Foreword by:

Nicolas Clerc
Cloud Architect, Microsoft France

L earning
ASP.NET Core 2.0

Build modern web apps with ASPNET Core 2.0, MVC,
and EF Core 2

Ll

Learning ASP.NET Core 2.0

Build modern web apps with ASP.NET Core 2.0, MVC, and EF Core 2

Jason De Oliveira
Michel Bruchet

Packt

BIRMINGHAM - MUMBAI

Learning ASP.NET Core 2.0

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2017

Production reference: 1111217

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-663-8

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Jason De Oliveira Copy Editor

Michel Bruchet Safis Editing
Reviewer Project Coordinator
Alvin Ashcraft Prajakta Naik
Commissioning Editor Proofreader

Merint Matthew

Safis Editing

Acquisition Editor

Chaitanya Nair

Indexer

Aishwarya Gangawane

Content Development Editor

Graphics

Akshada Iyer Jason Monteiro
Technical Editor Production Coordinator
Abhishek Sharma Deepika Naik

Foreword

If I find the right solution, you have to offer me a coffee/—An informal discussion
between a software development veteran and a newbie around the coffee machine.

Working as a professional in software development for over 20 years, I have been
lucky to be an actor and user of .NET technologies since the early beginnings. While
working on many software development projects as tech-lead and application
architect, I was also one of the first MSDN seminar and DevDays speakers in France
and Switzerland, teaching and explaining the amazing new features of C# Beta 1 a
long time ago.

I still remember the first French edition of the Professional Developer Conference
(PDC) in 2001, where Microsoft's evangelists showed the first public demo of .NET,
C#, and ASP.NET (it was Web Forms era). Every attendee, who were mostly
developers, writing rich VB6 client applications or web applications using ASP,
VBScript, or Visual InterDev, had discovered how easy it was to write .NET
applications using the already well-known paradigms from VB6. However, they also
learned how professional tooling offered by .NET and Visual Studio together with
modern languages such as C, C++, or Java could lead to more productivity and
efficiency. It was a big success.

As aresult, I spent a lot of time learning and acquiring deep knowledge of .NET, the
CLR, and other CLR languages (C#, VB.Net, and C++/CLI) either through
professional projects, personal applications, blog posts, or by speaking about various
subjects during technical events and conferences.

At that time, high-quality technical information was concentrated on some reference
websites (with special tributes to the fabulous Dotnet Guru, TechHeadBrother).

Since then, the internet and its major application—the web—became essential to the
world economy. Then, cloud computing appeared. It allowed exceptional growth,
faster than ever, which not only transformed software hosting and development
practices, but also business models. Time-To-Market became very important, which
meant that the development of applications and services had to be done in an
extremely short and fast time scale to have an advantage over the competition.

Regardless of the size of the project, it became inevitable to envision continuous
delivery, continuous integration, test automation, and build pipelines. Topics such as
Scale-out, microservices and clouds patterns, operating system agnostic
technologies, laaS/PaaS/SaaS, API cultures, and other trendy subjects had to be
considered and integrated in application architecture and design decisions.

Today, choosing a development technology is not guided by the hosting operating
system anymore, but instead by the matching of application requirements and the
richness of the technical ecosystem around that technology (developer community,
additional software packages, compatibility and interoperability with other
technologies and so on).

NET succeeded in its evolution (or maybe even its revolution?) mainly because it
was adapted to match these new requirements and development processes. It
transformed from an open and standardized platform (since 2002: ECMA-334 and
ECMA-335, with the shared source CLI 'Rotor' implementation, then ISO-23270
since 2003) into a new multi-platform technology. With .NET Core and ASP.NET
Core, it reached even farther by fully embracing the collaborative open source
development concepts and methodologies. This allows .NET to remain on the top list
of 'first-class citizen' technologies, seamlessly adapted to cloud providers (Microsoft
Azure, Amazon AWS and so on).

The fast-changing characteristics of development technologies entails to quickly
identify trustable information sources and reliable learning channels for newbies and
even for more experienced developers. This continuous knowledge quest is one of
the most interesting and inspiring tasks of our job.

The internet contains such a vast quantity of information with more or less
documented code samples (from few lines to thousand lines of code) and varying
quality, that finding the right information to a problem is a challenge by itself.

As the saying goes: too much information, kills the information. If you need a guided
journey for a technology, ranging from the starting point to the target line, the
choices can be very limited or lost in a crowd of information.

Being able to trust professionals who make their professional experiences accessible
through a didactic book is an awesome gain of time and productivity, which will also
increase the quality of your future code.

During these past few years, | had the opportunity to collaborate with Jason and
Michel at multiple times. Whether it be in the Microsoft Most Valuable Professional
(MVP) and Regional Director (RD) worldwide community, or through joint
professional projects.

I feel perfectly safe letting you start a fabulous journey with ASP.NET Core 2.0 and
this book.

Good reading ... and you will no longer have to thank veterans with caffeinated
drinks anymore ... you will become a veteran yourself!

Nicolas Clerc
Cloud Architect, Microsoft France

About the Authors

Jason De Oliveira works as a CTO for MEGA International (nttp://www.nega.com), @
software company in Paris (France), providing modeling tools for business
transformation, enterprise architecture, and enterprise governance, risk, and
compliance management. He is an experienced manager and senior solutions
architect, with high skills in software architecture and enterprise architecture.

He loves sharing his knowledge and experience via his blog, speaking at
conferences, writing technical books, writing articles in the technical press, giving
software courses as MCT, and coaching co-workers in his company. He frequently
collaborates with Microsoft and can often be found at the Microsoft Technology
Center (MTC) in Paris.

Microsoft has awarded him for more than 6 years with the Microsoft® Most
Valuable Professional (MVP C#/.NET) award for his numerous contributions to the
Microsoft community. Microsoft seeks to recognize the best and brightest from
technology communities around the world with the MVP Award. These exceptional
and highly respected individuals come from more than 90 countries, serving their
local online and offline communities and having an impact worldwide.

Feel free to contact him via his blog if you need any technical assistance or want to
talk about technical subjects (http ://www.jasondeoliveira. com).

Jason has worked on the following books:

.NET 4.5 Expert Programming Cookbook (English)

WCF 4.5 Multi-tier Services Development with LINQ to Entities (English)
.NET 4.5 Parallel Extensions Cookbook (English)

WCF Multi-layer Services Development with Entity Framework (English)

Visual Studio 2013: Concevoir, développer et gérer des projets Web, les gérer
avec TF'S 2013 (French)

http://www.mega.com/
http://www.jasondeoliveira.com

I would like to thank my lovely wife, Orianne, and my beautiful daughters, Julia and
Léonie, for supporting me in my work and for accepting long days and short nights
during the week, and, sometimes, even during the weekend. My life would not be the
same without them!

Michel Bruchet works as an application architect for MEGA International (nttp://ww
w.mega.com), @ Software company in Paris (France), providing modeling tools for
business transformation, enterprise architecture, and enterprise governance, risk, and
compliance management. He has more than 20 years of experience as a senior
architect, working on complex projects in IT and development departments.

Michel has published several publications on the internet (SlideShare, LinkedIn, and
more). He has worked for big companies in France, such as Sanofi, Pierre et
Vacances — Center Parcs, Banque de France, BPCE, and BNP.

He 1s also the main driving force and mastermind behind the Ingenius Solution,
which provides efficient e-business solutions to customers around the world.

I would like to thank my family for accepting that I had to work hard and, sometimes,
until late into the night in my free time to write this book!

http://www.mega.com/

About the Reviewer

Alvin Ashcraft is a software developer living near Philadelphia, PA. He has
dedicated his 22-year career to building software with C#, Visual Studio, WPF,
ASP.NET, HTML/JavaScript, UWP, and Xamarin apps and SQL Server. He has
been awarded as a Microsoft MVP nine times; once for Software Architecture, seven
times for C# and Visual Studio & Tools, and for Windows Dev in 2018-2019. You
can read his daily links for .NET developers on his blog at a1vinashcraft.com and
UWP App Tips blog at www.uwpapp. tips.

He currently works as a Principal Software Engineer for Allscripts, developing
clinical healthcare software. He has previously been employed with several large
software companies, including Oracle, Genzeon, and Corporation Service Company.
There, he helped create software solutions for financial, business, and healthcare
organizations using Microsoft platforms and solutions.

He was a technical reviewer for NuGet 2 Essentials and Mastering ASP.NET Core
2.0 by Packt.

I would like to thank my wonderful wife, Stelene, and our three amazing daughters
for their support. They were very understanding while I read and reviewed these
chapters on evenings and weekends to help deliver a useful, high-quality book for the
ASP.NET Core developers.

https://www.alvinashcraft.com/
http://www.uwpapp.tips/

www.PacktPub.com

For support files and downloads related to your book, please visit www. packtpub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packtpub. com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at service@packtpub.com for more details.

At www.Packtrub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

. Mapt

www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1788476638.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving
our products!

https://www.amazon.com/dp/1788476638

Table of Contents

Preface
Once upon a time, NGWS and the .NET Framework
What this book covers
What you need for this book
Who this book is for
Conventions

Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions
1. what is ASP.NET Core 2.02
ASP.NET Core 2.0 features
Cross-platform support
Microservice architecture
Working with Docker and containers
Performance and scalability
Side-by-side deployments
Technology restrictions
When to choose ASP.NET Core 2.0
Summary
2. Setting Up the Environment

Visual Studio 2017 as a development environment
How to install Visual Studio 2017 Community Edition

First steps with Visual Studio 2017
Creating your first ASP.NET Core 2.0 application in Visual Studio 2017
Creating your first ASP.NET Core 2.0 application via the command line

Visual Studio Code as a development environment
How to install Visual Studio Code on Linux

Creating your first ASP.NET Core 2.0 application in Visual Studio Code
Creating your first ASP.NET Core 2.0 application in Linux
Summary

3. Creating a Continuous Integration Pipeline in VSTS

Continuous integration, continuous deployment, and build and release pipeline
S

Using VSTS for continuous integration and continuous deployment
Creating a free VSTS subscription and your first VSTS project

Organizing your work via work items

Using Git as a version control system
Using feature branches
Merging changes and resolving conflicts
Creating a VSTS build pipeline
Creating a VSTS release pipeline
Summary

4. Basic Concepts of ASP.NET Core 2.0 - Part 1
Building the Tic-Tac-Toe game

Conceiving and implementing your first Tic-Tac-Toe feature
Targeting different .NET Framework versions in the .csproj files of your proj
ects
Using the Microsoft.AspNetCore.All metapackage

Working with the Program class
Working with the Startup class

Preparing the basic project structure

Creating the Tic-Tac-Toe home page
Giving your web pages a more modern look by using Bower and layout pages

Creating the Tic-Tac-Toe user registration page
Using dependency injection for encouraging loose coupling within your applica
tions

Creating the Tic-Tac-Toe user service
Working with middlewares
Working with static files
Using routing, URL redirection, and URL rewriting
Adding error handling to your applications
Summary
5. Basic Concepts of ASP.NET Core 2.0 - Part 2
Client-side development using JavaScript
Optimizing your web applications and using bundling and minification
Working with WebSockets for real-time communication scenarios
Taking advantage of session and user cache management
Applying globalization and localization for multi-lingual user interfaces
Configuring your applications and services
Using logging
Implementing advanced dependency injection concepts
Building once and running on multiple environments
Summary

6. Creating MVC Applications
Understanding the Model View Controller pattern

Models
Views

Controllers

Unit tests
Integration tests

Creating dedicated layouts for multiple devices
Using View Pages, Partial Views, View Components, and Tag Helpers

Using View Pages
Using Partial Views
Using View Components
Using Tag Helpers

Dividing web applications into multiple Areas
Applying advanced concepts

Using view engines
Providing better quality by creating unit tests and integration tests

Adding unit tests
Adding integration tests
Summary

7. Creating Web API Applications
Applying Web API concepts and best practices

Building RPC-style Web APIs

Building REST-style Web APIs

Building HATEOAS-style Web APIs
Summary

8. Accessing Data using Entity Framework Core 2
Getting started with Entity Framework Core 2

Establishing a connection
Defining primary keys and foreign keys via Data Annotations
Using Entity Framework Core 2 Migrations
Creating, reading, updating, and deleting data
Summary

9. Securing ASP.NET Core 2.0 Applications
Implementing authentication

Adding basic user forms authentication
Adding external provider authentication
Working with two-factor authentication
Adding forgotten password and password reset mechanisms
Implementing authorization
Summary
10. Hosting and Deploying ASP.NET Core 2.0 Applications

Hosting applications
Deploying applications in Amazon Web Services

Deploying applications in AWS Elastic Beanstalk
Deploying applications in Microsoft Azure

Deploying applications in Microsoft Azure App Services
Deploying applications into Docker containers

Deploying applications into Docker containers using Docker for Windows a
nd Docker Enterprise Edition
Publishing images to the Docker Hub

Summary

11. Managing and Supervising ASP.NET Core 2.0 Applications
Logging in ASP.NET Core 2.0 applications

Logging in Microsoft Azure

Logging in Amazon Web Services
Monitoring ASP.NET Core 2.0 applications

Monitoring on-premises and in Docker
Monitoring in Microsoft Azure
Monitoring in Amazon Web Services

Summary

Preface

Everyday, software developers, application architects, and IT project managers work
on building applications as quickly as possible to be a leader in their respective
markets: time to market is of utmost importance. Unfortunately, the quality and
performance of those applications are often not as expected, since they have not been
fully tested, optimized, and secured.

During the past few years, ASP.NET has evolved into becoming one of the most
consistent, stable, and feature-rich frameworks available in the market for web
application development. It provides all expected characteristics you can think of
concerning performance, stability, and security out of the box.

For some time now, the IT market has been changing. Compliance with different
standards is now required and customers expect industrialized, high-performing, and
scalable applications, while developers ask for frameworks that allow higher
productivity and extensibility to adapt to specific business needs. This has lead
Microsoft to completely rethink their web technologies accordingly.

As a result, Microsoft has built ASP.NET Core, which gives developers the capacity
to do the following:

e Creating applications and compile them in a specific environment, but then run
them in any environment (such as Linux, Windows, or macOS)

Using third-party libraries with additional functionalities

Working with various tools, frameworks, and libraries

Adopting the most up-to-date best practices for frontend development
Developing flexible, responsive web applications

ASP.NET Core 2.0, together with Microsoft Visual Studio 2017, includes several
features to make your life as a web developer easier and more productive. For
example, Visual Studio offers project templates, which you can use to develop your
web applications. Visual Studio also supports several developments modes,
including using Microsoft Internet Information Services (IIS) directly to test your
web applications during development time and using a built-in web server and
developing your web applications over FTP.

With the debugger in Visual Studio, you can run through your application and step
through the critical areas of your code to find problems. With the Visual Studio
Editor, you can effectively develop user interfaces.

And when you are ready to deploy your application, Visual Studio makes it easy to
create a deployment package for deployment on Azure, Amazon Web Services, and
Docker, or any other platform including Linux and macOS. These are but a few of
the features built into the ASP.NET Core framework when paired with Visual
Studio.

This book provides the latest best practices and ASP.NET Core guidance to get you
up to speed quickly. Each section of this book presents specific ASP.NET Core 2.0
features in an easily readable format with detailed examples. The step-by-step
instructions yield immediate working results. Most of the key features of ASP.NET
Core are illustrated using succinct, easily understandable, and reusable examples.
The examples are rich to illustrate features without being overbearing.

In addition to showing ASP.NET Core features by example, this book contains
practical applications of each feature so that you can apply these techniques in the
real world. After reading this book and applying the exercises, you will have a great
head start into building efficient web applications that include modern features, such
as MVC, Web APIs, custom view components, and tag helpers.

We hope this book will help you in your daily job as a developer and reading it will
give you as much joy as writing it has given us.

Once upon a time, NGWS and the
.NET Framework

The following is a little bit of history to explain how the .NET Framework has
evolved over the years and why you have to consider the .NET Core Framework
today:

. Wnet MVC KQPnet MVC3

Visual Studio

MVC1 / NET 3.5 : 2009 MVC2 /.NET 4:2010 MWVC3 /.NET 4:2011

* Wabfarm Architecture Areas * Unacbtrusive lavascript
Routing Asynchronous controller validation
HTML Helpers = HTML Helpers * RazorView engine
Ajax Helpers Lambda Expression * Globalfilters
Auto binding DataAnnotations * Remote validation
Client side validation « 10C
* ViewBag object

nJ

Micrasoft

ASPnet 1/ 4 ,
MVC 5
MVC4 / NET 4.5:2012 MVC5 / .NET 4.5: 2013 MVC5.2 / .NET 4.5 : 2014

Mobile
Bundling and minification

* Attribute based routing
* Bug fixes and minor

Supportfor Windows Azure Ik Molding ilemns
SDK = Asp Net ldentity Framework

features update

Microsoft has started working on what we know now as the NET Framework in the
late 1990s and has released a first beta version of .NET Framework 1.0 in late 2001.

Originally, the framework was named NGWS for Next Generation Windows
Services (internal codename Lightning/Project 42). In the beginning, developers
could only use VB.NET as a programming language. More than 10 Framework

versions later, a lot has been achieved. Today, you can choose between a large
number of languages, frameworks, and technologies.

In the beginning, InterDev was the primary development environment to develop
ASP Pages, and you had to use a command-line VBC compiler tool to compile your
code.

The first version of our beloved Visual Studio development environment was
published in February 2002, bringing with it a common runtime environment for the
Windows client and Windows server family (NT 4, Windows 98, Windows ME,
Windows XP, and then Windows 2000).

Around the same time, Microsoft provided a lighter framework, named Compact
Framework, to execute Windows CE on Windows Mobile. The last version was
published in January 2008 as Version 3.5 RTM before it was replaced by newer
mobile technologies.

The first NET SDK was published in April 2003 as .NET Framework 1.1 and was
included in Visual Studio 2003. It was the first version to be included in the
Windows Server OS and shipped together with Windows 2003.

NET Framework 2.0 was released in January 2006 during the time of Windows 98
and Windows Me. It provided a major upgrade to the Common Language Runtime
(CLR). It was the first version to fully support 64-bit computing and fully integrate
with Microsoft SQL Server. It also introduced a new Web Pages Framework,
providing features such as skins, templates, master pages, and style sheets.

NET Framework 3.0 (WinFX) was released in November 2006. It included a new
set of managed code APIs. This version added several new technologies to build new
types of applications, such as Windows Presentation Foundation (WPF), Windows
Communication Foundation (WCF), Windows Workflow Foundation (WWF), and
Windows CardSpace (later integrated into Windows Identity Foundation).

NET Framework 3.5 extended the WinFX features one year later in 2007. This
version included key features such as Ling, ADO.NET, ADO.NET Entity
Framework, and ADO.NET Data Services. Furthermore, it shipped with two new
assemblies that would later be the foundation of the MVC framework:
System.Web.Abstraction and System.Web.Routing.

NET Framework 4.0 was published in May 2009; it provided some major upgrades
to the Common Language Runtime (CLR) and added Parallel extension to improve
support parallel computing, dynamic dispatch, named parameters, and optional
parameters, as well as code contracts and the BigIntegerComplex numeric format.

After the release of NET Framework 4.0, Microsoft released a set of improvements
to build microservices in the form of the Windows Server AppFabric framework.
Essentially, it provided an InMemory distributed cache and an application server
farm.

NET Framework 4.5 was released in August 2012; it added a so-called Metro style
application (which later evolved into Universal Windows Platform applications), the
Core features, and the Microsoft Extension Framework (MEF).

Concerning ASP.NET, this version was more compatible with HTMLS5, jQuery, and
provided bundling and minification for improved web page performance. It was also
the first to support WebSockets and asynchronous HTTP requests and responses.

NET Framework 4.6.1 was released in November 2015; it required Windows 7 SP1
or later, and was an important version. Some of the new features and APIs included
were support for SQL Connectivity for AlwaysOn, Always Encrypted, and improved
connection resiliency when using Azure SQL Databases. It also added Azure SQL
Database support for distributed transactions using the updated System.Transactions

APIs and provided many other performance, stability, and reliability related fixes in
RyuJIT, GC, and WPF.

NET Framework 4.6.2 was released in March 2016; it added support for paths
longer than 260 characters, FIPS 186-3 DSA in X.509 certificates, and localization
of data annotations, and the resources files were moved to the App LocalResources
folder. Additionally, the ASP.NET session provider and local cache manager were
made compatible with the asynchronous framework.

NET Framework 4.7 was released in April 2017; it was included in the Windows 10
Creators update. Some of the new features included enhanced cryptography with
elliptic curve cryptography and improved Transport Layer Security (TLS) support,
especially for version 1.2. It also introduced the object cache store, which enabled
developers to provide custom providers easily by implementing the
[CacheStoreProvider interface.

There was also a better integration between the application and the memory monitor
and the famous memory limits reactions, which enables developers to observe the
CLR when it truncates objects cached in memory and overrides the default behavior.

Then, Microsoft developed a completely new .NET Framework with open source
multi-platform in mind from the beginning. It was introduced as ASP.NET 5 and
later renamed ASP.NET Core Framework.

The first release, 1.0, was announced by Richard Lander (MSFT) in June 2016; the
ASP.NET MVC and Web API frameworks were merged into a single framework
package that you could easily add to your projects via NuGet.

The second release, NET Core Framework 1.1, was published in November 2017; it
ran on more Linux distributions, its performance was improved, it was released with
Kestrel, the deployment on Azure was simplified, and the productivity was
improved. Entity Framework Core started to support SQL Server 2016.

Note that NET Core Framework 1.0 and 1.1 will be supported by Microsoft until
June 2019.

The latest release of the NET Core Framework is 2.0. A first preview version was
released in May 2017. A second preview version—published in June 2017 and the
final version, on which this book is based—was released in August 2017.

Microsoft has vastly improved the .NET Core Framework. The improvements and
extensions are the result of the vision for .NET Core 2.0; it enables you to use more
of your code in more places.

The following improvements are included in .NET Core 2.0:

Massive API increase (>100%) relative to .NET Core 1.x

Support for NET Standard 2.0

Support to reference .NET Framework libraries and NuGet packages
Support for Visual Basic

Furthermore, the .NET Standard 2.0 brings these new features:

e Bigger API surface—it's extended to cover the intersection between .NET
Framework and Xamarin. This also makes .NET Core 2.0 much bigger as it
implements .NET Standard 2.0. The total number of APIs added to .NET

Standard 1s ~20,000.

e [t can reference existing .NET Framework libraries. The best thing is—no
recompile required, so this includes existing NuGet packages.

e NET Core supports more Linux distribution. Samsung 1s working to provide
support for the mobile OS Tizen.

¢ And, most importantly, .NET Core is the fastest application runtime available in
the .NET world.

Also, note that most of the regular libraries are available on GitHub. They can be
forked and rebuilt by anyone who wants to extend or change any standard behaviors.

What this book covers

This book is organized into multiple chapters that explain ASP.NET Core 2.0
features in an easy and understandable format with practical examples. Most of the
key features of ASP.NET Core 2.0 are illustrated using succinct, efficient examples
and step-by-step instructions yield immediate working results.

You don't have to read the chapters in any order to find the book useful. Each
chapter stands on its own, except for the first chapter, which details the fundamentals
of ASP.NET Core—you might want to read it first if you've never ventured beyond
desktop application development.

The following topics will be covered throughout the book:

chapter 1, What is ASP.NET Core 2.0?, describes the features and functionalities of
ASP.NET Core 2.0, but also the technical restrictions, which should allow you to
understand in which cases it could be a good fit for your own needs and what to
expect.

chapter 2, Setting Up the Environment, gives a detailed explanation of how to set up
your development environment and how to create your first ASP.NET Core 2.0
application. You will learn how to either use Visual Studio 2017 or Visual Studio
Code, how to install the runtime, and how to use Nuget to retrieve all necessary
ASP.NET Core 2.0 dependencies.

chapter 3, Creating a Continuous Integration Pipeline in VSTS, shows how to set up
a complete Visual Studio Team Services (VSTS) Continuous Integration Pipeline.
You will learn how to fully automate building, testing, and deploying your
applications using VSTS in the cloud.

chapter 4, Basic Concepts of ASP.NET Core 2.0 — Part 1, explains the basic structure
and concepts of ASP.NET Core 2.0 applications. It shows how everything works
internally and what classes and methods can be used to override basic behavior. It
also provides the theoretical background for all the other chapters.

chapter 5, Basic Concepts of ASP.NET Core 2.0 — Part 2, following up on the
concepts covered in chapter 4, Basic Concepts of ASP.NET Core 2.0 — Part 1, this

chapter delves deeper into essential ASP.NET Core 2.0 concepts. You will learn
about components and features offered by ASP.NET Core to build responsive web
applications.

chapter 6, Creating MVC Applications, provides all the concepts and everything
necessary to create your first ASP.NET Core 2.0 MVC application. You will learn
the specifics of MV C applications and how to implement them efficiently.
Additionally, you will see how unit tests and integration tests will help you build
better applications with fewer bugs, resulting in lower maintenance costs.

chapter 7, Creating Web API Applications, covers the Web API Framework and
provides everything essential to create your first ASP.NET Core 2.0 Web API. You

will see different Web API styles, such as RPC, REST, and HATEOAS, and learn
when to use them and how to implement them in an effective way.

chapter 8, Accessing Data Using Entity Framework Core 2, shows how to access
databases using Entity Framework Core 2, while using all the advanced features
(Code First, Fluent API, Data Migrations, InMemory Databases, and more) it offers.

chapter 9, Securing ASP.NET Core 2.0 Applications, explains how to use the built-in
ASP.NET Core 2.0 features for user authentication and how to extend them by
adding external providers. If you need to secure your applications, then this chapter
1s where you want to go.

chapter 10, Hosting and Deploying ASP.NET Core 2.0 Applications, 1s about the
various options you have when it comes to hosting and deploying your ASP.NET
Core 2.0 web applications on premises and in the cloud. You will learn how to
choose the appropriate solutions for a given use case, which will allow you to make
better decisions for your own applications.

chapter 11, Managing and Supervising ASP.NET Core 2.0 Applications, is finally
going to be a chapter on how to manage and supervise your production-ready
applications after deployment. It will greatly aid you in diagnosing problems for
your ASP.NET Core 2.0 web applications during runtime and reduce the time to
understand and fix bugs.

What you need for this book

You will either need Visual Studio 2017 Community Edition or Visual Studio Code,
which are both free of charge for testing and learning purposes, to be able to follow
the code examples found within this book. You could also use any other text editor
of your choice and then use the dotnet command-line tool, but it would be advised to
use one of the development environments mentioned earlier for better productivity.

Later in the book, we will work with databases, so you will also need a version of
SQL Server (any version in any edition will work). We advise using SQL Server
2016 Express Edition, which is also free of charge for testing purposes.

There might be other tools or frameworks that will be introduced during the
following chapters. We will explain how to retrieve them when they are used.

If you need to develop for Linux, then Visual Studio Code and SQL Server 2016 are
your primary choices, since they are the only ones running on Linux.

Additionally, you will need an Azure Subscription and Amazon Web Services
Subscription for some of the examples shown within the book. There are multiple
chapters dedicated to show you how to take advantage of the cloud.

Who this book is for

This book is for developers who would like to build modern web applications with
ASP.NET Core 2.0. No prior knowledge of ASP.NET or .NET Core is required.
However, basic programming knowledge is assumed. Additionally, previous Visual
Studio experience will be helpful but is not required, since detailed instructions will
guide you through the samples of the book. This book can also help people who
work in infrastructure engineering and operations to monitor and diagnose problems
during the runtime of ASP.NET Core 2.0 web applications.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Start Visual Studio 2017, open the Tic-Tac-Toe ASP.NET Core 2.0 project you
have created, create three new folders called controliers, services, and views, and
create a subfolder called sharea in the views folder."

A block of code 1s set as follows:

[HttpGet]
public IActionResult EmailConfirmation (string email)

{
ViewBag.Email = email;
return View () ;

}

Any command-line input or output is written as follows. The input command might
be broken into several lines to aid readability, but needs to be entered as one
continuous line in the prompt:

|sudo apt-get install code

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Open
Visual Studio 2017, go to the Team Explorer tab, and click on the Branches button".

o Warnings or important notes appear like this.

8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply email feedvacképacktpun.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at ncep://w
ww.packtpub.com. If you purchased this book elsewhere, you can visit http: //www.packtpu
b.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your email address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

Nk LD =

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

e WinRAR /7-Zip for Windows
e Zipeg/iZip / UnRarX for macOS
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at the following repositories:

® https://github.com/JasonDeOliveira/Learning-ASP.NET-Core-2.0/commits/master

® https://github.com/PacktPublishing/Learning-ASP.NET-Core-2.0

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/JasonDeOliveira/Learning-ASP.NET-Core-2.0/commits/master
https://github.com/PacktPublishing/Learning-ASP.NET-Core-2.0
https://github.com/PacktPublishing/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting nttp: //www.packtpub.con/su
pmit-errata, S€lecting your book, clicking on the Errata Submission Form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the preViOUSIY submitted errata, g0 1O https://www.packtpub.com/books/content/
support and enter the name of the book in the search field. The required information
will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrignhtepacktpub.com With a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

What is ASP.NET Core 2.0?

The first preview release of ASP.NET came out almost 15 years ago as part of the
NET Framework. Since then millions of software developers have used it to build
and run all types of great web applications. Over the years Microsoft has added and
evolved many of its features until coming up with a complete redesign of the
ASP.NET Framework called ASP.NET Core in June 2016. After ASP.NET Core
1.0 and 1.1, version 2.0 is the third and latest installment of ASP.NET Core. Let's see
what it offers and when it makes sense to use it in your projects.

ASP.NET Core 2.0 is a new open-source and cross-platform framework for building
modern cloud-based applications, such as web applications, Internet of Things
(IoT) applications and even mobile backend.

ASP.NET Core 2.0 applications run on the .NET Core Framework as well as on the
full NET Framework. The ASP.NET Core Framework was architected to provide an
optimized development framework for applications, which have to be deployed
either within the cloud or on-premises. It consists of modular components with
minimal overhead, so you retain a high degree of flexibility when conceiving and
implementing your software solutions. You can develop and run your ASP.NET
Core 2.0 applications on Windows, Linux, and macOS.

In the following diagram you can see how the different .NET Framework versions
and components work together:

XAMARIN

10S
Android w ;
0S X ~

pdcop

App Madel

™~
'EO:J .NET STANDARD 2 LIBRARY
g One library accross o e udlics
w all app models [mmeaven |
=
.- Microsoft
Wl Azure

RUNTIME

&

docker

ASP.NET Core 2.0 includes several architectural changes that result in a much
leaner and more modular framework when compared to the framework that came
before it. It is no longer based on system.web.qa11, instead, it uses a set of granular and
well factored NuGet packages. This allows optimizing of applications to include just
the NuGet packages that are really needed.

The benefits of a smaller application surface area include:

Better security

Reduced dependencies between components

Improved performance

Decreased optimized financial costs in a pay-for-what-you-use cloud consumer
world

As a developer, when building applications based on the classic .NET Framework,
you must choose between six application models (WPF, Windows Forms, Web
Forms, Web MVC, Web API, and Xamarin), which can be confusing and not very
productive.

With the release of the ASP.NET Core 1.0 and 1.1, this was optimized and reduced
to three different application models, with the drawback that you cannot share code
between them.

With ASP.NET Core 2.0, the number of application models was further reduced to
two and code is now sharable, meaning that you can now reuse more than 90% of
your code. For you as a developer, this makes you more productive and allows for

switching between application models quickly and easily.

In this chapter, we will cover the following topics:

ASP.NET 2.0 features
Cross-platform support
Microservice architecture

Working with Docker and containers
Performance and scalability
Side-by-side deployments
Technology restrictions

When to choose ASP.NET Core 2.0

ASP.NET Core 2.0 features

The new wmicrosoft.aspret.core.n11 package contains all ASP.NET Core 2.0 features
in a single library. It includes authentication, MVC, Razor, monitoring, Kestrel
support and many others. They are explained in more detail later in the book.

Note that if you want to selectively add packages one by one, you can
still reference them manually instead of using the single packages that
contain it all but then you will miss several advantages as you will see
here.

The runtime store is an important new component shipped with ASP.NET Core 2.0.
It contains compiled packages, which were compiled using the native machine
language and it is key for improved performance. All applications using the
Microsoft.Asplet.Core.all package benefit from it, because they do not need to be
deployed with all the dependent packages anymore. Everything is already there, so
their deployment size will be reduced and their execution time will be optimized.

ASP.NET Core 2.0 allows you to create well-factored and testable web applications
that follow the Model-View-Controller (MVC) pattern. We have dedicated a full
chapter to this topic later in the book.

Furthermore, you can build HTTP services with full support for content negotiation
using custom and built-in formatters such as JSON or XML as well as RESTful
services.

ASP.NET Core 2.0 fully supports Razor which contains an efficient language for
creating your views and Tag Helpers enable server-side code to participate in
creating and rendering HTML elements in Razor files.

Model binding automatically maps data from HTTP requests to action method
parameters and model validation automatically performs client and server side
validation.

In terms of client-side development, ASP.NET Core 2.0 is designed to integrate
seamlessly with a variety of client-side frameworks including AngularJS,
KnockoutJS, and Bootstrap.

Additionally, it provides the following fundamental improvements:

ASP.NET MVC and Web API have been combined into a single framework
Modern client-side frameworks and development workflows
Environment-based configuration system ready for cloud hosting

Built-in dependency injection functionalities

New light-weight and modular HTTP request pipeline

Host the same application in IIS, self-host, Docker, Cloud and even in your own
processes

Hosts multiple versions of an application or a component side-by-side

Ships entirely as NuGet packages

New tooling that simplifies modern web development

Simplified csproj file, making it easier to work with development environments
other than Visual Studio (on Linux and macOS, for example)

The program.cs class has been extended to fully automate the integration of
Kestrel, the setting of the contentrootrath, loading the configuration files,
initializing the logging middleware, and other steps by only calling a single
method

The startup.cs has been simplified by moving logging and configuration into
the WebHost builder initialization

Cross-platform support

As explained before, the ASP.NET Core 2.0 framework has been built, from the
beginning, with cross-platform support in mind. It supports a wide variety of
operating systems and technologies such as Windows, Linux, macOS, Docker,
Azure, and others.

ASP.NET Core 2.0 currently supports the following Linux distributions:

e Ubuntu 14, 16

Linux Mint 17, 18

Debian 8

Fedora

CentOS 7.1 and Oracle 7.1
SUSE Enterprise Server 64 bits
OpenSuse 64 bits

Concerning macOS, it currently only supports (other versions might be added later):

e macOS 10.11
e macOS 10.12

For application development, you may develop on Windows using Visual Studio or
Visual Studio Code and then deploy your ASP.NET Core 2.0 application to your
target system.

Note that the target system can use a completely different underlying

operating system. For instance, you can develop and test on Windows
and then deploy your applications to a Linux server for performance,

stability or cost reduction reasons.

If you choose so, you can of course directly develop on Linux and macOS using
several system-specific source code editors. On Linux, you could use Visual Studio
Code, VIM/VI, Sublime, or Emacs for example. On macOS, you could use Visual
Studio for Mac, Visual Studio Code or any other Mac-specific text editor.

The Visual Studio 2017 or Visual Studio Code developer environments would be the
preferred choice though, since they provide everything necessary to be highly

productive and to be able to debug and understand your code as well as navigate

within it easily. That is why we are going to use those IDEs throughout the rest of
the book.

After building your application, you can use several web servers to run it. Here are
some examples:

Apache

IIS

Kestrel self-host
Nginx

Microservice architecture

Microservices also known as the microservice architecture, is an architectural layout
that structures an application as a collection of loosely coupled services, which
implement business capabilities. It can be used to build e-commerce system,
business application, and IOT.

ASP.NET Core 2.0 1s the best candidate when you want to embrace this system
architecture. The ASP.NET Core 2.0 framework is lightweight and its API surface
can be minimized to the scope of a specific microservice. A microservice
architecture also allows you to mix technologies across service boundaries, enabling
for a gradual transition to ASP.NET Core.

Notice that microservices built with ASP.NET Core 2.0 can work together with
services using other technologies such as the full classic .NET Framework, Java,
Ruby, and even other more legacy technologies. This is a big advantage when you
need to progressively transform monolithic applications into more (micro)service-
oriented applications.

You are not bound to a specific underlying infrastructure, instead, you have a wide
choice since ASP.NET Core 2.0 supports nearly all the technologies that you can
think of today. Additionally, you can modify the infrastructure when needed so there
1s no technological lock-in for applications that have been developed based on it.

Your primary choice for orchestrating and managing microservices written in C#
efficiently and at high scale, on-premises, and in the cloud, should be Microsoft
Service Fabric. It was conceived exactly for that and is used by Microsoft for various
Azure services (SQL Database, and more) for many years already.

A microservices Docker container approach might also fit your needs, we are going
to explain its use cases in the next paragraphs. To sum it up, ASP.NET Core 2.0 is
the ideal choice for implementing and hosting your microservices in any kind of
technical environment.

Working with Docker and
containers

Docker and containers are everywhere at the moment. Everybody is speaking about
them and there are so many use cases where they seem to be a great fit. They provide
an efficient, lightweight and self-contained approach for packaging applications with
their dependencies while re-using the underlying operating system files and
resources.

They are a perfect fit for microservice architectures, but can also be used for any
other application archetypes. They work exceptionally well together with ASP.NET
Core 2.0 applications since both have been conceived with modularity, performance,
scalability, lightweight nature, and efficiency in mind.

applications are much smaller than images with classic ASP.NET

o Note that Docker container images including ASP.NET Core 2.0
applications, meaning that they are faster to deploy and to start-up.

Both, Docker containers and the ASP.NET Core 2.0 framework, provide full cross-
platform support (Windows, Linux, and macOS). Furthermore, you can host your
containers on-premises and in the cloud. You can use Azure for example, either via
TAAS deployments or via Azure Container Services, which additionally allows for
mixing and matching different operating systems and technologies.

Performance and scalability

If you need the best possible performance and support high scalability scenarios then
you need to absolutely use ASP.NET Core 2.0 and the underlying .NET Core
Framework. ASP.NET Core 2.0 has been built from the ground up for high
performance and high scalability scenarios. It really shines in these areas and it can
be considered as the best choice.

It is ten times faster than classic ASP.NET, you can even think of it to be the fastest
web application runtime in the .NET world currently available!

Furthermore, it provides the best solution for microservices architectures, where
performance and scalability are extremely important. No other technology is as
efficient while consuming such low system resources, which also leads to reduced
infrastructure and cloud hosting costs.

Side-by-side deployments

If you want to be able to install applications with dependencies on different versions
of the .NET Framework, then you should consider using the ASP.NET Core 2.0
framework, since it provides 100% side-by-side deployment capabilities.

Side-by-side deployments of different .NET Core and ASP.NET Core versions allow
for having multiple services and applications on the same server. Each of them can
be using their own dedicated versions of the respective frameworks, thus eliminating
risks and saving money when doing application upgrades and common IT
operations.

Technology restrictions

Please look carefully at the technologies shown in this section. If you use a
technology or framework within your current application, which is listed here and
which is not (yet) supported, then you might find it difficult or even impossible to
migrate to ASP.NET Core 2.0.

Not all current NET Framework technologies are available in ASP.NET Core 2.0
and some might never be ported over, since they do not comply with the new .NET
Core specific paradigms and patterns.

The following list shows the most common technologies not directly found in
ASP.NET Core and .NET Core, knowing that some can be used via the multi-
targeting features:

e ASP.NET Web Forms applications: The legacy Web Forms technology is
only available using the full classic .NET Framework, you cannot use ASP.NET
Core and .NET Core for these types of applications.

e ASP.NET Web Pages applications: They are not included in ASP.NET Core
2.0 as such, but it is possible to use the Razor web pages engine to provide the
same functionalities.

e ASP.NET SignalR applications: Currently, ASP.NET SignalR is not available
for ASP.NET Core. However, you can find a first preview version in the
corresponding server-side and client library GitHub repositories, so they should
be included in one of the next releases.

e WCEF Services: ASP.NET Core 2.0 contains a WCF client for accessing WCF
services, but creating WCF services is not supported. This feature might be
added in future releases though.

e Workflow Services: Windows Workflow Foundation, Workflow Services, and
WCF Data Services are not supported and there are no plans for adding them to
ASP.NET Core in the future.

e WPF and Windows Forms applications: Windows Presentation Foundation
and Windows Forms cannot be built with ASP.NET Core, it would go against
the cross-platform paradigm. You could, however, replace your WPF
applications by UWP applications provided by the XAML2 Universal standard.

Not all NET languages are currently supported by ASP.NET Core 2.0. For example,

F# does not have any tooling support. Visual Basic support has been added in the
latest version of Visual Studio 2017. There will be more and more languages that
will be supported.

In addition to the official ASP.NET Core roadmap, there are other frameworks and
technologies, that are planned to be ported over to .NET Core in the next months. To
get further information on what will be ported over and what will not, go to the
GitHub repository of the .NET Core Libraries (https ://github.com/dotnet/core fx).

For those that are planned, there is no assurance that they will really get ported over,
though. But you will find a good indication of what you can expect in the next
versions of ASP.NET Core. Note that you can, in some cases, use the multi-targeting
features of ASP.NET Core 2.0 for being able to call frameworks that are currently
not directly supported by ASP.NET Core 2.0.

If you care about a specific framework or component that you need within your
projects, consider participating in the discussions on GitHub. Maybe others will have
the same requirements and Microsoft decides to prioritize their NET Core migration
accordingly.

Some Microsoft services, and even some third-party platforms, do not support
ASP.NET Core. For example, some Azure services such as Service Fabric Stateful
Reliable Services and Service Fabric Reliable Actors require the full classic NET
Framework.

Also, sometimes ASP.NET Core SDKs are not provided or not yet available. In the
meantime, you can always use the equivalent REST APIs instead of the client SDKs
and then replace them later. Be assured, all Azure services are going to support
ASP.NET Core in the future as can be seen on the respective product roadmap.

https://github.com/dotnet/corefx

When to choose ASP.NET Core 2.0

After having seen the various features and functionalities provided by ASP.NET
Core 2.0, you could ask yourself if it will replace the full classic .NET Framework in
the future. It is true that ASP.NET Core 2.0 and the underlying .NET Core
Framework provide some major enhancement and performance improvements, but
there are still some specific scenarios, where those new application patterns do not
apply and where the full NET Framework will be the best and sometimes even the
only choice.

Migrating your whole existing applications to ASP.NET Core right from the start
might be difficult or even impossible to do. You should think about how to transform
your applications progressively to lower the risk of failure or over-complexification
and give yourself time to really understand the new patterns and paradigms.

You could start for instance by only using ASP.NET Core 2.0 for all new
developments, then see how to migrate your legacy code later and sometimes even
leave it be since there will be no real benefits for migrating it over. If you are really
interested in the migration topic, please consider the appendix, since we have a full
chapter dedicated to this important topic.

ASP.NET Core and the .NET Core Framework get more and more framework and
client library support each day. Microsoft, tool and framework vendors, and the
different developer communities work hard to provide a large set of functionalities
for allowing feature-rich and high performing web applications. Everybody wants to
work on this promising technology that could shape the future in a sustainable way.

The possibility to use .NET Core and .NET Framework libraries together at the same
time when using .NET Standard 2.0 extends the possibilities even more and gives
developers a temporary solution until every important feature and every major
framework will be available in NET Core.

To recap what has been discussed in this chapter, you should use ASP.NET Core 2.0
for your server applications when:

¢ You have cross-platform needs
¢ You are specifically targeting microservices

Y ou want to use Docker containers

You need high performance and highly scalable applications

You need to put multiple applications with different .NET versions side by side
The presented technical restrictions do not apply to your application
requirements

Summary

In this chapter, you have learned about the ASP.NET Core 2.0 framework and its
features. You have seen that it includes everything necessary to work efficiently in a
cross-platform environment while using microservices architectures and container
technologies such as Docker.

Furthermore, you have learned that it provides very good performances and
exceptional scalability for your web applications and that even side-by-side
deployments are supported.

At the end, we have talked about technical restrictions and when it is advisable to use
the ASP.NET Core 2.0 framework.

In the next chapter, we will talk about how to set up your development environment
including either Visual Studio 2017 or Visual Studio Code as an integrated
development environment.

Setting Up the Environment

You have decided to learn about ASP.NET Core 2.0, the most advanced and efficient
cross-platform web application framework on the market today. A very good choice!
You are surely eager to start programming right away, but before we can begin, we
must set up the required technical prerequisites and tools.

In this chapter, we are going to introduce Visual Studio 2017 Community Edition
and Visual Studio Code, and then install either one of them as a development
environment. Then, we are going to build a simple sample application based on the
ASP.NET Core 2.0 Framework.

In this chapter, we will cover the following topics:

e Visual Studio 2017 as a development environment

e How to install Visual Studio 2017 Community Edition

e Creating your first ASP.NET Core 2.0 application in Visual Studio and via the
command line

Visual Studio Code as a development environment

How to install Visual Studio Code on Linux

Creating your first ASP.NET Core 2.0 application in Visual Studio Code
Creating your first ASP.NET Core 2.0 application in Linux

Visual Studio 2017 as a
development environment

As a developer, you need an environment for your daily development tasks, and
Microsoft Visual Studio 2017 is just that. It provides a very efficient and productive
Integrated Development Environment (IDE) for creating new software projects
and developing, debugging, and testing them. It will help you to build high-quality
applications in a very quick and intuitive way. Many of its features have been built
around common development tasks and how to streamline and optimize them within
a single tool.

You can create web applications, web services, desktop applications, mobile
applications, and many other types of applications not covered within this book.

Additionally, you can use a wide range of programming languages such as C#,
Visual Basic, F#, JavaScript, and even Java.

There are different editions of Visual Studio 2017, each with their own unique
features and licenses. The Visual Studio 2017 Community Edition, for instance, is
free of charge but cannot be used for applications running in production
environments. The main goal of this version is private usage and learning purposes.

The Visual Studio 2017 Professional and Enterprise Editions contain everything,
including the necessary licenses, to build and run applications in production
environments.

The Visual Studio 2017 Professional Edition contains a subset of all features that are
offered in the Enterprise Edition. It is usually sufficient to start with this edition and
then upgrade to the Enterprise Edition if necessary.

The Visual Studio 2017 Enterprise Edition contains a lot of additional features to
improve developer productivity even more, such as live dependency validation,
testing, architecture diagrams, architecture validation, code cloning, and many
others. If you need these features, then you need to use this edition.

Po N Note that multiple versions of Visual Studio (2013, 2015, 2017, 2017

Preview, and more) can be installed side by side on a developer
machine, which has earlier versions of the Visual Studio IDE installed.

Traditionally, Visual Studio was released only for Windows, but a macOS version
has existed since 2016 called Visual Studio for macOS. You can use it for
developing your .NET applications on this operating system.

The Visual Studio 2017 Community Edition is exactly what we need for trying out
and understanding the examples illustrated in this book, so that is why we are going
to use this edition throughout the rest of the chapters.

How to install Visual Studio 2017
Community Edition

Visual Studio 2017 Community Edition is installed like any other Windows
application.

Note however that you need administrator rights during the
0 installation. These rights will not be required when developing with
Visual Studio later.
For the Visual Studio 2017 Community Edition installation, you can choose between
the following three different Visual Studio 2017 installation modes:

e The Express Installation installs all of the components that are considered
default components by Microsoft in an easy and quick way. If you need specific
Visual Studio features not found in this list, then you need to use the Custom
Installation.

e The Custom Installation gives you full choice over every Visual Studio 2017
feature you can install. You may, for instance, install complementary features
such as Visual C++, F#, SQL Server Data Tools, the mobile platform, and
several other SDKs, as well as specific language packs.

e When using the Offline Installation, you can install Visual Studio 2017
without any network connections. This is very handy when you cannot connect
to the internet and nonetheless want to prepare a developer machine. In this
case, you have to prepare an external support, such as a mobile hard disk or a
USB key, and put the Visual Studio 2017 installer files on it beforehand.

One way to prepare such an external support is to download the necessary Visual
Studio installer (Community, Professional, or Enterprise Edition) from the Visual
Studio website, nttps://www.visualstudio.com/downloads/, and extract its contents into a
folder. Then, you retrieve the various install packages by executing the command
<executable name> --layout 1N @ command-line window. After some time, everything is
downloaded and you have an external support that can be used for offline
installations.

Note that you can use the same procedure to download all of the

https://www.visualstudio.com/downloads/

installation files to a central network storage and then create a shared
folder for being able to install Visual Studio 2017 from within your own
network to optimize installation times and lower network bandwidth
needs.

We will now see how to install Visual Studio 2017 Community Edition manually by
using the downloaded setup program from the Microsoft Visual Studio website
mentioned previously:

1. Start the Visual Studio 2017 Community Edition setup program and you will
see a list of various installable workloads. By default, you will see Windows,
web and cloud, mobile and gaming, and other toolsets:

Installing — Visual Studio Community 2017 Preview — 15.3.0 Preview 3.0 x
Workloads Individual components Language packs
Windows (3) Su mmary
Visual Studio core editor
WMl Universal Windows Platform development H] .NET desktop development 5 NET desk devel
Wl cCreate applications for the Universal Windows Platform Build WPF, Windows Forms, and console applications using A ud eskiop development
with C# VB, JavaScript, or optionally C++. C#, Visual Basic, and F#. Mtodos

evelopment tools

.NET deskto|

.NET Framev

C# and Visual Basic
4 Desktop development with C++
Build classic Windows-based applications using the power
of the Visual C+ + toolset, ATL, and optional features like...

Web & Cloud (7)

@ ASP.NET and web development Can Azure development
Build web applications using ASP.NET, ASP.MET Core, 3 Azure SDK, tools, and projects for developing cloud apps

HTML, JavaScript, and container development toals. and creating resources.

P Python development Node.js development
Editing, debugging, interactive development and source Build scalable network applications using Node.js, an
J oA ! P o s ? ? ~ .NET Core cross-platform development
control for Python. asynchronous event-driven JavaScript runtime.
: Included
NET C .0-1.1dev
T .

Location nstallation nickname
C:\Program Files (x86)\Microsoft Visual Studio\Preview\Community 2 Total install size: 4GB

By continuing, you agree to the license for the Visual Studio edition you selected. We also offer the ability to download other seftware with Visual Studio. This software install
is licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing, you also agree to those licenses. A

2. Choose your desired components and they will get installed in the next steps. If
that 1s all you need, then there is nothing else to be done. As explained before,
this is the Express Installation.

3. If you need to customize the installed components, to either add or remove
individual components, then you have to click on Individual components.
Obviously, you will then be doing what is called a Custom Installation:

Modifying — Visual Studio Community 2017 Preview (2) — 15.3.0 Preview 3.0

Workloads Individual components

NET

<]

NET Core runtime

NET Framework 3.5 development tools
NET Framework 4 targeting pack

MET Framework 4.5 targeting pack
NET Framework 4.5.1 targeting pack
.NET Framework 4.5.2 targeting pack
NET Framework 4.6 targeting pack
NET Framework 4.6.1 SDK

<J<]<]<]<]<]<]

MET Framework 4.6.1 targeting pack
NET Framework 4.6.2 SDK

NET Framework 4.6.2 targeting pack
NET Framework 4.7 SDK

.NET Framework 4.7 targeting pack
.NET Native

.NET Portable Library targeting pack

Cloud, database, and server

Azure Authoring Tools

Location

Language packs

Installation nickname

By continuing, you agree to the license for the Visual Studio edition you selected. We also offer the ability to download other software with Visual Studie. This
software is licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing, you alse agree to those licenses.

Summary

» Visual Studio core editor
> .NET desktop development
> .NET Core cross-platform development

v Individual components #
[.NET Core runtime

Total install size: 0KB

Modify

4. When you have finished selecting your desired workloads and components, the
installation will start. The installation time is dependent on the number of
workloads and components you have selected, as well as your internet
connection speed, if you are not using the Offline Installation method described

previously:

Visual Studio

Products

Installed

4] Visual Studio Professional 2017

Professional developer tools and services for small teams

Release notes

Available

Preview

] visual Studio Enterprise 2017 Preview

Microsoft DevOps solution for productivity and
coordination across teams of any size

License terms | Release notes

Release

5,2 Visual Studio Community 2017 Preview (2)

Acquiring Microsoft.VisualStudio.ClientDiagnostics
15% —
Applying Microsoft.IntelliTrace.CollectorCab

169 —

Cancel

] visual Studio Professional 2017 Preview

Professional developer tools and services for small teams

License terms | Release notes

Welcome!

We invite you to go online to hone your skills
and find additional tools to support your
development workflow.

™ Learn

Whether you're new to development or
an experienced developer, we have you
covered with our tutorials, videos, and
sample code.

ﬂ Marketplace

Use Visual Studio extensions to add
support for new technologies, integrate
with other products and services, and
fine-tune your experience.

Need some help?

Check out the Microsoft Developer
Community where developers provide
feedback and answers to many common
problems.

Get help from Microsoft at Visual Studio
Support.

1.11.33214.616

For more advanced scenarios, like automating and scripting the Visual Studio 2017

installation, you can start the setup program via the Command Prompt. There is a
variety of command-line parameters, which help to define what needs to be installed
where.

Following is a list of some of the command-line parameters with a brief description
()f\V}HﬂZﬂJGY'dCL:PIGaSG g()tO https://docs.microsoft.com/en-us/visualstudio/install/use
-command-line-parameters-to-install-visual-studio 1O get more information, aswell asa
full list of all existing command-line parameters:

Parameter Description

/nddremoveFeatures | This adds the features selected

/RdminFile This specifies a file to install silently

This specifies to generate a silently response file after your
installation

/CreateAdminFile

/CustomInstallpPath | This specifies the target path

/ForceRestart This forces your PC to restart
/Full This installs all the features
/noweb This disables internet searching features and downloading

/ProductKey This specifies the key to be used

https://docs.microsoft.com/en-us/visualstudio/install/use-command-line-parameters-to-install-visual-studio

First steps with Visual Studio 2017

After installing Visual Studio 2017, you are now able to explore everything it has to
offer for improving developer productivity. Following is a list of some of the
features that are provided.

Start Visual Studio 2017 and the first thing you will see is the Visual Studio Start
Page. It displays by default a Get Started section with a list of help topics, the history
of projects you have recently worked on, a developer and community news feed, and
some shortcuts to common developer tasks, such as creating or opening projects:

jd,l, Start Page - Microsoft Visual Studio Preview PREVIEW X &' QuickLaunch (Curl-Q) P = B0 x
File Edit View Project Debug Team Tools Test Analyze Window Help Jason de OLIVEIRA ~ m
| "2 o | = = p Attach.. - | 58 _

Start Page & X

xoqioo| [

Get Started Bps
Get code from a remote_versian control
Build your first app in 5 minutes! ;};Is::m ariopen something on youtlacal ° Developer NeWS

Maximize your productivity with these tips and tricks fer Visual Studio Checkout from:

Visual Studio Team Services is in East
Asial

Today we are excited to announce the
availability of our latest V5TS instance in
Hong Kong (Azure's East Asia region).

2 Open Folder NEW vendredi 10 novembre 2017

Take advantage of the newest technologies to deploy beautiful, low-cost and & Visual Studio Team Services
reliable websites

Develop modern, fully-native, Android and i0S apps fa] Open Project / Solution

suoneaynopy Jsasojdig wea) siojdxg uognjog

sojd sany JRao)dig 2lqQ 235 05

% Open Website Xamarin Developer Events in

R@C@ﬂt November

The Xamarin and .Net mobile developer

7
1
T
a

community is growing like never before and
with so many new events upcoming, there...

The projects, solutions and felders you open locally / 1
N ew p rO.J eCt NEW vendredi 10 novembre 2017

appear here.

The remote host for Git repositories and other source Search project templates i Application Insights: VSTS dashboard
control providers will appear on the recent list of other chart widget now available

devices you've signed in to. Recent project templates: Yes, you read that correctly. We have just
released an Application Insights chart
widget for VSTS dashboards! It's ok, you ca...
NEW vendredi 10 novembre 2017

*D ASP.NET Core Web Ap...

E"\ xUnit Test Project (ME...

%88 Class Library (NET Co... 2 Monitoring Team Foundation Server
2018

ASP.MET Web Applica.. & Monitoring on-premises Team Foundation
Server deployments is an important part of

*D ASP.NET Core Web Ap... = keeping them running smoothly, especiall...

Create new project... Meore news...

Output Package Manager Console Error List .. Web Publish Activity Task Runner Explorer

The Start Page is fully customizable, so if you do not want to see the news section,
for example, containing developer news from Microsoft's official channels, then you
just have to close the collapsed list or remove it completely. You can customize the
Start Page much more, and you can look up the details in MSDN at nttps://msdn.micr
osoft.com/en-us/library/f££425532.aspx, should you be interested in doing so.

https://msdn.microsoft.com/en-us/library/ff425532.aspx

One of the most important features of Visual Studio is IntelliSense. It helps
developers to be much more productive by offering features like List Member,
Parameter Info, Quick Info, and Complete Word. It has been improved in Visual
Studio 2017 with some very interesting new features, since you can now filter by
type (class, namespace, or keyword) and by CamelCase search.

