test cases
Package store: Put your own NuGet packages in a store
Build pipeline: Build code for creating application packages
Release pipeline: Deploy application packages to different release targets

For further information on VSTS and all of its features, please go to htt
ps://www.visualstudio.com/team-services/features.

https://www.visualstudio.com/team-services/features

Creating a free VSTS subscription
and your first VSTS project
We will now explain how to create your own free VSTS subscription and your first
project. You are going to use it later to try out and understand the examples
illustrated within this book:

1. Go to https://www.visualstudio.com/team-services and click on the Get Started for
free button:

2. Log in with your work, school, or personal Microsoft account:

https://www.visualstudio.com/team-services

3. If you are connecting for the first time, enter additional information such as
your name, your country, and your email address, then click on Continue:

4. Now that your account is created, let's create a new project. For our example,
select Git as version control, click on Change Details, then choose Work item
process—Scrum:

5. Your new project gets generated, and you are now ready to create your first
work items and Git repositories, as shown later in the book.

Organizing your work via work
items
Work items are used to plan, assign, track, and more generally speaking, organize
your work during a software development project. They help to better understand
what needs to be done and give insights on the status of your project.

Some common work item usages are:

Create, prioritize, and track user stories for application features
Create and track development tasks necessary to implement user stories
Create, prioritize, and track application bugs
Determine application quality and application release dates
Display progress of user stories, tasks, and bugs in a single Kanban board

As you have seen before, you can choose the work item process during VSTS project
creation. This choice defines the standard work item types (WITs) available.

There are more than 14 WITs by default and you can create your own custom WITs
for advanced scenarios. Most of the time, you will not need to create your own
custom WITs.

Possible work item process choices are:

Scrum, if your team uses the Scrum methodology and if you want to track your
product backlog items (PBI) on a Kanban board
Agile, if your team practices an Agile methodology but does not want to
comply with specific Scrum constraints and terminologies
CMMI, if your team follows a more formal development tasks follow-up, you
can track requests, changes, risks, and reviews

Here is a list of WITs depending on the work item process:

Domain Scrum Agile CMMI

Product planning
PBI

Bug

User story

Bug

Requirement

Change

Bug

Portfolio
Epic

Feature

Epic

Feature

Epic

Feature

Task and sprint planning Task Task Task

Bug backlog management Bug Bug Bug

Issue and risk management Impediment Issue

Issue

Risk

Review

In our example, we have chosen the Scrum process. Product owners create epics,
features, and product backlog items (the equivalent to user stories). During the sprint
planning development, tasks are defined and linked to product backlog items.
Everything is visible to the whole team via a Kanban board in the cloud:

Testers create and execute test cases by using the VSTS web portal or Microsoft Test
Manager. They create and assign bugs and code defects and blocking issues can be
tracked:

VSTS allows you to hierarchically organize your work. You can drill up, drill down,
reorder, and modify parent items as well as use filters in hierarchical views.

For even more information, go to https://www.visualstudio.com/en-us/doc
s/work/backlogs/create-your-backlog.

Let's look at the different elements in more detail. An epic can be described as a
large user story with a large amount of work. It must be broken down into features
and smaller product backlog items to be able to fully understand its requirements and
then implement it efficiently during multiple sprints:

https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog

Features decompose epics into smaller apprehensible parts. They consist of a group
of product backlog items that correspond to the detailed expected functionalities:

A product backlog item is a unit of work that has business value and that is small
enough to be completed during a single sprint. If you cannot finish it in a single
sprint, then it has to be considered a feature and must be decomposed further:

Tasks describe the development work necessary for implementing the expected
product backlog item functionalities during the sprint. They are linked to product
backlog items for trackability and to be able to automatically calculate project
advancement.

Bugs contain issues that have been raised and that need to be resolved during a
sprint. They are linked to their corresponding product backlog items:

After defining epics, features, and product backlog items, you can do your sprint
planning and decide what needs to be done in which iteration. Additionally, the
Kanban board provides a great visual representation for better understanding:

The working capacity for each team member can be defined for each sprint and a
work detail's report allows you to follow their work achievements in real time:

Furthermore, each work item has a state that changes over time. The state allows you
to track work achievements and filter work items for better understanding and
detecting issues.

The following figure shows the various default work item states depending on the
work item process:

 Scrum Agile CMMI

New New
Proposed

Work Item States

Approved

Committed

Done

Removed

Active

Resolved

Closed

Removed

Active

Resolved

Closed

You can query for work items, create graphs, and publish them to your VSTS project
home page. This is a very useful feature if you need to retrieve specific work items
or need to get a holistic view of your project:

Using Git as a version control
system
Git has had some considerable success over the last few years. It has become the
preferred distributed version control system among the developer community.

There is a great integration between VSTS and Git, and you have some powerful and
productive features at your disposal (https://www.visualstudio.com/en-us/docs/work/back
logs/connect-work-items-to-git-dev-ops):

Git branches can be created from within your backlog or Kanban board
Git feature branches can easily be created for multiple work items directly from
the VSTS website
Pull requests and commits are automatically linked to corresponding work items
Build Summary page shows work items, which are linked to a commit, as
associated work items

Let's see how to create a new Git repository, clone it locally, use it within Visual
Studio 2017, and create your first commit:

1. In your VSTS project, click in the top menu on Code, then click on the Clone in
Visual Studio button:

https://www.visualstudio.com/en-us/docs/work/backlogs/connect-work-items-to-git-dev-ops

2. A new window will be displayed; select Microsoft Visual Studio Web Protocol
Handler Selector:

3. Visual Studio 2017 is started automatically and you can authenticate with your
work, school, or personal Microsoft account:

4. Choose the destination folder for your local Git repository and click on the
Clone button to start the download:

5. Go to Team Explorer - Home and click on Settings:

6. In Team Explorer - Settings, click on Repository Settings:

7. In the Ignore & Attributes Files section, click on Add for each file:

8. Return to Team Explorer - Home, and this time click on Changes, enter a
comment for your first commit, and click on the Commit Staged button:

9. Your first commit has been created locally; click on the Sync link to push it to

the server:

10. Go to the VSTS website and click on Code in the upper menu; you can see that
your created files have been uploaded:

That's it! You have created and initialized your Git repository. It's as easy as that!
From here, you have multiple paths you can follow. For instance, leaving everything
in the same branch is not really a very good idea, especially when you have to
maintain multiple versions of your application.

You can get some guidance for different branching strategies from http
s://www.visualstudio.com/en-us/articles/git-branching-guidance.

https://www.visualstudio.com/en-us/articles/git-branching-guidance

Using feature branches
The philosophy behind feature branches is that the first thing you have to do each
time you begin working on a new VSTS feature (or even VSTS product backlog
item), is create a new, so-called feature branch.

You then work in this branch completely isolated until you are ready to push your
tested and validated modifications to your master branch (or in more sophisticated
environments, your development branch). Until it is pushed, it will not interfere with
your other features, neither will it cause bugs or lower the overall quality.

If a project deadline approaches and you have not finished all of the planned features
in time, you do not need to stress anymore! Why? Because you can integrate only the
features that are ready for release. You will have a product with fewer features, but
you can be confident that those are going to work as expected without any risks.

Let's look at how to create a feature branch using Visual Studio 2017 and Git:

1. Open Visual Studio 2017, go to the Team Explorer tab, and click on the
Branches button:

2. In Team Explorer - Branches, click on the New Branch link:

3. Enter a new feature branch name (use the FEA- prefix), and click on the Create
Branch button:

Merging changes and resolving
conflicts
Sometimes, team members work on the same files at the same time, leading to
conflicts. Let's see how to merge changes and resolve conflicts in this case:

1. Create a text file called HelloWorld.txt and add it to your local repository. Push
the file to the server, and update the file both on the server and in your local
repository.

2. If you try to push the HelloWorld.txt file that has been modified both locally and
in the remote repository, you get an error message and the push fails:

3. When looking in the output window, you get additional information:

4. Click on the Pull link and you will get the remote changes, which will result in
a conflict between your local copy and the remote one. Click either on the
Resolve the conflicts or Conflicts link:

5. You will see a list of conflicting files. Click on the conflict you want to resolve
and click on the Merge button:

6. You will see the conflicting modifications. Choose which ones you want to
keep (the left, the right, or both) and click on the Accept Merge button:

7. Back in the Team Explorer, click on the Commit Merge button:

8. Enter a comment and click on the Commit Staged button to finalize and commit
the merge locally:

9. After the commit has been created locally, click on the Sync link and then on
the Push link:

10. You should now see that the changes have been uploaded to the remote
repository:

Creating a VSTS build pipeline
After having planned and organized your work and created your Git repository, you
should now configure a VSTS build pipeline, which will allow you to do continuous
integration of your application:

1. Open Visual Studio 2017 and go to the Team Explorer tab, then click on the
Builds button:

2. Next, click on the New Build Definition link:

3. The VSTS website is opened and you are presented with a choice of build
definition templates, select the ASP.NET Core template:

4. In the new build definition, enter a name and select your default agent queue.
We recommend using Hosted VS2017:

5. For choosing a source repository, click on Get sources. For our example, we use
the default values (This project, Branch: master, Clean: false):

6. To enable continuous integration, click on Triggers in the build definition
menu, then click on the Enable this trigger button:

>

7. After verifying that the Git repository and master branch have been selected,
correctly click on the Save or Save & queue button. The configuration has been
finished and a build will automatically be triggered each time code is committed
to the repository:

Creating a VSTS release pipeline
Your application gets integrated continuously and you have already seen some great
benefits, such as detecting and fixing bugs and issues much faster. Let's not stop
there; improving your development process even further is much easier than you
think!

We will now see how to adopt the continuous deployment of your application by
creating a VSTS release pipeline:

1. Open the VSTS website, click on Build & Release in the upper menu, click on
Releases and then on the New definition button, and select the Empty definition
template:

2. You can now select the Project and the Source (Build definition) and enable the
continuous deployment, then click on the Create button:

3. The release definition gets created and you can see it in the list:

The shown sample release definition does not really do very much for now. We will
see a much more advanced version later that deploys to Azure, in the corresponding
Azure chapters.

Summary
In this chapter, you have learned about continuous integration, continuous
deployment, and build and release pipelines, what the benefits are, and how to
implement them using VSTS.

You have created a new VSTS subscription and initialized a new project. We then
explored some of the basic concepts, such as work items and Git for source control.
At the end, we illustrated how to configure a VSTS build pipeline, as well as a VSTS
release pipeline, via a practical example.

In the next two chapters, we will explain the basic concepts of ASP.NET Core 2.0
including the Startup class, using middleware, routing, error handling, and many
others.

Basic Concepts of ASP.NET Core
2.0 - Part 1
In the last three chapters, you have seen what ASP.NET Core 2.0 is about from a
global point of view, as well as set up your development environment, including
Visual Studio 2017 (or Visual Studio Code) and a continuous integration and
continuous delivery VSTS pipeline with a Git repository.

This is all really interesting, but very theoretical. Now, it is time to do something
practical, time to go right into the action, time to build something by yourself!

In this chapter, we are going to build an application to showcase the basic concepts
of the ASP.NET Core 2.0 Framework. During the following chapters, we will
constantly be improving this application, while using and illustrating the various
features of ASP.NET Core 2.0 and the technologies surrounding it.

In this chapter, we will cover the following topics:

The Startup and Program classes
Creating pages and services
Using Bower and layout pages
Applying dependency injection
Using the built-in middlewares
Creating your own middlewares
Working with static files
Using routing, URL redirection, and URL rewriting
Error handling and model validation

Building the Tic-Tac-Toe game
Let's do something fun! Let's build the Tic-Tac-Toe game, also known as noughts
and crosses or Xs and Os. Players will choose who takes the Xs and who takes the
Os. Then, they will be taking turns to mark spaces in a 3×3 grid, one mark per turn.
The player who succeeds in placing three of his marks in a horizontal, vertical, or
diagonal row wins the game.

Players must enter their emails and names for registration to create an account before
being able to start a game. They will receive a game score after each match, which is
going to be added to their total score.

A leaderboard provides information on player rankings and top scores.

For creating a game, a player must send an invitation to another player, then a
specific waiting page is displayed for him until another player has responded. The
other player, after reception of the invitation email, can then confirm the request and
join the game. When the two players are online, the game starts.

As explained in the last chapter, we can use VSTS and its work items to organize
and schedule the implementation of the Tic-Tac-Toe application. For that, we have to
create epics, features, and product backlog items, and then do a sprint planning for
prioritizing and deciding what has to be implemented first.

As you can see in the following screenshot, we have decided to work on five product
backlog items in the first sprint and have added them to the sprint backlog:

Do you remember what needs to be done next, before implementing any of the new
features? You don't remember? Maybe features branches ring a bell?

In the last chapter, we showed the best practices for creating developments, which
are isolated and easier to maintain and release. They consist of creating a feature
branch in the Git repository for every new feature that you want to add to your
application.

Thus, every developer can work on his specific features within his specific feature
branch until he has decided that it is ready to be released.

At the end, all of the features ready for release are merged into a development (or
release or master) branch. Then integration tests are done, and, if everything is
working as expected, a new application version is delivered.

The feature we have chosen to work on first is the user registration, so the first thing
we have to do is create a feature branch called FEA-UserRegistration. If you do not
know how to do that, you can go to Chapter 3, Creating a Continuous Integration
Pipeline in VSTS, and get a full step-by-step procedure with thorough explanations:

Conceiving and implementing your
first Tic-Tac-Toe feature
Before we can implement the user registration feature, we have to understand it and
decide how everything should work. We have to define the user stories and
workflows. For that, we need to analyze the Tic-Tac-Toe game description
mentioned previously in more detail.

As explained previously, a user can only create and join games if he has a user
account. To create this account, he has to enter his first name, his last name, his
email address, and a new password. The system then verifies if the entered email
address has already been registered. A given email address can only be registered
once. If the email address is new, the user account gets generated, if the email
address is known, an error must be displayed.

Let's look at the user registration process and the different components that have to
interact for implementing it:

1. There is a home page with a link for user registration, where a new user must
click on Register for creating his player account. Clicking on the user
registration link redirects the user to a dedicated Registration Page.

2. The Registration Page contains a Registration Form, where the user must enter
his personal information and then confirm it.

3. A JavaScript client validates the form, submits and sends the data to a
Communication Middleware, then waits for a result.

4. The Communication Middleware receives the request and routes it to a
Registration Service.

5. The Registration Service receives the request, verifies data integrity, checks if
the email has already been used for registration, and either registers the user or
returns an error message.

6. The Communication Middleware receives the result and routes it to the waiting
JavaScript client.

7. The JavaScript client redirects the user so that he can start playing games if the
result is a success, and it displays an error message if the result is a failure.

The following sequence diagram shows the user registration process. It is easier and

quicker to comprehend with a more visual representation:

To get started, we need to create a new empty ASP.NET Core 2.0 Web Application,
which will be used for adding various components and packages in this chapter and
during the rest of the book. We will then add new concepts and functionalities
progressively, which will allow you to really understand what is going on and how
everything works:

1. Start Visual Studio 2017 and click on File | New | Project.
2. In the .NET Core section choose ASP.NET Core Web Application, enter the

application name, the location of your repository and the solution name, then
click on OK:

Note that if you have not created a Git repository for your application
code yet, you can do it here by ticking the Create new Git repository
checkbox.

3. Choose the Empty template:

4. A new empty ASP.NET Core 2.0 Web Application project will be generated,
containing only the Program.cs and Startup.cs files:

Great, we have created our project and are now ready to implement our first feature!
But before doing that, let's take some time and see what Visual Studio 2017 has done
for us behind the scenes.

Targeting different .NET Framework
versions in the .csproj files of your
projects
For every project that Visual Studio 2017 generates, it creates a corresponding
.csproj file, which includes several project-wide settings such as the referenced
assemblies, the .NET Framework target versions, the included files and folders, as
well as multiple others.

For example, when opening the ASP.NET Core 2.0 project you created before, you
can see the following structure:

 <Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All"
 Version="2.0.0-preview2-final" />
 </ItemGroup>
 </Project>

You can see the TargetFramework setting, which allows you to define what .NET
Framework versions should be included and used for building and executing the
source code.

In our example, it has been set to netcoreapp2.0, the specific value for using the .NET
Core 2.0 Framework:

 <TargetFramework>netcoreapp2.0</TargetFramework>

Note that you can refer to multiple .NET Framework versions within
your library projects. In this case, you have to replace the
TargetFramework element with the TargetFrameworks element.

For instance, if you want to cross-target .NET Core 2.0 and .NET 4.7,
you have to use the following settings:

<TargetFrameworks>netcoreapp2.0;net47</TargetFrameworks>

When executing your application in Debug mode by hitting the F5 key, you can see
that multiple folders and files have been created in the application's Debug folder
(\bin\Debug):

If you change the .csproj file and add other target frameworks, you will see that
additional folders will get generated. The DLLs for each specific .NET Framework
version are then put into the corresponding folders. The following example uses the
TargetFrameworks settings for .NET Core and .NET 4.7:

Using the Microsoft.AspNetCore.All
metapackage
When looking in the Solution Explorer in the Dependencies | NuGet section, you can
see something very interesting, specific to ASP.NET Core 2.0 projects: the
Microsoft.AspNetCore.All metapackage:

The Microsoft.AspNetCore.All project dependency was added automatically when you
created your ASP.NET Core 2.0 Web Application. This is done by default for this
type of project.

However, Microsoft.AspNetCore.All is not a standard NuGet package, since it does not
contain any code or DLLs. Instead, it acts as a metapackage, referencing other
packages it depends on. To be more specific, it includes all of the packages for
ASP.NET Core and Entity Framework Core, together with their internal and external
dependencies, and takes advantage of the .NET Core runtime store.

In the example, you can see that a wide variety of packages are retrieved, such as
Application Insights, Authentication, Authorization, Azure App Services, and many
others.

In older versions of .NET Core (version 1.0 and 1.1), you had to add those NuGet
packages all by yourself. Now that Microsoft has created the concept of the
ASP.NET Core metapackage, you can find everything in one place.

Furthermore, package trimming excludes binaries, which are not used, so that they
are not published when deploying your applications.

Working with the Program class
The Program class is the main entry point for ASP.NET Core 2.0 applications. In fact,
ASP.NET Core 2.0 applications are very similar to standard .NET Framework
console applications in this regard. Both have a Main method that is executed when
running the application. Even the basic signature of the Main method, which accepts
an array of strings as arguments, is the same, as you can see in the following code.
To no surprise, this is due to the fact that an ASP.NET Core application is, in reality,
a console application hosting a web application:

 using Microsoft.AspNetCore;
 using Microsoft.AspNetCore.Hosting;

 namespace TicTacToe
 {
 public class Program
 {
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
 }

Normally, you do not need to touch the Program class in any way. By default,
everything necessary to run your application is already there and preconfigured.

However, you might want to activate some of the more advanced functionalities.

For instance, you could enable the capture of errors during server startup and display
an error page. In this case, you just have to use the following instruction:

 WebHost.CaptureStartupErrors(true);

By default, this setting is not enabled, which means that in case of errors, the host
will just exit. This might not be the desired behavior and we recommend changing
this parameter accordingly.

Two other useful parameters working together are PreferHostingUrls and UseUrls. You

can indicate whether the host should listen on the standard URLs defined by
Microsoft.AspNetCore.Hosting.Server.IServeror-specific URLs you have provided. The
URLs can have different formats depending on your needs, such as:

IPV4 address with host and port (for example, https://192.168.57.12:5000)
IPV6 address with port (for example, https://[0:0:0:0:0:ffff:4137:270a]:5500)
Hostname (for example, https://mycomputer:90)
Localhost (for example, https://localhost:443)
Unix socket (for example, http://unix:/run/dan-live.sock)

Here is an example of how you could set those parameters:

 WebHost.PreferHostingUrls(true);
 WebHost.UseUrls("http://localhost:5000");

Finally, you can enable the integration of your applications with Application
Insights, an extensible application performance management service that allows
monitoring your applications during runtime and detecting performance anomalies,
as well as diagnosing issues and understanding what users do, by setting the
following parameter:

 WebHost.UseApplicationInsights();

Here is an example of a Program class, which includes all of the concepts shown
previously:

 public class Program
 {
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .CaptureStartupErrors(true)
 .UseStartup<Startup>()
 .PreferHostingUrls(true)
 .UseUrls("http://localhost:5000")
 .UseApplicationInsights()
 .Build();
 }

Working with the Startup class
Another autogenerated element, which exists in all types of ASP.NET Core 2.0
projects, is the Startup class. As you have seen previously, the Program class mainly
handles everything around the hosting environment. The Startup class is all about the
preloading and configuration of your services and middlewares. Those two classes
are the foundations of all ASP.NET Core 2.0 applications.

Let's look at the basic structure of the Startup class to get a better understanding of
what is provided and how to make best use of its functionalities:

 using Microsoft.AspNetCore.Builder;
 using Microsoft.AspNetCore.Hosting;
 using Microsoft.AspNetCore.Http;
 using Microsoft.Extensions.DependencyInjection;

 namespace TicTacToe
 {
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 }
 }
 }

There are two methods which should require your attention, since you will work with
them quite often:

The ConfigureServices method, called by the runtime and used to add services to
the container
The Configure method used to configure the HTTP pipeline

We said at the beginning of the chapter that we wanted more practical work, so let's
get back to our Tic-Tac-Toe game and see how to use the Startup class in a real
example!

We are going to use MVC for implementing the application, but since you have used
the empty ASP.NET Core 2.0 Web Application template, nothing has been added by
Visual Studio 2017 during project generation. You have to add everything by
yourself; what a wonderful opportunity for a better understanding of how everything
works!

The first thing to do is to add MVC to the services configuration. You do that by
using the ConfigureServices method and just adding the MVC middleware:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

You might say that this was too easy, so what's the catch? There is no catch!
Everything in ASP.NET Core 2.0 was developed around simplicity, clarity, and
developer productivity.

You can see this again when configuring your MVC middleware and setting the
routing path (we will explain routing in more detail later):

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

Again, very clear and short instructions that make our lives as developers easier and
more productive. It is a really good time to be a developer!

In the next step, you need to enable the usage of static content within your ASP.NET
Core 2.0 application for being able to use HTML, CSS, JavaScript, and images.

Do you know how to do that? Yes, you are right, you need to add another
middleware. You do that just like before by calling the corresponding app method:

 app.UseStaticFiles();

As a developer, you need to be able to analyze and understand HTML, CSS, and

JavaScript behavior and problems quickly. For that, ASP.NET Core 2.0 includes a
very handy feature called Browser Link. When enabled, it establishes a dedicated
communication channel between Visual Studio 2017 for improved developer
productivity.

Enabling Browser Link is really easy:

 app.UseBrowserLink();

Following is an example of a Startup.cs class you could use for the Tic-Tac-Toe
game after having configured the various service settings seen previously:

 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }

Preparing the basic project
structure
You surely want to see something running and to build the Tic-Tac-Toe game. Now
that we have defined how everything should work from a functional point of view,
we need to start by creating the basic project structure for the application.

For ASP.NET Core 2.0 web applications, it is best practice to have the following
project structure for your projects:

A Controllers folder, containing all of the controllers of your application.
A Services folder, containing all the services of your application (for example,
external communication services).
A Views folder, containing all of the views of your application. This folder
should contain a single Shared subfolder as well as one folder per controller.
A _ViewImports.cshtml file, to define some namespaces to be available in all
views.
A _ViewStart.cshtml file, to define some code to be executed at the start of each
view rendering (for example, set the layout page for all views).
A _Layout.cshtml file, to define a common layout for all of your views.

Let's create the project structure:

1. Start Visual Studio 2017, open the Tic-Tac-Toe ASP.NET Core 2.0 project you
have created, create three new folders called Controllers, Services, and Views, and
create a subfolder called Shared in the Views folder:

2. Create a new view page called _ViewImports.cshtml in the Views folder:

 @using TicTacToe
 @addTagHelper*, Microsoft.AspNetCore.Mvc.TagHelpers

3. Create a new view page called _ViewStart.cshtml in the Views folder:

 @{ Layout = "~/Views/Shared/_Layout.cshtml"; }

4. Right-click on the Views/Shared folder, select Add | New Item, enter Layout in the
search box, select MVC View Layout Page, and click on Add:

Note that the layout page concept will be detailed a little bit later in
this chapter, but don't worry too much, it is not a very complicated
concept.

Creating the Tic-Tac-Toe home
page
Since the basic project structure is now in place, we need to implement the different
components that need to work together to provide the Tic-Tac-Toe game web
application:

1. Update the Program.cs and Startup.cs files, as explained previously.
2. Add a new controller, right-click within the Solution Explorer on the Controllers

folder, then select Add | Controller:

3. In the Add Scaffold pop-up window, choose MVC Controller - Empty and
name your new controller HomeController:

4. Your MVC home controller gets autogenerated, containing a single method.
You now need to add a corresponding view by right-clicking on the Index
method name and selecting Add View from the menu:

5. The Add View window helps to define what needs to be generated. Leave the
default empty template and enable the usage of the layout page we are going to
modify in the next section of this chapter:

6. Congratulations, your view gets autogenerated and you can test your application
by pressing F5. We will finalize it later in this chapter:

Giving your web pages a more
modern look by using Bower and
layout pages
In the last section, you saw how to create a basic web page. Knowing how to do that
technically is one thing, but creating web applications that succeed is not only about
the technical implementation, it is also about how to make your application visually
appealing and user-friendly. While this book is not about web design and user
experiences, we want to give you some quick and easy means for building better web
applications in this regard.

For that, we advise using Bower (https://bower.io), the self-proclaimed Package
Manager of the Web, in conjunction with ASP.NET Core layout pages.

Bower has had some remarkable success in the web development community in the
last few years. It helps to install client-side packages with static content such as
HTML, CSS, JavaScript, fonts, and images, including their dependencies.

There is some great integration and support for Bower in Visual Studio 2017; you
just have to configure it correctly for using it efficiently. Let's see how to do that:

1. Right-click on the Tic-Tac-Toe project, select Add | New Item, enter Bower in
the search box, select Bower Configuration File, and click on Add:

2. Adding the Bower Configuration File should have added a bower.json file.

https://bower.io

Update this file with the following content:

 {
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "3.3.6",
 "jquery": "2.2.0",
 "jquery-validation": "1.14.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
 }

3. Adding the Bower Configuration File should have added a .bowerrc file. Update
this file and define the directory where the assets should be placed:

 {
 "directory": "wwwroot/lib"
 }

4. Right-click on the bower.json file and click on Restore Packages:

5. The client-side packages (bootstrap, jquery, and more) are downloaded into the
folder you have defined (wwwroot/lib). The static content can now be used within
your application:

6. In the wwwroot folder, create a folder called css. Add a new style sheet called
site.css within this folder:

 body {
 padding-top: 50px;
 padding-bottom: 20px;
 }

 /* Set padding to keep content from hitting the edges */
 .body-content {
 padding-left: 15px;
 padding-right: 15px;
 }

 /* Set width on the form input elements since they're 100% wide
 by default */
 input,
 select,
 textarea {
 max-width: 280px;
 }

 /* styles for validation helpers */
 .field-validation-error {
 color: #b94a48;
 }

 .field-validation-valid {
 display: none;
 }

 input.input-validation-error {
 border: 1px solid #b94a48;
 }

 input[type="checkbox"].input-validation-error {

 border: 0 none;
 }

 .validation-summary-errors {
 color: #b94a48;
 }

 .validation-summary-valid {
 display: none;
 }

A successful web application should have a common layout with a consistent user
experience when navigating from page to page. This is key for user adoption and
user satisfaction. ASP.NET Core layout pages are the right solution for that.

They can be used for defining templates for views in your web applications. All of
your views can either use the same template, or different templates can be used
depending on your specific needs.

We are going to use the updated layout page, as shown here, for our sample
application:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0" />
 <title>@ViewData["Title"] - TicTacToe</title>

 <environment include="Development">
 <link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet"
 href="https://ajax.aspnetcdn.com/ajax/bootstrap
 /3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only"
 asp-fallback-test-property="position" asp-fallback-test-
 value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css"
 asp-append-version="true" />
 </environment>
 </head>
 <body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target=".navbar-collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Home" asp-action="Index"
 class="navbar-brand">Tic-Tac-Toe
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home"
 asp-action="Index">Home
 <a asp-area="" asp-controller="Home"
 asp-action="About">About
 <a asp-area="" asp-controller="Home"
 asp-action="Contact">Contact

 </div>
 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - TicTacToe</p>
 </footer>
 </div>

 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment exclude="Development">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/
 jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+
 AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/
 3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery&&window.jQuery
 .fn&&window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA
 7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true">
 </script>
 </environment>

 @RenderSection("Scripts", required: false)
 </body>
 </html>

Before creating the user registration page in the next section, let's update the home
page created previously to show some basic information on the Tic-Tac-Toe game,

while using the layout page shown previously:

 @{
 ViewData["Title"] = "Home Page";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <div class="row">
 <div class="col-lg-12">
 <h2>Tic-Tac-Toe</h2>
 <div class="alert alert-info">
 <p>Tic-Tac-Toe is a two-player turn-based game.</p>
 <p>Two players will choose who takes the Xs and who
 takes the Os. They will then be taking turns and
 mark spaces in a 3×3 grid by putting their marks,
 one mark per turn.</p>
 <p>A player who succeeds in placing three of his
 marks in a horizontal, vertical, or diagonal row
 wins the game.</p>
 </div>
 <p>
 <h3>Register by clicking <a asp-controller="UserRegistration"
 asp-view="Index">here</h3>
 </p>
 </div>
 </div>

When starting the application, you will see the new home page design:

Creating the Tic-Tac-Toe user
registration page
You will now integrate the second component, the user registration page with its
form, which will allow new users to register to play the Tic-Tac-Toe game.

1. Add a new folder called Models to the project.
2. Add a new model by right-clicking on the Models folder in your project and

selecting Add | Class, and name it UserModel:

 public class UserModel
 {
 public Guid Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public string Password { get; set; }
 public bool IsEmailConfirmed { get; set; }
 public System.DateTime? EmailConfirmationDate { get; set; }
 public int Score { get; set; }
 }

3. Add a new controller and call it UserRegistrationController (if you do not know
how to do this, then refer to the Creating the Tic-Tac-Toe home page section).

4. Right-click on the method called Index and choose Add View. This time, select
the Create template, choose as Model the UserModel as mentioned in the previous
point, and enable the usage of the layout page:

Note that you can leave the layout page empty if you want to use the
_ViewStart.cshtml file in the Shared folder to define a unified common
layout for all your views.

The _ViewStart.cshtml file is used to share settings between views, while
the _ViewImports file is used to share using namespaces and inject
dependency injection instances. Visual Studio 2017 includes two
templates for these files.

5. Remove the autogenerated Id, IsEmailConfirmed, EmailConfirmationDate, and Score
elements from the view; we do not need them for the user registration form.

6. The view is now ready; display it by pressing on F5 and clicking on the
registration link on the home page:

Using dependency injection for
encouraging loose coupling within
your applications
One of the biggest problems when developing applications is inter-component
dependencies. These dependencies make it hard to maintain and evolve your
components individually because modifications might badly impact other dependent
components. But be assured, there are mechanisms that allow those dependencies to
be broken up, one of them being dependency injection (DI).

Dependency injection allows components to work together, while providing loose
coupling. A component only needs to know the contract implemented by another
component to work with it. With a DI container, components are not directly
instantiated nor are static references used for finding an instance of another
component. Instead, it is the responsibility of the DI container to retrieve the correct
instance during runtime.

When a component is designed with DI in mind, it is very evolutive by default and is
not dependent on any other components or behaviors. For example, an authentication
service can use providers for authentication that uses DI, and if new providers are
added, existing ones will not be impacted.

ASP.NET Core 2.0 includes a very simple built-in DI container, which supports
constructor injection. To make a service available for the container, you have to add
it within the ConfigureService method of the Startup class. Without knowing it, you
have already done that before for MVC:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

In fact, you have to do the same thing for your own custom services, you have to
declare them within this method. This is really easy to do when you know what you
are doing!

However, there are multiple ways of injecting your services and you need to choose
which one best applies to your needs:

Transient injection: Creates an instance for each time the method is called (for
example, stateless services):

 services.AddTransient<IExampleService, ExampleService>();

Scoped injection: Creates an instance once per request pipeline (for example,
stateful services):

 services.AddScoped<IExampleService, ExampleService>();

Singleton injection: Creates one single instance for the whole application:

 services.AddSingleton<IExampleService, ExampleService>();

Note that you should add the instances for your services by yourself if
you do not want the container to automatically dispose of them. The
container will call the Dispose method of each service instance it creates
by itself.

Here is an example of how to instantiate your services by yourself:
services.AddSingleton(new ExampleService());

Now that you understand how to use DI, let's apply your knowledge and create the
next component for our sample application.

Creating the Tic-Tac-Toe user
service
We have created a home page as well as a user registration page. Users can click on
the register link and fill out a registration form, but the form data is not yet processed
in any way. We are going to add a user service that will have the responsibility of
processing user-related tasks, such as user registration requests. Furthermore, you are
going to apply some of the ASP.NET Core 2.0 DI mechanisms seen previously:

1. Add a new class called UserService.cs to the Services folder.
2. Add a new method for user registration, with the model created in the last

section as a parameter:

 public class UserService
 {
 public Task<bool>RegisterUser(UserModel userModel)
 {
 return Task.FromResult(true);
 }
 }

3. Right-click on the class and choose Quick Actions and Refactorings, then click
on Extract Interface:

4. Leave all of the default values in the pop-up window and click on OK:

5. Visual Studio 2017 will generate a new file called IUserService.cs containing the
extracted interface definition, as shown here:

 public interface IUserService

 {
 Task<bool>RegisterUser(UserModeluserModel);
 }

6. Update the UserRegistrationController created previously and apply the
constructor injection mechanism:

 public class UserRegistrationController : Controller
 {
 private IUserService _userService;
 public UserRegistrationController(IUserService userService)
 {
 _userService = userService;
 }

 public IActionResult Index()
 {
 return View();
 }
 }

7. Add some simple code for processing the user registration within the
UserRegistrationController (we are adding validation later in the chapter):

 [HttpPost]
 public async Task<IActionResult> Index(UserModel userModel)
 {
 await _userService.RegisterUser(userModel);
 return Content($"User {userModel.FirstName}
 {userModel.LastName} has been registered sucessfully");
 }

8. Go to the Startup class and declare the UserService within the ConfigureServices
method to make it available to the application:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 services.AddSingleton<IUserService, UserService>();
 }

9. Test your application by pressing F5, filling out the registration page, and then
clicking on OK. You should get the following output:

Very good, you have already created multiple components of the Tic-Tac-Toe

application, very good progress! Please stay sharp, since the next section is very
important, as it explains middlewares in detail.

Working with middlewares
As you have seen before, the Startup class is responsible for adding and configuring
middlewares in your ASP.NET Core 2.0 applications. But what is middleware?
When and how do you use it and how do you create your own middlewares? Those
are all the questions we are going to discuss now.

Essentially, multiple middlewares compose the functionalities of your ASP.NET
Core 2.0 applications. Even the most basic functionalities such as serving up static
content are performed by them, as you might have noticed by now.

Middlewares are part of the ASP.NET Core 2.0 request pipeline for handling
requests and responses. When they are chained together, they can pass incoming
requests from one to another and perform actions before and after the next
middleware is called within the pipeline:

Using middlewares allows your applications to be more flexible and evolutive, since
you can add and remove middlewares easily in the Configure method of the Startup
class.

Furthermore, the order in which you call the middlewares in the Configure method is
the order in which they are going to get invoked. It is advised to call middlewares in
the following order to assure better performance, functionality, and security:

1. Exception handling middlewares.
2. Static files middlewares.

3. Authentication middlewares.
4. MVC middlewares.

If you do not call them in this order, you might get some unexpected behavior and
even errors, since middleware actions might be applied too late or too early within
the request pipeline.

For example, if you do not call the Exception Handling Middleware first, you
might not catch all of the exceptions that occur before its invocation. Another
example is when you call the Response Compression Middleware after the Static
Files Middleware. In this case, your static files will not be compressed, which might
not be the desired behavior. So, take care of the ordering of your middleware calls; it
can make a huge difference.

The following are some of the built-in middlewares you can use in your applications
(the list is not exhaustive; there are many more):

Authentication OAuth 2 and OpenID authentication, based on the newest
version of IdentityModel

CORS Cross-origin resource sharing protection, based on HTTP
headers

Response
caching HTTP response caching

Response
compression HTTP responses gzip compression

Routing HTTP request routing framework

Session Basic local and distributed session object management

Static files HTML, CSS, JavaScript, and image support including
directory browsing

URL rewriting URL SEO optimization and rewriting

The built-in middlewares will be sufficient for the most basic requirements and
standard use cases, but you will surely need to create your own middlewares. There
are two ways of doing that: creating them inline in the Startup class or creating them
within a self-contained class.

Let's look at how to define inline middlewares first; here are the methods available:

Run

Map

MapWhen

Use

The Run method is used to add middleware and immediately return a response, thus
short-circuiting the request pipeline. It does not call any of the following
middlewares and ends the request pipeline. It is therefore advised to place it at the
end of your middleware calls (see middleware ordering, discussed previously).

The Map method allows for executing a certain branch and adding the corresponding
middleware if the request path starts with a specific path, which means you can
effectively branch the request pipeline.

The MapWhen method provides basically the same concept of branching the request
pipeline and adding a specific middleware, but with control over the branching
conditions, since it is based on the result of a Func<HttpContext, bool> predicate.

The Use method adds middleware and allows either calling the next middleware in
line or short-circuiting the request pipeline. However, if you want to pass on the
request after executing a specific action, you have to call the next middleware
manually by using next.Invoke with the current context as a parameter.

Here are some examples of how to use these extension methods:

 private static void ApiPipeline(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Branched to Api Pipeline.");
 });
 }

 private static void WebPipeline(IApplicationBuilder app)
 {
 app.MapWhen(context =>
 {
 return context.Request.Query.ContainsKey("usr");
 }, UserPipeline);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Branched to Web Pipeline.");
 });
 }

 private static void UserPipeline(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Branched to User Pipeline.");
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironmentenv)
 {
 app.Map("/api", ApiPipeline);
 app.Map("/web", WebPipeline);

 app.Use(next =>async context =>
 {
 await context.Response.WriteAsync("Called Use.");
 await next.Invoke(context);
 });

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Finished with Run.");
 });
 }

As shown before, you can create your middlewares inline, but this is not
recommended for more advanced scenarios. We advise you to put your middlewares
in self-contained classes in this case, and the process for doing so is really easy.
Middleware is just a class with a certain structure, which is exposed via an extension
method.

Let's create a basic communication middleware for the Tic-Tac-Toe application:

1. Create a new folder called Middlewares within your project, then add a new class

called CommunicationMiddleware.cs, using the following code:

 public class CommunicationMiddleware
 {
 private readonly RequestDelegate _next;
 private readonly IUserService _userService;

 public CommunicationMiddleware(RequestDelegate next,
 IUserService userService)
 {
 _next = next;
 _userService = userService;
 }

 public async Task Invoke(HttpContext context)
 {
 await _next.Invoke(context);
 }
 }

2. Create a new folder called Extensions within your project, then add a new class
called CommunicationMiddlewareExtension.cs, with the following code:

 public static class CommunicationMiddlewareExtension
 {
 public static IApplicationBuilder
 UseCommunicationMiddleware(this IApplicationBuilder app)
 {
 return app.UseMiddleware<CommunicationMiddleware>();
 }
 }

3. Add a using directive for TicTacToe.Extensions in the Startup class, then add the
Communication Middleware in the Configure method:

 using TicTacToe.Extensions;
 ...
 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env)
 {
 ...
 app.UseCommunicationMiddleware();
 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }

4. Set some breakpoints in the Communication Middleware implementation and
start the application by pressing F5. You will see that the breakpoints will be hit
if everything is working correctly:

This is just a basic example of how to create your own middleware; there are no
functional changes visible between this section and the others. You are going to
further implement the various functionalities for finalizing the Tic-Tac-Toe
application in the next chapters, and the communication middleware seen in this
chapter is going to do some real work shortly.

Working with static files
When working with web applications, most of the time, you have to work with
HTML, CSS, JavaScript, and images, which are considered static files by ASP.NET
Core 2.0.

Access to these files is not available by default, but you saw what needs to be done
to allow static files to be used within your applications at the beginning of the
chapter. In fact, you must add and configure the corresponding middleware in the
Startup class to be able to serve static files:

 app.UseStaticFiles();

Note that by default all static files served by this middleware are public
and anyone can access them. If you need to protect some of your files,
you need to either store them outside the wwwroot folder or you need to
use the FileResult controller action, which supports the authorization
middleware.

Furthermore, directory browsing is disabled by default for security reasons. You can,
however, activate it easily if you need to allow users to see folders and files:

1. Add the DirectoryBrowsingMiddleware in the ConfigureService method of the Startup
class right after calling the AddMvc() method:

 services.AddDirectoryBrowser();

2. From within the Configure method of the Startup class, call the
UseDirectoryBrowser method (after calling the UseCommunicationMiddleware method)
to activate directory browsing:

 app.UseDirectoryBrowser();

3. Remove the call to the UseDirectoryBrowser method from the Startup class; we do
not need it for the sample application

Using routing, URL redirection, and
URL rewriting
When building applications, routing is used for mapping incoming requests to route
handlers (URL matching) and for generating URLs for the responses (URL
generation).

The routing capabilities of ASP.NET Core 2.0 combine and unify the routing
capabilities of MVC and Web API that have existed before. They have been rebuilt
from the ground up to create a common routing framework with all of the various
features in a single place, available to all types of ASP.NET Core 2.0 projects.

Let's look at how routing works internally to better understand how it can be useful
in your applications and how to apply it to our Tic-Tac-Toe example.

For each received request, a matching route is retrieved, based on the request URL.
Routes are processed in the order they appear within the route collection.

To be more specific, incoming requests are dispatched to the corresponding handlers.
Most of the time this is done based on data in the URL, but you could also use any
data in your requests for more advanced scenarios.

If you are using the MVC middleware, you can define and create your routes in the
Startup class, as shown at the beginning of the chapter. This is the easiest way for
getting started with URL matching and URL generation:

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

There is also a dedicated routing middleware that you can use for working with
routing in your applications, which you have seen in the previous section on
middleware. You just have to add it in the Startup class:

 public void ConfigureServices(IServiceCollection services)
 {

 services.AddRouting();
 }

Here is an example of how to use it to call the UserRegistration service in the Startup
class:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 services.AddSingleton<IUserService, UserService>();
 services.AddRouting();
 }
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }
 app.UseStaticFiles();
 var routeBuilder = new RouteBuilder(app);
 routeBuilder.MapGet("CreateUser", context =>
 {
 var firstName = context.Request.Query["firstName"];
 var lastName = context.Request.Query["lastName"];
 var email = context.Request.Query["email"];
 var password = context.Request.Query["password"];
 var userService =
 context.RequestServices.GetService<IUserService>();
 userService.RegisterUser(new UserModel { FirstName = firstName,
 LastName = lastName, Email = email, Password = password });
 return context.Response.WriteAsync($"User {firstName}
 {lastName} has been sucessfully created.");
 });
 var newUserRoutes = routeBuilder.Build();
 app.UseRouter(newUserRoutes);
 app.UseCommunicationMiddleware();
 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 app.UseStatusCodePages("text/plain",
 "HTTP Error - Status Code: {0}");
 }

If you call it with some query string parameters, you will get the following result:

Another important middleware is the URL Rewriting Middleware. It provides URL
redirection and URL rewriting functionalities. However, there is a crucial difference
between both that you need to understand.

URL redirection requires a round-trip to the server and is done on the client side. The
client first receives a moved permanently 301 or moved temporary 302 HTTP status
code, which indicates the new redirection URL to be used. Then, the client calls the
new URL to retrieve the requested resource, so it will be visible to the client.

URL rewriting, on the other hand, is purely server side. The server will internally
retrieve the requested resource from a different resource address. The client will not
know that the resource has been served from another URL, as it is not visible to the
client.

Coming back to the Tic-Tac-Toe application, we can use URL rewriting to give a
more meaningful URL for registering new users. Instead of using
UserRegistration/Index, we can use a much shorter URL, such as /NewUser:

 var options = new RewriteOptions()
 .AddRewrite("NewUser", "/UserRegistration/Index", false);
 app.UseRewriter(options);

Here, the user thinks that the page has been served from /NewUser, while in reality it
has been served from /UserRegistration/Index without the user noticing:

Adding error handling to your
applications
When developing applications, the question is not if errors and bugs will occur, but
when they will occur. Building applications is a very complex task and it is nearly
impossible to think about all of the cases that might occur during runtime. And even
if you think you have thought about everything, then the environment is not
behaving as expected, for example, a service is not available or processing a request
is taking much more time than expected.

You have two solutions to this problem, which need to be applied at the same time—
unit tests and error handling. Unit tests will assure the correct behavior during
development time from an application point of view, while error handling helps you
to be prepared during runtime for environmental issues. We are going to look at how
to add efficient error handling to your ASP.NET Core 2.0 applications in this
section.

By default, if there is no error handling at all and if an exception occurs, your
application will just stop, users will not be able to use it anymore, and in the worst
case scenario, there will be an interruption of service.

The first thing to do during development time is to activate the default development
exception page; it displays detailed information on exceptions that occur. You have
already seen how to do this at the beginning of the chapter:

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

On the default development exception page, you can deep dive into the raw
exception details for analyzing the stack trace. You have multiple tabs that allow you
to look at query string parameters, client-side cookies, and request headers.