It is also possible now to select the best matching results from the list of results,

instead of just picking the top one:

// This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
public void Configure(IApplicationBuilder app, IHostingEnvironment env)

1
if (env.IsDevelopment()}}

{

app.UseDeveloperExceptionPage();
app.UseBrowserLink();

“ | IServiceProvider lApplicationBuilder.ApplicationServices { get; set; }

app..,
} p |App|icationService5
sl '8 Euid
{ app.m Equals
} @ GetHashCode
@ GetType

app.lUses (}_j‘:‘ Map

@, MapWh
app.User' p e

B Mew
{ :
rout A Properties
F o 9
OE

Gets or sets the [ServiceProvider that provides access to the application's service container.

v

UARLIS AT

The Code Refactoring and Live Code Analysis features of Visual Studio 2017
accelerate development and assure readable and maintainable code. For example,
you can add missing namespaces or remove unnecessary namespaces automatically:

Husing Sy

1 Y5 3
2 using System.Collections.Generic;
3 using System.Lling;
- using System.Threading.Tasks;
5 using Microsoft.AspNetCore.Builder;
& using Microsoft.AspNetCore.Hosting;
7 using Microsoft.AspNetCore.Mvc;
8 using Microsoft.Extensions.Configuration;
9 using Microsoft.Extensions.DependencyInjection;
18 using Microsoft.Extensions.Logging;
12 = ; 2 .
13 Remove Unnecessary Usings | » || HSE0E System;
: : using System.Collections.Generic;
14 - public class Startup using System.Ling;
15 i using System.Threading.Tasks;
16 = public Startup(ICor using Microsoft.AspNetCore.Builder;
17 { us::lng MJ'_.cr'uscht .Mpﬂe‘tcnre.Hns'_ﬁing;
using Microsoft.AspMetCore . Mvc;
13 Configuration - using Microsoft.Extenszions.Configuration;
19 } using Microsoft.Extensions.DependencyInjection;
268 using Microsoft.Extensions.Logging;
21 public IConfigurat]
22
23 [/ This method gets Preview changes the container
24 = public veid Configl Fixall occurrences in: Document | Project | Solution
25 {
26 services., AddMve();
27 }

Here is an example of a Code Refactoring suggestion:

23 /! This method gets called by the runtime. Use this method to add services to the container.
24 - public void ConfigureServices(IServiceCollection services)

25 {

24 W - services. AddMve();

23

55 Use expression body for methods | » | .-

4 J/f This method gets called by the runtime. Use this method to add services to the container.

29 /{ This method g public void configureservices{Iservicecollection services) pipeline.
30 - public wvoid Conf

37 services. addsve();

32 = if (env.IsDe public woid Configureservices(IserviceCollection seruicesjewices.nﬂdﬂvc(};

33 {

34 app.Usell -:-

b npp-S=ch Preview changes

36 1

As the name depicts, the Find All References feature allows a developer to easily
and quickly find all references of a method or an object. Coloring, grouping, and a
Peek Preview functionality aid visually to better navigate within your code and really
help to understand it:

29 // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
public void Configure(TApplicationBuilder ap=

TP L R R P ——— S |

31 ; i ¢ Quick Actions and Refactorings... Ctrl+;
32 = if (env.IsDevelopment()) Mot B2
33
34 app.UseDeveloperExceptionPage(); Remove and Sort Usings Ctrl+R, Ctrl+G
35 app.UseBrowserLink(); E Pesk Definition Alt+F12
36 T S L w7
o = m Go Te Definition F12
) S Find All References Ctrl+K, R
Entire Selution = | o | & | | Group by: Project then Definiti¢ 7 yijew Call Hierarchy Ctr+K, Ctrl+T Search Find All References P
Code Breakpoint » File Line Col |Project
4 et le (5
apactearcsmple Ol A RunTo Cursor Ctrl+F10
&1 |ApplicationBuilder app (5}
app.UseDeveloperExceptionPage(); Execute in Interactive Ctri+E, Ctri+E Startup.cs 34 17 aspnetcoresample
app.UseBrowserLink(); Snippet 3 Startup.cs 35 17 aspnetcoresample
app.UseExceptionHandler("/Errar"); ¥ cu Ctrl+X Startup.cs 38 17 aspnetcoresample
app.UseStaticFiles(); g co CtrleC Startup.cs 42 13 aspnetcoresample
app.UseMvciroutes =» - Startup.cs 44 13 aspnetcoresample
Paste Ctrl+V
Annotation >
Outlining 3
4 »

The Peek Definition and Go to Definition features serve to examine the definition of
a method, interface, or class either within a popup window, without changing the
current window, or by directly opening the file containing the source code with the
requested definition. The Go To Implementation feature does the same, but navigates
to the implementation instead:

23 /{ This method gets called by the runtime. Use this method to add services to the container.
24% [public void ConfigureServices(IServiceCollection serwices)
~ Quick Actions and Refactorings... Ctrl+; M
23 // This method gets called by the runtime Rename... F2 k- -
24 El ublic wvoid ConfipgureServices(IServiceCo]
25 o E £ (Remove and Sort Usings Ctrl+R, Ctrl+G
26 services.AddMvc(); T Peek Definition Alt+F12
;; ¥ % GoTo Definition F12 T
29 // This method gets called by the runtimg Go To Implementation Ctrl+F12 ipeline.
38] public void Configure(IApplicationBuildej Find All References Ctrl+K, R
31 i . | :
32 4 if (env.IsDevelopment()) s View Call Hierarchy Ctrl+K, Ctrl+T
33 { Breakpoint »
34 app.UseDeveloperExceptionPage(): X
&k Run To Cursor Ctrl+F10
25 i Execute in Interactive Ctrl+E, Ctrl+E
26 services.AddMve(); z
27 } Snippet 3
28 M cut Ctrl+X
29 // This method gets called by the runtime. Use this =
30 = public void Configure(IApplicationBuilder app, IHos{ Op o it
31 1 Paste Ctrl+V
32 = if .IsDy 1 it
(env.IsDevelopment()) P :
33 {
34 app.UseDeveloperExceptionPage(); Outlining 3
35 app.UseBrowserLink();
36 i

Another important feature, one of our favorite features, by the way, is Live Unit
Testing. It requires Visual Studio 2017 Enterprise Edition and allows you to
automatically run unit tests in the background after each modification or compilation
of your code. It can be configured and activated in the Test Settings. You can set, for
instance, the number of test processes, maximum duration for each test, and
maximum memory consummation:

ﬂuﬁ AspCoreSamplefpplication - Microsoft Visual Studic Preview
File Edit View Project Build Debug Team Tools | Test | Analyze Window Help

_ |ﬁ3"’ Hd‘| . il Run 3 - }IISE}(press'O'|p =
Debug L
Test Explorer Playlist -
S [z~ E Search . :
Test Settings * | § Run Tests After Build

Run All | Run.. = | Playlist : All Tests

Windows £} Select Test Settings File

Build your solution to discover all available
tests, Click "Run All* to build, discover, and
run all tests in your solution.

Default Processor Architecture

Keep Test Execution Engine Running

There are many more interesting and exciting features in Visual Studio 2017, and we
invite you to visit the official Visual Studio web page at nttps://docs.microsoft.com/en
~us/visualstudio/welcome-to-visual-studio fOr more details. It is key for a developer to
know his developer IDE as best as he can and to familiarize himself with a lot of its
features which can then help him to do his job better and faster. So, do take some
time to look at this before you start developing your applications.

https://docs.microsoft.com/en-us/visualstudio/welcome-to-visual-studio

Creating your first ASP.NET Core
2.0 application in Visual Studio
2017

You have patiently read the previous chapters, understood what you will be learning
by reading this book, and prepared your developer machine. You are now ready to
create your first sample application.

Let's look at the different options you have for creating your first ASP.NET Core 2.0
application in more detail.

When creating a new project in Visual Studio 2017, the first thing you see is the
template explorer displaying a tree view for choosing between installed, language-
specific, and online templates.

After having selected the template source in the tree view, the different templates are
shown. For ASP.NET Core, you see Console App, Class Library, Unit Test Project,
xUnit Test Project, and ASP.NET Core Web Application (.NET Core), for example.

Since some of the templates integrate multiple application types, you sometimes
have to make additional choices to specify what exact type of application you want
to create. This is the case for ASP.NET Core web applications, since you have to
choose between an empty, Web API, Web Application, or Web Application (Razor
Pages) project template. Additionally, you can enable Docker support and change the
authentication mode between no authentication, an individual user account, a work
or school account, or Windows authentication.

The following are step-by-step instructions for creating your first ASP.NET Core 2.0
sample web application:

1. If the NET Core 2.0 SDK is not yet installed, then download and install .NET
Core Preview 2 from https://www.microsoft.com/net/core/preview.

Note that this step might no longer be needed at the time of reading this
o book, since it should have been released officially by then.

https://www.microsoft.com/net/core/preview

2. Start Visual Studio 2017.
3. Create a new project by clicking on File | New | Project:

EQE Start Page - Microsoft Visual Studio Preview

File | Edit View Project Debug

Team Tools

Mew

Open
& Start Page

Close

Close Solution

Save Selected ltems

Save Selected ltems As...
w¥ Save All

Source Control

Page Setup...
Print...

Account Settings...

Recent Files

Recent Projects and Selutions

E3 Exit

Ctrl+5

Ctrl+Shift+5

Ctrl+P

Alt+F4

4

3

Test Analyze Window Help

i3 Project... Ctrl+Shift+N
3 Web Site... Shift+Alt+M
#3 File... Crl+M

Project From Existing Code...

Get Startead

Mew to Visual Studic? Check out coding tutorials and sample projects
Get training on new frameworks, languages, and technologies

Create a new private code repo for your project

See how easy it is to get started with cloud services

Discover ways to extend and customize the IDE

Recent

4. Select as project template Visual C# | .NET Core | ASP.NET Core Web
Application (NET Core):

Mew Project

b Recent [.NET Framework 4.6.1 = Sort by: | Default -]
e Oﬁ Console App (NET Core)
4 Visual C# &
Windows Classic Desktop ..EIESH! Class Library (MET Core)
Web i
MET Core Ec Unit Test Project (NET Core)
MET Standard -
Cloud Ec uUnit Test Project (MET Core)
Test
I: Other Languages ASP.MNET Core Web Application (NET Core)

I: Other Project Types

B Online

Not finding what you are looking for?

Open Visual Studio Installer

Visual C#

Visual C£

Visual C#

Visual C#

Visual C#

MName: AspNetCoreSampleApplication
Location: |C:\Users\Jason.DeOIiveira\ v|
Solution name: AspMNetCoreSampleApplication

Search (Ctrl+E)

Type: Visual C#

Project templates for creating ASP.NET
Core applications for Windows, Linux and
macO5 using .MET Core,

Browse...

Create directory for solution
l:‘ Add to Source Control

5. You are now able to select the specific web application type. Select Web
Application (Razor Pages) and leave the Docker support (disabled) and
authentication (No Authentication) options unchanged:

Mew ASP.MET Core Web Application (MET Core] - AspMetCoreSamplefpplication ? X

ASP.MET Core 2.0 * | Learn moare

A project ternplate for creating an ASP.NET Core

application with example ASP.NET Razor Pages content.
N OB OB el @

Empty Web API Web Web Angular Learn more
Application T Te1{T0]
(Razor Pages)
&
React.js React,)s and
Redux

Change Authentication

Authentication Mo Authentication

[] Enable Docker Support

0% Windows

Requires Docker for Windows
Docker support can also be enabled later Learn more

| oK || Cancel ‘

Note that at the time of the elaboration of this book, only Visual Studio

2017 Preview 15.3 had support for ASP.NET Core 2.0. It should be
included in the standard version, though, and at the time of publication.

6. After the sample application project has been generated, a project start page is
displayed. Here, you can configure additional options such as connected
services (Application Insights, and more) and publishing targets (Microsoft
Azure App Services, IIS, FTP, Folder, and more). Leave everything unchanged:

Eﬂg AspMetCoreSampleApplication - Micresoft Visual Studio Preview

File Edit View Project Build
-o|B-am

AspMetCoreSampleApplication &

[Come

Connected Services

Publish

o
i
]
4
jul
£

PENT:

Output Package Manager Console

7 Ready

Debug

= | Debug =~

ASP.NET Core

Learn about the NET platform, create your first application and extend it to the cloud

Error List ...

Tools Test
Any CPU

Team

</>

Build Your App

Get started with
ASP.NET Core

Browse docs,
samples, and
tutorials

ASP.NET Core
Authentication

Breakpoints

Analyze

= P 115 Express ~ c,-‘ M

Web Publish Ac

Window Help

Add a service

D

Connect to Azure

Sign up for free Telemetry with

- Application Insights
Publish your PP g
website to Azure More connected

> services
Set up continuous
delivery

Azure Publish
Quickstarts

Task Runner Explorer

& | Quick Launch (Ctrl+Q) P - o x

Jason de OLVERA - FF]

Solution Explorer > 1 x
E-leo-sam|
Search Solution Explorer (Ctrl+$) P~

.

fa Solution 'AsphetCoreSampleApplicatio
4 [z1] AspNetCoreSampleApplication
& Connected Services
Dependencies
S Properties
@ wwwroot
Controllers
Models
Views
&T appsettingsjson
£T bowerjson
£T bundleconfig.jsen
c# Program.cs
c# Startup.cs

4

CLINLYS M Team Explo... Notifications

A Add to Source Control a

7. You can now start debugging your application by pressing F'5 or by clicking on

Debug | Start Debugging:

pq Visual Studio 5 3

There are powerful new features in Visual Studio for building modemn web

Application uses How to Overview Run & Deploy
= Sample pages using ASP.NET = Manage User Secrets using Secret « Conceptual overview of what is « Run your app
Core Razor Pages Manager. ASPNET Core » Run tools such as EF migrations
« Bower for managing client-side « Use logging to log a message « Fundamentals of ASP.NET Core and more
libraries « Add packages using NuGet such as Startup and middleware. « Publish to Microsoft Azure App
« Theming using Bootstrap « Add client packages using Bower. « Working with Data Service
« Target development, staging or « Security

production environment.

Client side development

Develop on different platforms
Read more on the documentation
site

@ 2017 - AspCoreSampleApplication

Creating your first ASP.NET Core
2.0 application via the command
line

In the previous section, you saw how to create your first ASP.NET Core 2.0 sample
application with Visual Studio 2017, and this should be the preferred method for
most common developers.

However, if you prefer using the command line or Visual Studio Code, which we are
going to introduce a little later in the book, then using Visual Studio 2017 is not
really an option. Luckily, .NET Core and ASP.NET Core 2.0 provide full support for
the command line. This might even be your only option on other operating systems
such as Linux or macOS. The same command-line instructions work on all the
different operating systems, so, once you get used to them, you can work on any
environment.

Let's see now how creating your first sample application using the Windows
command line works:

1. If the .NET Core 2.0 SDK is not yet installed, then download and install .NET
Core Preview 2 from https://www.microsoft.com/net/core/preview.

Note that this step might no longer be needed at the time of reading this
o book, since it should have been released officially by then.

2. Create a folder for your sample application, mkdir aspnetcoresample.

Move into the created folder, ca aspnetcoresampie.

4. Create a new web application based on the empty ASP.NET Core 2.0 web
application template, dotnet new web.

(O8]

Previous versions of .NET Core required an additional -+ parameter
for choosing the template (dotnet new -t web). If you get an error when
executing dotnet new web, it is a good indication that you need to install

ﬂ .NET Core 2.0.

https://www.microsoft.com/net/core/preview

A\ F 4

Note that you can verify your .NET version by entering dotnet (With no
parameters) if you are not sure about your environment, since it will
display the current .NET Core version.

5. Run the sample application by executing dotnet run:

BN Administrator: Command Prompt - dotnet run A O W

W web
ully.

er than Microsoft, see https://aka.ms/template-3pn for details.

sproj...

MSBuild fi
ild fi
npleted in 2,

coresample>dotnet run

\aspnetcoresample

6. Open a browser and go to nttp://1ocalnhost:5000. If everything worked correctly,
you should see a Hello World! page:

B3 localhost w4
— O localhost
Hello World!

You have seen how to create your first sample application either by using Visual
Studio 2017 or the command line. You will now see how to use Visual Studio Code
and how it helps you when building an ASP.NET Core 2.0 application on Linux or
macOS.

Visual Studio Code as a
development environment

Visual Studio Code is a lightweight and powerful cross-platform development
environment for Windows, Linux, and macOS.

You can use a wide range of programming languages such as JavaScript, TypeScript,
and Node.js as well as C++, C#, Python, PHP, Go, and the .NET Core and Unity
runtimes via language and runtime extensions.

It comes with a streamlined, clean, and very efficient user interface. There is a file
and folder explorer on the left and a source code editor on the right, showing the
contents of files you have opened and are currently working on:

Pl;.lgram.cs— aspnetcoremvcsample — Visual Studio Code < @ v 2311 &

EXPLORER

4 OPEN EDITORS

[

Main(ing[] args)

BuildwebHost (args).Run();

[args) =

TERMINAL 1: /bin/bash

jason@ubunt

Ln14,Col 6 Spaces:d UTF-8withBOM CRLF Ct @

The user interface consists of the following areas:

e Activity bar: Provides several different views and additional context-specific
indicators such as outgoing code changes when Git is enabled.

¢ Sidebar: Contains a file and folder explorer for working on your projects.

e Editor groups: This is the main area for working with your code and
navigating within it. Up to three source code editor windows can be opened side
by side at the same time.

e Panels: Serves to display panels with output or debug information, errors and
warnings, or an integrated terminal.

e Status bar: Additional information concerning projects and files you have
edited.

Please go to nttps://code.visualstudio.com/docs for additional information on Visual
Studio Code and its capacities and functionalities. It will be our primary choice for

https://code.visualstudio.com/

illustrating how to build ASP.NET Core 2.0 applications on Linux.

How to install Visual Studio Code
on Linux

We are now going to explain how easy and fast it is to install Visual Studio Code on
Linux. One of the most popular Linux distributions, Ubuntu 16.04, will serve as an
example.

If you do not have a physical or virtual installation of Linux Ubuntu available, you
can easily install it in Azure for trying out Visual Studio Code and understanding the
various ASP.NET Core 2.0 examples, and then connect via Microsoft Remote
Desktop app to it.

In this case, select the Linux Ubuntu 16.04 LTS image from the Azure Marketplace
and create a new Linux Ubuntu VM in Azure. Leave all of the default options, then
configure it to allow remote desktop connections (install compatible desktop, install
xrdp, open port 3389, and more):

ft Azure New

MNouveau — -
M Search the Marketplace

Tableau de bord
Azure Marketplace

Groupes de ressources

— Windows Server 2016 VM

L 11} F g TP Ty -
=2 Toutes les ressources Quickstart tutorial
Compute

Récent Mise en réseau Ubuntu Server 16.04 LTS VM

Quickstart tutorial @

App Services Storage

- , Web + mobile
st Bases de données SQL
Conteneurs Quickstart tutorial

lﬂ Machines virtuelles (classi...
Databases
SQL Database

B8 machines virtuelles Data + Analytics Quickstart tutorial

Let's see how to install Visual Studio Code on Linux Ubuntu:

1. First, download the Linux Ubuntu install .«en package (64-bit) from nttps://go.m
icrosoft.com/fwlink/?LinkID=760868.

T T thic A WS Code in Ao

Documentation For Visual studie Code - Mozilla Firefox ty B o) 21z 4o
-§ ud Documentation for... x
’ € Da visualstudio.com
E 0 VisualStudio Code Doss Updates Blog Community Extensions FAQ Download Open menu
*_ ’ g Version 1.13 is now available! Read about the new features and fixes in May. x
é Thanks for downloading VS Code for Linux! cotid

SETUP oL
GET STARTED You have chosen ko open; First St
. Gett [code_1.13.1-1497464373_amd&4.deb Keyboard shortcuts
s which is: Deblan package (41,8 MB) Crown
e From: https://az764295.v0.msecnd.net e
% Visual St psilf your Siny
SR desktop ¢ what should Firefox do with this File? port
E ERTERGION for Javas Open with | Software Install (default) v ther d Subseribe
AUTHORING anguage i /)
1ORING language O save Flle ty) k question
EXTENSIBILITY Begin you
REFERENCE Do this automatically For files like this frem now on. d Follow @
— OTH . # Reguest features
n . Visua
- Cancel QK i Report issues
Pl
var server = express();
server.use(bodyParser.json());
server.g‘
@ argusents
configure
defavltConfiguration
engine
w oot
@ Length
o settings
Stall
Status: Running = ﬂ

Open a new Terminal window in Ubuntu.

Install the downloaded package via sudo dpkg -i <file>.deb.

Then, enter sudo apt-get install -f.

Set Visual Studio Code as your default text file editor by typing the command

xdg-mime default code.desktop text/plain.

il

The installation will begin and automatically install the APT repository and

signing key for enabling automatic package updates, as well as Visual Studio
Code:

https://go.microsoft.com/fwlink/?LinkID=760868

ol jason@ubuntu-asp-core: ~/Downloads

jason@ubuntu-asp-core:~5 ls

Desktop Downloads Music Public Videos

Documents examples.desktop Pictures Templates

jason@ubuntu-asp-core:~% cd Downloads/

jason@ubuntu-asp-core:~/DownloadsS sudo dpkg -i code 1.13.1-1497464373_amd64.deb

[sudo] password for jason:
selecting previously unselected package code.
(Reading database ... 174260 files and directories currently installed.)
Preparing to unpack code 1.13.1-1497464373 amd64.deb .
Unpacking code (1.13.1-1497464373) ...
Setting up code (1.13.1-1497464373)
Processing triggers for gnome-menus (3.13.3-6ubuntu3.1)
i triggers for desktop-file-utils (@.22-1ubuntus)
triggers for bamfdaemon (©.5.3~bzr@+16.04.20160824-0ubuntul)
Jusr/share/applications/bamf-2.1index...
Processing triggers for mime-support (3.59%ubuntul) ...
jason@ubuntu-asp-core:~/Downloads$S sudo apt-get install -f
Reading package lists... Done
Building dependency tree
Reading state information... Done
® upgraded, ©® newly installed, ® to remove and 241 not upgraded.
jason@ubuntu-asp-core:~/Downloads$ xdg-mime default code.desktop test/plain
jason@ubuntu-asp-core:~/Downloads$ |J

You can also manually install the repository and signing key, update the package
cache, and then finally start the Visual Studio Code package installation, as follows:

1. Open a new Terminal window in Ubuntu:

curl https://packages.microsoft.com/keys/microsoft.asc | gpg --
dearmor>microsoft.gpg

sudo mv microsoft.gpg /etc/apt/trusted.gpg.d/microsoft.gpg

sudo sh -c 'echo "deb [arch=amd64]
https://packages.microsoft.com/repos/vscode stable main" >
/etc/apt/sources.list.d/vscode.list'

| sudo apt-get update

| sudo apt-get install code

2. Set Visual Studio Code as your default text file editor by typing the command

xdg-mime default code.desktop text/plain.

For more information and details on how to install Visual Studio Code
on other Linux distributions such as RHEL, Fedora, CentOS,
openSUSE, SLE, or others, please go to https://code.visualstudio.com/do

cs/setup/linux.

https://code.visualstudio.com/docs/setup/linux

Creating your first ASP.NET Core
2.0 application in Visual Studio

Code

You will now see how to initialize your first ASP.NET Core 2.0 application using
the built-in Visual Studio Code terminal window. Then, you are going to install all of
the necessary extensions to be able to run and debug it at the end:

1. Start Visual Studio Code; no folder has been opened in the Explorer viewlet
yet:

2. Click on Open Folder, and then click on Create Folder. Name the folder
aspnetcoremvcsample and click on OK:

G\I E R
4 QPEN EDITORS
p 4 NO FOLDER OPENED

You have not yet opened a
'{F folder.
Open Folder

| | 1||[#jason | Documents | aspnetcoremvcsample Create Folder

Places Mame
Q, search
& Recently Used

« Size Modified

[# jason

@ Desktop
2 File System
M Floppy Disk
il Documents
il Music

[® Pictures

IH videos

i Downloads

3. Display the integrated terminal window via View | Integrated Terminal and
initialize a new ASP.NET Core 2.0 MVC project by entering dotnet new mvc:

G\I E> ER

4 OPEN EDITORS

p 4 ASPNETCOREMVCSAMPLE

b Controllers

TERMINAL 1: dotnet

bunt -C :]
template "ASP. Co / ontroller) c
1 ntai 0 s other than Micro

ing pos n action
Running 'dotnet .
proj

‘aspnetcoremv iple/aspnetcore

netcoremvcsamp 1 netcoremvcsamp Le

4. When opening any of the C# files, you are asked to install additional project
dependencies and Visual Studio Code extensions. Do this to be able to build,
run, and debug your application in the next steps:

Startup.cs X

mmended

(p
Reload

Mono Debug
\ | Studi deb

Reload 13

rtup
Startup(IC configuration)

Configuration = figuration;

ion Configuration {

1:/bin/bash

Ln1,Col1 Spaces:4 UTF8withBOM CRLF & @

5. Modify the 1aunch.qson file in the .vscode folder and set the debugger to NET
Core Launch (web):

EXPLORER {} launch.json
4 OPENEDITORS
{} launchjson
HomeController.
4 ASPNETCOREMVCSAMPLE
4 yscode

{} launch.json

4 Controllers

HomeController.cs

Program.cs

Startup.cs .’. : o s Add Configuration...

6. Set a breakpoint somewhere in the code and start debugging by either pressing
F5 or clicking on the green flash in the Debugging viewlet. Try hitting the
breakpoint; everything should work correctly:

(P R
4 OPEN EDITORS
{} launchjson .v
HomeController.c
4 ASPNETCOREMVCSAMPLE

4 Controllers
HomeConkroller.cs
Maodels

ctionResult Contact()

viewData["Message"] = "Your contact page."ﬂ

appsettin:

aspnektcore

Program. eturn 14 rro ! [R d ent?.Id

Startup.cs

©0 A0 Successfully installed .NET Core Debugger. Ln 27, Col 56 (43 selected) Spaces:4 UTF-8withBOM CRLF C# d aspnetcoremvesample @)

Creating your first ASP.NET Core
2.0 application in Linux

To create and run your first sample application using only the Terminal window in
Linux, you have to do the following steps:

1. If the .NET Core 2.0 SDK is not yet installed, then download and install .NET
Core Preview 2 from https://www.microsoft.com/net/core/preview for your Linux
distribution. Here is an example of how to do that for Ubuntu:

sudosh -c 'echo "deb [arch=amd64]
https://apt-mo.trafficmanager.net/repos/dotnet-release/
xenial main" > /etc/apt/sources.list.d/dotnetdev.list’'

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
--recv-keys 417A0893

sudo apt-get update

sudo apt-get install dotnet-sdk-2.0.0-preview2-006497

2. Create a folder for your sample application,

mkdir ~/Documents/aspnetcoremvcsample.

Move into the created folder, cd ~/Documents/aspnetcoremvcsample.

4. Create a new web application based on the ASP.NET Core 2.0 MVC web
application template, dotnet new mvc.

(98]

@ @ F jason@ubuntu-asp-core: ~/Documents/aspnetcoremvcsample

jason@ubuntu-asp-core:~/Documents$ mkdir ~/Documents/aspnetcoremvcsample
jason@ubuntu-asp-core:~/Docume cd ~/Documents/aspnetcoremvcsample/
jason@ubuntu-asp-core:~/Documentsfaspnetcoremvcsample$ dotnet new mvc

he template "ASP.NET Core Web App (Model-View-Controller)" was created success
ully.

his template contains technologies from parties other than Microsoft, see http
5: //aka.ms/template-3pn for dethils.

Processing post-creation actions...
Running 'dotnet restore' on fhome/jason/Documents/aspnetcoremvcsample/aspnetcor
mvcsample.csproj...

Restoring packages for fhome/jason/Documents/aspnetcoremvcsample/aspnetcoremv
sample.csproj...

Installing Microsoft.IdentityModel.Logging 1.1.3.

Installing System.Collections.Immutable 1.3.8.

Installing System.Xml.XmlSerializer 4.8.11.

Installing System.Xml.XmlDocument 4.0.1.

Installing runtime.osx.10.18-x64.runtime.native.System.Security.Cryptography.
pple 4.3.0.

Installing System.Threading.Tasks.Extensions 4.0.0.

Installing System.Security.Cryptography.Csp 4.0.0.

Installing Microsoft.NETCore.App 2.0.0-preview2-25487-081.

Installing System.Security.Cryptography.Cng 4.2.0.

Installing System.Security.Cryptography.OpenSsl 4.0.0.

5. Run the sample application by executing dgotnet run:

https://www.microsoft.com/net/core/preview

jason@ubuntu-asp-core: ~/Documents/aspnetcoremvcsample

Installing NuGet.Frameworks 4.0.0.

Installing Microsoft.Build 15.3.8-preview-008388-01.

Installing System.Diagnostics.TraceSource 4.0.0.

Installing Microsoft.Build.Framework 15.3.0-preview-000388-01.

Installing Microsoft.Build.Tasks.Core 15.3.08-preview-800388-01.

Installing Microsoft.Build.utilities.Core 15.3.0-preview-000388-01.

Installing System.Text.Encoding.CodePages 4.0.1.

Installing System.Diagnostics.Contracts 4.0.1.

Installing System.Collections.Immutable 1.2.0.

Installing System.Collections.NonGeneric 4.08.1.

Installing System.Diagnostics.FileVersionInfo 4.0.0.

Installing System.Diagnostics.Process 4.1.0.

Restore completed in 2.86 sec for [home/fjason/Documents/faspnetcoremvcsamplefa
spnetcoremvcsample.csproj.

Restore succeeded.

jason@ubuntu-asp-core:~ E s e$ dotnet run
Hosting environment: Production

Content root path: /home/jason/Documents/aspnetcoremvcsample

Mow listening on: http://localhost:5000

Application started. Press Ctrl+C to shut down.

| HomePage-aspnet... x W&

@ | localhost:

DQVisuaIStudio‘ g 3

There are powerful new features in Visual Studio for building
modern web apps.

Application How to Overview Run & Deploy

uses o Add a Controller and View o Conceptual overview of * Run your app

* Manage User Secrets what is ASP.NET Core * Run tools such as EF
* Sample pages using

| ¥ B

using Secret Manager. * Fundamentals of ASP.NET migrations and more
O ASENER o My e Use logging fo log a Core such as Startup and o Publish to Microsoft Azure
[‘ ¢ Bower for managing message middleware Web Apps
= client-side libraries ¢ Add packages using * Working with Data
* Theming using Bootstrap NuGet o Security
* Add client packages using * Client side development
Bower. * Develop on different
o Target development platforms
staging or production * Read more on the
environment documentation site

© 2017 - aspnetcoremvesample

Summary

In this chapter, you have learned how to set up your development environment to be
able to work with ASP.NET Core 2.0. You have seen how to install either Visual
Studio 2017 or Visual Studio Code.

You then created your first ASP.NET Core 2.0 web application in both development
environments, and you have even built a project in Linux to showcase the cross-
platform capabilities.

In the next chapter, we will talk about how to set up a continuous integration pipeline
by using Visual Studio Team Services, including work items and Git branches, as
well as build and release pipelines.

Creating a Continuous Integration
Pipeline in VSTS

Building great applications is not a trivial task. On the contrary, it is a difficult and
complex endeavor in which many actors need to efficiently work together to create
applications that correspond to high-end user expectations.

Today, everything moves very fast and time-to-market is very important for
success. This chapter is going to introduce methods, processes, and tools to help you
optimize your development processes, thus building high-quality software with short
release cycles.

Traditionally, building software is done by planning whole software projects from
beginning to end, writing detailed specifications, developing and testing (often in a
rush), while hoping that everything will work as expected (V-model).

Sometimes this approach works and sometimes it does not. When it does not work,
developers implement features while only testing manually, with the objective of
adding unit tests later. Then, at the end of the project, they have to speed up to assure
on-time delivery and often run out of time.

This leads to projects with significant technical, functional, and quality flaws, with a
high number of bugs and tremendous maintenance effort resulting in long release
cycles. In the worst case, end users will not like the delivered features, thus the final
product could be considered a complete failure.

There is a better way of doing things, something people have been talking about for
some time now, and that you surely have already heard of—Agile methodologies!

Agile methodologies, when combined with continuous integration (CI) and
continuous deployment (CD), provide solutions for building better software with a
fast time-to-market, lower maintenance costs, better overall quality, and higher
customer satisfaction.

While this book is not about Agile methodologies as such, we recommend
familiarizing yourself with the subject, and we are going to explain all of the tools

and processes that accompany and surround it.
In this chapter, we will cover the following topics:

e Continuous integration, continuous deployment, and build and release pipelines
Using Visual Studio Team Services (VSTS) for continuous integration and
continuous deployment

Creating a free VSTS subscription and your first VSTS project

Organizing your work via work items

Using Git as a version control system

Creating a VSTS build pipeline

Creating a VSTS release pipeline

Continuous integration, continuous
deployment, and build and release
pipelines

When using continuous integration, development teams write code, which, after a
code review, gets integrated into a version control system, from where it is built and
tested automatically. This normally happens multiple times a day. Thus, a
development team can detect problems and bugs quickly and fix them as early as
possible, enabling what is commonly called Fail Fast.

Continuous deployment is a natural extension of continuous integration, since it
assures that every application modification after being built and tested is releasable.
It consists of automatically upgrading development, testing, staging, and production
systems.

A pipeline defines a complete development and release workflow. It contains all
of the steps required for conception, development, quality assurance, and testing,
until the delivery of the final product. It includes continuous integration and
continuous deployment processes for building high-quality applications in an
industrialized way.

pipelines, a build and a release pipeline, or have only one single

0 Note that you can separate your development process into two different
pipeline that does it all, depending on your specific needs.

There are various technologies and tools that help you to implement an efficient,
productive, fully-automated, and industrialized software development process based
on continuous integration and continuous deployment. We are going to use Visual
Studio Team Services in the following examples.

Using VSTS for continuous
integration and continuous
deployment

If you need to collaboratively work together and share code, plan and manage your
user stories and development tasks, track progress of your features and bugs, all in an
Agile environment, then VSTS is one of the solutions you can find in the cloud, and
perhaps even the best.

It supports many different programming languages (C#, Java, JavaScript, and more),
various development tools (Visual Studio, Eclipse, and more) and is scalable to any
team size.

Additionally, it is free of charge for up to five users in a private team project, which
1s very helpful for trying out the examples shown in this book.

VSTS provides the following main features:

Work items and the Kanban board: Plan and assign work and tasks
Source code management: Share code in a version control system
Testing: Create and execute test plans containing test cases

Package store: Put your own NuGet packages in a store

Build pipeline: Build code for creating application packages

Release pipeline: Deploy application packages to different release targets

ps://www.visualstudio.com/team-services/features.

o For further information on VSTS and all of its features, please go to ntt

https://www.visualstudio.com/team-services/features

Creating a free VSTS subscription
and your first VSTS project

We will now explain how to create your own free VSTS subscription and your first
project. You are going to use it later to try out and understand the examples
illustrated within this book:

1. Goto https://www.visualstudio.com/team-services and click on the Get Started for
free button:

=. Microsoft Technologies ~ Documentation - Resources « £ Signin

Visual Studio Visual Studio Team Services

Visual Studio
Team Services

Plan better, code together and ship
faster.

Get started for free >

Feedback

2. Log in with your work, school, or personal Microsoft account:

https://www.visualstudio.com/team-services

A

VisualStudio

",f:f’ﬁf
ot 0'0‘1';‘:‘
et tielet
g::':'o‘oﬁ:: fole
e aletets”

LAt
Crtal oty o
S,
L0 !
* / 3
!'::;:: o Work or school, or personal Microsoft account

Email or phone

Password
[Keep me signed in

E0 : . 50 Can't access your account?
o 2 : Create a new Microsoft account
&

AV A

3. If you are connecting for the first time, enter additional information such as
your name, your country, and your email address, then click on Continue:

Visual studio asp.net core 2 book

We need a few more details

Your name;

From:

We'll reach you at:

Microsoft may use your contact information to provide updates
and special offers about Visual Studio. You can unsubscribe at

any time,

To keep our lawyers happy:
By continuing, you agree to the Terms of Service and the
Privacy Statement.

4. Now that your account is created, let's create a new project. For our example,
select Git as version control, click on Change Details, then choose Work item
process—Scrum:

Visual Studio asp.net core 2 book Sign out

Host my projects at:

‘ Pick a memorable name -visualstudio.com

Manage code using:
® & Git

O @ Team Foundation Version Control

We will host your projects in Central US region.

& Change details

To keep our lawyers happy: %
By continuing, you agree to the Terms of Service and the
Privacy Statement.

5. Your new project gets generated, and you are now ready to create your first
work items and Git repositories, as shown later in the book.

Organizing your work via work
items

Work items are used to plan, assign, track, and more generally speaking, organize
your work during a software development project. They help to better understand
what needs to be done and give insights on the status of your project.

Some common work item usages are:

e Create, prioritize, and track user stories for application features
¢ Create and track development tasks necessary to implement user stories

e Create, prioritize, and track application bugs

e Determine application quality and application release dates

e Display progress of user stories, tasks, and bugs in a single Kanban board

As you have seen before, you can choose the work item process during VSTS project
creation. This choice defines the standard work item types (WITs) available.

There are more than 14 WITs by default and you can create your own custom WITs
for advanced scenarios. Most of the time, you will not need to create your own
custom WITs.

Possible work item process choices are:

e Scrum, if your team uses the Scrum methodology and if you want to track your
product backlog items (PBI) on a Kanban board

e Agile, if your team practices an Agile methodology but does not want to
comply with specific Scrum constraints and terminologies

e CMMLI, if your team follows a more formal development tasks follow-up, you
can track requests, changes, risks, and reviews

Here is a list of WITs depending on the work item process:

Domain Scrum Agile CMMI

Requirement
PBI User story
Product planning Change
Bug Bug
Bug
Epic Epic Epic
Portfolio
Feature Feature Feature
Task and sprint planning Task Task Task
Bug backlog management | Bug Bug Bug
Issue
Issue and risk management | Impediment | Issue Risk
Review

In our example, we have chosen the Scrum process. Product owners create epics,
features, and product backlog items (the equivalent to user stories). During the sprint
planning development, tasks are defined and linked to product backlog items.
Everything is visible to the whole team via a Kanban board in the cloud:

G Learning ASP.NET Core...~ Dashboards Code Work Build and Release Test Wiki

Search work items

Backlogs Queries

F S
July 16 - July 30
£ Epics Learning ASP.NET Core 2.0 Team Sprint 1 R
55" Features Backlog Board Capacity Group by Backlogitems Person Al &} /'
£ Backlog items A Collapse all Todo 3h In progress Done
Current Bl Display register form Verify user email
Sprint 1 0 Michel Bruchet 3k o Michel Bruchet 1
Future State New
Sprint 2 Verify password strength
Sprint 3 0 Michel Bruchet 2
Sprint 4
Sprint 5
6 4
St E Create standard user
- Yo—
State New
@ Recycle Bin

Testers create and execute test cases by using the VSTS web portal or Microsoft Test

Manager. They create and assign bugs and code defects and blocking issues can be
tracked:

Test Plans Parameters Configurations Runs Machines Load test

<

Sprint 1: Tic Tac Toe - Test Plan (d: 1) v | ¥ | Test suite: Tic Tac Toe - Test Plan (Suite ID: 82)
+ - 2 = ™% & Tests Charts
* Tic Tac Toe - Test Plan (1) X + New ~ Add existing X) o P Run ~] [x] & e
Outcome Order I Title
@ Active 1 a3 Play a game

VSTS allows you to hierarchically organize your work. You can drill up, drill down,
reorder, and modify parent items as well as use filters in hierarchical views.

For even more information, go to nttps://www.visualstudio.com/en-us/doc
s/work/backlogs/create-your-backlog.

Let's look at the different elements in more detail. An epic can be described as a
large user story with a large amount of work. It must be broken down into features

and smaller product backlog items to be able to fully understand its requirements and
then implement it efficiently during multiple sprints:

https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog

Backlog EBoard

Mew = Create query Column options =

Type Epic X
Title Add

Order Work ltem Type Title State Effort Busin.. Value Area Tags
eE 1 Epic > WM User Registration New Business

2 Epic > W Game Creation New Business

3 Epic > WM Top Player Leaderboard Mew Business

Features decompose epics into smaller apprehensible parts. They consist of a group
of product backlog items that correspond to the detailed expected functionalities:

eatures
Backleg Board

Mew = Create query Column options 1

Type Feature x

Title Add
Order Work ltem Type Title State Effort Busin.. Value Area Tags

ok 1 Feature > W Register standard user MNew Business
2 Feature > W Register Facebook user Maw Businass
3 Feature > W Register Google User MNew Busingss
4 Feature » W Create a new game Mew Business
5 Feature > W Login player MNaw Businass
6 Feature > W Invite another player MNew Busingss
7 Feature > W Mark space MNew Business
8 Feature > W Finish game N Business
g Feature > W List top players MNew Business

A product backlog item is a unit of work that has business value and that is small
enough to be completed during a single sprint. If you cannot finish it in a single
sprint, then it has to be considered a feature and must be decomposed further:

Backlog items
Backlog EBoard

MNew = Create query Column options =3

Type Product Backlog ltem o) X

Title Add
Order Work ltem Type Title State Effort Value Area lteration Path

+ 1 Product Backl... B Display register form New Business Learning ASP.NET Core 2.0
2 Product Backl... B Create standard user MNew Busingss Learning ASP.NET Core 2.0
3 Product Backl... B Display confirmation New Business Learning ASP.NET Core 2.0
4 Product Backl... B connect user with Facebook account MNew Busingss Learning ASP.NET Core 2.0
5 Product Backl... B Register user with Facebook account New Business Learning ASP.NET Core 2.0
6 Product Backl... B Connect user with Google account New Business Learning ASP.NET Core 2.0
T Product Backl... B Register user with Google account New Business Learning ASP.NET Core 2.0
8 Product Backl... B Display form to create new game New Business Learning ASP.NET Core 2.0
g Product Backl... B Login user New Business Learning ASP.NET Core 2.0
10 Product Backl... B Invite another user MNew Business Learning ASP.NET Care 2.0

Tasks describe the development work necessary for implementing the expected

product backlog item functionalities during the sprint. They are linked to product

backlog items for trackability and to be able to automatically calculate project
advancement.

Bugs contain issues that have been raised and that need to be resolved during a
sprint. They are linked to their corresponding product backlog items:

Backlog items

Backlog Board

New = Create query Column options =3

Type Product Backlog ltem o) X

Title Add

Order Work ltem Type Title State Effort Value Area lteration Path

+ 1 Product Backl... ~ B Display register form New Business Learning ASP.NET Core 2.0
Bug # Username not mandatory New Business Learning ASP.NET Core 2.0
Task Verify user email To Do Learning ASP.NET Core 2.0
Task Verify password strength To Do Learning ASP.NET Core 2.0

After defining epics, features, and product backlog items, you can do your sprint
planning and decide what needs to be done in which iteration. Additionally, the
Kanban board provides a great visual representation for better understanding:

Tags

Tags

Learning ASPNET Core 2.0 Team Sprint 1

Backlog Board Capacity
MNew =] Create query Column options =
Type Product Backlog Item W
Title
Order Work ltem Type Title

e Product Backl... ~ B Display register form
Task Verify user email
Task Verify password strength
2 Product Backl... B create standard user
3 Product Backl... B Display confirmation
4 Product Backl... B Display form to create new game
5 Product Backl... B Login user

The working capacity for each team member can be defined for each sprint and a
work detail's report allows you to follow their work achievements in real time:

Learning ASENET Core 2.0 Team Sprint 1

Backlog Board Capacity
o LR
User Days OFf Activity Capacity Per Day
u Jason De Oliveira 0 days |8
- Michel Bruchet 0 days |8
Team Days Off 0 days These days off apply to the whole team.

Add

State Effort Value Area
New Business
To Do
To Do
New Business
New Business
New Business
New Business

Work details On

Work details
< S
Work

Team

(0 of 160 h)
Work By: Activity

Unassigned

0 of 160)

Work By: Assigned To
n Jason De Oliveira
(0of 80 h)

Michel Bruchet

(0of 80 h)

ra
Work details On ¥ []

Iteration Path

Learning ASP.NET Core 2.0\Spri...
Learning ASP.NET Core 2.0\Spri...
Learning ASP.NET Core 2.0\Spri...
Learning ASP.NET Core 2.0\Spri...
Learning ASP.NET Core 2.0\Spri...
Learning ASP.NET Core 2.0\Spri...

Learning ASP.NET Core 2.0\Spri...

Tags

Furthermore, each work item has a state that changes over time. The state allows you
to track work achievements and filter work items for better understanding and
detecting issues.

The following figure shows the various default work item states depending on the
work item process:

Scrum Agile CMMI

New New

Proposed

Approved | Active Active
Work Item States | —,mnmitted | Resolved | Resolved
Done Closed Closed

Removed Removed

You can query for work items, create graphs, and publish them to your VSTS project
home page. This is a very useful feature if you need to retrieve specific work items
or need to get a holistic view of your project:

Results Editor Charts

H A [~} 2 Column options

spe of query 5 Flat list of work items

Filters for top level work items

And/Cr Field Operator Value
+ X Title ~ | Contains Words | game
+ Add new clause
Save query i‘) 2 @ (_9 = Column options
ID Work ltem... Title State Area Path Iteration Path
47 Epic W Game Creation New Learning ASP.NET Core 2.0 Learning ASP.NET Core 2.0
66 Product B.. B Display form to create new game MNew Learning ASP.NET Core 2.0 Learning ASP.NET Core 2.0\Sprint 1
53 Feature W Create 3 new game MNew Learning ASP.MET Care 2.0 Learning ASP.NET Core 2.0
57 Feature ® Finish game MNew Learning ASP.MET Core 2.0 Learning ASP.NET Core 2.0
71 Product B.. B Start a new game New Learning ASP.NET Core 2.0 Learning ASP.NET Core 2.0

75 Product B... B Finish game New Learning ASP.NET Core 2.0 Learning ASP.NET Core 2.0

Using Git as a version control
system

Git has had some considerable success over the last few years. It has become the
preferred distributed version control system among the developer community.

There is a great integration between VSTS and Git, and you have some powerful and
prOdUCtiVe features at your diSpOSﬂl (https ://www.visualstudio.com/en-us/docs/work/back

logs/connect—work—items—to—git—dev—ops):

e @it branches can be created from within your backlog or Kanban board

¢ @it feature branches can easily be created for multiple work items directly from
the VSTS website

e Pull requests and commits are automatically linked to corresponding work items

e Build Summary page shows work items, which are linked to a commit, as
associated work items

Let's see how to create a new Git repository, clone it locally, use it within Visual
Studio 2017, and create your first commit:

1. In your VSTS project, click in the top menu on Code, then click on the Clone in
Visual Studio button:

https://www.visualstudio.com/en-us/docs/work/backlogs/connect-work-items-to-git-dev-ops

G Learning ASP.NET Core .. Dashboards Code Work Build & Release Test Wiki* | i Search work items

© Learning ASP.NET Core 2.0 ¥ Files History Branches Tags Pull Requests

Learning ASPNET Core 2.0 is empty. Add some code!

v~ Clone to your computer

SSH https://jasondeoliveira.visualstudio.com/DefaultCollection/_git/Learning%20A... [y OR 1 Clone in Visual Studio N

Generate Git credentials

Having problems authenticating in Git? Be sure to get the latest version of Git for Windows or our plugins for IntelliJ, Eclipse, Android Studio or Windows command line.

~ or push an existing repository from command line

HTTPS [

git remote add origin https://jasondeoliveira.visualstudio.com/DefaultCollection/_git/Learning%20ASP.NET%20Core%202.0

git push -u origin --all

~ orimport a repository

Import

v or initialize with a README or gitignore

2. A new window will be displayed; select Microsoft Visual Studio Web Protocol
Handler Selector:

How do you want to open this?

. Microsoft Visual Studio Web Protocol Handler

Selector
MNew

. Microsoft Visual Studio Web Protocol Handler

Selector

Look for an app in the Store

«/ Always use this app

3. Visual Studio 2017 is started automatically and you can authenticate with your
work, school, or personal Microsoft account:

Start Page + X

Get Starfad

Open

Learn about new features i
See what's new in the NET

Explore what's new in Visu

Recent

The projects, solutions an
appear here,

The remote host for Git rey
control providers will app
devices you've signed in t

Show output from:

Sign in to your account

VisualStudio

Work or school. or personal Microsoft account

|Ema|l or phone

Password

Sign in

Can't access your account?

© 2017 Microsoft

Terms ofuse Privacy & Cookies

on (NET...
ET Fra...

on (NET...

= Microsoft

ontrel system or open

cz

cz

Developer News

Updating the news channel...

4. Choose the destination folder for your local Git repository and click on the
Clone button to start the download:

Path:

5. Go to Team Explorer - Home and click on Settings:

<) Visual Studio Team Services

Clone from: Learning ASP.NET Core 2.0/Learning ASP.MNET Core 2.0
Remote path: https://jasondecliveiravisualstudio.com/Learning ASP.NET Core 2.0/ g...

Cih\Users\Jason.DeOliveira’\Source\ReposiLearning ASP.NET Core 2.0

Clone ~

Team Explorer - Home

e - ﬁ ¥ | C | Search Work Items (Ctrl+%)

Home | Learning ASP.NET Core 2.0

s

4 Visual Studio Team Services

‘:J Learning ASP.NET Core 2.0/Learning ASP.NET Core 2.0
https://jasondeoliveira.visualstudio.com/Learning ASP.NET Core 2.0/Learning ASP.NET Core 2.

4 Project

Web Portal | Task Board | Team Room

@ Changes
Tl, Sync
{a Settings

6. In Team Explorer - Settings, click on Repository Settings:

| v Branches

| & Work Items

Team Explorer - Settings
e @ ¥ | & | Search Work Items (Ctrl+?)

Settings | Learning ASP.NET Core 2.0

4 Team Project

Security

Group Membership
Work Item Areas
Work Item Iterations
Portal Settings
Project Alerts

4 Team Project Collection

Security
Group Membership

Process Template Manager

4 Git

Global Settings
Repository Settings

|£| Pull Requests

E::i Builds

7. In the Ignore & Attributes Files section, click on Add for each file:

Team Explorer - Repository Settings _—y
. @ ¥ | ¢ | Search Work Items (Ctrl+?) P~

Repository Settings | Learning ASP.MET Core 2.0 >
4 User Name & Email

L] Override global user narne and email settings.

Uzer Mame
Jason de OLIVEIRA

Email Address

jason.oliveira@laposte.net

4 Ignore & Attributes Files

Ignere File
/.gitignore | Edit

Attributes File
/.gitattributes | Edit

8. Return to Team Explorer - Home, and this time click on Changes, enter a
comment for your first commit, and click on the Commit Staged button:

Team Explorer - Changes

€ @ ¥ | ¢ | Search Work Items (Ctrl+2)
Changes | Learning ASP.NET Core 2.0

Branch: master

gitattributes and gitigncre|

Commit Staged ~ Actions = I

4 Related Work Items

Drag work items here to link them to the commit.

4 Staged Changes (2)
4 CA\D

A Ranmct] aarmineg ASDP NET Ch) |
LDeviReposiLearning ASP.NET Core 2.0

| .gitattributes [add]

| .gitignore [add]

9. Your first commit has been created locally; click on the Sync link to push it to

the server:

Team Explorer - Changes
[&] o ¥ ‘ s | Search Work Items (Ctrl+7)

E Changes | Learing ASP.NET Core 2.0

© Commit 53dc3ab4 created locally. Sync to share your changes with the server.

t Branch: master

10. Go to the VSTS website and click on Code in the upper menu; you can see that
your created files have been uploaded:

G Learning ASP.NET Core ..» Dashboards Code Work Build & Release Test Wiki* | &

4 Learning ASP.NET Core 2.0 ~ Files History Branches Tags Pull Requests

¥ master v Learning ASP.NET Core 2.0 / Type to find a file or folder...

<
Contents History
4 Learning ASP.NET Core 2.0

D .gitattributes T Name Last change Commits
5 .gitignore [.gitattributes 3 hours ago 53dc3ab4 gitattributes and gitignore
3 .gitignore 3 hours ago 53dc3ab4 gitattributes and gitignore

That's it! You have created and initialized your Git repository. It's as easy as that!
From here, you have multiple paths you can follow. For instance, leaving everything
in the same branch is not really a very good idea, especially when you have to
maintain multiple versions of your application.

You can get some guidance for different branching strategies from nttp

s://www.visualstudio.com/en-us/articles/git-branching-guidance.

https://www.visualstudio.com/en-us/articles/git-branching-guidance

Using feature branches

The philosophy behind feature branches is that the first thing you have to do each
time you begin working on a new VSTS feature (or even VSTS product backlog
item), is create a new, so-called feature branch.

You then work in this branch completely isolated until you are ready to push your
tested and validated modifications to your master branch (or in more sophisticated
environments, your development branch). Until it is pushed, it will not interfere with
your other features, neither will it cause bugs or lower the overall quality.

If a project deadline approaches and you have not finished all of the planned features
in time, you do not need to stress anymore! Why? Because you can integrate only the
features that are ready for release. You will have a product with fewer features, but
you can be confident that those are going to work as expected without any risks.

Let's look at how to create a feature branch using Visual Studio 2017 and Git:

1. Open Visual Studio 2017, go to the Team Explorer tab, and click on the
Branches button:

Team Explorer - Home >+ 0
© O @ ¥ | & Search Work tems (- 5
Home | Learning ASP.NET Core b

4 Visual Studio Team Services
f:j I Learning ASP.NET Core 2.0/Learning ASP.NET Core 2.0

https://jasondecliveira.visualstudio.com/Learning ASP.NET Core 2.0/Learning ASP.NET Core 2

4 Project
Web Portal | Task Board | Team Roon
| @ Changes | V Branches | |£| Pull Requests
| T¢ Sync | & Work Items | L-:?:-J Builds
| {s} Settings

2. In Team Explorer - Branches, click on the New Branch link:

Team Explorer - Branches
o o ¥ I € | Search Work Items (Ctrl+?)
:Branches | Leamning ASPNETCOre2.0 . .oooooorrre
Mew Branch « | Merge « | Rebase | Actions =
4 Active Git Repositories
Type here to filter the list

4 € Learning ASP.NET Core 2.0 (master)
%2 master

b I remotes/origin

3. Enter a new feature branch name (use the rea- prefix), and click on the Create
Branch button:

Team Explorer - Branches - i x
(<] m ¥ | € | Search Work ltems (Ctrl+%) P~
Branches | Learning ASP.NET Core 2.0 ~ |7
New Branch + | Merge + | Rebase « | Actions
FEA-UserRegistration
master -
Checkout branch

Create Branch = Cancel

4 Active Git Repositories
Type here to filter the list P
4 0 Learning ASP.NET Core 2.0 (master)
%7 master

b 17 remotes/origin

Merging changes and resolving
conflicts

Sometimes, team members work on the same files at the same time, leading to
conflicts. Let's see how to merge changes and resolve conflicts in this case:

1. Create a text file called se110mworia.txt and add it to your local repository. Push
the file to the server, and update the file both on the server and in your local
repository.

2. If you try to push the se11oworia.txt file that has been modified both locally and
in the remote repository, you get an error message and the push fails:

Team Explorer - Synchronization
CoOm¥Y|C

Synchronization | Leamir

€3 Failed to push to the remate repositary. See the Output window for more details.

3. When looking in the output window, you get additional information:

Show output from: Source Control - Git - € x| =g
C:\Dev\Sources\GameServer

Opening repositories:

C:\Dev\Repos\Learning ASP.NET Core 2.0

commit 7af9ces87 created locally in repository C:\Dev\Repos\Learning ASP.NET Core 2.0

Commit e632fasé6 created locally in repository C:\Dev\Repos\Learning ASP.NET Core 2.0

Error: failed to push some refs to 'https://jasondeoliveira.visualstudio.com/learning¥%2@asp.net¥%20core¥202.09/ git/learning
Error: hint: Updates were rejected because the remote contains work that you do

hint: not have locally. This is usually caused by another repository pushing

hint: to the same ref. You may want to first integrate the remote changes

hint: (e.g., 'git pull ...') before pushing again.

4. Click on the Pull link and you will get the remote changes, which will result in
a conflict between your local copy and the remote one. Click either on the
Resolve the conflicts or Conflicts link:

Team Explorer - Synchronization v =

€] ¥ | | Search Work Items (Ctrl+2) £

Synchronization | Learning ASP.NET Core 2.0

@ Pull completed with conflicts in the ‘Learning ASP.NET Core 2.0' repository. Resolve the conflicts
and commit the results.

Branch: FEA-UserRegistration

Sync | Fetch | Pull | Push | Actions v

4 Merge In Progress

i WY merge operation is in progress in the 'Learning ASP.NET Core 2.0' repository. Resolve the
conflicts and commit the results.

A\ Conflicts: 1 | Abort

4 Incoming Commits (1)

5. You will see a list of conflicting files. Click on the conflict you want to resolve
and click on the Merge button:

Teamn Explorer - Resolve Conflicts » 0 X

] ¥ |] Search Work Items (Ctrl+%) P -

Resolve Conflicts | Learning ASP.NET Core 2.0 b
Abort

4 Conflicts (1)
Mame Path
E HelloWorld.tet [both...

Merge

Conflicting content changes have been made.

-)I(- Compare Files

Edited on Remote | Diff | Take Remote
Edited on Logal | Diff | Keep Local

6. You will see the conflicting modifications. Choose which ones you want to
keep (the left, the right, or both) and click on the Accept Merge button:

Merge - HelloWorld...al (both modified)® + X HelloWorld.bet
F AcceptMerge | € 1€ 21 > [M| B~ @-|MH-

1 Conflicts (0 Remaining)
Source: HelloWorld.bd:Remote Target: HelloWerld.tet;Local

1] This is a remote change 5_7/77/_;7/_'/2'7/77/';72
2

100 % - 100 % -
Result: HelloWorld bt

I E:I'his is a remote change
2 This is a local change

7. Back in the Team Explorer, click on the Commit Merge button:

Team Explorer - Resolve Conflicts

Q m ¥ | ¢, | Search Work Items (Ctrl+?)
Resolve Conflicts | Learning ASP.NET Core 2.0

Commit Merge = Abort

4 Conflicts
There are no remaining conflicts

8. Enter a comment and click on the Commit Staged button to finalize and commit
the merge locally:

Team Explorer - Changes v =

Qo & ¥ | | Search Work Items (Ctrl+?)
Changes | Learning ASP.NET Core 2.0

Branch: FEA-UserRegistration

Enter a commit message <Required>

Actions =
4 Merge In Progress

i I merge operation is in progress in the 'Learning ASP.NET Core 2.0' repository. Commit your
changes to complete the merge operation.

Abort

9. After the commit has been created locally, click on the Sync link and then on
the Push link:

Team Explorer - Changes
© O @ ¥

Changes | Learning ASP.NET Core 2.0

G Search Work Items (Ctrl+%)

© Commit c2d30e74 created locally. Sync to share your changes with the server.

10. You should now see that the changes have been uploaded to the remote
repository:

Team Explorer - Synchronization

© <G ¥

Synchronization | Learning ASP.NET Core 2.0

¢ | Search Work Items (Ctrl+?)

O successfully pushed to origin/FEA-UserRegistration.

Creating a VSTS build pipeline

After having planned and organized your work and created your Git repository, you
should now configure a VSTS build pipeline, which will allow you to do continuous

integration of your application:

1. Open Visual Studio 2017 and go to the Team Explorer tab, then click on the
Builds button:

Team Explorer - Home

© - @ ¥ o

Home | Learning ASP.NET Core 2.0
[

4 Visual Studio Team Services
':I Learning ASP.NET Core 2.0/Learning ASP.NET Core 2.0
e 2.0/Learning ASP.NET Core 2

https://jasondeoliveira.visualstudio.com/Learning ASP.NET Core

4 Project
Web I-‘-.1'1c=.|| lask Board | Team Room
® Changes |v Branches ||£| Pull Requests
T¢ Sync | & Work Items | L-;!:-J Builds

'ﬁ} Settings

2. Next, click on the New Build Definition link:

Team Explorer - Builds
o G[¥ I o Search Work Items (Ctrl+9)

Builds | Learning ASP.NET Core 2.0

4 My Builds

4 My Favorite Build Definitions

Drag build definitions here to add them to your
4 Build Definitions
New Build Definitior | Actions

Type here to filter the list

3. The VSTS website is opened and you are presented with a choice of build
definition templates, select the ASP.NET Core template:

I:l Learning ASP.NET Core .. Dashboards Code Work Build & Release Test Wiki* |) Search work items

Builds Releases Library Task Groups Deployment Groups®

Select a template
Or start with an @y Empty process

Featured

.NET Desktop
Build and run tests for .NET Desktop or Windows Classic Desktop solutions. This
template requires that Visual Studio be installed on the build agent.
ASP.NET (PREVIEW)
Build ASP.NET web applications
Choose a template
ffaj ASP.NET Core

Core "
Choose a template that builds your kind of app. Sl pjilg ASP.NET Core web applications

Don't worry if it's not an exact match;
you can add and customize the tasks later.

4. In the new build definition, enter a name and select your default agent queue.
We recommend using Hosted VS2017:

Learning ASP.NET Core 2.0-ASP.NET Core-C

o 4
n B

*Q

Parameters

o Tz
7T
| @ =

£5

+ |» B
.