Those are some powerful indicators for better understanding what has happened and
why it has happened. They should help you pinpoint problems and resolve issues
more quickly during development time.

The following is an example of what happens if an exception has occurred:

However, it is not recommended to use the default development exception page in
production environments because it contains too much information about your
system, which could be used to compromise your system.

For production environments, it is advised to configure a dedicated error page with
static content. In the following example, you can see that the default development
exception page is used during development time and that a specific error page is
displayed if the application is configured to run in a non-development environment:

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

By default, no information is displayed in case of HTTP error codes between 400 and
599. This includes, for example, 404 (not found) and 500 (internal server error). Users
will just see a blank page, which is not very user-friendly.

You should activate the specific UseStatusCodePages middleware in the Startup class. It
will help you to customize what needs to be displayed in this case. Meaningful

information will help users to better understand what happens within your
applications and will lead to better customer satisfaction.

The most basic configuration could be to just display a text message:

 app.UseStatusCodePages("text/plain", "HTTP Error - Status Code: {0}");

But, you can go even further. For instance, you can redirect to specific error pages
for specific HTTP error status codes.

The following example shows how to send a moved temporary 302 (found) HTTP
status code to the client and then redirect them to a specific error page:

 app.UseStatusCodePagesWithRedirects("/error/{0}");

This example shows how to return the original HTTP status code to the client and
then redirect them to a specific error page:

 app.UseStatusCodePagesWithReExecute("/error/{0}");

You can disable HTTP status code pages for specific requests as shown
here:

var statusCodePagesFeature =
 context.Features.Get<IStatusCodePagesFeature>();
 if (statusCodePagesFeature != null)
 {
 statusCodePagesFeature.Enabled = false;
 }

Now that we have seen how to handle errors on the outside, let's look at how to
handle them on the inside, within your applications.

If we go back to the UserRegisterController implementation, we can see that it has
multiple flaws. What if the fields have not been filled in correctly or not at all? What
if the model definition has not been respected? For now, we do not require anything
and we do not validate anything.

Let's fix that and see how to build an application that is more robust:

1. Update the UserModel, use decorators to set some properties as required, and
require a certain data type:

 public class UserModel
 {
 public Guid Id { get; set; }
 [Required()]
 public string FirstName { get; set; }
 [Required()]
 public string LastName { get; set; }
 [Required(), DataType(DataType.EmailAddress)]
 public string Email { get; set; }
 [Required(), DataType(DataType.Password)]
 public string Password { get; set; }
 public bool IsEmailConfirmed { get; set; }
 public System.DateTime? EmailConfirmationDate { get; set; }
 public int Score { get; set; }
 }

2. Update the specific Index method within the UserRegistrationController, then add
the ModelState validation code:

 [HttpPost]
 public async Task<IActionResult> Index(UserModel userModel)
 {
 if (ModelState.IsValid)
 {
 await _userService.RegisterUser(userModel);
 return Content($"User {userModel.FirstName}
 {userModel.LastName} has been registered sucessfully");
 }
 return View(userModel);
 }

3. If you do not fill the required fields or you give an incorrect email address and
click on OK, you will now get a corresponding error message:

Summary
In this chapter, you have learned about some of the basic concepts of ASP.NET 2.0.
There was much to understand and much to see, and we hope you have had some fun
trying everything out by yourself. You have surely made some tremendous progress!

At the beginning, you created the Tic-Tac-Toe project; then, you started
implementing its different components. We explored the Program and Startup classes,
saw how to use Bower and layout pages, learned how to apply dependency injection,
and used static files.

Furthermore, we introduced middleware and routing for more advanced scenarios.
At the end, we illustrated how to add efficient error handling to your applications via
a practical example.

In the next chapter, we will continue and introduce additional concepts such as
WebSockets, globalization, localization, and configuration, as well as building once
and running on multiple environments.

Basic Concepts of ASP.NET Core
2.0 - Part 2
The previous chapter gave you some insights into the various functionalities and
features you have at your disposal when using ASP.NET Core 2.0 for building
efficient and more maintainable web applications. We have explained some of the
basic concepts and you have seen multiple examples of how to apply them to a real-
world application called Tic-Tac-Toe.

You have progressed quite nicely so far, since you have assimilated how ASP.NET
Core 2.0 applications are internally structured, how to configure them correctly, and
how to extend them with custom behaviors, which is key for building your own
applications in the future.

But let's not stop there! You are now going to discover how to best implement the
missing components, evolve the existing ones even further, and add client-side code
to allow you to have a fully-running end-to-end Tic-Tac-Toe application at the end of
this chapter.

In this chapter, we will cover the following topics:

Optimizing client-side development using JavaScript, bundling, and
minification
Working with WebSockets for real-time communication scenarios
Taking advantage of session and user cache management
Applying globalization and localization for multi-lingual user interfaces
Configuring your applications and services
Using logging and telemetry for monitoring and supervision purposes
Implementing advanced dependency injection concepts
Building once and running on multiple environments

Client-side development using
JavaScript
In the previous chapter, you created a home page and a user registration page using
the MVC pattern. You implemented a controller (UserRegistrationController) as well
as a corresponding view for processing user registration requests. You then added a
service (UserService) and middleware (CommunicationMiddleware), but we have just
started, so they are not finished yet.

When comparing with the initial workflow of the Tic-Tac-Toe application, we can
see that there are still multiple things missing, such as the whole client-side part,
really working with the Communication Middleware, as well as multiple other
features we still need to implement.

Let's start by working on the client-side part and see how to apply more advanced
techniques. Then, you will learn how to optimize everything as best as possible.

If you remember, last time, we stopped after a user had submitted his data to the
registration form, which was sent to the UserService. We then just displayed a plain
text message, as follows:

But, the processing is not finished here. We need to add the whole email
confirmation process using client-side development and JavaScript, and that is what
we are going to do next:

1. Start Visual Studio 2017 and open the Tic-Tac-Toe project. Add a new method
called EmailConfirmation to the UserRegistrationController:

 [HttpGet]
 public IActionResult EmailConfirmation (string email)
 {
 ViewBag.Email = email;
 return View();
 }

2. Right-click on the EmailConfirmation method and generate the corresponding
view and update it with some meaningful information:

 @{
 ViewData["Title"] = "EmailConfirmation";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <h2>EmailConfirmation</h2>
 An email has been sent to @ViewBag.Email, please confirm your
 email address by clicking on the provided link.

3. Go to the UserRegistrationController and modify the Index method to redirect to
the EmailConfirmation method from the previous step instead of returning the text
message:

 [HttpPost]
 public async Task<IActionResult> Index(UserModel userModel)
 {
 if (ModelState.IsValid)
 {

 await _userService.RegisterUser(userModel);
 return RedirectToAction(nameof(EmailConfirmation),
 new { userModel.Email });
 }
 else
 {
 return View(userModel);
 }
 }

4. Start the application by pressing F5 and register a new user and verify that the
new EmailConfirmation page is displayed correctly:

Very good, you have implemented the first set of modifications necessary to finalize
the user registration process. In the next part, we need to check that the user has
confirmed his email address. Let's see how to do that next:

1. Add two new methods, GetUserByEmail and UpdateUser, to the IUser interface.
These will be used for handling the email confirmation updates:

 public interface IUserService
 {
 Task<bool> RegisterUser(UserModel userModel);
 Task<UserModel> GetUserByEmail(string email);
 Task UpdateUser(UserModel user);
 }

2. Implement the new methods, use a static ConcurrentBag to persist the UserModel,
and modify the RegisterUser method in the UserService, as follows:

 public class UserService : IUserService
 {
 private static ConcurrentBag<UserModel> _userStore;

 static UserService()
 {
 _userStore = new ConcurrentBag<UserModel>();
 }

 public Task<bool> RegisterUser(UserModel userModel)

 {
 _userStore.Add(userModel);
 return Task.FromResult(true);
 }

 public Task<UserModel> GetUserByEmail(string email)
 {
 return Task.FromResult(_userStore.FirstOrDefault(
 u => u.Email == email));
 }

 public Task UpdateUser(UserModel userModel)
 {
 _userStore = new ConcurrentBag<UserModel>
 (_userStore.Where(u => u.Email != userModel.Email))
 {
 userModel
 };
 return Task.CompletedTask;
 }
 }

3. Add a new model called GameInvitationModel. This will be used for game
invitations after successful user registration:

 public class GameInvitationModel
 {
 public Guid Id { get; set; }
 public string EmailTo { get; set; }
 public string InvitedBy { get; set; }
 public bool IsConfirmed { get; set; }
 public DateTime ConfirmationDate { get; set; }
 }

4. Add a new controller called GameInvitationController and update its Index method
for automatically setting the InvitedBy property:

 public class GameInvitationController : Controller
 {
 private IUserService _userService;
 public GameInvitationController(IUserService userService)
 {
 _userService = userService;
 }

 [HttpGet]
 public async Task<IActionResult> Index(string email)
 {
 var gameInvitationModel = new GameInvitationModel {
 InvitedBy = email };
 return View(gameInvitationModel);
 }
 }

5. Generate a corresponding view by right-clicking on the Index method, while
selecting the Create template and using as the Model class the

GameInvitationModel from before:

6. Modify the auto-generated view, remove all unnecessary input controls, and
leave only the EmailTo input control:

 @model TicTacToe.Models.GameInvitationModel
 @{
 ViewData["Title"] = "Index";
 }
 <h4>GameInvitationModel</h4>
 <hr />
 <div class="row">
 <div class="col-md-4">
 <form asp-action="Index">
 <input type="hidden" asp-for="Id" />
 <input type="hidden" asp-for="InvitedBy" />
 <div asp-validation-summary="ModelOnly"
 class="text-danger"></div>
 <div class="form-group">
 <label asp-for="EmailTo" class="control-label"></label>
 <input asp-for="EmailTo" class="form-control" />
 <span asp-validation-for="EmailTo"
 class="text-danger">
 </div>
 <div class="form-group">
 <input type="submit" value="Create"
 class="btn btn-default" />
 </div>
 </form>
 </div>
 </div>

7. Now, update the EmailConfirmation method in the UserRegistrationController. The
user has to be redirected to the GameInvitationController after his email has been

confirmed, and, as you can see, we are going to simulate the effective
confirmation in the code for now:

 [HttpGet]
 public async Task<IActionResult> EmailConfirmation(string email)
 {
 var user = await _userService.GetUserByEmail(email);
 if (user?.IsEmailConfirmed == true)
 return RedirectToAction("Index", "GameInvitation",
 new { email = email });

 ViewBag.Email = email;
 user.IsEmailConfirmed = true;
 user.EmailConfirmationDate = DateTime.Now;
 await _userService.UpdateUser(user);
 return View();
 }

8. Start the application by pressing F5, register a new user, and verify that the
Email Confirmation page is displayed as before. In Microsoft Edge, press F5 to
reload the page, and if everything is working as expected, you should now be
redirected to the Game Invitation page:

Great, some more progress! Everything is working up until the game invitation now,
but unfortunately, there is still user intervention necessary. The user has to manually
refresh the Email Confirmation page by pressing F5 until his email has been
confirmed; only then is he redirected to the Game Invitation page.

The entire refresh process must be automated and optimized in the next step. Your
options are:

Place a HTML meta refresh tag in the head section of the page
Use simple JavaScript, which does the refresh programmatically
Implement XMLHttpRequest (XHR) using jQuery

HTML3 has introduced the meta refresh tag for automatically refreshing pages after
a certain amount of time. However, this method is not advisable because it creates a
high server load, and a security setting in Microsoft Edge may completely deactivate
it and some ad blockers will stop it from working. So, if you use it, you cannot be
sure that it is going to work correctly.

Using simple JavaScript might very well automate the page refresh
programmatically, but it has mainly the same flaws and is, therefore, neither
recommended.

XHR is what we are really looking for, as it provides exactly what we need for our
Tic-Tac-Toe application. It allows for:

Updating web pages without reloading them
Requesting and receiving data from the server even after page load
Sending data to the server in the background

You are now going to use XHR for automating and optimizing the client-side
implementation of the user registration email confirmation processing. The steps for
doing so are as follows:

1. Create a new folder called app in the wwwroot folder (this folder will contain all
the client-side code in the following steps) and create a subfolder within this
folder called js.

2. Add a new JavaScript file called scripts1.js in the wwwroot/app/js folder, with the
following content:

 var interval;
 function EmailConfirmation(email) {
 interval = setInterval(() => {
 CheckEmailConfirmationStatus(email);
 }, 5000);
 }

3. Add a new JavaScript file called scripts2.js in the wwwroot/app/js folder, with the
following content:

 function CheckEmailConfirmationStatus(email) {
 $.get("/CheckEmailConfirmationStatus?email=" + email,
 function (data) {
 if (data === "OK") {
 if (interval !== null)
 clearInterval(interval);

 alert("ok");
 }
 });
 }

4. Open the layout page in the Views\Shared_Layout.cshtml file and add a new
Development environment element before the closing body tag (it is best practice to
put it there):

 <environment include="Development">
 <script src="~/app/js/scripts1.js"></script>
 <script src="~/app/js/scripts2.js"></script>
 </environment>

5. Update the Invoke method in the Communication Middleware and add a new
method called ProcessEmailConfirmation, which is going to simulate the email
confirmation:

 public async Task Invoke(HttpContext context)
 {
 if (context.Request.Path.Equals(
 "/CheckEmailConfirmationStatus"))
 {
 await ProcessEmailConfirmation(context);
 }
 else
 {
 await _next?.Invoke(context);
 }
 }

 private async Task ProcessEmailConfirmation(
 HttpContext context)
 {
 var email = context.Request.Query["email"];
 var user = await _userService.GetUserByEmail(email);

 if (string.IsNullOrEmpty(email))
 {
 await context.Response.WriteAsync("BadRequest:Email is
 required");
 }
 else if (
 (await _userService.GetUserByEmail(email)).IsEmailConfirmed)
 {
 await context.Response.WriteAsync("OK");
 }
 else
 {
 await context.Response.WriteAsync(
 "WaitingForEmailConfirmation");
 user.IsEmailConfirmed = true;
 user.EmailConfirmationDate = DateTime.Now;
 _userService.UpdateUser(user).Wait();

 }
 }

6. Update the EmailConfirmation view by adding at the bottom of the page a call to
the JavaScript EmailConfirmation function from the previous step:

 @section Scripts
 {
 <script>
 $(document).ready(function () {
 EmailConfirmation('@ViewBag.Email');
 });
 </script>
 }

7. Update the EmailConfirmation method in the UserRegistrationController. Since the
Communication Middleware is now going to simulate the effective email
confirmation, remove the following lines:

 user.IsEmailConfirmed = true;
 user.EmailConfirmationDate = DateTime.Now;
 await _userService.UpdateUser(user);

8. Start the application by pressing F5 and register a new user. You will see a
JavaScript alert box returning WaitingForEmailConfirmation, and after some time,
another with OK:

9. Now, you have to update the CheckEmailConfirmationStatus method in the
scripts2.js file to redirect in case of a confirmed email. For that, remove the
alert("OK"); instruction and add the following instruction in its place:

 window.location.href = "/GameInvitation?email=" + email;

10. Start the application by pressing F5 and register a new user. Everything should

be automated and you should automatically be redirected to the Game
Invitation page at the end:

Note that if you still see the alert box even though you have updated the
project in Visual Studio, you might have to delete the cached data in
your browser to have the JavaScript refreshed correctly in your
browser and see the new behavior.

Optimizing your web applications
and using bundling and
minification
As you saw in Chapter 4, Basic Concepts of ASP.NET Core 2.0 - Part 1, we have
chosen the community-proven Bower as a client-side package manager. We have left
the bower.json file untouched, which means that we have restored the four default
packages and added some references within the ASP.NET Core 2.0 Layout Page to
use them:

In today's world of modern web application development, it is best practice to
separate client-side JavaScript code and CSS style sheets into multiple files during
development. But, having so many files may lead to performance and bandwidth
problems during runtime in production environments.

That is why during the build process, everything must be optimized before
generating the final release packages, which means that JavaScript and CSS files
must be bundled and minified. TypeScript and CoffeeScript files must be
transcompiled into JavaScript.

Bundling and minification are two techniques you can use for improving the overall
page load performance of your web applications. Bundling allows for combining
multiple files into a single file, whereas minification optimizes the code of your
JavaScript and CSS files for smaller payloads. They work together to reduce the
number of server requests as well as the overall request size.

ASP.NET Core 2.0 supports different solutions for bundling and minification:

Visual Studio extension Bundler & Minifier

Gulp
Grunt

Let's see how to bundle and minify multiple JavaScript files in the Tic-Tac-Toe
project by using the Visual Studio extension Bundler & Minifier together with
the bundleconfig.json file:

1. In the top menu select Tools | Extensions and Updates, click on Online, enter
Bundler & Minifier in the search box, select Bundler & Minifier, and finally,
click on Download:

2. Close Visual Studio; the installation will continue. Next, click on Modify:

3. Restart Visual Studio. You are now going to optimize the number of opened
connections as well as the bandwidth usage by bundling and minifying. For
that, add a new JSON file called bundleconfig.json to the project.

4. Update the bundleconfig.json file for bundling the two JavaScript files into a
single one called site.js and for minifying the site.css and site.js files:

 [
 {
 "outputFileName": "wwwroot/css/site.min.css",
 "inputFiles": [
 "wwwroot/css/site.css"
]
 },
 {
 "outputFileName": "wwwroot/js/site.js",
 "inputFiles": [
 "wwwroot/app/js/scripts1.js",
 "wwwroot/app/js/scripts2.js"
],
 "sourceMap": true,
 "includeInProject": true
 },
 {
 "outputFileName": "wwwroot/js/site.min.js",
 "inputFiles": [
 "wwwroot/js/site.js"
],
 "minify": {
 "enabled": true,
 "renameLocals": true
 },
 "sourceMap": false
 }
]

5. Right-click on the project and select Bundler & Minifier | Update Bundles:

6. When looking in the Solution Explorer, you can see that two new files called
site.min.css and site.min.js have been generated.

7. When looking in the Task Runner Explorer, you can see the bundling and
minifying process you have configured for the project:

8. Right-click on Update all files and select Run. You can now see and understand
what the process is doing in more detail:

9. Schedule the process for execution after each build by right-clicking on Update
all files and selecting Bindings | After build. A new file called
bundleconfig.json.bindings gets generated, and if you remove the wwwroot/js
folder and rebuild the project, the files are auto-generated.

10. To see the newly-generated files in action, go to the Debug tab in the project
settings and set the ASPNETCORE_ENVIRONMENT variable to Staging and save:

11. Start the application by pressing F5, open the Developer Tools by pressing F12
in Microsoft Edge, and redo the registration process. You will see that only the
bundled and minified site.min.css and site.min.js files have been loaded and
that load times are faster:

OK, now that we know how to implement the client side and benefit from bundling
and minification in modern web application development, let's return to the Tic-Tac-
Toe game and optimize it even further and add the missing components.

Working with WebSockets for real-
time communication scenarios
At the end of the previous section, everything was working fully automated as
expected. However, there is still some room for additional improvements.

As it is, the client side sends periodical requests to the server side to see if the email
confirmation status has changed. This may lead to a lot of requests to see if there has
been a status change or not.

Furthermore, the server side cannot inform the client side as soon as an email has
been confirmed, since it has to wait for a client request to respond to.

In this section, you will learn about the concepts of WebSockets (https://docs.microso
ft.com/en-us/aspnet/core/fundamentals/websockets), and how they will allow you to
further optimize your client-side implementations.

WebSockets enables persistent two-way communication channels over TCP, which
is especially interesting for applications that need to run real-time communication
scenarios (chat, stock tickers, games, and more). And it just so happens that our
application is a game, which is one of the main application types that largely benefit
from working directly with a socket connection.

Note that you could also consider SignalR as an alternative. At the time
of writing this book, the SignalR Core version was not yet available.
However, it could be available after publication, so you should look it
up and use it instead if it is available. It will provide a better solution
for real-time communication scenarios and encapsulate some of the
functionalities missing from WebSockets you might have implemented
for yourself manually.

You can look it up at https://github.com/aspnet/SignalR.

Let's optimize the client-side implementation of the Tic-Tac-Toe application by
using WebSockets for real-time communication:

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/websockets
https://github.com/aspnet/SignalR

1. Go to the Tic-Tac-Toe Startup class in the Configure method and add the
WebSockets Middleware just before the Communication Middleware and the
MVC Middleware (remember that the middleware invocation order is important
for assuring correct behavior):

 app.UseWebSockets();
 app.UseCommunicationMiddleware();
 ...

2. Update the Communication Middleware and add two new methods called
SendStringAsync and ReceiveStringAsync for WebSockets communication:

 private static Task SendStringAsync(WebSocket socket,
 string data, CancellationToken ct = default(CancellationToken))
 {
 var buffer = Encoding.UTF8.GetBytes(data);
 var segment = new ArraySegment<byte>(buffer);
 return socket.SendAsync(segment, WebSocketMessageType.Text,
 true, ct);
 }

 private static async Task<string> ReceiveStringAsync(
 WebSocket socket, CancellationToken ct =
 default(CancellationToken))
 {
 var buffer = new ArraySegment<byte>(new byte[8192]);
 using (var ms = new MemoryStream())
 {
 WebSocketReceiveResult result;
 do
 {
 ct.ThrowIfCancellationRequested();

 result = await socket.ReceiveAsync(buffer, ct);
 ms.Write(buffer.Array, buffer.Offset, result.Count);
 }
 while (!result.EndOfMessage);

 ms.Seek(0, SeekOrigin.Begin);
 if (result.MessageType != WebSocketMessageType.Text)
 throw new Exception("Unexpected message");

 using (var reader = new StreamReader(ms, Encoding.UTF8))
 {
 return await reader.ReadToEndAsync();
 }
 }
 }

3. Update the Communication Middleware and add a new method called
ProcessEmailConfirmation for email confirmation processing via WebSockets:

 public async Task ProcessEmailConfirmation(HttpContext context,
 WebSocket currentSocket, CancellationToken ct, string email)
 {

 UserModel user = await _userService.GetUserByEmail(email);
 while (!ct.IsCancellationRequested &&
 !currentSocket.CloseStatus.HasValue &&
 user?.IsEmailConfirmed == false)
 {
 if (user.IsEmailConfirmed)
 {
 await SendStringAsync(currentSocket, "OK", ct);
 }
 else
 {
 user.IsEmailConfirmed = true;
 user.EmailConfirmationDate = DateTime.Now;

 await _userService.UpdateUser(user);
 await SendStringAsync(currentSocket, "OK", ct);
 }

 Task.Delay(500).Wait();
 user = await _userService.GetUserByEmail(email);
 }
 }

4. Update the Invoke method in the Communication Middleware and add calls to
the WebSockets-specific methods from the previous step, while still keeping the
standard implementations for browsers that do not support WebSockets:

 public async Task Invoke(HttpContext context)
 {
 if (context.WebSockets.IsWebSocketRequest)
 {
 var webSocket =
 await context.WebSockets.AcceptWebSocketAsync();
 var ct = context.RequestAborted;
 var json = await ReceiveStringAsync(webSocket, ct);
 var command = JsonConvert.DeserializeObject<dynamic>(json);

 switch (command.Operation.ToString())
 {
 case "CheckEmailConfirmationStatus":
 {
 await ProcessEmailConfirmation(context, webSocket,
 ct, command.Parameters.ToString());
 break;
 }
 }
 }
 else if (context.Request.Path.Equals(
 "/CheckEmailConfirmationStatus"))
 {
 await ProcessEmailConfirmation(context);
 }
 else
 {
 await _next?.Invoke(context);
 }
 }

5. Modify the scripts1.js file and add some WebSockets-specific code for opening
and working with sockets:

 var interval;
 function EmailConfirmation(email) {
 if (window.WebSocket) {
 alert("Websockets are enabled");
 openSocket(email, "Email");
 }
 else {
 alert("Websockets are not enabled");
 interval = setInterval(() => {
 CheckEmailConfirmationStatus(email);
 }, 5000);
 }
 }

6. Modify the scripts2.js file and add some WebSockets-specific code for opening
and working with sockets and redirecting to the Game Invitation page if the
email has been confirmed:

 function CheckEmailConfirmationStatus(email) {
 $.get("/CheckEmailConfirmationStatus?email=" + email,
 function (data) {
 if (data === "OK") {
 if (interval !== null)
 clearInterval(interval);
 window.location.href = "/GameInvitation?email=" + email;
 }
 });
 }

 var openSocket = function (parameter, strAction) {
 if (interval !== null)
 clearInterval(interval);

 var protocol = location.protocol === "https:" ?
 "wss:" : "ws:";
 var operation = "";
 var wsUri = "";

 if (strAction == "Email") {
 wsUri = protocol + "//" + window.location.host +
 "/CheckEmailConfirmationStatus";
 operation = "CheckEmailConfirmationStatus";
 }

 var socket = new WebSocket(wsUri);
 socket.onmessage = function (response) {
 console.log(response);
 if (strAction == "Email" && response.data == "OK") {
 window.location.href = "/GameInvitation?email=" +
 parameter;
 }
 };

 socket.onopen = function () {

 var json = JSON.stringify({
 "Operation": operation,
 "Parameters": parameter
 });

 socket.send(json);
 };

 socket.onclose = function (event) {
 };
 };

7. When you start the application and proceed with the user registration, you will
get the information if WebSockets is supported. If it is, you will get redirected
to the Game Invitation page like before, but with the benefit of a much faster
processing time:

That concludes our trip into client-side development and optimization under
ASP.NET Core 2.0 for the moment. You are now going to see how to further extend
and finalize the Tic-Tac-Toe application with additional ASP.NET Core concepts
that will help you in your daily work building multi-lingual, production-ready web
applications.

Taking advantage of session and
user cache management
As a web developer, you might know that HTTP is a stateless protocol, which means
that by default there is not a notion of sessions as such. Each request is handled
independently and no values are retained between different requests.

Nonetheless, there are different methods for working with data. You can work with
query strings, submit form data, or you can use cookies to store data on the client.
However, all of those mechanisms are more or less manual and need to be managed
by yourself.

If you are an experienced ASP.NET developer, you will be familiar with the
concepts of session state and session variables. Those variables are stored on the web
server and you can access them during different user requests for having a central
place to store and receive data. Session state is ideal for storing user data specific to
a session, without the need for permanent persistence.

Note that it is best practice to not store any sensitive data in session
variables due to security reasons. Users might not close their
browsers; thus, session cookies might not be cleared (also, some
browsers keep session cookies alive).

Also, a session might not be restricted to a single user, other users
might continue with the same session, which could provide security
risks.

ASP.NET Core 2.0 provides session state and session variables by using a dedicated
Session Middleware. Basically, there are two distinct types of session providers:

In-memory session providers (locally to a single server)
Distributed session providers (shared between multiple servers)

Let's see how to activate the in-memory session provider in the Tic-Tac-Toe
application for storing the user interface culture and language:

1. Open the layout page in the Views\Shared_Layout.cshtml file and add a new User
Interface Language Drop-Down to the menu after the other menu items. This
will allow users to select between English and French:

 <li class="dropdown">
 <a class="dropdown-toggle" data-toggle="dropdown"
 href="#">Settings
 <ul class="dropdown-menu multi-level">
 <li class="dropdown-submenu">
 <a class="dropdown-toggle" data-toggle="dropdown"
 href="#">Select your language (@ViewBag.Language)

 <ul class="dropdown-menu">
 <li @(ViewBag.Language == "EN" ? "active" : "")>
 <a asp-controller="Home" asp-action="SetCulture"
 asp-route-culture="EN">English
 <li @(ViewBag.Language == "FR" ? "active" : "")>
 <a asp-controller="Home" asp-action="SetCulture"
 asp-route-culture="FR">French

2. Open the HomeController and add a new method called SetCulture. This will
contain the code for storing the user culture settings in a Session Variable:

 public IActionResult SetCulture(string culture)
 {
 Request.HttpContext.Session.SetString("culture", culture);
 return RedirectToAction("Index");
 }

3. Update the Index method of HomeController for retrieving the culture from the
Culture Session Variable:

 public IActionResult Index()
 {
 var culture =
 Request.HttpContext.Session.GetString("culture");
 ViewBag.Language = culture;
 return View();
 }

4. Got to the wwwroot/css/site.css file and add some new CSS classes for a more
modern look for the User Interface Language Drop-Down:

 .dropdown-submenu {
 position: relative;
 }

 .dropdown-submenu > .dropdown-menu {
 top: 0;
 left: 100%;

 margin-top: -6px;
 margin-left: -1px;
 -webkit-border-radius: 0 6px 6px 6px;
 -moz-border-radius: 0 6px 6px;
 border-radius: 0 6px 6px 6px;
 }

 .dropdown-submenu:hover > .dropdown-menu {
 display: block;
 }

 .dropdown-submenu > a:after {
 display: block;
 content: " ";
 float: right;
 width: 0;
 height: 0;
 border-color: transparent;
 border-style: solid;
 border-width: 5px 0 5px 5px;
 border-left-color: #ccc;
 margin-top: 5px;
 margin-right: -10px;
 }

 .dropdown-submenu:hover > a:after {
 border-left-color: #fff;
 }

 .dropdown-submenu.pull-left {
 float: none;
 }

 .dropdown-submenu.pull-left > .dropdown-menu {
 left: -100%;
 margin-left: 10px;
 -webkit-border-radius: 6px 0 6px 6px;
 -moz-border-radius: 6px 0 6px 6px;
 border-radius: 6px 0 6px 6px;
 }

5. Add the built-in Session Middleware of ASP.NET Core 2.0 in the
ConfigureServices method of the Startup class:

 services.AddSession(o =>
 {
 o.IdleTimeout = TimeSpan.FromMinutes(30);
 });

6. Activate the Session Middleware in the Configure method of the Startup class by
adding it just after the Static Files Middleware:

 app.UseStaticFiles();
 app.UseSession();

7. Update the Index method in the GameInvitationController, set the email session

variable:

 [HttpGet]
 public async Task<IActionResult> Index(string email)
 {
 var gameInvitationModel = new GameInvitationModel {
 InvitedBy = email };
 HttpContext.Session.SetString("email", email);
 return View(gameInvitationModel);
 }

8. Start the application by pressing F5. You should see the new User Interface
Language Drop-Down with the options to select between English and French:

Good, you have seen how to activate and use session state. However, most of the
time you will have multiple web servers, not just one, especially in today's cloud
environments. So, how do you store session state out of memory in a distributed
cache?

Well, that is easy, you just have to register additional services within the Startup
class. These additional services will provide this functionality. Here are some
examples:

Distributed Memory Cache:

 services.AddDistributedMemoryCache();

Distributed SQL Server Cache:

 services.AddDistributedSqlServerCache(o =>
 {
 o.ConnectionString = _configuration["DatabaseConnection"];
 o.SchemaName = "dbo";
 o.TableName = "sessions";
 });

Distributed Redis Cache:

 services.AddDistributedRedisCache(o =>
 {
 o.Configuration = _configuration["CacheRedis:Connection"];
 o.InstanceName = _configuration["CacheRedis:InstanceName"];
 });

We have added a new User Interface Language Drop-Down in this section, but you
have not yet seen how to handle multiple languages within your applications. There's
no time to lose; let's see how to do that and use the drop-down and session variable
for changing the user interface language on-the-fly in the following section.

Applying globalization and
localization for multi-lingual user
interfaces
Sometimes your applications achieve success, sometimes even very considerable
success, and so you want to provide them internationally to a wider audience and
deploy them at a larger scale. But too bad, you cannot do that easily, because you
have not thought of localizing your applications from the beginning, and now you
have to modify your already-running application with the risk of regressions and
destabilizations.

Do not fall into this trap! Think about your target audience and future deployment
strategy from the start!

Localizing your applications should be considered from the beginning of your
projects, especially since it is very easy and straightforward to do when using the
ASP.NET Core 2.0 Framework. It provides existing services and middlewares for
this purpose.

Building applications which support different languages and cultures for display,
input, and output is called globalization, whereas adapting a globalized application to
a specific culture is called localization.

There are three different methods for localizing ASP.NET Core 2.0 web
applications:

The String Localizer
The View Localizer
Localizing Data Annotations

In this section, you will learn about the concepts of globalization and localization
and how they will allow you to further optimize your websites for
internationalization.

For additional information on globalization and localization, please

visit https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localizati
on.

So, how do you get started? Well, first of all, let's look at how to make the Tic-Tac-
Toe application localizable, by using the String Localizer:

1. Go to the Services folder and add a new service called
CultureProviderResolverService. This will retrieve the culture setting by looking at
the Culture query string, the Culture cookie, and the Culture session variable
(created in the previous section of this chapter).

2. Implement the CultureProviderResolverService by inheriting it from the
RequestCultureProvider and overriding its specific methods:

 public class CultureProviderResolverService :
 RequestCultureProvider
 {
 private static readonly char[] _cookieSeparator = new[] {'|' };
 private static readonly string _culturePrefix = "c=";
 private static readonly string _uiCulturePrefix = "uic=";

 public override async Task<ProviderCultureResult>
 DetermineProviderCultureResult(HttpContext httpContext)
 {
 if (GetCultureFromQueryString(httpContext,
 out string culture))
 return new ProviderCultureResult(culture, culture);

 else if (GetCultureFromCookie(httpContext, out culture))
 return new ProviderCultureResult(culture, culture);

 else if (GetCultureFromSession(httpContext, out culture))
 return new ProviderCultureResult(culture, culture);

 return await NullProviderCultureResult;
 }

 private bool GetCultureFromQueryString(
 HttpContext httpContext, out string culture)
 {
 if (httpContext == null)
 {
 throw new ArgumentNullException(nameof(httpContext));
 }

 var request = httpContext.Request;
 if (!request.QueryString.HasValue)
 {
 culture = null;
 return false;
 }

 culture = request.Query["culture"];
 return true;
 }

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localization

 private bool GetCultureFromCookie(HttpContext httpContext,
 out string culture)
 {
 if (httpContext == null)
 {
 throw new ArgumentNullException(nameof(httpContext));
 }

 var cookie = httpContext.Request.Cookies["culture"];
 if (string.IsNullOrEmpty(cookie))
 {
 culture = null;
 return false;
 }

 culture = ParseCookieValue(cookie);
 return !string.IsNullOrEmpty(culture);
 }

 public static string ParseCookieValue(string value)
 {
 if (string.IsNullOrWhiteSpace(value))
 {
 return null;
 }

 var parts = value.Split(_cookieSeparator,
 StringSplitOptions.RemoveEmptyEntries);
 if (parts.Length != 2)
 {
 return null;
 }

 var potentialCultureName = parts[0];
 var potentialUICultureName = parts[1];

 if (!potentialCultureName.StartsWith(_culturePrefix) ||
 !potentialUICultureName.StartsWith(_uiCulturePrefix))
 {
 return null;
 }

 var cultureName =
 potentialCultureName.Substring(_culturePrefix.Length);
 var uiCultureName =
 potentialUICultureName.Substring(_uiCulturePrefix.Length);
 if (cultureName == null && uiCultureName == null)
 {
 return null;
 }

 if (cultureName != null && uiCultureName == null)
 {
 uiCultureName = cultureName;
 }

 if (cultureName == null && uiCultureName != null)
 {
 cultureName = uiCultureName;
 }

 return cultureName;
 }

 private bool GetCultureFromSession(HttpContext httpContext,
 out string culture)
 {
 culture = httpContext.Session.GetString("culture");
 return !string.IsNullOrEmpty(culture);
 }
 }

3. Add the Localization Service at the top of the ConfigureServices method in the
Startup class:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddLocalization(options => options.ResourcesPath =
 "Localization");
 ...
 }

4. Add the Localization Middleware to the Configure method in the Startup class
and define the supported cultures:

Note that the order of adding middlewares is important, as you have
already seen. You have to add the Localization Middleware just before
the MVC Middleware.

 ...
 var supportedCultures =
 CultureInfo.GetCultures(CultureTypes.AllCultures);
 var localizationOptions = new RequestLocalizationOptions
 {
 DefaultRequestCulture = new RequestCulture("en-US"),
 SupportedCultures = supportedCultures,
 SupportedUICultures = supportedCultures
 };

 localizationOptions.RequestCultureProviders.Clear();
 localizationOptions.RequestCultureProviders.Add(new
 CultureProviderResolverService());

 app.UseRequestLocalization(localizationOptions);

 app.UseMvc(...);

Note that you can use different methods to change the culture of your
applications during runtime:

Query strings: Provide the culture in the URI

Cookies: Store the culture in a cookie

Browser: Browser page language settings

Custom: Implement your own provider (shown in this example)

5. In the Solution Explorer, add a new folder called Localization (it will be used to
store the resource files), create a subfolder called Controllers, then within this
folder, add a new resource file called GameInvitationController.resx.

Note that you can put your resource files either into subfolders (for
example, Controllers, Views, and more) or directly name your files
accordingly (for example, Controllers.GameInvitationController.resx,
Views.Home.Index.resx, and more). However, we advise you to use the
folder approach for clarity, readability, and better organization of your
files.

If you have errors when using your resource files with .NET Core,
right-click on each file and select Properties. Then, check in each file
that the Build Action is set to Content instead of Embedded Resource.
There are bugs that should have been fixed by the final release, but if
they are not, you can use this handy work-around to make everything
work as expected.

6. Open the GameInvitationController.resx resource file and add a new
GameInvitationConfirmationMessage in English:

7. In the same Controllers folder, add a new resource file for the French
translations called GameInvitationController.fr.resx:

8. Go to the GameInvitationController, add the stringLocalizer, and update the
constructor implementation:

 private IStringLocalizer<GameInvitationController>
 _stringLocalizer;
 private IUserService _userService;
 public GameInvitationController(IUserService userService,
 IStringLocalizer<GameInvitationController> stringLocalizer)
 {
 _userService = userService;
 _stringLocalizer = stringLocalizer;
 }

9. Add a new Index method to the GameInvitationController. This will return a
localized message depending on the application locale settings:

 [HttpPost]
 public IActionResult Index(
 GameInvitationModel gameInvitationModel)
 {
 return Content(_stringLocalizer[
 "GameInvitationConfirmationMessage",
 gameInvitationModel.EmailTo]);
 }

10. Start the application in English (the default culture), then, register a new user
until you get the following text message, which should be in English:

11. Change the application language to French by using the User Interface
Language Drop-Down, then register a new user until you get the following text
message, which should now be in French:

That's it, you have seen how to localize any type of string within your applications,
which can be useful for some of your specific application use cases. However, this is
not the recommended approach when working with views.

The ASP.NET Core 2.0 Framework provides some powerful features for localizing
views. You are going to use the View Localizer approach in the next example:

1. Update the ConfigureServices method in the Startup class and add the View
Localization Service to the MVC Service declaration:

 services.AddMvc().AddViewLocalization(
 LanguageViewLocationExpanderFormat.Suffix,
 options => options.ResourcesPath = "Localization");

2. Modify the Views/ViewImports.cshtml file and add the View Localizer
functionalities so that they will be available for all views:

 @using Microsoft.AspNetCore.Mvc.Localization
 @inject IViewLocalizer Localizer

3. Open the Home Page View and add a new title, which is going to be localized
further, as follows:

 <h2>@Localizer["Title"]</h2>

4. In the Solution Explorer go to the Localization folder and create a subfolder
called Views, then, add two new resource files called Home.Index.resx and
Home.Index.fr.resx to this folder:

5. Open the Home.Index.resx file and add an entry for the English title:

6. Open the Home.Index.fr.resx file and add an entry for the French title:

7. Start the application and set the user interface language drop-down to English:

8. Change the application language to French using the User Interface Language
Drop-Down. The title should now be displayed in French:

You have seen how to easily localize your views, but how do you localize forms that
are using Data Annotations within your views? Let's look at that in more detail; you
will be surprised at what the ASP.NET Core 2.0 Framework has to offer in this case!

We are going to completely localize the user registration form in the following

examples:

1. In the Solution Explorer, go to the Localization/Views folder, add two new
resource files called UserRegistration.Index.resx
and UserRegistration.Index.fr.resx.

2. Open the UserRegistration.Index.resx file and add a Title and a SubTitle element
with English translations:

3. Open the UserRegistration.Index.fr.resx file and add a Title and a SubTitle
element with French translations:

4. Update the User Registration Index View to use the View Localizer:

 @model TicTacToe.Models.UserModel
 @{
 ViewData["Title"] = Localizer["Title"];
 }
 <h2>@ViewData["Title"]</h2>
 <h4>@Localizer["SubTitle"]</h4>
 <hr />
 <div class="row">
 ...

5. Start the application, set the language to French using the User Interface
Language Drop-Down, and then go to the User Registration page. The titles
should be displayed in French. Click on Create without entering anything in the
input fields and see what happens:

Something is missing here. You have added localization for the page title as well as
the subtitle of the User Registration page, but we are still missing some localizations
for the form. But what are we missing?

You surely have seen for yourself that the error messages are not localized and
translated yet. We are using the Data Annotation framework for error handling and
form validation, so how do you localize Data Annotation validation error messages?
That is what you are going to see now:

1. Add the Data Annotation Localization Service to the MVC Service declaration
in the ConfigureServices method of the Startup class:

 services.AddMvc().AddViewLocalization(
 LanguageViewLocationExpanderFormat.Suffix, options =>
 options.ResourcesPath = "Localization")
 .AddDataAnnotationsLocalization();

2. Go to the Localization folder and create a subfolder called Models, then add two
new resource files called UserModel.resx and UserModel.fr.resx.

3. Update the UserModel.resx file with English translations:

4. Update the UserModel.fr.resx file with French translations:

5. Update the UserModel implementation to be able to use the resource files from
above:

 public class UserModel
 {
 public Guid Id { get; set; }

 [Display(Name = "FirstName")]
 [Required(ErrorMessage = "FirstNameRequired")]
 public string FirstName { get; set; }

 [Display(Name = "LastName")]
 [Required(ErrorMessage = "LastNameRequired")]
 public string LastName { get; set; }

 [Display(Name = "Email")]
 [Required(ErrorMessage = "EmailRequired"),
 DataType(DataType.EmailAddress)]
 [EmailAddress]
 public string Email { get; set; }

 [Display(Name = "Password")]
 [Required(ErrorMessage = "PasswordRequired"),

 DataType(DataType.Password)]
 public string Password { get; set; }
 public bool IsEmailConfirmed { get; set; }
 public System.DateTime? EmailConfirmationDate { get; set; }
 public int Score { get; set; }
 }

6. Rebuild the solution and start the application. You will see that the whole User
Registration page, including the error messages, is now completely translated
when changing the user interface language to French:

You have seen how to localize strings, views, and even error messages using Data
Annotations. For that, you have used the built-in features of ASP.NET Core 2.0,
since they contain everything for developing multi-lingual localizable web
applications. The next section is going to give you some insights on how to
configure your applications and services.

Configuring your applications and
services
In the previous sections, you have further advanced by adding missing components
to the user registration process and even localizing parts of the Tic-Tac-Toe
application. However, you have always simulated the email confirmation by setting
the user confirmation programmatically in code. In this section, we will modify this
part to really send emails to newly-registered users and make everything fully
configurable.

First, you are going to add a new Email Service, which will be used to send emails to
users who have freshly registered on the website:

1. Within the Services folder, add a new service called EmailService, and implement
a default SendEmail method (we will update it later):

 public class EmailService
 {
 public Task SendEmail(string emailTo, string subject,
 string message)
 {
 return Task.CompletedTask;
 }
 }

2. Extract the IEmailService interface:

3. Add the new Email Service to the ConfigureServices method of the Startup class
(we want a single application instance, so add it as Singleton):

 services.AddSingleton<IEmailService, EmailService>();

4. Update the UserRegistrationController to be able to access the EmailService
created in the previous step:

 readonly IUserService _userService;
 readonly IEmailService _emailService;
 public UserRegistrationController(IUserService userService,
 IEmailService emailService)
 {
 _userService = userService;
 _emailService = emailService;
 }

5. Update the EmailConfirmation method in the UserRegistrationController for calling
the SendEmail method of the EmailService:

 [HttpGet]
 public async Task<IActionResult> EmailConfirmation(string email)
 {
 var user = await _userService.GetUserByEmail(email);
 var urlAction = new UrlActionContext
 {
 Action = "ConfirmEmail",
 Controller = "UserRegistration",
 Values = new { email },
 Protocol = Request.Scheme,
 Host = Request.Host.ToString()
 };

 var message = $"Thank you for your registration on our web
 site, please click here to confirm your email " +
 $"{Url.Action(urlAction)}";

 try
 {
 _emailService.SendEmail(email,
 "Tic-Tac-Toe Email Confirmation", message).Wait();
 }
 catch (Exception e)
 {
 }

 if (user?.IsEmailConfirmed == true)
 return RedirectToAction("Index", "GameInvitation",
 new { email = email });

 ViewBag.Email = email;

 return View();
 }

Great, you have an Email Service now, but your work is not finished yet. You need
to be able to configure the service for setting environment-specific parameters
(SMTP server name, port, SSL, and more) and then send the emails. Nearly all of

the services you create in the future will have some kind of configuration, which
should be configurable from the outside of your code.

ASP.NET Core 2.0 has a built-in Configuration API for this purpose. It provides
various functionalities for reading configuration data from multiple sources during
application runtime. Name-value pairs, which can be grouped into multi-level
hierarchies, are used for configuration data persistence. Furthermore, the
configuration data can be automatically deserialized into plain old C# objects
(POCO), which contain only private members and properties.

The following configuration sources are supported:

Configuration files (JSON, XML, and even classic INI files)
Environment variables
Command-line arguments
In-memory .NET objects
Encrypted user stores
Azure Key Vault
Custom providers

For more information on the Configuration API, please visit https://doc
s.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicco

nfiguration.

Let's see how to make the Email Service quickly configurable by using the ASP.Net
Core 2.0 Configuration API together with a JSON configuration file:

1. Add a new appsettings.json configuration file to the project and add the
following custom section. This will be used to configure the Email Service:

 "Email": {
 "MailType": "SMTP",
 "MailServer": "localhost",
 "MailPort": 25,
 "UseSSL": false,
 "UserId": "",
 "Password": "",
 "RemoteServerAPI": "",
 "RemoteServerKey": ""
 }

2. In the Solution Explorer, create a new folder called Options at the root of the
project. Add a new POCO called EmailServiceOptions to this folder, and
implement private members as well as public properties for the options seen

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration

previously:

 public class EmailServiceOptions
 {
 public string MailType { get; set; }
 public string MailServer { get; set; }
 public string MailPort { get; set; }
 public string UseSSL { get; set; }
 public string UserId { get; set; }
 public string Password { get; set; }
 public string RemoteServerAPI { get; set; }
 public string RemoteServerKey { get; set; }

 public EmailServiceOptions()
 {

 }

 public EmailServiceOptions(string mailType,
 string mailServer, string mailPort, string useSSL,
 string userId, string password, string remoteServerAPI,
 string remoteServerKey)
 {
 MailType = mailType;
 MailServer = mailServer;
 MailPort = mailPort;
 UseSSL = useSSL;
 UserId = userId;
 Password = password;
 RemoteServerAPI = remoteServerAPI;
 RemoteServerKey = remoteServerKey;
 }
 }

3. Update the EmailService implementation, add the EmailServiceOptions, and add a
parameterized constructor to the class:

 private EmailServiceOptions _emailServiceOptions;
 public EmailService(IOptions<EmailServiceOptions>
 emailServiceOptions)
 {
 _emailServiceOptions = emailServiceOptions.Value;
 }

4. Add a new constructor to the Startup class to allow you to configure your Email
Service:

 public IConfiguration _configuration { get; }
 public Startup(IConfiguration configuration)
 {
 _configuration = configuration;
 }

5. Update the ConfigureServices method of the Startup class:

 services.Configure<EmailServiceOptions>

 (_configuration.GetSection("Email"));
 services.AddSingleton<IEmailService, EmailService>();

6. Update the SendEmail method in the EmailService. Use the Email Service Options
to retrieve the settings from the configuration file:

 public Task SendEmail(string emailTo, string subject,
 string message)
 {
 using (var client =
 new SmtpClient(_emailServiceOptions.MailServer,
 int.Parse(_emailServiceOptions.MailPort)))
 {
 if (bool.Parse(_emailServiceOptions.UseSSL) == true)
 client.EnableSsl = true;

 if (!string.IsNullOrEmpty(_emailServiceOptions.UserId))
 client.Credentials =
 new NetworkCredential(_emailServiceOptions.UserId,
 _emailServiceOptions.Password);

 client.Send(new MailMessage("example@example.com",
 emailTo, subject, message));
 }
 return Task.CompletedTask;
 }

7. Put a breakpoint into the EmailService constructor and start the application in
Debug mode by pressing F5 and verify that the Email Service Options values
have been retrieved correctly from the configuration file. If you have an SMTP
server, you can also verify that the email has really been sent:

You have seen how to configure your applications and services by using the built-in
Configuration API of ASP.NET Core 2.0, which allows you to write less code and to
be much more productive, while providing a far more elegant and more maintainable
solution in the end.

Using logging
When you are developing your applications, you use one of the well-known
integrated development environments such as Visual Studio 2017 or Visual Studio
Code, as described in the beginning chapters of the book. You do this every day, and
most of the things you do become reflexes and you do them automatically after some
time.

It is natural for you to be able to debug your applications and understand what is
happening during runtime, by using the advanced debugging features of Visual
Studio 2017, for example. Looking up variable values, seeing what methods get
called in what order, understanding what instances are injected, and capturing
exceptions, are key to building applications that are robust and respond to business
needs.

Then, when deploying your applications to production environments, you suddenly
miss all of those features. Rarely will you find a production environment where
Visual Studio is installed, but, errors and unexpected behaviors will happen and you
will need to be able to understand and fix them as fast as possible.

That is where logging and telemetry come into play. By instrumenting your
applications and logging when entering and when leaving methods, as well as
important variable values or any kind of information you consider important during
runtime, you will be able to go to the application log and see what is happening in
the production environment in case of problems.

In the previous section, we added an Email Service for sending emails and
configured it using external configuration files. What if the configured SMTP server
is not responding? What if we forgot to update the server settings from development
to production? Well, for now, we will just get an exception message displayed in the
browser:

In this section, we are going to show you how to use logging and exception handling
for providing a better, more industrialized solution to this type of problem.

ASP.NET Core 2.0 provides built-in support for logging to the following targets:

Azure AppServices dairy
Console
Windows Event Source
Trace
Debugger output
Application Insights

But files, databases, and logging services are not supported by default. If you want to
send your logs to these targets, you need to use a third-party logger solution such as
log4net, Serilog, NLog, Apache, ELMAH, or Loggr.

You can also easily create your own provider by implementing the ILoggerProvider
interface, which is what you are going to see here:

1. Add a new Class Library (.NET Core) project to the solution and call it
TicTacToe.Logging (delete the autogenerated Class1.cs file):

2. Add the NuGet packages Microsoft.Extensions.Logging and
Microsoft.Extensions.Logging.Configuration via the NuGet Package Manager:

3. Add a project reference in the TicTacToe Web Application project for being
able to use assets from the TicTacToe.Logging class library:

4. Add a new class called LogEntry. This will contain the log data:

 internal class LogEntry
 {
 public int EventId { get; internal set; }
 public string Message { get; internal set; }
 public string LogLevel { get; internal set; }
 public DateTime CreatedTime { get; internal set; }
 }

5. Add a new class called FileLoggerHelper. This will be used for file operations:

 internal class FileLoggerHelper
 {
 private string fileName;

 public FileLoggerHelper(string fileName)
 {
 this.fileName = fileName;
 }

 static ReaderWriterLock locker = new ReaderWriterLock();

 internal void InsertLog(LogEntry logEntry)
 {
 var directory = System.IO.Path.GetDirectoryName(fileName);

 if (!System.IO.Directory.Exists(directory))
 System.IO.Directory.CreateDirectory(directory);

 try
 {
 locker.AcquireWriterLock(int.MaxValue);
 System.IO.File.AppendAllText(fileName,
 $"{logEntry.CreatedTime} {logEntry.EventId}
 {logEntry.LogLevel} {logEntry.Message}" +
 Environment.NewLine);
 }

 finally
 {
 locker.ReleaseWriterLock();
 }
 }

 }

6. Add a new class called FileLogger and implement the ILogger interface:

 public sealed class FileLogger : ILogger
 {
 private string _categoryName;
 private Func<string, LogLevel, bool> _filter;
 private string _fileName;
 private FileLoggerHelper _helper;

 public FileLogger(string categoryName, Func<string, LogLevel,
 bool> filter, string fileName)
 {
 _categoryName = categoryName;
 _filter = filter;
 _fileName = fileName;
 _helper = new FileLoggerHelper(fileName);
 }

 public IDisposable BeginScope<TState>(TState state)
 {
 return null;
 }

 public void Log<TState>(LogLevel logLevel, EventId eventId,
 TState state, Exception exception, Func<TState, Exception,
 string> formatter)
 {
 if (!IsEnabled(logLevel))
 {
 return;
 }

 if (formatter == null)
 {
 throw new ArgumentNullException(nameof(formatter));
 }

 var message = formatter(state, exception);

 if (string.IsNullOrEmpty(message))
 {
 return;
 }
 if (exception != null)
 {
 message += "\n" + exception.ToString();
 }

 var logEntry = new LogEntry
 {
 Message = message,
 EventId = eventId.Id,

 LogLevel = logLevel.ToString(),
 CreatedTime = DateTime.UtcNow
 };

 _helper.InsertLog(logEntry);
 }

 public bool IsEnabled(LogLevel logLevel)
 {
 return (_filter == null || _filter(_categoryName, logLevel));
 }
 }

7. Add a new class called FileLoggerProvider and implement the ILoggerProvider
interface. This will be injected later:

 public class FileLoggerProvider : ILoggerProvider
 {
 private readonly Func<string, LogLevel, bool> _filter;
 private string _fileName;

 public FileLoggerProvider(Func<string, LogLevel,
 bool> filter, string fileName)
 {
 _filter = filter;
 _fileName = fileName;
 }

 public ILogger CreateLogger(string categoryName)
 {
 return new FileLogger(categoryName, _filter, _fileName);
 }

 public void Dispose()
 {
 }
 }

8. To simplify calling the File Logging Provider from the web application, we
need to add a static class called FileLoggerExtensions (with configuration section,
filename, and log verbosity level as parameters):

 public static class FileLoggerExtensions
 {
 const long DefaultFileSizeLimitBytes = 1024 * 1024 * 1024;
 const int DefaultRetainedFileCountLimit = 31;

 public static ILoggingBuilder AddFile(this ILoggingBuilder
 loggerBuilder, IConfigurationSection configuration)
 {
 if (loggerBuilder == null)
 {
 throw new ArgumentNullException(nameof(loggerBuilder));
 }

 if (configuration == null)
 {

 throw new ArgumentNullException(nameof(configuration));
 }

 var minimumLevel = LogLevel.Information;

 var levelSection = configuration["Logging:LogLevel"];

 if (!string.IsNullOrWhiteSpace(levelSection))
 {
 if (!Enum.TryParse(levelSection, out minimumLevel))
 {
 System.Diagnostics.Debug.WriteLine("The minimum level
 setting `{0}` is invalid", levelSection);
 minimumLevel = LogLevel.Information;
 }
 }

 return loggerBuilder.AddFile(configuration[
 "Logging:FilePath"], (category, logLevel) =>
 (logLevel >= minimumLevel), minimumLevel);
 }

 public static ILoggingBuilder AddFile(this ILoggingBuilder
 loggerBuilder, string filePath, Func<string, LogLevel,
 bool> filter, LogLevel minimumLevel = LogLevel.Information)
 {
 if (String.IsNullOrEmpty(filePath)) throw
 new ArgumentNullException(nameof(filePath));

 var fileInfo = new System.IO.FileInfo(filePath);

 if (!fileInfo.Directory.Exists)
 fileInfo.Directory.Create();

 loggerBuilder.AddProvider(new FileLoggerProvider(filter,
 filePath));

 return loggerBuilder;
 }

 public static ILoggingBuilder AddFile(this ILoggingBuilder
 loggerBuilder, string filePath,
 LogLevel minimumLevel = LogLevel.Information)
 {
 if (String.IsNullOrEmpty(filePath)) throw
 new ArgumentNullException(nameof(filePath));

 var fileInfo = new System.IO.FileInfo(filePath);

 if (!fileInfo.Directory.Exists)
 fileInfo.Directory.Create();

 loggerBuilder.AddProvider(new FileLoggerProvider((category,
 logLevel) => (logLevel >= minimumLevel), filePath));

 return loggerBuilder;
 }
 }

9. In the TicTacToe Web Project, add two new options called LoggingProviderOption

and LoggingOptions to the Options folder:

 public class LoggingProviderOption
 {
 public string Name { get; set; }
 public string Parameters { get; set; }
 public int LogLevel { get; set; }
 }
 public class LoggingOptions
 {
 public LoggingProviderOption[] Providers { get; set; }
 }

10. In the TicTacToe Web Project, add a new extension called
ConfigureLoggingExtension to the Extensions folder:

 using Microsoft.Extensions.Configuration;
 using Microsoft.Extensions.Logging;
 using TicTacToe.Logging;
 ...
 public static class ConfigureLoggingExtension
 {
 public static ILoggingBuilder AddLoggingConfiguration(this
 ILoggingBuilder loggingBuilder, IConfiguration configuration)
 {
 var loggingOptions = new LoggingOptions();
 configuration.GetSection("Logging").Bind(loggingOptions);

 foreach (var provider in loggingOptions.Providers)
 {
 switch (provider.Name.ToLower())
 {
 case "console":
 {
 loggingBuilder.AddConsole();
 break;
 }
 case "file":
 {
 string filePath = System.IO.Path.Combine(
 System.IO.Directory.GetCurrentDirectory(), "logs",
 $"TicTacToe_{System.DateTime.Now.ToString(
 "ddMMyyHHmm")}.log");
 loggingBuilder.AddFile(filePath,
 (LogLevel)provider.LogLevel);
 break;
 }
 default:
 {
 break;
 }
 }
 }

 return loggingBuilder;
 }
 }

11. Go to the Program class of the TicTacToe Web Application project, update the
BuildWebHost method, and call the extension from before:

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .CaptureStartupErrors(true)
 .UseStartup<Startup>()
 .PreferHostingUrls(true)
 .UseUrls("http://localhost:5000")
 .UseApplicationInsights()
 .ConfigureLogging((hostingcontext, logging) =>
 {
 logging.AddLoggingConfiguration(
 hostingcontext.Configuration);
 })
 .Build();

Don't forget to add the following using statement at the beginning of
the class:
using TicTacToe.Extensions;

12. Add a new section called Logging to the appsettings.json file:

 "Logging": {
 "Providers": [
 {
 "Name": "Console",
 "LogLevel": "1"
 },
 {
 "Name": "File",
 "LogLevel": "2"
 }
],
 "MinimumLevel": 1
 }

13. Start the application and verify that a new log file has been created in a folder
called logs within the application folder:

This is the first step, easy and quickly done. You now have a log file to which you
can write your logs. You will see that it is just as easy to use the integrated logging
functionalities to create logs from anywhere within your ASP.NET Core 2.0
applications (Controllers, Services, and more).

Let's quickly add some logs to the Tic-Tac-Toe application:

1. Update the UserRegistrationController constructor implementation:

 readonly IUserService _userService;
 readonly IEmailService _emailService;
 readonly ILogger<UserRegistrationController> _logger;
 public UserRegistrationController(IUserService userService,
 IEmailService emailService, ILogger<UserRegistrationController>
 logger)
 {
 _userService = userService;
 _emailService = emailService;
 _logger = logger;
 }

2. Update the EmailConfirmation method in the UserRegistrationController and add a
log at the start of the method:

 _logger.LogInformation($"##Start## Email confirmation
 process for {email}");

3. Update the Email Service implementation, add a logger to its constructor, and
add a new SendMail method:

 public class EmailService : IEmailService
 {
 private EmailServiceOptions _emailServiceOptions;
 readonly ILogger<EmailService> _logger;
 public EmailService(IOptions<EmailServiceOptions>
 emailServiceOptions, ILogger<EmailService> logger)
 {
 _emailServiceOptions = emailServiceOptions.Value;
 _logger = logger;
 }

 public Task SendEmail(string emailTo, string subject,
 string message)
 {
 try
 {
 _logger.LogInformation($"##Start sendEmail## Start
 sending Email to {emailTo}");

 using (var client =
 new SmtpClient(_emailServiceOptions.MailServer,
 int.Parse(_emailServiceOptions.MailPort)))
 {
 if (bool.Parse(_emailServiceOptions.UseSSL) == true)
 client.EnableSsl = true;

 if (!string.IsNullOrEmpty(_emailServiceOptions.UserId))
 client.Credentials =
 new NetworkCredential(_emailServiceOptions.UserId,
 _emailServiceOptions.Password);

 client.Send(new MailMessage("example@example.com",
 emailTo, subject, message));
 }
 }
 catch (Exception ex)
 {
 _logger.LogError($"Cannot send email {ex}");
 }

 return Task.CompletedTask;
 }
 }

4. Open the generated log file and analyze its contents:

Implementing advanced
dependency injection concepts
In the previous chapter, you saw how dependency injection (DI) works and how to
use the constructor injection method. But, if you need to inject many instances
during runtime, this method can be quite cumbersome and can make it complicated
to understand and maintain your code.

Therefore, you can use a more advanced technique of DI called method injection.
This allows accessing instances directly from within your code.

In the following example, you are going to add a new service for handling game
invitations and update the Tic-Tac-Toe application for being able to send emails for
contacting other users to join a game, while using method injection:

1. Add a new service called GameInvitationService in the Services folder for
managing game invitations (adding, updating, removing, and more):

 public class GameInvitationService
 {
 private static ConcurrentBag<GameInvitationModel>
 _gameInvitations;
 public GameInvitationService()
 {
 _gameInvitations = new ConcurrentBag<GameInvitationModel>();
 }

 public Task<GameInvitationModel> Add(GameInvitationModel
 gameInvitationModel)
 {
 gameInvitationModel.Id = Guid.NewGuid();
 _gameInvitations.Add(gameInvitationModel);
 return Task.FromResult(gameInvitationModel);
 }
 public Task Update(GameInvitationModel gameInvitationModel)
 {
 _gameInvitations = new ConcurrentBag<GameInvitationModel>
 (_gameInvitations.Where(x => x.Id != gameInvitationModel.Id))
 {
 gameInvitationModel
 };
 return Task.CompletedTask;
 }

 public Task<GameInvitationModel> Get(Guid id)
 {

 return Task.FromResult(_gameInvitations.FirstOrDefault(
 x => x.Id == id));
 }
 }

2. Extract the IGameInvitationService interface:

3. Add the new Game Invitation Service to the ConfigureServices method of the
Startup class (we want a single application instance, so add it as Singleton):

 services.AddSingleton<IGameInvitationService,
 GameInvitationService>();

4. Update the Index method in the GameInvitationController and inject an instance of
the Game Invitation Service via method injection by using the RequestServices
provider:

 [HttpPost]
 public IActionResult Index(GameInvitationModel
 gameInvitationModel, [FromServices]IEmailService emailService)
 {
 var gameInvitationService =
 Request.HttpContext.RequestServices.GetService
 <IGameInvitationService>();
 if (ModelState.IsValid)
 {
 emailService.SendEmail(gameInvitationModel.EmailTo,
 _stringLocalizer["Invitation for playing a Tic-Tac-Toe game"],
 _stringLocalizer[$"Hello, you have been invited to play
 the Tic-Tac-Toe game by {0}. For joining the game,
 please click here {1}", gameInvitationModel.InvitedBy,

 Url.Action("GameInvitationConfirmation",
 "GameInvitation", new { gameInvitationModel.InvitedBy,
 gameInvitationModel.EmailTo }, Request.Scheme,
 Request.Host.ToString())]);

 var invitation =
 gameInvitationService.Add(gameInvitationModel).Result;
 return RedirectToAction("GameInvitationConfirmation",
 new { id = invitation.Id });
 }
 return View(gameInvitationModel);
 }

Don't forget to add the following using statement at the beginning of
the class: using Microsoft.Extensions.DependencyInjection;, otherwise the
.GetService<IGameInvitationService>(); method cannot be used and you
will get build errors.

5. Add a new method called GameInvitationConfirmation to the
GameInvitationController:

 [HttpGet]
 public IActionResult GameInvitationConfirmation(Guid id,
 [FromServices]IGameInvitationService gameInvitationService)
 {
 var gameInvitation = gameInvitationService.Get(id).Result;
 return View(gameInvitation);
 }

6. Create a new view for the GameInvitationConfirmation method you added
previously. This will display a waiting message to the user:

 @model TicTacToe.Models.GameInvitationModel
 @{
 ViewData["Title"] = "GameInvitationConfirmation";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <h1>@Localizer["You have invited {0} to play a Tic-Tac-Toe game
 with you, please wait until the user is connected",
 Model.EmailTo]</h1>
 @section Scripts{
 <script>
 $(document).ready(function () {
 GameInvitationConfirmation('@Model.Id');
 });
 </script>
 }

7. Add a new method called GameInvitationConfirmation to the scripts1.js file. You
can use the same basic structure we have used for the existing EmailConfirmation
method:

 function GameInvitationConfirmation(id) {

 if (window.WebSocket) {
 alert("Websockets are enabled");
 openSocket(id, "GameInvitation");
 }
 else {
 alert("Websockets are not enabled");
 interval = setInterval(() => {
 CheckGameInvitationConfirmationStatus(id);
 }, 5000);
 }
 }

8. Add a method called CheckGameInvitationConfirmationStatus to the scripts2.js file.
You can use the same basic structure we have used for the existing
CheckEmailConfirmationStatus method:

 function CheckGameInvitationConfirmationStatus(id) {
 $.get("/GameInvitationConfirmation?id=" + id, function (data) {
 if (data.result === "OK") {
 if (interval !== null)
 clearInterval(interval);
 window.location.href = "/GameSession/Index/" + id;
 }
 });
 }

9. Update the openSocket method in the scripts2.js file and add the specific Game
Invitation case:

 var openSocket = function (parameter, strAction) {
 if (interval !== null)
 clearInterval(interval);

 var protocol = location.protocol === "https:" ? "wss:" : "ws:";
 var operation = "";
 var wsUri = "";
 if (strAction == "Email") {
 wsUri = protocol + "//" + window.location.host +
 "/CheckEmailConfirmationStatus";
 operation = "CheckEmailConfirmationStatus";
 }
 else if (strAction == "GameInvitation") {
 wsUri = protocol + "//" + window.location.host +
 "/GameInvitationConfirmation";
 operation = "CheckGameInvitationConfirmationStatus";
 }

 var socket = new WebSocket(wsUri);
 socket.onmessage = function (response) {
 console.log(response);
 if (strAction == "Email" && response.data == "OK") {
 window.location.href = "/GameInvitation?email=" + parameter;
 }
 else if (strAction == "GameInvitation") {
 var data = $.parseJSON(response.data);

 if (data.Result == "OK")

 window.location.href = "/GameSession/Index/" + data.Id;
 }
 };

 socket.onopen = function () {
 var json = JSON.stringify({
 "Operation": operation,
 "Parameters": parameter
 });

 socket.send(json);
 };

 socket.onclose = function (event) {
 };
 };

10. Add a new method called ProcessGameInvitationConfirmation in the
Communication Middleware. This will process Game Invitation Requests
without using WebSockets, for browsers not supporting it:

 private async Task ProcessGameInvitationConfirmation(HttpContext
 context)
 {
 var id = context.Request.Query["id"];
 if (string.IsNullOrEmpty(id))
 await context.Response.WriteAsync("BadRequest:Id is required");

 var gameInvitationService =
 context.RequestServices.GetService<IGameInvitationService>();
 var gameInvitationModel =
 await gameInvitationService.Get(Guid.Parse(id));

 if (gameInvitationModel.IsConfirmed)
 await context.Response.WriteAsync(
 JsonConvert.SerializeObject(new
 {
 Result = "OK",
 Email = gameInvitationModel.InvitedBy,
 gameInvitationModel.EmailTo
 }));
 else
 {
 await context.Response.WriteAsync(
 "WaitGameInvitationConfirmation");
 }
 }

Don't forget to add the following using statement at the beginning of
the class:
using Microsoft.Extensions.DependencyInjection;

11. Add a new method called ProcessGameInvitationConfirmation with additional
parameters to the Communication Middleware. This will process Game
Invitation Requests while using WebSockets for browsers supporting it:

 private async Task
 ProcessGameInvitationConfirmation(HttpContext context,
 WebSocket webSocket, CancellationToken ct, string parameters)
 {
 var gameInvitationService =
 context.RequestServices.GetService<IGameInvitationService>();
 var id = Guid.Parse(parameters);
 var gameInvitationModel = await gameInvitationService.Get(id);
 while (!ct.IsCancellationRequested &&
 !webSocket.CloseStatus.HasValue &&
 gameInvitationModel?.IsConfirmed == false)
 {
 await SendStringAsync(webSocket,
 JsonConvert.SerializeObject(new
 {
 Result = "OK",
 Email = gameInvitationModel.InvitedBy,
 gameInvitationModel.EmailTo,
 gameInvitationModel.Id
 }), ct);

 Task.Delay(500).Wait();

 gameInvitationModel = await gameInvitationService.Get(id);
 }
 }

12. Update the Invoke method in the Communication Middleware. This has to work
with email confirmations and game invitation confirmations from now on, with
and without WebSockets:

 public async Task Invoke(HttpContext context)
 {
 if (context.WebSockets.IsWebSocketRequest)
 {
 ...
 switch (command.Operation.ToString())
 {
 ...
 case "CheckGameInvitationConfirmationStatus":
 {
 await ProcessGameInvitationConfirmation(context,
 webSocket, ct, command.Parameters.ToString());
 break;
 }
 }
 }
 else if (context.Request.Path.Equals(
 "/CheckEmailConfirmationStatus"))
 {
 await ProcessEmailConfirmation(context);
 }
 else if (context.Request.Path.Equals(
 "/CheckGameInvitationConfirmationStatus"))
 {
 await ProcessGameInvitationConfirmation(context);
 }
 else
 {

 await _next?.Invoke(context);
 }
 }

In this section, you have seen how to use method injection in your ASP.NET Core
2.0 web applications. This is the preferred method for injecting your services and
you should use it whenever applicable.

Also, you have advanced well with the implementation of the Tic-Tac-Toe game.
Mostly everything around user registration, email confirmation, game invitation, and
game invitation confirmation has now been implemented.

Building once and running on
multiple environments
After building your applications, you have to think about deploying them to different
environments. As you have already seen in the previous section on configuration,
you can use configuration files for changing the configuration of your services and
even your application.

In the case of multiple environments, you have to duplicate the appsettings.json file
for each environment and name it accordingly, appsettings.{EnvironmentName}.json.

ASP.NET Core 2.0 will automatically retrieve the configuration settings in
hierarchical order, first from the common appsettings.json file and then from the
corresponding appsettings.{EnvironmentName}.json file, while adding or replacing
values if necessary.

However, developing conditional code that uses different components based on
different deployment environments and configurations, seems to be complicated at
first. In traditional applications, you must create a lot of code to handle all of the
different cases by yourself and then maintain it.

In ASP.NET Core 2.0, you have a vast number of internal functionalities at your
disposal to achieve this goal. You can then simply use environment variables
(development, staging, production, and more) for indicating a specific runtime
environment, thus configuring your application for that environment.

As you will see during this section, you can use specific method names and even
class names to use existing injection and override mechanisms, provided by
ASP.NET Core 2.0 out of the box, for configuring your applications.

In the following example, we are adding an environment-specific component to the
application (SendGrid), which only has to be used if the application is deployed to a
specific production environment (Azure):

1. Add the SendGrid NuGet Package to the project. This will be used for future
Azure production deployments of the Tic-Tac-Toe application:

2. Add a new service called SendGridEmailService within the Services folder. This
will be used for sending emails via SendGrid. Have it inherit the IEmailService
interface and implement the specific SendEmail method:

 public class SendGridEmailService : IEmailService
 {
 private EmailServiceOptions _emailServiceOptions;
 private ILogger<EmailService> _logger;
 public SendGridEmailService(IOptions<EmailServiceOptions>
 emailServiceOptions, ILogger<EmailService> logger)
 {
 _emailServiceOptions = emailServiceOptions.Value;
 _logger = logger;
 }

 public Task SendEmail(string emailTo, string subject,
 string message)
 {
 _logger.LogInformation($"##Start## Sending email via
 SendGrid to :{emailTo} subject:{subject} message:{message}");
 var client =
 new SendGrid.SendGridClient(
 _emailServiceOptions.RemoteServerAPI);
 var sendGridMessage =
 new SendGrid.Helpers.Mail.SendGridMessage
 {
 From = new SendGrid.Helpers.Mail.EmailAddress(
 _emailServiceOptions.UserId)
 };
 sendGridMessage.AddTo(emailTo);
 sendGridMessage.Subject = subject;
 sendGridMessage.HtmlContent = message;
 client.SendEmailAsync(sendGridMessage);
 return Task.CompletedTask;
 }
 }

3. Add a new extension method for being able to more easily declare specific
Email Services for specific environments. For that, go to the Extensions folder

and add a new EmailServiceExtension:

 public static class EmailServiceExtension
 {
 public static IServiceCollection AddEmailService(
 this IServiceCollection services, IHostingEnvironment
 hostingEnvironment, IConfiguration configuration)
 {
 services.Configure<EmailServiceOptions>
 (configuration.GetSection("Email"));
 if (hostingEnvironment.IsDevelopment() ||
 hostingEnvironment.IsStaging())
 {
 services.AddSingleton<IEmailService, EmailService>();
 }
 else
 {
 services.AddSingleton<IEmailService, SendGridEmailService>();
 }
 return services;
 }
 }

4. Update the Startup class to use the created assets from before. For better
readability and maintainability, we will go even further and create a dedicated
ConfigureServices method for each environment we have to support, remove the
existing ConfigureServices method, and add the following environment-specific
ConfigureServices methods:

 public IConfiguration _configuration { get; }
 public IHostingEnvironment _hostingEnvironment { get; }
 public Startup(IConfiguration configuration,
 IHostingEnvironment hostingEnvironment)
 {
 _configuration = configuration;
 _hostingEnvironment = hostingEnvironment;
 }
 public void ConfigureCommonServices(IServiceCollection services)
 {
 services.AddLocalization(options =>
 options.ResourcesPath = "Localization");
 services.AddMvc().AddViewLocalization(
 LanguageViewLocationExpanderFormat.Suffix, options =>
 options.ResourcesPath =
 "Localization").AddDataAnnotationsLocalization();
 services.AddSingleton<IUserService, UserService>();
 services.AddSingleton<IGameInvitationService,
 GameInvitationService>();
 services.Configure<EmailServiceOptions>
 (_configuration.GetSection("Email"));
 services.AddEmailService(_hostingEnvironment, _configuration);
 services.AddRouting();
 services.AddSession(o =>
 {
 o.IdleTimeout = TimeSpan.FromMinutes(30);
 });
 }

 public void ConfigureDevelopmentServices(
 IServiceCollection services)
 {
 ConfigureCommonServices(services);
 }

 public void ConfigureStagingServices(
 IServiceCollection services)
 {
 ConfigureCommonServices(services);
 }

 public void ConfigureProductionServices(
 IServiceCollection services)
 {
 ConfigureCommonServices(services);
 }

Note that you could also apply the same approach to the Configure
method in the Startup class. For that, you just remove the existing
Configure method and add new methods for the environments you would
like to support, such as ConfigureDevelopment, ConfigureStaging, and
ConfigureProduction. The best practice would be to combine all of
the common code into a ConfigureCommon method and call it from the
other methods, as shown below for the specific ConfigureServices
methods.

5. Start the application by pressing F5 and verify that everything is still running
correctly. You should see that the added methods will automatically be used
and that the application is fully functional.

That was easy and straightforward! No specific conditional code for the
environments, nothing complicated to evolve and to maintain, just very clear and
easy-to-understand methods that contain the environment name they have been
developed for. A very clean solution to the problem of building once and running on
multiple environments.

But, that is not all! What if we told you that you do not need to have a single Startup
class? What if you could have a dedicated Startup class for each environment with
only the code applicable to its context? That would be great, right? Well, that is
exactly what ASP.NET Core 2.0 provides.

To be able to use dedicated Startup classes for each environment, you just have to
update the Program class, the main entry point for ASP.NET Core 2.0 applications.
You change a single line in the BuildWebHost method for passing the assembly name

.UseStartup("TicTacToe") instead of .UseStartup<Startup>(), and then you can use this
fantastic feature:

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .CaptureStartupErrors(true)
 .UseStartup("TicTacToe")
 .PreferHostingUrls(true)
 .UseUrls("http://localhost:5000")
 .UseApplicationInsights()
 .Build();
 }
 }

Now, you can add dedicated Startup classes for the different environments, such as
StartupDevelopment, StartupStaging, and StartupProduction. As with the method approach
before, they will be automatically used; nothing else needs to be done on your side.
Just update the Program class, implement your environment-specific Startup classes,
and it works. ASP.NET Core 2.0 really makes our lives much easier by providing
these useful features.

Summary
In this chapter, you have learned some more advanced concepts of ASP.NET Core
2.0 and implemented some of the missing components of the Tic-Tac-Toe
application.

At the beginning, you created the client-side parts of the Tic-Tac-Toe web
application using JavaScript. We have explored how to optimize your web
applications by using bundling and minification, as well as WebSockets for real-time
communication scenarios.

Furthermore, you have seen how to benefit from the integrated user and session
handling, which was shown in an easy-to-understand example.

Then, we introduced globalization and localization for multi-lingual user interfaces,
application and service configuration, as well logging to better understand what is
happening within your applications during runtime.

At the end, we illustrated via a practical example how to build your applications
once and then adapt them to different environments by using the concepts of
multiple ConfigureServices and Configure methods, as well as multiple Startup classes
depending on deployment targets.

In the next chapter, we will talk about ASP.NET Core MVC, Razor in MVC (areas,
layouts, partial views, and more), Razor Pages, and the View Engine.

Creating MVC Applications
Most of today's modern web applications are based on the Model View Controller
pattern, also commonly called MVC. You should have noticed that we have also
used it in the previous chapters for building the foundations of the Tic-Tac-Toe
sample application.

So, you have already worked with it in multiple places, without even knowing what
was happening in the background and why it was important to apply this specific
pattern.

An initial pre-version of ASP.NET MVC was released in 2007. It was conceived and
designed by Scott Guthrie, who also co-created ASP.NET as such, as well as Phil
Haack, who led the development team. The first packaged official version was
ASP.NET MVC 1, which was released in 2009.

Since then, the ASP.NET MVC framework has proven itself over the years, until
effectively becoming the market standard. Microsoft has successfully evolved it into
an industrialized and efficient framework with high developer productivity.

There are many examples of web applications that take full advantage of the multiple
features MVC has to offer. Two great examples are Stack Overflow and CodePlex.
They provide information to developers and have a very high user base, with the
need to scale to thousands, or even millions, of users at the same time.

In this chapter, we will cover the following topics:

Understanding the Model View Controller pattern
Creating dedicated layouts for multiple devices
Using View Pages, Partial Views, View Components, and Tag Helpers
Dividing web application into multiple Areas
Applying advanced concepts such as view engines, unit tests, and integration
tests

Understanding the Model View
Controller pattern
The MVC pattern separates applications into three main layers—models, views, and
controllers. One of the benefits of this pattern is the separation of concerns, also
called the Single Responsibility Principle (SRP), which makes it possible to
develop, debug, and test application features independently.

When using the MVC pattern, a user request is routed to a Controller, which will use
a Model for retrieving data and performing actions. The Controller selects a
corresponding view for display to the user, while providing it with the necessary data
from the Model.

There is less impact if a layer (for example, Views) changes, since it is now loosely
coupled to the other layers of your applications (for example, controllers and
models).

It is also much easier to test the different layers of your applications. In the end, you
will have better maintainability and more robust code by using this pattern:

Models
A Model contains the logical data structures as well as the data of your applications,
independent from their visual representations. In the context of ASP.NET Core 2.0,
it also supports localization and validation, as you have seen in the previous
chapters.

Models can be created in the same project with your views and controllers or in a
dedicated project for the better organization. Scaffolding uses models for auto-
generating views. Furthermore, models can be used to bind forms to entity objects
automatically.

In terms of data persistence, various data storage targets can be used. In the case of
databases, you should be using Entity Framework, which will be introduced in one
of the following chapters of this book. Models are serialized when working with
Web APIs.

Views
A View provides the visual representation and user interface elements for your
applications. When using ASP.NET Core 2.0, views are written using HMTL and
Razor markup. They generally have a .cshtml file extension.

A View either contains a complete web page, a web page part (called partial view),
or a layout. In ASP.NET Core 2.0, a View can be separated into logical subdivisions
with their own behaviors, which are called View Components.

Additionally, Tag Helpers allow you to centralize and encapsulate HTML code in a
single tag and use it across all your applications. ASP.NET Core 2.0 already includes
many existing Tag Helpers for improving developer productivity.

Controllers
A Controller manages the interactions between models and views. It provides the
logical behavior and business logic for your applications. It chooses which View has
to be rendered for a specific user request.

Generally speaking, since controllers provide the main application entry point, this
means that they are controlling how applications should respond to user requests.

Unit tests
The main goal of unit tests is to validate the business logic within controllers.
Normally, unit tests are put into their own external unit tests projects, while multiple
test frameworks are available (XUnit, NUnit, or MSTest).

As described previously, since everything is completely decoupled when using the
MVC pattern, you can test your controllers at any point independently from the other
parts of your applications by using unit tests.

Integration tests
End-to-end validation of application functionalities is done via integration tests.
They check that everything is working as expected from an application user point of
view. Therefore, controllers and their corresponding views are tested together.

As with unit tests, integration tests are normally put into their own testing projects
and you can use a variety of testing frameworks (XUnit, NUnit, or MSTest). You
will, however, also need to use a web server automation toolkit for this type of test.

Creating dedicated layouts for
multiple devices
Modern web applications use web page layouts to provide a consistent and coherent
style. It is best practice to use HTML in combination with CSS to define this layout.
In ASP.NET Core 2.0, the common web page layout definition is centralized in a
layout page. This page includes all the common user interface elements, such as the
header, the menu, the sidebar, and the footer.

Furthermore, common CSS and JavaScript files are referenced in the layout page, so
that they can be used throughout your whole application. This allows you to reduce
code in your views, thus helping you to apply the DRY (Don't Repeat Yourself)
principle.

We have been using a layout page since the very early versions of the Tic-Tac-Toe
sample application. It was first introduced when we added it in a previous chapter.
We have used it since to give our application a modern look, as you can see here:

Let's look at the layout page in more detail, to understand what it is and how to take
advantage of its features for creating dedicated layouts for multiple devices with
different form factors (PCs, telephones, tablets, and more).

In Chapter 4, Basic Concepts of ASP.NET Core 2.0 - Part 1, we added a layout page
called _Layout.cshtml within the Views\Shared folder. When opening this page and
analyzing its content, you can see that it contains common elements applicable to all
the pages within your application (header, menu, footer, CSS, JavaScripts, and
more):

The common head section within the layout page contains CSS links but also SEO
tags such as title, description, and keywords. As you have already seen before,
ASP.NET Core 2.0 provides a neat feature, which allows you to include
environment-specific content automatically via environment tags (development,
staging, production, and more).

Bootstrap has become a quasi-standard for rendering menu and navbar components,
which is why we have also used it for the Tic-Tac-Toe application.

It is best practice to put common JavaScript files at the bottom of your layout page;

they can also be included depending on ASP.NET Core environment tags.

You can use the Views_ViewStart.cshtml file to define the layout page for all your
pages in a central place. Or, if you want to set a specific layout page manually, you
can set it at the top of your page:

 @{
 Layout = "_Layout";
 }

To better structure your layout pages, you can define sections for organizing where
certain page elements, including common script sections, should be placed. An
example is the script section you can see within the layout page, which we added in
one of the first examples of the Tic-Tac-Toe application. By default, it has been put
at the bottom of the page by adding a dedicated meta tag:

 RenderSection: @RenderSection("Scripts", required: false)

You can also define sections in your views for adding files or client-side scripts. We
have already done that in the context of the Email Confirmation View, where you
have added a section for calling the client-side JavaScript EmailConfirmation method:

 @section Scripts{
 <script>
 $(document).ready(function () {
 EmailConfirmation('@ViewBag.Email');
 });
 </script>
 }

Enough with all this theoretical talk, let's get practical and do something ourselves!
Let's see how to optimize the Tic-Tac-Toe application for mobile devices:

1. We want to change the display specifically for mobile devices, so start Visual
Studio 2017, go to the Solution Explorer, create a new folder called Filters,
then add a new file called DetectMobileFilter:

 public class DetectMobileFilter : IActionFilter
 {
 static Regex MobileCheck = new Regex(@"android|
 (android|bb\d+|meego).+mobile|avantgo|bada\/|
 blackberry|blazer|compal|elaine|fennec|hiptop|
 iemobile|ip(hone|od)|iris|kindle|lge|maemo|
 midp|mmp|mobile.+firefox|netfront|
 opera m(ob|in)i|palm(os)?|phone|p(ixi|re)\/|
 plucker|pocket|psp|series(4|6)0|symbian|
 treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|
 xda|xiino", RegexOptions.IgnoreCase | RegexOptions.Multiline

 | RegexOptions.Compiled);
 static Regex MobileVersionCheck = new Regex(@"1207|
 6310|6590|3gso|4thp|50[1-6]i|770s|802s|a
 wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|
 amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|
 attw|au(di|\-m|r |s)|avan|be(ck|ll|nq)|bi(lb|rd)|
 bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|
 cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|
 devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|
 er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1
 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|
 hd\-(m|p|t)|hei\-|hi(pt|ta)|hp(i|ip)|hs\-c|ht(c(\-| |
 _|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac(|\-|
 \/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|
 ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt(|\/)|klon|kpt |kwc\-|
 kyo(c|k)|le(no|xi)|lg(g|\/(k|l|u)|50|54|\-[a-w])|
 libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|
 me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |
 o|v)|zz)|mt(50|p1|v)|mwbp|mywa|n10[0-2]|n20[2-3]|
 n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|
 tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|
 owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|
 pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|
 qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|
 ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|
 sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|
 sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v)|
 sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|
 tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|
 tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|
 vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|
 61|70|80|81|83|85|98)|w3c(\-|)|webc|whit|wi(g|nc|nw)|
 wmlb|wonu|x700|yas\-|your|zeto|zte\-",
 RegexOptions.IgnoreCase | RegexOptions.Multiline |
 RegexOptions.Compiled);

 public static bool IsMobileUserAgent(
 ActionExecutedContext context)
 {
 string userAgent = (context.HttpContext.Request.Headers
 as FrameRequestHeaders)?.HeaderUserAgent;
 if (context.HttpContext != null && userAgent != null)
 {

 if (userAgent.Length < 4)
 return false;

 if (MobileCheck.IsMatch(userAgent) ||
 MobileVersionCheck.IsMatch(userAgent.Substring(0, 4)))
 return true;
 }
 return false;
 }

 public void OnActionExecuted(ActionExecutedContext context)
 {
 var viewResult = (context.Result as ViewResult);
 if(viewResult == null)
 return;
 if (IsMobileUserAgent(context))
 {

 viewResult.ViewData["Layout"] =
 "~/Views/Shared/_LayoutMobile.cshtml";
 }
 else
 {
 viewResult.ViewData["Layout"] =
 "~/Views/Shared/_Layout.cshtml";
 }
 }

 public void OnActionExecuting(ActionExecutingContext context)
 {
 }
 }

2. Duplicate the existing Views/Shared/_Layout.cshtml file and rename the copy
_LayoutMobile.cshtml.

3. Update the Home Page Index View, remove the existing layout definition and
display a different title depending on the device by adding two dedicated
sections called Desktop and Mobile:

 @{
 ViewData["Title"] = "Home Page";
 }
 <div class="row">
 <div class="col-lg-12">
 @section Desktop {<h2>@Localizer["DesktopTitle"]</h2>}
 @section Mobile {<h2>@Localizer["MobileTitle"]</h2>}
 <div class="alert alert-info">
 ...

Note that you must also update all the other views of the application
(GameInvitation/GameInvitationConfirmation, GameInvitation/Index,
Home/Index, UserRegistration/EmailConfirmation,
UserRegistration/Index) with the section tags from the preceding code
for now:

@section Desktop{<h2>@Localizer["DesktopTitle"]</h2>}

@section Mobile {<h2>@Localizer["MobileTitle"]</h2>}

If you do not add them in your other views, you will get errors in the
next steps. However, this is only a temporary solution; we will see later
in the chapter how to address this problem more effectively by using
conditional statements.

4. Update the Resource Files. Here is an example for the English Home Page
Index Resource File; you should also add the French translations:

5. Modify the Views/Shared/_Layout.cshtml file by replacing the @RenderBody()
element with the following instructions; the Desktop section should be displayed
and the Mobile section should be ignored:

 @RenderSection("Desktop", required: false)
 @{IgnoreSection("Mobile");}
 @RenderBody()

6. Modify the Views/Shared/_LayoutMobile.cshtml file by replacing the @RenderBody()
element with the following instructions; the Mobile section should be displayed
and the Desktop section should be ignored:

 @RenderSection("Mobile", required: false)
 @{IgnoreSection("Desktop");}
 @RenderBody()

7. Go to the Views/_ViewStart.cshtml file and change the Layout assignment for all
your web pages to be able to use the layout definitions from the preceding code:

 @{Layout = Convert.ToString(ViewData["Layout"]);}

8. In the last step, update the Startup class and add the DetectMobileFilter to the
MVC service registration as a parameter:

 services.AddMvc(o =>
 o.Filters.Add(typeof(DetectMobileFilter)))...

9. Start the Tic-Tac-Toe application normally in Microsoft Edge:

10. Open the Developer Tools by clicking on F12, go to the Emulation tab and
select a mobile device, then reload the Tic-Tac-Toe application; it will be
displayed as if you had opened it on the device:

In this section, you have seen how to provide specific layouts for specific devices.
You are now going to see how to apply other advanced ASP.NET Core 2.0 MVC
features for better productivity and better applications.

Using View Pages, Partial Views,
View Components, and Tag Helpers
ASP.NET Core 2.0 and Razor, when coupled with Visual Studio 2017, provide
several functionalities for creating your MVC views. In this section, you will see
how those functionalities can help you to be more productive.

You can, for instance, create views by using the Visual Studio 2017 integrated
scaffolding features, which you have already done in previous chapters multiple
times. It allows you to automatically generate the following types of views:

View Pages
Partial Views

Would you like to understand what they are and how to use Visual Studio 2017 to
work with them efficiently? Stay sharp since we are now going to explain everything
in detail.