5. For choosing a source repository, click on Get sources. For our example, we use
the default values (This project, Branch: master, Clean: false):

Learning ASP.NET Core 2.0-ASP.NET Core-C

Get sources Advanced settings

&0
= o
i |

®
Lo |7

f=
5
|

czl-z oz
+ 1% E B B E
E -] o .;\ FA-

o

6. To enable continuous integration, click on Triggers in the build definition
menu, then click on the Enable this trigger button:

g - > Learning ASP.NET Core 2.0-ASP.NET Core-Cl

Tasks Variables Triggers Options Retention History

Continuous Integration
Build every change to matching branches

Enable this trigger

(®) Disabled

>

7. After verifying that the Git repository and master branch have been selected,
correctly click on the Save or Save & queue button. The configuration has been
finished and a build will automatically be triggered each time code is committed
to the repository:

Repositories

0 Learning ASP.NET Core 2.0 ~

Build when any branch changes
D Batch changes while a build is in progress

Branch Filters

Type Branch specification
Include b I_‘? master

+ Add

Path Filters

—+ add

A

Creating a VSTS release pipeline

Your application gets integrated continuously and you have already seen some great
benefits, such as detecting and fixing bugs and issues much faster. Let's not stop
there; improving your development process even further is much easier than you

think!

We will now see how to adopt the continuous deployment of your application by

creating a VSTS release pipeline:

1. Open the VSTS website, click on Build & Release in the upper menu, click on
Releases and then on the New definition button, and select the Empty definition

template:

Dashboards Code Build & Release Test

'-j Learnimg ASP.MET Core ..

Work

Builds Release: Library Task Groups Deployment Groups®

7 Release Naotifications: Release notifications: Try the enhanced experience for rmanaging Release notifications. Learn mor

s¢ Management helps you automate the deplo

n mudtiple environ:

Start by creating a new release definition

+ Mew definstion

Create release definition

Select a template

Deployment

.“G_ % Azure App Service Deployment
2+ Deploy your Web, Mobile, and Function apps to Azure Web App

?::\:\:. Azure App Service Deployment with Performance Test

Daploy your Azure Web App and run a choud based web pericrmance test

Azure App Service Deployment with Slot (PREVIEW)

eploy your Azure Wb App to a staging slot and seap shots to deploy to

produchan.

&

?: Azure App Service Deployment with Test

Deploy and test your Azure Web Apg

g Azure Cloud Service Deployment

Deploy an Azure Cloud Service

1:: Azure Service Fabric Compose Deployment (Preview)

Deploy a docker-compose application to a Service Fabric cluster. -

Empty
Start with an emply definition

m canrgl

2. You can now select the Project and the Source (Build definition) and enable the
continuous deployment, then click on the Create button:

Dashboards Code

Builds Releases Library Task Groups Deployment Groups®

21 Release Notifications: Release notifications: Try the enhanced experience for managing Release notifications. Learn more

Aelease Managernent helps you automate the deployment and festisms sl
your software in multiple environments. You can either fully sutc e

delivery of your software all the way to production. or set Create release definition
automated processes with approvals and on-demand deployments.

Start by creating a new releass definition.

Artifacts
L Maw definitian (@ Getting started Choose a source that publishes the artifact to be deployed
=
Build denkine Choose Later

Learning ASP.NET Core 2.0
Source [Build definitban)

Learning ASP.MET Core 2.0-ASP.NET Core-C| b

¥ Continuous deployment (create release and deploy whenever a build completes)

¢ Previous Creata Cancel

3. The release definition gets created and you can see it in the list:

G Learning ASP.NET Core ..> Dashboards Code Work Build & Release Test Wiki*

Builds Releases Library Task Groups Deployment Groups®

?r Release Notifications: Release notifications: Try the enhanced experience for managing Release notifications. Learn maore

<
D 4~ Definition®: New Empty Definition 14-Jul 2
g h definiti 0 Environments Arfifocts Vorigbles Triggers General Retention History
earch release definitions...
Release Definitions O | Hsae | + Release

e sl L 4+ add environment - 4+ Addtasks | -

£ Runon agent
Environment 1

4+ Add tasks
0 tasks

0R | f&

The shown sample release definition does not really do very much for now. We will
see a much more advanced version later that deploys to Azure, in the corresponding
Azure chapters.

Summary

In this chapter, you have learned about continuous integration, continuous
deployment, and build and release pipelines, what the benefits are, and how to
implement them using VSTS.

You have created a new VSTS subscription and initialized a new project. We then
explored some of the basic concepts, such as work items and Git for source control.
At the end, we illustrated how to configure a VSTS build pipeline, as well as a VSTS
release pipeline, via a practical example.

In the next two chapters, we will explain the basic concepts of ASP.NET Core 2.0
including the Startup class, using middleware, routing, error handling, and many
others.

Basic Concepts of ASP.NET Core
2.0 - Part 1

In the last three chapters, you have seen what ASP.NET Core 2.0 is about from a
global point of view, as well as set up your development environment, including
Visual Studio 2017 (or Visual Studio Code) and a continuous integration and
continuous delivery VSTS pipeline with a Git repository.

This is all really interesting, but very theoretical. Now, it is time to do something
practical, time to go right into the action, time to build something by yourself!

In this chapter, we are going to build an application to showcase the basic concepts
of the ASP.NET Core 2.0 Framework. During the following chapters, we will
constantly be improving this application, while using and illustrating the various
features of ASP.NET Core 2.0 and the technologies surrounding it.

In this chapter, we will cover the following topics:

The startup and program classes

Creating pages and services

Using Bower and layout pages

Applying dependency injection

Using the built-in middlewares

Creating your own middlewares

Working with static files

Using routing, URL redirection, and URL rewriting
Error handling and model validation

Building the Tic-Tac-Toe game

Let's do something fun! Let's build the Tic-Tac-Toe game, also known as noughts
and crosses or Xs and Os. Players will choose who takes the Xs and who takes the
Os. Then, they will be taking turns to mark spaces in a 3x3 grid, one mark per turn.
The player who succeeds in placing three of his marks in a horizontal, vertical, or
diagonal row wins the game.

Players must enter their emails and names for registration to create an account before
being able to start a game. They will receive a game score after each match, which is
going to be added to their total score.

A leaderboard provides information on player rankings and top scores.

For creating a game, a player must send an invitation to another player, then a
specific waiting page is displayed for him until another player has responded. The
other player, after reception of the invitation email, can then confirm the request and
join the game. When the two players are online, the game starts.

As explained in the last chapter, we can use VSTS and its work items to organize
and schedule the implementation of the Tic-Tac-Toe application. For that, we have to
create epics, features, and product backlog items, and then do a sprint planning for
prioritizing and deciding what has to be implemented first.

As you can see in the following screenshot, we have decided to work on five product
backlog items in the first sprint and have added them to the sprint backlog:

Learning ASPNET Core 2.0 Team Sprint 1

Backlog Board Capacity Work details On

New (=] Create query Column options i

Type Product Backlog Item e X

Title Add
Order Work Item Type Title State

< 1 Product Backl... > B Display register form New
2 Product Backl... Bl Create standard user New
3 Product Backl... Bl Display confirmation New
4 Product Backl... Bl Display form to create new game New
5 Product Backl... B Login user New

Do you remember what needs to be done next, before implementing any of the new
features? You don't remember? Maybe features branches ring a bell?

In the last chapter, we showed the best practices for creating developments, which
are 1solated and easier to maintain and release. They consist of creating a feature
branch in the Git repository for every new feature that you want to add to your
application.

Thus, every developer can work on his specific features within his specific feature
branch until he has decided that it is ready to be released.

At the end, all of the features ready for release are merged into a development (or
release or master) branch. Then integration tests are done, and, if everything is
working as expected, a new application version is delivered.

The feature we have chosen to work on first is the user registration, so the first thing
we have to do is create a feature branch called FEA-UserRegistration. If you do not
know how to do that, you can go to chapter 3, Creating a Continuous Integration
Pipeline in VSTS, and get a full step-by-step procedure with thorough explanations:

© Learning ASP.NET Core 20 v Files History Branches Tags Pull Requests

¥ FEA-UserRegistration Learning ASP.NET Core 2.0 / Type to find a file or folder...

Contents Histo
© Learning ASP.NET Core 2.0 &

[@ gitattributes T Name Last change
[3 .gitignore (3 gitattributes 7/13/2017
3 Helloworld.txt [gitignore 7/13/2017

Y HelloWorld.txt 7/13/2017

Conceiving and implementing your
first Tic-Tac-Toe feature

Before we can implement the user registration feature, we have to understand it and
decide how everything should work. We have to define the user stories and
workflows. For that, we need to analyze the Tic-Tac-Toe game description
mentioned previously in more detail.

As explained previously, a user can only create and join games if he has a user
account. To create this account, he has to enter his first name, his last name, his
email address, and a new password. The system then verifies if the entered email
address has already been registered. A given email address can only be registered
once. If the email address 1s new, the user account gets generated, if the email
address is known, an error must be displayed.

Let's look at the user registration process and the different components that have to
interact for implementing it:

1. There is a home page with a link for user registration, where a new user must
click on Register for creating his player account. Clicking on the user
registration link redirects the user to a dedicated Registration Page.

2. The Registration Page contains a Registration Form, where the user must enter
his personal information and then confirm it.

3. A JavaScript client validates the form, submits and sends the data to a
Communication Middleware, then waits for a result.

4. The Communication Middleware receives the request and routes it to a
Registration Service.

5. The Registration Service receives the request, verifies data integrity, checks if
the email has already been used for registration, and either registers the user or
returns an error message.

6. The Communication Middleware receives the result and routes it to the waiting
JavaScript client.

7. The JavaScript client redirects the user so that he can start playing games if the
result is a success, and it displays an error message if the result is a failure.

The following sequence diagram shows the user registration process. It is easier and

quicker to comprehend with a more visual representation:

m Home Page I I Registration Page I IRegistration Forml | Registration Client I I Communication Middleware I I Registration Service
T T | T

1

|
1

|

|

: Open Home Page——»t

:< — Display Page with menu- — —:

————Choose Registration Pageﬂ
1

Iﬁ — — — -Display Page with Registration Form- — — — — |

| I I
I |

i Enter data (first name, etc.) into Registration Form and submit——»
I

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
——Send data to JScript client—»! I
|
|

Ask for user registration—b‘

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|

|

|

|

|

|

|

' : I
:<— ———————————————————— Display wait message - ———————————————————
|

|

|

|

|

|

|

|
|
|
|
T I | —Start registration process—»!
I I [‘
I I [‘
: : } ‘K—Return registration result
| | i€ — — -Notify registration result— — — —
| ! !
| !)

| |
| |
| .|
| |
| |
| |
| |
L S o et B S Page redirect (registration success) or error message (registration failure)= ——————— - }
l] i
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

To get started, we need to create a new empty ASP.NET Core 2.0 Web Application,
which will be used for adding various components and packages in this chapter and
during the rest of the book. We will then add new concepts and functionalities
progressively, which will allow you to really understand what is going on and how
everything works:

Start Visual Studio 2017 and click on File | New | Project.
In the .NET Core section choose ASP.NET Core Web Application, enter the

application name, the location of your repository and the solution name, then
click on OK:

N —

lew Project ? X

b Recent [.NET Framework 4.6.1 =/ Sort by: | Default Search (Ctrl+E)
4 |nstalled A "
o) Console App (NET Core) Visual C# Type: Visual C¥
4 Visual C# Project templates for creating ASP.NET
C# T . 3
Windows Classic Desktop ﬂi! Class Library (.NET Core) Vieual C# Core applllcatlonsfoerdows, Linux and
=z macO5 using .MET Core,
Web
C#
.NET Core ﬁ Unit Test Project (NET Core) Visual C&
NET Standard
c#
Cloud E xUnit Test Project (MET Core) Visual C#
Test
I Other Languages @ ASP.MET Core Web Application (MET Core) Visual C#

b Other Project Types

B Online

Not finding what you are looking for?

Open Visual Studio Installer

Name: TicTacToe
Location: [C:\Users\Jasen.DeOliveiral - Browse...
Solutien name: TicTacToe Create directory for solution

l:‘ Create new Git repository

oK Cancel

Note that if you have not created a Git repository for your application
code yet, you can do it here by ticking the Create new Git repository
checkbox.

3. Choose the Empty template:

ew ASP.NET Core Web A atio ET Core) - TicTacToe § >
ASP.MET Core 2.0 *“ | Learn more
An empty project ternplate for creating an ASP.MET
1 1 1 Core application. This template does not have any
h E @ @ w content in it
Empty Web API Web Web Angular
Application Application Learn more
(Razor Pages)
5.
5:},* {_@"‘)
React,js React.js and
Redux
Change Authentication
Authentication Mo Authentication
[] Enable Docker Support
05 | Windows
Requires Docker for Windows
Docker support can also be enabled later Learn more
‘ 0K | | Cancel ‘

4. A new empty ASP.NET Core 2.0 Web Application project will be generated,
containing only the program.cs and startup.cs files:

Solution Explorer

WEi-|o-5sa@| F -
Search Solution Explorer (Ctrl+5) P~

fa] Solution 'TicTacToe' (1 project)
4 =] TicTacToe
&% Connected Services
e Dependencies
b Properties
& wwwroot
c# Program.cs
c* Startup.cs

Great, we have created our project and are now ready to implement our first feature!

But before doing that, let's take some time and see what Visual Studio 2017 has done
for us behind the scenes.

Targeting different .NET Framework
versions in the .csproj files of your
projects

For every project that Visual Studio 2017 generates, it creates a corresponding
.csproj file, which includes several project-wide settings such as the referenced
assemblies, the NET Framework target versions, the included files and folders, as
well as multiple others.

For example, when opening the ASP.NET Core 2.0 project you created before, you
can see the following structure:

<Project Sdk="Microsoft.NET.Sdk.Web">
<PropertyGroup>
<TargetFramework>netcoreapp2.0</TargetFramework>
</PropertyGroup>
<ItemGroup>
<Folder Include="wwwroot\" />
</ItemGroup>
<ItemGroup>
<PackageReference Include="Microsoft.AspNetCore.All"
Version="2.0.0-preview2-final" />
</ItemGroup>
</Project>

You can see the rargetrramework setting, which allows you to define what NET
Framework versions should be included and used for building and executing the
source code.

In our example, it has been set to netcoreapp2.0, the specific value for using the NET
Core 2.0 Framework:

| <TargetFramework>netcoreapp2.0</TargetFramework>

Note that you can refer to multiple NET Framework versions within
your library projects. In this case, you have to replace the
TargetFramework element with the TargetFrameworks element.

For instance, if you want to cross-target NET Core 2.0 and .NET 4.7,
you have to use the following settings:

<TargetFrameworks>netcoreapp2.0;net47</TargetFrameworks>

When executing your application in Debug mode by hitting the F'5 key, you can see
that multiple folders and files have been created in the application's pebug folder
(\bin\Debug):

» ThisPC » Local Disk (C:) » Users * Jason.DeOliveira » TicTacToe » TicTacToe » bin * Debug

sl
Marme Date modified Type Size

netcoreappd.0 2370772017 21:16 File folder

If you change the .csproj file and add other target frameworks, you will see that
additional folders will get generated. The DLLs for each specific .NET Framework
version are then put into the corresponding folders. The following example uses the
TargetFrameworks Settings for NET Core and .NET 4.7:

#» ThisPC » Local Disk (C:) » Users * Jason.DeOliveira » TicTacToe » TicTacToe * bin # Debug

Mame Date modified Type Size

netd? 23/07/2017 21:19 File folder

netcoreappd.0 23/07/2017 21:16 File folder

Using the Microsoft.AspNetCore.All
metapackage

When looking in the Solution Explorer in the Dependencies | NuGet section, you can
see something very interesting, specific to ASP.NET Core 2.0 projects: the
Microsoft.AspNetCore.All metapackage:

Solution Explorer * 01X
@El-|o-s @ p--

Search Solution Explorer (Ctrl+5) P -

fad Solution '‘TicTacToe' (1 project) o

4 7] TicTacToe
& Connected Services
4 % Dependencies
4 B METCorefpp 2.0
b & Analyzers
4 A MuGet
4 ':[E] Microsoft. AspMetCore All (2.0.0-previewZ-final}
B Microsoft.AspNetCore (2.0.0-preview2-final)
@ Microsoft. AspNetCore. Antiforgery (2.0.0-preview2-final)
@ Microsoft. AspMetCore.Applicationinsights.HostingStartup (2.0.0-preview2-final)
B Microsoft.AspMNetCore. Authentication (2.0.0-preview2-final)
@ Microsoft.AspNetCore Authentication. Abstractions (2.0.0-preview2-final)
@ Microsoft. AspNetCore. Authentication. Cookies (2.0.0-preview2-final)
& Microsoft. AspMetCore. Authentication. Core (2.0.0-preview2-final)
B Microsoft.AspNetCore. Authentication.Facebook (2.0.0-preview2-final)
B Microsoft.AspNetCore Authentication.Google (2.0.0-preview2-final)
@ Microsoft. AspMNetCore. Authentication. JwtBearer (2.0.0-preview2-final)
@ Microsoft. AspMetCore. Authentication. MicrosoftAccount (2.0.0-preview2-final)
B Microsoft.AspNetCore. Authentication.OAuth (2.0.0-preview2-final)
B Microsoft.AspNetCore. Authentication.OpenldConnect (2.0.0-preview2-final)
B Microsoft. AspNetCore. Authentication. Twitter (2.0.0-preview2-final)
@ Microsoft. AspMetCore Authorization (2.0.0-preview2-final)
B Microsoft.AspMNetCore. Authorization.Policy (2.0.0-preview2-final)
B® Microsoft.AspNetCore. AzureAppServices. HostingStartup (2.0.0-preview2-final)
@ Microsoft. AspNetCore. AzureAppServicesintegration (2.0.0-preview?2-final)
@ Microsoft. AspMetCore.CookiePolicy (2.0.0-preview2-final)

L R R~ S A A R

The microsoft.aspretcore.a11 project dependency was added automatically when you
created your ASP.NET Core 2.0 Web Application. This is done by default for this
type of project.

However, uicrosoft.aspretcore.al1 18 not a standard NuGet package, since it does not
contain any code or DLLs. Instead, it acts as a metapackage, referencing other
packages it depends on. To be more specific, it includes all of the packages for
ASP.NET Core and Entity Framework Core, together with their internal and external
dependencies, and takes advantage of the .NET Core runtime store.

In the example, you can see that a wide variety of packages are retrieved, such as
Application Insights, Authentication, Authorization, Azure App Services, and many
others.

In older versions of .NET Core (version 1.0 and 1.1), you had to add those NuGet
packages all by yourself. Now that Microsoft has created the concept of the
ASP.NET Core metapackage, you can find everything in one place.

Furthermore, package trimming excludes binaries, which are not used, so that they
are not published when deploying your applications.

Working with the Program class

The program class 1s the main entry point for ASP.NET Core 2.0 applications. In fact,
ASP.NET Core 2.0 applications are very similar to standard .NET Framework
console applications in this regard. Both have a vain method that is executed when
running the application. Even the basic signature of the uain method, which accepts
an array of strings as arguments, is the same, as you can see in the following code.
To no surprise, this is due to the fact that an ASP.NET Core application is, in reality,
a console application hosting a web application:

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

namespace TicTacToe
{ public class Program
{ public static void Main(string[] args)
{ BuildWebHost (args) .Run () ;
}

public static IWebHost BuildWebHost (string[] args) =>
WebHost.CreateDefaultBuilder (args)
.UseStartup<Startup> ()
.Build();
}
}

Normally, you do not need to touch the rrogran class in any way. By default,
everything necessary to run your application is already there and preconfigured.

However, you might want to activate some of the more advanced functionalities.

For instance, you could enable the capture of errors during server startup and display
an error page. In this case, you just have to use the following instruction:

| WebHost.CaptureStartupErrors (true) ;

By default, this setting is not enabled, which means that in case of errors, the host
will just exit. This might not be the desired behavior and we recommend changing
this parameter accordingly.

Two other useful parameters working together are prefernostinguris and vseuvris. You

can indicate whether the host should listen on the standard URLs defined by
Microsoft.AspNetCore.Hosting.Server. IServeror-SpeCiﬁC URLs you have provided. The
URLSs can have different formats depending on your needs, such as:

e [PV4 address with host and port (for example, nttps://192.168.57.12:5000)
IPV6 address with port (for example, nttps://[0:0:0:0:0: ££££:4137:270a]:5500)
Hostname (for example, nttps://mycomputer: 90)

Localhost (for example, nttps://10ocalhost:443)

Unix socket (fOI' example, http://unix:/run/dan-1live. sock)

Here is an example of how you could set those parameters:

WebHost.PreferHostingUrls (true) ;
WebHost .UseUrls ("http://localhost:5000") ;

Finally, you can enable the integration of your applications with Application
Insights, an extensible application performance management service that allows
monitoring your applications during runtime and detecting performance anomalies,
as well as diagnosing issues and understanding what users do, by setting the
following parameter:

| WebHost.UseApplicationInsights () ;

Here is an example of a program class, which includes all of the concepts shown
previously:

public class Program
{
public static void Main(string[] args)
{
BuildWebHost (args) .Run () ;
}

public static IWebHost BuildWebHost (string[] args) =>
WebHost.CreateDefaultBuilder (args)

.CaptureStartupErrors (true)
.UseStartup<Startup>()
.PreferHostingUrls (true)
.UseUrls ("http://localhost:5000")
.UseApplicationInsights ()
.Build();

Working with the Startup class

Another autogenerated element, which exists in all types of ASP.NET Core 2.0
projects, is the startup class. As you have seen previously, the program class mainly
handles everything around the hosting environment. The startup class is all about the
preloading and configuration of your services and middlewares. Those two classes
are the foundations of all ASP.NET Core 2.0 applications.

Let's look at the basic structure of the startup class to get a better understanding of
what is provided and how to make best use of its functionalities:

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.DependencylInjection;

namespace TicTacToe
{
public class Startup
{
public void ConfigureServices (IServiceCollection services)
{
}

public void Configure (IApplicationBuilder app,
IHostingEnvironment env)
{
if (env.IsDevelopment ())
{
app.UseDeveloperExceptionPage () ;

}

app.Run (async (context) =>
{
await context.Response.WriteAsync ("Hello World!");
)
}
}
}

There are two methods which should require your attention, since you will work with
them quite often:

e The configureservices method, called by the runtime and used to add services to
the container

e The conrigure method used to configure the HTTP pipeline

We said at the beginning of the chapter that we wanted more practical work, so let's
get back to our Tic-Tac-Toe game and see how to use the startup class in a real
example!

We are going to use MVC for implementing the application, but since you have used
the empty ASP.NET Core 2.0 Web Application template, nothing has been added by
Visual Studio 2017 during project generation. You have to add everything by
yourself; what a wonderful opportunity for a better understanding of how everything
works!

The first thing to do 1s to add MVC to the services configuration. You do that by
using the configureservices method and just adding the MVC middleware:

public void ConfigureServices (IServiceCollection services)

{

services.AddMvc () ;

}

You might say that this was too easy, so what's the catch? There is no catch!
Everything in ASP.NET Core 2.0 was developed around simplicity, clarity, and
developer productivity.

You can see this again when configuring your MVC middleware and setting the
routing path (we will explain routing in more detail later):

app.UseMvc (routes =>
{
routes.MapRoute (
name: "default",
template: "{controller=Home}/{action=Index}/{id?}");

)

Again, very clear and short instructions that make our lives as developers easier and
more productive. It is a really good time to be a developer!

In the next step, you need to enable the usage of static content within your ASP.NET
Core 2.0 application for being able to use HTML, CSS, JavaScript, and images.

Do you know how to do that? Yes, you are right, you need to add another
middleware. You do that just like before by calling the corresponding app method:

| app.UseStaticFiles();

As a developer, you need to be able to analyze and understand HTML, CSS, and

JavaScript behavior and problems quickly. For that, ASP.NET Core 2.0 includes a
very handy feature called Browser Link. When enabled, it establishes a dedicated
communication channel between Visual Studio 2017 for improved developer
productivity.

Enabling Browser Link is really easy:

| app.UseBrowserLink () ;

Following is an example of a startup.cs class you could use for the Tic-Tac-Toe
game after having configured the various service settings seen previously:

public class Startup
{
public void ConfigureServices (IServiceCollection services)
{
services.AddMvc () ;

}

public void Configure (IApplicationBuilder app,
IHostingEnvironment env)
{
if (env.IsDevelopment ())
{
app.UseDeveloperExceptionPage () ;
app.UseBrowserLink () ;
}
else
{
app.UseExceptionHandler ("/Home/Error") ;

}
app.UseStaticFiles () ;

app.UseMvc (routes =>
{
routes.MapRoute (
name: "default",
template: "{controller=Home}/{action=Index}/{id?}");
}) s

Preparing the basic project
structure

You surely want to see something running and to build the Tic-Tac-Toe game. Now
that we have defined how everything should work from a functional point of view,
we need to start by creating the basic project structure for the application.

For ASP.NET Core 2.0 web applications, it is best practice to have the following
project structure for your projects:

A controliers folder, containing all of the controllers of your application.

A services folder, containing all the services of your application (for example,
external communication services).

A views folder, containing all of the views of your application. This folder
should contain a single sharea subfolder as well as one folder per controller.

A viewnmports.cshtmi file, to define some namespaces to be available in all
Views.

A viewstart.csntml file, to define some code to be executed at the start of each
view rendering (for example, set the layout page for all views).

A 1rayout.cshtmi file, to define a common layout for all of your views.

Let's create the project structure:

l.

Start Visual Studio 2017, open the Tic-Tac-Toe ASP.NET Core 2.0 project you
have created, create three new folders called controliers, services, and views, and
create a subfolder called sharea in the views folder:

Solution Explorer * 1 X
QE-lo-5am| kp=
Search Solution Explorer (Ctrl+5) P-

fal Solution 'TicTacToe' (1 project)
4 7] TicTacToe
& Connected Services
< Dependencies
M Properties
@ wwwroot
Controllers
Services
4 Views
F Shared
_Layout.cshteml
Viewlmports.cshtml
_ViewStart.cshtml
o Program.cs
P o* Startup.cs

2. Create a new view page called viewrmports.cshtmi n the views folder:

@using TicTacToe
@addTagHelper*, Microsoft.AspNetCore.Mvc.TagHelpers

3. Create a new view page called viewstart.cshtmi in the views folder:

| @{ Layout = "~/Views/Shared/ Layout.cshtml"; }

4. Right-click on the views/snared folder, select Add | New Item, enter rayout in the
search box, select MVC View Layout Page, and click on Add:

Add Mew Item - TicTacToe
4 |nstalled

4 ASP.MET Core
Code
General

b Web
Search Results

b Online

MName: _Layout.cshtml

Sort by: | Default

c#
@ MVC View Layout Page

Layout

ASP.NET Core Type: ASP.MET Core
MVC View Layout Page

Add

Cancel

Note that the layout page concept will be detailed a little bit later in
this chapter, but don't worry too much, it is not a very complicated

concept.

Creating the Tic-Tac-Toe home
page

Since the basic project structure is now in place, we need to implement the different
components that need to work together to provide the Tic-Tac-Toe game web
application:

1. Update the program.cs and startup.cs files, as explained previously.
2. Add a new controller, right-click within the Solution Explorer on the controilers
folder, then select Add | Controller:

Solution Explorer * 0 X
@E- - @ p -
Search Solution Explorer (Ctrl+5) P

fal Solution 'TicTacToe' (1 project)
4 7] TicTacToe
& Connected Services
b i Dependencies
/& Properties
b & wwwroot

View in Browser (Google Chrome) ta
Browse With... adels
BNS
Add 4
Controller... I} psettings.json
New Item... Scopeto This wer jsan
%3 Existing ltem... Shift+Alt+A New Selution Explorer View ndleconfig json
N Mew Scaffolded ltemn... Exclude Frem Project :Ef:l:i.r'lcgsﬂeadh"le.bc‘t
Mew Folder ¥ cu Ctrl+X rtup.cs
+‘? Application Insights Telemetry...] Copy Ctrl+C
2 Docker Support X Delete Del
% Class.. Shift+ AltC SEU
¢ Open Folder in File Explorer
Properties Alt+Enter

3. In the Add Scaffold pop-up window, choose MVC Controller - Empty and
name your new controller somecontroliler:

Add Seaffold =

4 |nstalled

i Common
i MVC Controller - Empty
Controller % BV Comtanlics: Emsty by Microsoft

v1.0.0.0

‘E: MVC Controller with read/write actions An empty MVC controller.

‘I;j MVC Controller with views, using Entity Framework Id: MvcControllerEmptyScaffolder

‘E: API Controller - Empty

‘E: API Controller with read/write actions

‘E: API Controller with actions, using Entity Framework

‘E: MVC Dependencies

Click here to go online and find more scaffolding extensions.

| Add || Cancel |

4. Your MVC home controller gets autogenerated, containing a single method.
You now need to add a corresponding view by right-clicking on the 1ngex
method name and selecting Add View from the menu:

HomeContotiercs =< [

B TicTacToe
1 Slusing System;
2 using System.Collections.Generic;
3 using System.Ling;
4 using System.Threading.Tasks;
5 using Microsoft.AspNetCore.Mvc;
B
7 —lnamespace TicTacToe.Controllers
8 1
g = public class HomeController : Controller
16 {
11% [public TActicnResult Index()
12 1 Add View...
13 return View(); ; : :
14 } . Quick Actions and Refactorings... Ctrl+;
15 1 Rename... F2
" ¥ Remove and Sort Usings Ctrl+R, Ctrl+G
& Peck Definition Alt+F12
" Go To Definition F12
Go To Implementation Ctrl+F12
Find 4All References Ctrl+K, R
View Call Hierarchy Ctrl+K, Ctrl+T
Breakpoint L
k Run To Cursor Ctrl+F10
Execute in Interactive Ctrl+E, Ctrl+E
Snippet 3
o Cut Ctrl+X
! Copy Ctrl+C
Paste Ctrl+V
Annctation L
Outlining]

5. The Add View window helps to define what needs to be generated. Leave the
default empty template and enable the usage of the layout page we are going to
modify in the next section of this chapter:

Yiew name: Index

Template: Ernpty (without model)

Options:
[] Create as a partial view
Reference script libraries
Use a layout page:
~Miews/Shared/_Layout.cshtml
(Leave empty if it is set in a Razor _viewstart file)

(-]

Add

Cancel

6. Congratulations, your view gets autogenerated and you can test your application

by pressing F5. We will finalize it later in this chapter:

Solution Explorer

mE-|o-s

4] TicTacToe

p Index.cshtml

| F -
Search Solution Explorer (Ctrl+5)

fa] Solution 'TicTacToe' (1 project)

£ Connected Services

i Dependencies
b Properties
B Eh wwwroot
4 Controllers
[HomeController.cs
Data
Models
4 Views
4 Home

Giving your web pages a more
modern look by using Bower and
layout pages

In the last section, you saw how to create a basic web page. Knowing how to do that
technically is one thing, but creating web applications that succeed is not only about
the technical implementation, it is also about how to make your application visually
appealing and user-friendly. While this book is not about web design and user
experiences, we want to give you some quick and easy means for building better web
applications in this regard.

For that, we advise using Bower (https://bower.i0), the self-proclaimed Package
Manager of the Web, in conjunction with ASP.NET Core layout pages.

Bower has had some remarkable success in the web development community in the
last few years. It helps to install client-side packages with static content such as
HTML, CSS, JavaScript, fonts, and images, including their dependencies.

There is some great integration and support for Bower in Visual Studio 2017; you
just have to configure it correctly for using it efficiently. Let's see how to do that:

1. Right-click on the Tic-Tac-Toe project, select Add | New Item, enter sower 1n
the search box, select Bower Configuration File, and click on Add:

4 Installed Sort by: | Defautt -] &5t bower

e q Bower Configuration File ASPMETCore | "YPe: ASPNET Core
Code Qi

4 Web
ASP MET

Add Cancel

2. Adding the Bower Configuration File should have added a vower.5son file.

https://bower.io

Update this file with the following content:

{

"name": "asp.net",

"private": true,

"dependencies": {
"bootstrap": "3.3.6",
"jquery": "2.2.0",
"jquery-validation": "1.14.0",
"jguery-validation-unobtrusive": "3.2.6"

3. Adding the Bower Configuration File should have added a .vowerrc file. Update
this file and define the directory where the assets should be placed:

{

"directory": "wwwroot/lib"

}

4. Right-click on the vower.sson file and click on Restore Packages:

&7 bo Manage Bower Packages...
4T bundie Restore Packages
I c* Progra h
B Scaffol Open
Poc= Startug Open With..,

Scope to This
Mew Solution Explorer View

Exclude From Project

J% Cut Ctrl+X

[Copy Ctrl+C

X Delete Del
Fename

A Properties Alt+Enter

5. The client-side packages (vootstrap, jquery, and more) are downloaded into the
folder you have defined (wwwroot/1ib). The static content can now be used within
your application:

Solution Explorer » 1 X
RE- o-5sITE|F -

Search Solution Explorer (Ctrl+5) P-

fa] Solution TicTacToe' (1 project)
4 7] TicTacToe
&5 Connected Services
= &P Dependencies
b Properties
4 @% wwwroot

[Css
images
[s
4 lib
b bootstrap
b Jjquery
B Jjquery-validation
[Jquery-validation-unobtrusive

6. In the wwwroot folder, create a folder called css. Add a new style sheet called
site.css Within this folder:

body {
padding-top: 50px;
padding-bottom: 20px;
}

/* Set padding to keep content from hitting the edges */
.body-content {

padding-left: 15px;

padding-right: 15px;
}

/* Set width on the form input elements since they're 100% wide
by default */

input,

select,

textarea {
max-width: 280px;

}

/* styles for validation helpers */
.field-validation-error {

color: #b94a48;
}

.field-validation-valid {
display: none;

}

input.input-validation-error {
border: 1lpx solid #b9%94a48;
}

input [type="checkbox"] .input-validation-error {

border: 0 none;

}

.validation-summary-errors {
color: #b94a48;
}

.validation-summary-valid {
display: none;

}

A successful web application should have a common layout with a consistent user
experience when navigating from page to page. This is key for user adoption and
user satisfaction. ASP.NET Core layout pages are the right solution for that.

They can be used for defining templates for views in your web applications. All of
your views can either use the same template, or different templates can be used
depending on your specific needs.

We are going to use the updated layout page, as shown here, for our sample
application:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width,
initial-scale=1.0" />
<title>@ViewData["Title"] - TicTacToe</title>

<environment include="Development">
<link rel="stylesheet"
href="~/1lib/bootstrap/dist/css/bootstrap.css" />
<link rel="stylesheet" href="~/css/site.css" />
</environment>
<environment exclude="Development">
<link rel="stylesheet"
href="https://ajax.aspnetcdn.com/ajax/bootstrap
/3.3.7/css/bootstrap.min.css"
asp-fallback-href="~/1lib/bootstrap/dist/css/bootstrap.min.css"
asp-fallback-test-class="sr-only"
asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />

<link rel="stylesheet" href="~/css/site.min.css"
asp-append-version="true" />
</environment>
</head>
<body>

<nav class="navbar navbar-inverse navbar-fixed-top">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle"
data-toggle="collapse" data-target=".navbar-collapse">
Toggle navigation

</button>
<a asp-area="" asp-controller="Home" asp-action="Index"
class="navbar-brand">Tic-Tac-Toe

</div>

<div class="navbar-collapse collapse">
<ul class="nav navbar-nav'">

<a asp-area="" asp-controller="Home"
asp-action="Index">Home</1li>
<a asp-area="" asp-controller="Home"
asp-action="About">About</1i>
<a asp-area="" asp-controller="Home"
asp-action="Contact">Contact</1i>

</div>
</div>
</nav>
<div class="container body-content">
@RenderBody ()
<hr />
<footer>
<p>© 2017 - TicTacToe</p>
</footer>
</div>

<environment include="Development">
<script src="~/lib/jquery/dist/jquery.js"></script>
<script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>

<script src="~/js/site.js" asp-append-version="true"></script>
</environment>

<environment exclude="Development">

<script src="https://ajax.aspnetcdn.com/ajax/jquery/
jquery-2.2.0.min.js"
asp-fallback-src="~/1lib/jquery/dist/jquery.min.js"
asp-fallback-test="window. jQuery"
crossorigin="anonymous"

integrity="sha384-K+ctZQ+LL8g6tP7I94W+gzQsfRV2a+

AfHIi9k8z819ggpc8X+YtstdyBo/hH+8Fk">
</script>

<script src="https://ajax.aspnetcdn.com/ajax/bootstrap/
3.3.7/bootstrap.min.js"

asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"

asp-fallback-test="window.jQuery&&window.jQuery
.fn&&window. jQuery.fn.modal"

crossorigin="anonymous"

integrity="sha384-Tc5IQ0ib027qvy]jSMfHjOMaLkfuWVxZxUPnCJA
712mCWNIpGI9mMGCD8wWGNIcPD7Txa">

</script>

<script src="~/js/site.min.js" asp-append-version="true">
</script>

</environment>

@RenderSection ("Scripts", required: false)
</body>

</html>

Before creating the user registration page in the next section, let's update the home
page created previously to show some basic information on the Tic-Tac-Toe game,

while using the layout page shown previously:

@f{
ViewData["Title"] = "Home Page";
Layout = "~/Views/Shared/ Layout.cshtml";
}
<div class="row">
<div class="col-1g-12">
<h2>Tic-Tac-Toe</h2>
<div class="alert alert-info">
<p>Tic-Tac-Toe 1s a two-player turn-based game.</p>
<p>Two players will choose who takes the Xs and who
takes the Os. They will then be taking turns and
mark spaces in a 3x3 grid by putting their marks,
one mark per turn.</p>
<p>A player who succeeds in placing three of his
marks in a horizontal, vertical, or diagonal row
wins the game.</p>
</div>
<p>
<h3>Register by clicking <a asp-controller="UserRegistration"
asp-view="Index">here</h3>
</p>
</div>
</div>

When starting the application, you will see the new home page design:

Tic-Tac-Toe

Tic-Tac-Toe

Tic-Tac-Toe is a two-player turn-based game.

Two players will choose who takes the Xs and who takes the Os. They will then be taking turmns and mark
spaces in a 3x3 grid by putting their marks, one mark per tum.

A player who succeeds in placing three of his marks in a horizontal, vertical, or diagonal row wins the game.

Register by clicking here

© 2017 - TicTacToe

Creating the Tic-Tac-Toe user
registration page

You will now integrate the second component, the user registration page with its
form, which will allow new users to register to play the Tic-Tac-Toe game.

1. Add a new folder called moce1s to the project.
2. Add a new model by right-clicking on the mode1s folder in your project and
selecting Add | Class, and name it uservode1:

public class UserModel

{
public Guid Id { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }
public string Email { get; set; }
public string Password { get; set; }
public bool IsEmailConfirmed { get; set; }
public System.DateTime? EmailConfirmationDate { get; set; }
public int Score { get; set; }

}

3. Add a new controller and call it UserRegistrationController (1fy0u do not know
how to do this, then refer to the Creating the Tic-Tac-Toe home page section).

4. Right-click on the method called 1nsex and choose Add View. This time, select
the Create template, choose as Model the vsermode1 as mentioned in the previous
point, and enable the usage of the layout page:

B TicTacToe ~ *z TicTacToe.Controllers.UserRegistrationController

1 Husing System;

2 using System.Collections.Generic;

3 using System.Ling;

4 using System.Threading.Tasks;

5 using Microsoft.AspNetCore.Mvc;

&

7 —Inamespace TicTacToe.Controllers

8 {

a9 = public class UserRegistrationController : Controller

1@ {

11% [public IActicnResult Index({)

12 {

13 return View();

14 T

15 }

16 } 3
View name: Index
Template: Create b
Model class: Uszerfodel (TicTacToe.Models) b
Options:

[] Create as a partial view
[] Reference script libraries
Use a layout page:
~Wiews/Shared/_Layout.cshtml III
(Leave empty if it is set in a Razor _viewstart file)

‘ Add |‘ Cancel |

Note that you can leave the layout page empty if you want to use the
viewStart.cshtml file in the snared folder to define a unified common
layout for all your views.

The viewstart.cshemi file is used to share settings between views, while
the viewrmports file is used to share using namespaces and inject
dependency injection instances. Visual Studio 2017 includes two
templates for these files.

5. Remove the autogenerated Id, IsEmailConfirmed, EmailConfirmationDate, and score
elements from the view; we do not need them for the user registration form.

6. The view is now ready; display it by pressing on F5 and clicking on the
registration link on the home page:

Index

UserMadel
FirstName
LastName
Email
Password
Create
Back to List

@ 2017 - TicTacToe

Using dependency injection for
encouraging loose coupling within
your applications

One of the biggest problems when developing applications is inter-component
dependencies. These dependencies make it hard to maintain and evolve your
components individually because modifications might badly impact other dependent
components. But be assured, there are mechanisms that allow those dependencies to
be broken up, one of them being dependency injection (DI).

Dependency injection allows components to work together, while providing loose
coupling. A component only needs to know the contract implemented by another
component to work with it. With a DI container, components are not directly
instantiated nor are static references used for finding an instance of another
component. Instead, it is the responsibility of the DI container to retrieve the correct
instance during runtime.

When a component is designed with DI in mind, it is very evolutive by default and is
not dependent on any other components or behaviors. For example, an authentication
service can use providers for authentication that uses DI, and if new providers are
added, existing ones will not be impacted.

ASP.NET Core 2.0 includes a very simple built-in DI container, which supports
constructor injection. To make a service available for the container, you have to add
it within the configureservice method of the startup class. Without knowing it, you
have already done that before for MVC:

public void ConfigureServices (IServiceCollection services)

{

services.AddMvc () ;

}

In fact, you have to do the same thing for your own custom services, you have to
declare them within this method. This is really easy to do when you know what you
are doing!

However, there are multiple ways of injecting your services and you need to choose
which one best applies to your needs:

e Transient injection: Creates an instance for each time the method is called (for
example, stateless services):

| services.AddTransient<IExampleService, ExampleService>();

e Scoped injection: Creates an instance once per request pipeline (for example,
stateful services):

| services.AddScoped<IExampleService, ExampleService>();

e Singleton injection: Creates one single instance for the whole application:
| services.AddSingleton<IExampleService, ExampleService>();

Note that you should add the instances for your services by yourself if
you do not want the container to automatically dispose of them. The

container will call the pispose method of each service instance it creates
by itself.

Here is an example of how to instantiate your services by yourself:

services.AddSingleton (new ExampleService());

Now that you understand how to use DI, let's apply your knowledge and create the
next component for our sample application.

Creating the Tic-Tac-Toe user
service

We have created a home page as well as a user registration page. Users can click on
the register link and fill out a registration form, but the form data is not yet processed
in any way. We are going to add a user service that will have the responsibility of
processing user-related tasks, such as user registration requests. Furthermore, you are
going to apply some of the ASP.NET Core 2.0 DI mechanisms seen previously:

1. Add a new class called userservice.cs to the services folder.
2. Add a new method for user registration, with the model created in the last
section as a parameter:

public class UserService
{
public Task<bool>RegisterUser (UserModel userModel)

{
return Task.FromResult (true);
}
}

3. Right-click on the class and choose Quick Actions and Refactorings, then click
on Extract Interface:

Usesenices = < R

=] TicTacToe « %z TicTacToe.Services UserService
1 Slusing System;
2 using System.Collections.Generic;
3 using System.Ling;
- using System.Threading.Tasks;
5 using TicTacToe.Models;
6
7 —Inamespace TicTacToe.Services
g8 I{
9% ~F public class UserService
14

11 Generate constructor ‘Userservice() RegisterUser(UserModel userModel)

12 Generate overrides..,
1 omResult(true);
| Bxtract Interface...

15 - pu}%ic Task<bool> IsOnline{string name)
16 {

17 return Task.FromResult{true};

18 }

19 }

26 }

21

4. Leave all of the default values in the pop-up window and click on OK:

Mew interface name:

|Userservice

Generated name:

TicTacToe.5ervices. |UserService

Mew file name;

|UserService.cs

Select public members to form interface

@ IsOnline(string) Select All
2 RegisterUser{UserModel) Deselect Al
| QK | | Cancel |

5. Visual Studio 2017 will generate a new file called ruserservice.cs containing the
extracted interface definition, as shown here:

| public interface IUserService

{
Task<bool>RegisterUser (UserModeluserModel) ;

}

6. Update the userregistrationcontrolier created previously and apply the
constructor injection mechanism:

public class UserRegistrationController : Controller
{
private IUserService _userService;
public UserRegistrationController (IUserService userService)
{
_userService = userService;

}

public IActionResult Index ()
{
return View () ;

}

}

7. Add some simple code for processing the user registration within the
UserRegistrationcontroller (W€ are adding validation later in the chapter):

[HttpPost]
public async Task<IActionResult> Index (UserModel userModel)
{
await userService.RegisterUser (userModel) ;
return Content ($"User {userModel.FirstName}
{userModel.LastName} has been registered sucessfully");

8. Go to the Startup class and declare the vserservice within the ConfigureServices
method to make it available to the application:

public void ConfigureServices (IServiceCollection services)
{

services.AddMvc () ;
services.AddSingleton<IUserService, UserService>();

}

9. Test your application by pressing F3, filling out the registration page, and then
clicking on OK. You should get the following output:

&« - O | localhost

User Jagson De Oliwveira has been registered sucessfully

Very good, you have already created multiple components of the Tic-Tac-Toe

application, very good progress! Please stay sharp, since the next section is very
important, as it explains middlewares in detail.

Working with middlewares

As you have seen before, the startup class is responsible for adding and configuring
middlewares in your ASP.NET Core 2.0 applications. But what is middleware?
When and how do you use it and how do you create your own middlewares? Those
are all the questions we are going to discuss now.

Essentially, multiple middlewares compose the functionalities of your ASP.NET
Core 2.0 applications. Even the most basic functionalities such as serving up static
content are performed by them, as you might have noticed by now.

Middlewares are part of the ASP.NET Core 2.0 request pipeline for handling
requests and responses. When they are chained together, they can pass incoming
requests from one to another and perform actions before and after the next
middleware is called within the pipeline:

o

_ Middleware Middleware Middleware

™

before() before()

next() next()
Response after() after()

\ ASP.NET Core 2.0 Request Pipeline /

Using middlewares allows your applications to be more flexible and evolutive, since
you can add and remove middlewares easily in the conrigure method of the startup
class.

Furthermore, the order in which you call the middlewares in the configure method is
the order in which they are going to get invoked. It is advised to call middlewares in
the following order to assure better performance, functionality, and security:

1. Exception handling middlewares.
2. Static files middlewares.

3. Authentication middlewares.
4. MVC middlewares.

If you do not call them in this order, you might get some unexpected behavior and
even errors, since middleware actions might be applied too late or too early within
the request pipeline.

For example, if you do not call the Exception Handling Middleware first, you
might not catch all of the exceptions that occur before its invocation. Another
example is when you call the Response Compression Middleware after the Static
Files Middleware. In this case, your static files will not be compressed, which might
not be the desired behavior. So, take care of the ordering of your middleware calls; it
can make a huge difference.

The following are some of the built-in middlewares you can use in your applications
(the list is not exhaustive; there are many more):

L. OAuth 2 and OpenlD authentication, based on the newest
Authentication : .
version of IdentityModel
Cross-origin resource sharing protection, based on HTTP
CORS
headers
Response .
: HTTP response caching
caching
Resp Onse HTTP responses gzip compression
compression
Routing HTTP request routing framework
Session Basic local and distributed session object management

HTML, CSS, JavaScript, and image support including

Static fil) :
atie Hies directory browsing

URL rewriting URL SEO optimization and rewriting

The built-in middlewares will be sufficient for the most basic requirements and
standard use cases, but you will surely need to create your own middlewares. There
are two ways of doing that: creating them inline in the Startup class or creating them
within a self-contained class.

Let's look at how to define inline middlewares first; here are the methods available:
Run

Map

MapWhen

Use

The run method is used to add middleware and immediately return a response, thus
short-circuiting the request pipeline. It does not call any of the following
middlewares and ends the request pipeline. It is therefore advised to place it at the
end of your middleware calls (see middleware ordering, discussed previously).

The vap method allows for executing a certain branch and adding the corresponding
middleware if the request path starts with a specific path, which means you can
effectively branch the request pipeline.

The mapwnen method provides basically the same concept of branching the request
pipeline and adding a specific middleware, but with control over the branching
conditions, since it is based on the result of a runc<uttpcontext, vool> predicate.

The use method adds middleware and allows either calling the next middleware in
line or short-circuiting the request pipeline. However, if you want to pass on the
request after executing a specific action, you have to call the next middleware
manually by using next.1nvoke with the current context as a parameter.

Here are some examples of how to use these extension methods:

private static void ApiPipeline (IApplicationBuilder app)
{
app.Run(async context =>
{
await context.Response.WriteAsync ("Branched to Api Pipeline.");
}):
}

private static void WebPipeline (IApplicationBuilder app)
{
app.MapWhen (context =>
{
return context.Request.Query.ContainsKey ("usr");
}, UserPipeline);

app.Run (async context =>
{
await context.Response.WriteAsync ("Branched to Web Pipeline.");
}):
}

private static void UserPipeline (IApplicationBuilder app)
{
app.Run (async context =>
{
await context.Response.WriteAsync ("Branched to User Pipeline.");
1)
}

public void Configure (IApplicationBuilder app, IHostingEnvironmentenv)
{

app.Map ("/api", ApiPipeline);

app.Map ("/web", WebPipeline);

app.Use (next =>async context =>

{
await context.Response.WriteAsync ("Called Use.");
await next.Invoke (context);

b):

app.Run (async context =>

{
awalt context.Response.WriteAsync ("Finished with Run.");

1)

As shown before, you can create your middlewares inline, but this is not
recommended for more advanced scenarios. We advise you to put your middlewares
in self-contained classes in this case, and the process for doing so is really easy.
Middleware is just a class with a certain structure, which is exposed via an extension
method.

Let's create a basic communication middleware for the Tic-Tac-Toe application:

1. Create a new folder called midaiewares within your project, then add a new class

called communicationmiddieware.cs, using the following code:

public class CommunicationMiddleware

{
private readonly RequestDelegate next;
private readonly IUserService userService;

public CommunicationMiddleware (RequestDelegate next,
IUserService userService)

{
_next = next;
_userService = userService;

}

public async Task Invoke (HttpContext context)
{
await next.Invoke (context);
}
}

2. Create a new folder called extensions within your project, then add a new class
called communicationMiddlewareExtension. cs, with the following code:

public static class CommunicationMiddlewareExtension
{
public static IApplicationBuilder
UseCommunicationMiddleware (this IApplicationBuilder app)
{
return app.UseMiddleware<CommunicationMiddleware> () ;

}

}

3. Add a using directive for TicracToe.Extensions 1n the startup class, then add the
Communication Middleware in the conrigure method:

using TicTacToe.Extensions;

public void Configure (IApplicationBuilder app,
THostingEnvironment env)

{

app.UseCommunicationMiddleware () ;
app.UseMvc (routes =>
{
routes.MapRoute (
name: "default",
template: "{controller=Home}/{action=Index}/{id?}");
1) :
}

4. Set some breakpoints in the Communication Middleware implementation and

start the application by pressing F'5. You will see that the breakpoints will be hit
if everything is working correctly:

] TicTacToe

1 —lusing
2 using
3 using
- using
5 using
6 using
7 using
8
9

10 {

12 {

13

15

16 -

17

138

19

28

21

22 -

23

e 24

25

26

27 }

28 }

29

Communicationmicdensre.cs = < [

+ 2 TicTacToe.Middlewares.CommunicaticnMiddleware

Microsoft.AspNetCore.Http;
System;
System.Collections.Generic;
System.Ling;
System.Threading;
System.Threading.Tasks;
TicTacToe.Services;

-Inamespace TicTacToe.Middlewares

11 - public class CommunicationMiddleware

private readonly RequestDelegate _next;
private readonly IUserService _userService;

public CommunicationMiddleware(RequestDelegate next, IUserService userService)

_next = next;
_userService = userService;

}
public async Task Invoke(HttpContext context)
{
await _next.Invoke(context);|
return;
h

This is just a basic example of how to create your own middleware; there are no
functional changes visible between this section and the others. You are going to
further implement the various functionalities for finalizing the Tic-Tac-Toe
application in the next chapters, and the communication middleware seen in this
chapter is going to do some real work shortly.

Working with static files

When working with web applications, most of the time, you have to work with
HTML, CSS, JavaScript, and images, which are considered static files by ASP.NET
Core 2.0.

Access to these files is not available by default, but you saw what needs to be done
to allow static files to be used within your applications at the beginning of the
chapter. In fact, you must add and configure the corresponding middleware in the
startup class to be able to serve static files:

| app.UseStaticFiles();

Note that by default all static files served by this middleware are public
o and anyone can access them. If you need to protect some of your files,

you need to either store them outside the wwroot folder or you need to
use the riicresuit controller action, which supports the authorization
middleware.

Furthermore, directory browsing is disabled by default for security reasons. You can,
however, activate it easily if you need to allow users to see folders and files:

1. Add the DirectoryBrowsingMiddleware in the ConfigureService method of the Startup
class right after calling the adauvc () method:

| services.AddDirectoryBrowser () ;

2. From within the contigure method of the startup class, call the
UseDirectoryBrowser method (after Calling the usecommunicationMiddleware method)
to activate directory browsing:

| app.UseDirectoryBrowser () ;

Index of /

04/11/2017 20:25:53 +00:00
lib/ 04/11/2017 14:52:24 +00:00

3. Remove the call to the usepirectoryBrowser method from the startup class; we do
not need it for the sample application

Using routing, URL redirection, and
URL rewriting

When building applications, routing is used for mapping incoming requests to route
handlers (URL matching) and for generating URLSs for the responses (URL
generation).

The routing capabilities of ASP.NET Core 2.0 combine and unify the routing
capabilities of MVC and Web API that have existed before. They have been rebuilt
from the ground up to create a common routing framework with all of the various
features in a single place, available to all types of ASP.NET Core 2.0 projects.

Let's look at how routing works internally to better understand how it can be useful
in your applications and how to apply it to our Tic-Tac-Toe example.

For each received request, a matching route is retrieved, based on the request URL.
Routes are processed in the order they appear within the route collection.

To be more specific, incoming requests are dispatched to the corresponding handlers.
Most of the time this is done based on data in the URL, but you could also use any
data in your requests for more advanced scenarios.

If you are using the MVC middleware, you can define and create your routes in the
startup class, as shown at the beginning of the chapter. This is the easiest way for
getting started with URL matching and URL generation:

app.UseMvc (routes =>

{
routes.MapRoute (
name: "default",
template: "{controller=Home}/{action=Index}/{id?}");

1)

There is also a dedicated routing middleware that you can use for working with
routing in your applications, which you have seen in the previous section on
middleware. You just have to add it in the startup class:

public void ConfigureServices (IServiceCollection services)

{

services.AddRouting () ;

Here is an example of how to use it to call the userregistration service in the startup
class:

public void ConfigureServices (IServiceCollection services)
{
services.AddMvc () ;
services.AddSingleton<IUserService, UserService>();
services.AddRouting () ;
}
public void Configure (IApplicationBuilder app, IHostingEnvironment env)
{
if (env.IsDevelopment ())
{
app.UseDeveloperExceptionPage () ;
app.UseBrowserLink () ;
}
else
{
app.UseExceptionHandler ("/Home/Error") ;
}
app.UseStaticFiles ()
var routeBuilder = new RouteBuilder (app);
routeBuilder.MapGet ("CreateUser", context =>

{

var firstName = context.Request.Query["firstName"];
var lastName = context.Request.Query["lastName"];
var email = context.Request.Query["email"];

var password = context.Request.Query["password"];

var userService =
context.RequestServices.GetService<IUserService>();
userService.RegisterUser (new UserModel { FirstName = firstName,
LastName = lastName, Email = email, Password = password });
return context.Response.WriteAsync ($"User {firstName}
{lastName} has been sucessfully created.");
)
var newUserRoutes = routeBuilder.Build()
app.UseRouter (newUserRoutes) ;
app.UseCommunicationMiddleware () ;
app.UseMvc (routes =>
{
routes.MapRoute (
name: "default",
template: "{controller=Home}/{action=Index}/{id?}");
)
app.UseStatusCodePages ("text/plain",
"HTTP Error - Status Code: {0}");

If you call it with some query string parameters, you will get the following result:

51 localhost w4

— (:_:1 localhost:56280/CreateUser?firstName=Jason&dastName=DeOliveirademail=test@test.com&password=123

User Jason DeOliveira has been sucessfully created.

Another important middleware is the URL Rewriting Middleware. It provides URL
redirection and URL rewriting functionalities. However, there is a crucial difference
between both that you need to understand.

URL redirection requires a round-trip to the server and is done on the client side. The
client first receives a moved permanently 301 or moved temporary 302 HTTP status
code, which indicates the new redirection URL to be used. Then, the client calls the
new URL to retrieve the requested resource, so it will be visible to the client.

URL rewriting, on the other hand, is purely server side. The server will internally
retrieve the requested resource from a different resource address. The client will not
know that the resource has been served from another URL, as it is not visible to the
client.

Coming back to the Tic-Tac-Toe application, we can use URL rewriting to give a
more meaningful URL for registering new users. Instead of using
UserRegistration/Index, W€ can use a much shorter URL, such as /newvser:

var options = new RewriteOptions ()
.AddRewrite ("NewUser", "/UserRegistration/Index", false);
app.UseRewriter (options) ;

Here, the user thinks that the page has been served from /newuser, while in reality it
has been served from /userregistration/Index Without the user noticing:

B33 Index - TicTacToe x

! localhos
& O | i N

Index
UserModel
FirstName
LastName
Email
Password
Create
Back fo List

@ 2017 - TicTacToe

Adding error handling to your
applications

When developing applications, the question is not if errors and bugs will occur, but
when they will occur. Building applications is a very complex task and it is nearly
impossible to think about all of the cases that might occur during runtime. And even
if you think you have thought about everything, then the environment is not
behaving as expected, for example, a service is not available or processing a request
1s taking much more time than expected.

You have two solutions to this problem, which need to be applied at the same time—
unit tests and error handling. Unit tests will assure the correct behavior during
development time from an application point of view, while error handling helps you
to be prepared during runtime for environmental issues. We are going to look at how
to add efficient error handling to your ASP.NET Core 2.0 applications in this
section.

By default, if there is no error handling at all and if an exception occurs, your
application will just stop, users will not be able to use it anymore, and in the worst
case scenario, there will be an interruption of service.

The first thing to do during development time is to activate the default development
exception page; it displays detailed information on exceptions that occur. You have
already seen how to do this at the beginning of the chapter:

if (env.IsDevelopment ())

{

app.UseDeveloperExceptionPage () ;

}

On the default development exception page, you can deep dive into the raw
exception details for analyzing the stack trace. You have multiple tabs that allow you
to look at query string parameters, client-side cookies, and request headers.

Those are some powerful indicators for better understanding what has happened and
why it has happened. They should help you pinpoint problems and resolve issues
more quickly during development time.

The following is an example of what happens if an exception has occurred:

8 intemal serveremor X 4

& O localhost NS pig

I
AY |
[

An unhandled exception occurred while processing the request.

NotSupportedExceptio 1ethod is not supported

TicTacToe Controllers HomeController.ndex() in HomeController. cs, line 13

NotSuppor

However, it is not recommended to use the default development exception page in
production environments because it contains too much information about your
system, which could be used to compromise your system.