Using View Pages
View Pages are used to render results based on actions and for giving responses to
HTTP requests. In an MVC approach, they define and encapsulate the visible part of
your applications—the presentation layer. Furthermore, they use the .cshtml file
extension and are stored in the Views folder of the application by default.

The Visual Studio 2017 scaffolding features provide different View Page templates,
as you can see here:

Create: Generate a form for inserting data
Edit: Generate a form for updating data
Delete: Generate a form for displaying a record with a button to confirm
deletion
Details: Generate a form for displaying a record with two buttons, one for going
to edit form and one for going to delete displayed record page
List: Generate an HTML table for showing a list of objects
Empty: Generate an empty page without using any models

If you cannot use Visual Studio 2017 for generating your Page Views, you might as
well implement them manually by adding them to the Views folder yourself. In this
case, you have to respect the MVC conventions. So add them in a corresponding
sub-folder, while matching the action name, for allowing ASP.NET to find your
manually created views.

Let's create the Leaderboard for the Tic-Tac-Toe game and see all of this in action:

1. Open the Solution Explorer, go to the Views folder and create a new sub-folder
called Leaderboard, right-click on the folder and select Add | New Item | MVC
View Page in the wizard, and click on the Add button:

2. Open the created file and clear its content, associate the Leaderboard View with
the User Model by adding the following instruction to the top of the page:

 @model IEnumerable<TicTacToe.Models.UserModel>

3. It is best practice to set its title variable to display it in the SEO tags:

 @{ViewData["Title"] = "Index";}

4. Add new two sections, Desktop and Mobile, by using the @section meta tag, and
the last updated time by using the @() meta tag:

 <div class="row">
 <div class="col-lg-12">
 @section Desktop {<h2>@Localizer["DesktopTitle"] (
 Last updated @(System.DateTime.Now))</h2>}
 @section Mobile {<h2>@Localizer["MobileTitle"] (
 Last updated @(System.DateTime.Now))</h2>}
 </div>
 </div>

5. Add the English and French resource files for the Leaderboard View and define
localizations for the DesktopTitle and MobileTitle.

6. Right-click on the Controllers folder and select Add | Class, name it
LeaderboardController.cs, and click on the Add button:

7. Update the Leaderboard Controller implementation:

 public class LeaderboardController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }
 }

Note that Razor matches views with actions as follows:
<actionname>.cshtml or <actionname>.<culture>.cshtml in the
Views/<controllername> folder

8. Update the _Layout.cshtml and _LayoutMobile.cshtml files in the Views/Shared folder,
and add an ASP.NET Tag Helper for calling the new Leaderboard View within
the navbar menu just after the Home element:

 <a asp-area="" asp-controller="Leaderboard"
 asp-action="Index">Leaderboard

9. Start the application and display the new Leaderboard View:

Now that you know the basics, let's look at some more advanced techniques when
using Razor, such as code blocks, control structures, and conditional statements.

Code blocks, @{}, are used for setting or calculating variables and for formatting data.
You have already used them in the _ViewStart.cshtml file in one of the previous
examples to define which specific layout page should be used:

 @{
 Layout = Convert.ToString(ViewData["Layout"]);
 }

Control structures provide everything necessary for working with loops. You could
use @for, @foreach, @while, and @do for repeating elements, for example. They act
exactly the same as their C# equivalents.

We are now going to use them for implementing the Leaderboard View:

1. Add a new HTML table to the Leaderboard View, while using the previously
mentioned control structures:

 @model IEnumerable<TicTacToe.Models.UserModel>
 @{ViewData["Title"] = "Index";}
 <div class="row">
 <div class="col-lg-12">
 @section Desktop {<h2>@Localizer["DesktopTitle"] (
 Last updated @(System.DateTime.Now))</h2>}
 @section Mobile {<h2>@Localizer["MobileTitle"] (
 Last updated @(System.DateTime.Now))</h2>}
 <table class="table table-striped">
 <thead>
 <tr>
 <th>Name</th>
 <th>Email</th>
 <th>Score</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var user in Model)
 {
 <tr>
 <td>@user.FirstName @user.LastName</td>
 <td>@user.Email</td>
 <td>@user.Score.ToString()</td>
 </tr>
 }
 </tbody>
 </table>
 </div>
 </div>

2. Add a new GetTopUsers method to the IUserService interface for retrieving the top
users for display within the Leaderboard View:

 Task<IEnumerable<UserModel>> GetTopUsers(int numberOfUsers);

3. Implement the new GetTopUsers method within the UserService:

 public Task<IEnumerable<UserModel>>
 GetTopUsers(int numberOfUsers)
 {

 return Task.Run(() =>
 (IEnumerable<UserModel>)_userStore.OrderBy(x =>
 x.Score).Take(numberOfUsers).ToList());
 }

4. Update the Leaderboard Controller to call the new method:

 public class LeaderboardController : Controller
 {
 private IUserService _userService;
 public LeaderboardController(IUserService userService)
 {
 _userService = userService;
 }

 public async Task<IActionResult> Index()
 {
 var users = await _userService.GetTopUsers(10);
 return View(users);
 }
 }

5. Press F5 and start the application, register multiple users, and display the
Leaderboard:

Conditional Statements such as @if, @else if, @else, and @switch allow rendering
elements conditionally. They also work exactly the same as their C# counterparts.

As mentioned before, you need to define the Desktop and Mobile sections in all of
your views:

 @section Desktop { }
 @section Mobile { }

For example, if you remove them temporarily from the Leaderboard Index View and
try to display it while the ASPNETCORE_ENVIRONMENT variable is set to Development so that

the Developer Exception page is activated, you will get the following error message:

This is because we changed the Layout and Mobile layout pages for the application in
one of the previous steps and used an IgnoreSection instruction. Unfortunately,
sections must always be declared when using IgnoreSection instructions.

But now that you know that conditional statements exist, you can already see a better
solution, right? Yes, exactly; we have to wrap the IgnoreSection instruction with a
conditional if statement within the two layout pages.

Here is how you need to update the layout page using the IsSectionDefined method:

 @RenderSection("Desktop", required: false)
 @if(IsSectionDefined("Mobile")){IgnoreSection("Mobile");}
 @RenderBody()

Here is how you need to update the Mobile layout page:

 @RenderSection("Mobile", required: false)
 @if(IsSectionDefined("Desktop")){IgnoreSection("Desktop");}
 @RenderBody()

Start the application and you will see that everything is now working as expected,
but this time with a much cleaner, more elegant, and easier-to-understand solution;
that is, using the built-in functionalities of ASP.NET Core 2.0 and Razor.

For additional information on Razor please visit: https://docs.microsoft
.com/en-us/aspnet/core/mvc/views/razor

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor

Using Partial Views
You have seen how to create View Pages using Razor, but sometimes you have to
repeat elements within all or some of your View Pages. Wouldn't it be helpful if you
could create reusable components within your views for this case? Unsurprisingly,
ASP.NET Core 2.0 does implement this feature by default, by providing so-called
Partial Views.

Partial Views are rendered within calling View Pages. Like standard View Pages,
they also have the .cshtml file extension. You can define them once and then use
them within all your View Pages. What a great way to optimize your code by
reducing code duplication, which leads to better quality and less maintenance!

You are going to see how to benefit from that right now, by optimizing the Layout
and Mobile layout pages to use a single menu:

1. Go to the Views/Shared folder and add a new MVC View Page called
_Menu.cshtml, it will be used as the Menu Partial View:

2. Copy the nav bar from one of the layout pages and paste it into the Menu Partial
View:

 <nav class="navbar navbar-inverse navbar-fixed-top">
 ...
 </nav>

3. Replace the nav bar with @Html.Partial("_Menu") in both layout pages.
4. Start the application and validate that everything is still working as before. You

should not see any differences, but that is a good thing; you have encapsulated
and centralized the menu in a Partial View now.

Using View Components
You have seen how to create reusable components by using Partial Views, which can
be called from any View Pages within your applications, and applied this concept to
the top menu of the Tic-Tac-Toe application. But sometimes, even this feature is not
enough.

Sometimes you need something more powerful, something more flexible, that you
can use throughout your whole web application and maybe even for multiple web
applications. That is where View Components come into play.

View Components are used for complex use cases that require some code running on
the server (for example, Login Panel, Tag Cloud, and Shopping Cart), where Partial
Views are too limited to be used, and where you need to be able to test
functionalities extensively.

You are going to add a View Component for managing game sessions in the
following example; you will see that it is very similar to a standard Controller
implementation:

1. Add a new model called TurnModel to the Models folder:

 public class TurnModel
 {
 public Guid Id { get; set; }
 public Guid UserId { get; set; }
 public UserModel User { get; set; }
 public int X { get; set; }
 public int Y { get; set; }
 }

2. Add a new model called GameSessionModel to the Models folder:

 public class GameSessionModel
 {
 public Guid Id { get; set; }
 public Guid UserId1 { get; set; }
 public Guid UserId2 { get; set; }
 public UserModel User1 { get; set; }
 public UserModel User2 { get; set; }
 public IEnumerable<TurnModel> Turns { get; set; }
 public UserModel Winner { get; set; }
 public UserModel ActiveUser { get; set; }
 public Guid WinnerId { get; set; }
 public Guid ActiveUserId { get; set; }

 public bool TurnFinished { get; set; }
 }

3. Add a new service called GameSessionService to the Services folder, implement it,
and extract the IGameSessionService interface:

 public class GameSessionService
 {
 private static ConcurrentBag<GameSessionModel> _sessions;
 static GameSessionService()
 {
 _sessions = new ConcurrentBag<GameSessionModel>();
 }

 public Task<GameSessionModel> GetGameSession(Guid gameSessionId)
 {
 return Task.Run(() => _sessions.FirstOrDefault(
 x => x.Id == gameSessionId));
 }
 }

4. Register the GameSessionService within the Startup class, as you have already done
with all the other services:

 services.AddSingleton<IGameSessionService, GameSessionService>();

5. Go to the Solution Explorer, create a new folder called Components, then add a
new class called GameSessionViewComponent.cs:

 [ViewComponent(Name = "GameSession")]
 public class GameSessionViewComponent : ViewComponent
 {
 IGameSessionService _gameSessionService;
 public GameSessionViewComponent(IGameSessionService
 gameSessionService)
 {
 _gameSessionService = gameSessionService;
 }

 public async Task<IViewComponentResult> InvokeAsync(Guid
 gameSessionId)
 {
 var session =
 await _gameSessionService.GetGameSession(gameSessionId);
 return View(session);
 }
 }

6. Go to the Solution Explorer and create a new folder called Components within the
Views/Shared folder. Within this folder create a new folder called GameSession for
the GameSessionViewComponent, then add a new View called default.cshtml:

 @using Microsoft.AspNetCore.Http
 @model TicTacToe.Models.GameSessionModel

 @{
 var email = Context.Session.GetString("email");
 }
 @if (Model.ActiveUser?.Email == email)
 {
 <table>
 @for (int rows = 0; rows < 3; rows++)
 {
 <tr style="height:150px;">
 @for (int columns = 0; columns < 3; columns++)
 {
 <td style="width:150px; border:1px solid #808080">
 @{
 var position = Model.Turns?.FirstOrDefault(
 turn => turn.X == columns && turn.Y == rows);

 if (position != null)
 {
 if (position.User?.Email == "Player1")
 {
 <i class="glyphicon glyphicon-unchecked"
 style="width:100%;height:100%"></i>
 }
 else
 {
 <i class="glyphicon glyphicon-remove-circle"
 style="width:100%;height:100%"></i>
 }
 }
 else
 {
 <a asp-action="SetPosition"
 asp-controller="GameSession"
 asp-route-id="@Model.Id"
 asp-route-email="@email"
 class="btn btn-default"
 style="width:150px; min-height:150px;">

 }
 }
 </td>
 }
 </tr>
 }
 </table>
 }
 else
 {
 <div class="alert">
 <i class="glyphicon glyphicon-alert">Please wait until
 the other user has finished his turn.</i>
 </div>
 }

We advise using the following syntax for putting all Partial Views for
your View Components in their corresponding folders:
Views\Shared\Components\<ViewComponentName>\<ViewName>

7. Update the _ViewImports.cshtml file to use the View Component:

 @addTagHelper *, TicTacToe

8. Create a new folder called GameSession within the Views folder, then add a new
View called Index:

 @model TicTacToe.Models.GameSessionModel
 @section Desktop
 {
 <h1>Game Session @Model.Id</h1>
 <h2>Started at @(DateTime.Now.ToShortTimeString())</h2>
 <div class="alert alert-info">
 <table class="table">
 <tr>
 <td>User 1:</td>
 <td>@Model.User1?.Email (<i class="glyphicon
 glyphicon-unchecked"></i>)</td>
 </tr>
 <tr>
 <td>User 2:</td>
 <td>@Model.User2?.Email (<i class="glyphicon
 glyphicon-remove-circle"></i>)</td>
 </tr>
 </table>
 </div>
 }
 @section Mobile{
 <h1>Game Session @Model.Id</h1>
 <h2>Started at @(DateTime.Now.ToShortTimeString())</h2>
 User 1: @Model.User1?.Email <i class="glyphicon
 glyphicon-unchecked"></i>

 User 2: @Model.User2?.Email (<i class="glyphicon
 glyphicon-remove-circle"></i>)
 }
 <vc:game-session game-session-id="@Model.Id"></vc:game-session>

9. Add a public constructor to the GameSessionService for getting an instance of User
Service:

 private IUserService _UserService;
 public GameSessionService(IUserService userService)
 {
 _UserService = userService;
 }

10. Add a method to the GameSessionService for creating game sessions, and update
the Game Session Service Interface:

 public async Task<GameSessionModel> CreateGameSession(
 Guid invitationId, string invitedByEmail,
 string invitedPlayerEmail)
 {
 var invitedBy =
 await _UserService.GetUserByEmail(invitedByEmail);

 var invitedPlayer =
 await _UserService.GetUserByEmail(invitedPlayerEmail);

 GameSessionModel session = new GameSessionModel
 {
 User1 = invitedBy,
 User2 = invitedPlayer,
 Id = invitationId,
 ActiveUser = invitedBy
 };

 _sessions.Add(session);
 return session;
 }

11. Add a new Controller called GameSessionController within the Controllers folder,
and implement a new Index method:

 public class GameSessionController : Controller
 {
 private IGameSessionService _gameSessionService;
 public GameSessionController(IGameSessionService
 gameSessionService)
 {
 _gameSessionService = gameSessionService;
 }

 public async Task<IActionResult> Index(Guid id)
 {
 var session = await _gameSessionService.GetGameSession(id);
 if (session == null)
 {
 var gameInvitationService =
 Request.HttpContext.RequestServices
 .GetService<IGameInvitationService>();
 var invitation = await gameInvitationService.Get(id);
 session =
 await _gameSessionService.CreateGameSession(
 invitation.Id,invitation.InvitedBy,
 invitation.EmailTo);
 }
 return View(session);
 }
 }

Note that for calling RequestServices.GetService<T>(); you must also add
using Microsoft.Extensions.DependencyInjection; as you have already done
in other examples.

12. Start the application, register a new user, and invite another user to play a game,
wait for the new Game Session page to be displayed:

Using Tag Helpers
Tag Helpers are a new feature of ASP.NET Core 2.0, which allow server-side code
to be used when creating and rendering HTML elements. They can be compared to
already existing and well-known HTML helpers for rendering HTML content.

ASP.NET Core 2.0 already provides many built-in Tag Helpers, such
as ImageTagHelper and LabelTagHelper that you can use within your applications.

When creating your own Tag Helpers, you can target HTML elements based on an
element name, an attribute name, or a parent tag. You can then use standard HTML
tags in your views, while presentation logic written in C# is applied on the web
server.

Additionally, you can even create custom tags as you will see in this section about
creating a Gravatar tag. You will use this within the Tic-Tac-Toe application:

1. Open the Solution Explorer and create a new folder called TagHelpers, then add a
new class called GravatarTagHelper.cs.

2. Implement the GravatarTagHelper.cs class; it will be used to connect to the
Gravatar online service for retrieving account photos for users:

 [HtmlTargetElement("Gravatar")]
 public class GravatarTagHelper : TagHelper
 {
 private ILogger<GravatarTagHelper> _logger;
 public GravatarTagHelper(ILogger<GravatarTagHelper> logger)
 {
 _logger = logger;
 }
 public string Email { get; set; }
 public override void Process(TagHelperContext context,
 TagHelperOutput output)
 {
 byte[] photo = null;
 if (CheckIsConnected())
 {
 photo = GetPhoto(Email);
 }
 else
 {
 photo = File.ReadAllBytes(Path.Combine(
 Directory.GetCurrentDirectory(),
 "wwwroot", "images", "no-photo.jpg"));
 }

 string base64String = Convert.ToBase64String(photo);
 output.TagName = "img";
 output.Attributes.SetAttribute("src",
 $"data:image/jpeg;base64,{base64String}");
 }

 private bool CheckIsConnected()
 {
 try
 {
 using (var httpClient = new HttpClient())
 {
 var gravatarResponse = httpClient.GetAsync(
 "http://www.gravatar.com/avatar/").Result;
 return (gravatarResponse.IsSuccessStatusCode);
 }
 }
 catch (Exception ex)
 {
 _logger?.LogError($"Cannot check the gravatar
 service status: {ex}");
 return false;
 }
 }

 private byte[] GetPhoto(string email)
 {
 var httpClient = new HttpClient();
 return httpClient.GetByteArrayAsync(
 new Uri($"http://www.gravatar.com/avatar/
 {HashEmailForGravatar(email)}")).Result;
 }

 private static string HashEmailForGravatar(string email)
 {
 var md5Hasher = MD5.Create();
 byte[] data = md5Hasher.ComputeHash(
 Encoding.ASCII.GetBytes(email.ToLower()));

 var stringBuilder = new StringBuilder();
 for (int i = 0; i < data.Length; i++)
 {
 stringBuilder.Append(data[i].ToString("x2"));
 }
 return stringBuilder.ToString();
 }
 }

3. Open the Views/_ViewImports.cshtml file and verify that the addTagHelper
instruction is existing; if not, add it to the file:

 @addTagHelper *, TicTacToe

4. Update the Index method in the GameInvitationController, store the user email,
and display the name (first name and last name) in a session variable:

 [HttpGet]
 public async Task<IActionResult> Index(string email)

 {
 var gameInvitationModel = new GameInvitationModel {
 InvitedBy = email, Id = Guid.NewGuid() };
 Request.HttpContext.Session.SetString("email", email);
 var user = await _userService.GetUserByEmail(email);
 Request.HttpContext.Session.SetString("displayName",
 $"{user.FirstName} {user.LastName}");
 return View(gameInvitationModel);
 }

5. Add a new model called AccountModel to the Models folder:

 public class AccountModel
 {
 public string Email { get; set; }
 public string DisplayName { get; set; }
 }

6. Add a new Partial View called _Account.cshtml in the Views/Shared folder:

 @model TicTacToe.Models.AccountModel
 <li class="dropdown">

 @Model.DisplayName

 <ul class="dropdown-menu" id="connected-dp">

 <div class="navbar-login">
 <div class="row">
 <div class="col-lg-4">
 <p class="text-center">
 <Gravatar email="@Model.Email"></Gravatar>
 </p>
 </div>
 <div class="col-lg-8">
 <p class="text-left">@Model.DisplayName</p>
 <p class="text-left small"><a asp-action="Index"
 asp-controller="Account">@Model.Email</p>
 </div>
 </div>
 </div>

 <li class="divider">

 <div class="navbar-login navbar-login-session">
 <div class="row">
 <div class="col-lg-12">
 <p>
 Log off
 </p>
 </div>
 </div>
 </div>

7. Add a new CSS class to the wwwroot/css/site.css file:

 #connected-dp {
 min-width: 350px;
 }

Note that you might need to empty your browser cache or force a
refresh for the application to update the site.css file within your
browser.

8. Update the Menu Partial View, and retrieve the user display name and email at
the top of the page:

 @using Microsoft.AspNetCore.Http;
 @{
 var email = Context.Session.GetString("email");
 var displayName = Context.Session.GetString("displayName");
 }

9. Update the Menu Partial View, and add the new Account Partial View from
before, located just after the Settings element in the menu:

 @if (!string.IsNullOrEmpty(email))
 {
 Html.RenderPartial("_Account",
 new TicTacToe.Models.AccountModel {
 Email = email, DisplayName = displayName });
 }

10. Create an account on Gravatar with your email and upload a photo, start the
Tic-Tac-Toe application, and register with the same email. You should now see
a new dropdown with a photo and display name in the top menu:

Note that you have to be online for this to work. If you want to test your
code offline, you should put a photo in the wwwroot\images folder called
no-photo.jpg; otherwise, you will get an error since no offline photo can
be found.

Easy to understand and easy to use, but when to use View Components and when to
use Tag Helpers? The following simple rules should help you decide when to use
which of the explained concepts:

View Components are used whenever you need templates for views, for
rendering a group of elements, and associating server code with it.
Tag Helpers are used to append behavior to a single HTML element, instead of
a group of elements.

Dividing web applications into
multiple Areas
Sometimes, when working with larger web applications, it can be interesting to
logically separate them into multiple smaller, functional units. Each unit can then
have its own controllers, views, and models, which makes it easier to understand,
manage, evolve, and maintain them over time.

ASP.NET Core 2.0 provides some simple mechanisms based on the folder structure
for dividing web applications into multiple functional units, also called Areas.

For example, to separate the standard Area from the more advanced administration
Area within your applications. The standard Area could then even enable anonymous
access on some pages, while asking for authentication and authorization on others,
whereas the administration Area would always require authentication and
authorization on all pages.

The following conventions and restrictions apply to Areas:

An Area is a subdirectory under the Areas folder
An Area contains at least the two subfolders: Controllers and Views
An Area may contain specific layout pages as well as dedicated
_ViewImport.cshtml and _ViewStart.cshtml files
You have to register a specific route, which enables Areas within its routing
definition, to be able to use Areas in your applications
It is recommended to use the following format for Area URLs:
http://<Host>/<AreaName>/<ControllerName>/<ActionName>

The Tag Helper asp-area can be used for appending an Area to a URL

Let's look at how to create a specific Administration Area for Account Management:

1. Open the Solution Explorer and create a new folder called Areas, right-click on
the folder and select Add | Area, enter Account as Area name, and click on the
Add button:

2. Scaffolding will create a dedicated folder structure for the Account Area:

3. Add a new route for Areas to the UseMVC declaration within the Configure method
of the Startup class:

 app.UseMvc(routes =>
 {
 routes.MapRoute(name: "areaRoute",
 template: "{area:exists}/{controller=Home}/{action=Index}");

 routes.MapRoute(name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

4. Right-click on the Controllers folder within the Account Area and add a new
Controller called HomeController:

 [Area("Account")]
 public class HomeController : Controller
 {
 private IUserService _userService;
 public HomeController(IUserService userService) {
 _userService = userService;
 }
 public async Task<IActionResult> Index() {

 var email = HttpContext.Session.GetString("email");
 var user = await _userService.GetUserByEmail(email);
 return View(user);
 }
 }

5. Add a new folder called Home in the Account/Views folder, and add a View called
Index in this new folder:

 @model TicTacToe.Models.UserModel
 <h3>Account Details</h3>
 <div class="container">
 <div class="row">
 <div class="col-xs-12 col-sm-6 col-md-6">
 <div class="well well-sm">
 <div class="row">
 <div class="col-sm-6 col-md-4">
 <Gravatar email="@Model.Email"></Gravatar>
 </div>
 <div class="col-sm-6 col-md-8">
 <h4>@($"{Model.FirstName} {Model.LastName}")</h4>
 <p>
 <i class="glyphicon glyphicon-envelope"></i>
 @Model.Email
 </p>
 <p>
 <i class="glyphicon glyphicon-calendar">
 </i> @Model.EmailConfirmationDate
 </p>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>

6. Update the Account Partial View, and add a link to display the preceding view
(just after the existing Log off link):

 <a class="btn btn-default btn-block" asp-action="Index"
 asp-controller="Account">View Details

7. Start the application, register a new user, and call the new Area by clicking on
the Account Details link in the account dropdown:

We will stop the implementation of the Administration Area here and come back to
it in Chapter 9, Securing ASP.NET Core 2.0 Applications, where you will see how to
secure access to it.

Applying advanced concepts
Now that we have seen all the basic features of ASP.NET Core 2.0 MVC, let's look
at some of the more advanced features, which can help you during your daily work
as a developer.

You will also learn how to use Visual Studio 2017 for testing your applications and
thus providing better quality for your users.

Using view engines
When ASP.NET Core 2.0 uses server-side code for rendering HTML, it uses a View
Engine. By default, when building standard views with their associated .cshtml files,
you use the Razor View Engine with the Razor syntax, for example.

By convention, this engine is able to work with views, which are located within the
Views folder. Since it is built-in and the default engine, it is bound automatically to
the HTTP Request Pipeline without you doing anything for it to work.

If you need to use Razor for rendering files that are located outside of the Views folder
and don't come directly from the HTTP Request Pipeline, such as email templates
for example, you cannot use the default Razor View Engine. Instead, you need to
define your own View Engine and make it responsible for generating the HTML
code in this case.

In the following example, we will explain how you can use Razor for rendering an
email based on an email template, which is not coming from the HTTP Request
Pipeline:

1. Open the Solution Explorer and create a new folder called ViewEngines, add a
new class called EmailViewEngine.cs, and extract its interface, IEmailViewEngine:

 public class EmailViewEngine
 {
 private readonly IRazorViewEngine _viewEngine;
 private readonly ITempDataProvider _tempDataProvider;
 private readonly IServiceProvider _serviceProvider;

 public EmailViewEngine(
 IRazorViewEngine viewEngine,
 ITempDataProvider tempDataProvider,
 IServiceProvider serviceProvider)
 {
 _viewEngine = viewEngine;
 _tempDataProvider = tempDataProvider;
 _serviceProvider = serviceProvider;
 }
 private IView FindView(ActionContext actionContext,
 string viewName)
 {
 var getViewResult =
 _viewEngine.GetView(executingFilePath: null,
 viewPath: viewName, isMainPage: true);
 if (getViewResult.Success)

 {
 return getViewResult.View;
 }
 var findViewResult = _viewEngine.FindView(actionContext,
 viewName, isMainPage: true);
 if (findViewResult.Success)
 {
 return findViewResult.View;
 }
 var searchedLocations =
 getViewResult.SearchedLocations.Concat(
 findViewResult.SearchedLocations);
 var errorMessage = string.Join(
 Environment.NewLine,
 new[] { $"Unable to find view '{viewName}'. The following
 locations were searched:" }.Concat(searchedLocations));

 throw new InvalidOperationException(errorMessage);
 }

 public async Task<string> RenderEmailToString<TModel>(string
 viewName, TModel model)
 {
 var actionContext = GetActionContext();
 var view = FindView(actionContext, viewName);
 if (view == null)
 {
 throw new InvalidOperationException(string.Format(
 "Couldn't find view '{0}'", viewName));
 }

 using (var output = new StringWriter())
 {
 var viewContext = new ViewContext(
 actionContext,
 view,
 new ViewDataDictionary<TModel>(
 metadataProvider: new EmptyModelMetadataProvider(),
 modelState: new ModelStateDictionary())
 {
 Model = model
 },
 new TempDataDictionary(
 actionContext.HttpContext,
 _tempDataProvider),
 output,
 new HtmlHelperOptions());

 await view.RenderAsync(viewContext);
 return output.ToString();
 }
 }
 private ActionContext GetActionContext()
 {
 var httpContext = new DefaultHttpContext
 {
 RequestServices = _serviceProvider
 };
 return new ActionContext(httpContext, new RouteData(),
 new ActionDescriptor());
 }

 }

2. Create a new folder called Helpers, and add a new class called
EmailViewRenderHelper.cs:

 public class EmailViewRenderHelper
 {
 IHostingEnvironment _hostingEnvironment;
 IConfiguration _configurationRoot;
 IHttpContextAccessor _httpContextAccessor;

 public async Task<string> RenderTemplate<T>(string template,
 IHostingEnvironment hostingEnvironment, IConfiguration
 configurationRoot, IHttpContextAccessor httpContextAccessor,
 T model) where T:class
 {
 _hostingEnvironment = hostingEnvironment;
 _configurationRoot = configurationRoot;
 _httpContextAccessor = httpContextAccessor;
 var renderer =
 httpContextAccessor.HttpContext.RequestServices
 .GetRequiredService<IEmailViewEngine>();
 return await renderer.RenderEmailToString<T>(template,
 model);
 }
 }

3. Add a new service called EmailTemplateRenderService in the Services folder and
extract its interface, IEmailTemplateRenderService:

 public class EmailTemplateRenderService
 {
 private IHostingEnvironment _hostingEnvironment;
 private IConfiguration _configuration;
 private IHttpContextAccessor _httpContextAccessor;

 public EmailTemplateRenderService(IHostingEnvironment
 hostingEnvironment, IConfiguration configuration,
 IHttpContextAccessor httpContextAccessor)
 {
 _hostingEnvironment = hostingEnvironment;
 _configuration = configuration;
 _httpContextAccessor = httpContextAccessor;
 }

 public async Task<string> RenderTemplate<T>(string
 templateName, T model, string host) where T : class
 {
 var html = await new EmailViewRenderHelper()
 .RenderTemplate(templateName, _hostingEnvironment,
 _configuration, _httpContextAccessor, model);
 var targetDir =
 Path.Combine(Directory.GetCurrentDirectory(),
 "wwwroot", "Emails");

 if (!Directory.Exists(targetDir))
 Directory.CreateDirectory(targetDir);

 string dateTime = DateTime.Now.ToString("ddMMHHyyHHmmss");
 var targetFileName = Path.Combine(targetDir,
 templateName.Replace("/", "_").Replace("\\", "_") + "." +
 dateTime + ".html");
 html = html.Replace("{ViewOnLine}",
 $"{host.TrimEnd('/')}/Emails/{Path.GetFileName
 (targetFileName)}");
 html = html.Replace("{ServerUrl}", host);
 File.WriteAllText(targetFileName, html);
 return html;
 }
 }

4. Register the EmailViewEngine and EmailTemplateRenderService in the Startup class:

 services.AddTransient<IEmailTemplateRenderService,
 EmailTemplateRenderService>();
 services.AddTransient<IEmailViewEngine, EmailViewEngine>();

Note that it is required to register the EmailViewEngine and the
EmailTemplateRenderService as transient because of the HTTP Context
Accessor injection.

5. Add a new layout page in the Views/Shared folder called _LayoutEmail.cshtml:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0" />
 <title>@ViewData["Title"] - TicTacToe</title>

 <environment include="Development">
 <link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet"
 href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/
 css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only"
 asp-fallback-test-property="position"
 asp-fallback-test-value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css"
 asp-append-version="true" />
 </environment>
 </head>
 <body>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - TicTacToe</p>
 </footer>

 </div>

 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment exclude="Development">
 <script src="https://ajax.aspnetcdn.com/
 ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+
 AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/
 3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn
 && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7
 l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js"
 asp-append-version="true"></script>
 </environment>

 @RenderSection("Scripts", required: false)
 </body>
 </html>

6. Add a new model called UserRegistrationEmailModel to the Models folder:

 public class UserRegistrationEmailModel
 {
 public string Email { get; set; }
 public string DisplayName { get; set; }
 public string ActionUrl { get; set; }
 }

7. Create a new sub-folder called EmailTemplates in the Views folder and add a new
view called UserRegistrationEmail:

 @model TicTacToe.Models.UserRegistrationEmailModel
 @{
 ViewData["Title"] = "View";
 Layout = "_LayoutEmail";
 }
 <h1>Welcome @Model.DisplayName</h1>
 Thank you for registering on our website. Please click here to confirm your email.

8. Update the EmailConfirmation method within the UserRegistrationController for
using the new Email View Engine before sending any emails:

 var userRegistrationEmail = new UserRegistrationEmailModel
 {
 DisplayName = $"{user.FirstName} {user.LastName}",
 Email = email,
 ActionUrl = Url.Action(urlAction)
 };

 var emailRenderService =
 HttpContext.RequestServices.GetService
 <IEmailTemplateRenderService>();
 var message =
 await emailRenderService.RenderTemplate(
 "EmailTemplates/UserRegistrationEmail",
 userRegistrationEmail, Request.Host.ToString());

Note that for calling RequestServices.GetService<T>();, you must also add
using Microsoft.Extensions.DependencyInjection; as you have already done
in other examples.

9. Start the application and register a new user, open the UserRegistrationEmail, and
analyze its content (look in the wwwroot/Emails folder):

Note that a View Engine can be used for rendering email content, as
seen in the preceding example, but it can also be used for rendering
views outside of the Views folder, for rendering views from within a
database, or for using the themes folder as in ASP.NET 4.

You have seen many concepts and many code examples throughout the various
chapters of this book, but we have not yet talked about how to ensure excellent
quality and maintainability for your applications. The next section is going to shed
some light on this subject, since it is dedicated to application testing.

Providing better quality by creating
unit tests and integration tests
Building high-quality applications and satisfying application users is a difficult
endeavor. Even more, shipping products that have technical and functional flaws can
lead to enormous problems during the maintenance phase of your applications.

The worst-case scenario is that, since maintenance is so demanding on time and
resources, you will not be able to evolve your applications as quickly as possible to
lower your time-to-market, and you will be unable to provide exciting new features.
But rest assured that your competition is not waiting! They will surpass you and you
will lose market share and market leadership.

But how can you succeed? How can you reduce the time to detect bugs and
functional problems? You have to test your code and your applications! And you
have to do that as much as possible and as soon as possible. It is common knowledge
that fixing a bug during development time is cheaper and quicker, whereas fixing a
bug during production takes more time and money.

Having a low Mean Time To Repair (MTTR) for bugs can make a big difference
when it comes to becoming a future market leader within your specific markets.

Let's continue with the development of the Tic-Tac-Toe application and then see how
to carefully test it in more detail:

1. Add a new method called AddTurn to the GameSessionService and update the Game
Session Service Interface:

 public async Task<GameSessionModel> AddTurn(Guid id,
 string email, int x, int y) {
 var gameSession = _sessions.FirstOrDefault(session =>
 session.Id == id);
 List<Models.TurnModel> turns;
 if (gameSession.Turns != null && gameSession.Turns.Any())

 turns = new List<Models.TurnModel>(gameSession.Turns);
 else
 turns = new List<TurnModel>();

 turns.Add(new TurnModel
 {

 User = await _UserService.GetUserByEmail(email),
 X = x,
 Y = y
 });

 if (gameSession.User1?.Email == email)
 gameSession.ActiveUser = gameSession.User2;
 else
 gameSession.ActiveUser = gameSession.User1;

 gameSession.TurnFinished = true;
 _sessions = new ConcurrentBag<GameSessionModel>
 (_sessions.Where(u => u.Id != id))
 {
 gameSession
 };
 return gameSession;
 }

2. Add a new method called SetPosition to GameSessionController:

 public async Task<IActionResult> SetPosition(Guid id,
 string email, int x, int y)
 {
 var gameSession =
 await _gameSessionService.GetGameSession(id);
 await _gameSessionService.AddTurn(gameSession.Id, email,
 x, y);
 return View("Index", gameSession);
 }

3. Add a new model called InvitationEmailModel to the Models folder:

 public class InvitationEmailModel
 {
 public string DisplayName { get; set; }
 public UserModel InvitedBy { get; set; }
 public DateTime InvitedDate { get; set; }
 public string ConfirmationUrl { get; set; }
 }

4. Add a new View called InvitationEmail to the Views/EmailTemplates folder:

 @model TicTacToe.Models.InvitationEmailModel
 @{
 ViewData["Title"] = "View";
 Layout = "_LayoutEmail";
 }
 <h1>Welcome @Model.DisplayName</h1>
 You have been invited by @($"{Model.InvitedBy.FirstName}
 {Model.InvitedBy.LastName}") for playing the Tic-Tac-Toe game.
 Please click here for
 joining the game.

5. Update the Index method in the GameInvitationController for using the Invitation
Email Template mentioned previously:

 [HttpPost]
 public async Task<IActionResult> Index(
 GameInvitationModel gameInvitationModel,
 [FromServices]IEmailService emailService)
 {
 var gameInvitationService =
 Request.HttpContext.RequestServices.GetService
 <IGameInvitationService>();
 if (ModelState.IsValid)
 {
 try
 {
 var invitationModel = new InvitationEmailModel
 {
 DisplayName = $"{gameInvitationModel.EmailTo}",
 InvitedBy =
 await _userService.GetUserByEmail(
 gameInvitationModel.InvitedBy),
 ConfirmationUrl = Url.Action("ConfirmGameInvitation",
 "GameInvitation", new { id = gameInvitationModel.Id },
 Request.Scheme, Request.Host.ToString()),
 InvitedDate = gameInvitationModel.ConfirmationDate
 };

 var emailRenderService =
 HttpContext.RequestServices.GetService
 <IEmailTemplateRenderService>();
 var message =
 await emailRenderService.RenderTemplate
 <InvitationEmailModel>("EmailTemplates/InvitationEmail",
 invitationModel, Request.Host.ToString());
 await emailService.SendEmail(
 gameInvitationModel.EmailTo, _stringLocalizer[
 "Invitation for playing a Tic-Tac-Toe game"], message);
 }
 catch
 {

 }

 var invitation =
 gameInvitationService.Add(gameInvitationModel).Result;
 return RedirectToAction("GameInvitationConfirmation",
 new { id = gameInvitationModel.Id });
 }
 return View(gameInvitationModel);
 }

6. Add a new method called ConfirmGameInvitation to GameInvitationController:

 [HttpGet]
 public IActionResult ConfirmGameInvitation (Guid id,
 [FromServices]IGameInvitationService gameInvitationService)
 {
 var gameInvitation = gameInvitationService.Get(id).Result;
 gameInvitation.IsConfirmed = true;
 gameInvitation.ConfirmationDate = DateTime.Now;
 gameInvitationService.Update(gameInvitation);
 return RedirectToAction("Index", "GameSession", new { id = id });
 }

7. Start the application and verify that everything is working as expected,
including the various emails and steps for starting a new game.

Now that we have implemented all this new code, how do we test it? How do we
ensure that it is working as expected? You could start the application in debug mode
and verify manually that all variables are set correctly and that the application flow is
correct, but that would be very tedious and not very efficient.

How could you do it better? Well, by using unit tests and integration tests, which we
will introduce in the following sections.

Adding unit tests
Unit tests allow you to individually verify the behavior of your various technical
components and ensure that they are working as expected. They also help you to
quickly identify regressions and analyze the overall impact of new developments.

Visual Studio 2017 includes powerful features for unit testing. The Test Explorer
helps you to run unit tests as well as view and analyze test results. For that, you can
either use the built-in Microsoft testing framework or additional frameworks such as
NUnit or xUnit.

Furthermore, you can automatically execute unit tests after each build, so developers
can react quickly if something is not working as expected.

Refactoring code can be done without fearing regressions, since unit tests ensure that
everything is still working as before. No more excuses for not having the best code
quality possible!

You could even go further and apply Test Driven Development (TDD), which is
where you write unit tests before writing implementations. Additionally, unit tests
become some sort of design document and functional specifications in this case.

This book is about ASP.NET Core 2.0, so we will not go into too much
detail about unit tests. It is, however, advised to dig deeper and
familiarize yourself with all the different unit test concepts for building
better applications.

We are now going to see how easy it is to use xUnit, the preferred unit testing
framework for ASP.NET Core:

1. Add a new project of xUnit Test Project (.NET Core) type called
TicTacToe.UnitTests to the TicTacToe Solution:

2. Update the xUnit and Microsoft.NET.Test.SDK NuGet packages to the latest
versions using the NuGet Package Manager:

3. Add references to the TicTacToe and TicTacToe.Logging projects:

4. Delete the autogenerated class, add a new class called FileLoggerTests.cs for
testing a regular class, and implement a new method called
ShouldCreateALogFileAndAddEntry:

 public class FileLoggerTests
 {
 [Fact]
 public void ShouldCreateALogFileAndAddEntry()
 {
 var fileLogger = new FileLogger(
 "Test", (category, level) => true,
 Path.Combine(Directory.GetCurrentDirectory(),
 "testlog.log"));
 var isEnabled = fileLogger.IsEnabled(LogLevel.Information);
 Assert.True(isEnabled);
 }
 }

5. Add another new class called UserServiceTests.cs for testing a service, and
implement a new method called ShouldAddUser:

 public class UserServiceTests
 {
 [Theory]
 [InlineData("test@test.com", "test", "test", "test123!")]
 [InlineData("test1@test.com", "test1", "test1", "test123!")]
 [InlineData("test2@test.com", "test2", "test2", "test123!")]
 public async Task ShouldAddUser(string email,
 string firstName, string lastName, string password)
 {
 var userModel = new UserModel
 {
 Email = email,
 FirstName = firstName,
 LastName = lastName,
 Password = password

 };

 var userService = new UserService();
 var userAdded = await userService.RegisterUser(userModel);
 Assert.True(userAdded);
 }
 }

6. Open Test Explorer via Test | Windows | Test Explorer and then choose to Run
All, to ensure that all the tests execute successfully:

Unit tests are great and really important, but also somewhat limited. They only test
each technical component separately, which is the main goal of this type of test. The
idea behind unit tests is to quickly get a glimpse of the current status of all your
technical components, one-by-one, without slowing down the continuous integration
process. They do not test applications under real production conditions, since
external dependencies are mocked. Instead, they are intended to run quickly and
ensure that each method being tested creates no unintended side effects in other
methods or classes.

If you stop here, you will not be able to find the maximum bugs possible during the
development phase. You have to go even further and test all components together in
a real environment; this is where integration tests come into play.

Adding integration tests
Integration tests are a logical extension to unit tests. They test the integration
between multiple technical components within your applications in a real
environment with access to external data sources (such as Databases, Web Services,
and Caches).

The goal of this type of test is to ensure that everything is working well together and
providing the expected functionalities when combining the various technical
components together for creating application behavior.

Furthermore, integration tests should always have clean-up steps, so that they can
run repeatedly without error and will not leave any artifacts behind in databases or
file systems. In the following example, you will understand how to apply integration
tests to the Tic-Tac-Toe application:

1. Add a new project of xUnit Test Project (.NET Core) type called
TicTacToe.IntegrationTests to the TicTacToe Solution, update the NuGet
packages and add references to the TicTacToe and TicTacToe.Logging projects as
previously shown for the Unit Tests Project.

2. Add the Microsoft.AspNetCore.TestHost NuGet package to be able to create fully-
automated integration tests using xUnit:

3. Delete the autogenerated class, add a new class called IntegrationTests.cs, and
implement a new method called ShouldGetHomePageAsync:

 using Microsoft.Extensions.DependencyInjection;
 using System.Reflection;
 using System.Linq;
 using Microsoft.CodeAnalysis;
 ...

 public class IntegrationTests
 {
 private readonly TestServer _testServer;
 private readonly HttpClient _httpClient;
 public IntegrationTests()
 {
 string applicationBasePath =
 Path.GetFullPath(Path.Combine(
 Directory.GetCurrentDirectory(),
 @"..\..\..\..\TicTacToe"));
 Directory.SetCurrentDirectory(applicationBasePath);
 Environment.SetEnvironmentVariable(
 "ASPNETCORE_ENVIRONMENT", "Development");
 var builder = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(applicationBasePath)
 .UseStartup<Startup>()
 .ConfigureServices(services =>
 {
 services.Configure((RazorViewEngineOptions options) =>
 {
 var previous = options.CompilationCallback;
 options.CompilationCallback = (context) =>
 {
 previous?.Invoke(context);
 var assembly =
 typeof(Startup).GetTypeInfo().Assembly;
 var assemblies =
 assembly.GetReferencedAssemblies().Select(x =>
 MetadataReference.CreateFromFile(
 Assembly.Load(x).Location)).ToList();

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "mscorlib")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "System.Private.Corelib")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName("netstandard,
 Version = 2.0.0.0, Culture = neutral,
 PublicKeyToken = cc7b13ffcd2ddd51")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "System.Linq")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "System.Threading.Tasks")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "System.Runtime")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "System.Dynamic.Runtime")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "Microsoft.AspNetCore.Razor.Runtime")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "Microsoft.AspNetCore.Mvc")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "Microsoft.AspNetCore.Razor")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "Microsoft.AspNetCore.Mvc.Razor")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "Microsoft.AspNetCore.Html.Abstractions")).Location));

 assemblies.Add(MetadataReference.CreateFromFile(
 Assembly.Load(new AssemblyName(
 "System.Text.Encodings.Web")).Location));
 context.Compilation =
 context.Compilation.AddReferences(assemblies);
 };
 });
 });

 _testServer = new TestServer(builder)
 {
 BaseAddress = new Uri("http://localhost:5000")

 };
 _httpClient = _testServer.CreateClient();
 }

 [Fact]
 public async Task ShouldGetHomePageAsync()
 {
 var response = await _httpClient.GetAsync("/");
 response.EnsureSuccessStatusCode();
 var responseString = await
 response.Content.ReadAsStringAsync();
 Assert.Contains("Welcome to the Tic-Tac-Toe Desktop Game!",
 responseString);
 }
 }

4. Run the tests in Test Explorer and ensure that they execute successfully:

Now that you have seen how to test your applications in the previous examples, you
can continue to add additional unit and integration tests to fully understand these
concepts and to build a testing coverage that will allow you to provide high-quality
applications.

Summary
In this chapter, you learned about the MVC pattern, its different components and
layers, and how important it is for building great ASP.NET Core 2.0 web
applications.

You saw how to use layout pages and the features surrounding it to create device-
specific layouts and thus adapting your user interfaces to the devices they will be
running on.

Furthermore, you have used View Pages to build the visible part, the presentation
layer, of your web applications.

Then we looked at Partial Views, View Components, and Tag Helpers to better
encapsulate and reuse your presentation logic throughout the different views of your
applications.

At the end, we illustrated advanced concepts such as the View Engine, as well as
units tests and integration tests for creating high-quality applications with a low
MTTR for your bugs.

In the next chapter, we will talk about the ASP.NET Core 2.0 Web API framework
and how to build, test, and deploy Web API applications.

Creating Web API Applications
You do not know it yet, but this chapter is the chapter you have been waiting for! It
is very special for multiple reasons.

First, we will finish the gaming part and you will be able to start playing the Tic-Tac-
Toe game. Yes, at last, the whole application will run and you will be able to
compete against other users. Very exciting!

Second, you will see how to integrate your applications with other systems and
services. This is very important, since applications are no longer isolated silos.
Instead, they communicate with each other and continuously exchange data for
providing even more value to customers. How do you do that? You provide
interoperable Web APIs, which allow for plugging components, sometimes based on
completely different technologies, together!

Third, using Web APIs will not only allow you to integrate with other systems; it
will also help you to build more flexible and reusable application components, which
you can then combine for creating new applications responding to more advanced
use cases.

The APIs you will be creating in this chapter are not only usable by the MVC Web
frontend you have been working on, but also by new mobile frontends you might
build in the future. This will allow you to reach even more customers. You will be
able to provide omnichannel experiences to your customers, where they start using
one device and finish on another.

In this chapter, we will cover the following topics:

Applying Web API concepts and best practices
Building RPC-style Web APIs
Building REST-style Web APIs
Building HATEOAS-style Web APIs

Applying Web API concepts and
best practices
ASP.NET Core 2.0 combines the best features of ASP.NET MVC and Web APIs
together into a single framework. This makes complete sense, since they provide
many similar functionalities.

Before this merger, developers had to rewrite code when they needed to expose data
in different formats via MVC and Web APIs. They had to work with multiple
frameworks and concepts at the same time. Fortunately, this entire process has been
completely streamlined in ASP.NET Core 2.0, as you will see during this chapter.

The following diagram illustrates how client HTTP requests are handled by
ASP.NET Core 2.0 concerning Web APIs and MVC:

Web APIs normally use either JSON or XML as a response format. JSON would be
the preferred format, since it has become quasi-standard on the market and
everybody is using it due to its simplicity and efficiency.

Furthermore, filters and middlewares can be used with Web APIs, since ASP.NET
Core 2.0 manages Web APIs the same way it does for standard MVC Controllers.
This can be quite handy in some use cases and developers can apply their skills more
widely.

In general, there are three different styles for creating Web APIs when using
ASP.NET Core 2.0:

RPC-style
REST-style
HATEOAS-style

Note that it is also possible to use SOAP for creating Web APIs, but it
is not recommended. Instead, SOAP should be used in the context of
standard web services, which is why it is not shown in the following
examples.

We will present each style in more detail and you will see some practical examples,
which will help you decide on your own integration strategy.

Building RPC-style Web APIs
The RPC-style is based on the Remote Procedure Call paradigms, which have
existed for a long time now (since the early 1980s). It is based on including an action
name in the URL, which therefore makes it very similar to standard MVC actions.

One of the big advantages of ASP.NET Core 2.0 is that you do not need to separate
the MVC parts from the Web API parts. Instead, you can use both in your controller
implementations.

Controllers are now capable of rendering View results as well as JSON/XML API
responses, which enables easy migrations from one to the other. Additionally, you
can use a specific route path or the same route path for your MVC actions.

In the following example, you are going to transform a controller action from an
MVC View result into an RPC-style Web API:

1. Add a new method called ConfirmEmail to the UserRegistrationController; it will be
used to confirm the user registration email:

 [HttpGet]
 public async Task<IActionResult> ConfirmEmail(string email)
 {
 var user = await _userService.GetUserByEmail(email);
 if (user != null)
 {
 user.IsEmailConfirmed = true;
 user.EmailConfirmationDate = DateTime.Now;
 await _userService.UpdateUser(user);
 return RedirectToAction("Index", "Home");
 }
 return BadRequest();
 }

2. Update the ConfirmGameInvitation method within the GameInvitationController,
store the email of the invited user in a session variable and register the new user
via the user service:

 [HttpGet]
 public async Task<IActionResult> ConfirmGameInvitation(Guid id,
 [FromServices]IGameInvitationService gameInvitationService)
 {
 var gameInvitation = await gameInvitationService.Get(id);
 gameInvitation.IsConfirmed = true;
 gameInvitation.ConfirmationDate = DateTime.Now;

 await gameInvitationService.Update(gameInvitation);
 Request.HttpContext.Session.SetString("email",
 gameInvitation.EmailTo);
 await _userService.RegisterUser(new UserModel
 {
 Email = gameInvitation.EmailTo, EmailConfirmationDate =
 DateTime.Now, IsEmailConfirmed =true
 });
 return RedirectToAction("Index", "GameSession", new { id });
 }

3. Update the table element in GameSessionViewComponent in the
Views/Shared/Components/GameSession/default.cshtml file:

 @using Microsoft.AspNetCore.Http
 @model TicTacToe.Models.GameSessionModel
 @{
 var email = Context.Session.GetString("email");
 }
 <div id="gameBoard">
 <table>
 @for (int rows = 0; rows < 3; rows++)
 {
 <tr style="height:150px;">
 @for (int columns = 0; columns < 3; columns++)
 {
 <td style="width:150px; border:1px
 solid #808080" id="@($"c_{rows}_{columns}")">
 @{
 var position = Model.Turns?.FirstOrDefault(
 turn => turn.X == columns && turn.Y == rows);
 if (position != null)
 {
 if (position.User == Model.User1)
 {
 <i class="glyphicon glyphicon-unchecked"
 style="width:100%;height:100%"></i>
 }
 else
 {
 <i class="glyphicon glyphicon-remove-circle"
 style="width:100%;height:100%"></i>
 }
 }
 else
 {
 <a class="btn btn-default btn-SetPosition"
 style="width:150px; min-height:150px;"
 data-X="@columns" data-Y="@rows">

 }
 }
 </td>
 }
 </tr>
 }
 </table>
 </div>

 <div class="alert" id="divAlertWaitTurn">
 <i class="glyphicon glyphicon-alert">Please wait until the
 other user has finished his turn.</i>
 </div>

4. Add a new JavaScript file within the wwwroot\app\js folder called GameSession.js;
it will be used to call the Web API. Add a temporary alert box for testing
purposes:

 function SetGameSession(gdSessionId, strEmail) {
 window.GameSessionId = gdSessionId;
 window.EmailPlayer = strEmail;
 }

 $(document).ready(function () {
 $(".btn-SetPosition").click(function () {
 var intX = $(this).attr("data-X");
 var intY = $(this).attr("data-Y");
 SendPosition(window.GameSessionId, window.EmailPlayer,
 intX, intY);
 })
 })

 function SendPosition(gdSession, strEmail, intX, intY) {
 var port = document.location.port ? (":" +
 document.location.port) : "";
 var url = document.location.protocol + "//" +
 document.location.hostname + port +
 "/restApi/v1/SetGamePosition/" + gdSession;
 var obj = {
 "Email": strEmail, "x": intX, "y": intY
 };

 var json = JSON.stringify(obj);
 $.ajax({
 'url': url,
 'accepts': "application/json; charset=utf-8",
 'contentType': "application/json",
 'data': json,
 'dataType': "json",
 'type': "POST",
 'success': function (data) {
 alert(data);
 }
 });
 }

5. Add the preceding new JavaScript file to the bundleconfig.json file, for bundling
it together with the other files into the site.js file:

 {
 "outputFileName": "wwwroot/js/site.js",
 "inputFiles": [
 "wwwroot/app/js/scripts1.js",
 "wwwroot/app/js/scripts2.js",
 "wwwroot/app/js/GameSession.js"
],

 "sourceMap": true,
 "includeInProject": true
 },

6. Add a new property called Email to the TurnModel model:

 public string Email { get; set; }

7. Update the SetPosition method within GameSessionController and expose it as a
Web API for being able to receive Ajax calls from the JavaScript SendPosition
function previously implemented:

 [Produces("application/json")]
 [HttpPost("/restapi/v1/SetGamePosition/{sessionId}")]
 public async Task<IActionResult> SetPosition(
 [FromRoute]Guid sessionId)
 {
 if (sessionId != Guid.Empty)
 {
 using (var reader = new StreamReader(Request.Body,
 Encoding.UTF8, true, 1024, true))
 {
 var bodyString = reader.ReadToEnd();
 if (string.IsNullOrEmpty(bodyString))
 return BadRequest("Body is empty");

 var turn =
 JsonConvert.DeserializeObject<TurnModel>(bodyString);

 turn.User =
 await HttpContext.RequestServices.GetService
 <IUserService>().GetUserByEmail(turn.Email);
 turn.UserId = turn.User.Id;
 if (turn == null)
 return BadRequest("You must pass a TurnModel
 object in your body");

 var gameSession =
 await _gameSessionService.GetGameSession(sessionId);

 if (gameSession == null)
 return BadRequest($"Cannot find Game Session {sessionId}");

 if (gameSession.ActiveUser.Email != turn.User.Email)
 return BadRequest($"{turn.User.Email} cannot play
 this turn");

 gameSession =
 await _gameSessionService.AddTurn(
 gameSession.Id, turn.User.Email, turn.X, turn.Y);
 if (gameSession != null &&
 gameSession.ActiveUser.Email != turn.User.Email)
 return Ok(gameSession);
 else
 return BadRequest("Cannot save turn");
 }
 }
 return BadRequest("Id is empty");

 }

Note that it is best practice to prefix Web APIs with a meaningful name
and a version number (for example, /restapi/v1) as well as to support
JSON and XML.

8. Update the Game Session Index View in the Views folder and call the JavaScript
SetGameSession function with the corresponding parameters:

 @using Microsoft.AspNetCore.Http
 @model TicTacToe.Models.GameSessionModel
 @{
 var email = Context.Session.GetString("email");
 }
 @section Desktop
 {
 <h1>Game Session @Model.Id</h1>
 <h2>Started at @(DateTime.Now.ToShortTimeString())</h2>
 <div class="alert alert-info">
 <table class="table">
 <tr>
 <td>User 1:</td>
 <td>@Model.User1?.Email (<i class="glyphicon
 glyphicon-unchecked"></i>)</td>
 </tr>
 <tr>
 <td>User 2:</td>
 <td>@Model.User2?.Email (<i class="glyphicon
 glyphicon-remove-circle"></i>)</td>
 </tr>
 </table>
 </div>
 }
 @section Mobile{
 <h1>Game Session @Model.Id</h1>
 <h2>Started at @(DateTime.Now.ToShortTimeString())</h2>
 User 1: @Model.User1?.Email <i class="glyphicon
 glyphicon-unchecked"></i>

 User 2: @Model.User2?.Email (<i class="glyphicon
 glyphicon-remove-circle"></i>)
 }
 <h3>User Email @email</h3>
 <h3>Active User
 @Model.ActiveUser?.Email</h3>
 <vc:game-session game-session-id="@Model.Id"></vc:game-session>
 @section Scripts{
 <script>
 SetGameSession("@Model.Id", "@email");
 </script>
 }

9. Update the ProcessEmailConfirmation method for WebSockets in the
Communication Middleware:

 public async Task ProcessEmailConfirmation(HttpContext context,
 WebSocket currentSocket, CancellationToken ct, string email)

 {
 var user = await _userService.GetUserByEmail(email);
 while (!ct.IsCancellationRequested &&
 !currentSocket.CloseStatus.HasValue &&
 user?.IsEmailConfirmed == false)
 {
 await SendStringAsync(currentSocket,
 "WaitEmailConfirmation", ct);
 await Task.Delay(500);
 user = await _userService.GetUserByEmail(email);
 }

 if (user.IsEmailConfirmed)
 {
 await SendStringAsync(currentSocket, "OK", ct);
 }
 }

10. Update the ProcessGameInvitationConfirmation method for WebSockets in the
Communication Middleware:

 private async Task ProcessGameInvitationConfirmation(
 HttpContext context, WebSocket webSocket,
 CancellationToken ct, string parameters)
 {
 var gameInvitationService =
 context.RequestServices.GetService<IGameInvitationService>();
 var id = Guid.Parse(parameters);
 var gameInvitationModel =
 await gameInvitationService.Get(id);
 while (!ct.IsCancellationRequested &&
 !webSocket.CloseStatus.HasValue &&
 gameInvitationModel?.IsConfirmed == false)
 {
 await Task.Delay(500);
 gameInvitationModel = await gameInvitationService.Get(id);
 await SendStringAsync(webSocket, "WaitForConfirmation", ct);
 }

 if (gameInvitationModel.IsConfirmed)
 {
 await SendStringAsync(webSocket,
 JsonConvert.SerializeObject(new
 {
 Result = "OK",
 Email = gameInvitationModel.InvitedBy,
 gameInvitationModel.EmailTo,
 gameInvitationModel.Id
 }), ct);
 }
 }

11. Update the CheckGameInvitationConfirmationStatus method in the
scripts2.js JavaScript file; it has to verify the returned data now:

 function CheckGameInvitationConfirmationStatus(id) {
 $.get("/GameInvitationConfirmation?id=" + id, function (data) {
 if (data.result === "OK") {

 if (interval !== null) {
 clearInterval(interval);
 }
 window.location.href = "/GameSession/Index/" + id;
 }
 });
 }

12. Update the Process method in the Gravatar Tag Helper and handle the case
where no photo exists correctly:

 public override void Process(TagHelperContext context,
 TagHelperOutput output)
 {
 byte[] photo = null;
 if (CheckIsConnected())
 {
 photo = GetPhoto(Email);
 }
 else
 {
 string filePath =
 Path.Combine(Directory.GetCurrentDirectory(),
 "wwwroot", "images", "no-photo.jpg");
 if (File.Exists(filePath))
 photo = File.ReadAllBytes(filePath);
 }

 if(photo != null && photo.Length > 0)
 {
 output.TagName = "img";
 output.Attributes.SetAttribute("src",
 $"data:image/jpeg;base64,{Convert.ToBase64String(photo)}");
 }
 }

13. Update the Add method in GameInvitationService:

 public Task<GameInvitationModel> Add(
 GameInvitationModel gameInvitationModel)
 {
 _gameInvitations.Add(gameInvitationModel);
 return Task.FromResult(gameInvitationModel);
 }

14. Update the Desktop Layout Page and Mobile Layout Page; cleanup by
removing the development environment tag containing script1.js and script2.js
at the bottom of both pages.

15. Update the scripts1.js JavaScript file and clean up by removing all the alert
boxes that display whether WebSockets are enabled.

16. Start the application, register a new user, start a game session by inviting
another user, click on a cell, and you will now see a JavaScript alert box:

Very well; you have seen how to transform the existing GameSessionController action
into an RPC-style Web API. Since all the different ASP.NET web frameworks have
been centralized into a single framework in ASP.NET Core 2.0, this can be done
easily and quickly without re-writing code or changing too much in your existing
code.

In the next step, we will see how to add a new method to the RPC-style Web API for
checking if the turn for the current user has been finished and thus the next user can
start his turn:

1. Add a new property called TurnNumber to the GameSessionModel for tracking the
current turn number:

 public int TurnNumber { get; set; }

2. Add a new property called IconNumber to the TurnModel for being able to define

what icon (X or O) needs to be used for display later:

 public string IconNumber { get; set; }

3. Add a new method called GetGameSession to the GameSessionController; it will be
exclusive to Web API calls:

 [Produces("application/json")]
 [HttpGet("/restapi/v1/GetGameSession/{sessionId}")]
 public async Task<IActionResult> GetGameSession(Guid sessionId)
 {
 if (sessionId != Guid.Empty)
 {
 var session =
 await _gameSessionService.GetGameSession(sessionId);

 if (session != null)
 {
 return Ok(session);
 }
 else
 {
 return NotFound($"can not found session {sessionId}");
 }
 }
 else
 {
 return BadRequest("session id is null");
 }
 }

4. Update the AddTurn method in GameSessionService, so that it calculates the
IconNumber and TurnNumber:

 public async Task<GameSessionModel> AddTurn(Guid id,
 string email, int x, int y)
 {
 List<Models.TurnModel> turns;
 var gameSession = _sessions.FirstOrDefault(
 session => session.Id == id);
 if (gameSession.Turns != null && gameSession.Turns.Any())
 turns = new List<Models.TurnModel>(gameSession.Turns);
 else
 turns = new List<TurnModel>();

 turns.Add(new TurnModel
 {
 User = await _UserService.GetUserByEmail(email),
 X = x,
 Y = y,
 IconNumber = email == gameSession.User1?.Email ? "1" : "2"
 });

 gameSession.Turns = turns;
 gameSession.TurnNumber = gameSession.TurnNumber + 1;
 if (gameSession.User1?.Email == email)
 gameSession.ActiveUser = gameSession.User2;

 else
 gameSession.ActiveUser = gameSession.User1;

 gameSession.TurnFinished = true;
 _sessions = new ConcurrentBag<GameSessionModel>
 (_sessions.Where(u => u.Id != id))
 {
 gameSession
 };
 return gameSession;
 }

5. Update the Game Session Index View, use images, and add the possibility to
enable and disable the gameboard:

 @using Microsoft.AspNetCore.Http
 @model TicTacToe.Models.GameSessionModel
 @{
 var email = Context.Session.GetString("email");
 }
 @section Desktop
 {
 <h1>Game Session @Model.Id</h1>
 <h2>Started at @(DateTime.Now.ToShortTimeString())</h2>
 <div class="alert alert-info">
 <table class="table">
 <tr>
 <td>User 1:</td>
 <td>@Model.User1?.Email (<i class="glyphicon
 glyphicon-unchecked"></i>)</td>
 </tr>
 <tr>
 <td>User 2:</td>
 <td>@Model.User2?.Email (<i class="glyphicon
 glyphicon-remove-circle"></i>)</td>
 </tr>
 </table>
 </div>

 }
 @section Mobile{
 <h1>Game Session @Model.Id</h1>
 <h2>Started at @(DateTime.Now.ToShortTimeString())</h2>
 User 1: @Model.User1 <i class="glyphicon
 glyphicon-unchecked"></i>

 User 2: @Model.User2 (<i class="glyphicon
 glyphicon-remove-circle"></i>)
 }
 <h3>User Email @email</h3>
 <h3>Active User
 @Model.ActiveUser?.Email</h3>
 <vc:game-session game-session-id="@Model.Id"></vc:game-session>
 @section Scripts{
 <script>
 SetGameSession("@Model.Id", "@email");
 EnableCheckTurnIsFinished();
 @if(email != Model.ActiveUser?.Email)
 {
 <text>DisableBoard(@Model.TurnNumber);</text>

 }
 else
 {
 <text>EnableBoard(@Model.TurnNumber);</text>
 }
 </script>
 }

6. Add a new JavaScript file called CheckTurnIsFinished.js to the wwwroot\app\js
folder; update the bundleconfig.json file accordingly:

 function EnableCheckTurnIsFinished() {
 interval = setInterval(() => {
 CheckTurnIsFinished();
 }, 2000);
 }

 function CheckTurnIsFinished() {
 var port = document.location.port ? (":" +
 document.location.port) : "";
 var url = document.location.protocol + "//" +
 document.location.hostname + port +
 "/restapi/v1/GetGameSession/" + window.GameSessionId;

 $.get(url, function (data) {
 if (data.turnFinished === true &&
 data.turnNumber >= window.TurnNumber) {
 CheckGameSessionIsFinished();
 ChangeTurn(data);
 }
 });
 }

 function ChangeTurn(data) {
 var turn = data.turns[data.turnNumber-1];
 DisplayImageTurn(turn);

 $("#activeUser").text(data.activeUser.email);
 if (data.activeUser.email !== window.EmailPlayer) {
 DisableBoard(data.turnNumber);
 }
 else {
 EnableBoard(data.turnNumber);
 }
 }

 function DisableBoard(turnNumber) {
 var divBoard = $("#gameBoard");
 divBoard.hide();
 $("#divAlertWaitTurn").show();
 window.TurnNumber = turnNumber;
 }

 function EnableBoard(turnNumber) {
 var divBoard = $("#gameBoard");
 divBoard.show();
 $("#divAlertWaitTurn").hide();
 window.TurnNumber = turnNumber;
 }

 function DisplayImageTurn(turn) {
 var c = $("#c_" + turn.y + "_" + turn.x);
 var css;

 if (turn.iconNumber === "1") {
 css = 'glyphicon glyphicon-unchecked';
 }
 else {
 css = 'glyphicon glyphicon-remove-circle';
 }

 c.html('<i class="' + css + '"></i>');
 }

7. Update the SetGameSession method in the GameSession.js JavaScript file; set the
TurnNumber to zero by default:

 function SetGameSession(gdSessionId, strEmail) {
 window.GameSessionId = gdSessionId;
 window.EmailPlayer = strEmail;
 window.TurnNumber = 0;
 }

8. Update the SendPosition method in the GameSession.js JavaScript file and remove
the temporary testing alert box added before; we don't need it anymore, and the
game will be fully functional at the end of this section:

 function SendPosition(gdSession, strEmail, intX, intY) {
 var port = document.location.port ? (":" +
 document.location.port) : "";
 var url = document.location.protocol + "//" +
 document.location.hostname + port +
 "/restApi/v1/SetGamePosition/" + gdSession;
 var obj = {
 "Email": strEmail, "x": intX, "y": intY
 };

 var json = JSON.stringify(obj);
 $.ajax({
 'url': url,
 'accepts': "application/json; charset=utf-8",
 'contentType': "application/json",
 'data': json,
 'dataType': "json",
 'type': "POST"
 });
 }

9. Add two new methods to the GameSessionController, the first one called
CheckGameSessionIsFinished and the second one called CheckIfUserHasWon:

 [Produces("application/json")]
 [HttpGet("/restapi/v1/CheckGameSessionIsFinished/{sessionId}")]
 public async Task<IActionResult> CheckGameSessionIsFinished(

 Guid sessionId)
 {
 if (sessionId != Guid.Empty)
 {
 var session =
 await _gameSessionService.GetGameSession(sessionId);
 if (session != null)
 {
 if (session.Turns.Count() == 9)
 return Ok("The game was a draw.");

 var userTurns = session.Turns.Where(
 x => x.User == session.User1).ToList();
 var user1Won = CheckIfUserHasWon(session.User1?.Email,
 userTurns);

 if (user1Won)
 {
 return Ok($"{session.User1.Email} has won the game.");
 }
 else
 {
 userTurns = session.Turns.Where(
 x => x.User == session.User2).ToList();
 var user2Won = CheckIfUserHasWon(session.User2?.Email,
 userTurns);

 if (user2Won)
 return Ok($"{session.User2.Email} has won the game.");
 else
 return Ok("");
 }
 }
 else
 {
 return NotFound($"Cannot find session {sessionId}.");
 }
 }
 else
 {
 return BadRequest("SessionId is null.");
 }
 }

 private bool CheckIfUserHasWon(string email,
 List<TurnModel> userTurns)
 {
 if (userTurns.Any(x => x.X == 0 && x.Y == 0) &&
 userTurns.Any(x => x.X == 1 && x.Y == 0) &&
 userTurns.Any(x => x.X == 2 && x.Y == 0))
 return true;
 else if (userTurns.Any(x => x.X == 0 && x.Y == 1) &&
 userTurns.Any(x => x.X == 1 && x.Y == 1) &&
 userTurns.Any(x => x.X == 2 && x.Y == 1))
 return true;
 else if (userTurns.Any(x => x.X == 0 && x.Y == 2) &&
 userTurns.Any(x => x.X == 1 && x.Y == 2) &&
 userTurns.Any(x => x.X == 2 && x.Y == 2))
 return true;
 else if (userTurns.Any(x => x.X == 0 && x.Y == 0) &&
 userTurns.Any(x => x.X == 0 && x.Y == 1) &&

 userTurns.Any(x => x.X == 0 && x.Y == 2))
 return true;
 else if (userTurns.Any(x => x.X == 1 && x.Y == 0) &&
 userTurns.Any(x => x.X == 1 && x.Y == 1) &&
 userTurns.Any(x => x.X == 1 && x.Y == 2))
 return true;
 else if (userTurns.Any(x => x.X == 2 && x.Y == 0) &&
 userTurns.Any(x => x.X == 2 && x.Y == 1) &&
 userTurns.Any(x => x.X == 2 && x.Y == 2))
 return true;
 else if (userTurns.Any(x => x.X == 0 && x.Y == 0) &&
 userTurns.Any(x => x.X == 1 && x.Y == 1) &&
 userTurns.Any(x => x.X == 2 && x.Y == 2))
 return true;
 else if (userTurns.Any(x => x.X == 2 && x.Y == 0) &&
 userTurns.Any(x => x.X == 1 && x.Y == 1) &&
 userTurns.Any(x => x.X == 0 && x.Y == 2))
 return true;
 else
 return false;
 }

10. Add a new JavaScript file called CheckGameSessionIsFinished.js to the
wwwroot\app\js folder and update the bundleconfig.json file accordingly:

 function CheckGameSessionIsFinished() {
 var port = document.location.port ? (":" +
 document.location.port) : "";
 var url = document.location.protocol + "//" +
 document.location.hostname + port +
 "/restapi/v1/CheckGameSessionIsFinished/" +
 window.GameSessionId;

 $.get(url, function (data) {
 debugger;
 if (data.indexOf("won") > 0 || data == "The game
 was a draw.") {
 alert(data);
 window.location.href = document.location.protocol +
 "//" + document.location.hostname + port;
 }
 });
 }

11. Start the game, register a new account, open the confirmation email, confirm it,
send a game invitation email, confirm the game invitation, and start playing.
Everything should be working now, and you should be able to play the game
until a user has won or until the game is a draw:

This has been the RPC-style, which is very close to standard MVC Controller
actions. In the next sections, you will see a completely different approach, which is
based on resources and resource management.

Congratulations; you have now finished the implementation and created a beautiful,
modern, browser-based game, in which two users can play against each other.

Prepare yourself, since you are going to see more advanced techniques and discover
how to provide Web APIs for interoperability using two of the most famous API
communication styles called REST and HATEOAS.

To play the game, you can either use two separate private browser windows or use
two distinct browsers such as Chrome, Edge, or Firefox. For testing your Web APIs,
it is advised to install and use Postman, but you could also use any other HTTP
REST-compatible client, such as Fiddler, or even Firefox via its advanced features.

Building REST-style Web APIs
The REST-style was invented by Roy Fiedling in the 2000s and is one of the best
ways to provide interoperability between systems that are based on multiple
technologies, whether it be in your network or on the internet.

Furthermore, the REST approach is not a technology by itself, but instead some best
practices for efficiently using the HTTP protocol.

Instead of adding a new layer like SOAP or XML-RPC, REST uses different
elements of the HTTP protocol for providing its services:

The URI identifies a resource
The HTTP Verb identifies an action
The response is not the resource, but only a representation of the resource
The client authentication is passed as parameter in the header of requests

Unlike the RPC-style, the main purpose is no longer to provide actions, but is instead
to manage and manipulate resources.

To get even more information on the concepts and ideas behind REST,
you should read the dissertation of Roy Fiedling, which you can find at
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

As you can see in the following diagram, there are mainly three types of resources in
the TicTacToe application:

Users
Game Invitations
Game Sessions

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

We are now going to illustrate how to use the REST-style for building a Game
Invitation REST API:

1. Add two new methods called All and Delete to the GameInvitationService and
update the Game Invitation Service Interface accordingly:

 public Task<IEnumerable<GameInvitationModel>> All()
 {
 return Task.FromResult<IEnumerable<GameInvitationModel>>
 (_gameInvitations.ToList());
 }

 public Task Delete(Guid id)
 {
 _gameInvitations = new ConcurrentBag<GameInvitationModel>
 (_gameInvitations.Where(x => x.Id != id));
 return Task.CompletedTask;
 }

2. Add a new API Controller called GameInvitationApiController, right-click on the
Controllers folder and select Add | Controller, and then choose the API
Controller with read/write actions template:

3. Remove the auto-generated code and replace it with the following REST API
implementation; you will see how straightforward it is:

 [Produces("application/json")]
 [Route("restapi/v1/GameInvitation")]
 public class GameInvitationApiController : Controller
 {
 private IGameInvitationService _gameInvitationService;
 private IUserService _userService;
 public GameInvitationApiController(IGameInvitationService
 gameInvitationService, IUserService userService)
 {
 _gameInvitationService = gameInvitationService;
 _userService = userService;
 }

 [HttpGet]
 public async Task<IEnumerable<GameInvitationModel>> Get()
 {
 return await _gameInvitationService.All();
 }

 [HttpGet("{id}", Name = "Get")]
 public async Task<GameInvitationModel> Get(Guid id)
 {
 return await _gameInvitationService.Get(id);
 }

 [HttpPost]
 public IActionResult Post([FromBody]GameInvitationModel
 invitation)
 {
 if (!ModelState.IsValid)
 return BadRequest(ModelState);

 var invitedPlayer =
 _userService.GetUserByEmail(invitation.EmailTo);
 if (invitedPlayer == null) return BadRequest();

 _gameInvitationService.Add(invitation);
 return Ok();
 }

 [HttpPut("{id}")]
 public IActionResult Put(Guid id,
 [FromBody]GameInvitationModel invitation)
 {
 if (!ModelState.IsValid)
 return BadRequest(ModelState);

 var invitedPlayer =
 _userService.GetUserByEmail(invitation.EmailTo);
 if (invitedPlayer == null) return BadRequest();

 _gameInvitationService.Update(invitation);
 return Ok();
 }

 [HttpDelete("{id}")]
 public void Delete(Guid id)
 {
 _gameInvitationService.Delete(id);
 }
 }

Note that for learning purposes, we have just given a very basic
example of what you could implement. Normally, you should provide
the same functionalities as in your controller implementations (sending
emails, confirming emails, verifying data, etc.) and some advanced
error handling.

4. Start the application, install and start Postman for doing some manual tests on
the new REST API you are now providing, and send an HTTP GET Request to
http://<yourhost>/restapi/v1/GameInvitation. There will be no game invitations,
since you have not created any yet:

5. Create a new Game Invitation, send an HTTP POST Request to
http://<yourhost>/restapi/v1/GameInvitation, click on Body, select raw and JSON,
and use "id":"7223160d-6243-498b-9d35-81b8c947b5ca",
"EmailTo":"example@example.com", and "InvitedBy":"test@test.com" as parameters:

Note that we have added the automatic creation of a user if it does not
exist for testing purposes in one of the previous chapters. In a real
worked scenario, you will have to implement the user registration Web
APIs and call them before the Game Invitation Web APIs. Otherwise,
you will get a bad request, since we have added some code to assure
data coherence and integrity.

6. You can retrieve the Game Invitation either by sending an HTTP GET Request
to http://<yourhost>/restapi/v1/GameInvitation or, more specifically, by sending
an HTTP GET Request to http://<yourhost>/restapi/v1/GameInvitation/7223160d-
6243-498b-9d35-81b8c947b5ca:

7. Update the Game Invitation, send an HTTP PUT Request to
http://<yourhost>/restapi/v1/GameInvitation/7223160d-6243-498b-9d35-81b8c947b5ca,
click on Body, select raw and JSON, and use "id":"7223160d-6243-498b-9d35-
81b8c947b5ca", "EmailTo":"updated@updated.com", and "InvitedBy":"test@test.com" as
parameters:

8. Look at the updated Game Invitation and send an HTTP GET Request to
http://<yourhost>/restapi/v1/GameInvitation/7223160d-6243-498b-9d35-81b8c947b5ca:

9. Delete the Game Invitation and send an HTTP DELETE Request to
http://<yourhost>/restapi/v1/GameInvitation/7223160d-6243-498b-9d35-81b8c947b5ca:

10. Verify the Game Invitation deletion and send an HTTP GET Request to
http://<yourhost>/restapi/v1/GameInvitation:

The REST-style is the most common style of Web APIs you can find on the market
as of today. It is easy to understand and very well adapted for interoperability use
cases.

In the next section, you will see a more advanced style called HATEOAS, which is
especially well suited for constantly evolving Web APIs.

Building HATEOAS-style Web APIs
The HATEOAS (Hypermedia as the Engine of Application State) style is yet
another approach for providing efficient Web APIs. It is, however, completely
different from the other two styles presented before. With this approach, clients can
dynamically navigate to a needed resource by traversing various hypermedia links,
which are provided in the HTTP responses.

The advantage of this style is that the server does not drive application state
anymore; instead, it is the hypermedia links returned by the server that oversee that.

Additionally, when compared to the other styles, API changes are much better
handled when using this style, since clients do not hardcode URIs to actions (RPC-
style) or resources (REST-style) anymore. Instead, they can work with hypermedia
links returned by the server with each response, which is an interesting concept that
allows for more flexible and evolvable Web APIs.

The following diagram shows an example of how to apply the HATEOAS-style to
the TicTacToe application:

An example JSON representation of this diagram could be:

 {
 "_links": {
 "self": { "href": "/gameinvitations" },
 "next": { "href": "/gameinvitations?page=2" },
 "find": {
 "href": "/gameinvitations{?Id}",

 "templated": "true"
 }
 },
 "_embedded": {
 "gameinvitations": [
 {
 "_links": {
 "self": { "href": "/gameinvitations/
 f1eaf6ac-c998-40da-8eb5-198eaa2cc96f" },
 "confirm": { "href": "/gameinvitations/
 f1eaf6ac-c998-40da-8eb5-198eaa2cc96f/confirm" }
 },
 "isConfirmed": "false",
 "confirmDate": "null",
 "emailTo": {
 "self": { "href": "/user/1" }
 },
 "invitedBy": {
 "self": "\"{\"href\":\"/user/2\"}"
 }
 }
]
 }
 }

Let's see how to technically implement HATEOAS for the Game Invitations of the
TicTacToe application:

1. Go to the NuGet Package Manager and add the Halcyon.Mvc package, which will
allow you to implement HATEOAS Web APIs more quickly and easily:

2. Update the Startup class, use the HAL Json Formatter instead of the Standard
Json Formatter:

 services.AddMvc(o =>
 {
 o.Filters.Add(typeof(DetectMobileFilter));

 o.OutputFormatters.RemoveType<JsonOutputFormatter>();
 o.OutputFormatters.Add(new JsonHalOutputFormatter(new
 string[] { "application/hal+json",
 "application/vnd.example.hal+json",
 "application/vnd.example.hal.v1+json" }));
 }).AddViewLocalization(
 LanguageViewLocationExpanderFormat.Suffix,
 options => options.ResourcesPath =
 "Localization").AddDataAnnotationsLocalization();

3. Update the Get method in the GameInvitationAPiController, use the Halcyon.Mvc
specific features, and return a HAL result:

 [HttpGet]
 public async Task<IActionResult> Get()
 {
 var invitations = await _gameInvitationService.All();
 var responseConfig = new HALModelConfig
 {
 LinkBase = $"{Request.Scheme}://{Request.Host.ToString()}",
 ForceHAL = Request.ContentType ==
 "application/hal+json" ? true : false

 };

 var response = new HALResponse(responseConfig);
 response.AddLinks(new Link("self", "/GameInvitation"),
 new Link("confirm", "/GameInvitation/{id}/Confirm"));

 List<HALResponse> invitationsResponses = new List<HALResponse>();
 foreach (var invitation in invitations)
 {
 var rInv = new HALResponse(invitation, responseConfig);

 rInv.AddLinks(new Link("self", "/GameInvitation/" +
 invitation.Id));
 rInv.AddLinks(new Link("confirm",
 $"/GameInvitation/{invitation.Id}/confirm"));

 var invitedPlayer =
 _userService.GetUserByEmail(invitation.EmailTo);
 rInv.AddEmbeddedResource("invitedPlayer", invitedPlayer,
 new Link[]
 {
 new Link("self", $"/User/{invitedPlayer.Id}")
 });

 var invitedBy =
 _userService.GetUserByEmail(invitation.InvitedBy);
 rInv.AddEmbeddedResource("invitedBy", invitedBy, new Link[]
 {
 new Link("self", $"/User/{invitedBy.Id}")
 });

 invitationsResponses.Add(rInv);
 }

 response.AddEmbeddedCollection("invitations",
 invitationsResponses);
 return this.HAL(response);
 }

4. Start the application and Postman, send an HTTP POST Request to
http://<yourhost>/restapi/v1/GameInvitation for creating a new Game Invitation,
click on Body, select raw and JSON, and use "id":"7223160d-6243-498b-9d35-
81b8c947b5ca", "EmailTo":"example@example.com", and "InvitedBy":"test@test.com" as
parameters:

5. Retrieve the Game Invitation by sending an HTTP GET Request to
http://<yourhost>/restapi/v1/GameInvitation with Content-Type:
application/hal+json; you will see that the HTTP response now includes
HATEOAS links:

HATEOAS provides some powerful features, which allow for evolving components
independently. Clients can be completely decoupled from the business workflows
running on the server that manages the interaction by using links and other
hypermedia artifacts, such as forms.

Summary
In this chapter, you have learned how to build Web APIs for your applications for
integration purposes and for loosely coupled application architectures.

We have explored different styles for your Web APIs, such as RPC, REST, and
HATEOAS. Each of those styles has specific advantages and use cases. You have to
choose carefully, depending on your specific application needs, since there is not one
single style that outclasses the others.

You have seen examples of how to transform existing controller actions into RPC-
style Web APIs and how to build REST-style and HATEOAS-style Web APIs from
the ground up.

We have used Postman to manually test our Web APIs and you have acquired
enough knowledge to apply all of these new concepts to your own environments.

In the next chapter, we will talk about how to access data by using Entity Framework
Core 2 in your ASP.NET Core 2.0 applications.

Accessing Data using Entity
Framework Core 2
We have advanced greatly with the implementation of the Tic-Tac-Toe web
application, but when you restart the application all the user registration and
application data is reset. This is due to the fact that we do not persist any data yet.

To persist data and be able to reload it when the application starts, you have to put it
into some kind of persistent storage such as files (XML, JSON, CSV) or databases.

A database would be the best choice, since it provides better performance and more
security when compared to simple file storage, which is why we are going to use it in
the following examples.

Since ASP.NET 3.0 you can use an ORM framework called Entity Framework for
accessing data in databases in a more productive and simple way. ASP.NET Core 2.0
works with a dedicated version of this framework called Entity Framework Core 2.

In this chapter, we will cover the following topics:

Getting started with Entity Framework Core 2
Working with Entity Framework Core 2 Data Annotations
Using Entity Framework Core 2 Migrations
Creating, reading, updating, and deleting data
Working with request features

Getting started with Entity
Framework Core 2
The Meta package Microsoft.AspNetCore.All contains Entity Framework Core 2,
including all required packages for working with Microsoft SQL Server and SQLite.

Note that if you need to work with other databases such as MySQL, you
have to download additional packages from NuGet. You can find a list
of all currently available Entity Framework Core 2 NuGet packages
here: https://www.nuget.org/packages?page=2&q=Tags%3A%22entity-framework-
core%22.

https://www.nuget.org/packages?page=2&q=Tags%3A%22entity-framework-core%22

Establishing a connection
To open a session to the database and query and update instances of your entities,
you use a DbContext, which is based on a combination of the unit of work and
repository patterns.

Let's see how to prepare the Tic-Tac-Toe application to use Entity Framework Core 2
to connect to an SQL Database by using a DbContext and a connection string:

1. Go to the Solution Explorer, add a new folder called Data, add a new class called
GameDbContext.cs, and implement a DbSet property for each Model (UserModel,
TurnModel, and more):

 public class GameDbContext : DbContext
 {
 public DbSet<GameInvitationModel> GameInvitationModels {
 get; set; }
 public DbSet<GameSessionModel> GameSessionModels { get; set; }
 public DbSet<TurnModel> TurnModels { get; set; }
 public DbSet<UserModel> UserModels { get; set; }

 public GameDbContext(DbContextOptions<GameDbContext>
 dbContextOptions) : base(dbContextOptions)
 {

 }
 }

2. Register the Game Db Context in the Startup class and pass the connection
string and database provider as parameters within the constructor. You only
need a single instance, so use AddSingleton:

 var connectionString =
 _configuration.GetConnectionString("DefaultConnection");
 services.AddEntityFrameworkSqlServer()
 .AddDbContext<GameDbContext>((serviceProvider, options) =>
 options.UseSqlServer(connectionString)
 .UseInternalServiceProvider(serviceProvider)
);

 var dbContextOptionsbuilder =
 new DbContextOptionsBuilder<GameDbContext>()
 .UseSqlServer(connectionString);
 services.AddSingleton(dbContextOptionsbuilder.Options);

3. Update the UserService to be able to work with the Game Db Context; add a new
public constructor and a private member for the Game Db Context from before:

 private DbContextOptions<GameDbContext> _dbContextOptions;
 public UserService(DbContextOptions<GameDbContext>
 dbContextOptions)
 {
 _dbContextOptions = dbContextOptions;
 }

4. Update the RegisterUser method in the UserService to use the Game Db Context:

 public async Task<bool> RegisterUser(UserModel userModel)
 {
 using(var db = new GameDbContext(_dbContextOptions))
 {
 db.UserModels.Add(userModel);
 await db.SaveChangesAsync();
 return true;
 }
 }

5. Add a new extension called ModelBuilderExtensions in the Extensions folder. This
will be used to define table name conventions:

 public static class ModelBuilderExtensions
 {
 public static void RemovePluralizingTableNameConvention(
 this ModelBuilder modelBuilder)
 {
 foreach (IMutableEntityType entity in
 modelBuilder.Model.GetEntityTypes())
 {
 entity.Relational().TableName = entity.DisplayName();
 }
 }
 }

6. Update the OnModelCreating method in the Game Db Context to further configure
the model that was discovered by convention from the entity types exposed in
the DbSet properties; call the extension from before to apply the table name
conventions:

 protected override void OnModelCreating(ModelBuilder
 modelBuilder)
 {
 modelBuilder.RemovePluralizingTableNameConvention();
 }

Note that you could also use another method called OnConfiguring in the
DB Context, to configure the DB Context without using
DbContextOptions.

7. Add a new class called GameDbContextFactory in the Data folder. This will be used
to instantiate the Game Db Context with specific options:

 public class GameDbContextFactory :
 IDesignTimeDbContextFactory<GameDbContext>
 {
 public GameDbContext CreateDbContext(string[] args)
 {
 var optionsBuilder =
 new DbContextOptionsBuilder<GameDbContext>();
 optionsBuilder.UseSqlServer(@"Server=
 (localdb)\MSSQLLocalDB;Database=TicTacToe;
 Trusted_Connection=True;MultipleActiveResultSets=true");
 return new GameDbContext(optionsBuilder.Options);
 }
 }

If you have already worked with databases, you should be familiar with the concept
of connection strings. They contain the configuration (address, username, password,
and more) and settings (encryption, protocol, and more) required to be able to
connect to a database.

In ASP.NET Core 2.0 you can use an appSettings.<env>.json file to configure
connection strings. Connection strings are loaded automatically, when using the
ConnectionStrings section within this file:

 "ConnectionStrings": {
 "DefaultConnection":
 "Server=(localdb)\\MSSQLLocalDB;Database=TicTacToe;
 Trusted_Connection=True;MultipleActiveResultSets=true"
 },

As you have seen in the example before, you can use the GetConnectionString method
to retrieve a connection string during runtime of your ASP.NET Core 2.0
applications:

 var databaseConnectionString =
 _configuration.GetConnectionString("DefaultConnection");

This is everything you need to know to use the Game Db Context and the
corresponding default connection string stored within the appsettings.json
configuration file of the Tic-Tac-Toe application.

Defining primary keys and foreign
keys via Data Annotations
In the next step, you need to modify the existing Models to be able to persist them
within an SQL Database. To allow Entity Framework Core 2.0 to create, read,
update and delete records, you need to specify a primary key for each Model. You do
that by using Data Annotations, which allow you to decorate a property with the
[Key] decorator.

Here is an example of how to use Data Annotations for the UserModel:

 public class UserModel
 {
 [Key]
 public long Id { get; set; }
 ...
 }

You should apply this to the UserModel, GameInvitationModel, GameSessionModel and
TurnModel of the Tic-Tac-Toe application. You can reuse existing Id properties and
decorate them with the [Key] decorator, or add new ones if a Model does not yet
contain an Id property.

Note that it is sometimes required to use composite keys as the identity
for your rows in a table. In this case decorate each property with the
[Key] decorator. Furthermore, you can use Column[Order=] for defining
the position of the property, if you need to order a composite key.

When working with SQL Server (or any other SQL 92 DBMS), the first thing you
should think about is the relation between tables. In Entity Framework Core 2, you
can specify foreign keys within Models by using the [ForeignKey] decorator.