For production environments, it is advised to configure a dedicated error page with
static content. In the following example, you can see that the default development
exception page is used during development time and that a specific error page is
displayed if the application is configured to run in a non-development environment:

if (env.IsDevelopment ())

{
app.UseDeveloperExceptionPage () ;
app.UseBrowserLink () ;

}

else

{
app.UseExceptionHandler ("/Home/Error") ;

}

By default, no information is displayed in case of HTTP error codes between 200 and
599. This includes, for example, 404 (not found) and so0 (internal server error). Users
will just see a blank page, which is not very user-friendly.

You should activate the specific usestatuscoderages middleware in the scartup class. It
will help you to customize what needs to be displayed in this case. Meaningful

information will help users to better understand what happens within your
applications and will lead to better customer satisfaction.

The most basic configuration could be to just display a text message:

| app.UseStatusCodePages ("text/plain", "HTTP Error - Status Code: {0}");
3 localhost x4
i : @) localhost

HTTP Error - Status Code: 404

But, you can go even further. For instance, you can redirect to specific error pages
for specific HTTP error status codes.

The following example shows how to send a moved temporary 302 (found) HTTP
status code to the client and then redirect them to a specific error page:

| app.UseStatusCodePagesWithRedirects ("/error/{0}");

This example shows how to return the original HTTP status code to the client and
then redirect them to a specific error page:

| app.UseStatusCodePagesWithReExecute ("/error/{0}");

You can disable HTTP status code pages for specific requests as shown

here:

var statusCodePagesFeature =
context.Features.Get<IStatusCodePagesFeature>();
if (statusCodePagesFeature != null)

{
statusCodePagesFeature.Enabled = false;

}

Now that we have seen how to handle errors on the outside, let's look at how to
handle them on the inside, within your applications.

If we go back to the userregistercontroller implementation, we can see that it has
multiple flaws. What if the fields have not been filled in correctly or not at all? What
if the model definition has not been respected? For now, we do not require anything
and we do not validate anything.

Let's fix that and see how to build an application that is more robust:

1. Update the uvsermode1, use decorators to set some properties as required, and
require a certain data type:

public class UserModel

{
public Guid Id { get; set; }
[Required ()]
public string FirstName { get; set; }
[Required()]
public string LastName { get; set; }
[Required (), DataType (DataType.EmailAddress)]
public string Email { get; set; }
[Required (), DataType (DataType.Password)]
public string Password { get; set; }
public bool IsEmailConfirmed { get; set; }
public System.DateTime? EmailConfirmationDate { get; set; }
public int Score { get; set; }

2. Update the speciﬁc Index method within the UserRegistrationController, then add
the mode1state validation code:

[HttpPost]
public async Task<IActionResult> Index (UserModel userModel)
{
if (ModelState.IsValid)
{
await userService.RegisterUser (userModel);
return Content ($"User {userModel.FirstName}
{userModel.LastName} has been registered sucessfully");
}
return View (userModel) ;

}

3. If you do not fill the required fields or you give an incorrect email address and
click on OK, you will now get a corresponding error message:

Index
UserModel

FirstName ‘ ‘

The FirstName field is required

LastName ‘ ‘

The LastName field is required

Email Jasor|

x
You must enter a valid email address
Password ‘

The Password field is required

Create

Back to List

©2017 - TicTacToe

Summary

In this chapter, you have learned about some of the basic concepts of ASP.NET 2.0.
There was much to understand and much to see, and we hope you have had some fun
trying everything out by yourself. You have surely made some tremendous progress!

At the beginning, you created the Tic-Tac-Toe project; then, you started
implementing its different components. We explored the rrogram and startup classes,
saw how to use Bower and layout pages, learned how to apply dependency injection,
and used static files.

Furthermore, we introduced middleware and routing for more advanced scenarios.
At the end, we illustrated how to add efficient error handling to your applications via
a practical example.

In the next chapter, we will continue and introduce additional concepts such as
WebSockets, globalization, localization, and configuration, as well as building once
and running on multiple environments.

Basic Concepts of ASP.NET Core
2.0 - Part 2

The previous chapter gave you some insights into the various functionalities and
features you have at your disposal when using ASP.NET Core 2.0 for building
efficient and more maintainable web applications. We have explained some of the
basic concepts and you have seen multiple examples of how to apply them to a real-
world application called Tic-Tac-Toe.

You have progressed quite nicely so far, since you have assimilated how ASP.NET
Core 2.0 applications are internally structured, how to configure them correctly, and
how to extend them with custom behaviors, which is key for building your own
applications in the future.

But let's not stop there! You are now going to discover how to best implement the
missing components, evolve the existing ones even further, and add client-side code
to allow you to have a fully-running end-to-end Tic-Tac-Toe application at the end of
this chapter.

In this chapter, we will cover the following topics:

e Optimizing client-side development using JavaScript, bundling, and
minification

Working with WebSockets for real-time communication scenarios
Taking advantage of session and user cache management

Applying globalization and localization for multi-lingual user interfaces
Configuring your applications and services

Using logging and telemetry for monitoring and supervision purposes
Implementing advanced dependency injection concepts

Building once and running on multiple environments

Client-side development using
JavaScript

In the previous chapter, you created a home page and a user registration page using
the MVC pattern. You implemented a controller (uvserregistrationcontrolier) as well
as a corresponding view for processing user registration requests. You then added a
service (userservice) and middleware (communicationMiddieware), but we have just
started, so they are not finished yet.

| user | User Service
Contoller

1
I
Calls the Index Method to display the view—» |
1
I

Displays the View

I
1
I
Submits the form »
I

Registers the User i

Returns Registration Success

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns a message)
|
|
|
|
|
|
|

When comparing with the initial workflow of the Tic-Tac-Toe application, we can
see that there are still multiple things missing, such as the whole client-side part,
really working with the Communication Middleware, as well as multiple other
features we still need to implement.

Let's start by working on the client-side part and see how to apply more advanced
techniques. Then, you will learn how to optimize everything as best as possible.

If you remember, last time, we stopped after a user had submitted his data to the
registration form, which was sent to the vserservice. We then just displayed a plain
text message, as follows:

“— - O localhost

User Jason De Oliwveira has been registered sucessfully

But, the processing is not finished here. We need to add the whole email
confirmation process using client-side development and JavaScript, and that is what
we are going to do next:

1. Start Visual Studio 2017 and open the Tic-Tac-Toe project. Add a new method

called Emailconfirmation to the UserRegistrationController.

[HttpGet]
public IActionResult EmailConfirmation (string email)
{

ViewBag.Email = email;

return View();

}

2. Right-click on the emaiiconfirmation method and generate the corresponding
view and update it with some meaningful information:

@
ViewData["Title"] = "EmailConfirmation";
Layout = "~/Views/Shared/ Layout.cshtml";
}
<h2>EmailConfirmation</h2>
An email has been sent to @ViewBag.Email, please confirm your
email address by clicking on the provided link.

3. Go to the UserRegistrationController and modlfy the 1naex method to redirect to
the Emaiiconfirmation method from the previous step instead of returning the text
message:

[HttpPost]
public async Task<IActionResult> Index (UserModel userModel)
{

if (ModelState.IsValid)

{

await userService.RegisterUser (userModel);
return RedirectToAction (nameof (EmailConfirmation),
new { userModel.Email });

}

else

{
return View (userModel) ;

}

}

4. Start the application by pressing F5 and register a new user and verify that the
new EmailConfirmation page is displayed correctly:

Tic-Tac-Toe

EmailConfirmation

An email has been sent to example@example.com, please confirm your email address by clicking on the provided link.

© 2017 - TicTacToe

Very good, you have implemented the first set of modifications necessary to finalize

the user registration process. In the next part, we need to check that the user has
confirmed his email address. Let's see how to do that next:

1. Add two new methods, cetusersyEmail and vpdateuser, to the tuser interface.
These will be used for handling the email confirmation updates:

public interface IUserService

{

Task<bool> RegisterUser (UserModel userModel) ;
Task<UserModel> GetUserByEmail (string email) ;
Task UpdateUser (UserModel user);

}

2. Implement the new methods, use a static concurrentsag to persist the vsermoder,
and modify the registeruser method in the userservice, as follows:

public class UserService : IUserService

{

private static ConcurrentBag<UserModel> userStore;

static UserService ()
{

_userStore = new ConcurrentBag<UserModel>() ;

}

public Task<bool> RegisterUser (UserModel userModel)

{
_userStore.Add (userModel) ;
return Task.FromResult (true);

}

public Task<UserModel> GetUserByEmail (string email)
{
return Task.FromResult (userStore.FirstOrDefault (
u => u.Email == email)):;

}

public Task UpdateUser (UserModel userModel)
{
_userStore = new ConcurrentBag<UserModel>
(_userStore.Where(u => u.Email != userModel.Email))
{
userModel
bi
return Task.CompletedTask;
}

3. Add a new model called camernvitationmode1. This will be used for game
invitations after successful user registration:

public class GameInvitationModel
{
public Guid Id { get; set; }
public string EmailTo { get; set; }
public string InvitedBy { get; set; }
public bool IsConfirmed { get; set; }
public DateTime ConfirmationDate { get; set; }

4. Add a new controller called camernvitationcontrolier and update its rnaex method
for automatically setting the 1nvitedsy property:

public class GameInvitationController : Controller
{
private IUserService userService;
public GameInvitationController (IUserService userService)
{
_userService = userService;

}

[HttpGet]
public async Task<IActionResult> Index (string email)
{
var gameInvitationModel = new GamelnvitationModel ({
InvitedBy = email };
return View (gameInvitationModel) ;

}

5. Generate a corresponding view by right-clicking on the rndex method, while
selecting the Create template and using as the Model class the

GameInvitationModel from before:

View name: Index

Template: Create N
Model class: GamelnvitationModel (TicTacToe.Models) w
Options:

[] Create as a partial view
[] Reference script libraries
Use a layout page:
~Views/Shared/_Layout.cshtml III

(Leave emnpty if it is set in a Razor _viewstart file)

Add Cancel

Modify the auto-generated view, remove all unnecessary input controls, and
leave only the emai1To input control:

@model TicTacToe.Models.GameInvitationModel
@
ViewData["Title"] = "Index";
}
<h4>GameInvitationModel</h4>
<hr />
<div class="row">
<div class="col-md-4">
<form asp-action="Index">
<input type="hidden" asp-for="Id" />
<input type="hidden" asp-for="InvitedBy" />
<div asp-validation-summary="ModelOnly"
class="text-danger"></div>
<div class="form-group">
<label asp-for="EmailTo" class="control-label"></label>
<input asp-for="EmailTo" class="form-control"™ />
<span asp-validation-for="EmailTo"
class="text-danger">
</div>
<div class="form-group">
<input type="submit" value="Create"
class="btn btn-default" />
</div>
</form>
</div>
</div>

NOW, update the Emailconfirmation method in the UserRegistrationController. The
user has to be redirected to the cameTnvitationcontroliler after his email has been

confirmed, and, as you can see, we are going to simulate the effective
confirmation in the code for now:

[HttpGet]
public async Task<IActionResult> EmailConfirmation(string email)
{
var user = await userService.GetUserByEmail (email);
if (user?.IsEmailConfirmed == true)
return RedirectToAction ("Index", "GameInvitation",
new { email = email });

ViewBag.Email = email;
user.IsEmailConfirmed = true;
user.EmailConfirmationDate = DateTime.Now;
await userService.UpdateUser (user);
return View () ;

8. Start the application by pressing F5, register a new user, and verify that the
Email Confirmation page is displayed as before. In Microsoft Edge, press F5 to
reload the page, and if everything is working as expected, you should now be
redirected to the Game Invitation page:

Tic-Tac-Toe Home About

Index

GamelnvitationModel

EmailTo

Create

Back to List

© 2017 - TicTacToe

Great, some more progress! Everything is working up until the game invitation now,
but unfortunately, there is still user intervention necessary. The user has to manually
refresh the Email Confirmation page by pressing F5 until his email has been
confirmed; only then is he redirected to the Game Invitation page.

The entire refresh process must be automated and optimized in the next step. Your
options are:

e Place a HTML meta refresh tag in the head section of the page
e Use simple JavaScript, which does the refresh programmatically
e Implement XMLHttpRequest (XHR) using jQuery

HTML3 has introduced the meta refresh tag for automatically refreshing pages after
a certain amount of time. However, this method 1s not advisable because it creates a
high server load, and a security setting in Microsoft Edge may completely deactivate
it and some ad blockers will stop it from working. So, if you use it, you cannot be
sure that it is going to work correctly.

Using simple JavaScript might very well automate the page refresh
programmatically, but it has mainly the same flaws and is, therefore, neither
recommended.

XHR is what we are really looking for, as it provides exactly what we need for our
Tic-Tac-Toe application. It allows for:

e Updating web pages without reloading them
e Requesting and receiving data from the server even after page load
e Sending data to the server in the background

®
| vser |
Application MiddleWare

User requests data or action
from the server

>

Get or post data request viaHTTP———»

<= -Returns data result in XML, TXT, HTML or Ison format

- Manipulate and change theDOM

]

I I
1]
1 I
L I
1]
1 I
I I
1 I
1 |
1]
] I
1 I
1]
| I
1 I
1]
1 |
I T
1 I
1 I
I I
L J
: todisplay data to the user :
] I
1 I
1]
] I
1]
1 I
I I
1 I
1 I
1 I
I I
1 I
1 I
I I
] I
1 I
1]
] I

You are now going to use XHR for automating and optimizing the client-side
implementation of the user registration email confirmation processing. The steps for
doing so are as follows:

1. Create a new folder called app in the wwwroot folder (this folder will contain all
the client-side code in the following steps) and create a subfolder within this
folder called ;s.

2. Add a new JavaScript file called scriptsi.js in the wwwroot/app/is folder, with the
following content:

var interval;
function EmailConfirmation (email) {

interval = setInterval (() => {
CheckEmailConfirmationStatus (email) ;
}, 5000);

}

3. Add a new JavaScript file called scripts2.qs in the wwwroot/app/4s folder, with the
following content:

function CheckEmailConfirmationStatus (email) {

$.get ("/CheckEmailConfirmationStatus?email=" + email,
function (data) {
if (data === "OK") {
if (interval !== null)

clearInterval (interval) ;

alert ("ok");

4. Open the layout page in the views\shared\ Layout.cshtml file and add a new
pevelopment €nvironment element before the closing voay tag (it is best practice to
put it there):

<environment include="Development">
<script src="~/app/js/scriptsl.js"></script>
<script src="~/app/js/scripts2.js"></script>
</environment>

5. Update the rnvoxe method in the Communication Middleware and add a new
method called processemaiiconfirmation, Which is going to simulate the email
confirmation:

public async Task Invoke (HttpContext context)
{
if (context.Request.Path.Equals(
"/CheckEmailConfirmationStatus"™))
{
await ProcessEmailConfirmation (context);
}
else
{
await next?.Invoke (context);
}
}

private async Task ProcessEmailConfirmation (
HttpContext context)

{
var email = context.Request.Query["email"];
var user = await userService.GetUserByEmail (email);

if (string.IsNullOrEmpty(email))
{
await context.Response.WriteAsync ("BadRequest:Email is
required");
}
else if (
(await userService.GetUserByEmail (email)) .IsEmailConfirmed)
{
await context.Response.WriteAsync ("OK") ;
}
else
{
await context.Response.WriteAsync (
"WaitingForEmailConfirmation") ;
user.IsEmailConfirmed = true;
user.EmailConfirmationDate = DateTime.Now;
_userService.UpdateUser (user) .Wait () ;

6. Update the emaiiconfirmation View by adding at the bottom of the page a call to
the JavaScript enaiiconfirmation function from the previous step:

@section Scripts
{
<script>
$ (document) .ready (function () {
EmailConfirmation ('@ViewBag.Email') ;
)
</script>
}

7. Update the Emailconfirmation method in the UserRegistrationController. Since the
Communication Middleware is now going to simulate the effective email
confirmation, remove the following lines:

user.IsEmailConfirmed = true;
user.EmailConfirmationDate = DateTime.Now;
await userService.UpdateUser (user);

8. Start the application by pressing F5 and register a new user. You will see a

JavaScript alert box returning waitingForemailconfirmation, and after some time,
another with OK:

This site says...
oK

I:‘ Don't let this page create mare messages

OK

9. Now, you have to update the checkemaiiconfirmationstatus method in the
scripts2.3s file to redirect in case of a confirmed email. For that, remove the
alert ("ok") ; instruction and add the following instruction in its place:

| window.location.href = "/GameInvitation?email=" + email;

10. Start the application by pressing F5 and register a new user. Everything should

be automated and you should automatically be redirected to the Game
Invitation page at the end:

Index

GamelnvitationModel

EmailTo
Create

Back to List

© 2017 - TicTacToe

Note that if you still see the alert box even though you have updated the
project in Visual Studio, you might have to delete the cached data in
your browser to have the JavaScript refreshed correctly in your
browser and see the new behavior.

Optimizing your web applications
and using bundling and
minification

As you saw in chapter 4, Basic Concepts of ASP.NET Core 2.0 - Part 1, we have
chosen the community-proven Bower as a client-side package manager. We have left
the power.json file untouched, which means that we have restored the four default
packages and added some references within the ASP.NET Core 2.0 Layout Page to
use them:

p bootstrap

b jquery

p jquery-validation

P jquery-validation-unobtrusive

In today's world of modern web application development, it is best practice to
separate client-side JavaScript code and CSS style sheets into multiple files during
development. But, having so many files may lead to performance and bandwidth
problems during runtime in production environments.

That is why during the build process, everything must be optimized before
generating the final release packages, which means that JavaScript and CSS files
must be bundled and minified. TypeScript and CoffeeScript files must be
transcompiled into JavaScript.

Bundling and minification are two techniques you can use for improving the overall
page load performance of your web applications. Bundling allows for combining
multiple files into a single file, whereas minification optimizes the code of your
JavaScript and CSS files for smaller payloads. They work together to reduce the
number of server requests as well as the overall request size.

ASP.NET Core 2.0 supports different solutions for bundling and minification:

e Visual Studio extension Bundler & Minifier

e Gulp
e QGrunt

Let's see how to bundle and minify multiple JavaScript files in the Tic-Tac-Toe
project by using the Visual Studio extension Bundler & Minifier together with
the bundleconfig.json file:

1. In the top menu select Tools | Extensions and Updates, click on Online, enter
Bundler & minifier 1N the search box, select Bundler & Minifier, and finally,
click on Download:

Extensions and Updates
b Installed
4 Online

4 Visual Studio Marketplace
Search Results
b Controls
I Templates
I Tools

b Updates

P Roaming Extension Manager

Change your Extensions and Updates settings

Sort by: | Relevance

Bundler & Minifier

Adds support for bundling and minifying JavaScript,

C55 and HTML files in any project.

Rollup Task Runner

Task Runner Explorer support for Rollup.js - The next generation

JavaScript module bundler,

Lightweight NetCore MVC Template

Met Core 2.0 MVC project with Bootstrap and JQuery, HTML, XML,
55, 15 minifiers, and profiles for multiple envirenments (dev, stg, p...

Rollup Task Runner

Task Runner Explorer support for Rollup.js - The next generation

JavaScript module bundler,

Bundler & Minifier

-

Bundler & Minifier

Created by: Mads Kristensen
Version: 2.5.359
Downloads: 872033
Rating:

Mere Information

(92 Votes)

Report Extension to Microsoft

Scheduled For Install:
MNaone
Scheduled For Update:

Mone
Scheduled For Uninstall:

MNone

Close

2. Close Visual Studio; the installation will continue. Next, click on Modify:

[sy Installer

Bundler 8 Minifier

By dicking "Modify", you agree with the
above license terms (if any) and the
installation of any prerequisites.

Digital Signature: None

Scheduled tasks for Microsoft Visual Studic Community 2017:
Install

License

Releaze Motes

*

Modify || Cancel

3. Restart Visual Studio. You are now going to optimize the number of opened
connections as well as the bandwidth usage by bundling and minifying. For
that, add a new JSON file called bundieconfig.json to the project.

4. Update the vundieconrig.json file for bundling the two JavaScript files into a
single one called site.js and for minifying the site.css and site. s files:

[
{
"outputFileName": "wwwroot/css/site.min.css",
"inputFiles": [
"wwwroot/css/site.css"

]

"outputFileName": "wwwroot/Jjs/site.js",

"inputFiles": [
"wwwroot/app/js/scriptsl.js",
"wwwroot/app/js/scripts2.js"

1,

"sourceMap": true,

"includeInProject": true

by

{
"outputFileName": "wwwroot/Jjs/site.min.js",
"inputFiles": [

"wwwroot/js/site.js"
1,

"minify": {
"enabled": true,
"renamelLocals": true
bo
"sourceMap": false

5. Right-click on the project and select Bundler & Minifier | Update Bundles:

Y Update Bundles Bundler & Minifier 3
XX Delete Bundle Qutput Files Overview
¥ Produce Output Files Scope to This
Convert To Gulp... Mew Solution Explorer View
£} Settings.. . ¢ Edit TicTacToe.csproj

6. When looking in the Solution Explorer, you can see that two new files called
site.min.css and site.min.js have been generated.

7. When looking in the Task Runner Explorer, you can see the bundling and
minifying process you have configured for the project:

Task Runner Explorer

; |TicTacTee -
4 g8 bundleconfig.json
Update all files
Clean output files
4 JavaScript
wwwroot/js/site.)s
wwwroot/js/ site.min.s
4 Stylesheets
wwwroot/css/site.min.css

8. Right-click on Update all files and select Run.
what the process is doing in more detail:

qu Bindings

[Before Build (0]
[+ After Build ()

[Clean (0

I Project Open (0]

You can now see and understand

Task Runner Explorer
¢, |TicTacToe b ¢H| Bindings

4 g3 bundleconfig.json

Clean output files
4 JavaScript
wwwroot/js/site.js
wwwroot/js/site.min.js
4 Stylesheets

wwnwroot/ css/site.min. css

Update all files

9. Schedule the process for execution after each build by right-clicking on Update
all files and selecting Bindings | After build. A new file called
bundleconfig.json.bindings gets generated, and if you remove the wwwroot/js
folder and rebuild the project, the files are auto-generated.

10. To see the newly-generated files in action, go to the Debug tab in the project
settings and set the aseneTcore EnvironmenT Variable to staging and save:

Application
e NfA NSA
Build
Build Events
Profile: IIS Express . New. || Delete
Package
Signing Lhiip
Application arguments:
TypeScript Build
Resources
larking directary: Browse...
Launch browser:
Environment vanables: Name Walue

ASPNETCORE_ENVIRONMENT | Staging

Remowve

1.

Start the application by pressing F'5, open the Developer Tools by pressing 12
in Microsoft Edge, and redo the registration process. You will see that only the
bundled and minified site.nin.css and site.nmin. s files have been loaded and
that load times are faster:

DOM Explorer Consale Debugger Metwark (» Performance Memory Emulation Experiments
L Wn e %= Y- Comentiype
Name / Result / Initiator / -
Path Protocol Method Description Content type Received Time Type Oms 200ms
CheckEmailConfirmationStatus?email=example@ex... HTTP GET 200 3193 ms XMLHttpRequest |
p.//localnost52872/ OK i
GamelnvitationZemail=example@example.com HTTP GET 200 text/htm| 5404 ms document i
httpu/loc 872 OK
HTTPS GET 200 text/css (from cache) Os
spnetcdn.com/ajax/bootstrap/3.3.7/css/
css?v=0BVhELvuZMhWT 2PUTHv_nAuZmEN... HTTP GET 200 text/css (from cache) Us
//localhos css, oK
site.min.css HTTP GET 200 text/css (from cache) 0s
ttp//loca oK
site.min.js HTTP GET 200 application/java... (from cache) 0s
http://localhost:52872/js/ oK

OK, now that we know how to implement the client side and benefit from bundling
and minification in modern web application development, let's return to the Tic-Tac-
Toe game and optimize it even further and add the missing components.

Working with WebSockets for real-
time communication scenarios

At the end of the previous section, everything was working fully automated as
expected. However, there is still some room for additional improvements.

As it 1s, the client side sends periodical requests to the server side to see if the email
confirmation status has changed. This may lead to a lot of requests to see if there has
been a status change or not.

Furthermore, the server side cannot inform the client side as soon as an email has
been confirmed, since it has to wait for a client request to respond to.

In this section, you will learn about the concepts of WebSockets (nttps://docs.microso
ft. com/en—us/aspnet/core/fundamentals/websockets), and how they will allow you to
further optimize your client-side implementations.

WebSockets enables persistent two-way communication channels over TCP, which
1s especially interesting for applications that need to run real-time communication
scenarios (chat, stock tickers, games, and more). And it just so happens that our
application is a game, which is one of the main application types that largely benefit
from working directly with a socket connection.

Note that you could also consider SignalR as an alternative. At the time
of writing this book, the SignalR Core version was not yet available.
However, it could be available after publication, so you should look it
up and use it instead if it is available. It will provide a better solution
for real-time communication scenarios and encapsulate some of the
functionalities missing from WebSockets you might have implemented
for yourself manually.

You can look it up atl https://github.com/aspnet/SignalR.

Let's optimize the client-side implementation of the Tic-Tac-Toe application by
using WebSockets for real-time communication:

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/websockets
https://github.com/aspnet/SignalR

Go to the Tic-Tac-Toe startup class in the configure method and add the
WebSockets Middleware just before the Communication Middleware and the
MVC Middleware (remember that the middleware invocation order is important
for assuring correct behavior):

app.UseWebSockets () ;
app.UseCommunicationMiddleware () ;

Update the Communication Middleware and add two new methods called
SendStringAsync and ReceiveStringAsync for WebSockets communication:

private static Task SendStringAsync (WebSocket socket,
string data, CancellationToken ct = default(CancellationToken))
{
var buffer = Encoding.UTF8.GetBytes (data);
var segment = new ArraySegment<byte> (buffer);
return socket.SendAsync (segment, WebSocketMessageType.Text,
true, ct);

}

private static async Task<string> ReceiveStringAsync (
WebSocket socket, CancellationToken ct =
default (CancellationToken))
{
var buffer = new ArraySegment<byte>(new byte[8192]);
using (var ms = new MemoryStream())
{
WebSocketReceiveResult result;
do
{
ct.ThrowIfCancellationRequested() ;

result = await socket.ReceiveAsync (buffer, ct);
ms.Write (buffer.Array, buffer.Offset, result.Count);

}
while (!result.EndOfMessage) ;

ms.Seek (0, SeekOrigin.Begin);
if (result.MessageType != WebSocketMessageType.Text)
throw new Exception ("Unexpected message");

using (var reader = new StreamReader (ms, Encoding.UTF8))

{

return await reader.ReadToEndAsync () ;

}

Update the Communication Middleware and add a new method called
ProcessEmailcConfirmation fOr email confirmation processing via WebSockets:

public async Task ProcessEmailConfirmation (HttpContext context,
WebSocket currentSocket, CancellationToken ct, string email)

{

UserModel user = await userService.GetUserByEmail (email);
while (!ct.IsCancellationRequested &&
!currentSocket.CloseStatus.HasValue &&
user?.IsEmailConfirmed == false)
{
if (user.IsEmailConfirmed)
{
await SendStringAsync (currentSocket, "OK", ct);
}
else
{
user.IsEmailConfirmed = true;
user.EmailConfirmationDate = DateTime.Now;

await userService.UpdateUser (user);
await SendStringAsync (currentSocket, "OK", ct);

}

Task.Delay (500) .Wait () ;
user = awalt userService.GetUserByEmail (email);

4. Update the 1nvoxe method in the Communication Middleware and add calls to
the WebSockets-specific methods from the previous step, while still keeping the
standard implementations for browsers that do not support WebSockets:

public async Task Invoke (HttpContext context)
{
if (context.WebSockets.IsWebSocketRequest)
{
var webSocket =
await context.WebSockets.AcceptWebSocketAsync();
var ct = context.RequestAborted;
var json = await ReceiveStringAsync (webSocket, ct);
var command = JsonConvert.DeserializeObject<dynamic> (json);

switch (command.Operation.ToString())
{
case "CheckEmailConfirmationStatus":
{
await ProcessEmailConfirmation (context, webSocket,
ct, command.Parameters.ToString());
break;

}

}
else 1if (context.Request.Path.Equals (

"/CheckEmailConfirmationStatus"))

{

await ProcessEmailConfirmation (context);
}
else

{

await next?.Invoke (context);

}

Modify the scriptsi.5s file and add some WebSockets-specific code for opening
and working with sockets:

var interval;
function EmailConfirmation (email) {
if (window.WebSocket) {
alert ("Websockets are enabled");
openSocket (email, "Email");

}

else {
alert ("Websockets are not enabled");
interval = setInterval (() => {
CheckEmailConfirmationStatus (email) ;
}, 5000);

Modify the scripts2.5s file and add some WebSockets-specific code for opening
and working with sockets and redirecting to the Game Invitation page if the
email has been confirmed:

function CheckEmailConfirmationStatus (email) ({
$.get ("/CheckEmailConfirmationStatus?email=" + email,
function (data) {
if (data === "OK") {
if (interval !== null)
clearInterval (interval) ;
window.location.href = "/GameInvitation?email=" + email;

1)
}

var openSocket = function (parameter, strAction) {
if (interval !== null)
clearInterval (interval) ;

var protocol = location.protocol === "https:" ?
"WSS:" llws:".
var operation = "";

var wsUri = "";

if (strAction == "Email") {
wsUri = protocol + "//" + window.location.host +
"/CheckEmailConfirmationStatus";

operation = "CheckEmailConfirmationStatus";
}
var socket = new WebSocket (wsUri);
socket.onmessage = function (response) {
console.log(response) ;
if (strAction == "Email" && response.data == "OK") {
window.location.href = "/GameInvitation?email=" +
parameter;

}
}i

socket.onopen = function () {

var json = JSON.stringify ({
"Operation": operation,
"Parameters": parameter

}):

socket.send(json) ;

}s

socket.onclose = function (event) {
}i
bi

7. When you start the application and proceed with the user registration, you will
get the information if WebSockets is supported. If it is, you will get redirected
to the Game Invitation page like before, but with the benefit of a much faster
processing time:

This site says...

Websockets are enabled

|:| Don't let this page create more messages

OK

That concludes our trip into client-side development and optimization under
ASP.NET Core 2.0 for the moment. You are now going to see how to further extend
and finalize the Tic-Tac-Toe application with additional ASP.NET Core concepts
that will help you in your daily work building multi-lingual, production-ready web
applications.

Taking advantage of session and
user cache management

As a web developer, you might know that HTTP is a stateless protocol, which means
that by default there is not a notion of sessions as such. Each request is handled
independently and no values are retained between different requests.

Nonetheless, there are different methods for working with data. You can work with
query strings, submit form data, or you can use cookies to store data on the client.
However, all of those mechanisms are more or less manual and need to be managed
by yourself.

If you are an experienced ASP.NET developer, you will be familiar with the
concepts of session state and session variables. Those variables are stored on the web
server and you can access them during different user requests for having a central
place to store and receive data. Session state is ideal for storing user data specific to
a session, without the need for permanent persistence.

Note that it is best practice to not store any sensitive data in session
variables due to security reasons. Users might not close their
browsers; thus, session cookies might not be cleared (also, some

0 browsers keep session cookies alive).

Also, a session might not be restricted to a single user, other users
might continue with the same session, which could provide security
risks.

ASP.NET Core 2.0 provides session state and session variables by using a dedicated
Session Middleware. Basically, there are two distinct types of session providers:

¢ In-memory session providers (locally to a single server)
¢ Distributed session providers (shared between multiple servers)

Let's see how to activate the in-memory session provider in the Tic-Tac-Toe
application for storing the user interface culture and language:

Open the layout page in the views\shared\ Layout.cshtml file and add a new User
Interface Language Drop-Down to the menu after the other menu items. This
will allow users to select between English and French:

<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown"
href="#">Settings
<ul class="dropdown-menu multi-level">
<1li class="dropdown-submenu">
<a class="dropdown-toggle" data-toggle="dropdown"
href="#">Select your language (@ViewBag.Language)

<ul class="dropdown-menu'">
<li @ (ViewBag.Language == "EN" ? "active" : "")>
<a asp-controller="Home" asp-action="SetCulture"
asp-route-culture="EN">English</1i>
<li @ (ViewBag.Language == "FR" ? "active" : "")>
<a asp-controller="Home" asp-action="SetCulture"
asp-route-culture="FR">French</1i>

</1li>

</1li>

Open the somecontroi1er and add a new method called setcuiture. This will
contain the code for storing the user culture settings in a Session Variable:

public IActionResult SetCulture(string culture)
{

Request.HttpContext.Session.SetString ("culture", culture);
return RedirectToAction ("Index");

}

Update the 1ndex method of somecontroiier for retrieving the culture from the
Culture Session Variable:

public IActionResult Index ()
{
var culture =
Request.HttpContext.Session.GetString ("culture");
ViewBag.Language = culture;
return View() ;

}

Got to the wwwroot/css/site.css file and add some new CSS classes for a more
modern look for the User Interface Language Drop-Down:

.dropdown-submenu {
position: relative;

}

.dropdown-submenu > .dropdown-menu {
top: O;
left: 100%;

margin-top: -6px;
margin-left: -1lpx;
-webkit-border-radius: 0 6px 6px 6px;
-moz-border-radius: 0 6px 6px;
border-radius: 0 6px 6px 6px;

}

.dropdown-submenu:hover > .dropdown-menu {
display: block;
}

.dropdown-submenu > a:after {
display: block;
content: " ";
float: right;
width: O;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: f#ccc;
margin-top: 5px;
margin-right: -10px;

}

.dropdown-submenu:hover > a:after {
border-left-color: #fff;
}

.dropdown-submenu.pull-left {
float: none;

}

.dropdown-submenu.pull-left > .dropdown-menu {
left: -100%;
margin-left: 10px;
-webkit-border-radius: 6px 0 6px 6px;
-moz-border-radius: 6px 0 6px 6px;
border-radius: 6px 0 6px 6px;

Add the built-in Session Middleware of ASP.NET Core 2.0 in the
ConfigureServices method of the Startup class:

services.AddSession (o =>

{

o0.IdleTimeout = TimeSpan.FromMinutes (30) ;
});

Activate the Session Middleware in the configure method of the startup class by
adding it just after the Static Files Middleware:

app.UseStaticFiles () ;
app.UseSession () ;

Update the 1ndex method in the cametnvitationcontroiler, set the email session

variable:

[HttpGet]
public async Task<IActionResult> Index(string email)
{
var gamelInvitationModel = new GameInvitationModel {
InvitedBy = email };
HttpContext.Session.SetString ("email", email);
return View (gameInvitationModel) ;

8. Start the application by pressing F5. You should see the new User Interface
Language Drop-Down with the options to select between English and French:

I Home Page - TicTacToe X =+ — ol ¥
O localhost ﬂ(== :/_ @
Tic-Tac-Toe Home About Contact Settings ~
. Select your language ()« English
Welcome to the Tic-Tac-1ue wans: e

Tic-Tac-Toe

Tic-Tac-Toe Is a two-player turn-based game.

Two players will choose who takes the Xs and who takes the Os. They will then be taking turms and mark spaces in a 3x3 grid by putting their
marks, one mark per turn.

A player who succeeds in placing three of his marks in a horizontal, vertical, or diagonal row wins the game.

Register by clicking here

© 2017 - TicTacToe

Good, you have seen how to activate and use session state. However, most of the
time you will have multiple web servers, not just one, especially in today's cloud
environments. So, how do you store session state out of memory in a distributed

cache?

Well, that is easy, you just have to register additional services within the Startup
class. These additional services will provide this functionality. Here are some
examples:

e Distributed Memory Cache:

| services.AddDistributedMemoryCache () ;

e Distributed SQL Server Cache:

services.AddDistributedSglServerCache (o =>

{

o.ConnectionString = configuration["DatabaseConnection"];
0.SchemaName = "dbo";
o.TableName = "sessions";

)i

e Distributed Redis Cache:

services.AddDistributedRedisCache (o =>

{
o.Configuration = configuration["CacheRedis:Connection"];
o.InstanceName = configuration["CacheRedis:InstanceName"];

}):

We have added a new User Interface Language Drop-Down in this section, but you
have not yet seen how to handle multiple languages within your applications. There's
no time to lose; let's see how to do that and use the drop-down and session variable
for changing the user interface language on-the-fly in the following section.

Applying globalization and
localization for multi-lingual user
interfaces

Sometimes your applications achieve success, sometimes even very considerable
success, and so you want to provide them internationally to a wider audience and
deploy them at a larger scale. But too bad, you cannot do that easily, because you
have not thought of localizing your applications from the beginning, and now you
have to modify your already-running application with the risk of regressions and
destabilizations.

Do not fall into this trap! Think about your target audience and future deployment
strategy from the start!

Localizing your applications should be considered from the beginning of your
projects, especially since it is very easy and straightforward to do when using the
ASP.NET Core 2.0 Framework. It provides existing services and middlewares for
this purpose.

Building applications which support different languages and cultures for display,
input, and output is called globalization, whereas adapting a globalized application to
a specific culture is called localization.

There are three different methods for localizing ASP.NET Core 2.0 web
applications:

e The String Localizer
e The View Localizer
e [ocalizing Data Annotations

In this section, you will learn about the concepts of globalization and localization
and how they will allow you to further optimize your websites for
internationalization.

0 For additional information on globalization and localization, please

“ ViSit https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localizati

on.

So, how do you get started? Well, first of all, let's look at how to make the Tic-Tac-
Toe application localizable, by using the String Localizer:

1. Go to the services folder and add a new service called
CultureProviderResolverservice. 1 hiS Will retrieve the culture setting by looking at
the cuiture query string, the cuiture cookie, and the cuicure session variable
(created in the previous section of this chapter).

2. Implement the cuitureproviderresolverservice by inheriting it from the
RequestCultureProvider and Overriding 1ts SpeCiﬁC methods:

public class CultureProviderResolverService
RequestCultureProvider

{

private static readonly char[] cookieSeparator = new[] {'|"' };
private static readonly string culturePrefix = "c=";
private static readonly string uiCulturePrefix = "uic=";

public override async Task<ProviderCultureResult>
DetermineProviderCultureResult (HttpContext httpContext)
{
if (GetCultureFromQueryString (httpContext,
out string culture))
return new ProviderCultureResult (culture, culture):;

else if (GetCultureFromCookie (httpContext, out culture))
return new ProviderCultureResult (culture, culture);

else if (GetCultureFromSession (httpContext, out culture))
return new ProviderCultureResult (culture, culture);

return await NullProviderCultureResult;

}

private bool GetCultureFromQueryString (
HttpContext httpContext, out string culture)
{
if (httpContext == null)
{
throw new ArgumentNullException (nameof (httpContext));

}

var request = httpContext.Request;
if (!request.QueryString.HasValue)
{

culture = null;

return false;

}

culture = request.Query["culture"];
return true;

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localization

private bool GetCultureFromCookie (HttpContext httpContext,
out string culture)
{
if (httpContext == null)
{
throw new ArgumentNullException (nameof (httpContext)):;

var cookie = httpContext.Request.Cookies["culture"];
if (string.IsNullOrEmpty (cookie))
{

culture = null;

return false;

culture = ParseCookieValue (cookie);
return !string.IsNullOrEmpty (culture);
}

public static string ParseCookieValue (string value)

{
if (string.IsNullOrWhiteSpace (value))

{

return null;

var parts = value.Split(cookieSeparator,
StringSplitOptions.RemoveEmptyEntries) ;
if (parts.Length != 2)

{

return null;

var potentialCultureName = parts[0];
var potentialUICultureName = parts[l];

if (!potentialCultureName.StartsWith(culturePrefix) ||
!potentialUICultureName.StartsWith(uiCulturePrefix))
{

return null;

var cultureName =
potentialCultureName.Substring(culturePrefix.Length);
var uiCultureName =
potentialUICultureName.Substring(uiCulturePrefix.Length);
if (cultureName == null && uiCultureName == null)
{

return null;

if (cultureName != null && uiCultureName == null)
{
uiCultureName = cultureName;
}
if (cultureName == null && uiCultureName != null)

cultureName = uiCultureName;

return cultureName;

}

private bool GetCultureFromSession (HttpContext httpContext,
out string culture)

{
culture = httpContext.Session.GetString("culture");
return !string.IsNullOrEmpty (culture);

Add the Localization Service at the top of the configureservices method in the
Startup class:

public void ConfigureServices (IServiceCollection services)
{
services.AddLocalization (options => options.ResourcesPath =
"Localization");

Add the Localization Middleware to the configure method in the startup class
and define the supported cultures:

Note that the order of adding middlewares is important, as you have
already seen. You have to add the Localization Middleware just before
the MV C Middleware.

var supportedCultures =
CulturelInfo.GetCultures (CultureTypes.AllCultures);
var localizationOptions = new RequestLocalizationOptions
{
DefaultRequestCulture = new RequestCulture ("en-US"),
SupportedCultures = supportedCultures,
SupportedUICultures = supportedCultures
}i

localizationOptions.RequestCultureProviders.Clear();
localizationOptions.RequestCultureProviders.Add (new
CultureProviderResolverService());

app.UseRequestLocalization(localizationOptions) ;

app.UseMvc(...);

Note that you can use different methods to change the culture of your
applications during runtime:

Query strings: Provide the culture in the URI

Cookies: Store the culture in a cookie

Browser: Browser page language settings

Custom: Implement your own provider (shown in this example)

5. In the Solution Explorer, add a new folder called rocaiization (it will be used to

store the resource files), create a subfolder called controiiers,

then within this

folder, add a new resource file called canernvitationcontroller.resx.

Note that you can put your resource files either into subfolders (for
example, controiiers, views, and more) or directly name your files
accordingly OFOI’ example, Controllers.GameInvitationController.resx,
Views.Home. Index. resx, And more). However, we advise you to use the
folder approach for clarity, readability, and better organization of your

files.
Solution Explorer X
P -
amn [B~ - a FZ -
 inales Sotby = Serch Col- 5- S s ie e
Search Solution Explorer (Ctrl+§) P~
4 ASP.NET Core (g -
'—j Class ASPNET Core 1YPe: ASP.NET Core a[7] Solution TicTacToe' (1 project)
Code o] 9
A file for storing resources 4 7] TicTacToe
General 0O Interface ASP.NET Core & Connected Services
BaWED b i Dependencies
=cx 3 B
I Online B] Assembly Infermation File ASP.NET Core b & Properties
b s wwwroot
D Resources File ASP.NET Core 4 Controllers
alfy Data
b &0 Extensions
| 4 &l Localization
3 Middlewares
b & Models
4 Services
3 Views
.-,;T appsettings.json
b a£T bowerjson
+&T bundleconfig.json
MName: GamelnvitationController.resx .m o
b &c* Program.cs
Add Cancel a[@ ScaffoldingReadMe.bt
b v c* Startup.cs

If you have errors when using your resource files with .

NET Core,

right-click on each file and select Properties. Then, check in each file
that the Build Action is set to Content instead of Embedded Resource.

There are bugs that should have been fixed by the final

release, but if

they are not, you can use this handy work-around to make everything

work as expected.

6. Open the cameInvitationcController.resx resource file and add a new

GameInvitationConfirmationMessage 111 Enghsh:

Mame Value

k GamelnvitationConfirmationMessage You have invited {0} for the next game,

7. In the same control1ers folder, add a new resource file for the French
translations called cametnvitationcontroller.fr.resx:

Mame Yalue

[GarmelnvitationConfirmationMessage Wous avez invité {0} pour la prochaine partie,

8. Go to the GameInvitationController, add the stringLocalizer, and update the
constructor implementation:

private IStringLocalizer<GameInvitationController>
_stringLocalizer;
private IUserService userService;
public GameInvitationController (IUserService userService,
IStringLocalizer<GamelInvitationController> stringLocalizer)
{
_userService = userService;
_stringLocalizer = stringlLocalizer;

}

9. Add a new 1ndex method to the cameinvitationcontroller. This will return a
localized message depending on the application locale settings:

[HttpPost]
public IActionResult Index(
GameInvitationModel gameInvitationModel)
{
return Content (stringLocalizer]|
"GameInvitationConfirmationMessage",
gameInvitationModel.EmailTo]) ;

10. Start the application in English (the default culture), then, register a new user
until you get the following text message, which should be in English:

B localhost = 4+

- (:) localhost

You have invited example@example.com for the next game.

11. Change the application language to French by using the User Interface
Language Drop-Down, then register a new user until you get the following text
message, which should now be in French:

1 localhost = 4+

- O localhost

Vous avez invité example@example.com pour la prochaine partie.

That's it, you have seen how to localize any type of string within your applications,
which can be useful for some of your specific application use cases. However, this is
not the recommended approach when working with views.

The ASP.NET Core 2.0 Framework provides some powerful features for localizing
views. You are going to use the View Localizer approach in the next example:

1. Update the configureservices method in the startup class and add the View
Localization Service to the MVC Service declaration:

LanguageViewLocationExpanderFormat.Suffix,

services.AddMvc () .AddViewLocalization (
options => options.ResourcesPath = "Localization");

2. Modify the views/viewImports.cshtmi file and add the View Localizer
functionalities so that they will be available for all views:

@using Microsoft.AspNetCore.Mvc.Localization
@inject IViewLocalizer Localizer

3. Open the Home Page View and add a new title, which is going to be localized
further, as follows:

| <h2>Q@Localizer["Title"]</h2>

4. In the Solution Explorer go to the rocaiization folder and create a subfolder
called views, then, add two new resource files called some. 1ndex.resx and
Home.Index.fr.resx tO thlS fOldeI':

Solution Explorer v 1 x
@& o-5 @ &=
Search Solution Explorer (Ctrl+§) P~

+fa] Solution 'TicTacToe' (2 projects)
4 v TicTacToe
& Connected Services
B 2" Dependencies
b & Properties
b st wwwroot
] Controllers
a5, Data
B &0 Extensions
4 i Localization
4 il Controllers
[GamelnvitationController.fr.resx
0 GamelnvitationController.resx
4 ksl Views
[Homelndex.froresx
[Home.ndex.resx

5. Open the some.1ndex. resx file and add an entry for the English title:

Mame & Value

3 Welcome to the Tic-Tac-Toe Game!

6. Open the some. Tndex. fr.resx file and add an entry for the French title:

Mame & Value

(3 Bienvenue sur le jeu du Morpicon!

7. Start the application and set the user interface language drop-down to English:

T3 Home Page - TicTacToe %+ = O X
O localhost 'ﬂr = :/- @
Tic-Tac-Toe Home Abot Contact Settings ~
. Select your language (EN)~ English
Welcome to the Tic-Tac-1ve vains: e

Tic-Tac-Toe

Tic-Tac-Toe is a two-player turn-based game.

Two players will choose who takes the Xs and who takes the Os. They will then be taking turns and mark spaces in a 3x3 grid by putting their
marks, one mark per turn

A player who succeeds in placing three of his marks in a horizontal, vertical, or diagonal row wins the game.

Register by clicking here

© 2017 - TicTacToe

8. Change the application language to French using the User Interface Language
Drop-Down. The title should now be displayed in French:

B Home Page - TicTacToe X + = O x
O localhost ke == :/_ @
Tic-Tac-Toe Home Abot Contact Settings~
. . Select your language (FR)~ English
Bienvenue sur le jeu du viurpiui: —

Tic-Tac-Toe
Tic-Tac-Toe is a two-player turn-based game.

Two players will choose who takes the Xs and who takes the Os. They will then be taking turns and mark spaces in a 3x3 gnid by putting their
marks, one mark per turn.

A player who succeeds in placing three of his marks in a horizontal, vertical, or diagonal row wins the game.

Register by clicking here

© 2017 - TicTacToe
You have seen how to easily localize your views, but how do you localize forms that

are using Data Annotations within your views? Let's look at that in more detail; you
will be surprised at what the ASP.NET Core 2.0 Framework has to offer in this case!

We are going to completely localize the user registration form in the following

examples:

1. In the Solution Explorer, go to the rocalization/views folder, add two new
resource files called UserRegistration.Index.resx

and UserRegistration.Index.fr.resx.

2. Open the UserRegistration.Index.resx file and add a Tit1e and a subTit1e element
with English translations:

Marme Yalue
Title User Registration
3 SubTitle zer Record

3. Open the UserRegistration.Index.fr.resx file and add a Tit1e and a supTitie
element with French translations:

Marme Yalue
Title Inscription de I'utilisateur
SubTitle Fiche Utilisateur

4. Update the User Registration Index View to use the View Localizer:

@model TicTacToe.Models.UserModel
@{
ViewData["Title"] = Localizer["Title"];
}
<h2>@ViewData["Title"]</h2>
<h4>Q@Localizer["SubTitle"]</h4>
<hr />
<div class="row">

5. Start the application, set the language to French using the User Interface
Language Drop-Down, and then go to the User Registration page. The titles
should be displayed in French. Click on Create without entering anything in the
input fields and see what happens:

(i} Inscription de l'utilisater X 4 —

]
< : O localhost * = :/_ @

Tic-Tac-Toe Home

Inscription de l'utilisateur

Fiche Utilisateur

FirstName ‘]

The FirstName field is required.

LastName ‘ ‘

fhe LastName field is required.

Email ‘ ‘

The Email field is required

Password ‘ ‘

The Password field is required.
Create

Back to List

© 2017 - TicTacToe

Something is missing here. You have added localization for the page title as well as
the subtitle of the User Registration page, but we are still missing some localizations
for the form. But what are we missing?

You surely have seen for yourself that the error messages are not localized and
translated yet. We are using the Data Annotation framework for error handling and
form validation, so how do you localize Data Annotation validation error messages?
That is what you are going to see now:

1. Add the Data Annotation Localization Service to the MVC Service declaration
in the ConfigureServices method of the Startup class:

services.AddMvc () .AddViewLocalization (
LanguageViewLocationExpanderFormat.Suffix, options =>
options.ResourcesPath = "Localization")
.AddDataAnnotationsLocalization () ;

2. Go to the rocalization folder and create a subfolder called voge1s, then add two
new resource files called usermodel.resx and userModel . fr.resx.
3. Update the usermode1.resx file with English translations:

Mame « Value
Email E-Mail
3 ErnailRequired The e-mail is required,
FirstMame First Mame
FirstMarmeRequired The first name is required.
LastMame Last Mame
LastMameRequired The last name is required,
Password Password
PasswordRequired The password is required.
&

4. Update the usertodel. fr.resx file with French translations:

Mame & Value
Email E-Mail
3 EmailRequired L'e-rnail est obligatoire,
FirstMarne Préncm
FirstNameRequired Le prénorn est obligatoire,
LastMame Mom
LastMameRequired Le nom est chbligatoire.
Password Mot de passe
PasswordRequired Le mot de passe est obligatoire.,
&

5. Update the vsermode1 implementation to be able to use the resource files from
above:

public class UserModel

{
public Guid Id { get; set; }

[Display (Name = "FirstName")]
[Required (ErrorMessage = "FirstNameRequired")]
public string FirstName { get; set; }

[Display (Name = "LastName")]
[Required (ErrorMessage = "LastNameRequired")]
public string LastName { get; set; }

[Display (Name = "Email")]

[Required (ErrorMessage = "EmailRequired"),
DataType (DataType.EmailAddress)]
[EmailAddress]

public string Email { get; set; }

[Display (Name = "Password")]
[Required (ErrorMessage = "PasswordRequired"),

DataType (DataType.Password)]

public string Password { get; set; }

public bool IsEmailConfirmed { get; set; }

public System.DateTime? EmailConfirmationDate { get; set; }
public int Score { get; set; }

6. Rebuild the solution and start the application. You will see that the whole User
Registration page, including the error messages, is now completely translated
when changing the user interface language to French:

B3 Inscription de l'utilisater X+ I} N

(]
& @) localhost ﬂ(= :/_ @

Tic-Tac-Toe Home About

Inscription de l'utilisateur

Fiche Utilisateur

Prénom ‘]
Le prénom est obligatoire
Nom ‘ ‘
Le nom est obligatoire
E-Mail l ‘

L 'e-mail est obligatoire

Mot de passe l ‘

Le mot de passe est obligatoire.
Create

Back to List

© 2017 - TicTacToe

You have seen how to localize strings, views, and even error messages using Data
Annotations. For that, you have used the built-in features of ASP.NET Core 2.0,
since they contain everything for developing multi-lingual localizable web
applications. The next section is going to give you some insights on how to
configure your applications and services.

Configuring your applications and
services

In the previous sections, you have further advanced by adding missing components
to the user registration process and even localizing parts of the Tic-Tac-Toe
application. However, you have always simulated the email confirmation by setting
the user confirmation programmatically in code. In this section, we will modify this
part to really send emails to newly-registered users and make everything fully
configurable.

First, you are going to add a new Email Service, which will be used to send emails to
users who have freshly registered on the website:

1. Within the services folder, add a new service called emaiiservice, and implement
a default sendrnai1 method (we will update it later):

public class EmailService

{

public Task SendEmail (string emailTo, string subject,
string message)
{
return Task.CompletedTask;
}
}

2. Extract the 1Emaiiservice Interface:

New interface name:
IEmailService

Generated name:
TicTacToe.Services.|EmailService

New file name:
IEmailService.cs

Select public members to form interface

@ SendEmail(string, string, string) Select All
Deselect All

3. Add the new Email Service to the configureservices method of the startup class
(we want a single application instance, so add it as Singleton):

| services.AddSingleton<IEmailService, EmailService>();

4. Update the UserRegistrationController tO be able to access the emaiiservice
created in the previous step:

readonly IUserService userService;

readonly IEmailService emailService;

public UserRegistrationController (IUserService userService,
IEmailService emailService)

{
_userService = userService;
_emailService = emailService;

}

5. Update the Emailconfirmation method in the UserRegistrationController for Calling
the sendemail method of the enailservice:

[HttpGet]
public async Task<IActionResult> EmailConfirmation(string email)
{
var user = awalt userService.GetUserByEmail (email);
var urlAction = new UrlActionContext
{
Action = "ConfirmEmail",
Controller = "UserRegistration",
Values = new { email },
Protocol = Request.Scheme,
Host = Request.Host.ToString()
}i

var message = $"Thank you for your registration on our web
site, please click here to confirm your email " +
$"{Url.Action (urlAction)}";

try
{
emailService.SendEmail (email,
" "Tic-Tac-Toe Email Confirmation", message) .Wait();

}

catch (Exception e)

{

}

if (user?.IsEmailConfirmed == true)
return RedirectToAction ("Index", "GamelInvitation",
new { email = email });

ViewBag.Email = email;

return View () ;

Great, you have an Email Service now, but your work is not finished yet. You need
to be able to configure the service for setting environment-specific parameters
(SMTP server name, port, SSL, and more) and then send the emails. Nearly all of

the services you create in the future will have some kind of configuration, which
should be configurable from the outside of your code.

ASP.NET Core 2.0 has a built-in Configuration API for this purpose. It provides
various functionalities for reading configuration data from multiple sources during
application runtime. Name-value pairs, which can be grouped into multi-level
hierarchies, are used for configuration data persistence. Furthermore, the
configuration data can be automatically deserialized into plain old C# objects
(POCOQO), which contain only private members and properties.

The following configuration sources are supported:

Configuration files (JSON, XML, and even classic INI files)
Environment variables

Command-line arguments

In-memory .NET objects

Encrypted user stores

Azure Key Vault

Custom providers

s.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicco

o For more information on the Configuration API, please Visit https://doc

nfiguration.

Let's see how to make the Email Service quickly configurable by using the ASP.Net
Core 2.0 Configuration API together with a JSON configuration file:

1. Add a new appsettings.json configuration file to the project and add the
following custom section. This will be used to configure the Email Service:

"Email": {
"MailType": "SMTP",
"MailServer": "localhost",

"MailPort": 25,
"UseSSL": false,
"UserId": "",
"Password": "",
"RemoteServerAPI": "",
"RemoteServerKey": ""

}

2. In the Solution Explorer, create a new folder called options at the root of the
project. Add a new POCO called emaiiserviceoptions to this folder, and
implement private members as well as public properties for the options seen

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration

previously:

public class EmailServiceOptions
{
public string MailType { get; set; }
public string MailServer { get; set; }
public string MailPort { get; set; }
public string UseSSL { get; set; }
public string UserId { get; set; }
public string Password { get; set; }
public string RemoteServerAPI { get; set; }
public string RemoteServerKey { get; set; }

public EmailServiceOptions ()

{
}

public EmailServiceOptions (string mailType,
string mailServer, string mailPort, string useSSL,
string userId, string password, string remoteServerAPI,
string remoteServerKey)
{
MailType = mailType;
MailServer = mailServer;
MailPort = mailPort;
UseSSL = useSSL;
UserId = userld;
Password = password;
RemoteServerAPI = remoteServerAPI;
RemoteServerKey = remoteServerKey;

Update the emaiiservice implementation, add the emaiiserviceoptions, and add a
parameterized constructor to the class:

private EmailServiceOptions emailServiceOptions;
public EmailService (IOptions<EmailServiceOptions>
emailServiceOptions)

{
_emailServiceOptions = emailServiceOptions.Value;

}

Add a new constructor to the startup class to allow you to configure your Email
Service:

public IConfiguration configuration { get; }
public Startup (IConfiguration configuration)

{

_configuration = configuration;

}

Update the ConfigureServices method of the Startup class:

services.Configure<EmailServiceOptions>

(_configuration.GetSection ("Email")) ;
services.AddSingleton<IEmailService,

EmailService> () ;

Update the sendemai1 method in the emaiiservice. Use the Email Service Options

to retrieve the settings from the configuration file:

public Task SendEmail (string emailTo, string subject,
string message)
{
using (var client =
new SmtpClient(emailServiceOptions.MailServer,
int.Parse(_emailServiceOptions.MailPort)))
{
if (bool.Parse(emailServiceOptions.UseSSL) == true)
client.EnableSsl = true;
if (!string.IsNullOrEmpty(emailServiceOptions.UserId))
client.Credentials =
new NetworkCredential (_emailServiceOptions.UserId,
_emailServiceOptions.Password);
client.Send(new MailMessage ("example@example.com",
emailTo, subject, message));
}
return Task.CompletedTask;
}

Put a breakpoint into the emaiiservice constructor and start the application in

Debug mode by pressing F'5 and verify that the Email Service Options values
have been retrieved correctly from the configuration file. If you have an SMTP

server, you can also verify that the email has

=
]

public class EmailService : IEmailService

really been sent:

« & emailServiceOptions {Microsoft.Extensions. Options.OptionsManager < TicTacToe.Options.EmailServiceOptions> } =
{TicTacToe.Options.EmailServiceOptions}

server, int.Parse(_emailServiceOptions.MailPort)))

viceOptions.UserId, _emailServiceOptions.Password);

13 i
14 private EmailServiceOpticns _emailServiceOptions;
15 = public EmailService(IOptions<EmailServiceOptions> emailServiceOptions)
16 {
Q 17 _emailServiceOptions = emailServiceOptions.Value;
18 }
19 Ikiﬁ Value
20 = public Task SendEmail(string em | MailPort Q- 25"
N { | & MailServer & ~ "localhost"
22 = using (var client = new SmtpC J MailType o "SMTP"
23 1 A Password =
24 if (bool.Parse(_emailServlﬁ RernateServerAP| O ~
25 client.EnableSsl = tru’ RemoteServerkKey| & - "
26 Iﬁ UseSSL Q ~ "False"
27 if (!str‘ing.IsNullDr‘Emptyd_’ Userld =N
28 client.Credentials = MeEw WETWUTRCTEUETCTET] EMETISET
29
38 client.Send(new MailMessage(“example@example.com™, emailTo, subject, message));
31 }
32 return Task.CompletedTask;
33 }
34
35 }

You have seen how to configure your applications and services by using the built-in
Configuration API of ASP.NET Core 2.0, which allows you to write less code and to
be much more productive, while providing a far more elegant and more maintainable

solution in the end.