Concerning the Tic-Tac-Toe application, this means that you have to update the
GameInvitationModel and add a Foreign Key relation to the User Model Id, as you can
see here:

1. Update the GameInvitationModel; add a foreign key to InvitedByUser:

 public class GameInvitationModel

 {
 [Key]
 public Guid Id { get; set; }
 public string EmailTo { get; set; }

 public string InvitedBy { get; set; }

 [ForeignKey(nameof(InvitedByUserId))]
 public UserModel InvitedByUser { get; set; }
 public Guid InvitedByUserId { get; set; }

 public bool IsConfirmed { get; set; }
 public DateTime ConfirmationDate { get; set; }
 }

2. Update the GameSessionModel; add a foreign key to UserId1:

 public class GameSessionModel
 {
 [Key]
 public Guid Id { get; set; }
 public Guid UserId1 { get; set; }
 public Guid UserId2 { get; set; }

 [ForeignKey(nameof(UserId1))]
 public UserModel User1 { get; set; }
 public UserModel User2 { get; set; }
 public IEnumerable<TurnModel> Turns { get; set; }

 public UserModel Winner { get; set; }

 public UserModel ActiveUser { get; set; }
 public Guid WinnerId { get; set; }
 public Guid ActiveUserId { get; set; }
 public bool TurnFinished { get; set; }
 public int TurnNumber { get; set; }
 }

3. Update the TurnModel; add a foreign key to UserId:

 public class TurnModel
 {
 [Key]
 public Guid Id { get; set; }
 public Guid UserId { get; set; }
 [ForeignKey(nameof(UserId))]
 public UserModel User { get; set; }
 public int X { get; set; }
 public int Y { get; set; }
 public string Email { get; set; }
 public string IconNumber { get; set; }
 }

Entity Framework Core 2 maps all properties in a model with a schema
representation by default. But some more complex property types are not
compatible, which is why you should exclude them from auto-mapping. But how do

we do that? Well, by using the [NotMapped] decorator. How easy and straightforward
is that?

For the Tic-Tac-Toe application, it makes no sense to persist the active user for a
turn, for example, so you should exclude them from the auto-mapping by using the
[NotMapped] decorator in the GameSessionModel:

 public class GameSessionModel
 {
 [Key]
 public Guid Id { get; set; }
 public Guid UserId1 { get; set; }
 public Guid UserId2 { get; set; }

 [ForeignKey(nameof(UserId1))]
 public UserModel User1 { get; set; }
 public UserModel User2 { get; set; }
 public IEnumerable<TurnModel> Turns { get; set; }

 [NotMapped]
 public UserModel Winner { get; set; }

 [NotMapped]
 public UserModel ActiveUser { get; set; }
 public Guid WinnerId { get; set; }
 public Guid ActiveUserId { get; set; }
 public bool TurnFinished { get; set; }
 public int TurnNumber { get; set; }
 }

For more information on Entity Framework Data Annotations, please
visit the following link:

https://msdn.microsoft.com/en-us/library/jj591583(v=vs.113).aspx

Okay, now you have decorated all your models by using Entity Framework Core 2
Data Annotations, but you will quickly see that you have two properties, User1 and
User2, in the GameSessionModel that point to the same UserModel entity. This results in a
circular relationship, and thus will become a problem when working with relational
databases for operations such as cascading updates or cascading deletions.

To avoid circular relationships in the example, you need to decorate User1 with the
[ForeignKey] decorator and update the OnModelCreating method in the Game Db Context
to define the Foreign Key for User2. These two modifications will allow you to define
the two foreign keys, while avoiding the automatic cascading operations, which
would cause problems:

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {

https://msdn.microsoft.com/en-us/library/jj591583(v=vs.113).aspx

 modelBuilder.RemovePluralizingTableNameConvention();
 modelBuilder.Entity(typeof(GameSessionModel))
 .HasOne(typeof(UserModel), "User2")
 .WithMany()
 .HasForeignKey("User2Id").OnDelete(DeleteBehavior.Restrict);
 }

In the last step, you need to fix the unit tests. You might have already seen it; the unit
test project does not build anymore if you try compiling the solution. In fact, you
need to update the unit tests, since the UserService requires an instance of
DbContextOptions now:

 var dbContextOptionsBuilder =
 new DbContextOptionsBuilder<GameDbContext>()
 .UseSqlServer(@"Server=(localdb)\MSSQLLocalDB;Database=TicTacToe;
 Trusted_Connection=True;MultipleActiveResultSets=true");

 var userService = new UserService(dbContextOptionsBuilder.Options);

Using Entity Framework Core 2
Migrations
As you have seen, when developing applications your models might change
frequently when refactoring and finalizing your projects. This might lead to a
database schema that is out of sync, and which therefore needs to be updated
manually by creating an upgrade script.

Fortunately, Entity Framework Core 2 includes a feature called Migrations to help
you with this tedious task by automatically keeping your models and the
corresponding database schemas in sync.

After you have updated the models, services and controllers to comply to the
constraints from above, and have modified the Game Db Context accordingly, you
are now ready to use Entity Framework Core 2 Migrations:

1. Add a first version of your Db schema called InitialDbSchema, open the NuGet
Package Manager by clicking in the top menu on Tools | NuGet Package
Manager | Package Manager Console, and execute the Add-Migration
InitialDbSchema command:

2. A new folder called Migrations will be automatically added by Visual Studio. It
will contain two auto-generated files, which will help you to manage and
upgrade your Db Schema in the future:

If your database is accessible from your development environment, you can update it
directly from within Visual Studio 2017:

1. Go to the Package Manager Console and execute the Update-Database command.
This will create the database the first time it is used, or update it automatically
when you change your models:

2. Go to the SQL Server Object Explorer and analyze the Db Schema that Entity
Framework 2 Migrations has autogenerated in SQL Server:

3. Right-click on the __EFMigrationsHistory table and select View Data to see how
Entity Framework Migrations track Db Schema versions:

If your database is not accessible from your development environment, (for example,
for staging or production), you have to generate an SQL script file:

1. Go to the Package Manager Console and execute the Script-Migration command
to auto-generate an SQL script file, which can be used to create the Tic-Tac-Toe
application database:

2. Execute the generated SQL script file on the specific environments using your
preferred database tools (SQL Server Management Studio, and so on) to create
the Tic-Tac-Toe application database.

You can also use Entity Framework Core 2 Migration directly from within your code
to assure that the database is constantly in sync with your models by calling the
Migrate method of the GameDbContext instance within the Configure method of the
Startup class, as shown here:

1. Update the Configure method in the Startup class; add the following instructions
at the bottom of the method:

 using (var scope =
 app.ApplicationServices.GetService<IServiceScopeFactory>()
 .CreateScope())
 {
 scope.ServiceProvider.GetRequiredService<GameDbContext>()
 .Database.Migrate();
 }

2. Start the Tic-Tac-Toe application by pressing F5:

Note that if a table or a property does not exist in the database and if
the connection string provides enough access rights, Entity Framework
Core 2 will automatically create it.

After having updated the models and the corresponding application database, all
model data is now persisted and application state is going to be available even after
an application restart. This means that you cannot register already existing emails,
you have to add new ones manually, so truncate the database and delete them now.

Creating, reading, updating, and
deleting data
In the preceding sections, we have done everything to define the models and get the
database up and running in a consistent and coherent way. In this section, you will
finally see how to work with data and execute create, read, update, and delete
operations.

Let's see how to use GameDbContext to work with data:

1. Update the UserService; remove the ConcurrencyBag and the static constructor, and
update the GetUserByEmail method:

 public async Task<UserModel> GetUserByEmail(string email)
 {
 using (var db = new GameDbContext(_dbContextOptions))
 {
 return await db.UserModels.FirstOrDefaultAsync(
 x => x.Email == email);
 }
 }

2. Update the UpdateUser method in the UserService to see how to update data using
the Db Context:

 public async Task UpdateUser(UserModel userModel)
 {
 using (var gameDbContext =
 new GameDbContext(_dbContextOptions))
 {
 gameDbContext.Update(userModel);
 await gameDbContext.SaveChangesAsync();
 }
 }

3. Update the GetTopUsers method within the UserService to learn how to build
advanced queries with sorting and filtered data using the Db Context:

 public async Task<IEnumerable<UserModel>> GetTopUsers(
 int numberOfUsers)
 {
 using (var gameDbContext =
 new GameDbContext(_dbContextOptions))
 {
 return await gameDbContext.UserModels.OrderByDescending(
 x => x.Score).ToListAsync();

 }
 }

4. Add a new method called IsUserExisting to the UserService. This will be used to
check if a user exists. Update the IUserService interface:

 public async Task<bool> IsUserExisting(string email)
 {
 using (var gameDbContext =
 new GameDbContext(_dbContextOptions))
 {
 return await gameDbContext.UserModels.AnyAsync(
 user => user.Email == email);
 }
 }

Now you have seen how to configure your applications to use Entity Framework
Core 2 and all of its useful and interesting features. It provides a great way of
abstracting complexity and removing time-consuming tasks from you daily life as a
developer. You do not need to learn any additional languages anymore (SQL, for
example); nor do you need to change environments for creating, reading, updating,
and deleting records in a database. Everything can be done from within your code
and from within Visual Studio to assure high developer productivity and efficiency.

Summary
In this chapter, you have learned how to use Entity Framework Core 2 together with
ASP.NET Core 2.0 for working with SQL Server databases.

We have seen how to use a Db Context and connection string to connect to an SQL
Server database. We have then updated the models in the Tic-Tac-Toe application
with primary and foreign key definitions by using Entity Framework Core 2 Data
Annotations, as well as overriding the OnModelCreating method within the Db Context.

You have worked with Entity Framework Core 2 Migrations to be able to constantly
keep your models in your code consistent with their corresponding database
representations.

Furthermore, you have learnt how to insert, update and query data in an easy,
productive and efficient way.

In the next chapter, we will talk about how to secure access to your ASP.NET Core
2.0 applications by using the integrated ASP.NET Core 2.0 authorization features.

Securing ASP.NET Core 2.0
Applications
In today's world of increasing digital crime and internet fraud, all modern web
applications require the implementation of strong security mechanisms for
preventing attacks and user identity usurpation.

Until now, we have concentrated on understanding how to build efficient ASP.NET
Core 2.0 web applications, without thinking about user authentication, user
authorization, or data protection at all, but since the Tic-Tac-Toe application is
getting more and more sophisticated, we will have to address security issues before
finally deploying it to the public.

Building a web application and not thinking about security would be a big failing
and could bring down even the greatest and most famous websites. In the case of
security breaches and personal data theft, the negative reputation and user confidence
impacts could be tremendous, and nobody would want to work with those
applications and—more troublesome—companies anymore.

This is a topic that needs to be taken very seriously. You should work with security
companies to make code verifications and intrusion tests to ensure that you comply
with best practices and high security standards (OWASP10, for example).

Luckily, ASP.NET Core 2.0 contains everything necessary to help you with this
complicated, but important, topic. Most of the built-in features do not even require
advanced programming or security skills. You will see that it is very easy to
understand and implement secure applications by using the ASP.NET Core 2.0
Identity Framework.

In this chapter, we will cover the following topics:

Adding basic user form authentication
Adding external provider authentication
Adding forgotten password and password reset mechanisms
Working with two-factor authentication
Implementing authorization

Implementing authentication
Authentication allows applications to identify a specific user. It is not used to
manage user access rights, which is the role of authorization, nor is it used to protect
data, which is the role of data protection.

There are several methods for authenticating application users, such as:

Basic user forms authentication, using a login form with login and password
boxes
Single Sign-On (SSO) authentication, where the user only authenticates once
for all their applications within the context of their company
Social networks external provider authentication (such as Facebook and
LinkedIn)
Certificate or public key infrastructure (PKI) authentication

ASP.NET Core 2.0 supports all these methods, but in this chapter, we will
concentrate on forms authentication with a user login and password, and external
provider authentication via Facebook.

In the following examples, you will see how to use those methods for authenticating
application users, as well as some more advanced features like email confirmation
and password reset mechanisms.

And last but not least, you will see how to implement two-factor authentication using
the built-in ASP.NET Core 2.0 Authentication features for your most critical
applications.

Let's prepare the implementation of the different authentication mechanisms for the
Tic-Tac-Toe application:

1. Update the lifetime of the UserService, GameInvitationService, and
GameSessionService in the Startup class:

 services.AddTransient<IUserService, UserService>();
 services.AddScoped<IGameInvitationService,
 GameInvitationService>();
 services.AddScoped<IGameSessionService, GameSessionService>();

2. Update the Configure method within the Startup class, and call the Authentication
Middleware directly after the Static Files Middleware:

 app.UseStaticFiles();
 app.UseAuthentication();

3. Update the UserModel to use it with the built-in ASP.NET Core 2.0 Identity
authentication features, and remove the Id and Email properties, which are
already provided by the IdentityUser class:

 public class UserModel : IdentityUser<Guid>
 {
 [Display(Name = "FirstName")]
 [Required(ErrorMessage = "FirstNameRequired")]
 public string FirstName { get; set; }
 [Display(Name = "LastName")]
 [Required(ErrorMessage = "LastNameRequired")]
 public string LastName { get; set; }
 [Display(Name = "Password")]
 [Required(ErrorMessage = "PasswordRequired"),
 DataType(DataType.Password)]
 public string Password { get; set; }
 [NotMapped]
 public bool IsEmailConfirmed
 {
 get { return EmailConfirmed; }
 }
 public System.DateTime? EmailConfirmationDate { get; set; }
 public int Score { get; set; }
 }

Note that in the real world, we would advise also removing the Password
property. However, we will keep it in the example for clarity and
learning purposes.

4. Add a new folder called Managers, and add a new manager in the folder called
ApplicationUserManager:

 public class ApplicationUserManager : UserManager<UserModel>
 {
 private IUserStore<UserModel> _store;
 DbContextOptions<GameDbContext> _dbContextOptions;
 public ApplicationUserManager(
 DbContextOptions<GameDbContext> dbContextOptions,
 IUserStore<UserModel> store, IOptions<IdentityOptions>
 optionsAccessor, IPasswordHasher<UserModel> passwordHasher,
 IEnumerable<IUserValidator<UserModel>> userValidators,
 IEnumerable<IPasswordValidator<UserModel>>
 passwordValidators, ILookupNormalizer keyNormalizer,
 IdentityErrorDescriber errors, IServiceProvider services,
 ILogger<UserManager<UserModel>> logger) :
 base(store, optionsAccessor, passwordHasher,
 userValidators, passwordValidators, keyNormalizer,
 errors, services, logger)

 {
 _store = store;
 _dbContextOptions = dbContextOptions;
 }

 public override async Task<UserModel> FindByEmailAsync(
 string email)
 {
 using (var dbContext = new GameDbContext(_dbContextOptions))
 {
 return await dbContext.Set<UserModel>().FirstOrDefaultAsync(
 x => x.Email == email);
 }
 }

 public override async Task<UserModel> FindByIdAsync(
 string userId)
 {
 using (var dbContext = new GameDbContext(_dbContextOptions))
 {
 Guid id = Guid.Parse(userId);
 return await dbContext.Set<UserModel>().FirstOrDefaultAsync(
 x => x.Id == id);
 }
 }

 public override async Task<IdentityResult>
 UpdateAsync(UserModel user)
 {
 using (var dbContext = new GameDbContext(_dbContextOptions))
 {
 var current =
 await dbContext.Set<UserModel>().FirstOrDefaultAsync(
 x => x.Id == user.Id);
 current.AccessFailedCount = user.AccessFailedCount;
 current.ConcurrencyStamp = user.ConcurrencyStamp;
 current.Email = user.Email;
 current.EmailConfirmationDate = user.EmailConfirmationDate;
 current.EmailConfirmed = user.EmailConfirmed;
 current.FirstName = user.FirstName;
 current.LastName = user.LastName;
 current.LockoutEnabled = user.LockoutEnabled;
 current.NormalizedEmail = user.NormalizedEmail;
 current.NormalizedUserName = user.NormalizedUserName;
 current.PhoneNumber = user.PhoneNumber;
 current.PhoneNumberConfirmed = user.PhoneNumberConfirmed;
 current.Score = user.Score;
 current.SecurityStamp = user.SecurityStamp;
 current.TwoFactorEnabled = user.TwoFactorEnabled;
 current.UserName = user.UserName;
 await dbContext.SaveChangesAsync();
 return IdentityResult.Success;
 }
 }

 public override async Task<IdentityResult>
 ConfirmEmailAsync(UserModel user, string token)
 {
 var isValide = await base.VerifyUserTokenAsync(user,
 Options.Tokens.EmailConfirmationTokenProvider,
 ConfirmEmailTokenPurpose, token);

 if (isValide)
 {
 using (var dbContext =
 new GameDbContext(_dbContextOptions))
 {
 var current =
 await dbContext.UserModels.FindAsync(user.Id);
 current.EmailConfirmationDate = DateTime.Now;
 current.EmailConfirmed = true;
 await dbContext.SaveChangesAsync();
 return IdentityResult.Success;
 }
 }
 return IdentityResult.Failed();
 }
 }

5. Update the Startup class, and register the ApplicationUserManager:

 services.AddTransient<ApplicationUserManager>();

6. Update the UserService to work with the ApplicationUser Manager, add two new
methods called GetEmailConfirmationCode and ConfirmEmail, and update the User
Service Interface:

 public class UserService
 {
 private ILogger<UserService> _logger;
 private ApplicationUserManager _userManager;
 public UserService(ApplicationUserManager userManager,
 ILogger<UserService> logger)
 {
 _userManager = userManager;
 _logger = logger;

 var emailTokenProvider = new EmailTokenProvider<UserModel>();
 _userManager.RegisterTokenProvider("Default",
 emailTokenProvider);
 }

 public async Task<bool> ConfirmEmail(string email, string code)
 {
 var start = DateTime.Now;
 _logger.LogTrace($"Confirm email for user {email}");

 var stopwatch = new Stopwatch();
 stopwatch.Start();

 try
 {
 var user = await _userManager.FindByEmailAsync(email);

 if (user == null)
 return false;

 var result = await _userManager.ConfirmEmailAsync(
 user, code);
 return result.Succeeded;

 }
 catch (Exception ex)
 {
 _logger.LogError($"Cannot confirm email for user
 {email} - {ex}");
 return false;
 }
 finally
 {
 stopwatch.Stop();
 _logger.LogTrace($"Confirm email for user finished in
 {stopwatch.Elapsed}");
 }
 }

 public async Task<string> GetEmailConfirmationCode(
 UserModel user)
 {
 return
 await _userManager.GenerateEmailConfirmationTokenAsync(user);
 }

 public async Task<bool> RegisterUser(UserModel userModel)
 {
 var start = DateTime.Now;
 _logger.LogTrace($"Start register user
 {userModel.Email} - {start}");

 var stopwatch = new Stopwatch();
 stopwatch.Start();

 try
 {
 userModel.UserName = userModel.Email;
 var result = await _userManager.CreateAsync(userModel,
 userModel.Password);
 return result == IdentityResult.Success;
 }
 catch (Exception ex)
 {
 _logger.LogError($"Cannot register user
 {userModel.Email} - {ex}");
 return false;
 }
 finally
 {
 stopwatch.Stop();
 _logger.LogTrace($"Start register user {userModel.Email}
 finished at {DateTime.Now} - elapsed
 {stopwatch.Elapsed.TotalSeconds} second(s)");
 }
 }

 public async Task<UserModel> GetUserByEmail(string email)
 {
 return await _userManager.FindByEmailAsync(email);
 }

 public async Task<bool> IsUserExisting(string email)
 {

 return (await _userManager.FindByEmailAsync(email)) != null;
 }

 public async Task<IEnumerable<UserModel>> GetTopUsers(
 int numberOfUsers)
 {
 return await _userManager.Users.OrderByDescending(
 x => x.Score).ToListAsync();
 }

 public async Task UpdateUser(UserModel userModel)
 {
 await _userManager.UpdateAsync(userModel);
 }
 }

Note that you should also update the UserServiceTest class to work with
the new constructor. For that, you will also have to create a mock for
the UserManager class and pass it to the constructor. For the moment, you
can just comment the test out and update it later. But don't forget to do
it!

7. Update the EmailConfirmation method in the UserRegistrationController, and use
the GetEmailConfirmationCode method you have added before to retrieve the email
code:

 var urlAction = new UrlActionContext
 {
 Action = "ConfirmEmail",
 Controller = "UserRegistration",
 Values = new { email, code =
 await _userService.GetEmailConfirmationCode(user) },
 Protocol = Request.Scheme,
 Host = Request.Host.ToString()
 };

8. Update the ConfirmEmail method in the UserRegistrationController; it has to call
the ConfirmEmail method in the UserService to finish the email confirmation:

 [HttpGet]
 public async Task<IActionResult> ConfirmEmail(string email,
 string code)
 {
 var confirmed = await _userService.ConfirmEmail(email, code);

 if (!confirmed)
 return BadRequest();

 return RedirectToAction("Index", "Home");
 }

9. Add a new class called RoleModel in the Models folder, and make it inherit from
IdentityRole<long>, as it will be used by the built-in ASP.NET Core 2.0 Identity

Authentication features:

 public class RoleModel : IdentityRole<Guid>
 {
 public RoleModel()
 {
 }

 public RoleModel(string roleName) : base(roleName)
 {
 }
 }

10. Update the Game Db Context, and add a new DbSet for Role Models:

 public DbSet<RoleModel> RoleModels { get; set; }

11. Register the Authentication Service and the Identity Service in the Startup class,
then use the new Role Model you added before:

 services.AddIdentity<UserModel, RoleModel>(options =>
 {
 options.Password.RequiredLength = 1;
 options.Password.RequiredUniqueChars = 0;
 options.Password.RequireNonAlphanumeric = false;
 options.Password.RequireUppercase = false;
 options.SignIn.RequireConfirmedEmail = false;
 }).AddEntityFrameworkStores<GameDbContext>()
 .AddDefaultTokenProviders();

 services.AddAuthentication(options => {
 options.DefaultScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 options.DefaultSignInScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 options.DefaultAuthenticateScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 }).AddCookie();

12. Update the Communication Middleware, remove the _userService private
member from the class, and update the constructor accordingly:

 public CommunicationMiddleware(RequestDelegate next)
 {
 _next = next;
 }

13. Update the two ProcessEmailConfirmation methods in the Communication
Middleware, as they must be asynchronous to work with ASP.NET 2.0 Identity:

 private async Task ProcessEmailConfirmation(HttpContext
 context, WebSocket currentSocket, CancellationToken ct,
 string email)
 {

 var userService =
 context.RequestServices.GetRequiredService<IUserService>();
 var user = await userService.GetUserByEmail(email);
 while (!ct.IsCancellationRequested &&
 !currentSocket.CloseStatus.HasValue &&
 user?.IsEmailConfirmed == false)
 {
 await SendStringAsync(currentSocket,
 "WaitEmailConfirmation", ct);
 await Task.Delay(500);
 user = await userService.GetUserByEmail(email);
 }

 if (user.IsEmailConfirmed)
 {
 await SendStringAsync(currentSocket, "OK", ct);
 }
 }

 private async Task ProcessEmailConfirmation(HttpContext context)
 {
 var userService =
 context.RequestServices.GetRequiredService<IUserService>();
 var email = context.Request.Query["email"];

 UserModel user = await userService.GetUserByEmail(email);

 if (string.IsNullOrEmpty(email))
 {
 await context.Response.WriteAsync("BadRequest:Email is
 required");
 }
 else if ((await
 userService.GetUserByEmail(email)).IsEmailConfirmed)
 {
 await context.Response.WriteAsync("OK");
 }
 }

14. Update the GameInvitationService, and set the public constructor to static.
15. Remove the following DbContextOptions registration from the Startup class; it will

be replaced by another one in the next step:

 var dbContextOptionsbuilder =
 new DbContextOptionsBuilder<GameDbContext>()
 .UseSqlServer(connectionString);
 services.AddSingleton(dbContextOptionsbuilder.Options);

16. Update the Startup class, and add a new DbContextOptions registration:

 services.AddScoped(typeof(DbContextOptions<GameDbContext>),
 (serviceProvider) =>
 {
 return new DbContextOptionsBuilder<GameDbContext>()
 .UseSqlServer(connectionString).Options;
 });

17. Update the Configure method in the Startup class, then replace the code that does
the database migration at the end of the method:

 var provider = app.ApplicationServices;
 var scopeFactory =
 provider.GetRequiredService<IServiceScopeFactory>();
 using (var scope = scopeFactory.CreateScope())
 using (var context =
 scope.ServiceProvider.GetRequiredService<GameDbContext>())
 {
 context.Database.Migrate();
 }

18. Update the Index method in GameInvitationController:

 ...
 var invitation =
 gameInvitationService.Add(gameInvitationModel).Result;
 return RedirectToAction("GameInvitationConfirmation",
 new { id = invitation.Id });
 ...

19. Update the ConfirmGameInvitation method in GameInvitationController, and add
additional fields to the existing user registration:

 await _userService.RegisterUser(new UserModel
 {
 Email = gameInvitation.EmailTo,
 EmailConfirmationDate = DateTime.Now,
 EmailConfirmed = true,
 FirstName = "",
 LastName = "",
 Password = "Azerty123!",
 UserName = gameInvitation.EmailTo
 });

Note that the automatic creation and registration of the invited user is
only a temporary workaround that we have added to simplify the
example application. In the real world, you will need to handle this
case differently and replace the temporary workaround with a real
solution.

20. Update the CreateGameSession and AddTurn methods in GameSessionService and re-
extract the Game Session Service Interface:

 public async Task<GameSessionModel> CreateGameSession(
 Guid invitationId, UserModel invitedBy,
 UserModel invitedPlayer)
 {
 var session = new GameSessionModel
 {
 User1 = invitedBy,
 User2 = invitedPlayer,

 Id = invitationId,
 ActiveUser = invitedBy
 };
 _sessions.Add(session);
 return session;
 }

 public async Task<GameSessionModel> AddTurn(Guid id,
 UserModel user, int x, int y)
 {
 List<Models.TurnModel> turns;
 var gameSession = _sessions.FirstOrDefault(session =>
 session.Id == id);
 if (gameSession.Turns != null && gameSession.Turns.Any())
 turns = new List<Models.TurnModel>(gameSession.Turns);
 else
 turns = new List<TurnModel>();

 turns.Add(new TurnModel
 {
 User = user,
 X = x,
 Y = y,
 IconNumber = user.Email == gameSession.User1?.Email ? "1" : "2"
 });

 gameSession.Turns = turns;
 gameSession.TurnNumber = gameSession.TurnNumber + 1;
 if (gameSession.User1?.Email == user.Email)
 gameSession.ActiveUser = gameSession.User2;
 else
 gameSession.ActiveUser = gameSession.User1;

 gameSession.TurnFinished = true;
 _sessions = new ConcurrentBag<GameSessionModel>
 (_sessions.Where(u => u.Id != id))
 {
 gameSession
 };
 return gameSession;
 }

21. Update the Index method in GameSessionController:

 public async Task<IActionResult> Index(Guid id)
 {
 var session = await _gameSessionService.GetGameSession(id);
 var userService =
 HttpContext.RequestServices.GetService<IUserService>();

 if (session == null)
 {
 var gameInvitationService =
 Request.HttpContext.RequestServices.GetService
 <IGameInvitationService>();
 var invitation = await gameInvitationService.Get(id);

 var invitedPlayer =
 await userService.GetUserByEmail(invitation.EmailTo);
 var invitedBy =

 await userService.GetUserByEmail(invitation.InvitedBy);

 session =
 await _gameSessionService.CreateGameSession(
 invitation.Id, invitedBy, invitedPlayer);
 }
 return View(session);
 }

22. Update the SetPosition method in GameSessionController, and pass a turn.User
instead of a turn.User.Email:

 gameSession = await _gameSessionService.AddTurn(gameSession.Id,
 turn.User, turn.X, turn.Y);

23. Update the OnModelCreating method in the Game Db Context, and add a WinnerId
foreign key:

 ...
 modelBuilder.Entity(typeof(GameSessionModel))
 .HasOne(typeof(UserModel), "Winner")
 .WithMany()
 .HasForeignKey("WinnerId").OnDelete(DeleteBehavior.Restrict);
 ...

24. Update the GameInvitationConfirmation method in GameInvitationController; it must
be asynchronous to work with ASP.NET Core 2.0 Identity:

 [HttpGet]
 public async Task<IActionResult> GameInvitationConfirmation(
 Guid id, [FromServices]IGameInvitationService
 gameInvitationService)
 {
 return await Task.Run(() =>
 {
 var gameInvitation = gameInvitationService.Get(id).Result;
 return View(gameInvitation);
 });
 }

25. Update the Index and SetCulture methods in HomeController; they must be
asynchronous to work with ASP.NET Core 2.0 Identity:

 public async Task<IActionResult> Index()
 {
 return await Task.Run(() =>
 {
 var culture =
 Request.HttpContext.Session.GetString("culture");
 ViewBag.Language = culture;
 return View();
 });
 }

 public async Task<IActionResult> SetCulture(string culture)
 {
 return await Task.Run(() =>
 {
 Request.HttpContext.Session.SetString("culture", culture);
 return RedirectToAction("Index");
 });
 }

26. Update the Index method in UserRegistrationController; it must be asynchronous
to work with ASP.NET 2.0 Identity:

 public async Task<IActionResult> Index()
 {
 return await Task.Run(() =>
 {
 return View();
 });
 }

27. Open the Package Manager Console and execute the Add-Migration IdentityDb
command.

28. Update the database by executing the Update-Database command in the Package
Manager Console.

29. Start the application and register a new user, then verify that everything is still
working as expected.

Note that you have to use a complex password, such as Azerty123!, to be
able to finish the user registration successfully now, since you have
implemented the integrated features of ASP.NET Core 2.0 Identity in
this section, which require complex passwords.

Adding basic user forms
authentication
Great! You have registered the Authentication Middleware and prepared the
database. In the next step, you are going to implement basic user authentication for
the Tic-Tac-Toe application.

The following example demonstrates how to modify the user registration and add a
simple login form with a user login and password textbox for authenticating users:

1. Add a new Model called LoginModel to the Models folder:

 public class LoginModel
 {
 [Required]
 public string UserName { get; set; }
 [Required]
 public string Password { get; set; }
 public string ReturnUrl { get; set; }
 }

2. Add a new folder called Account to the Views folder, and add a new file called
Login.cshtml within this new folder; it will contain the Login View:

 @model TicTacToe.Models.LoginModel
 <div class="container">
 <div id="loginbox" style="margin-top:50px;" class="mainbox
 col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2">
 <div class="panel panel-info">
 <div class="panel-heading">
 <div class="panel-title">Sign In</div>
 </div>
 <div style="padding-top:30px" class="panel-body">
 <div style="display:none" id="login-alert"
 class="alert alert-danger col-sm-12"></div>
 <form id="loginform" class="form-horizontal"
 role="form" asp-action="Login" asp-controller="Account">
 <input type="hidden" asp-for="ReturnUrl" />
 <div asp-validation-summary="ModelOnly"
 class="text-danger"></div>
 <div style="margin-bottom: 25px" class="input-group">
 <i class="glyphicon
 glyphicon-user"></i>
 <input type="text" class="form-control"
 asp-for="UserName" value="" placeholder="username
 or email">
 </div>
 <div style="margin-bottom: 25px" class="input-group">

 <i class="glyphicon
 glyphicon-lock"></i>
 <input type="password" class="form-control"
 asp-for="Password" placeholder="password">
 </div>
 <div style="margin-top:10px" class="form-group">
 <div class="col-sm-12 controls">
 <button type="submit" id="btn-login" href="#"
 class="btn btn-success">Login</button>
 </div>
 </div>
 <div class="form-group">
 <div class="col-md-12 control">
 <div style="border-top: 1px solid#888;
 padding-top:15px; font-size:85%">
 Don't have an account?
 <a asp-action="Index"
 asp-controller="UserRegistration">Sign Up Here

 </div>
 </div>
 </div>
 </form>
 </div>
 </div>
 </div>
 </div>

3. Update the UserService, add a SignInManager private field, and update the
constructor:

 ...
 private SignInManager<UserModel> _signInManager;
 public UserService(ApplicationUserManager userManager,
 ILogger<UserService> logger, SignInManager<UserModel>
 signInManager)
 {
 ...
 _signInManager = signInManager;
 ...
 }
 ...

4. Add two new methods, called SignInUser and SignOutUser, to UserService and
update the User Service Interface:

 public async Task<SignInResult> SignInUser(
 LoginModel loginModel, HttpContext httpContext)
 {
 var start = DateTime.Now;
 _logger.LogTrace($"signin user {loginModel.UserName}");

 var stopwatch = new Stopwatch();
 stopwatch.Start();

 try
 {
 var user =

 await _userManager.FindByNameAsync(loginModel.UserName);
 var isValid =
 await _signInManager.CheckPasswordSignInAsync(user,
 loginModel.Password, true);
 if (!isValid.Succeeded)
 {
 return SignInResult.Failed;
 }

 if (!await _userManager.IsEmailConfirmedAsync(user))
 {
 return SignInResult.NotAllowed;
 }

 var identity = new ClaimsIdentity(
 CookieAuthenticationDefaults.AuthenticationScheme);
 identity.AddClaim(new Claim(
 ClaimTypes.Name, loginModel.UserName));
 identity.AddClaim(new Claim(
 ClaimTypes.GivenName, user.FirstName));
 identity.AddClaim(new Claim(
 ClaimTypes.Surname, user.LastName));
 identity.AddClaim(new Claim(
 "displayName", $"{user.FirstName} {user.LastName}"));

 if (!string.IsNullOrEmpty(user.PhoneNumber))
 {
 identity.AddClaim(new Claim(ClaimTypes.HomePhone,
 user.PhoneNumber));
 }

 identity.AddClaim(new Claim("Score",
 user.Score.ToString()));

 await httpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(identity),
 new AuthenticationProperties { IsPersistent = false });

 return isValid;
 }
 catch (Exception ex)
 {
 _logger.LogError($"can not sigin user
 {loginModel.UserName} - {ex}");
 throw ex;
 }
 finally
 {
 stopwatch.Stop();
 _logger.LogTrace($"sigin user {loginModel.UserName}
 finished in {stopwatch.Elapsed}");
 }
 }

 public async Task SignOutUser(HttpContext httpContext)
 {
 await _signInManager.SignOutAsync();
 await httpContext.SignOutAsync(new AuthenticationProperties {
 IsPersistent = false });
 return;

 }

5. Add a new controller called AccountController to the Controllers folder, and
implement three new methods for handling user authentication:

 public class AccountController : Controller
 {
 private IUserService _userService;
 public AccountController(IUserService userService)
 {
 _userService = userService;
 }

 public async Task<IActionResult> Login(string returnUrl)
 {
 return await Task.Run(() =>
 {
 var loginModel = new LoginModel { ReturnUrl = returnUrl };
 return View(loginModel);
 });
 }

 [HttpPost]
 public async Task<IActionResult> Login(LoginModel loginModel)
 {
 if (ModelState.IsValid)
 {
 var result = await _userService.SignInUser(loginModel,
 HttpContext);

 if (result.Succeeded)
 {
 if (!string.IsNullOrEmpty(loginModel.ReturnUrl))
 return Redirect(loginModel.ReturnUrl);
 else
 return RedirectToAction("Index", "Home");
 }
 else
 ModelState.AddModelError("", result.IsLockedOut ?
 "User is locked" : "User is not allowed");
 }
 return View();
 }

 public IActionResult Logout()
 {
 _userService.SignOutUser(HttpContext).Wait();
 HttpContext.Session.Clear();
 return RedirectToAction("Index", "Home");
 }
 }

6. Update the CheckGameSessionIsFinished method in the GameSessionController:

 [HttpGet("/restapi/v1/CheckGameSessionIsFinished/{sessionId}")]
 public async Task<IActionResult> CheckGameSessionIsFinished(
 Guid sessionId)
 {

 if (sessionId != Guid.Empty)
 {
 var session =
 await _gameSessionService.GetGameSession(sessionId);
 if (session != null)
 {
 if (session.Turns.Count() == 9)
 return Ok("The game was a draw.");

 var userTurns = session.Turns.Where(
 x => x.User.Id == session.User1.Id).ToList();
 var user1Won = CheckIfUserHasWon(session.User1?.Email,
 userTurns);
 if (user1Won)
 {
 return Ok($"{session.User1.Email} has won the game.");
 }
 else
 {
 userTurns = session.Turns.Where(
 x => x.User.Id == session.User2.Id).ToList();
 var user2Won = CheckIfUserHasWon(session.User2?.Email,
 userTurns);

 if (user2Won)
 return Ok($"{session.User2.Email} has won
 the game.");
 else
 return Ok("");
 }
 }
 else
 {
 return NotFound($"Cannot find session {sessionId}.");
 }
 }
 else
 {
 return BadRequest("SessionId is null.");
 }
 }

7. Update the Views/Shared/_Menu.cshtml file, and replace the existing code block at
the top of the method:

 @using Microsoft.AspNetCore.Http;
 @{
 var email = User?.Identity?.Name ??
 Context.Session.GetString("email");
 var displayName = User.Claims.FirstOrDefault(
 x => x.Type == "displayName")?.Value ??
 Context.Session.GetString("displayName");
 }

8. Update the Views/Shared/_Menu.cshtml file, to display either a Display Name
Element for already authenticated users, or a Login Element for an
authenticated user; for that, replace the last element:

 @if (!string.IsNullOrEmpty(email))
 {
 Html.RenderPartial("_Account",
 new TicTacToe.Models.AccountModel { Email = email,
 DisplayName = displayName });
 }
 else
 {
 <a asp-area="" asp-controller="Account"
 asp-action="Login">Login
 }

9. Update the Views/Shared/_Account.cshtml file, and replace the Log Off and View
Details links:

 <a class="btn btn-danger btn-block" asp-controller="Account"
 asp-action="Logout" asp-area="">Log Off
 <a class="btn btn-default btn-block" asp-action="Index"
 asp-controller="Home" asp-area="Account">View Details

10. Go to the Views\Shared\Components\GameSession folder, and update the
default.cshtml file to improve the visual representation:

 @using Microsoft.AspNetCore.Http
 @model TicTacToe.Models.GameSessionModel
 @{
 var email = Context.Session.GetString("email");
 }
 <div id="gameBoard">
 <table>
 @for (int rows = 0; rows < 3; rows++)
 {
 <tr style="height:150px;">
 @for (int columns = 0; columns < 3; columns++)
 {
 <td style="width:150px; border:1px solid #808080;
 text-align:center; vertical-align:middle"
 id="@($"c_{rows}_{columns}")">
 @{
 var position = Model.Turns?.FirstOrDefault(
 turn => turn.X == columns && turn.Y == rows);
 if (position != null)
 {
 if (position.User == Model.User1)
 {
 <i class="glyphicon glyphicon-unchecked"></i>
 }
 else
 {
 <i class="glyphicon glyphicon-remove-circle"></i>
 }
 }
 else
 {
 <a class="btn btn-default btn-SetPosition"
 style="width:150px; min-height:150px;"

 data-X="@columns" data-Y="@rows">

 }
 }
 </td>
 }
 </tr>
 }
 </table>
 </div>
 <div class="alert" id="divAlertWaitTurn">
 <i class="glyphicon glyphicon-alert">Please wait until the
 other user has finished his turn.</i>
 </div>

11. Start the application, click on the Login element in the top menu, and sign in as
an existing user (or register as a user if you have not done that before):

12. Click the Log Off button. You should be logged off and get redirected back to
the Home Page:

Adding external provider
authentication
In the following section, we will showcase external provider authentication by using
Facebook as an authentication provider.

Here is an overview of the control flow in this case:

1. The user clicks on a dedicated external provider login button.
2. The corresponding controller receives a request indicating which provider is

needed, then a challenge is initiated with the external provider.
3. The external provider sends an HTTP callback (POST or GET) with a provider

name, a key, and some user claims for the application.
4. The claims are matched with the internal application user.
5. If no internal user can be matched with the claims, the user is either redirected

to a specific registration form or is rejected.

Note that the implementation steps are the same for all external
providers if they support OWIN and ASP.NET Core 2.0 Identity, and
that you may even create your own providers and integrate them in the
same way.

We are now going to implement external provider authentication via Facebook:

1. Update the Login Form, and add a button called Login with Facebook directly
after the standard Login Button:

 <a id="btn-fblogin" asp-action="ExternalLogin"
 asp-controller="Account" asp-route-Provider="Facebook"
 class="btn btn-primary">Login with Facebook

2. Update the UserService and User Service Interface, then add three new methods
called GetExternalAuthenticationProperties, GetExternalLoginInfoAsync, and
ExternalLoginSignInAsync:

 public async Task<AuthenticationProperties>
 GetExternalAuthenticationProperties(string provider,
 string redirectUrl)
 {
 return await Task.FromResult(

 _signInManager.ConfigureExternalAuthenticationProperties(
 provider, redirectUrl));
 }

 public async Task<ExternalLoginInfo> GetExternalLoginInfoAsync()
 {
 return await _signInManager.GetExternalLoginInfoAsync();
 }

 public async Task<SignInResult> ExternalLoginSignInAsync(
 string loginProvider, string providerKey, bool isPersistent)
 {
 _logger.LogInformation($"Sign in user with external login
 {loginProvider} - {providerKey}");
 return await _signInManager.ExternalLoginSignInAsync(
 loginProvider, providerKey, isPersistent);
 }

3. Update the AccountController, and add two new methods called ExternalLogin and
ExternalLoginCallBack:

 [AllowAnonymous]
 public async Task<ActionResult> ExternalLogin(string provider,
 string ReturnUrl)
 {
 var redirectUrl = Url.Action(nameof(ExternalLoginCallBack),
 "Account", new { ReturnUrl = ReturnUrl }, Request.Scheme,
 Request.Host.ToString());
 var properties =
 await _userService.GetExternalAuthenticationProperties(
 provider, redirectUrl);
 ViewBag.ReturnUrl = redirectUrl;
 return Challenge(properties, provider);
 }

 [AllowAnonymous]
 public async Task<IActionResult> ExternalLoginCallBack(
 string returnUrl, string remoteError = null)
 {
 if (remoteError != null)
 {
 ModelState.AddModelError(string.Empty, $"Error from
 external provider: {remoteError}");
 ViewBag.ReturnUrl = returnUrl;
 return View("Login");
 }

 var info = await _userService.GetExternalLoginInfoAsync();
 if (info == null)
 {
 return RedirectToAction("Login",
 new { ReturnUrl = returnUrl });
 }

 var result =
 await _userService.ExternalLoginSignInAsync(
 info.LoginProvider, info.ProviderKey, isPersistent: false);
 if (result.Succeeded)
 {

 if (!string.IsNullOrEmpty(returnUrl))
 return Redirect(returnUrl);
 else
 return RedirectToAction("Index", "Home");
 }
 if (result.IsLockedOut)
 {
 return View("Lockout");
 }
 else
 {
 return View("NotFound");
 }
 }

4. Register the Facebook Middleware within the Startup class:

 services.AddAuthentication(options => {
 options.DefaultScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 options.DefaultSignInScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 options.DefaultAuthenticateScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 }).AddCookie().AddFacebook(facebook =>
 {
 facebook.AppId = "123";
 facebook.AppSecret = "123";
 facebook.ClientId = "123";
 facebook.ClientSecret = "123";
 });

Note that you must update the Facebook Middleware configuration and
register your application in the Facebook developer portal before
being able to authenticate logins with a Facebook account.

Please go to http://developer.facebook.com for more information.

5. Start the application, click on the Login with Facebook button, sign in with your
Facebook credentials, and verify that everything is working as expected:

http://developer.facebook.com

Working with two-factor
authentication
The standard security mechanisms you have seen before only require a simple
username and password, which makes it increasingly easy for cybercriminals to gain
access to confidential data, such as personal and financial details, either by hacking
the password or by intercepting user credentials (emails, network sniffing, and such).
This data can then be used to commit financial fraud and identity theft.

Two-factor authentication adds an extra layer of security, since it requires not only a
username and password, but also a two-factor code that only the user can provide
(physical device, software-generated, and so on). This makes it much harder for
potential intruders to gain access, and thus helps to prevent identity and data theft.

All major websites provide two-factor authentication as an option, so let's add it to
the Tic-Tac-Toe application as well:

1. Add a new Model called TwoFactorCodeModel to the Models folder:

 public class TwoFactorCodeModel
 {
 [Key]
 public long Id { get; set; }
 public Guid UserId { get; set; }
 [ForeignKey("UserId")]
 public UserModel User { get; set; }
 public string TokenProvider { get; set; }
 public string TokenCode { get; set; }
 }

2. Add a new Model called TwoFactorEmailModel to the Models folder:

 public class TwoFactorEmailModel
 {
 public string DisplayName { get; set; }
 public string Email { get; set; }
 public string ActionUrl { get; set; }
 }

3. Register the TwoFactorCodeModel within the Game Db Context by adding a
corresponding DbSet:

 public DbSet<TwoFactorCodeModel> TwoFactorCodeModels { get; set; }

4. Open the NuGet Package Manager Console and execute the Add-Migration
AddTwoFactorCode command, then update the database by executing the Update-
Database command.