Using logging

When you are developing your applications, you use one of the well-known
integrated development environments such as Visual Studio 2017 or Visual Studio
Code, as described in the beginning chapters of the book. You do this every day, and
most of the things you do become reflexes and you do them automatically after some
time.

It is natural for you to be able to debug your applications and understand what is
happening during runtime, by using the advanced debugging features of Visual
Studio 2017, for example. Looking up variable values, seeing what methods get
called in what order, understanding what instances are injected, and capturing
exceptions, are key to building applications that are robust and respond to business
needs.

Then, when deploying your applications to production environments, you suddenly
miss all of those features. Rarely will you find a production environment where
Visual Studio is installed, but, errors and unexpected behaviors will happen and you
will need to be able to understand and fix them as fast as possible.

That is where logging and telemetry come into play. By instrumenting your
applications and logging when entering and when leaving methods, as well as
important variable values or any kind of information you consider important during
runtime, you will be able to go to the application log and see what is happening in
the production environment in case of problems.

In the previous section, we added an Email Service for sending emails and
configured it using external configuration files. What if the configured SMTP server
1s not responding? What if we forgot to update the server settings from development
to production? Well, for now, we will just get an exception message displayed in the
browser:

W
An unhandled exception occurred while processing the request

ExtendedSocketException: No connection could be made because the target machine actively refused it 127.0.0.1:25

SmtpException: Failure sending mai

System Net MailSmtpClient Send(MaillMessage message)

cketException: No connection could be made because the target machine actively refused it 127.0.0.1:25

endP apshot, SocketAdd

et Ma Mail

F: e sending mal

In this section, we are going to show you how to use logging and exception handling
for providing a better, more industrialized solution to this type of problem.

ASP.NET Core 2.0 provides built-in support for logging to the following targets:

Azure AppServices dairy
Console

Windows Event Source
Trace

Debugger output
Application Insights

But files, databases, and logging services are not supported by default. If you want to
send your logs to these targets, you need to use a third-party logger solution such as
log4net, Serilog, NLog, Apache, ELMAH, or Loggr.

You can also easily create your own provider by implementing the rroggerprovider
interface, which is what you are going to see here:

1. Add a new Class Library (.NET Core) project to the solution and call it
TicTacToe.Logging (delete the autogenerated Classl.cs ﬁle):

b Recent [NET Framework 46,1 ~| Sort by: | Default BE

4 [nstalled

3 Console App (\MET Core) Visual C&
4 Visual C# e
Windows Classic Desktop Di! Class Library (.MET Core) Visual C#
&
Web
c#
.MNET Core E Unit Test Project ((MET Core) Visual C#
NET Standard
c#
Cloud E xUnit Test Project (MET Core) Visual C#
Test
WCF @ ASP.MET Core Web Application Visual C#
b Other Languages
P QOnline
Not finding what you are looking for?
Open Visual Studie Installer
MName: TicTacToelogging
Location: [C:\Users\Jason.DeOliveira\Source\ReposiLearning ASP.NET Core 2.0\TicTacToe -]

Search (Ctrl+E) P

Type: Visual C#

A project for creating a class library that
targets MET Core,

Browse...

oK Cancel

2. Add the NuGet packages Microsoft.Extensions.Logging and

Microsoft.Extensions.Logging.Configuration via the NuGet Package Manager:

Solution Explorer
AE-|o-sTB| L=
Search Solution Explorer (Ctrl+5)

vkl Solution 'TicTacToe' (2 projects)
b+ TicTacToe
4 +[c#] TicTacToelogging
4 2§ Dependencies
4 A MuGet
b @ Microsoft.Extensions.Logging (2.0.0-preview2-final)

b3 SDK

b @ Microsoft.Extensions.Logging.Configuration (2.0.0-preview2-final)

'J;lx

3. Add a project reference in the TicTacToe Web Application project for being

able to use assets from the ricracroe.10g9ing class library:

4 Projects
Solution

b Shared Projects

I Browse

Search (Ctrl+E) P~
Mame Path Name:
TicTacToe.Logging C:A\Users\Jason.DeOliv... TicTacToe.Logging
| Browsze... ‘| oK || Cancel

4. Add a new class called rogentry. This will contain the log data:

{

internal class LogEntry

public int EventId { get; internal set; }

public string Message { get; internal set; }
public string LogLevel { get; internal set; }
public DateTime CreatedTime { get; internal set; }

5. Add a new class called riieroggerteiper. This will be used for file operations:

{

internal class FilelLoggerHelper

private string fileName;

public FileLoggerHelper (string fileName)
{

this.fileName = fileName;

static ReaderWriterLock locker = new ReaderWriterLock();

internal void InsertLog(LogEntry logEntry)
{
var directory = System.IO.Path.GetDirectoryName (fileName) ;

if (!System.IO.Directory.Exists(directory))
System.IO.Directory.CreateDirectory (directory) ;

try
{
locker.AcquireWriterLock (int.MaxValue) ;
System.IO.File.AppendAllText (fileName,
$"{logEntry.CreatedTime} {logEntry.EventId}
{logEntry.LogLevel} {logEntry.Message}" +
Environment.NewLine) ;

finally
{

locker.ReleaseWriterLock () ;

6. Add a new class called riierogger and implement the rrogger

public sealed class FilelLogger : ILogger
{

private string categoryName;

private Func<string, LogLevel, bool> filter;
private string fileName;

private FileLoggerHelper helper;

bool> filter, string fileName)
{

_categoryName = categoryName;

_filter = filter;

_fileName = fileName;

_helper = new FileLoggerHelper (fileName) ;
}

public IDisposable BeginScope<TState> (TState state)
{

return null;

string> formatter)

{
if (!IsEnabled(logLevel))

{
return;
if (formatter == null)

throw new ArgumentNullException (nameof (formatter))

var message = formatter (state, exception);

if (string.IsNullOrEmpty (message))
{

return;
if (exception != null)

message += "\n" + exception.ToString();

}

var logEntry = new LogEntry
{
Message = message,
EventId = eventId.Id,

interface:

public FileLogger (string categoryName, Func<string, LogLevel,

public void Log<TState> (LogLevel loglLevel, EventId eventId,
TState state, Exception exception, Func<TState, Exception,

’

LogLevel = logLevel.ToString(),
CreatedTime = DateTime.UtcNow

}i

_helper.InsertLog (logEntry) ;
}

public bool IsEnabled(LogLevel logLevel)
{

return (filter == null || _filter(categoryName, logLevel));

}

Add a new class called FileLoggerProvider and implement the ILoggerProvider
interface. This will be injected later:

public class FilelLoggerProvider : ILoggerProvider

{
private readonly Func<string, LogLevel, bool> filter;
private string fileName;

public FilelLoggerProvider (Func<string, LogLevel,
bool> filter, string fileName)
{

_filter = filter;

_fileName = fileName;

}

public ILogger Createlogger (string categoryName)
{
return new FileLogger (categoryName, filter, fileName);

}

public void Dispose()
{
}

To simplify calling the File Logging Provider from the web application, we
need to add a static class called riieroggerExtensions (With configuration section,
filename, and log verbosity level as parameters):

public static class FileLoggerExtensions

{
const long DefaultFileSizeLimitBytes = 1024 * 1024 * 1024;
const int DefaultRetainedFileCountLimit = 31;

public static ILoggingBuilder AddFile(this ILoggingBuilder
loggerBuilder, IConfigurationSection configuration)
{
if (loggerBuilder == null)
{
throw new ArgumentNullException (nameof (loggerBuilder)) ;

}

if (configuration == null)

{

throw new ArgumentNullException (nameof (configuration));

}

var minimumLevel = LogLevel.Information;
var levelSection = configuration["Logging:LogLevel"];

if (!string.IsNullOrWhiteSpace (levelSection))
{

if (!Enum.TryParse(levelSection, out minimumLevel))

{

System.Diagnostics.Debug.WriteLine ("The minimum level
setting {0} is invalid", levelSection);
minimumLevel = LogLevel.Information;

return loggerBuilder.AddFile (configuration]|
"Logging:FilePath"], (category, logLevel) =>
(logLevel >= minimumLevel), minimumLevel) ;

public static ILoggingBuilder AddFile(this ILoggingBuilder
loggerBuilder, string filePath, Func<string, LogLevel,
bool> filter, LogLevel minimumLevel = LogLevel.Information)

{
if (String.IsNullOrEmpty(filePath)) throw

new ArgumentNullException (nameof (filePath));

var fileInfo = new System.IO.FileInfo(filePath);

if (!'fileInfo.Directory.Exists)
fileInfo.Directory.Create();

loggerBuilder.AddProvider (new FilelLoggerProvider (filter,
filePath));

return loggerBuilder;
public static ILoggingBuilder AddFile(this ILoggingBuilder

loggerBuilder, string filePath,
LogLevel minimumLevel = LogLevel.Information)

{
if (String.IsNullOrEmpty(filePath)) throw
new ArgumentNullException (nameof (filePath));

var fileInfo = new System.IO.FileInfo(filePath);

if (!'fileInfo.Directory.Exists)
fileInfo.Directory.Create();

loggerBuilder.AddProvider (new FileLoggerProvider ((category,
logLevel) => (logLevel >= minimumLevel), filePath));

return loggerBuilder;

In the TicTacToe Web Project, add two new options called roggingprovideroption

10.

and LoggingOptions tO the Options folder:

public class LoggingProviderOption
{
public string Name { get; set; }
public string Parameters { get; set; }
public int LogLevel { get; set; }
}
public class LoggingOptions
{
public LoggingProviderOption[] Providers { get; set; }
}

In the TicTacToe Web Project, add a new extension called
ConfigureLoggingExtension'U)thC Extensions folder:

using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;
using TicTacToe.Logging;

public static class ConfigurelLoggingExtension
{
public static ILoggingBuilder AddLoggingConfiguration (this
ILoggingBuilder loggingBuilder, IConfiguration configuration)
{
var loggingOptions = new LoggingOptions();
configuration.GetSection ("Logging") .Bind (loggingOptions) ;

foreach (var provider in loggingOptions.Providers)
{
switch (provider.Name.ToLower ())
{

case "console":

{
loggingBuilder.AddConsole () ;
break;

}

case "file":

{
string filePath = System.IO.Path.Combine (

System.IO.Directory.GetCurrentDirectory(), "logs",
$"TicTacToe_{System.DateTime.Now.ToString(
"ddMMyyHHmm") } . log") ;
loggingBuilder.AddFile (filePath,
(LogLevel)provider.LogLevel) ;

break;

}

default:

{
break;

}

}

return loggingBuilder;

11.

12.

13.

Go to the program class of the TicTacToe Web Application project, update the
BuildwebHost method, and call the extension from before:

public static IWebHost BuildWebHost (string[] args) =>
WebHost.CreateDefaultBuilder (args)
.CaptureStartupErrors (true)
.UseStartup<Startup> ()
.PreferHostingUrls (true)
.UseUrls ("http://localhost:5000")
.UseApplicationInsights ()
.ConfigurelLogging ((hostingcontext, logging) =>
{
logging.AddLoggingConfiguration (
hostingcontext.Configuration) ;
})
.Build();

Don't forget to add the following using statement at the beginning of
the class:

using TicTacToe.Extensions;

Add a new section called Logging tO the appsettings.json file:

"Logging": {

"Providers": [
{
"Name": "Console",
"LogLevel": "1"
bo
{
"Name": "File",
"LogLevel": "2"
}
1,
"MinimumLevel": 1

Start the application and verify that a new log file has been created in a folder
called 109s within the application folder:

Learning ASP.NET Core 2.0 » TicTacToe » TicTacToe * bin * Debug » netcoreapp20 * logs

Marme Date maodified Type Size

[£] TicTacToe 0308172210.l0g 03,/08/2017 22:15 Text Document 5KB

This is the first step, easy and quickly done. You now have a log file to which you
can write your logs. You will see that it is just as easy to use the integrated logging
functionalities to create logs from anywhere within your ASP.NET Core 2.0
applications (controllers, services, and more).

Let's quickly add some logs to the Tic-Tac-Toe application:

1. Update the userregistrationcontroller constructor implementation:

readonly IUserService _userService;

readonly IEmailService emailService;

readonly ILogger<UserRegistrationController> logger;

public UserRegistrationController (IUserService userService,
IEmailService emailService, ILogger<UserRegistrationController>

logger)

{
_userService = userService;
_emailService = emailService;

_logger = logger;
}

2. Update the Emailconfirmation method in the UserRegistrationController and add a
log at the start of the method:

_logger.LogInformation ($"##Start## Email confirmation
process for {email}l");

3. Update the Email Service implementation, add a logger to its constructor, and
add a new senauai1 method:

public class EmailService : IEmailService
{
private EmailServiceOptions emailServiceOptions;
readonly ILogger<EmailService> logger;
public EmailService (IOptions<EmailServiceOptions>
emailServiceOptions, ILogger<EmailService> logger)
{
_emailServiceOptions = emailServiceOptions.Value;
_logger = logger;
}

public Task SendEmail (string emailTo, string subject,
string message)
{
try
{
_logger.LogInformation ($"##Start sendEmail## Start
sending Email to {emailTo}");

using (var client =
new SmtpClient(emailServiceOptions.MailServer,
int.Parse(_emailServiceOptions.MailPort)))
{
if (bool.Parse(emailServiceOptions.UseSSL) == true)
client.EnableSsl = true;

if (!string.IsNullOrEmpty(emailServiceOptions.UserId))
client.Credentials =
new NetworkCredential (emailServiceOptions.UserId,
_emailServiceOptions.Password) ;

}

client.Send(new MailMessage ("example@example.com",
emailTo, subject, message));

catch (Exception ex)

{

re

_logger.LogError ($"Cannot send email {ex}");

turn Task.CompletedTask;

4. Open the generated log file and analyze its contents:

8/3/2017 8:
ModelState i
8/3/2017 8:
8/3/2017 8:

083/08/2017
@3/08/2017

8/3/2017 8:

18 PM 1
Valid

;1@ PM 1
:1@ PM 2
:15:19 2
:15:18 1
:1@ PM 1

(example@example.com)
8/3/2017 8:15:108 PM @
8/3/2017 8:15:10 PM @

web site, please

8/3/2017 8:15:11

Information

Information
Information
Information
Information
Information

Executing action method TicTacToe.Controllers.UserRegistrationController.Index (TicTacToe) with arguments (TicTacToe.Models.UserModel) -

Executing RedirectResult, redirecting to /UserRegistration/EmailConfirmation?Email=example@example.com.

Executed action TicTacToe.Controllers.UserRegistrationController.Index (TicTacToe) in 3.8544ms

Request finished in 5.7796ms 382

Request starting HTTP/1.1 GET http://localhost:52872/UserRegistration/EmailConfirmation?Email=example@example.com
Executing action method TicTacToe.Controllers.UserRegistrationController.EmailConfirmation (TicTacToe) with arguments

- ModelState is Valid

Information
Information

#H#Start#E Email confirmation process for example@example.com
##Starti##E Sending email to :example@example.com subject:Tic-Tac-Toe Email Confirmation message:Thank you for your registration on our

click here to confirm your email HTTP/1.1://localhost:52872/UserRegistration/ConfirmEmail?email=example@example.com
PM @ Error ##Failed## Sending email to example@example.com failed, reason:System.MNet.Mail.SmtpException: Failure sending mail. ---»

System.Net.Internals.SocketExceptionFactory+ExtendedSocketException: No connection could be made because the target machine actively refused it 127.0.0.1:25

at System.MNet
at System.Net
at System.Net
at System.Net
--- End of stack
at System
at System
at System
at System
at System
at System

.Sockets.Socket.DoConnect(EndPoint endPointSnapshot, SocketAddress socketAddress)
.Sockets.Socket.Connect(EndPoint remoteEP)
.Sockets.TepClient.Connect(IPEndPoint remoteEP)
.Sockets.TepClient.Connect(String hostname, Int32 port)
trace from previous location where exception was thrown ---
.Runtime.ExceptionServices.ExceptionDispatchInfo.Throw()
.Net.Sockets.TcpClient.Connect(String hostname, Int32 port)
.Met.Mail.SmtpConnection.GetConnection(String host, Int32 port)
.Met.Mail.SmtpTransport.GetConnection(String host, Int32 port)
.Met.Mail.SmtpClient.GetConnection()
.Met.Mail.SmtpClient.Send(MailMessage message)

--- End of inner exception stack trace ---

at System.Met.Mail.SmtpClient.Send(MailMessage message)

at TicTacToe.Services.EmailService.SendEmail(String emailTo, String subject, String message) in C:\Users\Jason.DeOliveira\Source\Repos\lLearning ASP.MET Core
2.0\ TicTacToe\TicTacToe\Services\EmailService.cs:1ine 65
8/3/2017 8:15:11 PM @ Information ##End## Sending email to :example@example.com subject:Tic-Tac-Toe Email Confirmation message:Thank you for your registration on our web
site, please click here to confirm your email HTTP/1.1://localhost:52872/UserRegistration/ConfirmEmail?email=example@example.com

8/3/2017 8:
8/3/2017 8:

03/08/2017
@83/08/2017
@3/08/2017

15
15
20
20
20

11 PM 1
11 PM 2
:15:11 2
:15:13 1
:15:13 2

Information
Information
Information
Information
Information

Executing ViewResult, running view at path /Views/UserRegistration/EmailConfirmation.cshtml.

Executed action TicTacToe.Controllers.UserRegistrationController.EmailConfirmation (TicTacToe) in 1847.9871ms
Request finished in 1851.5675ms 208 text/html; charset=utf-8

Request starting HTTP/1.1 GET http://localhost:52872/GameInvitationConfirmation

Request finished in 3.16@4ms 181

Implementing advanced
dependency Injection concepts

In the previous chapter, you saw how dependency injection (DI) works and how to
use the constructor injection method. But, if you need to inject many instances
during runtime, this method can be quite cumbersome and can make it complicated
to understand and maintain your code.

Therefore, you can use a more advanced technique of DI called method injection.
This allows accessing instances directly from within your code.

In the following example, you are going to add a new service for handling game
invitations and update the Tic-Tac-Toe application for being able to send emails for
contacting other users to join a game, while using method injection:

1. Add a new service called camernvitationservice in the services folder for
managing game invitations (adding, updating, removing, and more):

public class GameInvitationService
{
private static ConcurrentBag<GameInvitationModel>
_gamelnvitations;
public GameInvitationService ()
{
_gamelInvitations = new ConcurrentBag<GameInvitationModel> () ;

}

public Task<GameInvitationModel> Add (GameInvitationModel
gameInvitationModel)
{
gameInvitationModel.Id = Guid.NewGuid() ;
_gameInvitations.Add (gameInvitationModel) ;
return Task.FromResult (gameInvitationModel) ;
}
public Task Update (GameInvitationModel gameInvitationModel)
{
_gamelnvitations = new ConcurrentBag<GameInvitationModel>
(_gameInvitations.Where(x => x.Id != gamelInvitationModel.Id))
{
gameInvitationModel
}i
return Task.CompletedTask;

}

public Task<GameInvitationModel> Get (Guid id)
{

return Task.FromResult (gameInvitations.FirstOrDefault (
x => x.Id == id));

Extract the IGameInvitationService interface:

Mew interface name:

|Gamelnvitation5Service

Generated name:

TicTacToe.5ervices.|GamelnvitationService

Mew file name:

|GamelnvitationService.cs
Select public members to form interface

& Add{GamelnvitaticnModel) Select All
S i

Deselect All
@ Update(GamelnvitationModel)

| 0K || Cancel |

Add the new Game Invitation Service to the configureservices method of the
startup class (we want a single application instance, so add it as Singleton):

services.AddSingleton<IGameInvitationService,
GameInvitationService>();

Update the rndex method in the camernvitationcontrolier and inject an instance of
the Game Invitation Service via method injection by using the requestservices
provider:

[HttpPost]
public IActionResult Index (GameInvitationModel
gameInvitationModel, [FromServices]IEmailService emailService)
{
var gamelnvitationService =
Request.HttpContext.RequestServices.GetService
<IGameInvitationService>() ;
if (ModelState.IsValid)
{
emailService.SendEmail (gameInvitationModel.EmailTo,
_stringLocalizer["Invitation for playing a Tic-Tac-Toe game"],
_stringLocalizer[$"Hello, you have been invited to play
the Tic-Tac-Toe game by {0}. For joining the game,
please click here {1}", gamelInvitationModel.InvitedBy,

Url.Action("GameInvitationConfirmation",
"GameInvitation", new { gameInvitationModel.InvitedBy,
gameInvitationModel.EmailTo }, Request.Scheme,
Request.Host.ToString())]);

var invitation =
gameInvitationService.Add (gameInvitationModel) .Result;
return RedirectToAction("GameInvitationConfirmation",
new { id = invitation.Id });
}
return View (gameInvitationModel) ;

}

Don't forget to add the following using statement at the beginning of
the class: using Microsoft.Extensions.DependencyInjection;, Otherwise the
.GetService<IGameInvitationService> (), method cannot be used and you
will get build errors.

5. Add d Nncw method called GameInvitationConfirmation tO the

GameInvitationController.

[HttpGet]

public IActionResult GameInvitationConfirmation (Guid id,
[FromServices] IGameInvitationService gameInvitationService)

{
var gamelInvitation = gameInvitationService.Get (id) .Result;
return View (gameInvitation);

}

6. Create a new view for the cameinvitationconfirmation method you added
previously. This will display a waiting message to the user:

@model TicTacToe.Models.GamelInvitationModel
@{
ViewData["Title"] = "GameInvitationConfirmation";
Layout = "~/Views/Shared/ Layout.cshtml";
}
<hl>@Localizer["You have invited {0} to play a Tic-Tac-Toe game
with you, please wait until the user is connected",
Model.EmailTo]l</hl>
@section Scripts{
<script>
S (document) .ready (function () {
GameInvitationConfirmation ('@Model.Id');
)
</script>
}

7. Add a new method called camernvitationconfirmation to the scriptsl.js file. You
can use the same basic structure we have used for the existing emaiiconfirmation
method:

function GameInvitationConfirmation (id) {

if (window.WebSocket) {
alert ("Websockets are enabled");
openSocket (id, "GameInvitation");

}

else {
alert ("Websockets are not enabled");
interval = setInterval (() => {

CheckGameInvitationConfirmationStatus (id) ;
}, 5000);

Add a method called checxGameInvitationConfirmationstatus to the scripts2.js file.
You can use the same basic structure we have used for the existing
CheckEmailConfirmationstatus method:

function CheckGameInvitationConfirmationStatus (id) {

$.get ("/GameInvitationConfirmation?id=" + id, function (data) {
if (data.result === "OK") {
if (interval !== null)
clearInterval (interval) ;
window.location.href = "/GameSession/Index/" + id;

Update the opensocket method in the scripesz.5s file and add the specific Game
Invitation case:

var openSocket = function (parameter, strAction) {
if (interval !== null)
clearInterval (interval) ;

var protocol = location.protocol === "https:" ? "wss:" : "ws:";
var operation = "";
var wsUri = "";
if (strAction == "Email") {
wsUri = protocol + "//" + window.location.host +
"/CheckEmailConfirmationStatus";
operation = "CheckEmailConfirmationStatus";
}
else if (strAction == "GameInvitation") ({

wsUri = protocol + "//" + window.location.host +
"/GameInvitationConfirmation";

operation = "CheckGameInvitationConfirmationStatus";

var socket = new WebSocket (wsUri);
socket.onmessage function (response) {
console.log(response) ;

if (strAction == "Email" && response.data == "OK") ({
window.location.href = "/GamelInvitation?email=" + parameter;
}
else 1if (strAction == "GamelInvitation") {
var data = $.parseJSON (response.data);

if (data.Result == "OK")

window.location.href = "/GameSession/Index/" + data.Id;
}
}i

socket.onopen = function () {

var json = JSON.stringify ({
"Operation": operation,
"Parameters": parameter

1)

socket.send(json) ;

}s

socket.onclose = function (event) {
}s
}i

10. Add a new method called processGameInvitationConfirmation 1N the
Communication Middleware. This will process Game Invitation Requests
without using WebSockets, for browsers not supporting it:

private async Task ProcessGamelInvitationConfirmation (HttpContext
context)
{
var id = context.Request.Query["id"];
if (string.IsNullOrEmpty (id))
await context.Response.WriteAsync ("BadRequest:Id is required");

var gamelInvitationService =
context.RequestServices.GetService<IGameInvitationService>();
var gameInvitationModel =
await gameInvitationService.Get (Guid.Parse(id));

if (gameInvitationModel.IsConfirmed)
await context.Response.WriteAsync (
JsonConvert.SerializeObject (new
{
Result = "OK",
Email gameInvitationModel.InvitedBy,
gameInvitationModel.EmailTo
P
else
{
await context.Response.WriteAsync (
"WaitGameInvitationConfirmation") ;

}

Don't forget to add the following using statement at the beginning of

the class:
using Microsoft.Extensions.DependencyInjection;

11. Add a new method called processgametnvitationconfirmation With additional
parameters to the Communication Middleware. This will process Game
Invitation Requests while using WebSockets for browsers supporting it:

private async Task
ProcessGamelInvitationConfirmation (HttpContext context,
WebSocket webSocket, CancellationToken ct, string parameters)
{
var gameInvitationService =
context.RequestServices.GetService<IGameInvitationService>();
var id = Guid.Parse (parameters);
var gamelnvitationModel = await gamelnvitationService.Get (id);
while (!ct.IsCancellationRequested &&
'webSocket.CloseStatus.HasValue &&
gameInvitationModel?.IsConfirmed == false)

await SendStringAsync (webSocket,
JsonConvert.SerializeObject (new

{
Result = "OK",
Email = gamelInvitationModel.InvitedBy,
gameInvitationModel.EmailTo,
gameInvitationModel. Id

Py, ct)i

Task.Delay (500) .Wait ()

gameInvitationModel = await gamelnvitationService.Get (id);

Update the 1nvoke method in the Communication Middleware. This has to work
with email confirmations and game invitation confirmations from now on, with
and without WebSockets:

public async Task Invoke (HttpContext context)

{
if (context.WebSockets.IsWebSocketRequest)

{

switch (command.Operation.ToString())

{

case "CheckGameInvitationConfirmationStatus":

{

await ProcessGamelInvitationConfirmation (context,
webSocket, ct, command.Parameters.ToString());
break;

}
else 1f (context.Request.Path.Equals (
"/CheckEmailConfirmationStatus™))

await ProcessEmailConfirmation (context);

}
else if (context.Request.Path.Equals(
"/CheckGameInvitationConfirmationStatus"))

await ProcessGameInvitationConfirmation (context);

}

else

{

await next?.Invoke (context);
}
}

In this section, you have seen how to use method injection in your ASP.NET Core
2.0 web applications. This is the preferred method for injecting your services and
you should use it whenever applicable.

Also, you have advanced well with the implementation of the Tic-Tac-Toe game.
Mostly everything around user registration, email confirmation, game invitation, and
game invitation confirmation has now been implemented.

Building once and running on
multiple environments

After building your applications, you have to think about deploying them to different
environments. As you have already seen in the previous section on configuration,
you can use configuration files for changing the configuration of your services and
even your application.

In the case of multiple environments, you have to duplicate the appsettings.json file
for each environment and name it accordingly, appsettings. {EnvironmentName}.3son.

ASP.NET Core 2.0 will automatically retrieve the configuration settings in
hierarchical order, first from the common appsettings.qson file and then from the
corresponding appsettings. {Environmentname} .json file, while adding or replacing
values if necessary.

However, developing conditional code that uses different components based on
different deployment environments and configurations, seems to be complicated at
first. In traditional applications, you must create a lot of code to handle all of the
different cases by yourself and then maintain it.

In ASP.NET Core 2.0, you have a vast number of internal functionalities at your
disposal to achieve this goal. You can then simply use environment variables
(development, staging, production, and more) for indicating a specific runtime
environment, thus configuring your application for that environment.

As you will see during this section, you can use specific method names and even
class names to use existing injection and override mechanisms, provided by
ASP.NET Core 2.0 out of the box, for configuring your applications.

In the following example, we are adding an environment-specific component to the
application (sendcria), which only has to be used if the application is deployed to a
specific production environment (Azure):

1. Add the SendGrid NuGet Package to the project. This will be used for future
Azure production deployments of the Tic-Tac-Toe application:

MuGet - Solution # 3 SendGridEmailService.cs Startup.cs Index.cshtml HomeController.cs UserRegistrationController.cs

Browse Installed Updates Consolidate Manage Packages for Solution
sendgrid x- ¢ Include prerelease Package source: | nuget.org -
a . a
M Sendgrid
B Sendgrid by Eimer Thomas,SendGrid DX Team, 1,82M downloads va.6.0
=
o C# client library and examples for using SendGrid API's to send mail and access Web APl v3 endpeints with .NET Standard 1.3 and .NET Version(s) - 1
Core support.
[Project Version
SendGrid.SmtpApi by Brandon West, Elmer Thomas, 1,26M downloads V133 TicTacToe 960
Easily build SendGrid SMTPAPI headers, [] TicTacToe.Logging
'B SendGrid.Netd0 by Brandon West, Neeraj Kumnar, 36,8K downloads v5.1.0
C# client library for using SendGrid API's to send mail. Github repo located at: https://github.com/smurfpandey/sendgrid-csharp-netd0
'e Microsoft.Azure.WebJobs.Extensions.SendGrid by Microsoft, 269K downloads v2.1.0-betal 4 »
Microsoft.Azure.WebJobs.Extensions.SendGrid adds SendGrid binders to the WebJobs SDK.
Prerelease Installed: 9.6.0 Uninstall
'B SendGrid. SmtpApiPlus by Robert McLaws, Brandon West, 26,8K downloads V101 Version: | Latest stable 9.6.0 -
Easily use your faverite SMTP client library to send mail through SendGrid with the proper X-SMTPAPI headers.

2. Add a new service called sendcridemaiiservice within the services folder. This
will be used for sending emails via sendacria. Have it inherit the 1emaiiservice
interface and implement the specific sendemaii method:

public class SendGridEmailService : IEmailService
{
private EmailServiceOptions emailServiceOptions;
private ILogger<EmailService> logger;
public SendGridEmailService (IOptions<EmailServiceOptions>
emailServiceOptions, ILogger<EmailService> logger)
{
_emailServiceOptions = emailServiceOptions.Value;
_logger = logger;
}

public Task SendEmail (string emailTo, string subject,
string message)
{
_logger.LogInformation ($"##Start## Sending email via
SendGrid to :{emailTo} subject:{subject} message:{message}");
var client =
new SendGrid.SendGridClient (
_emailServiceOptions.RemoteServerAPI) ;
var sendGridMessage =
new SendGrid.Helpers.Mail.SendGridMessage

From = new SendGrid.Helpers.Mail.EmailAddress (
_emailServiceOptions.UserId)
bi
sendGridMessage.AddTo (emailTo) ;
sendGridMessage.Subject = subject;
sendGridMessage.HtmlContent = message;
client.SendEmailAsync (sendGridMessage) ;
return Task.CompletedTask;

3. Add a new extension method for being able to more easily declare specific
Email Services for specific environments. For that, go to the extensions folder

and add d NEW EmailServiceExtension.

public static class EmailServiceExtension
{
public static IServiceCollection AddEmailService (
this IServiceCollection services, IHostingEnvironment
hostingEnvironment, IConfiguration configuration)

services.Configure<EmailServiceOptions>
(configuration.GetSection ("Email™));
if (hostingEnvironment.IsDevelopment () ||
hostingEnvironment.IsStaging())

services.AddSingleton<IEmailService, EmailService>();
}
else
{
services.AddSingleton<IEmailService, SendGridEmailService>();
}

return services;

4. Update the startup class to use the created assets from before. For better
readability and maintainability, we will go even further and create a dedicated
configureservices method for each environment we have to support, remove the
existing configureservices method, and add the following environment-specific
ConfigureServices methods:

public IConfiguration configuration { get; }
public IHostingEnvironment hostingEnvironment { get; }
public Startup (IConfiguration configuration,
IHostingEnvironment hostingEnvironment)
{
_configuration = configuration;
_hostingEnvironment = hostingEnvironment;
}
public void ConfigureCommonServices (IServiceCollection services)
{
services.AddLocalization (options =>
options.ResourcesPath = "Localization");
services.AddMvc () .AddViewLocalization (
LanguageViewLocationExpanderFormat.Suffix, options =>
options.ResourcesPath
"Localization") .AddDataAnnotationsLocalization();
services.AddSingleton<IUserService, UserService>();
services.AddSingleton<IGamelInvitationService,
GameInvitationService> () ;
services.Configure<EmailServiceOptions>
(_configuration.GetSection ("Email"));
services.AddEmailService (_hostingEnvironment, configuration);
services.AddRouting () ;
services.AddSession (o =>
{
o.IdleTimeout = TimeSpan.FromMinutes (30);

) ;

public void ConfigureDevelopmentServices (
IServiceCollection services)
{

ConfigureCommonServices (services);

}

public void ConfigureStagingServices (
IServiceCollection services)

{
ConfigureCommonServices (services);

}

public void ConfigureProductionServices (
IServiceCollection services)

{
ConfigureCommonServices (services) ;

}

Note that you could also apply the same approach to the configure
method in the startup class. For that, you just remove the existing
configure method and add new methods for the environments you would

o llke to SMppOl"f, SMCh AaS ConfigureDevelopment, ConfigureStaging, cmd

configureproduction. 1he best practice would be to combine all of
the common code into a configurecommon method and call it from the
other methods, as shown below for the specific configureservices
methods.

5. Start the application by pressing F5 and verify that everything is still running
correctly. You should see that the added methods will automatically be used
and that the application is fully functional.

That was easy and straightforward! No specific conditional code for the
environments, nothing complicated to evolve and to maintain, just very clear and
easy-to-understand methods that contain the environment name they have been
developed for. A very clean solution to the problem of building once and running on
multiple environments.

But, that is not all! What if we told you that you do not need to have a single Startup
class? What if you could have a dedicated Startup class for each environment with
only the code applicable to its context? That would be great, right? Well, that is
exactly what ASP.NET Core 2.0 provides.

To be able to use dedicated Startup classes for each environment, you just have to
update the Program class, the main entry point for ASP.NET Core 2.0 applications.
You change a single line in the sui1dwebnost method for passing the assembly name

.UseStartup ("TicTacToe") INStead of .usestartup<startup> (), and then you can use this
fantastic feature:

public static IWebHost BuildWebHost (string[] args) =>

WebHost.CreateDefaultBuilder (args)
.CaptureStartupErrors (true)
.UseStartup ("TicTacToe")
.PreferHostingUrls (true)
.UseUrls ("http://localhost:5000")
.UseApplicationInsights ()
LBuild();

Now, you can add dedicated Startup classes for the different environments, such as
StartupDevelopment, StartupStaging, aNd startupProduction. AS With the method approach
before, they will be automatically used; nothing else needs to be done on your side.
Just update the rrogran class, implement your environment-specific Startup classes,
and 1t works. ASP.NET Core 2.0 really makes our lives much easier by providing
these useful features.

Summary

In this chapter, you have learned some more advanced concepts of ASP.NET Core
2.0 and implemented some of the missing components of the Tic-Tac-Toe
application.

At the beginning, you created the client-side parts of the Tic-Tac-Toe web
application using JavaScript. We have explored how to optimize your web
applications by using bundling and minification, as well as WebSockets for real-time
communication scenarios.

Furthermore, you have seen how to benefit from the integrated user and session
handling, which was shown in an easy-to-understand example.

Then, we introduced globalization and localization for multi-lingual user interfaces,
application and service configuration, as well logging to better understand what is
happening within your applications during runtime.

At the end, we illustrated via a practical example how to build your applications
once and then adapt them to different environments by using the concepts of
multiple configureservices and configure methods, as well as multiple startup classes
depending on deployment targets.

In the next chapter, we will talk about ASP.NET Core MVC, Razor in MVC (areas,
layouts, partial views, and more), Razor Pages, and the View Engine.

Creating MVC Applications

Most of today's modern web applications are based on the Model View Controller
pattern, also commonly called MVC. You should have noticed that we have also
used it in the previous chapters for building the foundations of the Tic-Tac-Toe
sample application.

So, you have already worked with it in multiple places, without even knowing what
was happening in the background and why it was important to apply this specific
pattern.

An 1nitial pre-version of ASP.NET MVC was released in 2007. It was conceived and
designed by Scott Guthrie, who also co-created ASP.NET as such, as well as Phil

Haack, who led the development team. The first packaged official version was
ASP.NET MVC 1, which was released in 2009.

Since then, the ASP.NET MVC framework has proven itself over the years, until
effectively becoming the market standard. Microsoft has successfully evolved it into
an industrialized and efficient framework with high developer productivity.

There are many examples of web applications that take full advantage of the multiple
features MVC has to offer. Two great examples are Stack Overflow and CodePlex.
They provide information to developers and have a very high user base, with the
need to scale to thousands, or even millions, of users at the same time.

In this chapter, we will cover the following topics:

Understanding the Model View Controller pattern

Creating dedicated layouts for multiple devices

Using View Pages, Partial Views, View Components, and Tag Helpers
Dividing web application into multiple Areas

Applying advanced concepts such as view engines, unit tests, and integration
tests

Understanding the Model View
Controller pattern

The MVC pattern separates applications into three main layers—models, views, and
controllers. One of the benefits of this pattern is the separation of concerns, also
called the Single Responsibility Principle (SRP), which makes it possible to
develop, debug, and test application features independently.

When using the MVC pattern, a user request is routed to a Controller, which will use
a Model for retrieving data and performing actions. The Controller selects a
corresponding view for display to the user, while providing it with the necessary data
from the Model.

There is less impact if a layer (for example, Views) changes, since it is now loosely
coupled to the other layers of your applications (for example, controllers and
models).

It is also much easier to test the different layers of your applications. In the end, you
will have better maintainability and more robust code by using this pattern:

Controller

Models

A Model contains the logical data structures as well as the data of your applications,
independent from their visual representations. In the context of ASP.NET Core 2.0,
it also supports localization and validation, as you have seen in the previous
chapters.

Models can be created in the same project with your views and controllers or in a
dedicated project for the better organization. Scaffolding uses models for auto-
generating views. Furthermore, models can be used to bind forms to entity objects
automatically.

In terms of data persistence, various data storage targets can be used. In the case of
databases, you should be using Entity Framework, which will be introduced in one
of the following chapters of this book. Models are serialized when working with
Web APIs.

Views

A View provides the visual representation and user interface elements for your
applications. When using ASP.NET Core 2.0, views are written using HMTL and
Razor markup. They generally have a .csntmi file extension.

A View either contains a complete web page, a web page part (called partial view),
or a layout. In ASP.NET Core 2.0, a View can be separated into logical subdivisions
with their own behaviors, which are called View Components.

Additionally, Tag Helpers allow you to centralize and encapsulate HTML code in a
single tag and use it across all your applications. ASP.NET Core 2.0 already includes
many existing Tag Helpers for improving developer productivity.

Controllers

A Controller manages the interactions between models and views. It provides the
logical behavior and business logic for your applications. It chooses which View has
to be rendered for a specific user request.

Generally speaking, since controllers provide the main application entry point, this
means that they are controlling how applications should respond to user requests.

Unit tests

The main goal of unit tests is to validate the business logic within controllers.
Normally, unit tests are put into their own external unit tests projects, while multiple
test frameworks are available (XUnit, NUnit, or MSTest).

As described previously, since everything is completely decoupled when using the
MVC pattern, you can test your controllers at any point independently from the other
parts of your applications by using unit tests.

Integration tests

End-to-end validation of application functionalities is done via integration tests.
They check that everything is working as expected from an application user point of
view. Therefore, controllers and their corresponding views are tested together.

As with unit tests, integration tests are normally put into their own testing projects
and you can use a variety of testing frameworks (XUnit, NUnit, or MSTest). You
will, however, also need to use a web server automation toolkit for this type of test.

Creating dedicated layouts for
multiple devices

Modern web applications use web page layouts to provide a consistent and coherent
style. It is best practice to use HTML in combination with CSS to define this layout.
In ASP.NET Core 2.0, the common web page layout definition is centralized in a
layout page. This page includes all the common user interface elements, such as the
header, the menu, the sidebar, and the footer.

Furthermore, common CSS and JavaScript files are referenced in the layout page, so
that they can be used throughout your whole application. This allows you to reduce
code in your views, thus helping you to apply the DRY (Don't Repeat Yourself)
principle.

We have been using a layout page since the very early versions of the Tic-Tac-Toe
sample application. It was first introduced when we added it in a previous chapter.
We have used it since to give our application a modern look, as you can see here:

Tic-Tac-Toe Home About Contact Settings =

Welcome to the Tic-Tac-Toe Game!

Tic-Tac-Toe

Tic-Tac-Toe is a two-player turn-based game.

Two players will choose who takes the Xs and who takes the Os. They will then be taking turns and mark spaces in a 3x3 grid by putting their
marks, one mark per turn

A player who succeeds in placing three of his marks in a horizontal, vertical, or diagonal row wins the game

Register by clicking here

© 2017 - TicTacToe

Let's look at the layout page in more detail, to understand what it is and how to take
advantage of its features for creating dedicated layouts for multiple devices with
different form factors (PCs, telephones, tablets, and more).

In chapter 4, Basic Concepts of ASP.NET Core 2.0 - Part 1, we added a layout page
called rayout.cshtm1 Within the views\shareda folder. When opening this page and
analyzing its content, you can see that it contains common elements applicable to all
the pages within your application (header, menu, footer, CSS, JavaScripts, and
more):

Layoutcshit = < |

1 <|DOCTYPE html>
2 -|<html>
3 +llchead>. . .</head>
19 ~l<body>
20 - <nav class="navbar navbar-inverse navbar-fixed-top">
21 - <div class="container">»
22 + <div class="navbar-header”>...</div>
31 + <div class="navbar-collapse collapse”>...<jdivﬁ
50 </div>
51 </nav>
52 - <div class="container body-content">»
53 @RenderBody ()
54 <hr />
55 = <footer>
56 <p>© 2017 - TicTacToe</p>
57 </footer>
58 </div>
59
60 + <environment>...</environment>
67 + <environment>...</environment>
82
83 @RenderSection("Scripts”, required: false)
84 </body>
85 </html>
86

The common head section within the layout page contains CSS links but also SEO
tags such as title, description, and keywords. As you have already seen before,
ASP.NET Core 2.0 provides a neat feature, which allows you to include
environment-specific content automatically via environment tags (development,
staging, production, and more).

Bootstrap has become a quasi-standard for rendering menu and navbar components,
which is why we have also used it for the Tic-Tac-Toe application.

It is best practice to put common JavaScript files at the bottom of your layout page;

they can also be included depending on ASP.NET Core environment tags.

You can use the views\ viewstart.cshtml file to define the layout page for all your
pages in a central place. Or, if you want to set a specific layout page manually, you
can set it at the top of your page:

@
Layout = " Layout";
}

To better structure your layout pages, you can define sections for organizing where
certain page elements, including common script sections, should be placed. An
example is the script section you can see within the layout page, which we added in
one of the first examples of the Tic-Tac-Toe application. By default, it has been put
at the bottom of the page by adding a dedicated meta tag:

| RenderSection: @RenderSection("Scripts", required: false)

You can also define sections in your views for adding files or client-side scripts. We
have already done that in the context of the Email Confirmation View, where you
have added a section for calling the client-side JavaScript naiiconfirmation method:

@section Scripts{
<script>
$ (document) .ready (function () {
EmailConfirmation ('@ViewBag.Email') ;
)i
</script>

}

Enough with all this theoretical talk, let's get practical and do something ourselves!
Let's see how to optimize the Tic-Tac-Toe application for mobile devices:

1. We want to change the display specifically for mobile devices, so start Visual
Studio 2017, go to the Solution Explorer, create a new folder called riiters,
then add a new file called petectmobilerilter:

public class DetectMobileFilter : IActionFilter
{
static Regex MobileCheck = new Regex (@"android]

(android|bb\d+|meego) .+mobile|avantgo|bada\/ |
blackberry|blazer|compal |elaine|fennec|hiptop]
iemobile|ip (honelod) |iris|kindle|lge|maemo |
midp |mmp |mobile.+firefox|netfront|
opera m(ob|in)i|palm(os)?|phone|p(ixi|re)\/|
plucker|pocket |psplseries(4]6)0|symbian|
treo|up\. (browser|link) |vodafone|wap|windows (ce|phone) |
xda|xiino", RegexOptions.IgnoreCase | RegexOptions.Multiline

| RegexOptions.Compiled);

static Regex MobileVersionCheck = new Regex (@"1207|
6310|6590|3gso|4thp|50[1-6]11|770s]|802s]a
wa|abaclac(er|oo|s\-) |ai(ko|lrn) |al(av|calco) |
amoi |an (ex|ny|yw) |aptular (ch|go) |as (telus) |
attwlau(di|\-m|r |s)|avan|be(ck|1ll|ng) |bi(1b]rd) |
bl (aclaz) |br(e|v)w|bumb|bw\-(n|u) |c55\/|capi|ccwa|cdm\-|
cell|chtm|cldc|cmd\-|co(mp|nd) |craw|da(it|1l1l|ng) |dbte|dc\-s|
devi|dicaldmob|do(clp)o|ds (12|\-d) |el(49]ai) |em(12]|ul) |
er(iclkO)\esl8|ez([4—7]0|os|wa|ze)|fetc|fly(\—_)\gl
ul|g560|gene|gf\-5|g\-mo|go(\.w|od) |gr(ad|un) |haie|hcit|
hd\-(m|plt) lhei\-|hi(ptlta) |[hp(ilip) |hs\-clht(c(\-| |
_lalglplslt) Itp) lhu(aw|tc) [1\-(20|go|ma) [1230|iac(|\-]
\/) |ibro|idea|ig01l|ikom|imlk|inno|ipaqliris]|
ja(t|v)aljbro|jemu|jigs|kddi|kejilkgt(|\/) |klon|kpt |kwc\-|
kyo(clk) |le(nolxi) |1lg(gl\/(kl1l|u) |50|54|\-[a-w]) |
libw|lynx|ml\-w|m3ga|m50\/|ma (te|ui|xo) |lmc (01|21]|ca) |m\-cr|
me (rc|ri) |mi(o8|oalts) Immef|mo (01|02 |bi|lde|dolt (\-]| |
o|lv)lzz) | mt(50|pl|v) |mwbp|mywa|nl0[0-2]|n20[2-3] |
n30(0]2) In50(01215) In7(0(0|1)]10) Ine((c|m)\-|on|
tf|wf|lwg|lwt) [nok(6]1i) Inzph|o2im|op (ti|wv) |oran]
owgl |p800|pan(aldlt) Ipdxglpg (13[\-([1-8]]c)) Iphil]
pirelpl (ayluc) |pn\-2|po(ck|rt]|se) |prox|psiolpt\-glga\-a]
gqc(071121211321601\=[2=-7]111\-) |gtek|r380|r600|raks|rim9]|
ro(ve|zo) |s55\/|sa(ge|ma|mm|ms|ny|va) |sc(01l|h\-]oo|p\-) |
sdk\/|se(c(\-]10|1) |47 |mc|nd|ri) |sgh\-|shar|sie(\-|m) |sk\-0]
sl (45]id) Ism(allar|b3|it|t5) |so(ftiny) Isp(0llh\-|v\-|v)|
sy (01l |mb) [£2(18]50) [t6(00|10]18) |ta(gt|lk) |tcl\-|tdg\-|
tel(i|m) |tim\-|t\-mo|to(pllsh) |ts (70 |m\-|m3|m5) |
tx\=-9lup(\.blgl|si) |lutst|v400|v750]|veri|vi(rglte) |
vk (40|5[0-3]1|\-v) |vm40|voda|vulc|vx(52]53]60|
61]170180181183|85]98) |w3c(\-|) |webc|whit|wi(g|nc|nw) |
wmlb|wonu|x700|yas\-|your|zeto|zte\-",
RegexOptions.IgnoreCase | RegexOptions.Multiline |
RegexOptions.Compiled) ;

public static bool IsMobileUserAgent (
ActionExecutedContext context)

{

string userAgent = (context.HttpContext.Request.Headers
as FrameRequestHeaders) ?.HeaderUserAgent;
if (context.HttpContext != null && userAgent != null)

{

if (userAgent.Length < 4)
return false;

if (MobileCheck.IsMatch (userAgent) ||
MobileVersionCheck.IsMatch (userAgent.Substring (0, 4)))
return true;

}

return false;

}

public void OnActionExecuted (ActionExecutedContext context)

{

var viewResult = (context.Result as ViewResult):;
if (viewResult == null)
return;

if (IsMobileUserAgent (context))
{

2.

viewResult.ViewData["Layout"] =
"~/Views/Shared/ LayoutMobile.cshtml";
}
else
{
viewResult.ViewData["Layout"] =
"~/Views/Shared/ Layout.cshtml";
}
}

public void OnActionExecuting (ActionExecutingContext context)

{
}

Duplicate the existing views/shared/ rayout.cshtml file and rename the copy

LayoutMobile.cshtml.

3. prdate the Home Page Index View, remove the existing layout definition and

display a different title depending on the device by adding two dedicated
sections called pesktop and mobi1e:

@f
ViewData["Title"] = "Home Page";

}
<div class="row">
<div class="col-1g-12">
@section Desktop {<h2>Q@Localizer["DesktopTitle"]</h2>}
@section Mobile {<h2>@Localizer["MobileTitle"]</h2>}
<div class="alert alert-info">

Note that you must also update all the other views of the application
(Gamelnvitation/GamelnvitationConfirmation, Gamelnvitation/Index,
Home/Index, UserRegistration/EmailConfirmation,
UserRegistration/Index) with the section tags from the preceding code
for now:

@section Desktop{<hZ2>@Localizer|["DesktopTitle"]</h2>}

@section Mobile {<h2>@Localizer["MobileTitle"]</h2>}

If you do not add them in your other views, you will get errors in the
next steps. However, this is only a temporary solution; we will see later
in the chapter how to address this problem more effectively by using
conditional statements.

4. Update the Resource Files. Here is an example for the English Home Page

Index Resource File; you should also add the French translations:

4

Mame Value
DesktopTitle Welcome to the Tic-Tac-Toe Desktop Game!
MobileTitle Welcome to the Tic-Tac-Toe Maobile Game!

MOdlfy the Views/Shared/ Layout.cshtml ﬁle by replacing the @RenderBody ()
element with the following instructions; the pesxtop section should be displayed
and the movi1e section should be ignored:

@RenderSection ("Desktop", required: false)
@{IgnoreSection ("Mobile");}
@RenderBody ()

MOdlfy the Views/Shared/ LayoutMobile.cshtml file by replacing the @RenderBody ()
element with the following instructions; the mobi1e section should be displayed
and the pesktop section should be ignored:

@RenderSection ("Mobile", required: false)
@{IgnoreSection ("Desktop");}
@RenderBody ()

Go to the views/ viewstart.cshemi file and change the Layout assignment for all
your web pages to be able to use the layout definitions from the preceding code:

@{Layout = Convert.ToString(ViewData["Layout"]);}

In the last step, update the startup class and add the petectimobileriiter to the
MVC service registration as a parameter:

services.AddMvc (o =>
o.Filters.Add (typeof (DetectMobileFilter)))...

Start the Tic-Tac-Toe application normally in Microsoft Edge:

Tic-Tac-Toe Home

Welcome to the Tic-Tac-Toe Desktop Game!

Tic-Tac-Toe

Tic-Tac-Toe is a two-player turn-based game.

Two players will choose who takes the Xs and who takes the Os. They will then be taking turns and mark spaces in a 3x3 grid by putting their
marks, one mark per turn.

A player who succeeds in placing three of his marks in a horizontal, vertical, or diagonal row wins the game.

Register by clicking here

© 2017 - TicTacToe

10. Open the Developer Tools by clicking on F'12, go to the Emulation tab and
select a mobile device, then reload the Tic-Tac-Toe application; it will be
displayed as if you had opened it on the device:

Welcome to the Tic-Tac-Toe
Mobile Game!

Tic-Tac-Toe

A player who succeeds in placing t
horizontal. vertical. or diagonal row wins the game

Reqister by clicking here

22017 - TieTacToe

DOM Explorer Console Debugger Network (=) Performance Memary Emulation (i Experiments. B ? X

Device Mode Display
Device Browser profile Windows 10 Mobile st Orientation Portrait B
User agent string | Custom had Resolution Custom jndl
Enter a custom user agent string Enter a custom resolution
Custom string Mozilla/5.0 (iPhone; CPU iPh | X Width 736 pixels
Height 414 pixels

Geolocation

In this section, you have seen how to provide specific layouts for specific devices.
You are now going to see how to apply other advanced ASP.NET Core 2.0 MVC
features for better productivity and better applications.

Using View Pages, Partial Views,
View Components, and Tag Helpers

ASP.NET Core 2.0 and Razor, when coupled with Visual Studio 2017, provide
several functionalities for creating your MVC views. In this section, you will see
how those functionalities can help you to be more productive.

You can, for instance, create views by using the Visual Studio 2017 integrated
scaffolding features, which you have already done in previous chapters multiple
times. It allows you to automatically generate the following types of views:

e View Pages
e Partial Views

Would you like to understand what they are and how to use Visual Studio 2017 to
work with them efficiently? Stay sharp since we are now going to explain everything
in detail.

Using View Pages

View Pages are used to render results based on actions and for giving responses to
HTTP requests. In an MV C approach, they define and encapsulate the visible part of
your applications—the presentation layer. Furthermore, they use the .csnemi file
extension and are stored in the views folder of the application by default.

The Visual Studio 2017 scaffolding features provide different View Page templates,
as you can see here:

e Create: Generate a form for inserting data

e Edit: Generate a form for updating data

¢ Delete: Generate a form for displaying a record with a button to confirm
deletion

e Details: Generate a form for displaying a record with two buttons, one for going
to edit form and one for going to delete displayed record page

e List: Generate an HTML table for showing a list of objects

e Empty: Generate an empty page without using any models

If you cannot use Visual Studio 2017 for generating your Page Views, you might as
well implement them manually by adding them to the views folder yourself. In this
case, you have to respect the MVC conventions. So add them in a corresponding
sub-folder, while matching the action name, for allowing ASP.NET to find your
manually created views.

Let's create the Leaderboard for the Tic-Tac-Toe game and see all of this in action:

1. Open the Solution Explorer, go to the views folder and create a new sub-folder
called readerboara, right-click on the folder and select Add | New Item | MVC
View Page in the wizard, and click on the Add button:

4 Installed Sart by: | Default ~[Becg Search (Ctrl+E) P~

4 ASP.NETC c# - ;
— = ,';j Class ASP.NET Core Type: - ASP.NEE Core
s i MVC View Page
. f;”be"'" 0 Interface ASP.NET Core
el
s
B Online D] Assembly Information File ASP.NET Core
[
,';j MVC Controller Class ASP.NET Core
C#
,';j Web AP| Controller Class ASP.NET Core
(%3
E'I Razor Page ASP.MET Core
Cc#
@ MVC View Page ASP.MET Core
?g ASP.NET Configuration File ASP.MET Core

MName: Index.cshtml

Add Cancel

2. Open the created file and clear its content, associate the Leaderboard View with
the User Model by adding the following instruction to the top of the page:

| @model IEnumerable<TicTacToe.Models.UserModel>

3. It is best practice to set its title variable to display it in the SEO tags:

| @{ViewData["Title"] = "Index";}

4. Add new two sections, pesktop and mobile, by using the esection meta tag, and
the last updated time by using the ¢ () meta tag:

<div class="row">
<div class="col-1lg-12">
@section Desktop {<h2>@Localizer["DesktopTitle"] (
Last updated @ (System.DateTime.Now))</h2>}
@section Mobile {<h2>@Localizer["MobileTitle"] (

Last updated @ (System.DateTime.Now))</h2>}
</div>
</div>

5. Add the English and French resource files for the Leaderboard View and define
localizations for the pesktopritie and mobileTitle.

6. Right-click on the controi1ers folder and select Add | Class, name it
LeaderboardController.cs, and click on the Add button:

4 Installed Sort by: [Default - Search (Ctrl+E] P~
ASPNET C = - :
‘ e '_‘J Class ASP.NET Core Type Rk b T Core
Code % A
n empty class declaration
General
. We:be“ 0 Interface ASP.NET Core
o
R COnie | Assembly Information File ASB.NET Core
&
be] MV Controler Class ASP.NET Core
-
,';j Web API Contraller Class ASP.NET Core
?
i
El Razor Page ASP.NET Core
o
[E] wve viewpoge ASP.NET Core
?3 ASP.NET Configuration File ASP.NET Core
- =
Name: LeaderboardController.cs
Add Cancel

7. Update the Leaderboard Controller implementation:

public class LeaderboardController : Controller
{
public IActionResult Index ()
{
return View () ;
}
}

Note that Razor matches views with actions as follows:
<actionname>.cshtml OF <actionname>.<culture>.cshtml IN the

Views/<con trollername>f0[d€l"

8. Update the _Layout.cshtml and _LayoutMobile.cshtml files in the views/shared folder,

and add an ASP.NET Tag Helper for calling the new Leaderboard View within
the navbar menu just after the some element:

<a asp-area="" asp-controller="Leaderboard"
asp-action="Index">Leaderboard</1i>

9. Start the application and display the new Leaderboard View:

Tic-Tac-Toe

Leaderboard (Last updated 9:13 PM)

© 2017 - TicTacToe

Now that you know the basics, let's look at some more advanced techniques when
using Razor, such as code blocks, control structures, and conditional statements.

Code blocks, e}, are used for setting or calculating variables and for formatting data.
You have already used them in the viewstart.csnhemi file in one of the previous
examples to define which specific layout page should be used:

@
Layout = Convert.ToString(ViewData["Layout"]);
}

Control structures provide everything necessary for working with loops. You could
use efor, @foreach, éwhile, and edo fOr repeating elements, for example. They act
exactly the same as their C# equivalents.

We are now going to use them for implementing the Leaderboard View:

1. Add anew HTML table to the Leaderboard View, while using the previously
mentioned control structures:

@model IEnumerable<TicTacToe.Models.UserModel>
@{ViewData["Title"] = "Index";}
<div class="row">
<div class="col-1lg-12">
@section Desktop {<h2>@Localizer["DesktopTitle"] (
Last updated @ (System.DateTime.Now))</h2>}
@section Mobile {<h2>@Localizer["MobileTitle"] (
Last updated @ (System.DateTime.Now))</h2>}
<table class="table table-striped">
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Score</th>
</tr>
</thead>
<tbody>
@foreach (var user in Model)
{
<tr>
<td>Quser.FirstName Quser.LastName</td>
<td>Quser.Email</td>
<td>@user.Score.ToString () </td>
</tr>
}
</tbody>
</table>
</div>
</div>

2. Add a new cetropusers method to the ruserservice interface for retrieving the top
users for display within the Leaderboard View:

| Task<IEnumerable<UserModel>> GetTopUsers (int numberOfUsers) ;

3. Implement the new cetropusers method within the userservice:

public Task<IEnumerable<UserModel>>
GetTopUsers (int numberOfUsers)

{

return Task.Run(() =>
(IEnumerable<UserModel>) userStore.OrderBy(x =>
x.Score) .Take (numberOfUsers) .ToList ());

4. Update the Leaderboard Controller to call the new method:

public class LeaderboardController : Controller
{
private IUserService _userService;
public LeaderboardController (IUserService userService)
{
_userService = userService;

}

public async Task<IActionResult> Index()
{
var users = await userService.GetTopUsers (10);
return View (users);
}
}

5. Press F'5 and start the application, register multiple users, and display the
Leaderboard:

Tic-Tac-Toe Home

Leaderboard (Last updated 11:04 PM)

Name Email Score
Jason De Oliveira example@example.com 0
Michel Bruchet test@test.com 0

© 2017 - TicTacToe

Conditional Statements such as eir, eeise if, eelse, and eswitch allow rendering
elements conditionally. They also work exactly the same as their C# counterparts.