5. Update the Application User Manager, then add three new methods called
SetTwoFactorEnabledAsync, GenerateTwoFactorTokenAsync, and
VerifyTwoFactorTokenAsync:

 public override async Task<IdentityResult>
 SetTwoFactorEnabledAsync(UserModel user, bool enabled)
 {
 try
 {
 using (var db = new GameDbContext(_dbContextOptions))
 {
 var current = await db.UserModels.FindAsync(user.Id);
 current.TwoFactorEnabled = enabled;
 await db.SaveChangesAsync();
 return IdentityResult.Success;
 }
 }
 catch (Exception ex)
 {
 return IdentityResult.Failed(new IdentityError {
 Description = ex.ToString() });
 }
 }

 public override async Task<string>
 GenerateTwoFactorTokenAsync(UserModel user,
 string tokenProvider)
 {
 using (var dbContext = new GameDbContext(_dbContextOptions))
 {
 var emailTokenProvider = new EmailTokenProvider<UserModel>();
 var token = await emailTokenProvider.GenerateAsync(
 "TwoFactor", this, user);
 dbContext.TwoFactorCodeModels.Add(new TwoFactorCodeModel
 {
 TokenCode = token,
 TokenProvider = tokenProvider,
 UserId = user.Id
 });

 if (dbContext.ChangeTracker.HasChanges())
 await dbContext.SaveChangesAsync();

 return token;
 }
 }

 public override async Task<bool>
 VerifyTwoFactorTokenAsync(UserModel user,
 string tokenProvider, string token)
 {
 using (var dbContext = new GameDbContext(_dbContextOptions))
 {
 return await dbContext.TwoFactorCodeModels.AnyAsync(
 x => x.TokenProvider == tokenProvider &&

 x.TokenCode == token && x.UserId == user.Id);
 }
 }

6. Go to the Areas/Account/Views/Home folder, and update the Index View:

 @model TicTacToe.Models.UserModel
 @using Microsoft.AspNetCore.Identity
 @inject UserManager<TicTacToe.Models.UserModel> UserManager
 @{
 var isTwoFactor =
 UserManager.GetTwoFactorEnabledAsync(Model).Result;
 ViewData["Title"] = "Index";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <h3>Account Details</h3>
 <div class="container">
 <div class="row">
 <div class="col-xs-12 col-sm-6 col-md-6">
 <div class="well well-sm">
 <div class="row">
 <div class="col-sm-6 col-md-4">
 <Gravatar email="@Model.Email"></Gravatar>
 </div>
 <div class="col-sm-6 col-md-8">
 <h4>@($"{Model.FirstName} {Model.LastName}")</h4>
 <p>
 <i class="glyphicon glyphicon-envelope">
 </i>
 @Model.Email
 </p>
 <p>
 <i class="glyphicon glyphicon-calendar">
 </i> @Model.EmailConfirmationDate
 </p>
 <p>
 <i class="glyphicon glyphicon-star">
 </i> @Model.Score
 </p>
 <p>
 <i class="glyphicon glyphicon-check"></i>
 <text>Two Factor Authentication </text>
 @if (Model.TwoFactorEnabled)
 {
 <a asp-action="DisableTwoFactor">Disable
 }
 else
 {
 <a asp-action="EnableTwoFactor">Enable
 }
 </p>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>

7. Add a new file called _ViewImports.cshtml in the Areas/Account/Views folder:

 @using TicTacToe
 @using Microsoft.AspNetCore.Mvc.Localization
 @inject IViewLocalizer Localizer
 @addTagHelper *, TicTacToe
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

8. Update the UserService and User Service Interface, and add two new methods
called EnableTwoFactor and GetTwoFactorCode:

 public async Task<IdentityResult> EnableTwoFactor(string name,
 bool enabled)
 {
 try
 {
 var user = await _userManager.FindByEmailAsync(name);
 user.TwoFactorEnabled = true;
 await _userManager.SetTwoFactorEnabledAsync(user, enabled);
 return IdentityResult.Success;
 }
 catch (Exception ex)
 {
 throw;
 }
 }

 public async Task<string> GetTwoFactorCode(string userName,
 string tokenProvider)
 {
 var user = await GetUserByEmail(userName);
 return await _userManager.GenerateTwoFactorTokenAsync(user,
 tokenProvider);
 }

9. Update the SignInUser method in the UserService for supporting two-factor
authentication, if it is enabled:

 public async Task<SignInResult> SignInUser(LoginModel
 loginModel, HttpContext httpContext)
 {
 var start = DateTime.Now;
 _logger.LogTrace($"Signin user {loginModel.UserName}");
 var stopwatch = new Stopwatch();
 stopwatch.Start();

 try
 {
 var user =
 await _userManager.FindByNameAsync(loginModel.UserName);
 var isValid =
 await _signInManager.CheckPasswordSignInAsync(user,
 loginModel.Password, true);

 if (!isValid.Succeeded)
 {
 return SignInResult.Failed;
 }

 if (!await _userManager.IsEmailConfirmedAsync(user))

 {
 return SignInResult.NotAllowed;
 }

 if (await _userManager.GetTwoFactorEnabledAsync(user))
 {
 return SignInResult.TwoFactorRequired;
 }

 var identity = new ClaimsIdentity(
 CookieAuthenticationDefaults.AuthenticationScheme);
 identity.AddClaim(new Claim(ClaimTypes.Name,
 loginModel.UserName));
 identity.AddClaim(new Claim(ClaimTypes.GivenName,
 user.FirstName));
 identity.AddClaim(new Claim(ClaimTypes.Surname,
 user.LastName));
 identity.AddClaim(new Claim("displayName",
 $"{user.FirstName} {user.LastName}"));

 if (!string.IsNullOrEmpty(user.PhoneNumber))
 {
 identity.AddClaim(new Claim(ClaimTypes.HomePhone,
 user.PhoneNumber));
 }
 identity.AddClaim(new Claim("Score",
 user.Score.ToString()));

 await httpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(identity),
 new AuthenticationProperties { IsPersistent = false });

 return isValid;
 }
 catch (Exception ex)
 {
 _logger.LogError($"Ca not sigin user
 {loginModel.UserName} - {ex}");
 throw ex;
 }
 finally
 {
 stopwatch.Stop();
 _logger.LogTrace($"Sigin user {loginModel.UserName}
 finished in {stopwatch.Elapsed}");
 }
 }

10. Go to the Areas/Account/Controllers folder, and update the HomeController. Update
the Index method and add two new methods called EnableTwoFactor and
DisableTwoFactor:

 [Authorize]
 public async Task<IActionResult> Index()
 {
 var user =
 await _userService.GetUserByEmail(User.Identity.Name);
 return View(user);

 }

 [Authorize]
 public IActionResult EnableTwoFactor()
 {
 _userService.EnableTwoFactor(User.Identity.Name, true);
 return RedirectToAction("Index");
 }

 [Authorize]
 public IActionResult DisableTwoFactor()
 {
 _userService.EnableTwoFactor(User.Identity.Name, false);
 return RedirectToAction("Index");
 }

Note that we will explain the [Authorize] decorator later in this chapter.
It is used to add access restrictions to resources.

11. Add a new Model called ValidateTwoFactorModel to the Models folder:

 public class ValidateTwoFactorModel
 {
 public string UserName { get; set; }
 public string Code { get; set; }
 }

12. Update the AccountController, and add a new method called SendEmailTwoFactor:

 private async Task SendEmailTwoFactor(string UserName)
 {
 var user = await _userService.GetUserByEmail(UserName);
 var urlAction = new UrlActionContext
 {
 Action = "ValidateTwoFactor",
 Controller = "Account",
 Values = new { email = UserName,
 code = await _userService.GetTwoFactorCode(
 user.UserName, "Email") },
 Protocol = Request.Scheme,
 Host = Request.Host.ToString()
 };

 var TwoFactorEmailModel = new TwoFactorEmailModel
 {
 DisplayName = $"{user.FirstName} {user.LastName}",
 Email = UserName,
 ActionUrl = Url.Action(urlAction)
 };
 var emailRenderService =
 HttpContext.RequestServices.GetService
 <IEmailTemplateRenderService>();
 var emailService =
 HttpContext.RequestServices.GetService
 <IEmailService>();
 var message =

 await emailRenderService.RenderTemplate(
 "EmailTemplates/TwoFactorEmail", TwoFactorEmailModel,
 Request.Host.ToString());
 try
 {
 emailService.SendEmail(UserName, "Tic-Tac-Toe Two Factor
 Code", message).Wait();
 }
 catch
 {
 }
 }

Note that for calling RequestServices.GetService<T>();, you must also add
using Microsoft.Extensions.DependencyInjection; as you have done before
in other examples.

13. Update the Login method in AccountController:

 [HttpPost]
 public async Task<IActionResult> Login(LoginModel loginModel)
 {
 if (ModelState.IsValid)
 {
 var result = await _userService.SignInUser(loginModel,
 HttpContext);
 if (result.Succeeded)
 {
 if (!string.IsNullOrEmpty(loginModel.ReturnUrl))
 return Redirect(loginModel.ReturnUrl);
 else
 return RedirectToAction("Index", "Home");
 }
 else if (result.RequiresTwoFactor)
 {
 await SendEmailTwoFactor(loginModel.UserName);
 return RedirectToAction("ValidateTwoFactor");
 }
 else
 ModelState.AddModelError("", result.IsLockedOut ? "User
 is locked" : "User is not allowed");
 }

 return View();
 }

14. Add a new View called ValidateTwoFactor to the Views/Account folder:

 @model TicTacToe.Models.ValidateTwoFactorModel
 @{
 ViewData["Title"] = "Validate Two Factor";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <div class="container">
 <div id="loginbox" style="margin-top:50px;" class="mainbox
 col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2">
 <div class="panel panel-info">

 <div class="panel-heading">
 <div class="panel-title">Validate Two Factor Code</div>
 </div>
 <div style="padding-top:30px" class="panel-body">
 <div class="text-center">
 <form asp-controller="Account"
 asp-action="ValidateTwoFactor" method="post">
 <div asp-validation-summary="All"></div>
 <div style="margin-bottom: 25px" class="input-group">
 <i
 class="glyphicon glyphicon-envelope
 color-blue"></i>
 <input id="email" asp-for="UserName"
 placeholder="email address"
 class="form-control" type="email">
 </div>
 <div style="margin-bottom: 25px" class="input-group">
 <i
 class="glyphicon glyphicon-lock
 color-blue"></i>
 <input id="Code" asp-for="Code"
 placeholder="Enter your code" class="form-control">
 </div>
 <div style="margin-bottom: 25px" class="input-group">
 <input name="submit"
 class="btn btn-lg btn-primary btn-block"
 value="Validate your code" type="submit">
 </div>
 </form>
 </div>
 </div>
 </div>
 </div>
 </div>

15. Add a new View called TwoFactorEmail to the Views/EmailTemplates folder:

 @model TicTacToe.Models.TwoFactorEmailModel
 @{
 ViewData["Title"] = "View";
 Layout = "_LayoutEmail";
 }
 <h1>Welcome @Model.DisplayName</h1>
 You have requested a two factor code, please click here to continue.

16. Update the UserService and User Service Interface, and add a new method called
ValidateTwoFactor:

 public async Task<bool> ValidateTwoFactor(string userName,
 string tokenProvider, string token, HttpContext httpContext)
 {
 var user = await GetUserByEmail(userName);
 if (await _userManager.VerifyTwoFactorTokenAsync(user,
 tokenProvider, token))
 {
 var identity =
 new ClaimsIdentity(

 CookieAuthenticationDefaults.AuthenticationScheme);
 identity.AddClaim(new Claim(ClaimTypes.Name,
 user.UserName));
 identity.AddClaim(new Claim(ClaimTypes.GivenName,
 user.FirstName));
 identity.AddClaim(new Claim(ClaimTypes.Surname,
 user.LastName));
 identity.AddClaim(new Claim("displayName",
 $"{user.FirstName} {user.LastName}"));

 if (!string.IsNullOrEmpty(user.PhoneNumber))
 {
 identity.AddClaim(new Claim(ClaimTypes.HomePhone,
 user.PhoneNumber));
 }

 identity.AddClaim(new Claim("Score",
 user.Score.ToString()));
 await httpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(identity),
 new AuthenticationProperties { IsPersistent = false });

 return true;
 }
 return false;
 }

17. Update the AccountController, and add two new methods for two-factor
authentication validation:

 public async Task<IActionResult> ValidateTwoFactor(
 string email, string code)
 {
 return await Task.Run(() =>
 {
 return View(new ValidateTwoFactorModel { Code = code,
 UserName = email });
 });
 }

 [HttpPost]
 public async Task<IActionResult> ValidateTwoFactor(
 ValidateTwoFactorModel validateTwoFactorModel)
 {
 if (ModelState.IsValid)
 {
 await _userService.ValidateTwoFactor(
 validateTwoFactorModel.UserName, "Email",
 validateTwoFactorModel.Code, HttpContext);
 return RedirectToAction("Index", "Home");
 }

 return View();
 }

18. Start the application, sign in as an existing user, and go to the Account
Details page. Enable two-factor authentication (you might need to recreate the

database and register a new user before this step):

19. Sign out as the user, go to the Login Page, and sign in again. This time you will
be asked to enter a Two Factor Authentication Code:

20. You will receive an email with the Two Factor Authentication Code:

21. Click on the link in the email and everything should be filled in for you
automatically. Sign in and verify that everything is working as expected:

Adding forgotten password and
password reset mechanisms
Now that you have seen how to add authentication to your applications, you have to
think about how you want to help users to reset their forgotten passwords. Users will
forget their passwords, it will happen, so you need to have some mechanisms in
place.

The standard way of handling this type of request is to send an email reset link to the
user. The user can then update their password, without the risk of sending the
password in clear text through email. Sending a user password directly to a user
email is not secure and should be avoided at all costs.

You will now see how to add a reset password feature to the Tic-Tac-Toe
application:

1. Update the Login Form, and add a new link called Reset Password Here directly
after the Sign Up Here link:

 <div class="col-md-12 control">
 <div style="border-top: 1px solid#888; padding-top:15px;
 font-size:85%">
 Don't have an account?
 <a asp-action="Index"
 asp-controller="UserRegistration">Sign Up Here
 </div>
 <div style="font-size: 85%;">
 Forgot your password?
 <a asp-action="ForgotPassword">Reset Password Here</div>
 </div>

2. Add a new Model called ResetPasswordEmailModel to the Models folder:

 public class ResetPasswordEmailModel
 {
 public string DisplayName { get; set; }
 public string Email { get; set; }
 public string ActionUrl { get; set; }
 }

3. Update the AccountController, and add a new method called ForgotPassword:

 [HttpGet]

 public async Task<IActionResult> ForgotPassword()
 {
 return await Task.Run(() =>
 {
 return View();
 });
 }

4. Add a new Model called ResetPasswordModel to the Models folder:

 public class ResetPasswordModel
 {
 public string Token { get; set; }
 public string UserName { get; set; }
 public string Password { get; set; }
 public string ConfirmPassword { get; set; }
 }

5. Add a new View called ForgotPassword to the Views/Account folder:

 @model TicTacToe.Models.ResetPasswordModel
 @{
 ViewData["Title"] = "GameInvitationConfirmation";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <div class="form-gap"></div>
 <div class="container">
 <div class="row">
 <div class="col-md-4 col-md-offset-4">
 <div class="panel panel-default">
 <div class="panel-body">
 <div class="text-center">
 <h3><i class="fa fa-lock fa-4x"></i></h3>
 <h2 class="text-center">Forgot Password?</h2>
 <p>You can reset your password here.</p>
 <div class="panel-body">
 <form id="register-form" role="form"
 autocomplete="off" class="form"
 method="post" asp-controller="Account"
 asp-action="SendResetPassword">
 <div class="form-group">
 <div class="input-group">
 <i
 class="glyphicon glyphicon-envelope
 color-blue"></i>
 <input id="email" name="UserName"
 placeholder="email address"
 class="form-control" type="email">
 </div>
 </div>
 <div class="form-group">
 <input name="recover-submit"
 class="btn btn-lg btn-primary btn-block"
 value="Reset Password" type="submit">
 </div>
 <input type="hidden" class="hide"
 name="token" id="token" value="">
 </form>

 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>

6. Update the UserService and User Service Interface, and add a new method called
GetResetPasswordCode:

 public async Task<string> GetResetPasswordCode(UserModel user)
 {
 return await _userManager.GeneratePasswordResetTokenAsync(user);
 }

7. Add a new View to the View/EmailTemplates folder called ResetPasswordEmail:

 @model TicTacToe.Models.ResetPasswordEmailModel
 @{
 ViewData["Title"] = "View";
 Layout = "_LayoutEmail";
 }
 <h1>Welcome @Model.DisplayName</h1>
 You have requested a password reset, please click here to continue.

8. Update the AccountController, and add a new method called SendResetPassword:

 [HttpPost]
 public async Task<IActionResult> SendResetPassword(
 string UserName)
 {
 var user = await _userService.GetUserByEmail(UserName);
 var urlAction = new UrlActionContext
 {
 Action = "ResetPassword",
 Controller = "Account",
 Values = new { email = UserName,
 code = await _userService.GetResetPasswordCode(user) },
 Protocol = Request.Scheme,
 Host = Request.Host.ToString()
 };

 var resetPasswordEmailModel = new ResetPasswordEmailModel
 {
 DisplayName = $"{user.FirstName} {user.LastName}",
 Email = UserName,
 ActionUrl = Url.Action(urlAction)
 };

 var emailRenderService =
 HttpContext.RequestServices.GetService
 <IEmailTemplateRenderService>();
 var emailService =
 HttpContext.RequestServices.GetService<IEmailService>();
 var message =

 await emailRenderService.RenderTemplate(
 "EmailTemplates/ResetPasswordEmail",
 resetPasswordEmailModel,
 Request.Host.ToString());

 try
 {
 emailService.SendEmail(UserName,
 "Tic-Tac-Toe Reset Password", message).Wait();
 }
 catch
 {

 }

 return View("ConfirmResetPasswordRequest",
 resetPasswordEmailModel);
 }

9. Add a new View called ConfirmResetPasswordRequest to the Views/Account folder:

 @model TicTacToe.Models.ResetPasswordEmailModel
 @{
 ViewData["Title"] = "ConfirmResetPasswordRequest";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 @section Desktop{<h2>@Localizer["DesktopTitle"]</h2>}
 @section Mobile {<h2>@Localizer["MobileTitle"]</h2>}
 <h1>@Localizer["You have requested to reset your password,
 an email has been sent to {0}, please click on the provided
 link to continue.", Model.Email]</h1>

10. Update the AccountController, and add a new method called ResetPassword:

 public async Task<IActionResult> ResetPassword(string email,
 string code)
 {
 var user = await _userService.GetUserByEmail(email);
 ViewBag.Code = code;
 return View(new ResetPasswordModel { Token = code,
 UserName = email });
 }

11. Add a new View to the Views/Account folder called SendResetPassword:

 @model TicTacToe.Models.ResetPasswordEmailModel
 @{
 ViewData["Title"] = "SendResetPassword";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 @section Desktop{<h2>@Localizer["DesktopTitle"]</h2>}
 @section Mobile {<h2>@Localizer["MobileTitle"]</h2>}
 <h1>@Localizer["You have requested a password reset, an email
 has been sent to {0}, please click on the link to continue.",
 Model.Email]</h1>

12. Add a new View called ResetPassword to the Views/Account folder:

 @model TicTacToe.Models.ResetPasswordModel
 @{
 ViewData["Title"] = "ResetPassword";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <div class="container">
 <div id="loginbox" style="margin-top:50px;" class="mainbox
 col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2">
 <div class="panel panel-info">
 <div class="panel-heading">
 <div class="panel-title">Reset your Password</div>
 </div>
 <div style="padding-top:30px" class="panel-body">
 <div class="text-center">
 <form asp-controller="Account"
 asp-action="ResetPassword" method="post">
 <input type="hidden" asp-for="Token" />
 <div asp-validation-summary="All"></div>
 <div style="margin-bottom: 25px" class="input-group">
 <i
 class="glyphicon glyphicon-envelope
 color-blue"></i>
 <input id="email" asp-for="UserName"
 placeholder="email address"
 class="form-control" type="email">
 </div>
 <div style="margin-bottom: 25px" class="input-group">
 <i
 class="glyphicon glyphicon-lock
 color-blue"></i>
 <input id="password" asp-for="Password"
 placeholder="Password"
 class="form-control" type="password">
 </div>
 <div style="margin-bottom: 25px" class="input-group">
 <i
 class="glyphicon glyphicon-lock
 color-blue"></i>
 <input id="confirmpassword"
 asp-for="ConfirmPassword"
 placeholder="Confirm your Password"
 class="form-control" type="password">
 </div>
 <div style="margin-bottom: 25px" class="input-group">
 <input name="submit"
 class="btn btn-lg btn-primary btn-block"
 value="Reset Password" type="submit">
 </div>
 </form>
 </div>
 </div>
 </div>
 </div>
 </div>

13. Update the UserService and the User Service Interface, and add a new method
called ResetPassword:

 public async Task<IdentityResult> ResetPassword(

 string userName, string password, string token)
 {
 var start = DateTime.Now;
 _logger.LogTrace($"Reset user password {userName}");

 var stopwatch = new Stopwatch();
 stopwatch.Start();

 try
 {
 var user = await _userManager.FindByNameAsync(userName);
 var result = await _userManager.ResetPasswordAsync(user,
 token, password);
 return result;
 }
 catch (Exception ex)
 {
 _logger.LogError($"Cannot reset user password
 {userName} - {ex}");
 throw ex;
 }
 finally
 {
 stopwatch.Stop();
 _logger.LogTrace($"Reset user password {userName}
 finished in {stopwatch.Elapsed}");
 }
 }

14. Update the AccountController, and add a new method called ResetPassword:

 [HttpPost]
 public async Task<IActionResult> ResetPassword(
 ResetPasswordModel reset)
 {
 if (ModelState.IsValid)
 {
 var result =
 await _userService.ResetPassword(reset.UserName,
 reset.Password, reset.Token);

 if (result.Succeeded)
 return RedirectToAction("Login");
 else
 ModelState.AddModelError("", "Cannot reset your password");
 }
 return View();
 }

15. Start the application and go to the Login page, click on the Reset Password
Here link:

16. Enter an existing user email on the Forgot Password? page; this will send an
email to the user:

17. Open the Password Reset Email and click on the provided link:

18. On the Password Reset page, enter a new password for the user and click on
Reset Password. You should be automatically redirected to the Login page, so
sign in with the new password:

Implementing authorization
In the first part of the chapter, you saw how to handle user authentication and how to
work with user logins. In the next part, you will see how to manage user access,
which will allow you to fine-tune who has access to what.

The simplest authorization method is to use the [Authorize] meta decorator, which
disables anonymous access completely. Users need to be signed in to be able to
access restricted resources in this case.

Let's go and see how to implement it within the Tic-Tac-Toe application:

1. Add a new method called SecuredPage to the HomeController, and remove
anonymous access to it by adding the [Authorize] decorator:

 [Authorize]
 public async Task<IActionResult> SecuredPage()
 {
 return await Task.Run(() =>
 {
 ViewBag.SecureWord = "Secured Page";
 return View("SecuredPage");
 });
 }

2. Add a new View called SecuredPage to the Views/Home folder:

 @{
 ViewData["Title"] = "Secured Page";
 }
 @section Desktop {<h2>@Localizer["DesktopTitle"]</h2>}
 @section Mobile {<h2>@Localizer["MobileTitle"]</h2>}
 <div class="row">
 <div class="col-lg-12">
 <h2>Tic-Tac-Toe @ViewBag.SecureWord</h2>
 </div>
 </div>

3. Try accessing the Secured Page by entering its URL
http://<host>/Home/SecuredPage manually, while not signed in; you will be
automatically redirected to the Login page:

4. Enter valid user credentials and sign in; you should be automatically redirected
to the Secured Page and be able to see it now:

Another relatively popular approach is to use role-based security, which provides
some more advanced features. It is one of the recommended methods for securing
your ASP.NET Core 2.0 web applications.

The following example explains how to work with it:

1. Add a new class called UserRoleModel to the Models folder, and make it inherit
from IdentityUserRole<long>; it will be used by the built-in ASP.NET Core 2.0
Identity authentication features:

 public class UserRoleModel : IdentityUserRole<Guid>
 {
 [Key]
 public long Id { get; set; }
 }

2. Update the OnModelCreating method within the Game Db Context:

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 ...
 modelBuilder.Entity<IdentityUserRole<Guid>>()
 .ToTable("UserRoleModel")
 .HasKey(x => new { x.UserId, x.RoleId });
 }

3. Open the NuGet Package Manager Console and execute the Add-Migration
IdentityDb2 command, then execute the Update-Database command.

4. Update the UserService, and modify the constructor to create two roles called
Player and Administrator, if they do not yet exist:

 public UserService(RoleManager<RoleModel> roleManager,
 ApplicationUserManager userManager, ILogger<UserService>
 logger, SignInManager<UserModel> signInManager)
 {
 ...
 if (!roleManager.RoleExistsAsync("Player").Result)
 roleManager.CreateAsync(new RoleModel {
 Name = "Player" }).Wait();

 if (!roleManager.RoleExistsAsync("Administrator").Result)
 roleManager.CreateAsync(new RoleModel {
 Name = "Administrator" }).Wait();
 }

5. Update the RegisterUser method within the UserService, and add the user to the
Player role or to the Administrator role during user registration:

 ...
 try
 {
 userModel.UserName = userModel.Email;
 var result = await _userManager.CreateAsync(userModel,
 userModel.Password);
 if (result == IdentityResult.Success)
 {
 if(userModel.FirstName == "Jason")

 await _userManager.AddToRoleAsync(userModel,
 "Administrator");
 else
 await _userManager.AddToRoleAsync(userModel, "Player");
 }

 return result == IdentityResult.Success;
 }
 ...

Note that in the example, the code to identify whether a user has the
administrator role is intentionally very basic. You should implement
something more sophisticated in your applications.

6. Start the application and register a new user, open the RoleModel table within the
SQL Server Object Explorer, and analyze its content:

7. Open the UserRoleModel table within the SQL Server Object Explorer and analyze
its content:

8. Update the SignInUser method within the UserService to map roles with claims:

 ...
 identity.AddClaim(new Claim("Score", user.Score.ToString()));
 var roles = await _userManager.GetRolesAsync(user);
 identity.AddClaims(roles?.Select(r => new
 Claim(ClaimTypes.Role, r)));

 await httpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(identity),
 new AuthenticationProperties { IsPersistent = false });

 ...

9. Update the SecuredPage method within the HomeController, and use the
administrator role to secure access, and replace the Authorize decorator:

 [Authorize(Roles = "Administrator")]

10. Start the application. If you try to access http://<host>/Home/SecuredPage without
being logged in, you will be redirected to the Login Page. Sign in as a user who
has the player role, you will be redirected to an Access Denied Page (which
does not exist, hence the 404 error), since the user does not have the
administrator role:

11. Log out and then sign in as a user who has the administrator role; you should
now see the secured page, since the user has the necessary role:

In the following example you will see how to sign in automatically as a registered
user and how to activate claims-based and policy-based authentication:

1. Update the SignInUser method, and add a new method called SignIn in the
UserService:

 public async Task<SignInResult> SignInUser(LoginModel
 loginModel, HttpContext httpContext)
 {
 var start = DateTime.Now;
 _logger.LogTrace($"Signin user {loginModel.UserName}");

 var stopwatch = new Stopwatch();
 stopwatch.Start();

 try
 {
 var user =
 await _userManager.FindByNameAsync(loginModel.UserName);
 var isValid =
 await _signInManager.CheckPasswordSignInAsync(user,
 loginModel.Password, true);

 if (!isValid.Succeeded)
 {
 return SignInResult.Failed;
 }

 if (!await _userManager.IsEmailConfirmedAsync(user))
 {
 return SignInResult.NotAllowed;
 }

 if (await _userManager.GetTwoFactorEnabledAsync(user))
 {
 return SignInResult.TwoFactorRequired;
 }

 await SignIn(httpContext, user);

 return isValid;
 }
 catch (Exception ex)
 {
 _logger.LogError($"Ca not sigin user
 {loginModel.UserName} - {ex}");
 throw ex;
 }
 finally
 {
 stopwatch.Stop();
 _logger.LogTrace($"Sigin user {loginModel.UserName}
 finished in {stopwatch.Elapsed}");
 }
 }

 private async Task SignIn(HttpContext httpContext, UserModel user)
 {
 var identity = new ClaimsIdentity(
 CookieAuthenticationDefaults.AuthenticationScheme);
 identity.AddClaim(new Claim(ClaimTypes.Name, user.UserName));
 identity.AddClaim(new Claim(ClaimTypes.GivenName,
 user.FirstName));
 identity.AddClaim(new Claim(ClaimTypes.Surname,
 user.LastName));
 identity.AddClaim(new Claim("displayName",
 $"{user.FirstName} {user.LastName}"));

 if (!string.IsNullOrEmpty(user.PhoneNumber))
 {
 identity.AddClaim(new Claim(ClaimTypes.HomePhone,
 user.PhoneNumber));
 }

 identity.AddClaim(new Claim("Score", user.Score.ToString()));

 var roles = await _userManager.GetRolesAsync(user);
 identity.AddClaims(roles?.Select(r =>
 new Claim(ClaimTypes.Role, r)));

 if (user.FirstName == "Jason")
 identity.AddClaim(new Claim("AccessLevel", "Administrator"));

 await httpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(identity),
 new AuthenticationProperties { IsPersistent = false });
 }

Note that, in the example, the code to identify whether a user has
administrator privileges is intentionally very basic. You should
implement something more sophisticated in your applications.

2. Update the RegisterUser method in the UserService, add a new parameter to
automatically sign in a user after registration, and re-extract the User Service
Interface:

 public async Task<bool> RegisterUser(UserModel userModel,
 bool isOnline = false)
 {
 ...
 if (result == IdentityResult.Success)
 {
 ...
 if (isOnline)
 {
 HttpContext httpContext =
 new HttpContextAccessor().HttpContext;
 await Signin(httpContext, userModel);
 }
 }
 ...
 }

3. Update the Index method in the UserRegistrationController to automatically sign
in a newly registered user:

 ...
 await _userService.RegisterUser(userModel, true);
 ...

4. Update the ConfirmGameInvitation method in the GameInvitationController to sign
an invited user in automatically:

 ...
 await _userService.RegisterUser(new UserModel
 {
 Email = gameInvitation.EmailTo,

 EmailConfirmationDate = DateTime.Now,
 EmailConfirmed = true,
 FirstName = "",
 LastName = "",
 Password = "Azerty123!",
 UserName = gameInvitation.EmailTo
 }, true);
 ...

5. Add a new policy called AdministratorAccessLevelPolicy to the Startup class, just
after the MVC Middleware configuration:

 services.AddAuthorization(options =>
 {
 options.AddPolicy("AdministratorAccessLevelPolicy",
 policy => policy.RequireClaim("AccessLevel",
 "Administrator"));
 });

6. Update the SecuredPage method within the HomeController, using a Policy instead
of a Role to secure access, and replace the Authorize decorator:

 [Authorize(Policy = "AdministratorAccessLevelPolicy")]

Note that it can be required to limit access to only one specific
middleware, since several kinds of Authentication Middleware can be
used with ASP.NET Core 2.0 (Cookie, Bearer, and more) at the same
time.

For this case, the Authorize decorator you have seen before allows you
to define which middleware can authenticate a user.

Here is an example to allow Cookie and Bearer:
 [Authorize(AuthenticationSchemes = "Cookie,Bearer",
 Policy = "AdministratorAccessLevelPolicy")]

7. Start the application, register a new user with an Administrator access level, sign
in, and access http://<host>/Home/SecuredPage. Everything should be working as
before.

Note that you might need to clear your cookies and log in again to
create a new authentication token with the required claims.

8. Try accessing the Secured Page as a user who does not have the required access
level; as before, you should be redirected to http://<host>/Account/AccessDenied?

ReturnUrl=%2FHome%2FSecuredPage:

9. Log out and then sign in as a user who has the Administrator role; you should
now see the secured page, since the user has the necessary role.

Summary
In this chapter, you have learned how to secure ASP.NET Core 2.0 applications,
including managing authentication and authorization for your application users.

You have added basic forms authentication, and more advanced external provider
authentication via Facebook, to the example application. This should give you some
good ideas on how to approach these important topics in your own applications.

Furthermore, you have learned how to add standard reset password mechanisms,
because users forget their passwords all the time and you need to respond to this type
of request as securely as possible.

We have even talked about two-factor authentication, which can provide an even
higher security level for critical applications.

In the end, you have seen how to handle authorizations in multiple ways (basic,
roles, policies), so that you can decide which approach is best suited to your specific
use case.

In the next chapter, we will talk about the different options you will have when
hosting and deploying your ASP.NET Core 2.0 web applications.

Hosting and Deploying ASP.NET
Core 2.0 Applications
That's it, we are almost at the end of the book, which means that we have nearly
finished the entire application development life cycle, and, thus, customers will be
able to use your applications soon! Don't be sad; instead, be proud, because after
reading and understanding this penultimate chapter of the book, you will have
acquired strong skills to create and deploy your own mind-blowing applications with
strong technical foundations!

Let's recap, from the beginning of the book until now: you have seen how to set up a
development environment, how to use the various features of ASP.NET Core 2.0 to
develop modern web applications, how to connect them to a database via Entity
Framework Core, and, finally, in the last chapter, how to secure them against any
malicious cyber criminals.

Now, we need to talk about the last step in the cycle, which consists of hosting and
deploying your applications once they are production ready.

The goal of this chapter will be to explain the different options you have, how to
choose the right ones, and how to deploy your ASP.NET Core 2.0 web applications
using the most current technologies and cloud providers.

In this chapter, we will cover the following topics:

Hosting applications
Deploying applications in Amazon Web Services
Deploying applications in Microsoft Azure
Deploying applications into Docker containers

Hosting applications
You can build the best and most useful applications in the world, but if your
customers cannot access them easily and from any device, you may not get the
success expected. As you can see in the following diagram, applications need to be
more and more omnichannel, which means customers need to be able to start on one
device and then continue on another:

Your applications need to be deployable to multiple targets and, in some cases,
multiple operation systems, to allow a high degree of flexibility and device
availability. This is where hosting comes into play.

A host is responsible for application startup and lifetime management, which
includes providing and configuring a server and request processing. Depending on
how you are hosting your ASP.NET Core 2.0 applications, you can support different
devices for your applications. The chosen technology has a significant impact on the
possible device and operations system choices.

ASP.NET Core 2.0 fully supports all current hosting mechanisms on multiple
platforms and operation systems. It all depends on your specific application context.

Some examples to host your ASP.Net Core 2.0 applications are as follows:

Host on Windows via IIS
Host in a Windows service
Host on Linux using Nginx
Host on Linux using Apache

During development time, or if you don't need to share your applications with others,
it may be interesting to use self-hosting mechanisms or IIS Express, which provide a
quick and easy solution for disconnected, proof-of-concept, or test projects.

However, if you start sharing your applications with others, you need some more
sophisticated hosting solutions and the corresponding server technologies.

For example, to expose your ASP.NET Core 2.0 applications over the internet, you
will need a web server, which is accessible outside of your local network. There are
several possible solutions to achieve this goal.

One is using an internet host provider to host your web server. However, you will
need to do the sizing and manage the server by yourself, which may be expensive
and time-consuming. Another option is using public cloud providers, which offer
much more flexibility and scalability, while allowing cost reduction and paying for
what you need. The most famous ones are Amazon Web Services and Microsoft
Azure which have data centers all around the world.

Furthermore, when using public cloud PaaS offers, you don't even have to manage
the OS or the platform anymore. The cloud platform is doing everything for you.
Instead, you can access cloud services, which provide web server or database server
functionalities with high SLAs. Some examples are AWS Elastic Beanstalk and
Microsoft Azure App Services.

After having seen the various hosting options at your disposal, you will be able to
decide on your deployment targets. For publicly available web applications, you will
want to deploy to a public cloud provider. The next sections will show you how to
deploy to the most common and famous public cloud providers, and how to use the
most recent technologies to do so.

Deploying applications in Amazon
Web Services
Amazon Web Services, a subsidiary of Amazon.com, provides a public cloud
computing platform for building, testing, deploying, and managing applications and
services within globally available AWS data centers all around the world. It supports
many different programming languages, tools, frameworks, and systems.

We will explore Amazon Web Services in the following sections and see how to
create an account and deploy your ASP.NET Core 2.0 applications to AWS Elastic
Beanstalk.

First, you have to sign up for an account on Amazon Web Services; it only takes five
minutes, but you will need a credit card for that.

Let's go through the account registration steps:

1. Open a browser, go to https://aws.amazon.com, and click on the Create a Free
Account button:

2. Fill the Create a new AWS Account form and click on Continue:

https://aws.amazon.com

3. Fill the Contact Information form and click on Create Account and Continue:

4. Fill the Payment Information form and click on Continue:

5. Fill the Identity Information Verification form and click on Continue, then
select a support plan and click on Continue:

6. After the registration has been done, you are automatically redirected to the
welcome page where you should click on the Launch Management Console
button:

After having created your new Amazon Web Services user account, you are now
ready to deploy your first ASP.NET Core 2.0 application in Amazon Web Services.

When working with Amazon Web Services, you basically have two choices to
deploy your Asp.Net Core 2.0 web applications:

Amazon Web Services Elastic Beanstalk
Amazon Web Services EC2 Container Service

The next section will shed some light on how to deploy your applications in Amazon
Web Services Elastic Beanstalk. So, stay tuned, engage your seat belt, and enjoy
your ride!

Deploying applications in AWS
Elastic Beanstalk

AWS Elastic Beanstalk is a PaaS offering for web-based applications in
Amazon Web Services, which includes auto-scaling. In this regard, it is
comparable to Microsoft Azure App Services, which you will see in a later
section of this chapter.
It removes the need to manage infrastructure; instead, you only need to be
concerned about building and hosting your applications. For a full DevOps
approach, it is advised using this PaaS service if you want to work with
Amazon Web Services.

For more information on AWS Elastic Beanstalk, check out https://aws.
amazon.com/fr/elasticbeanstalk/.

The following examples illustrate step by step how to deploy the Tic-Tac-Toe
application in Amazon Web Services Beanstalk.

Let's start with the creation of the AWS Beanstalk application:

1. Sign in to AWS and go to the AWS Management Console, enter Beanstalk in the
AWS services textbox, and click on the displayed link; you will be redirected to
the Beanstalk Welcome Page:

2. On the Beanstalk welcome page, select .NET (Windows/IIS) and click on the

https://aws.amazon.com/fr/elasticbeanstalk/

Launch Now button:

Note that you can change the IIS version and network settings (Network
Load Balancer or Single instance) by clicking on the Change platform
version link.

3. Wait until the Beanstalk application has been created; depending on your
internet connection and AWS, this may take a while:

The technical environment needs to be prepared in the next steps, before being able
to deploy the Tic-Tac-Toe application and then run it in the end.

As you may have seen in the preceding chapters, the application requires a database
to persist user and application data. For this purpose, we will provision an SQL
Server PaaS Service called RDS Service in Amazon Web Services, as in the
following example:

1. Return to the AWS Management Console and click on Elastic Beanstalk within
the Recent visited services section:

2. On the Beanstalk All Applications page, select the desired environment and
then click on Default-Environment:

3. On the specific Beanstalk application page, click on Configuration in the left-
hand menu:

4. Scroll down and click on the create a new RDS database link:

5. Select as DB Engine SQL Server Express (sqlserver-ex) and enter a master
username and password; leave the rest of the fields at their default values, click
on the Apply button at the bottom of the page, and wait for the database
creation to be finished:

Note that, depending on your application's needs, the SQL Server
Express Edition may not be enough, since it is limited in size, meaning
that the Enterprise or Web Editions may be necessary, which will result
in higher cloud provider costs. For the Tic-Tac-Toe sample
application, it is, however, largely sufficient.

6. Go to the AWS Management Console, enter RDS in the AWS services textbox,
and click on the displayed link; you will be redirected to the Amazon RDS
page, click on Instances in the left menu:

7. Click on your instance; the instance dashboard will be displayed. Scroll down to
retrieve the endpoint address, which will be used to update the application
connection string before deployment:

8. Scroll further down on the Amazon RDS Instance Page and click on the
Security groups:

9. On the Security Group page, click on Inbound in the menu at the bottom of the
page, then click on Edit for being able to update the inbound rules for the
security group of the database you have just created:

10. Click on the Add Rule button, choose All TCP as the type, Anywhere as the
source, and enter a meaningful description, then click on the Save button:

Note that you should configure the security group inbound rules
stricter in a real production environment and set real IP restrictions.
The source Anywhere should not be used for production environments.

11. Open SQL Server Object Explorer in Visual Studio 2017; sign in using the
endpoint address, username, and password from before, then create a new
database called TicTacToe:

12. Update the DatabaseConnectionString in the appsettings.json file, and replace the
parameters with the corresponding values:

 "Server=<YourEndPoint>;Database=TicTacToe;
 MultipleActiveResultSets=true;
 User id=<YourUser>;pwd=<YourPassword>"

You have successfully configured the technical environment, which means that you
are now able to publish the database schema as well as deploy the web application.

Are you eagerly awaiting to run the application in the cloud? Just stay concentrated
and continue a little bit further and you will see your application running in Amazon
Web Services very soon.

You have three choices when it comes to publishing the database schema:

1. Generate an SQL script to create the database from within Visual Studio 2017
via Entity Framework Migrations.

2. Change the default connection string in Data\GameDbContextFactory.cs and execute
the Update-Database instruction within the Package Manager Console.

3. Run the application to create the database.

The most appropriate solution depends on the type and the size of your application
and its database. As a rule of thumb, it is better to generate a script and then create
the database for larger applications, while it is acceptable to create the database
automatically when the application is running for the first time for smaller
applications.

Let's see what needs to be done before you can see the Tic-Tac-Toe application
running in Amazon Web Services:

1. Open the Package Manager Console in Visual Studio 2017 and execute the
Script-Migration instruction as shown here:

2. Take the generated script and copy it into a query window for the Amazon RDS
database, then execute the script to create the database and the various database
objects.

3. Download and install the AWS Toolkit for Visual Studio 2017 from https://mar
ketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStud

io2017:

https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017

4. Go to AWS Management Console, enter IAM in the AWS services textbox, and
click on the displayed link; you will be redirected to the Amazon Identity and
Access Management page:

5. On the Amazon Identity and Access Management page, click on Users and then
on the Add User button:

6. On the Add User page, give the new user a meaningful username and grant him
Programmatic access, then click on the Next:Permissions button at the bottom
of the page:

7. You now have to set the permissions for the new user; for that, click on the
Attach existing policies directly button:

8. Select AdministratorAccess from the existing policies and click on the
Next:Review button at the bottom of the page:

9. Verify that the User name and AWS access type as well as the selected policies
are correct, then click on the Create user button:

10. Wait for the new user to be created; when the success page is displayed, you
can then download the .csv file, which we will use to configure Visual Studio
2017 with AWS:

11. Open Visual Studio 2017 and display AWS Explorer by going to View | AWS
Explorer:

12. Click on the New account profile button (the only active button):

13. A wizard will be displayed; leave the Profile Name as default and fill the
Access Key ID and Secret Access key with the values coming from the .csv file
you have downloaded before during the new user creation process on AWS:

14. Since AWS is based on IIS as host for .NET Core applications, you now have to
add a web.config file to the TicTacToe project:

 <?xml version="1.0" encoding="utf-8"?>
 <configuration>
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*" verb="*"
 modules="AspNetCoreModule" resourceType="Unspecified" />
 </handlers>
 <aspNetCore processPath="dotnet"
 arguments=".\TicTacToe.dll"
 stdoutLogEnabled="true"
 stdoutLogFile=".\logs\stdout"
 forwardWindowsAuthToken="true" />
 </system.webServer>
 </configuration>

15. You, furthermore, have to enable IIS integration; for that, open the Program.cs
file and change the WebHost builder configuration to enable IIS integration, as
follows:

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup("TicTacToe")
 .CaptureStartupErrors(true)
 .UseApplicationInsights()
 .UseIISIntegration()
 .Build();

16. Right-click on the TicTacToe project and click on Publish to AWS Elastic
Beanstalk... in the context menu:

17. A wizard will be displayed; click on Redeploy to an existing environment and
select the default environment you have created before, then click on the Next
button:

18. Verify that the Framework version is set to netcoreapp2.0; leave all default
values and click on the Next button:

19. Select Generate AWSDeploy configuration, which will allow you to redeploy a
copy of your application with AWS, then click on the Deploy button:

20. The deployment will start; you can see the advancement of the deployment
process by going to Output | Amazon Web Services:

21. When the application is deployed, you can use the AWS Explorer to get the

URL of the application, as follows:

22. Open a browser and go to the application URL in Amazon Web Services, start
the application and try to register a new user.

Note that the application is not working as expected, you will get a 404
Not Found HTTP response. Everything is working locally and the
deployment in Amazon Web Services was successful, but something is
wrong. You will see in the next chapter, which is about logging and
monitoring, how to analyze, diagnose, understand and fix this problem.

Congratulations, you have successfully deployed your first application in the public
cloud. It is now available to the outside world and users can connect to it and start
working with it.

This concludes the examples for Amazon Web Services. However, we still have
some compelling content, since we will explore how to deploy to other targets such
as Microsoft Azure and Docker containers in the next sections; so, stay sharp and
continue reading the following sections.

Deploying applications in Microsoft
Azure
Microsoft Azure is a public cloud computing platform provided by Microsoft for
building, testing, deploying, and managing applications and services within globally
available Microsoft data centers all around the world. It supports many different
programming languages, tools, and frameworks, including Microsoft-specific, third-
party, and open source software and systems.