As mentioned before, you need to define the pesktop and mobiie sections in all of
your views:

@section Desktop { }
@section Mobile { }

For example, if you remove them temporarily from the Leaderboard Index View and
try to display it while the asenercore EnvironMenT Variable is set to pevelopment s0 that

the Developer Exception page is activated, you will get the following error message:

An unhandled exception occurred while processing the request.

InvalidOperationException: The layout page '/Views/Shared/_Layout.cshtml' cannot find the section 'MabileTitle' in the
content page '/Views/Leaderboard/Index.cshtml'.

Microsoft. AspMNetCore.Mvec.Razor.RazorPage.lgnoreSection(string sectionName)

InvalidOperationException: The layout page '/Views/Shared/_Layout.cshtml' cannot find the section 'MobileTitle" in the
content page '/Views/Leaderboard/Index.cshtml'.

Microsoft AspNetCore Mvc Razor RazorPage IgnoreSection(string sectionName)

AspNetCore._Views_Shared_ Layout_cshtml+ < <ExecuteAsync>b_ 47_7>d MoveNext() in _Layout.cshtml
+ 56. IgnoreSection("MobileTitle"};

System Runtime.ExceptionServices.ExceptionDispatchinfo. Throw()

System Runtime.CompilerServices TaskAwaiter HandleNonSuccessAndDebuggerNotification(Task task)

Microsoft AspNetCaore Razor Runtime TagHelpers TagHelperExecutionContext+ < SetOutputContentAsync=d__30 MoveNext()

System Runtime ExceptionServices Exception Dispatchinfo. Throw

System Runtime.CompilerServices TaskAwaiter HandleNonSuccessAndDebuggerNotification(Task task)

This 1s because we changed the rayout and mobiie layout pages for the application in
one of the previous steps and used an rgnoresection Instruction. Unfortunately,
sections must always be declared when using rgnoresection instructions.

But now that you know that conditional statements exist, you can already see a better
solution, right? Yes, exactly; we have to wrap the rgnoresection instruction with a
conditional i r statement within the two layout pages.

Here is how you need to update the layout page using the rssectionpefined method:

@if (IsSectionDefined ("Mobile")) {IgnoreSection ("Mobile");}

@RenderSection ("Desktop", required: false)
@RenderBody ()

Here is how you need to update the vobiie layout page:

@if (IsSectionDefined ("Desktop")) {IgnoreSection ("Desktop");}

@RenderSection ("Mobile", required: false)
@RenderBody ()

Start the application and you will see that everything is now working as expected,
but this time with a much cleaner, more elegant, and easier-to-understand solution;
that is, using the built-in functionalities of ASP.NET Core 2.0 and Razor.

.com/en-us/aspnet/core/mvc/views/razor

ﬂ For additional information on Razor please Visit: nttps://docs.microsoft

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor

Using Partial Views

You have seen how to create View Pages using Razor, but sometimes you have to
repeat elements within all or some of your View Pages. Wouldn't it be helpful if you
could create reusable components within your views for this case? Unsurprisingly,
ASP.NET Core 2.0 does implement this feature by default, by providing so-called
Partial Views.

Partial Views are rendered within calling View Pages. Like standard View Pages,
they also have the .csnem1 file extension. You can define them once and then use
them within all your View Pages. What a great way to optimize your code by
reducing code duplication, which leads to better quality and less maintenance!

You are going to see how to benefit from that right now, by optimizing the Layout
and Mobile layout pages to use a single menu:

1. Go to the views/shared folder and add a new MVC View Page called
_Menu.cshtml, 1t Will be used as the Menu Partial View:

4 Views

Gamelnvitation

Home

Leaderboard

Shared

_Layout.cshtml
_LayoutMobile.cshtml
_Menu.cshtrml

¥V V¥

2. Copy the nav bar from one of the layout pages and paste it into the Menu Partial
View:

<nav class="navbar navbar-inverse navbar-fixed-top">

</nav>

(8]

Replace the nav bar with entmi.partial (" Menu) 1n both layout pages.

4. Start the application and validate that everything is still working as before. You
should not see any differences, but that is a good thing; you have encapsulated
and centralized the menu in a Partial View now.

Using View Components

You have seen how to create reusable components by using Partial Views, which can
be called from any View Pages within your applications, and applied this concept to
the top menu of the Tic-Tac-Toe application. But sometimes, even this feature is not
enough.

Sometimes you need something more powerful, something more flexible, that you
can use throughout your whole web application and maybe even for multiple web
applications. That is where View Components come into play.

View Components are used for complex use cases that require some code running on
the server (for example, Login Panel, Tag Cloud, and Shopping Cart), where Partial
Views are too limited to be used, and where you need to be able to test
functionalities extensively.

You are going to add a View Component for managing game sessions in the
following example; you will see that it is very similar to a standard Controller
implementation:

1. Add a new model called Turnvode1 to the mode1s folder:

public class TurnModel

{
public Guid Id { get; set; }
public Guid UserId { get; set; }
public UserModel User { get; set; }
public int X { get; set; }
public int Y { get; set; }

2. Add a new model called camesessionmode1 to the mode1s folder:

public class GameSessionModel

{
public Guid Id { get; set; }
public Guid UserIdl { get; set; }
public Guid UserId2 { get; set; }
public UserModel Userl { get; set; }
public UserModel User2 { get; set; }
public IEnumerable<TurnModel> Turns { get; set; }
public UserModel Winner { get; set; }
public UserModel ActiveUser { get; set; }
public Guid WinnerId { get; set; }
public Guid ActiveUserId { get; set; }

public bool TurnFinished { get; set; }
}

3. Add a new service called camesessionservice to the services folder, implement it,
and extract the rcamesessionservice Interface:

public class GameSessionService
{
private static ConcurrentBag<GameSessionModel> sessions;
static GameSessionService ()
{
_sessions = new ConcurrentBag<GameSessionModel> () ;

}

public Task<GameSessionModel> GetGameSession (Guid gameSessionId)
{

return Task.Run(() => sessions.FirstOrDefault (

X => x.Id == gameSessionId));

4. Register the camesessionservice within the startup class, as you have already done
with all the other services:

| services.AddSingleton<IGameSessionService, GameSessionService>();

5. Go to the Solution Explorer, create a new folder called components, then add a
new class called GameSessionViewComponent.cs.

[ViewComponent (Name = "GameSession")]
public class GameSessionViewComponent : ViewComponent
{
IGameSessionService gameSessionService;
public GameSessionViewComponent (IGameSessionService
gameSessionService)
{
_gameSessionService = gameSessionService;

}

public async Task<IViewComponentResult> InvokeAsync (Guid
gameSessionId)
{
var session =
await gameSessionService.GetGameSession (gameSessionId);
return View (session);

}

6. Go to the Solution Explorer and create a new folder called components within the
views/shared folder. Within this folder create a new folder called camesession for
the GameSessionViewComponent, then add a new View called defauit.cshtmi:

@using Microsoft.AspNetCore.Http
@model TicTacToe.Models.GameSessionModel

@f

var email = Context.Session.GetString ("email");
}
@if (Model.ActiveUser?.Email == email)
{
<table>
@for (int rows = 0; rows < 3; rows++)

{
<tr style="height:150px;">
@for (int columns = 0; columns < 3; columns++)

{
<td style="width:150px; border:lpx solid #808080">

@f
var position = Model.Turns?.FirstOrDefault (
turn => turn.X == columns && turn.Y == rows);
if (position != null)
{
if (position.User?.Email == "Playerl")
{
<i class="glyphicon glyphicon-unchecked"
style="width:100%;height:100%"></1i>
}
else
{
<i class="glyphicon glyphicon-remove-circle"
style="width:100%;height:100%"></1i>
}
}
else
{
<a asp-action="SetPosition"
asp-controller="GameSession"
asp-route-id="@Model.Id"
asp-route-email="@email"
class="btn btn-default"
style="width:150px; min-height:150px;">

}
}
</td>
}
</tr>
}
</table>

}
else
{

<div class="alert">

<i class="glyphicon glyphicon-alert">Please wait until
the other user has finished his turn.</i>

</div>

}

We advise using the following syntax for putting all Partial Views for

your View Components in their corresponding folders:
Views\Shared\Components\<ViewComponentName>\<ViewName>

7. Update the viewimports.cshtmi file to use the View Component:

| @addTagHelper *, TicTacToe

8. Create a new folder called camesession Within the views folder, then add a new
View called 1ndex:

@model TicTacToe.Models.GameSessionModel
@section Desktop
{
<hl>Game Session @Model.Id</hl>
<h2>Started at @ (DateTime.Now.ToShortTimeString())</h2>
<div class="alert alert-info">
<table class="table">
<tr>
<td>User 1:</td>
<td>@Model.Userl?.Email (<i class="glyphicon
glyphicon-unchecked"></i>) </td>
</tr>
<tr>
<td>User 2:</td>
<td>@Model.User2?.Email (<i class="glyphicon
glyphicon-remove-circle"></i>)</td>
</tr>
</table>
</div>
}
@section Mobile({
<h1>Game Session @Model.Id</hl>
<h2>Started at @ (DateTime.Now.ToShortTimeString())</h2>
User 1: @Model.Userl?.Email <i class="glyphicon
glyphicon-unchecked"></i>

User 2: @Model.User2?.Email (<i class="glyphicon
glyphicon-remove-circle"></i>)
}

<vc:game-session game-session-id="@Model.Id"></vc:game-session>

9. Add a public constructor to the camesessionservice for getting an instance of User
Service:

private IUserService UserService;
public GameSessionService (IUserService userService)
{

_UserService = userService;

}

10. Add a method to the camesessionservice for creating game sessions, and update
the Game Session Service Interface:

public async Task<GameSessionModel> CreateGameSession (
Guid invitationId, string invitedByEmail,
string invitedPlayerEmail)
{
var invitedBy =
await UserService.GetUserByEmail (invitedByEmail);

var invitedPlayer =
awailt UserService.GetUserByEmail (invitedPlayerEmail);

GameSessionModel session = new GameSessionModel
{

Userl = invitedBy,

User?2 invitedPlayer,

Id = invitationId,

ActiveUser = invitedBy

}i

_sessions.Add(session);
return session;

11. Add a new Controller called camesessioncontroller Within the controllers fOldCI',
and implement a new 1ndex method:

public class GameSessionController : Controller
{
private IGameSessionService gameSessionService;
public GameSessionController (IGameSessionService
gameSessionService)
{

_gameSessionService = gameSessionService;

}

public async Task<IActionResult> Index (Guid id)
{

var session = await gameSessionService.GetGameSession (id);
if (session == null)

{
var gamelInvitationService =
Request.HttpContext.RequestServices
.GetService<IGameInvitationService>();
var invitation = await gameInvitationService.Get (id);
session =
await gameSessionService.CreateGameSession (
invitation.Id,invitation.InvitedBy,
invitation.EmailTo) ;
}

return View (session);

}

Note that for calling requestservices.Getservice<rs> () ; you must also add

using Microsoft.Extensions.DependencyInjection; dS YOU have already done
in other examples.

12. Start the application, register a new user, and invite another user to play a game,
wait for the new Game Session page to be displayed:

Settings - A Jason De Oliveira ¥

Game Session 24ef1102-3d6b-4502-af68-4a4 7bb4adc32
Started at 12:48 AM

User 1: jason oliveira@laposte net (0)

User 2: test@test com (@)

® 2017 - TicTacToe

Using Tag Helpers

Tag Helpers are a new feature of ASP.NET Core 2.0, which allow server-side code
to be used when creating and rendering HTML elements. They can be compared to
already existing and well-known HTML helpers for rendering HTML content.

ASP.NET Core 2.0 already provides many built-in Tag Helpers, such
as TmageTagHelper and LavelTagHelper that you can use within your applications.

When creating your own Tag Helpers, you can target HTML elements based on an
element name, an attribute name, or a parent tag. You can then use standard HTML
tags in your views, while presentation logic written in C# is applied on the web
server.

Additionally, you can even create custom tags as you will see in this section about
creating a Gravatar tag. You will use this within the Tic-Tac-Toe application:

1. Open the Solution Explorer and create a new folder called ragueipers, then add a
new class called GravatarTagHelper.cs.

2. Implement the cravatarragreiper.cs class; it will be used to connect to the
Gravatar online service for retrieving account photos for users:

[HtmlTargetElement ("Gravatar")]
public class GravatarTagHelper : TagHelper
{
private ILogger<GravatarTagHelper> logger;
public GravatarTagHelper (ILogger<GravatarTagHelper> logger)
{
_logger = logger;
}
public string Email { get; set; }
public override void Process (TagHelperContext context,
TagHelperOutput output)
{
byte[] photo = null;
if (CheckIsConnected())
{
photo = GetPhoto (Email) ;
}
else
{
photo = File.ReadAllBytes (Path.Combine (
Directory.GetCurrentDirectory(),
"wwwroot", "images", "no-photo.jpg")):

string base64String = Convert.ToBase64String (photo);
output.TagName = "img";
output.Attributes.SetAttribute ("src",
$"data:image/jpeg;base64d, {base64String}") ;
}

private bool CheckIsConnected()
{
try
{
using (var httpClient = new HttpClient())
{
var gravatarResponse = httpClient.GetAsync (
"http://www.gravatar.com/avatar/") .Result;
return (gravatarResponse.IsSuccessStatusCode);
}
}

catch (Exception ex)

{
_logger?.LogError ($"Cannot check the gravatar
service status: {ex}");
return false;

}

private byte[] GetPhoto(string email)
{
var httpClient = new HttpClient();
return httpClient.GetByteArrayAsync (
new Uri ($"http://www.gravatar.com/avatar/
{HashEmailForGravatar (email) }")) .Result;

}

private static string HashEmailForGravatar (string email)
{
var mdS5Hasher = MD5.Create();
byte[] data = mdSHasher.ComputeHash (
Encoding.ASCII.GetBytes (email.ToLower()));

var stringBuilder = new StringBuilder();
for (int i = 0; 1 < data.Length; i++)
{
stringBuilder.Append(datal[i].ToString ("x2")) ;
}

return stringBuilder.ToString();

Open the Views/ ViewImports.cshtml file and Verify that the addTagHelper
instruction 1s existing; if not, add it to the file:

@addTagHelper *, TicTacToe

Update the 1ndex method in the camernvitationcontroiler, store the user email,
and display the name (first name and last name) in a session variable:

[HttpGet]
public async Task<IActionResult> Index(string email)

var gamelInvitationModel = new GameInvitationModel ({
InvitedBy = email, Id = Guid.NewGuid() };

Request.HttpContext.Session.SetString ("email", email);

var user = awalt userService.GetUserByEmail (email);

Request.HttpContext.Session.SetString ("displayName",
$"{user.FirstName} {user.LastName}");

return View (gameInvitationModel) ;

Add a new model called accountmode1 to the mode1s folder:

public class AccountModel
{
public string Email { get; set; }
public string DisplayName { get; set; }
}

Add a new Partial View called account.cshtmi In the views/snharea folder:

@model TicTacToe.Models.AccountModel
<li class="dropdown">

@Model.DisplayName

<ul class="dropdown-menu" id="connected-dp">

<div class="navbar-login">
<div class="row">
<div class="col-1g-4">
<p class="text-center">
<Gravatar email="@Model.Email"></Gravatar>
</p>
</div>
<div class="col-1g-8">
<p class="text-left">@Model.DisplayName</p>
<p class="text-left small"><a asp-action="Index"
asp-controller="Account">@Model.Email</p>
</div>
</div>
</div>
</1li>
<li class="divider"></1i>

<div class="navbar-login navbar-login-session">
<div class="row">
<div class="col-1g-12">
<p>
Log off
</p>
</div>
</div>
</div>
</1i>

</1li>

7. Add a new CSS class to the wwwroot/css/site.css file:

#connected-dp {
min-width: 350px;
}

Note that you might need to empty your browser cache or force a
refresh for the application to update the site.css file within your
browser.

8. Update the Menu Partial View, and retrieve the user display name and email at
the top of the page:

Qusing Microsoft.AspNetCore.Http;
ef
var email = Context.Session.GetString("email") ;
var displayName = Context.Session.GetString("displayName") ;

}

9. Update the Menu Partial View, and add the new Account Partial View from
before, located just after the Settings element in the menu:

@if (!string.IsNullOrEmpty(email))
{
Html.RenderPartial (" Account",
new TicTacToe.Models.AccountModel {
Email = email, DisplayName = displayName });
}
</1li>

10. Create an account on Gravatar with your email and upload a photo, start the
Tic-Tac-Toe application, and register with the same email. You should now see
a new dropdown with a photo and display name in the top menu:

4 Jason De Oliveira v

Jason De Oliveira

Welcome to the Tic-Tac-Toe Desktop G E AT

Tic-Tac-Toe

Log off
Tic-Tac-Toe is a two-player turn-based game.
Two players will choose who takes the Xs and who takes the Os. They will then be taking tums and mark spaces in a 3x3 grid by putting their marks, one mark per turn

A player who succeeds in placing three of his marks in a horizontal, vertical, or diagonal row wins the game.

Register by clicking here

© 2017 - TicTacToe

Note that you have to be online for this to work. If you want to test your
code offline, you should put a photo in the wwwroot\images folder called
no-photo. jpg, otherwise, you will get an error since no offline photo can

be found.

Easy to understand and easy to use, but when to use View Components and when to

use Tag Helpers? The following simple rules should help you decide when to use
which of the explained concepts:

e View Components are used whenever you need templates for views, for
rendering a group of elements, and associating server code with it.

e Tag Helpers are used to append behavior to a single HTML element, instead of
a group of elements.

Dividing web applications into
multiple Areas

Sometimes, when working with larger web applications, it can be interesting to
logically separate them into multiple smaller, functional units. Each unit can then
have its own controllers, views, and models, which makes it easier to understand,
manage, evolve, and maintain them over time.

ASP.NET Core 2.0 provides some simple mechanisms based on the folder structure
for dividing web applications into multiple functional units, also called Areas.

For example, to separate the standard Area from the more advanced administration
Area within your applications. The standard Area could then even enable anonymous
access on some pages, while asking for authentication and authorization on others,
whereas the administration Area would always require authentication and
authorization on all pages.

The following conventions and restrictions apply to Areas:

e An Area is a subdirectory under the areas folder

e An Area contains at least the two subfolders: controiiers and views

¢ An Area may contain specific layout pages as well as dedicated
_ViewImport.cshtml and _ViewStart.cshtml files

¢ You have to register a specific route, which enables Areas within its routing
definition, to be able to use Areas in your applications

e [t is recommended to use the following format for Area URLs:
http://<Host>/<AreaName>/<ControllerName>/<ActionName>

e The Tag Helper asp-area can be used for appending an Area to a URL
Let's look at how to create a specific Administration Area for Account Management:

1. Open the Solution Explorer and create a new folder called areas, right-click on
the folder and select Add | Area, enter account as Area name, and click on the
Add button:

Solution Explorer v O x
QeE-lo-=am| s

Search Solution Explorer (Ctri+5) P~
& Solution 'TicTacToe' (2 projects)

4[] TicTacToe

& Connected Services

b 2 Dependencies

b Properties

b & wwwroot

View in Browser (Microsoft Edge) onents

Browse With... Dllers
Area... Add > lions
Controller... I"\’ Scope to This
0 Mew ltem... Mew Solution Explorer View zation
+ﬂ Existing ltem... Shift+Alt+ A Exclude From Project E:\rares

Mew Scaffolded ltem... ¥ cut Ctrl+X ns
#3 Mew Folder ! Copy CtrleC Es
b Application Insights Telemetry... X_ Delete Del (i
22 Docker Support Rename ttings,json
W Class... ShiftsAlteC | €@ Open Folder in File Explorer json
A Properties Alt+Enter E:nol::ig.json

Scaffolding will create a dedicated folder structure for the Account Area:

4 Areas
] Account
Controllers
Data
Models
Views

Add a new route for areas to the uvsemve declaration within the configure method
of the startup class:

app.UseMvc (routes =>
{
routes.MapRoute (name: "areaRoute",
template: "{area:exists}/{controller=Home}/{action=Index}");

routes.MapRoute (name: "default",
template: "{controller=Home}/{action=Index}/{id?}");

P

Right-click on the controiiers folder within the Account Area and add a new
Controller called somecontrolier:

[Area ("Account")]
public class HomeController : Controller
{
private IUserService _userService;
public HomeController (IUserService userService) {
_userService = userService;
}
public async Task<IActionResult> Index() {

var email = HttpContext.Session.GetString ("email");
var user = awalt userService.GetUserByEmail (email);
return View (user);

}

Add a new folder called zome 1n the account/views folder, and add a View called
Index 1N this new folder:

@model TicTacToe.Models.UserModel
<h3>Account Details</h3>
<div class="container">
<div class="row">
<div class="col-xs-12 col-sm-6 col-md-6">
<div class="well well-sm">
<div class="row">
<div class="col-sm-6 col-md-4">
<Gravatar email="@Model.Email"></Gravatar>
</div>
<div class="col-sm-6 col-md-8">
<h4>Q ($" {Model.FirstName} {Model.LastName}")</h4>
<p>
<i class="glyphicon glyphicon-envelope"></i>
@Model.Email
</p>
<p>
<i class="glyphicon glyphicon-calendar">
</i> @Model.EmailConfirmationDate
</p>
</div>
</div>
</div>
</div>
</div>
</div>

Update the Account Partial View, and add a link to display the preceding view
(just after the existing Log off link):

<a class="btn btn-default btn-block" asp-action="Index"
asp-controller="Account">View Details

Start the application, register a new user, and call the new Area by clicking on
the Account Details link in the account dropdown:

B3 localhost o+

& > O localhost
Account Details
Jason De Oliveira

example@example. com

11/7/2017 10:10:21 PM

We will stop the implementation of the Administration Area here and come back to
it In chapter 9, Securing ASP.NET Core 2.0 Applications, where you will see how to
secure access to it.

Applying advanced concepts

Now that we have seen all the basic features of ASP.NET Core 2.0 MVC, let's look
at some of the more advanced features, which can help you during your daily work
as a developer.

You will also learn how to use Visual Studio 2017 for testing your applications and
thus providing better quality for your users.

Using view engines

When ASP.NET Core 2.0 uses server-side code for rendering HTML, it uses a View
Engine. By default, when building standard views with their associated .csnem1 files,
you use the Razor View Engine with the Razor syntax, for example.

By convention, this engine is able to work with views, which are located within the
views folder. Since it is built-in and the default engine, it is bound automatically to
the HTTP Request Pipeline without you doing anything for it to work.

If you need to use Razor for rendering files that are located outside of the views folder
and don't come directly from the HTTP Request Pipeline, such as email templates
for example, you cannot use the default Razor View Engine. Instead, you need to
define your own View Engine and make it responsible for generating the HTML
code in this case.

In the following example, we will explain how you can use Razor for rendering an
email based on an email template, which is not coming from the HTTP Request
Pipeline:

1. Open the Solution Explorer and create a new folder called viewengines, add a
new class called emaiiviewEngine.cs, and extract its interface, remailviewEngine:

public class EmailViewEngine

{
private readonly IRazorViewEngine viewEngine;
private readonly ITempDataProvider tempDataProvider;
private readonly IServiceProvider serviceProvider;

public EmailViewEngine (
IRazorViewEngine viewEngine,
ITempDataProvider tempDataProvider,
IServiceProvider serviceProvider)
{
_viewEngine = viewEngine;
_tempDataProvider = tempDataProvider;
_serviceProvider = serviceProvider;
}
private IView FindView (ActionContext actionContext,
string viewName)
{
var getViewResult =
_viewEngine.GetView (executingFilePath: null,
viewPath: viewName, isMainPage: true);
if (getViewResult.Success)

return getViewResult.View;

}

var findViewResult = viewEngine.FindView (actionContext,
viewName, isMainPage: true);

if (findViewResult.Success)

{
return findViewResult.View;

}

var searchedLocations =
getViewResult.SearchedLocations.Concat (

findViewResult.SearchedLocations) ;

var errorMessage = string.Join(
Environment.NewLine,
new[] { $"Unable to find view '{viewName}'. The following
locations were searched:" }.Concat (searchedLocations));

throw new InvalidOperationException (errorMessage) ;

public async Task<string> RenderEmailToString<TModel> (string
viewName, TModel model)

{

var actionContext = GetActionContext () ;
var view = FindView (actionContext, viewName) ;
if (view == null)

{

throw new InvalidOperationException(string.Format (
"Couldn't find view '{0}'", viewName)) ;

using (var output = new StringWriter())
{
var viewContext = new ViewContext (
actionContext,
view,

new ViewDataDictionary<TModel> (
metadataProvider: new EmptyModelMetadataProvider(),
modelState: new ModelStateDictionary())

Model = model

by

new TempDataDictionary (
actionContext.HttpContext,
_tempDataProvider),
output,
new HtmlHelperOptions());

await view.RenderAsync (viewContext) ;
return output.ToString() ;

}private ActionContext GetActionContext ()

{ var httpContext = new DefaultHttpContext
{ RequestServices = serviceProvider
iéturn new ActionContext (httpContext, new RouteDatal(),
new ActionDescriptor());

Create a new folder called ne1pers, and add a new class called

EmailViewRenderHelper.cs.

public class EmailViewRenderHelper

{
IHostingEnvironment hostingEnvironment;
IConfiguration configurationRoot;
IHttpContextAccessor httpContextAccessor;

public async Task<string> RenderTemplate<T>(string template,
IHostingEnvironment hostingEnvironment, IConfiguration
configurationRoot, IHttpContextAccessor httpContextAccessor,
T model) where T:class
{
_hostingEnvironment = hostingEnvironment;
_configurationRoot = configurationRoot;
_httpContextAccessor = httpContextAccessor;
var renderer =
httpContextAccessor.HttpContext.RequestServices
.GetRequiredService<IEmailViewEngine> () ;
return await renderer.RenderEmailToString<T> (template,
model) ;

Add a new service called EmailTemplateRenderService 1n the services folder and
extract its interface, 1EmailTemplateRenderservice:

public class EmailTemplateRenderService

{
private IHostingEnvironment hostingEnvironment;
private IConfiguration configuration;
private IHttpContextAccessor httpContextAccessor;

public EmailTemplateRenderService (IHostingEnvironment
hostingEnvironment, IConfiguration configuration,
IHttpContextAccessor httpContextAccessor)

{
_hostingEnvironment = hostingEnvironment;
_configuration = configuration;
_httpContextAccessor = httpContextAccessor;

}

public async Task<string> RenderTemplate<T> (string
templateName, T model, string host) where T : class
{
var html = await new EmailViewRenderHelper ()
.RenderTemplate (templateName, hostingEnvironment,
_configuration, httpContextAccessor, model);
var targetDir =
Path.Combine (Directory.GetCurrentDirectory (),
"wwwroot", "Emails");

if (!Directory.Exists(targetDir))
Directory.CreateDirectory (targetDir) ;

string dateTime = DateTime.Now.ToString ("ddMMHHyyHHmmss") ;

var targetFileName = Path.Combine (targetDir,
templateName.Replace ("/", " ") .Replace("\\", " ") + "." +
dateTime + ".html");

html = html.Replace (" {ViewOnLine}",
$"{host.TrimEnd('/"') }/Emails/{Path.GetFileName
(targetFileName) }");

html = html.Replace ("{ServerUrl}", host);

File.WriteAllText (targetFileName, html);

return html;

4. Register the EmailViewEngine and EmailTemplateRenderService in the Startup class:

services.AddTransient<IEmailTemplateRenderService,
EmailTemplateRenderService> () ;
services.AddTransient<IEmailViewEngine, EmailViewEngine> () ;

Note that it is required to register the emaiiviewengine and the
EmailTemplateRenderService aS transient because of the HTTP Context
Accessor injection.

5. Add a new layout page in the views/sharea folder called rayoutEmail.cshtmi:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width,
initial-scale=1.0" />
<title>Q@ViewData["Title"] - TicTacToe</title>

<environment include="Development">
<link rel="stylesheet"
href="~/lib/bootstrap/dist/css/bootstrap.css" />
<link rel="stylesheet" href="~/css/site.css" />
</environment>
<environment exclude="Development">
<link rel="stylesheet"
href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/
css/bootstrap.min.css"
asp-fallback-href="~/1lib/bootstrap/dist/css/bootstrap.min.css"
asp-fallback-test-class="sr-only"
asp-fallback-test-property="position"
asp-fallback-test-value="absolute" />
<link rel="stylesheet" href="~/css/site.min.css"
asp-append-version="true" />
</environment>
</head>
<body>
<div class="container body-content">
@RenderBody ()
<hr />
<footer>
<p>© 2017 - TicTacToe</p>
</footer>

</div>

<environment include="Development">
<script src="~/lib/jquery/dist/jquery.js"></script>
<script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
<script src="~/js/site.js" asp-append-version="true"></script>
</environment>
<environment exclude="Development">
<script src="https://ajax.aspnetcdn.com/
ajax/jquery/jquery-2.2.0.min.js"
asp-fallback-src="~/1lib/jquery/dist/jquery.min.js"
asp-fallback-test="window. jQuery"
crossorigin="anonymous"
integrity="sha384-K+ctZQ+LL8g6tP7I94W+qgzQsfRV2a+
AfHIi9k8z819ggpc8X+YtstdyBo/hH+8Fk">
</script>
<script src="https://ajax.aspnetcdn.com/ajax/bootstrap/
3.3.7/bootstrap.min.js"
asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
asp-fallback-test="window.jQuery && window.jQuery.fn
&& window.jQuery.fn.modal"
crossorigin="anonymous"
integrity="sha384-Tc5IQib027gvyjSMEfHjOMaLkfuWVxZxUPnCJA7
12mCWNIpGIMGCD8WGNIcPD7Txa">
</script>
<script src="~/js/site.min.js"
asp-append-version="true"></script>
</environment>

@RenderSection ("Scripts", required: false)
</body>
</html>

Add a new model called UserRegistrationEmailModel tO the moae1s folder:

public class UserRegistrationEmailModel

{
public string Email { get; set; }
public string DisplayName { get; set; }
public string ActionUrl { get; set; }

}

Create a new sub-folder called emaiitempilates 1n the views folder and add a new
view called UserRegistrationEmail.

@model TicTacToe.Models.UserRegistrationEmailModel
@f
ViewData["Title"] = "View";
Layout = " LayoutEmail";
}
<hl>Welcome @Model.DisplayName</hl>
Thank you for registering on our website. Please click here to confirm your email.

Update the Emailconfirmation method within the UserRegistrationController for
using the new Email View Engine before sending any emails:

var userRegistrationEmail = new UserRegistrationEmailModel
{

DisplayName = $"{user.FirstName} {user.LastName}",

Email = email,

ActionUrl = Url.Action (urlAction)
}i

var emailRenderService =
HttpContext.RequestServices.GetService
<IEmailTemplateRenderService> () ;
var message =
await emailRenderService.RenderTemplate (
"EmailTemplates/UserRegistrationEmail",
userRegistrationEmail, Request.Host.ToString()):;

Note that for calling requestservices.Getservice<r>() ;, you must also add
using Microsoft.Extensions.DependencyInjection; dS JOU have alreaa’y done
in other examples.

9. Start the application and register a new user, open the vserregistrationEmail, and
analyze its content (look in the wwwroot/Emai1s folder):

Welcome Jason De Oliveira

Thank you for registering on our website. Please click here to confirm vour email.

© 2017 - TicTacToe

Note that a View Engine can be used for rendering email content, as
seen in the preceding example, but it can also be used for rendering

views outside of the views folder, for rendering views from within a
database, or for using the themes folder as in ASP.NET 4.

You have seen many concepts and many code examples throughout the various
chapters of this book, but we have not yet talked about how to ensure excellent
quality and maintainability for your applications. The next section is going to shed
some light on this subject, since it is dedicated to application testing.

Providing better quality by creating
unit tests and integration tests

Building high-quality applications and satisfying application users is a difficult
endeavor. Even more, shipping products that have technical and functional flaws can
lead to enormous problems during the maintenance phase of your applications.

The worst-case scenario is that, since maintenance is so demanding on time and
resources, you will not be able to evolve your applications as quickly as possible to
lower your time-to-market, and you will be unable to provide exciting new features.
But rest assured that your competition is not waiting! They will surpass you and you
will lose market share and market leadership.

But how can you succeed? How can you reduce the time to detect bugs and
functional problems? You have to test your code and your applications! And you
have to do that as much as possible and as soon as possible. It is common knowledge
that fixing a bug during development time is cheaper and quicker, whereas fixing a
bug during production takes more time and money.

Having a low Mean Time To Repair (MTTR) for bugs can make a big difference
when it comes to becoming a future market leader within your specific markets.

Let's continue with the development of the Tic-Tac-Toe application and then see how
to carefully test it in more detail:

1. Add a new method called adarurn to the camesessionservice and update the Game
Session Service Interface:

public async Task<GameSessionModel> AddTurn (Guid id,
string email, int x, int y) {
var gameSession = sessions.FirstOrDefault (session =>
session.Id == id);
List<Models.TurnModel> turns;
if (gameSession.Turns != null && gameSession.Turns.Any())

turns = new List<Models.TurnModel> (gameSession.Turns) ;
else
turns = new List<TurnModel> () ;

turns.Add (new TurnModel
{

User = await UserService.GetUserByEmail (email),
X = x,
Y=y
1) ;
if (gameSession.Userl?.Email == email)
gameSession.ActiveUser = gameSession.User2;
else
gameSession.ActiveUser = gameSession.Userl;
gameSession.TurnFinished = true;
_sessions = new ConcurrentBag<GameSessionModel>
(_sessions.Where(u => u.Id != id))
{
gameSession
bi
return gameSession;
}

2. Add a Nncw method called SetPosition tO GameSessionController:

public async Task<IActionResult> SetPosition (Guid id,
string email, int x, int y)
{
var gameSession =
await gameSessionService.GetGameSession (id);
await gameSessionService.AddTurn(gameSession.Id, email,
X, Y)i
return View ("Index", gameSession);

3. Add a new model called tnvitationEmailModel t0O the moge1s folder:

public class InvitationEmailModel

{
public string DisplayName { get; set; }
public UserModel InvitedBy { get; set; }
public DateTime InvitedDate { get; set; }
public string ConfirmationUrl { get; set; }

4. Add anew View called 1nvitationemai1 to the Views/EmailTemplates folder:

@model TicTacToe.Models.InvitationEmailModel
@f

ViewData["Title"] = "View";

Layout = " LayoutEmail";
}
<hl>Welcome @Model.DisplayName</hl>
You have been invited by @ ($"{Model.InvitedBy.FirstName}
{Model.InvitedBy.LastName}") for playing the Tic-Tac-Toe game.
Please click here for
joining the game.

5. Update the tndex method in the cametnvitationcontroller for LlSil’lg the Invitation
Email Template mentioned previously:

[HttpPost]
public async Task<IActionResult> Index (
GameInvitationModel gameInvitationModel,
[FromServices]IEmailService emailService)
{
var gameInvitationService =
Request.HttpContext.RequestServices.GetService
<IGameInvitationService> () ;
if (ModelState.IsValid)
{
try
{
var invitationModel = new InvitationEmailModel
{
DisplayName = $"{gamelnvitationModel.EmailTo}",
InvitedBy =
awalt userService.GetUserByEmail (
gameInvitationModel.InvitedBy),
ConfirmationUrl = Url.Action("ConfirmGameInvitation",
"GameInvitation", new { id = gameInvitationModel.Id },
Request.Scheme, Request.Host.ToString()),
InvitedDate = gameInvitationModel.ConfirmationDate

}i

var emailRenderService =
HttpContext.RequestServices.GetService
<IEmailTemplateRenderService>();
var message =
await emailRenderService.RenderTemplate
<InvitationEmailModel> ("EmailTemplates/InvitationEmail",
invitationModel, Request.Host.ToString()):
await emailService.SendEmail (
gameInvitationModel.EmailTo, _stringLocalizer|
"Invitation for playing a Tic-Tac-Toe game"], message);
}
catch

{

var invitation =
gameInvitationService.Add (gameInvitationModel) .Result;
return RedirectToAction ("GameInvitationConfirmation",
new { id = gameInvitationModel.Id });

}

return View(gameInvitationModel) ;

Add a new method called confirmGameInvitation tO GameInvitationController:

[HttpGet]

public IActionResult ConfirmGameInvitation (Guid id,

[FromServices] IGameInvitationService gameInvitationService)

{
var gameInvitation = gamelInvitationService.Get (id) .Result;
gameInvitation.IsConfirmed = true;
gameInvitation.ConfirmationDate = DateTime.Now;
gameInvitationService.Update (gameInvitation) ;
return RedirectToAction ("Index", "GameSession", new { id = id });

7. Start the application and verify that everything is working as expected,
including the various emails and steps for starting a new game.

Now that we have implemented all this new code, how do we test it? How do we
ensure that it is working as expected? You could start the application in debug mode
and verify manually that all variables are set correctly and that the application flow is
correct, but that would be very tedious and not very efficient.

How could you do it better? Well, by using unit tests and integration tests, which we
will introduce in the following sections.

Adding unit tests

Unit tests allow you to individually verify the behavior of your various technical
components and ensure that they are working as expected. They also help you to
quickly identify regressions and analyze the overall impact of new developments.

Visual Studio 2017 includes powerful features for unit testing. The Test Explorer
helps you to run unit tests as well as view and analyze test results. For that, you can
either use the built-in Microsoft testing framework or additional frameworks such as
NUnit or xUnit.

Furthermore, you can automatically execute unit tests after each build, so developers
can react quickly if something is not working as expected.

Refactoring code can be done without fearing regressions, since unit tests ensure that
everything is still working as before. No more excuses for not having the best code
quality possible!

You could even go further and apply Test Driven Development (TDD), which is
where you write unit tests before writing implementations. Additionally, unit tests
become some sort of design document and functional specifications in this case.

This book is about ASP.NET Core 2.0, so we will not go into too much
detail about unit tests. It is, however, advised to dig deeper and
familiarize yourself with all the different unit test concepts for building
better applications.

We are now going to see how easy it is to use xUnit, the preferred unit testing
framework for ASP.NET Core:

1. Add a new project of xUnit Test Project (NET Core) type called
TicracToe.UnitTests tO the TicTacToe Solution:

b Recent [NET Framework4.6.1 _ ~| Sort by: | Default -] Search (Ctrl+E) P~
4 |nstalled Iy "
o) Console App (NET Core) Visual C# Type: Visual C¥
4 Visual C# s A project that contains xUnit.net tests that
Windows Classic Desktop ﬂﬁ! Class Library (.NET Core) Visual C# can run on MET Core on Windows, Linux
=z and MacO5.
Web
CH#
\NET Core ﬁj Unit Test Project (NET Core) Visual C#
MET Standard
cH
Cloud E xUnit Test Project (.MET Core) Visual C&
Test
WCF @ ASP.MET Core Web Application Visual C#

I Other Languages

b Online

Not finding what you are locking for?

Open Visual Studio Installer

Mame: TicTacToe.UnitTests

Location: | C:\Users\Jason.DeOliveira\Source\ReposiLearning ASP.NET Core 2.0\TicTacToe!, - Browse...

oK Cancel

2. Update the xUnit and Microsoft. NET.Test.SDK NuGet packages to the latest
versions using the NuGet Package Manager:

nuGet - soturion = >< |

Browse Installed Updates Consolidate
Search (Ctrl+E) P O Include prerelease
Select all packages Update
x} xunit.runner.visualstudio by James Newkirk, Brad Wilson v2.3.0-beta3 build3769
Visual Studio 2012+ Test Explorer runner for the xUnit.net framework. Capable of running xUnit.net v1.9.2 and v2.0+ tests.

Prerelease

% Xunit by James Newkirk, Brad Wilson v2.3.0-beta5- build3769

xUnit.net is a developer testing framework, built to support Test Driven Development.

Microsoft.NET.Test.Sdk by Microsoft v15.5.0- preview- 20170810-02
The MSbuild targets and properties for building the .Met core test projects.

3. Add references to the ricractoe and ricracroe.Logging projects:

4 Projects

Search (Ctrl+E) -
Solution Mame Path Name:
_ TicTacToe CA\Users'JDL\Downloa... TicTacToe
I Shared Projects TicTacToe.Logging C:\Users\JDL\Downloa...
I Browse
| Browse... || oK H Cancel |

4. Delete the autogenerated class, add a new class called riieroggertests.cs for
testing a regular class, and implement a new method called
ShouldCreateALogFileAndAddEntry.

public class FileLoggerTests
{
[Fact]
public void ShouldCreateALogFileAndAddEntry ()
{
var fileLogger = new FilelLogger (
"Test", (category, level) => true,
Path.Combine (Directory.GetCurrentDirectory (),
"testlog.log"));

var isEnabled = filelogger.IsEnabled(LogLevel.Information);
Assert.True (isEnabled) ;

5. Add another new class called userservicerests.cs for testing a service, and
implement a new method called shouidadauser:

public class UserServiceTests
{
[Theory]
[InlineData ("test@test.com", "test", "test", "testl23!")]
[InlineData ("testl@test.com", "testl", "testl", "testl23!"™)]
[InlineData ("test2@test.com", "test2", "test2", "testl23!")]
public async Task ShouldAddUser (string email,
string firstName, string lastName, string password)
{
var userModel = new UserModel
{
Email = email,
FirstName = firstName,
LastName = lastName,
Password = password

}i

var userService = new UserService();
var userAdded = await userService.RegisterUser (userModel) ;
Assert.True (userAdded) ;

6. Open Test Explorer via Test | Windows | Test Explorer and then choose to Run
All, to ensure that all the tests execute successfully:

Test Explorer v 0 x
S [~ 3 Search P~
Run All | Run.. = | Playlist: All Tests =

4 Passed Tests (4)

0 TicTacToe.IntegrationTests.UserService Tests.ShouldAddUser{email: "test@test.com”, firstName: "test”, lastMame: “test”, password: "test123!") 12 ms
0 TicTacToe.IntegrationTests.UserService Tests.ShouldAddUser{email: "test1@test.com”, firstName: "test1”, lastName: "test1”, password: "test123!") 1ms
G TicTacToe.IntegrationTests.UserServiceTests.ShouldAddUser(email: "test2 @test.com”, firstName: "test2", lastName: "test2", password: "test123!") Tms
(/] TicTacToe UnitTests. FileLoggerTests.ShouldCreateALogFileAndAddEntry 10 ms

Unit tests are great and really important, but also somewhat limited. They only test
each technical component separately, which is the main goal of this type of test. The
1dea behind unit tests is to quickly get a glimpse of the current status of all your
technical components, one-by-one, without slowing down the continuous integration
process. They do not test applications under real production conditions, since
external dependencies are mocked. Instead, they are intended to run quickly and
ensure that each method being tested creates no unintended side effects in other
methods or classes.

If you stop here, you will not be able to find the maximum bugs possible during the
development phase. You have to go even further and test all components together in
a real environment; this is where integration tests come into play.

Adding integration tests

Integration tests are a logical extension to unit tests. They test the integration
between multiple technical components within your applications in a real

environment with access to external data sources (such as Databases, Web Services,
and Caches).

The goal of this type of test is to ensure that everything is working well together and
providing the expected functionalities when combining the various technical
components together for creating application behavior.

Furthermore, integration tests should always have clean-up steps, so that they can
run repeatedly without error and will not leave any artifacts behind in databases or

file systems. In the following example, you will understand how to apply integration
tests to the Tic-Tac-Toe application:

1. Add a new project of xUnit Test Project (NET Core) type called
TicTacToe.IntegrationTests {0 the TicTacToe Solution, update the NuGet
packages and add references to the Ticractoe and ricracToe.nogging projects as
previously shown for the Unit Tests Project.

2. Add the microsoft.aspretcore.Testnost NuGet package to be able to create fully-
automated integration tests using xUnit:

Browse Installed Updates Consolidate Manage Packages for Solution

Microsoft.AspNetCore. TestHost % - €& [Include prerelease Package source: | nuget.org -

Microsoft AspNetCore TestHost
W81 Microsoft. AspNetCore.TestHost by Microsoft, 733K downloads V200

ASPNET Core web server for writing and running tests.

oo=00) §

Version: Latest stable 2.0.0 - Install

3. Delete the autogenerated class, add a new class called tntegrationrests.cs, and
implement a new method called shouidcetnonerageasync:

using Microsoft.Extensions.DependencyInjection;
using System.Reflection;

using System.Ling;

using Microsoft.CodeAnalysis;

public class IntegrationTests

{

private readonly TestServer testServer;
private readonly HttpClient httpClient;
public IntegrationTests ()

{

string applicationBasePath =
Path.GetFullPath (Path.Combine (
Directory.GetCurrentDirectory (),
@"..\..\..\..\TicTacToe")) ;
Directory.SetCurrentDirectory (applicationBasePath) ;
Environment.SetEnvironmentVariable (
"ASPNETCOREiENVIRONMENT" , "Development");
var builder = new WebHostBuilder ()
.UseKestrel ()
.UseContentRoot (applicationBasePath)
.UseStartup<Startup> ()
.ConfigureServices (services =>

services.Configure ((RazorViewEngineOptions options) =>

{

var previous = options.CompilationCallback;
options.CompilationCallback = (context) =>

{

previous?.Invoke (context) ;
var assembly =

typeof (Startup) .GetTypeInfo () .Assembly;

var assemblies =

assembly.GetReferencedAssemblies () .Select (x =>
MetadataReference.CreateFromFile (
Assembly.Load (x) .Location)) .ToList () ;

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"mscorlib")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"System.Private.Corelib")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName ("netstandard,
Version = 2.0.0.0, Culture = neutral,
PublicKeyToken = cc7bl3ffcd2ddd51")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"System.Ling")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"System.Threading.Tasks")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"System.Runtime")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"System.Dynamic.Runtime")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"Microsoft.AspNetCore.Razor.Runtime")) .Location)) ;

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"Microsoft.AspNetCore.Mvc")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"Microsoft.AspNetCore.Razor")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"Microsoft.AspNetCore.Mvc.Razor")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"Microsoft.AspNetCore.Html.Abstractions")) .Location));

assemblies.Add (MetadataReference.CreateFromFile (
Assembly.Load (new AssemblyName (
"System.Text.Encodings.Web")) .Location));
context.Compilation =
context.Compilation.AddReferences (assemblies) ;
}i
1) ;
)

_testServer = new TestServer (builder)

{
BaseAddress = new Uri ("http://localhost:5000")

bi
_httpClient = testServer.CreateClient();
}

[Fact]
public async Task ShouldGetHomePageAsync ()
{
var response = await _httpClient.GetAsync("/");
response.EnsureSuccessStatusCode () ;
var responseString = await
response.Content.ReadAsStringAsync () ;
Assert.Contains ("Welcome to the Tic-Tac-Toe Desktop Game!",
responseString) ;

4. Run the tests in Test Explorer and ensure that they execute successfully:

Test Explorer > 0 x
e [i= - 3 Search L=

Run All | Run.. = | Playlist : All Tests +

4 Passed Tests (3)

@) TicTacTosIntegrationTests.IntegrationTests. ShouldGetHomePagedsync 5 sec
/] TicTacToeUnitTests.FileLeggerTests.ShouldCreateALogFileAndAddEntry 9ms
0 TicTacToeUnitTests,UserServiceTests. ShouldAddUserfemail: “test@test.com”, firstName: "test”, lastName: "test”, password: "test123!") 7 ms
'ﬂ TicTacToeUnitTests,UserServiceTests. ShouldAddUserfemail: "test1@test.com®, firstName: "test1”, lastName: "test1”, password:... 1ms
0 TicTacToeUnitTests.UserServiceTests. ShouldAddUserfemail: "test2@test.com”, firstName: "test2”, lastName: "test2”, password:.., 1ms

Now that you have seen how to test your applications in the previous examples, you
can continue to add additional unit and integration tests to fully understand these
concepts and to build a testing coverage that will allow you to provide high-quality
applications.

Summary

In this chapter, you learned about the MVC pattern, its different components and
layers, and how important it is for building great ASP.NET Core 2.0 web
applications.

You saw how to use layout pages and the features surrounding it to create device-
specific layouts and thus adapting your user interfaces to the devices they will be
running on.

Furthermore, you have used View Pages to build the visible part, the presentation
layer, of your web applications.

Then we looked at Partial Views, View Components, and Tag Helpers to better
encapsulate and reuse your presentation logic throughout the different views of your
applications.

At the end, we illustrated advanced concepts such as the View Engine, as well as
units tests and integration tests for creating high-quality applications with a low
MTTR for your bugs.

In the next chapter, we will talk about the ASP.NET Core 2.0 Web API framework
and how to build, test, and deploy Web API applications.

Creating Web API Applications

You do not know it yet, but this chapter is the chapter you have been waiting for! It
1s very special for multiple reasons.

First, we will finish the gaming part and you will be able to start playing the Tic-Tac-
Toe game. Yes, at last, the whole application will run and you will be able to
compete against other users. Very exciting!

Second, you will see how to integrate your applications with other systems and
services. This 1s very important, since applications are no longer isolated silos.
Instead, they communicate with each other and continuously exchange data for
providing even more value to customers. How do you do that? You provide
interoperable Web APIs, which allow for plugging components, sometimes based on
completely different technologies, together!

Third, using Web APIs will not only allow you to integrate with other systems; it
will also help you to build more flexible and reusable application components, which
you can then combine for creating new applications responding to more advanced
use cases.

The APIs you will be creating in this chapter are not only usable by the MVC Web
frontend you have been working on, but also by new mobile frontends you might
build in the future. This will allow you to reach even more customers. You will be
able to provide omnichannel experiences to your customers, where they start using
one device and finish on another.

In this chapter, we will cover the following topics:

Applying Web API concepts and best practices
Building RPC-style Web APIs

Building REST-style Web APIs

Building HATEOAS-style Web APIs

Applying Web API concepts and
best practices

ASP.NET Core 2.0 combines the best features of ASP.NET MVC and Web APIs
together into a single framework. This makes complete sense, since they provide
many similar functionalities.

Before this merger, developers had to rewrite code when they needed to expose data
in different formats via MVC and Web APIs. They had to work with multiple
frameworks and concepts at the same time. Fortunately, this entire process has been
completely streamlined in ASP.NET Core 2.0, as you will see during this chapter.

The following diagram illustrates how client HTTP requests are handled by
ASP.NET Core 2.0 concerning Web APIs and MVC:

ERROR 404

(T a W
Create a new HTTP request® - p NO > .“
\

ERROR 500

Web APIs normally use either JSON or XML as a response format. JSON would be
the preferred format, since it has become quasi-standard on the market and
everybody is using it due to its simplicity and efficiency.

Furthermore, filters and middlewares can be used with Web APIs, since ASP.NET
Core 2.0 manages Web APIs the same way it does for standard MVC Controllers.
This can be quite handy in some use cases and developers can apply their skills more
widely.

In general, there are three different styles for creating Web APIs when using
ASP.NET Core 2.0:

e RPC-style
e REST-style
e HATEOAS-style

Note that it is also possible to use SOAP for creating Web APls, but it
is not recommended. Instead, SOAP should be used in the context of
standard web services, which is why it is not shown in the following
examples.

We will present each style in more detail and you will see some practical examples,
which will help you decide on your own integration strategy.

Building RPC-style Web APIs

The RPC-style is based on the Remote Procedure Call paradigms, which have
existed for a long time now (since the early 1980s). It is based on including an action
name in the URL, which therefore makes it very similar to standard MV C actions.

One of the big advantages of ASP.NET Core 2.0 is that you do not need to separate
the MVC parts from the Web API parts. Instead, you can use both in your controller
implementations.

Controllers are now capable of rendering View results as well as JSON/XML API
responses, which enables easy migrations from one to the other. Additionally, you
can use a specific route path or the same route path for your MVC actions.

In the following example, you are going to transform a controller action from an
MVC View result into an RPC-style Web API:

1. Add a new method called confirnEmai1 to the UserRegistrationController, 1t will be
used to confirm the user registration email:

[HttpGet]
public async Task<IActionResult> ConfirmEmail (string email)
{
var user = awalt userService.GetUserByEmail (email);
if (user != null)
{
user.IsEmailConfirmed = true;
user.EmailConfirmationDate = DateTime.Now;
await userService.UpdateUser (user);
return RedirectToAction ("Index", "Home");
}

return BadRequest () ;

2. Update the confirmgamernvitation method within the GameInvitationController,
store the email of the invited user in a session variable and register the new user
via the user service:

[HttpGet]

public async Task<IActionResult> ConfirmGameInvitation (Guid id,
[FromServices] IGameInvitationService gameInvitationService)

{
var gameInvitation = await gameInvitationService.Get (id);
gameInvitation.IsConfirmed = true;
gameInvitation.ConfirmationDate = DateTime.Now;

awalt gamelInvitationService.Update (gameInvitation);
Request.HttpContext.Session.SetString ("email",
gameInvitation.EmailTo) ;
await userService.RegisterUser (new UserModel
{
Email = gamelInvitation.EmailTo, EmailConfirmationDate =
DateTime.Now, IsEmailConfirmed =true
1)

return RedirectToAction ("Index", "GameSession", new { id });

Update the table element in GameSessionViewComponent in the

Views/Shared/Components/GameSession/default.cshtmljikﬁ

@using Microsoft.AspNetCore.Http
@model TicTacToe.Models.GameSessionModel
@
var email = Context.Session.GetString ("email");
}
<div id="gameBoard">
<table>
@for (int rows = 0; rows < 3; rows++)
{
<tr style="height:150px;">
@for (int columns = 0; columns < 3; columns++)
{
<td style="width:150px; border:lpx
solid #808080"™ id="@(S"c_ {rows} {columns}")">

@
var position = Model.Turns?.FirstOrDefault (
turn => turn.X == columns && turn.Y == rows);
if (position != null)
{
if (position.User == Model.Userl)
{
<i class="glyphicon glyphicon-unchecked"
style="width:100%;height:100%"></1>
}
else
{
<i class="glyphicon glyphicon-remove-circle"
style="width:100%;height:100%"></1i>
}
}
else
{
<a class="btn btn-default btn-SetPosition"
style="width:150px; min-height:150px;"
data-X="@columns" data-Y="G@rows">

}
}
</td>
}
</tr>
}
</table>

</div>

<div class="alert" id="divAlertWaitTurn">
<i class="glyphicon glyphicon-alert">Please wait until the
other user has finished his turn.</i>
</div>

Add a new JavaScript file within the wwwroot\app\js folder called camesession. is;
it will be used to call the Web API. Add a temporary alert box for testing
purposes:

function SetGameSession (gdSessionId, strEmail) {
window.GameSessionId = gdSessionId;
window.EmailPlayer = strEmail;

}

$ (document) .ready (function () {
S (".btn-SetPosition") .click (function () {
var intX = $(this).attr ("data-X");
var intY¥ = $(this) .attr ("data-Y");
SendPosition (window.GameSessionId, window.EmailPlayer,
intX, 1intY);
})
})

function SendPosition(gdSession, strEmail, intX, intY) {

var port = document.location.port ? (":" +
document.location.port) : "";
var url = document.location.protocol + "//" +

document.location.hostname + port +
"/restApi/v1l/SetGamePosition/" + gdSession;
var obj = {
"Email": strEmail, "x": intX, "y": intY
}i

var json = JSON.stringify (obj);

S.ajax ({
'url': url,
'accepts': "application/json; charset=utf-8",
'contentType': "application/json",
'data': json,
'dataType': "Jjson",
'type': "POST",
'success': function (data) {

alert (data) ;

)

Add the preceding new JavaScript file to the vundieconrig.json file, for bundling
it together with the other files into the site. s file:

"outputFileName": "wwwroot/js/site.js",

"inputFiles": [
"wwwroot/app/js/scriptsl.js",
"wwwroot/app/js/scripts2.js",
"wwwroot/app/js/GameSession.js"

1,

"sourceMap": true,
"includeInProject": true

by

6. Add a new property called rnai1 to the Turnmode1 model:

| public string Email { get; set; }

7. Update the setrosition method within camesessioncontroiiler and expose it as a
Web API for being able to receive Ajax calls from the JavaScript sendrosition
function previously implemented:

{
if
{

{

}

[Produces ("application/json")]

[HttpPost ("/restapi/vl/SetGamePosition/{sessionId}")]

public async Task<IActionResult> SetPosition/(
[FromRoute]Guid sessionId)

(sessionId != Guid.Empty)

using (var reader = new StreamReader (Request.Body,
Encoding.UTF8, true, 1024, true))

var bodyString = reader.ReadToEnd() ;
if (string.IsNullOrEmpty (bodyString))
return BadRequest ("Body is empty");
var turn =
JsonConvert.DeserializeObject<TurnModel> (bodyString) ;

turn.User =
await HttpContext.RequestServices.GetService
<IUserService>() .GetUserByEmail (turn.Email) ;
turn.UserId = turn.User.Id;
if (turn == null)
return BadRequest ("You must pass a TurnModel
object in your body"):;

var gameSession =
await gameSessionService.GetGameSession (sessionId);

if (gameSession == null)
return BadRequest ($"Cannot find Game Session {sessionId}");

if (gameSession.ActiveUser.Email != turn.User.Email)
return BadRequest ($"{turn.User.Email} cannot play
this turn");

gameSession =
await gameSessionService.AddTurn (
gameSession.Id, turn.User.Email, turn.X, turn.Y);
if (gameSession != null &&
gameSession.ActiveUser.Email != turn.User.Email)

return Ok (gameSession);

else
return BadRequest ("Cannot save turn");

return BadRequest ("Id is empty");

}

Note that it is best practice to prefix Web APIs with a meaningful name
and a version number (for example, /restapi/vi) as well as to support
JSON and XML.

Update the Game Session Index View in the views folder and call the JavaScript
setGamesession function with the corresponding parameters:

@using Microsoft.AspNetCore.Http
@model TicTacToe.Models.GameSessionModel
@
var email = Context.Session.GetString("email");
}
@section Desktop
{
<h1>Game Session @Model.Id</hl>
<h2>Started at Q@ (DateTime.Now.ToShortTimeString())</h2>
<div class="alert alert-info">
<table class="table">
<tr>
<td>User 1:</td>
<td>@Model.Userl?.Email (<i class="glyphicon
glyphicon-unchecked"></i>)</td>
</tr>
<tr>
<td>User 2:</td>
<td>@Model.User2?.Email (<i class="glyphicon
glyphicon-remove-circle"></1i>)</td>
</tr>
</table>
</div>
}
@section Mobile({
<hl>Game Session @Model.Id</hl>
<h2>Started at Q@ (DateTime.Now.ToShortTimeString())</h2>
User 1: @Model.Userl?.Email <i class="glyphicon
glyphicon-unchecked"></i>

User 2: @Model.User2?.Email (<i class="glyphicon
glyphicon-remove-circle"></i>)
}
<h3>User Email Qemail</h3>
<h3>Active User
@Model.ActiveUser?.Email</h3>
<vc:game-session game-session-id="@Model.Id"></vc:game-session>
@section Scripts{
<script>
SetGameSession ("@Model.Id", "@email");
</script>
}

Update the processEmailconfirmation method for WebSockets in the
Communication Middleware:

public async Task ProcessEmailConfirmation (HttpContext context,
WebSocket currentSocket, CancellationToken ct, string email)

var user = awalt userService.GetUserByEmail (email);

while (!ct.IsCancellationRequested &&
!currentSocket.CloseStatus.HasValue &&
user?.IsEmailConfirmed == false)

await SendStringAsync (currentSocket,
"WaitEmailConfirmation"™, ct);

await Task.Delay(500);

user = awailt userService.GetUserByEmail (email);

if (user.IsEmailConfirmed)
{

await SendStringAsync (currentSocket, "OK", ct);

10. Update the ProcessGamelInvitationConfirmation method fOI' WebSockets n the
Communication Middleware:

private async Task ProcessGamelInvitationConfirmation (
HttpContext context, WebSocket webSocket,
CancellationToken ct, string parameters)
{
var gamelnvitationService =
context.RequestServices.GetService<IGameInvitationService> () ;
var id = Guid.Parse (parameters);
var gamelInvitationModel =
await gamelInvitationService.Get (id);
while (!ct.IsCancellationRequested &&
'webSocket.CloseStatus.HasValue &&
gameInvitationModel?.IsConfirmed == false)

await Task.Delay(500);
gameInvitationModel = await gamelnvitationService.Get (id);
await SendStringAsync (webSocket, "WaitForConfirmation", ct);

if (gameInvitationModel.IsConfirmed)
{
await SendStringAsync (webSocket,
JsonConvert.SerializeObject (new
{
Result = "OK",
Email = gameInvitationModel.InvitedBy,
gameInvitationModel.EmailTo,
gameInvitationModel.Id
P, ct);

11. Update the CheckGameInvitationConfirmationStatus method n the
scripts2.5s JavaScript file; it has to verify the returned data now:

function CheckGameInvitationConfirmationStatus (id) {

$.get ("/GameInvitationConfirmation?id=" + id, function (data) {
if (data.result === "OK") {

if (interval !== null) {
clearInterval (interval) ;
}

window.location.href = "/GameSession/Index/" + id;

12. Update the process method in the Gravatar Tag Helper and handle the case
where no photo exists correctly:

public override void Process (TagHelperContext context,
TagHelperOutput output)
{
byte[] photo = null;
if (CheckIsConnected())
{
photo = GetPhoto (Email) ;
}
else
{
string filePath =
Path.Combine (Directory.GetCurrentDirectory (),
"wwwroot", "images", "no-photo.jpg");
if (File.Exists (filePath))
photo = File.ReadAllBytes (filePath);
}

if (photo != null && photo.Length > 0)
{
output.TagName = "img";
output.Attributes.SetAttribute ("src",
$"data:image/jpeg;base64d, {Convert.ToBase64String (photo) }") ;

13. Update the Add method n GameInvitationService.

public Task<GameInvitationModel> Add(
GameInvitationModel gameInvitationModel)
{
_gamelnvitations.Add (gameInvitationModel) ;
return Task.FromResult (gameInvitationModel) ;

}

14. Update the Desktop Layout Page and Mobile Layout Page; cleanup by
removing the development environment tag containing scripti.js and script2.js
at the bottom of both pages.

15. Update the scriptsi.5s JavaScript file and clean up by removing all the alert
boxes that display whether WebSockets are enabled.

16. Start the application, register a new user, start a game session by inviting
another user, click on a cell, and you will now see a JavaScript alert box:

This site says...
[object Object]

OK

Very well; you have seen how to transform the existing camesessioncontrolier action
into an RPC-style Web API. Since all the different ASP.NET web frameworks have
been centralized into a single framework in ASP.NET Core 2.0, this can be done
easily and quickly without re-writing code or changing too much in your existing
code.

In the next step, we will see how to add a new method to the RPC-style Web API for
checking if the turn for the current user has been finished and thus the next user can
start his turn:

1. Add a new property called turnnumper to the camesessionmode1 for tracking the
current turn number:

| public int TurnNumber { get; set; }

2. Add a new property called rconnumber to the Turnmode1 for being able to define

what icon (X or O) needs to be used for display later:

public string IconNumber { get; set; }

Add a new method called cetcamesession to the GameSessionController, 1t will be
exclusive to Web API calls:

[Produces ("application/json")]
[HttpGet ("/restapi/vl/GetGameSession/{sessionId}")]
public async Task<IActionResult> GetGameSession (Guid sessionId)
{

if (sessionId != Guid.Empty)

{

var session =
await gameSessionService.GetGameSession (sessionId);

if (session != null)
{

return Ok (session);
}
else
{

return NotFound ($"can not found session {sessionId}");

}
else
{

return BadRequest ("session id is null");

Update the adarurn method in camesessionservice, s0 that it calculates the

IconNumber and TurnNumber:

public async Task<GameSessionModel> AddTurn (Guid id,
string email, int x, int vy)
{
List<Models.TurnModel> turns;
var gameSession = sessions.FirstOrDefault (
session => session.Id == id);
if (gameSession.Turns != null && gameSession.Turns.Any())
turns = new List<Models.TurnModel> (gameSession.Turns) ;
else
turns = new List<TurnModel> () ;

turns.Add (new TurnModel
{

User = await UserService.GetUserByEmail (email),

X = x,
YZYI
IconNumber = email == gameSession.Userl?.Email 2?2 "1" : "2"
1) ;
gameSession.Turns = turns;
gameSession.TurnNumber = gameSession.TurnNumber + 1;
if (gameSession.Userl?.Email == email)

gameSession.ActiveUser = gameSession.User2;

else
gameSession.ActiveUser = gameSession.Userl;

gameSession.TurnFinished = true;

_sessions = new ConcurrentBag<GameSessionModel>
(_sessions.Where(u => u.Id != id))

{
gameSession

}i

return gameSession;

}

5. Update the Game Session Index View, use images, and add the possibility to
enable and disable the gameboard:

@using Microsoft.AspNetCore.Http
@model TicTacToe.Models.GameSessionModel
@{
var email = Context.Session.GetString ("email");
}
@section Desktop
{
<hl>Game Session @Model.Id</hl>
<h2>Started at @ (DateTime.Now.ToShortTimeString())</h2>
<div class="alert alert-info">
<table class="table">
<tr>
<td>User 1:</td>
<td>@Model.Userl?.Email (<i class="glyphicon
glyphicon-unchecked"></i>)</td>
</tr>
<tr>
<td>User 2:</td>
<td>@Model.User2?.Email (<i class="glyphicon
glyphicon-remove-circle"></1i>)</td>
</tr>
</table>
</div>

}
@section Mobile({
<hl>Game Session @Model.Id</hl>
<h2>Started at Q@ (DateTime.Now.ToShortTimeString())</h2>
User 1: @Model.Userl <i class="glyphicon
glyphicon-unchecked"></i>

User 2: @Model.User2 (<i class="glyphicon
glyphicon-remove-circle"></i>)
}
<h3>User Email @email</h3>
<h3>Active User
@Model.ActiveUser?.Email</h3>
<vc:game-session game-session-id="@Model.Id"></vc:game-session>
@section Scripts{
<script>
SetGameSession ("@Model.Id", "@email");
EnableCheckTurnIsFinished() ;
@if (email != Model.ActiveUser?.Email)
{
<text>DisableBoard (@Model.TurnNumber) ;</text>

}

else

{
<text>EnableBoard (@Model.TurnNumber) ; </text>

}
</script>

}

Add a new JavaScript file called CheckTurnIsFinished.js tO the wwwroot\app\js
folder; update the bundieconfig.json file accordingly:

function EnableCheckTurnIsFinished () {
interval = setInterval(() => {
CheckTurnIsFinished () ;
}, 2000);
}
function CheckTurnIsFinished () {
var port = document.location.port ? (":" +
document.location.port) "y
var url = document.location.protocol + "//" +

document.location.hostname + port +
"/restapi/vl/GetGameSession/" + window.GameSessionId;

$.get (url, function (data) {
if (data.turnFinished === true &&
data.turnNumber >= window.TurnNumber) {
CheckGameSessionIsFinished() ;
ChangeTurn (data) ;

1)

function ChangeTurn (data) {
var turn = data.turns[data.turnNumber-1];
DisplayImageTurn (turn) ;

S ("#activeUser") .text (data.activeUser.email) ;

if (data.activeUser.email !== window.EmailPlayer) {
DisableBoard (data.turnNumber) ;

}

else {
EnableBoard (data.turnNumber) ;

}

function DisableBoard (turnNumber) {
var divBoard = $ ("#gameBoard") ;
divBoard.hide () ;
S ("#divAlertWaitTurn") .show () ;
window.TurnNumber = turnNumber;

}

function EnableBoard (turnNumber) {
var divBoard = $ ("#gameBoard") ;
divBoard.show () ;
S ("#divAlertWaitTurn™) .hide () ;
window.TurnNumber = turnNumber;

function DisplayImageTurn (turn) {
var ¢ = $("#c_ " + turn.y + " " + turn.x);
var css;
if (turn.iconNumber === "1") {
css = 'glyphicon glyphicon-unchecked';
}
else {
css = 'glyphicon glyphicon-remove-circle';
}
c.html ('<i class=""' + css + '"">/i>");
}

7. Update the setcamesession method in the camesession. s JavaScript file; set the
Turnnumber t0 Zero by default:

function SetGameSession (gdSessionId, strEmail) {

window.GameSessionId = gdSessionId;
window.EmailPlayer = strEmail;
window.TurnNumber = 0;

8. Update the sendrosition method in the camesession.js JavaScript file and remove
the temporary testing alert box added before; we don't need it anymore, and the
game will be fully functional at the end of this section:

function SendPosition(gdSession, strEmail, intX, intY) {

var port = document.location.port ? (":" +
document.location.port) : "";

var url = document.location.protocol + "//" +
document.location.hostname + port +
"/restApi/vl/SetGamePosition/" + gdSession;

var obj = {

"Email": strEmail, "x": intX, "y": intY

}i

var json = JSON.stringify (obj);
$.ajax ({
'url': url,
'accepts': "application/json; charset=utf-8",
'contentType': "application/json",
'data': json,
'dataType': "json",
'type': "POST"
1) ;

9. Add two new methods to the camesessioncontroiier, the first one called
CheckGameSessionIsFinished and the second one Called CheckIfUserHasWon.

[Produces ("application/json")]
[HttpGet ("/restapi/vl/CheckGameSessionIsFinished/{sessionId}")]
public async Task<IActionResult> CheckGameSessionIsFinished (

Guid sessionId)
{
if (sessionId != Guid.Empty)
{
var session =
await gameSessionService.GetGameSession (sessionId);
if (session != null)
{
if (session.Turns.Count () == 9)
return Ok ("The game was a draw.");

var userTurns = session.Turns.Where (
X => x.User == session.Userl).ToList();

var userlWon = CheckIfUserHasWon (session.Userl?.Email,
userTurns) ;

if (userlWon)

{

return Ok ($"{session.Userl.Email} has won the game.");
}
else
{
userTurns = session.Turns.Where (
x => x.User == session.User?) .ToList();
var user2Won = CheckIfUserHasWon (session.User2?.Email,
userTurns) ;

if (user2Won)

return Ok ($"{session.User2.Email} has won the game.");
else

return Ok ("");

}

else

{

return NotFound($"Cannot find session {sessionId}.");

}

else

{

return BadRequest ("SessionId is null.");

private bool CheckIfUserHasWon (string email,
List<TurnModel> userTurns)

{

if (userTurns.Any(x => x.X == 0 && x.Y == 0) &&
userTurns.Any(x => x.X == 1 §&& x.Y == 0) &&
userTurns.Any(x => x.X == 2 && x.Y == 0))
return true;

else if (userTurns.Any(x => x.X == 0 && x.Y == 1) &&
userTurns.Any(x => x.X == 1 §&& x.Y == 1) &&
userTurns.Any(x => x.X == 2 && x.Y == 1))
return true;

else if (userTurns.Any(x => x.X == 0 && xX.Y == 2) &&
userTurns.Any(x => x.X == 1 §&& x.Y == 2) &&
userTurns.Any(x => x.X == 2 §&& x.Y == 2))
return true;

else if (userTurns.Any(x => x.X == 0 && x.Y == 0) &&
userTurns.Any(x => x.X == 0 && x.Y == 1) &&

userTurns.Any(x => x.X == 0 && x.Y == 2))
return true;

else if (userTurns.Any(x => x.X == 1 && x.Y == 0) &&
userTurns.Any(x => x.X == 1 §&& x.Y == 1) &&
userTurns.Any(x => x.X == 1 §&& x.Y == 2))
return true;

else if (userTurns.Any(x => x.X == 2 && x.Y == 0) &&
userTurns.Any(x => x.X == 2 §&& x.Y == 1) &&
userTurns.Any(x => x.X == 2 §&& x.Y == 2))
return true;

else if (userTurns.Any(x => x.X == 0 && x.Y == 0) &&
userTurns.Any(x => x.X == 1 §&& x.Y == 1) &&
userTurns.Any(x => x.X == 2 §&& x.Y == 2))
return true;

else if (userTurns.Any(x => x.X == 2 && x.Y == 0) &&
userTurns.Any(x => x.X == 1 && x.Y == 1) &&
userTurns.Any(x => x.X == 0 && x.Y == 2))
return true;

else

return false;

Add a new JavaScript file called checkcamesessionTsFinished. s to the
wawroot\app\js folder and update the bundieconrig.json file accordingly:

function CheckGameSessionIsFinished() {

var port = document.location.port ? (":" +
document.location.port) "y
var url = document.location.protocol + "//" +

document.location.hostname + port +
"/restapi/vl/CheckGameSessionIsFinished/" +
window.GameSessionId;

$.get (url, function (data) {
debugger;
if (data.indexOf ("won") > 0 || data == "The game
was a draw.") {
alert (data) ;
window.location.href = document.location.protocol +
"//" + document.location.hostname + port;

Start the game, register a new account, open the confirmation email, confirm it,
send a game invitation email, confirm the game invitation, and start playing.
Everything should be working now, and you should be able to play the game
until a user has won or until the game is a draw:

Game Session 002e6431-3eb5-4d98-b3d9-3263490ce7c0
Started at 11:15 PM

User 1 example@example.com (@)

User 2 test@test.com (®)

User Email example@example.com

Active User example@example.com

®

®© 2017 - TicTacToe

This has been the RPC-style, which is very close to standard MVC Controller
actions. In the next sections, you will see a completely different approach, which is
based on resources and resource management.

Congratulations; you have now finished the implementation and created a beautiful,
modern, browser-based game, in which two users can play against each other.

Prepare yourself, since you are going to see more advanced techniques and discover
how to provide Web APIs for interoperability using two of the most famous API
communication styles called REST and HATEOAS.

To play the game, you can either use two separate private browser windows or use
two distinct browsers such as Chrome, Edge, or Firefox. For testing your Web APIs,
it is advised to install and use Postman, but you could also use any other HTTP
REST-compatible client, such as Fiddler, or even Firefox via its advanced features.

Building REST-style Web APIs

The REST-style was invented by Roy Fiedling in the 2000s and is one of the best
ways to provide interoperability between systems that are based on multiple
technologies, whether it be in your network or on the internet.

Furthermore, the REST approach is not a technology by itself, but instead some best
practices for efficiently using the HTTP protocol.

Instead of adding a new layer like SOAP or XML-RPC, REST uses different
elements of the HTTP protocol for providing its services:

The URI identifies a resource

The HTTP Verb identifies an action

The response is not the resource, but only a representation of the resource
The client authentication is passed as parameter in the header of requests

Unlike the RPC-style, the main purpose is no longer to provide actions, but is instead
to manage and manipulate resources.

you should read the dissertation of Roy Fiedling, which you can find at

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

o To get even more information on the concepts and ideas behind REST,

As you can see in the following diagram, there are mainly three types of resources in
the TicTacToe application:

e [sers
e (Game Invitations
e (Game Sessions

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Name

FirstName

LastName

Email

Password
IsEmailConfirmed
EmailConfirmationDate

UserRegistrationEmailModel

Email Email
DisplayMame DisplayName
ActionUrl

GamelnvitationModel

Id

EmailTo
InvitedBy
IsConfirmed
ConfirmationDate

InvitationEmailModel

DisplayName
InvitedBy
InvitedDate
ConfirmationURL

GameSessionModel TurnModel

Id User

Userl X

User2 Y

Winner lconNumber
ActiveUser

TurmFinished

TurnNumber

We are now going to illustrate how to use the REST-style for building a Game

Invitation REST API:

1. Add two new methods called ~11 and peiete to the camernvitationservice and
update the Game Invitation Service Interface accordingly:

{

(_gameInvitations.ToList());

}

public Task Delete (Guid id)
{

return Task.CompletedTask;

}

public Task<IEnumerable<GameInvitationModel>> All ()

return Task.FromResult<IEnumerable<GameInvitationModel>>

_gamelInvitations = new ConcurrentBag<GameInvitationModel>
(_gamelInvitations.Where(x => x.Id != id));

2. Add anew API Controller called camernvitationapicontrolier, right-click on the
controllers folder and select Add | Controller, and then choose the API

Controller with read/write actions template:

4 |nstalled

B Commeon - : 3 E
_ APl Controller with read/write actions
Controller ‘I:: MR aaneies Ematy by Microsoft
v1.0.0.0
‘E: PN Beruie s e e | e An AP| controller with REST actions to

create, read, update, delete, and list entities,
‘I;j MVC Controller with views, using Entity Framework
- Id: ApiControllerWithActionsScaffolder

‘E: API Controller - Empty

‘E: API Controller with read/write actions

‘E: APl Controller with actions, using Entity Framework

‘E: MVC Dependencies o=

Click here to go online and find more scaffelding extencions.

| Add || Cancel |

3. Remove the auto-generated code and replace it with the following REST API
implementation; you will see how straightforward it is:

[Produces ("application/json")]

[Route ("restapi/vl/GameInvitation™)]

public class GameInvitationApiController : Controller

{
private IGameInvitationService gamelnvitationService;
private IUserService userService;
public GameInvitationApiController (IGameInvitationService

gameInvitationService, IUserService userService)

{

_gameInvitationService = gameInvitationService;
_userService = userService;

}

[HttpGet]

public async Task<IEnumerable<GameInvitationModel>> Get ()
{
return await gamelInvitationService.All();

}

[HttpGet ("{id}", Name = "Get")]
public async Task<GameInvitationModel> Get (Guid id)
{

return await gameInvitationService.Get (id);

}

[HttpPost]
public IActionResult Post ([FromBody]GameInvitationModel
invitation)
{
if (!'ModelState.IsValid)
return BadRequest (ModelState);

var invitedPlayer =
_userService.GetUserByEmail (invitation.EmailTo) ;
if (invitedPlayer == null) return BadRequest();

_gamelnvitationService.Add (invitation);
return Ok();

}

[HttpPut ("{id}")]
public IActionResult Put (Guid id,
[FromBody]GameInvitationModel invitation)
{
if (!ModelState.IsValid)
return BadRequest (ModelState);

var invitedPlayer =
_userService.GetUserByEmail (invitation.EmailTo) ;
if (invitedPlayer == null) return BadRequest();

_gameInvitationService.Update (invitation);
return Ok();

}

[HttpDelete ("{id}")]
public void Delete (Guid id)
{
_gameInvitationService.Delete (id) ;
}
}

Note that for learning purposes, we have just given a very basic
example of what you could implement. Normally, you should provide
the same functionalities as in your controller implementations (sending
emails, confirming emails, verifying data, etc.) and some advanced
error handling.

4. Start the application, install and start Postman for doing some manual tests on
the new REST API you are now providing, and send an HTTP GET Request to
http://<yourhost>/restapi/vl/GameInvitation. There will be no game invitations,
since you have not created any yet:

® Postman
File Edit View Collection History Help

uj Runner Import D.

Builder

http:/flocalhost:5628C @

No Environment

History
GET htep:/flocalhost56280/restapifvl/Gamelnvitation Params Send b d Save
Clear all
Authorization Cookies Cod
v Today
/Ga

Type Mo Auth

Body (6) Status: 200 0K Time: 121ms Size: 310B
Pretty JSON =
110

5. Create a new Game Invitation, send an HTTP POST Request to
http://<yourhost>/restapi/vl/GameInvitation, click on BOdy, select raw and JSON,
and US€ "id":"7223160d-6243-498b-9d35-81b8c947b5ca",
"EmailTo":"example@example.com", and "InvitedBy":"test@test.com" AS parameters:

@ postran o O x
File Edit View Collection History Help

[Ij Runner Import D_ Builder

No Environment
http:/flocalhost:56280 @

History
POST http://localhost:56280/restapifv1/Gamelnvitation Params Send v Save
(1) Body ® Cookies Code
v1/Ga form-data xwww-form-urlencoded '® raw binary JSON (application/json
17K
2 "id":"72231608d-6243-498b-9d35-81bBcI47b5¢ca",
3 "EmailTo": "example@example.com”,
4 "InvitedBy":"test@test.com”
5 §

Note that we have added the automatic creation of a user if it does not
exist for testing purposes in one of the previous chapters. In a real
worked scenario, you will have to implement the user registration Web
APIs and call them before the Game Invitation Web APIs. Otherwise,
you will get a bad request, since we have added some code to assure
data coherence and integrity.

6. You can retrieve the Game Invitation either by sending an HTTP GET Request
1O nttp://<yourhost>/restapi/vl/GameInvitation or, more Speciﬁcally, by Sending
an HTTP GET Request tO http://<yourhost>/restapi/vl/GamelInvitation/7223160d-
6243-498b-9d35-81b8c947b5ca.

@ Postman = O X
File Edit View Collection History Help

uj Runner Import D_ Builder

No Environment

L] http:/flocalhost @
History
GET htep:/flocalhost:56280/restapifvl/Gamelnvitation/72... Params Send b Save
Clear all
Authorization Cookies Code
v Today
Type No Auth
irestapi/vl/Ga
Body (6) Status: 200 0K Time: 33ms Size: 526B
irestapi/vl/Ga
Pretry JSON =
1~
2 "id™: "7223168d-6243-498b-9d35-81bBc947b5ca",
3 "emailTo": "example@example.com™,
4 "invitedBy": "test@test.com",
5 "isConfirmed”: false,
6 "confirmationDate": "@001-01-01T0Q:00:00"
e 1

7. Update the Game Invitation, send an HTTP PUT Request to
http://<yourhost>/restapi/vl/GameInvitation/7223160d-6243-498b-9d35-81b8c947b5ca,
click on Body, select raw and JSON, and use "ia":"7223160d-6243-4980-9d35-
81b8c947b5ca", "EmailTo": "updated@updated.com", and "InvitedBy":"test@test.com" dS
parameters:

@ rost
File Edit View Collection History Help

uj Runner Import D_ Builder

No Environment

L] ® | hupiiloc @
History
PUT htep://localhost:56280/restapifvl/Gamelnvitation/72... Params Send b d Save
Clear all
(1) Body @ Code
* Today . 4
PUT htpi//localhost:56280/restapifvl/Ga form-data x-www-form-urlencoded ¥ raw binary

melnvitation/7223160d-6243-498b-9

d35-81b8c947b5ca 1
2 "id":"7223168d-6243-498b-9d35-81b8c947b5¢ca",
T alho 6280/restapifvl/Ga 3 "EmailTo": "updated@updated.com”,
tion/7223160d-6243-498b-9 4 "InvitedBy":"test@test.com”
d35-81b8c947b5ca " b

melnvitation

8. Look at the updated Game Invitation and send an HTTP GET Request to

http://<yourhost>/restapi/vl/GameInvitation/7223160d-6243-498b-9d35-81b8c947b5ca.

@ rost
File Edit View Collection History Help

uj Runner Import D. Builder JasonDeOL. ¥ €@ B & W

No Environment

[] [] []
History
GET htep://localhost:56280/restapifvl/Gamelnvitation/72... Params Send b d Save
Clear all
Authorization Code
* Today
T hupi//localhost:56280/restapifvl/Ga
melnvitation/7223160d-6243-498b-9 Type MNo Auth
d35-81bBc947b5ca
PuT /
7223160d-6243-498b-9 Body i 6) Status: 2000K Time: 33ms Size: 526B
d35-81bBc947b5ca —
T hupi//localhost:56280/restapifvl/Ga Pretty JSON =
melnvitation E
http://localhost56280/restapifvl/G =k
tpuiflocalhostabeslirestapi/vifiaa 3 "id": "722316@d-6243-498b-9d35-81b8c947b5ca",
melnvitation 3 "emailTo": "updated@updated.com™,
4 "invitedBy": "test@test.com",
5 "isConfirmed": false,
["confirmationDate": "9001-01-01T0Q:00:00"
. 1

9. Delete the Game Invitation and send an HTTP DELETE Request to

http://<yourhost>/restapi/vl/GameInvitation/7223160d-6243-498b-9d35-81b8c9%47b5ca.

@ Postman — O *

File Edit View Collection History Help

18]

Runner Import Builder

O

No Environment

[L] L] http @
History
DELETE htep://localhost:56280/restapifvl/Gamelnvitation/72... Params send ~ Save
Clear all
Authorization ookies Code
* Today
DEL http://localhost:56280/restapifv1/Ga
Type No Auth
s5t:56280/restapiivl/Ga
23160d-6243-498b-9 Body (5) Status: 200 0K Time: 46ms Size: 3048
pUT —
Prett Text =3
[7223160d-6243-498b-9 y
1

)/restapifvl/Ga

ost:56280/restapi/vl/Ga
melnvitation

10. Verify the Game Invitation deletion and send an HTTP GET Request to

http://<yourhost>/restapi/vl/GameInvitation.

@ Postman — O *

File Edit View Collection History Help

uj Runner Import D_

No Environment

History

GET htep://localhost:56280/restapifv1/Gamelnvitation Params Send S Save

Authorization Cookies Cod
¥ Today TR

Type No Auth
Body (6) Status: 200 0K Time: 14ms Size: 3108
Pretry JSON =

The REST-style is the most common style of Web APIs you can find on the market
as of today. It is easy to understand and very well adapted for interoperability use
cases.

In the next section, you will see a more advanced style called HATEOAS, which is
especially well suited for constantly evolving Web APIs.

Building HATEOAS-style Web APlIs

The HATEOAS (Hypermedia as the Engine of Application State) style is yet
another approach for providing efficient Web APIs. It is, however, completely
different from the other two styles presented before. With this approach, clients can
dynamically navigate to a needed resource by traversing various hypermedia links,
which are provided in the HTTP responses.

The advantage of this style is that the server does not drive application state
anymore; instead, it is the hypermedia links returned by the server that oversee that.

Additionally, when compared to the other styles, API changes are much better
handled when using this style, since clients do not hardcode URIs to actions (RPC-
style) or resources (REST-style) anymore. Instead, they can work with hypermedia
links returned by the server with each response, which is an interesting concept that
allows for more flexible and evolvable Web APIs.

The following diagram shows an example of how to apply the HATEOAS-style to
the TicTacToe application:

Link: Add Game Invitation
Link: Confirm Game Invitation

Resource State : Game Invitations

Link: Get Resource Details
Link: Confirm Game Invitation

Link: Get Inviting User Details
Link: Get Invited User Details

An example JSON representation of this diagram could be:

Embedded Resources

{

" links": {
"self": { "href": "/gameinvitations" },
"next": { "href": "/gameinvitations?page=2" 1},
"find": {

"href": "/gameinvitations{?Id}",

"templated": "true"
}
by
" embedded": {

"gameinvitations": [
{
" links": {
"self": { "href": "/gameinvitations/
fleaf6ac-c998-40da-8eb5-198eaa2cc96f" 1},
"confirm": { "href": "/gameinvitations/

fleaf6ac-c998-40da-8eb5-198eaa2cc96f/confirm" }
bo

"isConfirmed": "false",
"confirmDate": "null",
"emailTo": {

"self": { "href": "/user/1" }

by
"invitedBy": {
"self": "\"{\"href\":\"/user/2\"}"

Let's see how to technically implement HATEOAS for the Game Invitations of the
TicTacToe application:

1. Go to the NuGet Package Manager and add the raicyon.uve package, which will
allow you to implement HATEOAS Web APIs more quickly and easily:

MuGet - Solution = X

Browse Installed Updates Consolidate Manage Packages for Solution
Halcyon.Mvc x| & Include prerelease Package source! | nuget.org - i

| B Halcyon.Mvc
-a Halcyon.Mvc by CareerHub, 2,8K downloads v2.5.1

Adds HAL support to ASP.NET Core Version(s) - 0

Project Version
TicTacToe

[v]
D TicTacToe.IntegrationTests
]
L

L

TicTacToe.Logging
TicTacToeUnitTests

4 4

Installed: not installed

Version: | Latest stable 2.5.1 = Install

() Options

Description
Adds HAL support to ASP.MET Core

Version: 2.5.1

Authoris): CareerHub

Date published: Wednesday, March 15, 2017 (3/15/2017)

Project URL: https://github.com/visualeyes/halcyon

Report Abuse: https://www.nuget.org/packages/Halcyon Mvc/2.5.1/Reportibuse
Tags: ASP.NET, Hypermedia, WebApi, HAL, JSON

2. Update the startup class, use the HAL Json Formatter instead of the Standard
Json Formatter:

services.AddMvc (o =>

{
o.Filters.Add (typeof (DetectMobileFilter));

o.OutputFormatters.RemoveType<dsonOutputFormatter> () ;

o.OutputFormatters.Add (new JsonHalOutputFormatter (new
string[] { "application/hal+json",
"application/vnd.example.hal+json",
"application/vnd.example.hal.v1l+json™ }));

}) .AddViewLocalization (
LanguageViewLocationExpanderFormat.Suffix,
options => options.ResourcesPath =
"Localization") .AddDataAnnotationsLocalization() ;

3. Update the cet method in the GameInvitationAPiController, US€ the Halcyon.Mvc
specific features, and return a sar. result:

[HttpGet]
public async Task<IActionResult> Get ()

{

var invitations = await gamelInvitationService.All();
var responseConfig = new HALModelConfig
{
LinkBase = $"{Request.Scheme}://{Request.Host.ToString()}",

ForceHAL = Request.ContentType ==
"application/hal+json" ? true : false

}i

var response = new HALResponse (responseConfigqg);
response.AddLinks (new Link ("self", "/GameInvitation"),
new Link ("confirm", "/GameInvitation/{id}/Confirm")):;

List<HALResponse> invitationsResponses = new List<HALResponse>();
foreach (var invitation in invitations)
{

var rInv = new HALResponse (invitation, responseConfigqg);

rInv.AddLinks (new Link("self", "/GameInvitation/" +
invitation.Id));

rInv.AddLinks (new Link ("confirm",
$"/GameInvitation/{invitation.Id}/confirm"));

var invitedPlayer =
_userService.GetUserByEmail (invitation.EmailTo) ;
rInv.AddEmbeddedResource ("invitedPlayer", invitedPlayer,
new Link[]
{
new Link("self", $"/User/{invitedPlayer.Id}")
)

var invitedBy =
_userService.GetUserByEmail (invitation.InvitedBy) ;
rInv.AddEmbeddedResource ("invitedBy", invitedBy, new Link[]
{

new Link("self", $"/User/{invitedBy.Id}")
1)

invitationsResponses.Add (rInv) ;

}

response.AddEmbeddedCollection ("invitations",
invitationsResponses) ;
return this.HAL (response);

}

4. Start the application and Postman, send an HTTP POST Request to
http://<yourhost>/restapi/vl/GameInvitation fOr creating a new Game Invitation,
click on Body, select raw and JSON, and use "ia":"7223160d-6243-498b-9d35-
81b8c947b5ca","EmailTo":"example@example.com",Eﬂld,"InvitedBy":"test@test.conﬂ as
parameters:

@ postman - o x

File Edit View Collection History Help

[0 Rumner impor Builder

No Environment
htp://localhosc5625C @

History
POST hatpi/flocalhost:S6280/restapi/vl/Gamelnvitation Params send v
Clearall

() Bodye

~ Today
hapi/fiocalhost56280/restapifvl/Ga formedsta @ xowww-form-urlencoded ® raw @ binary JSON (application/json

600-6243-498b-9d35 -8168C347bSCa"
i1To": "exanple@exanple..con”,
itedBy” :"test@test. com”

5. Retrieve the Game Invitation by sending an HTTP GET Request to
http://<yourhost>/restapi/vl/GamelInvitation Wlth Content-Type:
application/hal+json; you Will see that the HTTP response now includes
HATEOAS links:

@ rostman — O *
File Edit View Collection History Help
uj Runner Import Builder
No Environment +F
httpr/flocalhost:5628C @
History
GET htrpi//localhost:56280/restapifvl/Gamelnvitation Params Send W Save
Clear all
Headers (1) Cookies Code
v Today :
e Bulk
/restapifvl/Ga Key Value Description Edit
Content-Type application/hal+json
irestapifvl/Ga
htep://localhost:56280/restapifvl/Ga Body (6) Steki: 200 S g e A SeC 4 29EE
melnvitation
htep://localhost:56280/restapifvl/Ga HIE LB =
melnvitation Tk
2 " links": {
ki "self": {
4 "href": "http://localhost:5628@/GameInvitation™
5 1.
6 "confirm": {
7 "href": "http://localhost:5628@/GameInvitation/{id}/Confirm",
8 "templated”: true
9 H
1@ 1,
11 - "_embedded™: {
12 - "invitations": [
13 - {
14 "id": "6223168d-6243-498b-9d35-81b8c947b5ca",
15 "emailTo": "example@example.com”,
16 "test@test.com",
17 "isConfirmed™: false,
18 "confirmationDate”: "8@01-901-01Te8:08:08",
19~ = 1links": {
28 - "self": {
21 "href": "http://localhost:56280/GameInvitation/6223168d-6243-498b-9d35
-81b8c947b5ca"”
22 T
23~ "confirm™: {
24 "href": "http://localhost:56280/GameInvitation/6223168d-6243-498b-9d35
-81b8c947b5ca/ confirm”
25 ¥
26 ¥

HATEOAS provides some powerful features, which allow for evolving components
independently. Clients can be completely decoupled from the business workflows
running on the server that manages the interaction by using links and other
hypermedia artifacts, such as forms.

Summary

In this chapter, you have learned how to build Web APIs for your applications for
integration purposes and for loosely coupled application architectures.

We have explored different styles for your Web APIs, such as RPC, REST, and
HATEOAS. Each of those styles has specific advantages and use cases. You have to
choose carefully, depending on your specific application needs, since there is not one
single style that outclasses the others.

You have seen examples of how to transform existing controller actions into RPC-
style Web APIs and how to build REST-style and HATEOAS-style Web APIs from
the ground up.

We have used Postman to manually test our Web APIs and you have acquired
enough knowledge to apply all of these new concepts to your own environments.

In the next chapter, we will talk about how to access data by using Entity Framework
Core 2 in your ASP.NET Core 2.0 applications.

Accessing Data using Entity
Framework Core 2

We have advanced greatly with the implementation of the Tic-Tac-Toe web
application, but when you restart the application all the user registration and
application data is reset. This is due to the fact that we do not persist any data yet.

To persist data and be able to reload it when the application starts, you have to put it
into some kind of persistent storage such as files (XML, JSON, CSV) or databases.

A database would be the best choice, since it provides better performance and more
security when compared to simple file storage, which is why we are going to use it in
the following examples.

Since ASP.NET 3.0 you can use an ORM framework called Entity Framework for
accessing data in databases in a more productive and simple way. ASP.NET Core 2.0
works with a dedicated version of this framework called Entity Framework Core 2.

In this chapter, we will cover the following topics:

Getting started with Entity Framework Core 2

Working with Entity Framework Core 2 Data Annotations
Using Entity Framework Core 2 Migrations

Creating, reading, updating, and deleting data

Working with request features

Getting started with Entity
Framework Core 2

The Meta package microsoft.aspretcore.a11 contains Entity Framework Core 2,
including all required packages for working with Microsoft SQL Server and SQL.ite.

Note that if you need to work with other databases such as MySQL, you

have to download additional packages from NuGet. You can find a list
o of all currently available Entity Framework Core 2 NuGet packages

here.‘ https://www.nuget.orqg/packages?page=2&q=Tags$3A%$22entity—-framework-

core$22.

https://www.nuget.org/packages?page=2&q=Tags%3A%22entity-framework-core%22

Establishing a connection

To open a session to the database and query and update instances of your entities,
you use a pbcontext, Which is based on a combination of the unit of work and
repository patterns.

Let's see how to prepare the Tic-Tac-Toe application to use Entity Framework Core 2
to connect to an SQL Database by using a pbcontext and a connection string;:

1. Go to the Solution Explorer, add a new folder called pata, add a new class called
GameDbContext .cs, and implement a pvset property for each Model (usermode1,
TurnModel, and more):

public class GameDbContext : DbContext
{
public DbSet<GameInvitationModel> GameInvitationModels ({
get; set; }
public DbSet<GameSessionModel> GameSessionModels { get; set; }
public DbSet<TurnModel> TurnModels { get; set; }
public DbSet<UserModel> UserModels { get; set; }

public GameDbContext (DbContextOptions<GameDbContext>
dbContextOptions) : base (dbContextOptions)
{

}
}

2. Register the Game Db Context in the scartup class and pass the connection
string and database provider as parameters within the constructor. You only
need a single instance, SO US€ Addsingleton:

var connectionString =
_configuration.GetConnectionString ("DefaultConnection");
services.AddEntityFrameworkSglServer ()
.AddDbContext<GameDbContext> ((serviceProvider, options) =>
options.UseSqglServer (connectionString)
.UseInternalServiceProvider (serviceProvider)

) ;

var dbContextOptionsbuilder =
new DbContextOptionsBuilder<GameDbContext> ()
.UseSglServer (connectionString) ;
services.AddSingleton (dbContextOptionsbuilder.Options);

3. Update the userservice to be able to work with the Game Db Context; add a new
public constructor and a private member for the Game Db Context from before:

private DbContextOptions<GameDbContext> dbContextOptions;

public UserService (DbContextOptions<GameDbContext>
dbContextOptions)

{
_dbContextOptions
}

dbContextOptions;

4. Update the registeruser method in the userservice to use the Game Db Context:

public async Task<bool> RegisterUser (UserModel userModel)

{
using (var db = new GameDbContext (dbContextOptions))
{
db.UserModels.Add (userModel) ;
await db.SaveChangesAsync () ;
return true;
}
}

5. Add a ncw extension Called ModelBuilderExtensions il'l the Extensions folder. ThlS
will be used to define table name conventions:

public static class ModelBuilderExtensions
{
public static void RemovePluralizingTableNameConvention (
this ModelBuilder modelBuilder)
{
foreach (IMutableEntityType entity in
modelBuilder.Model.GetEntityTypes())
{

entity.Relational () .TableName = entity.DisplayName () ;
}

6. Update the onvodeicreating method in the Game Db Context to further configure
the model that was discovered by convention from the entity types exposed in

the poset properties; call the extension from before to apply the table name
conventions:

protected override void OnModelCreating (ModelBuilder
modelBuilder)

{

modelBuilder.RemovePluralizingTableNameConvention () ;

}

Note that you could also use another method called onconriguring in the

DB Context, to configure the DB Context without using
DbContextOptions.

7. Add a new class called camepocontextractory in the pata folder. This will be used
to instantiate the Game Db Context with specific options:

public class GameDbContextFactory :
IDesignTimeDbContextFactory<GameDbContext>
{
public GameDbContext CreateDbContext (string[] args)
{
var optionsBuilder =
new DbContextOptionsBuilder<GameDbContext> () ;
optionsBuilder.UseSqglServer (Q"Server=
(localdb) \MSSQLLocalDB; Database=TicTacToe;
Trusted Connection=True;MultipleActiveResultSets=true");
return new GameDbContext (optionsBuilder.Options) ;
}
}

If you have already worked with databases, you should be familiar with the concept
of connection strings. They contain the configuration (address, username, password,
and more) and settings (encryption, protocol, and more) required to be able to
connect to a database.

In ASP.NET Core 2.0 you can use an appsettings.<env>.json flle to configure
connection strings. Connection strings are loaded automatically, when using the
ConnectionStrings section within this file:

"ConnectionStrings": {
"DefaultConnection":
"Server=(localdb) \\MSSQLLocalDB; Database=TicTacToe;
Trusted Connection=True;MultipleActiveResultSets=true"
b

As you have seen in the example before, you can use the cetconnectionstring method
to retrieve a connection string during runtime of your ASP.NET Core 2.0
applications:

var databaseConnectionString =
_configuration.GetConnectionString ("DefaultConnection");

This 1s everything you need to know to use the Game Db Context and the
corresponding default connection string stored within the appsettings.json
configuration file of the Tic-Tac-Toe application.

Defining primary keys and foreign
keys via Data Annotations

In the next step, you need to modify the existing Models to be able to persist them
within an SQL Database. To allow Entity Framework Core 2.0 to create, read,
update and delete records, you need to specify a primary key for each Model. You do
that by using Data Annotations, which allow you to decorate a property with the

(xey] decorator.

Here is an example of how to use Data Annotations for the usermoden:

public class UserModel

{
[Key]
public long Id { get; set; }

}

You should apply this to the UserModel, GameInvitationModel, GameSessionModel and
turnvodel Of the Tic-Tac-Toe application. You can reuse existing ra properties and
decorate them with the (xey) decorator, or add new ones if a Model does not yet
contain an ra property.

Note that it is sometimes required to use composite keys as the identity

for your rows in a table. In this case decorate each property with the
(xey] decorator. Furthermore, you can use columnorder=] for defining
the position of the property, if you need to order a composite key.

When working with SQL Server (or any other SQL 92 DBMYS), the first thing you
should think about is the relation between tables. In Entity Framework Core 2, you
can specify foreign keys within Models by using the (roreignkey] decorator.

Concerning the Tic-Tac-Toe application, this means that you have to update the
cameTnvitationModel and add a Foreign Key relation to the User Model 1d, as you can
see here:

1. Update the GameInvitationModel, add a foreign key tO InvitedByUser:

public class GameInvitationModel

[Key]
public Guid Id { get; set; }
public string EmailTo { get; set; }

public string InvitedBy { get; set; }
[ForeignKey (nameof (InvitedByUserId))]

public UserModel InvitedByUser { get; set; }
public Guid InvitedByUserId { get; set; }

public bool IsConfirmed { get; set; }
public DateTime ConfirmationDate { get; set; }

2. Update the camesessionmode1; add a foreign key to vserran:

public class GameSessionModel

{
[Key]
public Guid Id { get; set; }
public Guid UserIdl { get; set; }
public Guid UserId2 { get; set; }

[ForeignKey (nameof (UserIdl))]

public UserModel Userl { get; set; }

public UserModel User2 { get; set; }

public IEnumerable<TurnModel> Turns { get; set; }

public UserModel Winner { get; set; }

public UserModel ActiveUser { get; set; }
public Guid WinnerId { get; set; }

public Guid ActiveUserId { get; set; }
public bool TurnFinished { get; set; }
public int TurnNumber { get; set; }

3. Update the Turnmode1; add a foreign key to vserra:

public class TurnModel

{
[Key]
public Guid Id { get; set; }
public Guid UserId { get; set; }
[ForeignKey (nameof (UserId))]
public UserModel User { get; set; }
public int X { get; set; }
public int Y { get; set; }
public string Email { get; set; }
public string IconNumber { get; set; }

Entity Framework Core 2 maps all properties in a model with a schema
representation by default. But some more complex property types are not
compatible, which is why you should exclude them from auto-mapping. But how do

we do that? Well, by using the (wotmappea) decorator. How easy and straightforward
1s that?

For the Tic-Tac-Toe application, it makes no sense to persist the active user for a
turn, for example, so you should exclude them from the auto-mapping by using the
[NotMapped](jeCOratOrjIIthe GameSessionModel.

public class GameSessionModel

{
[Key]
public Guid Id { get; set; }
public Guid UserIdl { get; set; }
public Guid UserId2 { get; set; }

[ForeignKey (nameof (UserIdl))]

public UserModel Userl { get; set; }

public UserModel User2 { get; set; }

public IEnumerable<TurnModel> Turns { get; set; }

[NotMapped]
public UserModel Winner { get; set; }

[NotMapped]

public UserModel ActiveUser { get; set; }
public Guid WinnerId { get; set; }

public Guid ActiveUserId { get; set; }
public bool TurnFinished { get; set; }
public int TurnNumber { get; set; }

For more information on Entity Framework Data Annotations, please
visit the following link:

https://msdn.microsoft.com/en-us/library/jj591583 (v=vs.113) .aspx

Okay, now you have decorated all your models by using Entity Framework Core 2
Data Annotations, but you will quickly see that you have two properties, vser1 and
user2, 1N the GamesessionMode1 that point to the same vsermode1 entity. This results in a
circular relationship, and thus will become a problem when working with relational
databases for operations such as cascading updates or cascading deletions.

To avoid circular relationships in the example, you need to decorate vser1 with the
[Foreignkey] decorator and update the onModelcreating method in the Game Db Context
to define the Foreign Key for user2. These two modifications will allow you to define
the two foreign keys, while avoiding the automatic cascading operations, which
would cause problems:

protected override void OnModelCreating (ModelBuilder modelBuilder)
{

https://msdn.microsoft.com/en-us/library/jj591583(v=vs.113).aspx

modelBuilder.RemovePluralizingTableNameConvention () ;
modelBuilder.Entity (typeof (GameSessionModel))

.HasOne (typeof (UserModel), "User2")

.WithMany ()

.HasForeignKey ("User2Id") .OnDelete (DeleteBehavior.Restrict);

}

In the last step, you need to fix the unit tests. You might have already seen it; the unit
test project does not build anymore if you try compiling the solution. In fact, you
need to update the unit tests, since the vserservice requires an instance of
DbContextOptions NOW:
var dbContextOptionsBuilder =
new DbContextOptionsBuilder<GameDbContext> ()

.UseSglServer (@"Server=(localdb) \MSSQLLocalDB; Database=TicTacToe;
Trusted Connection=True;MultipleActiveResultSets=true");

var userService = new UserService (dbContextOptionsBuilder.Options) ;

Using Entity Framework Core 2
Migrations

As you have seen, when developing applications your models might change
frequently when refactoring and finalizing your projects. This might lead to a
database schema that is out of sync, and which therefore needs to be updated
manually by creating an upgrade script.

Fortunately, Entity Framework Core 2 includes a feature called Migrations to help
you with this tedious task by automatically keeping your models and the
corresponding database schemas in sync.

After you have updated the models, services and controllers to comply to the
constraints from above, and have modified the Game Db Context accordingly, you
are now ready to use Entity Framework Core 2 Migrations:

1. Add a first version of your Db schema called tnitiaipbschema, Open the NuGet
Package Manager by clicking in the top menu on Tools | NuGet Package
Manager | Package Manager Console, and execute the adda-migration
Tnitialbbschema cOmmand:

aaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa - % | Defaultproject: TicTacToe =
Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any licenses to, third-party packages. Some packages may include

dependencies which are governed by additional licenses. Follow the package source (feed) URL to determine any dependencies.
Package Manager Console Host Version 4.4.0.4431
Type ‘get-help NuGet' to see all available NuGet commands.

PM> Add-Migration InitialDbSchema
5% -

2. A new folder called uigrations will be automatically added by Visual Studio. It
will contain two auto-generated files, which will help you to manage and
upgrade your Db Schema in the future:

P Migrations
Booc* 20170922125819 InitialDb5Schemna.cs
o GameDbContextModelSnapshot.cs

If your database is accessible from your development environment, you can update it
directly from within Visual Studio 2017:

1. Go to the Package Manager Console and execute the vpdate-patabase command.
This will create the database the first time it is used, or update it automatically
when you change your models:

Package Manager Console

Package source: All - &3 | Default project: | TicTacToe = |
PM> Update-Database

I

100 % -

Error List Output Package Manager Console

2. Go to the SQL Server Object Explorer and analyze the Db Schema that Entity
Framework 2 Migrations has autogenerated in SQL Server:

SOL Server Object Explorer 1 X
¢ | s
4 g¥ S0OL Server
4 E (localdb)\MSSCOLLocalDB (SOL Server 13.0.4001
4 Databases
b Systern Databases
4 g TicTacToe
4 Tables
Systern Tables
External Tables
B dbo._ EFMigrationsHistory
B dbo.GamelnvitationModel
B dbo.GameSessionModel
BH dbo.TurniModel
BB dbo.UserModel
WViews

LA A

Synonyms
Programmability
External Resources
Service Broker
Storage
Security
B Security
B Server Objects

Projects - TicTacToe

L A

3. Right-click on the rrmigrationsnistory table and select View Data to see how
Entity Framework Migrations track Db Schema versions:

dbo._ EFMigrationsHistory [Data] -+ ><_

& |T| % | MaxRows: 1000 -

Migrationld ProductVersion
4 2017002212581... 2.0.0-rtm-26452
& MULL MULL

If your database is not accessible from your development environment, (for example,
for staging or production), you have to generate an SQL script file:

1. Go to the Package Manager Console and execute the script-migration command
to auto-generate an SQL script file, which can be used to create the Tic-Tac-Toe
application database:

denrdlia.sgl = X

b-ou v M| mf L
1 EIIF OBJECT_ID(N'_ EFMigrationsHistory') IS NULL
2 EIBEGIN
3 E CREATE TABLE [_ EFMigrationsHistory] (
4 [MigrationId] nvarchar(15@) NOT NULL,
5 [ProductVersion] nvarchar(32) NOT NULL,
6 CONSTRAINT [PK__ EFMigrationsHistory] PRIMARY KEY ([MigrationId])
7 |
8 | END;
9
1@ G0

12 [EICREATE TABLE [UserModel] (

13 [Id] bigint NOT NULL IDENTITY,

14 [Email] nvarchar(max) NOT NULL,

15. [EmailConfirmationDate] datetime2 NULL,

16 [FirstName] nvarchar(max) NOT NULL,

17 [IsEmailConfirmed] bit NOT NULL,

18 [LastName] nvarchar(max) NOT NULL,

19 [Password] nvarchar(max) NOT NULL,

28 [Score] int NOT NULL,

21 CONSTRAINT [PK_UserModel] PRIMARY KEY ([Id])

22 };

23

24 G0

25

26 [ICREATE TABLE [GameInwvitationModel] (

27 [Id] uniqueidentifier NOT NULL,

28 [ConfirmationDate] datetime2 MOT NULL,

29 [EmailToId] bigint NOT NULL,

30 [InvitedById] bigint NOT NULL,

31 [IsConfirmed] bit NOT NULL,

32 CONSTRAINT [PK_GameInvitationModel] PRIMARY KEY ([Id]),
33 CONSTRAINT [FK_GameInvitationModel UserModel EmailToId] FOREIGN KEY ([EmailToId]) REFERENCES [UserModel] ([Id]) ON DELETE NO ACTION,
34 CONSTRAINT [FK_GameInvitationModel Usertodel InvitedById] FOREIGN KEY ([InvitedById]) REFERENCES [UsertModel] ([Id]) OM DELETE CASCADE
35 ¥;

36

37 G0

38

39 [JCREATE TABLE [GameSessionModel] (

48 [Id] uniqueidentifier NOT NULL,

41 [TurnNumber] int NOT NULL,

42 [UserlId] bigint NOT NULL,

43 [User2Id] bigint NOT NULL,

44 CONSTRAINT [PK_GameSessionMadel] PRIMARY KEY ([Id]),

ac CONSTRATNT [EK Gamecacodiomiada] lleaciioda] llearn1Td] FORETEN WEY ([eae] T4l BEEERENCES [leamiada]l (TT410 0N DElETE CAcCAne

Package Manager Console

Package source: All = Q| Default project: TicTacToe M=

PM> Script-Migration

100% -

Error List OQutput Package Manager Console

2. Execute the generated SQL script file on the specific environments using your
preferred database tools (SQL Server Management Studio, and so on) to create
the Tic-Tac-Toe application database.

You can also use Entity Framework Core 2 Migration directly from within your code
to assure that the database is constantly in sync with your models by calling the
Migrate method of the camepbcontext Instance within the conrigure method of the
startup class, as shown here:

1. Update the confrigure method in the starcup class; add the following instructions
at the bottom of the method:

using (var scope =
app.ApplicationServices.GetService<IServiceScopeFactory> ()
.CreateScope())
{
scope.ServiceProvider.GetRequiredService<GameDbContext> ()
.Database.Migrate () ;

}

2. Start the Tic-Tac-Toe application by pressing FJ:

Note that if a table or a property does not exist in the database and if
0 the connection string provides enough access rights, Entity Framework
Core 2 will automatically create it.
After having updated the models and the corresponding application database, all
model data is now persisted and application state is going to be available even after
an application restart. This means that you cannot register already existing emails,
you have to add new ones manually, so truncate the database and delete them now.

Creating, reading, updating, and
deleting data

In the preceding sections, we have done everything to define the models and get the
database up and running in a consistent and coherent way. In this section, you will
finally see how to work with data and execute create, read, update, and delete
operations.

Let's see how to use camepbcontext to work with data:

1. Update the userservice; remove the concurrencysag and the static constructor, and
update the GetUserByEmail method:

public async Task<UserModel> GetUserByEmail (string email)
{
using (var db = new GameDbContext (dbContextOptions))
{
return await db.UserModels.FirstOrDefaultAsync (
x => x.Email == email);

2. Update the uvpaateuser method in the userservice to see how to update data using
the Db Context:

public async Task UpdateUser (UserModel userModel)
{
using (var gameDbContext =
new GameDbContext (_dbContextOptions))
{
gameDbContext.Update (userModel) ;
await gameDbContext.SaveChangesAsync () ;

}
}

3. Update the GetTopUsers method within the userservice to learn how to build
advanced queries with sorting and filtered data using the Db Context:

public async Task<IEnumerable<UserModel>> GetTopUsers (
int numberOfUsers)
{
using (var gameDbContext =
new GameDbContext (_dbContextOptions))
{
return await gameDbContext.UserModels.OrderByDescending (
x => x.Score) .ToListAsync () ;

4. Add a new method called rsuserkxisting to the userservice. This will be used to
check if a user exists. Update the ruserservice interface:

public async Task<bool> IsUserExisting(string email)
{
using (var gameDbContext =
new GameDbContext (_dbContextOptions))
{
return await gameDbContext.UserModels.AnyAsync (
user => user.Email == email);

Now you have seen how to configure your applications to use Entity Framework
Core 2 and all of its useful and interesting features. It provides a great way of
abstracting complexity and removing time-consuming tasks from you daily life as a
developer. You do not need to learn any additional languages anymore (SQL, for
example); nor do you need to change environments for creating, reading, updating,
and deleting records in a database. Everything can be done from within your code
and from within Visual Studio to assure high developer productivity and efficiency.

Summary

In this chapter, you have learned how to use Entity Framework Core 2 together with
ASP.NET Core 2.0 for working with SQL Server databases.

We have seen how to use a Db Context and connection string to connect to an SQL
Server database. We have then updated the models in the Tic-Tac-Toe application
with primary and foreign key definitions by using Entity Framework Core 2 Data
Annotations, as well as overriding the onvodeicreating method within the Db Context.

You have worked with Entity Framework Core 2 Migrations to be able to constantly
keep your models in your code consistent with their corresponding database
representations.

Furthermore, you have learnt how to insert, update and query data in an easy,
productive and efficient way.

In the next chapter, we will talk about how to secure access to your ASP.NET Core
2.0 applications by using the integrated ASP.NET Core 2.0 authorization features.

Securing ASP.NET Core 2.0
Applications

In today's world of increasing digital crime and internet fraud, all modern web
applications require the implementation of strong security mechanisms for
preventing attacks and user identity usurpation.

Until now, we have concentrated on understanding how to build efficient ASP.NET
Core 2.0 web applications, without thinking about user authentication, user
authorization, or data protection at all, but since the Tic-Tac-Toe application is
getting more and more sophisticated, we will have to address security issues before
finally deploying it to the public.

Building a web application and not thinking about security would be a big failing
and could bring down even the greatest and most famous websites. In the case of
security breaches and personal data theft, the negative reputation and user confidence
impacts could be tremendous, and nobody would want to work with those
applications and—more troublesome—companies anymore.

This is a topic that needs to be taken very seriously. You should work with security
companies to make code verifications and intrusion tests to ensure that you comply
with best practices and high security standards (OWASP10, for example).

Luckily, ASP.NET Core 2.0 contains everything necessary to help you with this
complicated, but important, topic. Most of the built-in features do not even require
advanced programming or security skills. You will see that it is very easy to
understand and implement secure applications by using the ASP.NET Core 2.0
Identity Framework.

In this chapter, we will cover the following topics:

e Adding basic user form authentication

Adding external provider authentication

Adding forgotten password and password reset mechanisms
Working with two-factor authentication

Implementing authorization

Implementing authentication

Authentication allows applications to identify a specific user. It is not used to
manage user access rights, which is the role of authorization, nor is it used to protect
data, which is the role of data protection.

There are several methods for authenticating application users, such as:

e Basic user forms authentication, using a login form with login and password
boxes

¢ Single Sign-On (SSO) authentication, where the user only authenticates once
for all their applications within the context of their company

e Social networks external provider authentication (such as Facebook and
LinkedIn)

e Certificate or public key infrastructure (PKI) authentication

ASP.NET Core 2.0 supports all these methods, but in this chapter, we will
concentrate on forms authentication with a user login and password, and external
provider authentication via Facebook.

In the following examples, you will see how to use those methods for authenticating
application users, as well as some more advanced features like email confirmation
and password reset mechanisms.

And last but not least, you will see how to implement two-factor authentication using
the built-in ASP.NET Core 2.0 Authentication features for your most critical
applications.

Let's prepare the implementation of the different authentication mechanisms for the
Tic-Tac-Toe application:

I. Update the lifetime of the UserService, GameInvitationService, and
GameSessionService 1N the Startup class:

services.AddTransient<IUserService, UserService>();

services.AddScoped<IGameInvitationService,
GameInvitationService> () ;

services.AddScoped<IGameSessionService, GameSessionService>();

2. Update the conrigure method within the startup class, and call the Authentication
Middleware directly after the Static Files Middleware:

app.UseStaticFiles();
app.UseAuthentication () ;

3. Update the usermode1 to use it with the built-in ASP.NET Core 2.0 Identity
authentication features, and remove the 14 and =mai1 properties, which are
already provided by the rdentityuser class:

public class UserModel : IdentityUser<Guid>
{
[Display (Name = "FirstName")]
[Required (ErrorMessage = "FirstNameRequired")]
public string FirstName { get; set; }
[Display (Name = "LastName")]
[Required (ErrorMessage = "LastNameRequired")]
public string LastName { get; set; }
[Display (Name = "Password")]
[Required (ErrorMessage = "PasswordRequired"),
DataType (DataType.Password)]
public string Password { get; set; }
[NotMapped]
public bool IsEmailConfirmed
{
get { return EmailConfirmed; }
}
public System.DateTime? EmailConfirmationDate { get; set; }
public int Score { get; set; }
}

Note that in the real world, we would advise also removing the passworda
property. However, we will keep it in the example for clarity and
learning purposes.

4. Add a new folder called vanagers, and add a new manager in the folder called

ApplicationUserManager.

public class ApplicationUserManager : UserManager<UserModel>
{
private IUserStore<UserModel> store;
DbContextOptions<GameDbContext> dbContextOptions;
public ApplicationUserManager (
DbContextOptions<GameDbContext> dbContextOptions,
IUserStore<UserModel> store, IOptions<IdentityOptions>
optionsAccessor, IPasswordHasher<UserModel> passwordHasher,
IEnumerable<IUserValidator<UserModel>> userValidators,
IEnumerable<IPasswordValidator<UserModel>>
passwordValidators, ILookupNormalizer keyNormalizer,
IdentityErrorDescriber errors, IServiceProvider services,
ILogger<UserManager<UserModel>> logger)
base (store, optionsAccessor, passwordHasher,
userValidators, passwordValidators, keyNormalizer,
errors, services, logger)

_store = store;
_dbContextOptions = dbContextOptions;
}

public override async Task<UserModel> FindByEmailAsync (
string email)
{
using (var dbContext = new GameDbContext (dbContextOptions))
{
return await dbContext.Set<UserModel> () .FirstOrDefaultAsync (
X => x.Email == email);

public override async Task<UserModel> FindByIdAsync (

string userId)

{

using (var dbContext = new GameDbContext (dbContextOptions))
{

Guid id = Guid.Parse (userId);
return await dbContext.Set<UserModel> () .FirstOrDefaultAsync (
X => x.Id == id);

public override async Task<IdentityResult>
UpdateAsync (UserModel user)
{
using (var dbContext = new GameDbContext (dbContextOptions))
{
var current =
await dbContext.Set<UserModel> () .FirstOrDefaultAsync (
x => x.Id == user.Id);
current.AccessFailedCount = user.AccessFailedCount;
current.ConcurrencyStamp = user.ConcurrencyStamp;
current.Email = user.Email;
current.EmailConfirmationDate = user.EmailConfirmationDate;
current.EmailConfirmed = user.EmailConfirmed;
current.FirstName = user.FirstName;
current.LastName = user.LastName;
current.LockoutEnabled = user.LockoutEnabled;
current.NormalizedEmail = user.NormalizedEmail;
current.NormalizedUserName = user.NormalizedUserName;
current.PhoneNumber = user.PhoneNumber;
current.PhoneNumberConfirmed = user.PhoneNumberConfirmed;
current.Score = user.Score;
current.SecurityStamp = user.SecurityStamp;
current.TwoFactorEnabled = user.TwoFactorEnabled;
current.UserName = user.UserName;
await dbContext.SaveChangesAsync() ;
return IdentityResult.Success;

public override async Task<IdentityResult>
ConfirmEmailAsync (UserModel user, string token)
{
var isValide = await base.VerifyUserTokenAsync (user,
Options.Tokens.EmailConfirmationTokenProvider,
ConfirmEmailTokenPurpose, token);

if (isvalide)
{
using (var dbContext =
new GameDbContext (dbContextOptions))
{
var current =
await dbContext.UserModels.FindAsync (user.Id);
current.EmailConfirmationDate = DateTime.Now;
current.EmailConfirmed = true;
await dbContext.SaveChangesAsync () ;
return IdentityResult.Success;
}
}
return IdentityResult.Failed();

5. Update the startup class, and register the appiicationuserManager:

| services.AddTransient<ApplicationUserManager> () ;

6. Update the userservice to work with the ApplicationUser Manager, add two new

methods called cetEmailconfirmationcode and ConfirmEmail, and update the User
Service Interface:

public class UserService
{
private ILogger<UserService> logger;
private ApplicationUserManager userManager;
public UserService (ApplicationUserManager userManager,
ILogger<UserService> logger)
{
_userManager = userManager;
_logger = logger;

var emailTokenProvider = new EmailTokenProvider<UserModel> () ;
_userManager.RegisterTokenProvider ("Default",
emailTokenProvider) ;

}

public async Task<bool> ConfirmEmail (string email, string code)
{

var start = DateTime.Now;

_logger.LogTrace ($"Confirm email for user {email}");

var stopwatch = new Stopwatch();
stopwatch.Start () ;

try

{
var user = await userManager.FindByEmailAsync (email);
if (user == null)

return false;

var result = await userManager.ConfirmEmailAsync (
user, code);

return result.Succeeded;

}

catch (Exception ex)

{

_logger.LogError ($"Cannot confirm email for user
{email} - {ex}");
return false;
}
finally

{
stopwatch.Stop () ;
_logger.LogTrace ($"Confirm email for user finished in

{stopwatch.Elapsed}") ;

public async Task<string> GetEmailConfirmationCode (
UserModel user)

{

return
await userManager.GenerateEmailConfirmationTokenAsync (user);

public async Task<bool> RegisterUser (UserModel userModel)
{
var start = DateTime.Now;
_logger.LogTrace ($"Start register user
{userModel .Email} - {start}");

var stopwatch = new Stopwatch();
stopwatch.Start () ;

try
{
userModel .UserName = userModel.Email;
var result = await userManager.CreateAsync (userModel,
userModel.Password) ;
return result == IdentityResult.Success;
}
catch (Exception ex)

{

_logger.LogError ($"Cannot register user
{userModel.Email} - {ex}");
return false;
}
finally
{
stopwatch.Stop () ;
_logger.LogTrace ($"Start register user {userModel.Email}
finished at {DateTime.Now} - elapsed
{stopwatch.Elapsed.TotalSeconds} second(s)"):;

public async Task<UserModel> GetUserByEmail (string email)
{

return await userManager.FindByEmailAsync (email);

}

public async Task<bool> IsUserExisting(string email)

{

return (await userManager.FindByEmailAsync(email)) != null;

}

public async Task<IEnumerable<UserModel>> GetTopUsers (
int numberOfUsers)

{
return await userManager.Users.OrderByDescending (

X => x.Score) .ToListAsync () ;

}

public async Task UpdateUser (UserModel userModel)
{
await userManager.UpdateAsync (userModel) ;
}
}

Note that you should also update the vserservicerest class to work with
the new constructor. For that, you will also have to create a mock for
the vsermanager class and pass it to the constructor. For the moment, you

can just comment the test out and update it later. But don't forget to do
it!

7. Update the Emailconfirmation method in the UserRegistrationController, and use

the cetEmailconfirmationcode method you have added before to retrieve the email
code:

var urlAction = new UrlActionContext
{
Action = "ConfirmEmail",
Controller = "UserRegistration",
Values = new { email, code =
await userService.GetEmailConfirmationCode (user) },
Protocol = Request.Scheme,
Host = Request.Host.ToString()
}s

8. Update the confirmemail method in the UserRegistrationController, it has to call
the confirmEmail method in the vserservice to finish the email confirmation:

[HttpGet]
public async Task<IActionResult> ConfirmEmail (string email,
string code)

{

var confirmed = await userService.ConfirmEmail (email, code);

if (!confirmed)
return BadRequest () ;

return RedirectToAction ("Index", "Home");

}

9. Add a new class called ro1eroge1 1n the moge1s folder, and make it inherit from
TdentityRole<long>, as it Will be used by the built-in ASP.NET Core 2.0 Identity

Authentication features:

public class RoleModel : IdentityRole<Guid>
{

public RoleModel ()

{

}

public RoleModel (string roleName) : base(roleName)
{
}

10. Update the Game Db Context, and add a new DbSet for Role Models:

| public DbSet<RoleModel> RoleModels { get; set; }

11. Register the Authentication Service and the Identity Service in the startup class,
then use the new Role Model you added before:

services.AddIdentity<UserModel, RoleModel> (options =>
{
options.Password.RequiredLength = 1;
options.Password.RequiredUniqueChars = 0;
options.Password.RequireNonAlphanumeric =
options.Password.RequireUppercase = false;
options.SignIn.RequireConfirmedEmail = false;
}) .AddEntityFrameworkStores<GameDbContext> ()
.AddDefaultTokenProviders () ;

false;

services.AddAuthentication (options => {
options.DefaultScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
options.DefaultSignInScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
options.DefaultAuthenticateScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
}) .AddCookie () ;

12. Update the Communication Middleware, remove the userservice private
member from the class, and update the constructor accordingly:

public CommunicationMiddleware (RequestDelegate next)
{

_next = next;

}

13. Update the two processkmailconfirmation methods in the Communication
Middleware, as they must be asynchronous to work with ASP.NET 2.0 Identity:

private async Task ProcessEmailConfirmation (HttpContext
context, WebSocket currentSocket, CancellationToken ct,
string email)

{

var userService =
context.RequestServices.GetRequiredService<IUserService>();
var user = awalt userService.GetUserByEmail (email) ;
while (!ct.IsCancellationRequested &&
!currentSocket.CloseStatus.HasValue &&
user?.IsEmailConfirmed == false)

await SendStringAsync (currentSocket,
"WaitEmailConfirmation", ct);

await Task.Delay(500);

user = awalit userService.GetUserByEmail (email) ;

if (user.IsEmailConfirmed)
{

await SendStringAsync (currentSocket, "OK", ct);
}

private async Task ProcessEmailConfirmation (HttpContext context)
{

var userService =

context.RequestServices.GetRequiredService<IUserService> () ;
var email = context.Request.Query["email"];

UserModel user = awailt userService.GetUserByEmail (email) ;

if (string.IsNullOrEmpty (email))
{
await context.Response.WriteAsync ("BadRequest:Email is
required");
}
else 1f ((await
userService.GetUserByEmail (email)) .IsEmailConfirmed)
{

await context.Response.WriteAsync ("OK");

14. Update the camernvitationservice, and set the public constructor to static.
15. Remove the following pbcontextoptions registration from the scartup class; it will
be replaced by another one in the next step:

var dbContextOptionsbuilder =
new DbContextOptionsBuilder<GameDbContext> ()
.UseSglServer (connectionString) ;
services.AddSingleton (dbContextOptionsbuilder.Options);

16. Update the startup class, and add a new pocontextoptions registration:

services.AddScoped (typeof (DbContextOptions<GameDbContext>),
(serviceProvider) =>
{
return new DbContextOptionsBuilder<GameDbContext> ()
.UseSglServer (connectionString) .Options;

}):

17. Update the configure method in the startup class, then replace the code that does
the database migration at the end of the method:

var provider = app.ApplicationServices;

var scopeFactory =
provider.GetRequiredService<IServiceScopeFactory>();

using (var scope = scopeFactory.CreateScope())

using (var context =

scope.ServiceProvider.GetRequiredService<GameDbContext> ())
{
context.Database.Migrate () ;

}

18. Update the 1naex method In GameInvitationController:

var invitation =

gameInvitationService.Add (gameInvitationModel) .Result;
return RedirectToAction ("GameInvitationConfirmation",
new { id = invitation.Id });

19. Update the confirmGameInvitation method in GameInvitationController, and add
additional fields to the existing user registration:

await userService.RegisterUser (new UserModel
{
Email = gameInvitation.EmailTo,
EmailConfirmationDate = DateTime.Now,
EmailConfirmed = true,

FirstName = "",

LastName = "",

Password = "Azertyl23!",

UserName = gamelnvitation.EmailTo

P

Note that the automatic creation and registration of the invited user is
only a temporary workaround that we have added to simplify the
example application. In the real world, you will need to handle this

case differently and replace the temporary workaround with a real
solution.

20 Update the CreateGameSession and AddTurn methods in GameSessionService and Ire-
extract the Game Session Service Interface:

public async Task<GameSessionModel> CreateGameSession (

Guid invitationId, UserModel invitedBy,

UserModel invitedPlayer)

{

var session = new GameSessionModel
{

Userl = invitedBy,
User2 = invitedPlayer,

Id = invitationId,

ActiveUser = invitedBy
bi
_sessions.Add(session);
return session;

public async Task<GameSessionModel> AddTurn (Guid id,
UserModel user, int x, int vy)
{
List<Models.TurnModel> turns;
var gameSession = sessions.FirstOrDefault (session =>
session.Id == id);
if (gameSession.Turns != null && gameSession.Turns.Any())
turns = new List<Models.TurnModel> (gameSession.Turns) ;
else
turns = new List<TurnModel> () ;

turns.Add (new TurnModel
{

User = user,
X = x,
T =y,
IconNumber = user.Email == gameSession.Userl?.Email ? "1"
1)
gameSession.Turns = turns;
gameSession.TurnNumber = gameSession.TurnNumber + 1;
if (gameSession.Userl?.Email == user.Email)
gameSession.ActiveUser = gameSession.User2;
else
gameSession.ActiveUser = gameSession.Userl;
gameSession.TurnFinished = true;
_sessions = new ConcurrentBag<GameSessionModel>
(_sessions.Where(u => u.Id != id))
{
gameSession

}s

return gameSession;

21. Update the Index method n GameSessionController.

public async Task<IActionResult> Index (Guid id)
{
var session = await gameSessionService.GetGameSession (id);
var userService =
HttpContext.RequestServices.GetService<IUserService>();

if (session == null)
{
var gamelInvitationService =
Request.HttpContext.RequestServices.GetService
<IGameInvitationService>();
var invitation = await gamelInvitationService.Get (id);

var invitedPlayer =
await userService.GetUserByEmail (invitation.EmailTo) ;
var invitedBy =

|l2ll

22.

23.

24.

25.

await userService.GetUserByEmail (invitation.InvitedBy) ;

session =
await gameSessionService.CreateGameSession (
invitation.Id, invitedBy, invitedPlayer);
}

return View (session);

Update the setrosition method in GameSessionController, and Pass a turn.User
instead of a turn.vser.Email:

gameSession = awalt gameSessionService.AddTurn(gameSession.Id,
turn.User, turn.X, turn.Y);

Update the onmode1creating method in the Game Db Context, and add a winnerta
foreign key:

modelBuilder.Entity (typeof (GameSessionModel))
.HasOne (typeof (UserModel), "Winner")
.WithMany ()
.HasForeignKey ("WinnerId") .OnDelete (DeleteBehavior.Restrict);

Update the cameInvitationconfirmation method in GameInvitationController, 1t must
be asynchronous to work with ASP.NET Core 2.0 Identity:

[HttpGet]
public async Task<IActionResult> GamelInvitationConfirmation (
Guid 1id, [FromServices]IGameInvitationService
gameInvitationService)
{
return await Task.Run(() =>
{
var gameInvitation = gamelInvitationService.Get (id) .Result;
return View (gamelInvitation);

P

Update the 1tndex and setcuiture methods in romecontrolier; they must be
asynchronous to work with ASP.NET Core 2.0 Identity:

public async Task<IActionResult> Index ()
{
return await Task.Run(() =>
{
var culture =
Request.HttpContext.Session.GetString ("culture");
ViewBag.Language = culture;
return View () ;

1)

public async Task<IActionResult> SetCulture(string culture)
{
return await Task.Run(() =>
{
Request.HttpContext.Session.SetString ("culture", culture);
return RedirectToAction ("Index");
1) :
}

26. Update the 1naex method in userregistrationcontroller; it must be asynchronous
to work with ASP.NET 2.0 Identity:

public async Task<IActionResult> Index ()
{
return await Task.Run(() =>
{
return View () ;
1)
}

27. Open the Package Manager Console and execute the ada-migration Identitybb
command.

28. Update the database by executing the update-patabase command in the Package
Manager Console.

29. Start the application and register a new user, then verify that everything is still
working as expected.

Note that you have to use a complex password, such as azertyi1231, to be
able to finish the user registration successfully now, since you have
implemented the integrated features of ASP.NET Core 2.0 Identity in
this section, which require complex passwords.

Adding basic user forms
authentication

Great! You have registered the Authentication Middleware and prepared the
database. In the next step, you are going to implement basic user authentication for
the Tic-Tac-Toe application.

The following example demonstrates how to modify the user registration and add a
simple login form with a user login and password textbox for authenticating users:

1. Add a new Model called r.oginmMode1 to the moge1s folder:

public class LoginModel
{
[Required]
public string UserName { get; set; }
[Required]
public string Password { get; set; }
public string ReturnUrl { get; set; }
}

2. Add a new folder called account to the views folder, and add a new file called
Login.cshtml Within this new folder; it will contain the Login View:

@model TicTacToe.Models.LoginModel
<div class="container">
<div id="loginbox" style="margin-top:50px;" class="mainbox
col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2">
<div class="panel panel-info">
<div class="panel-heading">
<div class="panel-title">Sign In</div>
</div>
<div style="padding-top:30px" class="panel-body">
<div style="display:none" id="login-alert"
class="alert alert-danger col-sm-12"></div>
<form id="loginform" class="form-horizontal"
role="form" asp-action="Login" asp-controller="Account">
<input type="hidden" asp-for="ReturnUrl" />
<div asp-validation-summary="ModelOnly"
class="text-danger"></div>
<div style="margin-bottom: 25px" class="input-group">
<i class="glyphicon
glyphicon-user"></i>
<input type="text" class="form-control"

asp-for="UserName" value="" placeholder="username
or email">
</div>

<div style="margin-bottom: 25px" class="input-group">

<i class="glyphicon
glyphicon-lock"></i>
<input type="password" class="form-control"
asp-for="Password" placeholder="password">
</div>
<div style="margin-top:10px" class="form-group">
<div class="col-sm-12 controls">
<button type="submit" id="btn-login" href="#"
class="btn btn-success">Login</button>
</div>
</div>
<div class="form-group">
<div class="col-md-12 control">
<div style="border-top: lpx so0lid#888;
padding-top:15px; font-size:85%">
Don't have an account?
<a asp-action="Index"

asp-controller="UserRegistration">Sign Up Here

</div>
</div>
</div>
</form>
</div>
</div>
</div>
</div>

Update the UserService, add a SignInManager private ﬁeld, and update the
constructor:

private SignInManager<UserModel> signInManager;
public UserService (ApplicationUserManager userManager,

ILogger<UserService> logger, SignInManager<UserModel>
signInManager)

{

_signInManager = signInManager;

Add two new methods, called SignInUser and SignOutUser, t0 Userservice and
update the User Service Interface:

public async Task<SignInResult> SignInUser (

LoginModel loginModel, HttpContext httpContext)
{

var start = DateTime.Now;
_logger.LogTrace ($"signin user {loginModel.UserName}");

var stopwatch = new Stopwatch();
stopwatch.Start () ;

try
{

var user =

await userManager.FindByNameAsync (loginModel.UserName) ;
var isValid =
await signInManager.CheckPasswordSignInAsync (user,
loginModel.Password, true);
if (!isValid.Succeeded)
{

return SignInResult.Failed;

if (lawait userManager.IsEmailConfirmedAsync (user))

{
return SignInResult.NotAllowed;

var identity = new ClaimsIdentity(

CookieAuthenticationDefaults.AuthenticationScheme) ;
identity.AddClaim(new Claim(

ClaimTypes.Name, loginModel.UserName)) ;
identity.AddClaim(new Claim(

ClaimTypes.GivenName, user.FirstName)) ;
identity.AddClaim(new Claim(

ClaimTypes.Surname, user.LastName));
identity.AddClaim(new Claim(

"displayName", $"{user.FirstName} {user.LastName}"));

if (!string.IsNullOrEmpty (user.PhoneNumber))

{
identity.AddClaim(new Claim(ClaimTypes.HomePhone,
user.PhoneNumber)) ;

identity.AddClaim(new Claim("Score",
user.Score.ToString()));

await httpContext.SignInAsync (
CookieAuthenticationDefaults.AuthenticationScheme,

new ClaimsPrincipal (identity),

new AuthenticationProperties { IsPersistent = false });

return isValid;

}

catch (Exception ex)

{
_logger.LogError ($"can not sigin user

{loginModel.UserName} - {ex}");

throw ex;

}

finally

{
stopwatch.Stop () ;
_logger.LogTrace ($"sigin user {loginModel.UserName}
finished in {stopwatch.Elapsed}");

public async Task SignOutUser (HttpContext httpContext)
{
await signInManager.SignOutAsync() ;
await httpContext.SignOutAsync (new AuthenticationProperties {
IsPersistent = false });
return;

5. Add a new controller called accountcontroiler to the control1ers folder, and
implement three new methods for handling user authentication:

public class AccountController : Controller
{
private IUserService userService;
public AccountController (IUserService userService)
{
_userService = userService;

}

public async Task<IActionResult> Login(string returnUrl)
{

return await Task.Run(() =>

{
var loginModel = new LoginModel { ReturnUrl = returnUrl };
return View (loginModel) ;

)

[HttpPost]
public async Task<IActionResult> Login(LoginModel loginModel)
{

if (ModelState.IsValid)

{

var result = await userService.SignInUser (loginModel,
HttpContext) ;

if (result.Succeeded)
{
if (!string.IsNullOrEmpty(loginModel.ReturnUrl))
return Redirect (loginModel.ReturnUrl) ;
else

return RedirectToAction ("Index", "Home");
}
else
ModelState.AddModelError ("", result.IsLockedOut ?
"User is locked" : "User is not allowed");

}

return View () ;

public IActionResult Logout ()

{
_userService.SignOutUser (HttpContext) .Wait () ;
HttpContext.Session.Clear () ;
return RedirectToAction ("Index", "Home");

[ﬁodaie ﬂ]e CheckGameSessionIsFinished.nleth(ﬂiin,ﬂle GameSessionController.

[HttpGet ("/restapi/vl/CheckGameSessionIsFinished/{sessionId}")]

public async Task<IActionResult> CheckGameSessionIsFinished (
Guid sessionId)

{

if (sessionId != Guid.Empty)
{
var session =
await gameSessionService.GetGameSession (sessionId);
if (session != null)
{
if (session.Turns.Count () == 9)
return Ok ("The game was a draw.");

var userTurns = session.Turns.Where (
x => x.User.Id == session.Userl.Id).ToList ()

var userlWon = CheckIfUserHasWon (session.Userl?.Email,
userTurns) ;

if (userlWon)
{

return Ok ($"{session.Userl.Email} has won the game.");
}
else
{

userTurns = session.Turns.Where (

X => x.User.Id == session.User2.Id).ToList();

var user2Won = CheckIfUserHasWon (session.User2?.Email,
userTurns) ;

if (user2Won)
return Ok ($"{session.User2.Email} has won
the game.");
else
return Ok ("");
}
}
else
{
return NotFound ($"Cannot find session {sessionId}.");
}
}
else
{
return BadRequest ("SessionId is null.");

}

7. Update the views/shared/ menu.cshtmi file, and replace the existing code block at
the top of the method:

@using Microsoft.AspNetCore.Http;
@f
var email = User?.Identity?.Name ?7?
Context.Session.GetString ("email") ;
var displayName = User.Claims.FirstOrDefault (
x => x.Type == "displayName")?.Value ?7?
Context.Session.GetString ("displayName") ;

8. Update the views/shared/ menu.cshtmi file, to display either a Display Name
Element for already authenticated users, or a Login Element for an
authenticated user; for that, replace the last <1i> element:

10.

@if (!string.IsNullOrEmpty(email))
{

Html.RenderPartial (" Account",

new TicTacToe.Models.AccountModel { Email = email,

DisplayName = displayName });

}
else

{

<a asp-area="" asp-controller="Account"
asp-action="Login">Login
}
</1i>

Update the views/shared/ account.cshtmi file, and replace the Log Off and View
Details links:

<a class="btn btn-danger btn-block" asp-controller="Account"
asp-action="Logout" asp-area="">Log Off

<a class="btn btn-default btn-block" asp-action="Index"
asp-controller="Home" asp-area="Account">View Details

Go to the Views\Shared\Components\GameSession folder, and update the
default.cshtml file to improve the visual representation:

@using Microsoft.AspNetCore.Http
@model TicTacToe.Models.GameSessionModel
@{
var email = Context.Session.GetString ("email");
}
<div id="gameBoard">
<table>
@for (int rows = 0; rows < 3; rows++)
{
<tr style="height:150px;">
@for (int columns = 0; columns < 3; columns++)
{
<td style="width:150px; border:1lpx solid #808080;
text-align:center; vertical-align:middle"

id="@ ($"c_ {rows} {columns}")">
@
var position = Model.Turns?.FirstOrDefault (
turn => turn.X == columns && turn.Y == rows);
if (position != null)
{
if (position.User == Model.Userl)

{
<i class="glyphicon glyphicon-unchecked"></i>

}
else
{
<i class="glyphicon glyphicon-remove-circle"></i>
}
}
else
{
<a class="btn btn-default btn-SetPosition"
style="width:150px; min-height:150px;"

11.

12.

data-X="@columns" data-Y="@rows">

}
}
</td>
}
</tr>
}
</table>
</div>
<div class="alert" id="divAlertWaitTurn">
<i class="glyphicon glyphicon-alert">Please wait until the
other user has finished his turn.</i>
</div>

Start the application, click on the Login element in the top menu, and sign in as
an existing user (or register as a user if you have not done that before):

Tic-Tac-Toe Home Leaderboard AboL Contact Settings ~ Login

Don't have an account? Sign Up Here

© 2017 - TicTacToe

Click the Log Off button. You should be logged off and get redirected back to
the Home Page:

2 Jason De Oliveira ¥

Jason De Oliveira

Welcome to the Tic-Tac-Toe Desktop G

example@example.com

Tic-Tac-Toe

Log off
Tic-Tac-Toe is a two-player turmn-based game.

Two players will choose who takes the Xs and who takes the Os. They will then be View Details ieir marks, one mark per tum.

A player who succeeds in placing three of his marks in a horizontal, vertical, or diaywnariww wine wis gams:

Register by clicking here

© 2017 - TicTacToe

Adding external provider
authentication

In the following section, we will showcase external provider authentication by using
Facebook as an authentication provider.

Here is an overview of the control flow in this case:

. The user clicks on a dedicated external provider login button.

. The corresponding controller receives a request indicating which provider is
needed, then a challenge is initiated with the external provider.

3. The external provider sends an HTTP callback (rost or cer) with a provider

name, a key, and some user claims for the application.

4. The claims are matched with the internal application user.

. If no internal user can be matched with the claims, the user is either redirected
to a specific registration form or is rejected.

N —

N

Note that the implementation steps are the same for all external
providers if they support OWIN and ASP.NET Core 2.0 Identity, and
that you may even create your own providers and integrate them in the
same way.

We are now going to implement external provider authentication via Facebook:

1. Update the Login Form, and add a button called rogin with racebook directly
after the standard Login Button:

<a id="btn-fblogin" asp-action="ExternalLogin"
asp-controller="Account" asp-route-Provider="Facebook"
class="btn btn-primary">Login with Facebook

2. Update the uvserservice and User Service Interface, then add three new methods
Calle(lGetExternalAuthenticationProperties,GetExternalLoginInfoAsync,Eﬂld

ExternalLoginSignInAsync.

public async Task<AuthenticationProperties>
GetExternalAuthenticationProperties (string provider,
string redirectUrl)

{

return await Task.FromResult (

_signInManager.ConfigureExternalAuthenticationProperties (
provider, redirectUrl));

public async Task<ExternalloginInfo> GetExternallLoginInfoAsync ()
{
return await _signInManager.GetExternalLoginInfoAsync();

}

public async Task<SignInResult> ExternallLoginSignInAsync (
string loginProvider, string providerKey, bool isPersistent)
{
_logger.LogInformation($"Sign in user with external login
{loginProvider} - {providerKey}");
return await signInManager.ExternalLoginSignInAsync (
loginProvider, providerKey, isPersistent);

Update the accountcontroiler, and add two new methods called externaitogin and

ExternalLoginCallBack.

[AllowAnonymous]
public async Task<ActionResult> Externallogin (string provider,
string ReturnUrl)
{
var redirectUrl = Url.Action (nameof (ExternalloginCallBack),
"Account", new { ReturnUrl = ReturnUrl }, Request.Scheme,
Request.Host.ToString());
var properties =
await userService.GetExternalAuthenticationProperties(
provider, redirectUrl);
ViewBag.ReturnUrl = redirectUrl;
return Challenge (properties, provider);

[AllowAnonymous]
public async Task<IActionResult> ExternalloginCallBack(
string returnUrl, string remoteError = null)
{
if (remoteError != null)

{
ModelState.AddModelError (string.Empty, $"Error from

external provider: {remoteError}");
ViewBag.ReturnUrl = returnUrl;
return View ("Login");

var info = await userService.GetExternalLoginInfoAsync();
if (info == null)
{

return RedirectToAction ("Login",

new { ReturnUrl = returnUrl });

var result =
await userService.ExternalLoginSignInAsync (
info.LoginProvider, info.ProviderKey, isPersistent: false);
if (result.Succeeded)

{

if (!string.IsNullOrEmpty (returnUrl))
return Redirect (returnUrl);
else
return RedirectToAction ("Index", "Home");
}
if (result.IsLockedOut)
{
return View ("Lockout");
}
else
{
return View ("NotFound") ;

}

}

4. Register the Facebook Middleware within the startup class:

services.AddAuthentication (options => {
options.DefaultScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
options.DefaultSignInScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
options.DefaultAuthenticateScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
}) .AddCookie () .AddFacebook (facebook =>
{
facebook.AppId = "123";
facebook.AppSecret = "123";
facebook.ClientId = "123";
facebook.ClientSecret = "123";
)i

Note that you must update the Facebook Middleware configuration and
register your application in the Facebook developer portal before
being able to authenticate logins with a Facebook account.

Please go to nttp://developer. facebook.com for more information.

5. Start the application, click on the Login with Facebook button, sign in with your
Facebook credentials, and verify that everything is working as expected:

http://developer.facebook.com

Login with Facebook

Don't have an account? Sign Up Here

© 2017 - TicTacToe

Working with two-factor
authentication

The standard security mechanisms you have seen before only require a simple
username and password, which makes it increasingly easy for cybercriminals to gain
access to confidential data, such as personal and financial details, either by hacking
the password or by intercepting user credentials (emails, network sniffing, and such).
This data can then be used to commit financial fraud and identity theft.

Two-factor authentication adds an extra layer of security, since it requires not only a
username and password, but also a two-factor code that only the user can provide
(physical device, software-generated, and so on). This makes it much harder for
potential intruders to gain access, and thus helps to prevent identity and data theft.

All major websites provide two-factor authentication as an option, so let's add it to
the Tic-Tac-Toe application as well:

1. Add a new Model called tworactorcodeModel to the mode1s folder:

public class TwoFactorCodeModel

{
[Key]
public long Id { get; set; }
public Guid UserId { get; set; }
[ForeignKey ("UserId")]
public UserModel User { get; set; }
public string TokenProvider { get; set; }
public string TokenCode { get; set; }

2. Add a new Model called tworactorEmaiimodel t0 the vMode1s folder:

public class TwoFactorEmailModel

{
public string DisplayName { get; set; }
public string Email { get; set; }
public string ActionUrl { get; set; }

}

3. Register the tworactorcodemode1 Within the Game Db Context by adding a
corresponding pbset:

| public DbSet<TwoFactorCodeModel> TwoFactorCodeModels { get; set; }

4. Open the NuGet Package Manager Console and execute the ada-migration
addTwoFactorcode cOMmand, then update the database by executing the uvpdate-
Database cOmmand.

5. Update the Application User Manager, then add three new methods called
SetTwoFactorEnabledAsync,GenerateTwoFactorTokenAsync,anfl

VerifyTwoFactorTokenAsync.

public override async Task<IdentityResult>
SetTwoFactorEnabledAsync (UserModel user, bool enabled)
{
try
{

using (var db
{
var current = await db.UserModels.FindAsync (user.Id);
current.TwoFactorEnabled = enabled;
await db.SaveChangesAsync() ;
return IdentityResult.Success;

new GameDbContext (_dbContextOptions))

}

catch (Exception ex)

{
return IdentityResult.Failed(new IdentityError {
Description = ex.ToString() 1});

public override async Task<string>
GenerateTwoFactorTokenAsync (UserModel user,
string tokenProvider)
{
using (var dbContext = new GameDbContext (dbContextOptions))
{
var emailTokenProvider = new EmailTokenProvider<UserModel> () ;
var token = await emailTokenProvider.GenerateAsync (
"TwoFactor", this, user);
dbContext.TwoFactorCodeModels.Add (new TwoFactorCodeModel
{
TokenCode = token,
TokenProvider = tokenProvider,
UserId = user.Id
)

if (dbContext.ChangeTracker.HasChanges())
await dbContext.SaveChangesAsync();

return token;

public override async Task<bool>

VerifyTwoFactorTokenAsync (UserModel user,

string tokenProvider, string token)

{

using (var dbContext = new GameDbContext (dbContextOptions))
{

return await dbContext.TwoFactorCodeModels.AnyAsync (
X => x.TokenProvider == tokenProvider &&

x.TokenCode == token && x.UserId == user.Id);

Go to the areas/Account /Views/Home fOlder, and update the Index View:

@model TicTacToe.Models.UserModel
@using Microsoft.AspNetCore.Identity
@inject UserManager<TicTacToe.Models.UserModel> UserManager
@{
var isTwoFactor =
UserManager.GetTwoFactorEnabledAsync (Model) .Result;
ViewData["Title"] = "Index";
Layout = "~/Views/Shared/ Layout.cshtml";
}
<h3>Account Details</h3>
<div class="container">
<div class="row">
<div class="col-xs-12 col-sm-6 col-md-6">
<div class="well well-sm">
<div class="row">
<div class="col-sm-6 col-md-4">
<Gravatar email="@Model.Email"></Gravatar>
</div>
<div class="col-sm-6 col-md-8">
<h4>@ ($" {Model.FirstName} {Model.LastName}")</h4>
<p>
<i class="glyphicon glyphicon-envelope">
</i>
@Model .Email
</p>
<p>
<i class="glyphicon glyphicon-calendar">
</i> @Model.EmailConfirmationDate
</p>
<p>
<i class="glyphicon glyphicon-star">
</i> @Model.Score
</p>
<p>
<i class="glyphicon glyphicon-check"></i>
<text>Two Factor Authenticationé </text>
@if (Model.TwoFactorEnabled)
{
<a asp-action="DisableTwoFactor">Disable
}
else
{
<a asp-action="EnableTwoFactor">Enable
}
</p>
</div>
</div>
</div>
</div>
</div>
</div>

Add a new file called _ViewImports.cshtml In the areas/account/views folder:

@using TicTacToe

@using Microsoft.AspNetCore.Mvc.Localization

@inject IViewLocalizer Localizer

@addTagHelper *, TicTacToe

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

8. Update the userservice and User Service Interface, and add two new methods
called Enabietworactor and cetTwoFactorcode:

public async Task<IdentityResult> EnableTwoFactor (string name,
bool enabled)

{
try
{
var user = awalt userManager.FindByEmailAsync (name) ;
user.TwoFactorEnabled = true;

await userManager.SetTwoFactorEnabledAsync (user, enabled);
return IdentityResult.Success;

}
catch (Exception ex)
{

throw;

public async Task<string> GetTwoFactorCode (string userName,
string tokenProvider)

{
var user = awalt GetUserByEmail (userName) ;

return await userManager.GenerateTwoFactorTokenAsync (user,
tokenProvider) ;

9. Update the signtnuser method in the userservice for supporting two-factor
authentication, if it is enabled:

public async Task<SignInResult> SignInUser (LoginModel
loginModel, HttpContext httpContext)

{
var start = DateTime.Now;
_logger.LogTrace ($"Signin user {loginModel.UserName}");
var stopwatch = new Stopwatch();
stopwatch.Start () ;

try
{

var user =

awailt userManager.FindByNameAsync (loginModel.UserName) ;
var isValid =

await signInManager.CheckPasswordSignInAsync (user,
loginModel.Password, true);

if (!isValid.Succeeded)
{

return SignInResult.Failed;

if (!await userManager.IsEmailConfirmedAsync (user))

return SignInResult.NotAllowed;

if (await userManager.GetTwoFactorEnabledAsync (user))

return SignInResult.TwoFactorRequired;

var identity = new ClaimsIdentity (
CookieAuthenticationDefaults.AuthenticationScheme) ;

identity.AddClaim(new Claim(ClaimTypes.Name,
loginModel.UserName)) ;

identity.AddClaim(new Claim(ClaimTypes.GivenName,
user.FirstName)) ;

identity.AddClaim(new Claim(ClaimTypes.Surname,
user.LastName)) ;

identity.AddClaim(new Claim("displayName",
S"{user.FirstName} {user.LastName}l"));

if (!string.IsNullOrEmpty (user.PhoneNumber))
{
identity.AddClaim(new Claim(ClaimTypes.HomePhone,
user.PhoneNumber)) ;
}
identity.AddClaim(new Claim("Score",
user.Score.ToString()));

await httpContext.SignInAsync (
CookieAuthenticationDefaults.AuthenticationScheme,

new ClaimsPrincipal (identity),

new AuthenticationProperties { IsPersistent = false });

return isValid;
}
catch (Exception ex)
{
_logger.LogError ($"Ca not sigin user
{loginModel.UserName} - {ex}");
throw ex;
}
finally
{
stopwatch.Stop () ;
_logger.LogTrace ($"Sigin user {loginModel.UserName}
finished in {stopwatch.Elapsed}");

10. Go to the areas/account/controllers folder, and update the somecontroller. Update
the rnaex method and add two new methods called enabierworactor and

DisableTwoFactor.

[Authorize]
public async Task<IActionResult> Index()
{
var user =
await userService.GetUserByEmail (User.Identity.Name) ;
return View (user);

[Authorize]

public IActionResult EnableTwoFactor ()

{
_userService.EnableTwoFactor (User.Identity.Name, true);
return RedirectToAction ("Index");

[Authorize]

public IActionResult DisableTwoFactor ()

{
_userService.EnableTwoFactor (User.Identity.Name, false);
return RedirectToAction ("Index");

}

Note that we will explain the [authorize] decorator later in this chapter.
1t is used to add access restrictions to resources.

11. Add d Nncw Model Called ValidateTwoFactorModel tO the Models folder:

public class ValidateTwoFactorModel

{
public string UserName { get; set; }
public string Code { get; set; }

12. Update the AccountController, and add a new method called sendemailTworactor:

private async Task SendEmailTwoFactor (string UserName)
{
var user = await userService.GetUserByEmail (UserName);
var urlAction = new UrlActionContext
{
Action = "ValidateTwoFactor",
Controller = "Account",
Values = new { email = UserName,
code = await userService.GetTwoFactorCode (
user.UserName, "Email") },
Protocol = Request.Scheme,
Host = Request.Host.ToString/()
bi

var TwoFactorEmailModel = new TwoFactorEmailModel

{
DisplayName = $"{user.FirstName} {user.LastName}",
Email = UserName,
ActionUrl = Url.Action (urlAction)

}s

var emailRenderService =
HttpContext.RequestServices.GetService
<IEmailTemplateRenderService> () ;

var emailService =
HttpContext.RequestServices.GetService
<IEmailService> () ;

var message =

13.

14.

await emailRenderService.RenderTemplate (
"EmailTemplates/TwoFactorEmail", TwoFactorEmailModel,
Request.Host.ToString()) ;
try
{
emailService.SendEmail (UserName, "Tic-Tac-Toe Two Factor
Code", message) .Wait();
}
catch
{
}
}

Note that for calling requestservices.Getservice<r>() ;, you must also add
using Microsoft.Extensions.DependencyInjection; dS JYOU have done b€f07’€

in other examples.

Update the Login method in accountcontroller:

[HttpPost]
public async Task<IActionResult> Login (LoginModel loginModel)
{
if (ModelState.IsValid)
{
var result = await userService.SignInUser (loginModel,
HttpContext) ;
if (result.Succeeded)
{
if (!string.IsNullOrEmpty(loginModel.ReturnUrl))
return Redirect (loginModel.ReturnUrl) ;
else
return RedirectToAction ("Index", "Home");
}
else if (result.RequiresTwoFactor)
{
await SendEmailTwoFactor (loginModel.UserName) ;
return RedirectToAction ("ValidateTwoFactor");

}

else
ModelState.AddModelError ("", result.IsLockedOut ? "User
is locked" : "User is not allowed");

return View () ;

Add d Nncw VICW called ValidateTwoFactor tO the Views/Account folder:

@model TicTacToe.Models.ValidateTwoFactorModel
@{
ViewData ["Title"] = "Validate Two Factor";
Layout = "~/Views/Shared/ Layout.cshtml";
}
<div class="container">
<div id="loginbox" style="margin-top:50px;" class="mainbox
col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2">
<div class="panel panel-info">

15.

16.

<div class="panel-heading">
<div class="panel-title">Validate Two Factor Code</div>
</div>
<div style="padding-top:30px" class="panel-body">
<div class="text-center">
<form asp-controller="Account"
asp-action="ValidateTwoFactor" method="post">
<div asp-validation-summary="Al1l"></div>
<div style="margin-bottom: 25px" class="input-group">
<i
class="glyphicon glyphicon-envelope
color-blue"></i>
<input id="email" asp-for="UserName"
placeholder="email address"
class="form-control" type="email">
</div>
<div style="margin-bottom: 25px" class="input-group">
<i
class="glyphicon glyphicon-lock
color-blue"></i>
<input id="Code" asp-for="Code"
placeholder="Enter your code" class="form-control">
</div>
<div style="margin-bottom: 25px" class="input-group">
<input name="submit"
class="btn btn-1g btn-primary btn-block"
value="Validate your code" type="submit">
</div>
</form>
</div>
</div>
</div>
</div>
</div>

Add a new View called tworactoremail to the views /EmailTemplates folder:

@model TicTacToe.Models.TwoFactorEmailModel
@f
ViewData["Title"] = "View";
Layout = " LayoutEmail";
}
<hl>Welcome @Model.DisplayName</hl>
You have requested a two factor code, please click here to continue.

Update the userservice and User Service Interface, and add a new method called

ValidateTwoFactor.

public async Task<bool> ValidateTwoFactor (string userName,
string tokenProvider, string token, HttpContext httpContext)
{
var user = await GetUserByEmail (userName) ;
if (await userManager.VerifyTwoFactorTokenAsync (user,
tokenProvider, token))
{
var identity =
new ClaimsIdentity (

17.

18.

CookieAuthenticationDefaults.AuthenticationScheme) ;

identity.AddClaim(new Claim(ClaimTypes.Name,
user.UserName)) ;

identity.AddClaim(new Claim(ClaimTypes.GivenName,
user.FirstName)) ;
identity.AddClaim(new Claim(ClaimTypes.Surname,
user.LastName)) ;
identity.AddClaim(new Claim("displayName",
S$"{user.FirstName} {user.LastName}")):;

if (!string.IsNullOrEmpty (user.PhoneNumber))

{
identity.AddClaim(new Claim(ClaimTypes.HomePhone,
user.PhoneNumber)) ;

}

identity.AddClaim(new Claim("Score",
user.Score.ToString()));

await httpContext.SignInAsync (
CookieAuthenticationDefaults.AuthenticationScheme,

new ClaimsPrincipal (identity),

new AuthenticationProperties { IsPersistent = false });

return true;

}

return false;

Update the accountcontroiler, and add two new methods for two-factor
authentication validation:

public async Task<IActionResult> ValidateTwoFactor (
string email, string code)
{
return await Task.Run(() =>
{
return View (new ValidateTwoFactorModel { Code = code,
UserName = email });
)
}

[HttpPost]
public async Task<IActionResult> ValidateTwoFactor (
ValidateTwoFactorModel validateTwoFactorModel)

{
if (ModelState.IsValid)
{
await userService.ValidateTwoFactor (
validateTwoFactorModel.UserName, "Email",
validateTwoFactorModel.Code, HttpContext) ;
return RedirectToAction ("Index", "Home");

}

return View () ;

Start the application, sign in as an existing user, and go to the Account
Details page. Enable two-factor authentication (you might need to recreate the

database and register a new user before this step):

Tic-Tac-Toe Home eaderboard Contact - 2 Jason De Oliveira v

Account Details

Jason De Oliveira
X example@example.com
& 10/10/2017 9:27:55 PM

* 0

& Two Factor Authentication Enable

© 2017 - TicTacToe

19. Sign out as the user, go to the Login Page, and sign in again. This time you will
be asked to enter a Two Factor Authentication Code:

Tic-Tac-Toe Home Le ard About Contact Settings ~

Validate Two Factor Code
D41

Validate your code

© 2017 - TicTacToe

20. You will receive an email with the Two Factor Authentication Code:

Welcome Jason De Oliveira

You have requested a two factor code, please click here to continue.

© 2017 - TicTacToe

21. Click on the link in the email and everything should be filled in for you
automatically. Sign in and verify that everything is working as expected:

Validate Two Factor Code

= example@example.com

@ | 459274

Validate your code

© 2017 - TicTacToe

Adding forgotten password and
password reset mechanisms

Now that you have seen how to add authentication to your applications, you have to
think about how you want to help users to reset their forgotten passwords. Users will
forget their passwords, it will happen, so you need to have some mechanisms in
place.

The standard way of handling this type of request is to send an email reset link to the
user. The user can then update their password, without the risk of sending the
password in clear text through email. Sending a user password directly to a user
email is not secure and should be avoided at all costs.

You will now see how to add a reset password feature to the Tic-Tac-Toe
application:

1. Update the Login Form, and add a new link called reset password nere directly
after the Sign Up Here link:

<div class="col-md-12 control">
<div style="border-top: lpx so0lid#888; padding-top:15px;
font-size:85%">
Don't have an account?
<a asp-action="Index"
asp-controller="UserRegistration">Sign Up Here
</div>
<div style="font-size: 85%;">
Forgot your password?
<a asp-action="ForgotPassword">Reset Password Here</div>
</div>

2. Add a new Model called resetprasswordemaiimodel to the mMode1s folder:

public class ResetPasswordEmailModel

{
public string DisplayName { get; set; }
public string Email { get; set; }
public string ActionUrl { get; set; }

}

3. Update the accountcontroiier, and add a new method called rorgotrassword:

[HttpGet]

public async Task<IActionResult> ForgotPassword/()
{
return await Task.Run(() =>
{
return View () ;

1)

Add a new Model called resetprasswordvodel to the mode1s folder:

public class ResetPasswordModel
{
public string Token { get; set; }
public string UserName { get; set; }
public string Password { get; set; }
public string ConfirmPassword { get; set; }

Add a new View called ForgotPassword tO the views/account folder:

@model TicTacToe.Models.ResetPasswordModel
@f
ViewData["Title"] = "GamelInvitationConfirmation";
Layout = "~/Views/Shared/ Layout.cshtml";
}
<div class="form-gap"></div>
<div class="container">
<div class="row">
<div class="col-md-4 col-md-offset-4">
<div class="panel panel-default">
<div class="panel-body">
<div class="text-center">
<h3><i class="fa fa-lock fa-4x"></i></h3>
<h2 class="text-center">Forgot Password?</h2>
<p>You can reset your password here.</p>
<div class="panel-body">
<form id="register-form" role="form"
autocomplete="off" class="form"
method="post" asp-controller="Account"
asp-action="SendResetPassword">
<div class="form-group">
<div class="input-group">
<i
class="glyphicon glyphicon-envelope
color-blue"></i>
<input id="email" name="UserName"
placeholder="email address"
class="form-control" type="email">
</div>
</div>
<div class="form-group">
<input name="recover-submit"
class="btn btn-1lg btn-primary btn-block"
value="Reset Password" type="submit">
</div>
<input type="hidden" class="hide"
name="token" id="token" value="">
</form>

</div>
</div>
</div>
</div>
</div>
</div>
</div>

6. Update the userservice and User Service Interface, and add a new method called

GetResetPasswordCode.

public async Task<string> GetResetPasswordCode (UserModel user)

{

return await userManager.GeneratePasswordResetTokenAsync (user) ;

}

7. Add a new View to the View/EmailTemplates folder called resetpasswordemail:

@model TicTacToe.Models.ResetPasswordEmailModel

@

ViewData["Title"] = "View";

Layout = " LayoutEmail";

}

<hl>Welcome @Model.DisplayName</hl>
You have requested a password reset, please click here to continue.

8. Update the AccountController, and add a new method called sendresetpassword:

[HttpPost]
public async Task<IActionResult> SendResetPassword (
string UserName)
{
var user = await userService.GetUserByEmail (UserName);
var urlAction = new UrlActionContext
{
Action = "ResetPassword",
Controller = "Account",
Values = new { email = UserName,
code = await userService.GetResetPasswordCode (user) 1},
Protocol = Request.Scheme,
Host = Request.Host.ToString/()
}i

var resetPasswordEmailModel = new ResetPasswordEmailModel
{
DisplayName = $"{user.FirstName} {user.LastName}",
Email = UserName,
ActionUrl = Url.Action(urlAction)
}i

var emailRenderService =
HttpContext.RequestServices.GetService
<IEmailTemplateRenderService> () ;
var emailService =
HttpContext.RequestServices.GetService<IEmailService>();
var message =

10.

I1.

12.

await emailRenderService.RenderTemplate (
"EmailTemplates/ResetPasswordEmail",
resetPasswordEmailModel,
Request.Host.ToString()) ;

try
{
emailService.SendEmail (UserName,
"Tic-Tac-Toe Reset Password", message) .Wait():;
}
catch

{

return View ("ConfirmResetPasswordRequest",
resetPasswordEmailModel) ;

Add a new View called ConfirmResetPasswordRequest 1O the views /Account folder:

@model TicTacToe.Models.ResetPasswordEmailModel
@
ViewData["Title"] = "ConfirmResetPasswordRequest";
Layout = "~/Views/Shared/ Layout.cshtml";
}
@section Desktop{<h2>Q@Localizer["DesktopTitle"]</h2>}
@section Mobile {<h2>RLocalizer["MobileTitle"]</h2>}
<hl>@Localizer["You have requested to reset your password,
an email has been sent to {0}, please click on the provided
link to continue.", Model.Email]</hl>

Update the AccountController, and add a new method called resetrassword:

public async Task<IActionResult> ResetPassword(string email,
string code)
{
var user = awalt userService.GetUserByEmail (email);
ViewBag.Code = code;
return View (new ResetPasswordModel { Token = code,
UserName = email });

Add a new View to the views /Account folder called sendresetpassword:

@model TicTacToe.Models.ResetPasswordEmailModel
@{

ViewData["Title"] = "SendResetPassword";

Layout = "~/Views/Shared/ Layout.cshtml";
}
@section Desktop{<h2>@Localizer["DesktopTitle"]</h2>}
@section Mobile {<h2>@Localizer["MobileTitle"]</h2>}
<hl>Q@Localizer["You have requested a password reset, an email
has been sent to {0}, please click on the link to continue.",
Model.Emaill</hl>

Add a ncw VleW called ResetPassword tO the Views/Account folder:

@model TicTacToe.Models.ResetPasswordModel
@f
ViewData["Title"] = "ResetPassword";
Layout = "~/Views/Shared/ Layout.cshtml";
}
<div class="container">
<div id="loginbox" style="margin-top:50px;" class="mainbox
col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2">
<div class="panel panel-info">
<div class="panel-heading">
<div class="panel-title">Reset your Password</div>
</div>
<div style="padding-top:30px" class="panel-body">
<div class="text-center">
<form asp-controller="Account"
asp-action="ResetPassword" method="post">
<input type="hidden" asp-for="Token" />
<div asp-validation-summary="Al1l"></div>
<div style="margin-bottom: 25px" class="input-group">
<i
class="glyphicon glyphicon-envelope
color-blue"></i>
<input id="email" asp-for="UserName"
placeholder="email address"
class="form-control" type="email">
</div>
<div style="margin-bottom: 25px" class="input-group">
<i
class="glyphicon glyphicon-lock
color-blue"></i>
<input id="password" asp-for="Password"
placeholder="Password"
class="form-control" type="password">
</div>
<div style="margin-bottom: 25px" class="input-group">
<i
class="glyphicon glyphicon-lock
color-blue"></i>
<input id="confirmpassword"
asp-for="ConfirmPassword"
placeholder="Confirm your Password"
class="form-control" type="password">
</div>
<div style="margin-bottom: 25px" class="input-group">
<input name="submit"
class="btn btn-1g btn-primary btn-block"
value="Reset Password" type="submit">
</div>
</form>
</div>
</div>
</div>
</div>
</div>

Update the userservice and the User Service Interface, and add a new method
called resetpasswora:

public async Task<IdentityResult> ResetPassword (

string userName, string password, string token)
{
var start = DateTime.Now;
_logger.LogTrace ($"Reset user password {userName}");

var stopwatch = new Stopwatch();
stopwatch.Start () ;

try

{
var user = await userManager.FindByNameAsync (userName) ;
var result = await userManager.ResetPasswordAsync (user,

token, password);
return result;
}
catch (Exception ex)
{
_logger.LogError ($"Cannot reset user password
{userName} - {ex}");
throw ex;
}
finally
{
stopwatch.Stop () ;
_logger.LogTrace ($"Reset user password {userName}
finished in {stopwatch.Elapsed}");

14. Update the AccountController, and add a new method called resetpasswora:

[HttpPost]
public async Task<IActionResult> ResetPassword(
ResetPasswordModel reset)
{
if (ModelState.IsValid)
{
var result =
awalt userService.ResetPassword(reset.UserName,
reset.Password, reset.Token):;

if (result.Succeeded)
return RedirectToAction ("Login") ;
else

ModelState.AddModelError ("", "Cannot reset your password");
}

return View () ;

15. Start the application and go to the Login page, click on the Reset Password
Here link:

Login with Facebook

Don't have an account? Sign Up Here
Forgot your password? Reset Password Here

© 2017 - TicTacToe

16. Enter an existing user email on the Forgot Password? page; this will send an
email to the user:

Forgot Password?

You can reset your password here.

Wi | example@example.com

Reset Password

© 2017 - TicTacToe

17. Open the Password Reset Email and click on the provided link:

Welcome Jason De Oliveira

You have requested a password reset, please click here to continue.

© 2017 - TicTacToe

18. On the Password Reset page, enter a new password for the user and click on
Reset Password. You should be automatically redirected to the Login page, so
sign in with the new password:

Tic-Tac-Toe Home Leaderboard About Contact Settings ~

Reset your Password

= example@example.com

Reset Password

© 2017 - TicTacToe

Implementing authorization

In the first part of the chapter, you saw how to handle user authentication and how to
work with user logins. In the next part, you will see how to manage user access,
which will allow you to fine-tune who has access to what.

The simplest authorization method is to use the (authorize] meta decorator, which
disables anonymous access completely. Users need to be signed in to be able to
access restricted resources in this case.

Let's go and see how to implement it within the Tic-Tac-Toe application:

1. Add a new method called securedprage to the somecontroller, and remove
anonymous access to it by adding the (authorize] decorator:

[Authorize]
public async Task<IActionResult> SecuredPage ()
{
return await Task.Run(() =>
{
ViewBag.SecureWord = "Secured Page";
return View ("SecuredPage") ;
1)
}

2. Add a new View called securedrage to the views/Home folder:

@{

ViewData ["Title"] = "Secured Page";
}
@section Desktop {<h2>Q@Localizer["DesktopTitle™]</h2>}
@section Mobile {<h2>QLocalizer["MobileTitle"]</h2>}
<div class="row">

<div class="col-1lg-12">

<h2>Tic-Tac-Toe @ViewBag.SecureWord</h2>

</div>

</div>

3. Try accessing the Secured Page by entering its URL
http://<host>/Home/SecuredPage Manually, while not signed in; you will be
automatically redirected to the Login page:

Tic-Tac-Toe

Login with Facebook

Don't have an account? Sign Up Here
Forgot your password? Reset Password Here

© 2017 - TicTacToe

4. Enter valid user credentials and sign in; you should be automatically redirected
to the Secured Page and be able to see it now:

&< = 0O | localhost:562

Tic-Tac-Toe Home Leaderboard About Contact Settings - 2 Jason De Oliveira v

DesktopTitle

Tic-Tac-Toe Secured Page

© 2017 - TicTacToe

Another relatively popular approach is to use role-based security, which provides
some more advanced features. It is one of the recommended methods for securing
your ASP.NET Core 2.0 web applications.

The following example explains how to work with it:

1. Add a new class called vserrolemode1 to the moge1s folder, and make it inherit
from 1dentityuserrole<iong>; it Will be used by the built-in ASP.NET Core 2.0
Identity authentication features:

public class UserRoleModel : IdentityUserRole<Guid>
{

[Key]

public long Id { get; set; }
}

2. Update the onmodeicreating method within the Game Db Context:

protected override void OnModelCreating (ModelBuilder modelBuilder)

{

modelBuilder.Entity<IdentityUserRole<Guid>> ()
.ToTable ("UserRoleModel™)
.HasKey (x => new { x.UserId, x.RoleId });

3. Open the NuGet Package Manager Console and execute the add-migration
Tdentitypb2 command, then execute the vpdate-patabase command.

4. Update the uvserservice, and modify the constructor to create two roles called
Player and Administrator, if they do not yet exist:

public UserService (RoleManager<RoleModel> roleManager,
ApplicationUserManager userManager, ILogger<UserService>
logger, SignInManager<UserModel> signInManager)

{

if (!'roleManager.RoleExistsAsync ("Player") .Result)

roleManager.CreateAsync (new RoleModel ({
Name = "Player" }).Wait();

if (!roleManager.RoleExistsAsync ("Administrator") .Result)
roleManager.CreateAsync (new RoleModel {
Name = "Administrator"™ }).Wait();

5. Update the RegisterUser method within the UserService, and add the user to the
player role or to the aaministrator role during user registration:

try
{

userModel .UserName = userModel.Email;

var result = await userManager.CreateAsync (userModel,
userModel.Password) ;
if (result == IdentityResult.Success)

{

if (userModel.FirstName == "Jason")

await userManager.AddToRoleAsync (userModel,
"Administrator");
else
awalt userManager.AddToRoleAsync (userModel, "Player");

}

return result == IdentityResult.Success;

}

Note that in the example, the code to identify whether a user has the
administrator role is intentionally very basic. You should implement
something more sophisticated in your applications.

6. Start the application and register a new user, open the roiemode1 table within the
SQL Server Object Explorer, and analyze its content:

o oleModel Data] -+ [
(o] |T| {3 IMaxF‘.Dws: 1000 - |£|' &
Id ConcurrencyStamp Mame MormalizedMame
4 1 b3cB9753-754e-405... Player PLAYER
2 bd1e02f3-9fdb-4e35... Administrator ADMIMISTRATOR
* NULL MULL MNULL MULL

7. Open the userrolemode1 table within the SQL Server Object Explorer and analyze
its content:

dbo.UserRoleModel [Data] = < [T
(v} |Y | {3 | Max Rows: 1000 - | Ipioy
Id Roleld Userld
b : 0
2 0
. NULL NULL

8. Update the signinuser method within the vserservice to map roles with claims:

identity.AddClaim(new Claim("Score", user.Score.ToString()));

var roles = await userManager.GetRolesAsync (user);

identity.AddClaims (roles?.Select (r => new
Claim(ClaimTypes.Role, r)));

await httpContext.SignInAsync (
CookieAuthenticationDefaults.AuthenticationScheme,
new ClaimsPrincipal (identity),
new AuthenticationProperties { IsPersistent = false });

9. Update the SecuredPage method within the HomeController, and use the
administrator role to secure access, and replace the autnorize decorator:

| [Authorize (Roles = "Administrator")]

10. Start the application. If you try to access nttp://<host>/Home/Securedrage Without
being logged in, you will be redirected to the Login Page. Sign in as a user who
has the player role, you will be redirected to an Access Denied Page (which
does not exist, hence the 404 error), since the user does not have the
administrator role:

3 localhost w4
< > (:) localhost

HTTP Errcr - Status Code: 404

11. Log out and then sign in as a user who has the administrator role; you should
now see the secured page, since the user has the necessary role:

< O localhost:

Tic-Tac-Toe Home Leaderboard Abo Se 1S 2 Jason De Oliveira v

DesktopTitle

Tic-Tac-Toe Secured Page

© 2017 - TicTacToe

In the following example you will see how to sign in automatically as a registered
user and how to activate claims-based and policy-based authentication:

1. Update the signtnuser method, and add a new method called sign1n in the

UserService.

public async Task<SignInResult> SignInUser (LoginModel
loginModel, HttpContext httpContext)

{
var start = DateTime.