When deploying web applications in Microsoft Azure, you basically have four
choices:

Azure App Services
Azure Service Fabric
Azure Container Services
Azure Virtual Machines

However, before you can start deploying your applications in Microsoft Azure, you
need to sign up for a subscription; so, let's do that right now:

1. You need a Microsoft account to be able to sign up for a Microsoft Azure
subscription. You can use the same you have used for your Visual Studio
Team Services (VSTS) subscription, but if you do not have one yet, create it by
going to http://www.live.com and clicking on the Create one! link:

http://www.live.com

2. Go to https://portal.azure.com and log in with your Microsoft account; you will
be asked if you want to take a tour. Select Maybe later (you should really take
the tour later, though!) and you will be redirected to the Microsoft Azure
Management Portal:

3. Click on More Services at the bottom of the left-hand menu, then click on the

https://portal.azure.com

Subscriptions button:

4. Click on the Add button:

5. Click on the Free Trial button and fill in the different forms until you have
created your Microsoft Azure subscription:

Exciting! You are now ready to provision the technical environment and, then,
deploy your ASP.NET Core 2.0 web applications to the Microsoft Azure data center
all around the world!

Deploying applications in Microsoft
Azure App Services
Azure App Services is a PaaS offering for web-based applications in Microsoft
Azure, which includes auto-scaling. In this regard, it is comparable to AWS
Beanstalk, which you may have already seen in the section on AWS before.

It removes the need for managing infrastructure; instead, you only need to be
concerned about building and hosting your applications. For a full DevOps approach,
it is advisable to use this PaaS service if you want to work with Microsoft Azure.

For more information on Microsoft Azure App Services, check out https
://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview.

The following examples illustrate how to deploy the Tic-Tac-Toe application to
Azure App Services step by step:

1. Go to the Microsoft Azure Management Portal, click on App Services in the
left-hand menu, and then click on the Add button:

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview

2. Click on the Web App + SQL button in the Web Apps section:

3. Read the service details and click on the Create button:

4. If you did not sign up for your Microsoft Azure subscription before, you can do
that now by clicking on the Sign up for a new subscription link; you will be
redirected to the same forms as you have seen at the beginning of the section:

5. Choose a name for the application and a Resource Group, and click on the SQL
Database button to configure the database options:

6. Click on Create Database and choose a database name. Leave the other options
with their default values and click on Target server:

7. Enter some values for Server name, Server admin login, and Password, then
click on the Select button, as shown here:

8. Click on the Select buttons for the new database server, the new database, and
then finally on the Create button for the App Service; wait until it has been
provisioned:

9. You need to allow access to the SQL Database to execute the database
generation scripts for the TicTacToe application; in the left-hand menu, click on
SQL databases and select the TicTacToe database:

10. Click on Set server firewall to be able to add a new rule to allow access to the

SQL Database from your IP:

11. Click on Add client IP, verify your IP, and click on Save to add the new rule:

12. Click on Connection strings to retrieve the connection string for the TicTacToe
Azure database you have created before:

13. Open Visual Studio 2017, go to the SQL Server Object Explorer and add a new
SQL Server using the connection information from the TicTacToe Azure database
connection string.

14. Add a new database to the Azure SQL Server, as you would have done in the
Amazon Web Services example; it will be used to execute the TicTacToe
database generation scripts:

15. If you have not done it in the Amazon Web Services example before, open the
Package Manager Console in Visual Studio 2017 and execute the Script-
Migration instruction; otherwise, you can reuse the same scripts.

16. Take the generated script and copy it into a query window for the Azure
TicTacToe database, then execute the script to create the database and the various
database objects.

Now that the technical foundations have been provisioned and initialized in
Microsoft Azure, everything is ready for the next step, which consists of deploying
the sample application.

So, let's do exactly that—prepare the application and deploy it via Visual Studio
2017 into the Microsoft App Service you have created before:

1. Since App Services are based on IIS as the host for .NET Core applications, you
now have to add a web.config file to the TicTacToe project; you should, however,
already have done that if you have followed the Amazon Web Services example
from before:

 <?xml version="1.0" encoding="utf-8"?>
 <configuration>
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*"
 verb="*" modules="AspNetCoreModule"
 resourceType="Unspecified" />
 </handlers>
 <aspNetCore processPath="dotnet"
 arguments=".\TicTacToe.dll"
 stdoutLogEnabled="true"

 stdoutLogFile=".\logs\stdout"
 forwardWindowsAuthToken="true" />
 </system.webServer>
 </configuration>

2. Furthermore, you have to enable IIS integration; for that, open the Program.cs
file and change the WebHost builder configuration to enable IIS integration.
You should, however, already have done that if you have followed the Amazon
Web Services example from before:

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup("TicTacToe")
 .CaptureStartupErrors(true)
 .UseApplicationInsights()
 .UseIISIntegration()
 .Build();

3. Go to the Microsoft Azure Management Portal and click on App Services in the
left-hand menu, select the TicTacToe application you have created before, click
on Get publish profile, and download the Azure App Service Publish profile:

4. Right-click on the TicTacToe project, click on Publish in the context menu, then
click on the Import Profile button, as shown here:

5. Select the downloaded Azure App Service Publish profile and the publish
process should start automatically:

6. You can see the publish process in the Web Publish Activity view:

7. Open a browser and go to the application URL in Microsoft Azure, start the
application and try to register a new user.

Note that the application is not working as expected, you will get a 404
Not Found HTTP response. Everything is working locally and the
deployment in Microsoft Azure was successful, but something is wrong.
You will see in the next chapter, which is about logging and
monitoring, how to analyze, diagnose, understand and fix this problem.

This concludes the examples for Microsoft Azure. The next sections will explain
how to deploy your application into Docker containers.

Deploying applications into Docker
containers
Docker simplifies building, deploying, and running applications by using containers.
Containers allow for the packaging of libraries, as well as any other dependencies,
into a single application package (container image), which can then be shipped as a
single coherent resource. This technology assures that the packaged application will
run correctly anywhere where the container can be used, regardless of any
environmental specific settings or configurations.

Here is a high-level schema of how Docker works:

You basically have three choices when working with Docker containers:

Use a VM locally or in the cloud with Docker for Windows or Docker
Enterprise Edition for Windows 2016, depending on the operating system
Use the Docker Hub (https://hub.docker.com) and the Docker Store (https://store
.docker.com)
Use either Microsoft Azure Container Services or Amazon Web Services EC2
Container Service

For more information on Docker, visit the following links:

https://hub.docker.com/
https://store.docker.com

 https://www.docker.com
https://docs.microsoft.com/en-us/dotnet/core/docker/docker-basics-dotnet-
core

https://www.docker.com
https://www.docker.com
https://docs.microsoft.com/en-us/dotnet/core/docker/docker-basics-dotnet-core

Deploying applications into Docker
containers using Docker for
Windows and Docker Enterprise
Edition
Docker for Windows provides everything necessary to start using Docker containers
in a Windows environment, whereas Docker Enterprise Edition for Windows 2016 is
meant for companies that need to provide production environments based on the
Docker technologies with the necessary support.

Let's see how to use Docker in Windows and how to deploy your application in this
case:

1. If you do not have Docker for Windows installed yet, go to https://docs.docker.c
om/docker-for-windows/install/, click on the Get Docker for Windows (Stable)
button, and install it:

https://docs.docker.com/docker-for-windows/install/

To install the Docker Enterprise Edition for Windows 2016, go to https
://docs.docker.com/engine/installation/windows/docker-ee/ and follow the
installation instructions. After the installation, you should skip the
following steps and continue directly with the fourth step.

2. Right-click on the Docker tray icon and click on Switch to Windows
containers... in the context menu:

3. If the Container features have not yet been enabled in your Windows
installation, Docker will ask to do it for you; click on the Ok button:

https://docs.docker.com/engine/installation/windows/docker-ee/

4. Open a new elevated Command Prompt, download the official Docker
Microsoft SQL Server image, and execute the docker pull microsoft/mssql-
server-windows-express instruction as follows:

5. Download the official Docker Microsoft ASP.NET Core image and execute the
docker pull microsoft/aspnetcore instruction like this:

6. To be able to compile and publish applications from Visual Studio 2017 directly
into Docker, you will also need to download the specific build image and
execute the docker pull microsoft/aspnetcore-build instruction:

7. Open Visual Studio 2017, then open the TicTacToe project; in the menu, click on
Project | Docker Support and select the Windows operation system:

8. A new project called docker-compose will be autogenerated and added to the
solution; it should contain a .dockerignore file (files to be ignored during
deployment) and a docker-compose.yml file (deployment instructions):

9. Update the docker-compose.yml file in the Docker Compose Project like this:

 version: '3'
 services:
 sql:
 image: "microsoft/mssql-server-windows-express"
 environment:
 sa_password: "123TicTacToe!"
 ACCEPT_EULA: "Y"
 tictactoe:
 image: tictactoe
 build:
 context: .
 dockerfile: TicTacToe\Dockerfile
 ports:
 - "8081:5000"
 depends_on:
 - sql

10. Update the DefaultConnection in the appsettings.json file in the TicTacToe project
as follows:

 "DefaultConnection":
 "Server=sql;Database=Master;MultipleActiveResultSets=true;

 User id=sa;pwd=123TicTacToe!"

11. Update the Program.cs file in the TicTacToe project; remove the Application
Insights and IIS Integration because the Docker ASP.NET Core image is based
on Kestrel instead of IIS:

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup("TicTacToe")
 .CaptureStartupErrors(true)
 .Build();
 }

12. Start the application by pressing F5 (the docker-compose project should be set as a
startup), the application should automatically be deployed into a Docker
container now; verify that everything is still working as expected:

13. Open a Command Prompt and execute the docker ps instruction; to see all
running Docker processes, there should be multiple running container instances:

Publishing images to the Docker
Hub
You can upload your application images to the central cloud-based Docker
repository called Docker Hub, and then use them in Microsoft Azure, Amazon Web
Services, or any other Docker supported environments.

Note that there are also other Docker registries you could use, such as
Azure Container Registry and others. Since Docker provides its own
registry via Docker Hub, it is advised to use that though.

For more information on Docker Hub, check out https://docs.docker.com
/docker-hub.

The following example showcases how to publish and upload the sample TicTacToe
application to the Docker Hub:

1. Right-click on the TicTacToe project and select Publish in the context menu;
since you have already created a publish profile in the examples before, you
have to add a new one. Click on Create new profile:

2. Click on the Container Registry button, select Docker Hub, and click on the
Publish button:

https://docs.docker.com/docker-hub

3. Enter your Docker Hub User Name and Password and click on Save:

4. Your container image will be published to Docker Hub; when it has been
finished, go to Docker Hub and verify that the image has been uploaded:

Summary
In this chapter, we talked about the various options you have when it comes to
hosting and deploying your ASP.NET Core 2.0 web applications.

You learned what hosting is and how to choose the appropriate solutions for a given
use case. This will allow you to make better decisions for your own applications.

You have seen how to sign up for an Amazon Web Services account, how to
provision the technical environment, and how to deploy ASP.NET Core 2.0 web
applications.

Furthermore, you have seen how to sign up for a Microsoft Azure account, how to
provision the technical environment, and how to deploy ASP.NET Core 2.0 web
applications using this powerful public cloud computing platform.

We then talked about Docker and the various deployment choices you have when
using this modern, increasingly adopted, and impactful technology. You are well
prepared for the future since Docker may well completely change our way of
thinking concerning deploying and managing applications.

In the next chapter, we will explain how to manage and supervise deployed web
applications efficiently, which is very important for a DevOps approach.

Managing and Supervising
ASP.NET Core 2.0 Applications
After having finished the development life cycle, we could have stopped there.
However, this last chapter has been added to underline the importance of a thorough
DevOps approach.

For now, we have only talked about the Development (Dev) side, but you should
also embrace the Operations (Ops) side in DevOps, which consists of managing
and supervising your applications during runtime.

This very important subject is often underestimated and sometimes, even worse,
completely left aside. Developers tend to think that it is not a part of their job. They
often say things like, But it works on my machine and This is your problem not mine.
This is also commonly called the Wall of confusion. Agile methodologies and
DevOps aim to avoid this kind of thinking, and this chapter will give you some
advice and examples on how to better address those issues within your ASP.NET
Core 2.0 applications.

The success of your application will be depending on how you can help IT
Operations understand what is happening during runtime. This means providing
them with means to manage and supervise applications quickly and efficiently.

Only then will you be able to provide high-quality applications with a low Mean
Time To Repair (MTTR) for bugs, which can make the whole difference to
becoming a future market leader within your specific markets.

Furthermore, it is easy for you to address these subjects when using ASP.NET Core
2.0, since, most of the time, you can take advantage of integrated or provided
features without any bigger code changes.

In this chapter, we will cover the following topics:

Logging in ASP.NET Core 2.0 applications
Monitoring ASP.NET Core 2.0 applications

Logging in ASP.NET Core 2.0
applications
In Chapter 10, Hosting and Deploying ASP.NET Core 2.0 Applications, we explained
how to deploy your ASP.NET Core 2.0 applications to Microsoft Azure, Amazon
Web Services, and Docker. Let's go further, and understand how to add logging and
monitoring in these environments, which is important to diagnose unexpected
behavior and errors.

First, some theoretical background, and then, some practical example. Are you ready
to learn what it takes to help IT Operations? Come on, it's the last chapter. Let's go!

Logging within applications consists of creating data to help understand what is
happening during runtime. Several types of messages can be logged, such as
information, warnings, and errors.

This data should then be persisted to log files, databases, SaaS solutions, or other
destinations. To improve application performance, it is recommended to allow IT
Operations to change the level of verbosity of the collected logging data during
application runtime. In production environments, only warnings and errors should be
logged for instance, while it makes perfect sense to enable logging everything during
development time to be more efficient and to better understand exactly what is
happening behind the scenes.

It is advisable to use a standard framework like ETW to structure and format logging
data, so that IT Operations can use their preferred monitoring tools to quickly and
easily read and diagnose error reasons. Famous logging frameworks such as Serilog
or Log4Net also support standard output formats, so you could also use them if you
like.

So, let's look at some concrete examples on how to handle logging for your
ASP.NET Core 2.0 applications in different environments such as on-premises, in
the public cloud, and in Docker.

In on-premises environments, logging data is stored in a log file most of the time. In
this case, the application needs to have write access to write to the log file, and it is

recommended to store all log files in a central folder called logs under the application
path.

In Microsoft Azure, you have basically three different solutions to handle logging
within your applications:

Standard file logging: This is the easiest method, without any code
modifications, but it is also the least powerful; you need to download files to
retrieve logging data for your application.
Azure Application Service diagnostic: This is the recommended solution, if
you have not more than a single instance for your Application Service, since
there are no log centralization features provided.
Azure Application Insights: This is the most integrated and most powerful
solution, which works across all application layers.

Amazon Web Services provides CloudWatch for logging and monitoring. The
provided logging mechanisms are very similar to Microsoft Azure. When you have
understood how to do it for Microsoft Azure, you will be able to apply your
knowledge to Amazon Web Services easily and quickly, as you will see in the given
examples.

For more information, you can visit the Amazon Web Services
CloudWatch website at https://aws.amazon.com/en/cloudwatch.

Docker does not provide any integrated monitoring or logging services like they
exist for Microsoft Azure or Amazon Web Services. This means that, for adding,
logging, and monitoring functionalities to your ASP.NET Core 2.0 applications in
Docker, you have to use a log file. Furthermore, you have to provide your own
centralized log recovery and analysis mechanisms to get consistent logging and
monitoring data.

However, since applications can be instantiated multiple times, this may not be the
best approach. Instead, you could also directly log to a centralized console, which
should be the most efficient and most appropriate solution in a Docker environment.

https://aws.amazon.com/en/cloudwatch

Logging in Microsoft Azure
Ok, now that you have seen several solutions for logging in different environments,
we will focus on Microsoft Azure. What happens if you take on the role of IT
Operations, who need to diagnose why an application is not working as expected in
Microsoft Azure? What are your choices, and what would be the best solution? That
is exactly what you will learn in this section.

If you remember, we have already talked about logging on an application level in Cha
pter 4, Basic Concepts of ASP.NET Core 2.0 - Part 1, of this book. There, we added
logging application events into a log file in a subfolder called logs of the application
folder. This folder needs to be synchronized and monitored for disk space usage
because, when it gets too big, it may as well become a failure reason by itself.

Furthermore, there are multiple sources of logs, since application logs and
environmental logs (IIS, Windows, SQL Server, and so on) are handled separately.
You have to combine all the information to get a holistic view of what is happening
behind the scenes. This is very complicated and very time-consuming.

As you can see, it requires a lot of manual work to read and analyze application logs
in this case. This becomes even more of an issue if you need to monitor and
supervise a high number of applications at the same time. Doing everything
manually is not really an option. We need to find a better solution.

Moreover, there are better and more integrated solutions in Microsoft Azure! If you
deploy your applications in Azure Application Services, for instance, you can use the
Azure Diagnostic Application Service. This feature can be enabled directly from the
portal. Additionally, application logs and environmental logs are automatically
centralized in a single place, which helps to find problems in a much quicker and
more straightforward way.

Enabling Microsoft Azure Application Service diagnostic is very easy, so let's see
how to do that now:

1. Open the Tic-Tac-Toe Web Project in Visual Studio 2017 and add a new
extension called AzureAppServiceDiagnosticExtension in the Extensions folder:

 public class AzureAppServiceDiagnosticExtension
 {
 public static void AddAzureWebAppDiagnostics(IConfiguration
 configuration, ILoggingBuilder loggingBuilder)
 {
 loggingBuilder.AddAzureWebAppDiagnostics();
 }
 }

2. Update the AddLoggingConfiguration method in the Configure Logging Extension,
and add a case for the newly added Azure Application Service Diagnostic
Extension from before:

 public static class ConfigureLoggingExtension
 {
 public static ILoggingBuilder AddLoggingConfiguration(this
 ILoggingBuilder loggingBuilder, IConfiguration configuration)
 {
 var loggingOptions = new Options.LoggingOptions();
 configuration.GetSection("Logging").Bind(loggingOptions);

 foreach (var provider in loggingOptions.Providers)
 {
 switch (provider.Name.ToLower())
 {
 case "console":
 {
 loggingBuilder.AddConsole();
 break;
 }
 case "file":
 {
 string filePath = System.IO.Path.Combine(
 System.IO.Directory.GetCurrentDirectory(), "logs",
 $"TicTacToe_{System.DateTime.Now.ToString(
 "ddMMyyHHmm")}.log");
 loggingBuilder.AddFile(filePath,
 (LogLevel)provider.LogLevel);
 break;
 }
 case "azureappservices":
 {
 AzureAppServiceDiagnosticExtension
 .AddAzureWebAppDiagnostics(configuration,
 loggingBuilder);
 break;
 }
 default:
 {
 break;
 }
 }
 }

 return loggingBuilder;
 }
 }

3. Update the appsettings.json configuration file and add a new provider for Azure
App Services:

 "Logging": {
 "Providers": [
 {
 "Name": "Console",
 "LogLevel": "1"
 },
 {
 "Name": "File",
 "LogLevel": "2"
 },
 {
 "Name": "azureappservices"
 }
],
 "MinimumLevel": 1
 }

4. Update the Program.cs file, change the WebHost builder configuration to enable
IIS integration, and add the logging configuration as follows:

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .CaptureStartupErrors(true)
 .UseStartup("TicTacToe")
 .PreferHostingUrls(true)
 .UseApplicationInsights()
 .UseIISIntegration()
 .ConfigureLogging((hostingcontext, logging) =>
 {
 logging.AddLoggingConfiguration(
 hostingcontext.Configuration);
 })
 .Build();

5. Publish the Tic-Tac-Toe Web Application to an Azure App Services; if you do
not know how to do that, you can look it up in Chapter 10, Hosting and
Deploying ASP.NET Core 2.0 Applications.

6. Go to the Microsoft Azure Portal Website, click on App Services in the menu,
select the Tic-Tac-Toe App Service you have deployed, and scroll down until
you see the Monitoring section:

7. In the Monitoring section, click on the Application Logging (Filesystem) On
button, select Verbose Level, enable Detailed error messages and Failed request
tracing, and then click on the Save button:

The Tic-Tac-Toe application will now start logging data into the Azure App Service
filesystem. However, this is only the first step. You will need to retrieve the logs to
be able to analyze them.

There are multiple ways of accessing the logs, depending on your specific needs.
Some of them are specified here:

Using FTP or FTPS to browse the logs folder
Configuring Azure Blob storage and then downloading the blob content, which
also has the benefit of centralizing logs for multiple services in a single place
Using a dedicated application to retrieve logs automatically

Fortunately, the community has already worked on an open source solution on
GitHub, called Azure Web Site Logs Browser Extension, which you can use. This
solution consists of adding an extension to your Azure Portal.

You will now see how to add the Azure Web Site Logs Browser Extension to the
Microsoft Azure Portal to analyze logs:

1. Go to the Microsoft Azure Portal Website, click on App Services in the menu,
select the Tic-Tac-Toe App Service you have deployed in the preceding
example, scroll down until you see the Development Tools section, click on
Extensions, and then on the Add button:

2. Select and install Azure Web Site Logs Browser Extension published by Amit
Apple:

3. After the installation has been finished, the extension will be added to the active
extensions for your Tic-Tac-Toe App Service:

4. Click on Azure Web Site Logs Browser Extension and you will see an overview
with the extension name, its author, and version number, as well as other
additional information. Click on the Browse button:

5. A new browser window will be opened automatically, where you can see
different log file sources; click on File System - Application Logs:

6. Select a log file with the diagnostic data you need to analyze:

7. Read and scroll through the color-coded log file content. You will automatically
see generated log entries, as well as log entries you have added by yourself in
the preceding chapters:

Logging in Amazon Web Services
If you are using Amazon Web Services, then adding logging to your ASP.NET Core
2.0 application will be very straightforward for you. You just have to write your
application logs to the console, and the applications, which are deployed in Amazon
Web Services Elastic Beanstalk, will automatically store their logs in Amazon Web
Services CloudWatch. You will then be able to use the CloudWatch dashboard to
analyze what is happening. This is comparable to Application Insights and its
dashboard, which you have seen in the preceding example.

You will now learn how to access logs for applications you have deployed to the
Amazon Web Services Elastic Beanstalk:

1. Publish Tic-Tac-Toe Web Application to Amazon Web Services Elastic
Beanstalk; if you do not know how to do that, you can look it up in Chapter 10,
Hosting and Deploying ASP.NET Core 2.0 Applications.

2. Start the application, go to AWS Management Console, enter Beanstalk in the
AWS Services textbox, and click on the displayed link; you will be redirected to
the Elastic Beanstalk welcome page:

3. On the Elastic Beanstalk welcome page, select the TicTacToe application you
deployed in the preceding step, as shown here:

4. Click on Logs in the left menu and click on Request Logs | Last 100 Lines; you
can now download the log files you need to analyze:

5. Download a log file and check its content:

You have seen how to handle logging in various environments, on-premises and in
the cloud; the next section will introduce you to monitoring, and how it can aid you
to analyze problems in real time.

Monitoring ASP.NET Core 2.0
applications
In the previous section, you saw how to generate and analyze application logs for
your ASP.NET Core 2.0 web applications, which will help you better understand
unexpected behavior and application bugs. This will help IT Operations after an
event has occurred to trace the different steps until the root cause of a problem has
been found.

However, it will not help them to constantly monitor and supervise applications,
since using logging mechanisms for this case will result in bad performances and
negative overall application impacts. Logging is not the right solution for continuous
monitoring!

The goal of monitoring is to analyze and supervise a large number of application
metrics in real time, and to automatically detect application anomalies. The metrics
need to have a very low message footprint for this to work efficiently.

The most commonly known monitoring frameworks for ASP.NET Core 2.0 are
listed here:

EventSource with ETW, which is very fast, and strongly typed, was introduced
with .NET 4 and works only on Windows
DiagnosticSource, which is very similar to EventSource, works cross-platform,
like EventSource with ETW for Windows and like LTTNG for Linux

For more information on ETW, go to the following website:
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363668(v=vs.85
).aspx

For more information on LTTNG, go to the following website:
http://lttng.org

On top of these frameworks, most public cloud providers supply their own
monitoring solutions. For Microsoft Azure, it is recommended to use Azure
Application Insights for instance, while you should use CloudWatch for Amazon
Web Services. These two monitoring solutions are fully SaaS and much more

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363668(v=vs.85).aspx
http://lttng.org

integrated with the respective public cloud provider portals.

Monitoring on-premises and in
Docker
There are no standard monitoring solutions for on-premises and Docker
environments as such, but there are some community-approved monitoring
frameworks, such as EventSource or DiagnosticSource, which you can use to
implement your own solutions.

Since these frameworks respect market standards such as ETW, IT Operations will
be able to connect your ASP.NET Core 2.0 web applications using their standard
monitoring tools, and they will like that very much!

An example would be Perfmon on Windows, which can receive ETW events and
generate diagrams for monitoring purposes.

When using DiagnosticSource, you start by creating a listener. This listener receives
application events and provides event names and parameters. The easiest way to
create a listener is to create a POCO class, which contains methods that needs to be
decorated with the [DiagnosticName] decorator, and is designed to accept parameters of
the appropriate types.

The following example explains how to use DiagnosticSource to add monitoring to
your ASP.NET Core 2.0 applications in on-premises and Docker environments:

1. Open Tic-Tac-Toe Web Project in Visual Studio 2017, and add a new folder
called Monitoring; in this folder, add a new class called
ApplicationDiagnosticListener as follows:

 public class ApplicationDiagnosticListener
 {
 [DiagnosticName("TicTacToe.MiddlewareStarting")]
 public virtual void OnMiddlewareStarting(
 HttpContext httpContext)
 {
 Console.WriteLine($"TicTacToe Middleware Starting,
 path: {httpContext.Request.Path}");
 }

 [DiagnosticName("TicTacToe.NewUserRegistration")]
 public virtual void NewUserRegistration(string name)
 {

 Console.WriteLine($"New User Registration {name}");
 }
 }

2. Update the Configure method in the Startup class, add a DiagnosticListener, and
subscribe to the ApplicationDiagnosticListener as shown here:

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, DiagnosticListener diagnosticListener)
 {
 var listener = new ApplicationDiagnosticListener();
 diagnosticListener.SubscribeWithAdapter(listener);
 ...
 }

3. Update Communication Middleware, add a new private member called
_diagnosticSource, and update the constructor as follows:

 private readonly RequestDelegate _next;
 private DiagnosticSource _diagnosticSource;
 public CommunicationMiddleware(RequestDelegate next,
 DiagnosticSource diagnosticSource)
 {
 _next = next;
 _diagnosticSource = diagnosticSource;
 }

4. Update the Invoke method in Communication Middleware, and write an event if
the diagnostic source is enabled:

 public async Task Invoke(HttpContext context)
 {
 if (context.WebSockets.IsWebSocketRequest)
 {
 if (_diagnosticSource.IsEnabled(
 "TicTacToe.MiddlewareStarting"))
 {
 _diagnosticSource.Write("TicTacToe.MiddlewareStarting",
 new
 {
 httpContext = context
 });
 }
 ...

5. Change the debugging settings in Visual Studio 2017 and set the project and
emulator to TicTacToe:

6. Start the application in Debug mode by pressing F5. A console will be opened
automatically; register a new user and check the console output; you will see
the TicTacToe Middleware Starting message, as shown here:

As already mentioned, sending logging and monitoring data to the console is a
possible solution for on-premises environments, and a recommended solution for
Docker environments.

Monitoring in Microsoft Azure
Microsoft Azure provides an integrated solution called Azure Application Insights,
which allows IT Operations to monitor applications, resources, and services in real
time. It works for the whole Azure subscription, and includes dashboards and
diagrams for quick access to analytic data.

The following diagram illustrates some of the Azure Application Insights features:

Let's use Application Insights in an easy-to-understand example; for that, you will
start by creating a new Azure Application Insights resource in Microsoft Azure with
its corresponding API key:

1. Go to Microsoft Azure Portal Website, click on App Services in the menu,
select the Tic-Tac-Toe App Service you have deployed and configured in the
preceding example, scroll down until you see the Monitoring section, click on
Application Insights, fill out all the fields, and click on the Ok button. A new
Application Insights Resource will be created for you:

2. Click on Monitor in the menu. A new tab will be displayed. Go to the Solution
section and choose Application Insights, then select the created Application
Insights Resource:

3. The Application Insights Resource tab will be displayed; scroll down until you
see the Configure section, and then click on API Access:

4. Click on Create API key to be able to generate a key, which will be used for the
Tic-Tac-Toe sample application:

5. Configure the API key access rights (Read telemetry, Write annotations,
Authenticate SDK control channel) and give it a meaningful name:

You have now finished the creation and configuration of the Application Insights
resource in Microsoft Azure. Visual Studio 2017 contains some advanced built-in
features that will allow you to connect your ASP.NET Core 2.0 application directly
from within the IDE.

In the next steps, you will configure the ASP.NET Core 2.0 web application for
Azure Application Insights:

1. Open Tic-Tac-Toe Web Project, click on Project in the top menu, and select
Add Application Insights Telemetry...:

2. The Application Insights Configuration page will be displayed; click on the
Start Free button:

3. Enter your account and subscription details, select a resource, and click on the
Register button:

4. Republish the Tic-Tac-Toe Web Application to the Microsoft Azure

AppService so that the Application Insights configurations are applied.
5. Go to Microsoft Azure Portal Website, click on Monitor in the menu, scroll

down to the Solutions section and click on Application Insights, and then select
the newly created Application Insights Resource.

6. The Application Insights Dashboard will be displayed; it serves to get a global
overview, as well as to dive deep into the different monitoring areas:

7. Click on Search to see the application flow; here, you can see that the error has
occurred during the user registration process:

You may have already seen these errors in Chapter 10, Hosting and Deploying
ASP.NET Core 2.0 Applications, after having deployed the Tic-Tac-Toe application
to either Microsoft Azure or Amazon Web Services, as well as in the preceding
logging section in this chapter. Everything is working locally and in Docker, but
when you deploy it to the public cloud, it is not working anymore. Very strange! We
cannot wait any longer; it really needs to be fixed!

We will now analyze the problem in more detail, and try to understand what needs to
be done to solve it:

1. In Azure Application Insights, you can clearly see that there is a problem with
the user registration, more specifically, a 404 Not Found HTTP response.

2. When looking into the log file, as explained in the preceding section, you can
see that the UserRegistrationEmail View in the EmailTemplates folder cannot be
found, which then leads to additional errors:

3. Go to the Microsoft Azure Portal Website, click on App Services in the menu,
select the Tic-Tac-Toe App Service you have deployed and configured in the
preceding example, scroll down until you see the Development Tools section,
click on App Service Editor (Preview), and then click on the Go link:

4. A new window with the App Service Editor page will automatically be opened;
click on the Search button and search for the EmailTemplates folder, it cannot be
found because all views are precompiled into a single DLL called
TicTacToe.PrecompiledViews.dll during the publishing process:

5. Apply a temporary fix for this problem by deactivating the pre-compilation
during the publish process, open the .csproj file of the Tic-Tac-Toe Web
Project, and add the following configuration elements in the PropertyGroup
section:

 <PropertyGroup>
 ...
 <PreserveCompilationContext>true</PreserveCompilationContext>
 <MvcRazorCompileOnPublish>false</MvcRazorCompileOnPublish>
 </PropertyGroup>

Note that this is only a temporary fix for example purposes. You should
reactivate pre-compilation and target the precompiled views in your
code for a more industrialized and production-ready solution.

6. Republish the Tic-Tac-Toe Web Application to the Microsoft Azure
AppService. Everything should now be working, including the user registration.

Note that you have to register a completely new user with a strong
password such as Azerty1234!, for example, otherwise you might get
additional errors if you don't. The application is missing some more
advanced error handling due to lack of space within the book. Keep in
mind that it was only given to better understand all the ASP.NET Core
2.0 concepts. You can, however, use the sample application as a base
and then refine it as you like, and add the missing error handling.

You have seen how to configure your ASP.NET Core 2.0 web applications and are
able to monitor them by using Azure Application Insights. You have even identified
a problem during the user registration of the application. You have analyzed the
logging and monitoring data, and you were able to solve the problem.

This works exceptionally well with .NET Core code, but, for now, you cannot see if
any errors occur in the JavaScript parts of your applications. Since modern

applications include a large number of JavaScript code, it would be great if you were
able to monitor these parts also, right? Well, you can do that, you just have to adapt
the code a little bit.

Let's see how to adapt the code and be able to monitor JavaScript application flows:

1. Start Visual Studio 2017 and open the Tic-Tac-Toe Web Project, update the
_ViewImports.cshtml file in the Views folder, and add the Application Insights
JavaScript snippet at the bottom of the file as follows:

 @inject Microsoft.ApplicationInsights.AspNetCore
 .JavaScriptSnippet JavaScriptSnippet

2. Update the Layout Page and Mobile Layout Page, and add the following line in
the head section of the two pages:

 @Html.Raw(JavaScriptSnippet.FullScript)

3. Update the Startup class and register the Application Insights service as follows:

 services.AddApplicationInsightsTelemetry(_configuration);

4. Republish the Tic-Tac-Toe Web Application to the Microsoft Azure
AppService so that the new Application Insights configuration is applied.

5. Start the application and open the Application Insights Dashboard in
the Microsoft Azure Portal Website, click on Search, and then click on Filters
and select Request only, deselecting all the other event types:

Great, you are able to constantly monitor your entire application, whether it be on the
JavaScript side or on the .NET Core side, which will turn out to be quite useful in
case of incorrect behavior.

In the last step, you will learn how to add and monitor custom metrics, which will
allow you to trace business metrics in your applications:

1. Open the Tic-Tac-Toe Web Project and add a new service named
AzureApplicationInsightsMonitoringService in the Services folder:

 public class AzureApplicationInsightMonitoringService
 {
 readonly TelemetryClient _telemetryClient =
 new TelemetryClient();

 public void TrackEvent(string eventName, TimeSpan elapsed,
 IDictionary<string, string> properties = null)
 {
 var telemetry = new EventTelemetry(eventName);

 telemetry.Metrics.Add("Elapsed", elapsed.TotalMilliseconds);

 if (properties != null)
 {
 foreach (var property in properties)
 {
 telemetry.Properties.Add(property.Key, property.Value);
 }

 }

 _telemetryClient.TrackEvent(telemetry);
 }
 }

2. Extract the interface from the Azure Application Insights Monitoring Service
and call it IMonitoringService.

3. Add a new option called MonitoringOptions in the Options folder:

 public class MonitoringOptions
 {
 public string MonitoringType { get; set; }
 public string MonitoringSetting { get; set; }
 }

4. Update the Configure method in the Startup class, and register the Azure
Application Insights Monitoring Service if it has been configured in the
appsettings.json configuration file:

 ...
 services.AddApplicationInsightsTelemetry(_configuration);
 var section = _configuration.GetSection("Monitoring");
 var monitoringOptions = new MonitoringOptions();
 section.Bind(monitoringOptions);
 services.AddSingleton(monitoringOptions);

 if (monitoringOptions.MonitoringType ==
 "azureapplicationinsights")
 {
 services.AddSingleton<IMonitoringService,
 AzureApplicationInsightsMonitoringService>();
 }

5. Update UserService and add a new private member called _telemetryClient, and
then update the constructor to initialize the private member as follows:

 ...
 private readonly IMonitoringService _telemetryClient;
 public UserService(RoleManager<RoleModel> roleManager,
 ApplicationUserManager userManager, ILogger<UserService>
 logger, SignInManager<UserModel> signInManager,
 IMonitoringService telemetryClient)
 {
 ...
 _telemetryClient = telemetryClient;
 ...
 }

6. Update the RegisterUser method in the UserService to use the TrackEvent method,
and then add a custom metric called RegisterUser as follows:

 ...

 finally
 {
 stopwatch.Stop();
 _telemetryClient.TrackEvent("RegisterUser", stopwatch.Elapsed);
 _logger.LogTrace($"Start register user {userModel.Email}
 finished at {DateTime.Now} - elapsed
 {stopwatch.Elapsed.TotalSeconds} second(s)");
 }
 ...

7. Update the appsettings.json configuration file, add a new Monitoring section, and
configure it for Azure Application Insights:

 "Monitoring": {
 "MonitoringType": "azureapplicationinsights",
 "MonitoringSettings": ""
 }

8. Republish the Tic-Tac-Toe Web Application to the Microsoft Azure
AppService so that the new Application Insights configurations are applied.

9. Start the application and open the Application Insights Dashboard on the
Microsoft Azure Portal Website, click on Search and enter RegisterUser as a
search term; you will only see the custom RegisterUser business metric now:

Monitoring in Amazon Web
Services
Just like Microsoft Azure, Amazon Web Services provides an integrated solution,
which allows IT Operations to monitor applications, resources, and services in real
time. In Amazon Web Services, it is called CloudWatch. It provides nearly the same
features as Applications Insights, meaning, it works for the entire AWS subscription
and includes dashboards and diagrams for quick access to analytic data.

The following example illustrates how to use Amazon Web Services CloudWatch to
monitor generic metrics and custom metrics so that you can learn how to do it for
your own needs:

1. Open the Tic-Tac-Toe Web Project and download and install the Amazon Web
Services SDK for .NET - Core Runtime NuGet package called AWSSDK.Core, as
well as the Amazon Web ServicesCloudWatch NuGet package called
AWSSDK.CloudWatch.

2. Add a new service called AmazonWebServicesMonitoringService in the Services
folder, make it inherit the IMonitoringService interface, and implement the Track
method with the AWS specific code, as shown in the following piece of code:

 public class AmazonWebServicesMonitoringService :
 IMonitoringService
 {
 readonly AmazonCloudWatchClient _telemetryClient =
 new AmazonCloudWatchClient();

 public void TrackEvent(string eventName, TimeSpan elapsed,
 IDictionary<string, string> properties = null)
 {
 var dimension = new Dimension
 {
 Name = eventName,
 Value = eventName
 };

 var metric1 = new MetricDatum
 {
 Dimensions = new List<Dimension> { dimension },
 MetricName = eventName,
 StatisticValues = new StatisticSet(),
 Timestamp = DateTime.Today,
 Unit = StandardUnit.Count
 };

 if (properties?.ContainsKey("value") == true)
 metric1.Value = long.Parse(properties["value"]);
 else
 metric1.Value = 1;

 var request = new PutMetricDataRequest
 {
 MetricData = new List<MetricDatum>() { metric1 },
 Namespace = eventName
 };

 _telemetryClient.PutMetricDataAsync(request).Wait();
 }
 }

3. Update the Configure method in the Startup class, and register the Amazon Web
Services Cloud Watch Monitoring Service if it has been configured in the
appsettings.json configuration file:

 ...
 if (monitoringOptions.MonitoringType ==
 "azureapplicationinsights")
 {
 services.AddSingleton<IMonitoringService,
 AzureApplicationInsightsMonitoringService>();
 }
 else if (monitoringOptions.MonitoringType ==
 "amazonwebservicescloudwatch")
 {
 services.AddSingleton<IMonitoringService,
 AmazonWebServicesMonitoringService>();
 }

4. Update the Monitoring section in the appsettings.json configuration file, and
configure it for Amazon Web Services CloudWatch:

 "Monitoring": {
 "MonitoringType": "amazonwebservicescloudwatch",
 "MonitoringSettings": ""
 }

5. Publish the Tic-Tac-Toe Web Application to Amazon Web Services Beanstalk,
so that the new Amazon Web Services CloudWatch configurations are applied;
if you do not know how to do that, you can look it up in Chapter 10, Hosting and
Deploying ASP.NET Core 2.0 Applications.

6. Start the application. Go to the AWS Management Console, enter CloudWatch in
the AWS services textbox, and click on the displayed link; you will be
redirected to the AWS CloudWatch Welcome Page:

7. On the CloudWatch welcome page, click on the TicTacToe application:

8. Click on an alarm to get more specific details about it:

9. Return to the CloudWatch welcome page, and enter RegisterUser as a search
term in the textbox, then click on Browse Metrics:

10. You will see a diagram, as shown here, with the custom RegisterUser business
metric:

Summary
In this chapter, we discussed how to manage and supervise your ASP.NET Core 2.0
web applications to help IT Operations to better understand what is happening during
runtime before and after errors occur.

We talked about the concepts of logging, and how it can help reduce the time to
understand and fix bugs. We illustrated different logging solutions on-premises, in
Microsoft Azure, in Amazon Web Services, and in Docker.

You experienced how to configure logging in a Microsoft Azure environment using
Azure AppServices and Azure Application Service Diagnostic, as well as the Azure
Web Site Log Browser Extension for log file analysis in a detailed example.

You then saw how to do the same in Amazon Web Services by accessing and
downloading application logs using Amazon Web Services CloudWatch.

We then introduced the concepts of monitoring and explained how to add monitoring
in on-premises and Docker environments.

You configured Azure Application insights to monitor your ASP.NET Core 2.0 web
applications in real time. You were even able to understand and solve the mystery
behind the 404 Not Found problem.

In the last step, we showed you how to work with monitoring in an Amazon Web
Services environment using Amazon Web Services CloudWatch.

In the next chapter, we will…well, there is no next chapter. You have seen
everything this book has to offer. We hope that you liked it and that you found some
value in understanding and assimilating the numerous examples we have given.

It is now up to you to make your own experiences and to further improve your
ASP.NET Core 2.0 skills.

You can now start your journey as a veteran, as Nicolas Clerc (Cloud Architect,
Microsoft France) has stated in his Foreword at the beginning of this book.

Good luck with that, and thank you for having taken the time to read the different
chapters, and for having stayed with us for so long!

	Preface
	Once upon a time, NGWS and the .NET Framework
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	What is ASP.NET Core 2.0?
	ASP.NET Core 2.0 features
	Cross-platform support
	Microservice architecture
	Working with Docker and containers
	Performance and scalability
	Side-by-side deployments
	Technology restrictions
	When to choose ASP.NET Core 2.0
	Summary

	Setting Up the Environment
	Visual Studio 2017 as a development environment
	How to install Visual Studio 2017 Community Edition
	First steps with Visual Studio 2017
	Creating your first ASP.NET Core 2.0 application in Visual Studio 2017
	Creating your first ASP.NET Core 2.0 application via the command line

	Visual Studio Code as a development environment
	How to install Visual Studio Code on Linux
	Creating your first ASP.NET Core 2.0 application in Visual Studio Code
	Creating your first ASP.NET Core 2.0 application in Linux

	Summary

	Creating a Continuous Integration Pipeline in VSTS
	Continuous integration, continuous deployment, and build and release pipelines
	Using VSTS for continuous integration and continuous deployment
	Creating a free VSTS subscription and your first VSTS project

	Organizing your work via work items
	Using Git as a version control system
	Using feature branches
	Merging changes and resolving conflicts

	Creating a VSTS build pipeline
	Creating a VSTS release pipeline
	Summary

	Basic Concepts of ASP.NET Core 2.0 - Part 1
	Building the Tic-Tac-Toe game
	Conceiving and implementing your first Tic-Tac-Toe feature

	Targeting different .NET Framework versions in the .csproj files of your projects
	Using the Microsoft.AspNetCore.All metapackage
	Working with the Program class
	Working with the Startup class
	Preparing the basic project structure
	Creating the Tic-Tac-Toe home page

	Giving your web pages a more modern look by using Bower and layout pages
	Creating the Tic-Tac-Toe user registration page

	Using dependency injection for encouraging loose coupling within your applications
	Creating the Tic-Tac-Toe user service

	Working with middlewares
	Working with static files
	Using routing, URL redirection, and URL rewriting
	Adding error handling to your applications
	Summary

	Basic Concepts of ASP.NET Core 2.0 - Part 2
	Client-side development using JavaScript
	Optimizing your web applications and using bundling and minification
	Working with WebSockets for real-time communication scenarios
	Taking advantage of session and user cache management
	Applying globalization and localization for multi-lingual user interfaces
	Configuring your applications and services
	Using logging
	Implementing advanced dependency injection concepts
	Building once and running on multiple environments
	Summary

	Creating MVC Applications
	Understanding the Model View Controller pattern
	Models
	Views
	Controllers
	Unit tests
	Integration tests

	Creating dedicated layouts for multiple devices
	Using View Pages, Partial Views, View Components, and Tag Helpers
	Using View Pages
	Using Partial Views
	Using View Components
	Using Tag Helpers

	Dividing web applications into multiple Areas
	Applying advanced concepts
	Using view engines
	Providing better quality by creating unit tests and integration tests
	Adding unit tests
	Adding integration tests

	Summary

	Creating Web API Applications
	Applying Web API concepts and best practices
	Building RPC-style Web APIs
	Building REST-style Web APIs
	Building HATEOAS-style Web APIs

	Summary

	Accessing Data using Entity Framework Core 2
	Getting started with Entity Framework Core 2
	Establishing a connection
	Defining primary keys and foreign keys via Data Annotations
	Using Entity Framework Core 2 Migrations
	Creating, reading, updating, and deleting data

	Summary

	Securing ASP.NET Core 2.0 Applications
	Implementing authentication
	Adding basic user forms authentication
	Adding external provider authentication
	Working with two-factor authentication
	Adding forgotten password and password reset mechanisms
	Implementing authorization

	Summary

	Hosting and Deploying ASP.NET Core 2.0 Applications
	Hosting applications
	Deploying applications in Amazon Web Services
	Deploying applications in AWS Elastic Beanstalk

	Deploying applications in Microsoft Azure
	Deploying applications in Microsoft Azure App Services

	Deploying applications into Docker containers
	Deploying applications into Docker containers using Docker for Windows and Docker Enterprise Edition
	Publishing images to the Docker Hub

	Summary

	Managing and Supervising ASP.NET Core 2.0 Applications
	Logging in ASP.NET Core 2.0 applications
	Logging in Microsoft Azure
	Logging in Amazon Web Services

	Monitoring ASP.NET Core 2.0 applications
	Monitoring on-premises and in Docker
	Monitoring in Microsoft Azure
	Monitoring in Amazon Web Services

	Summary

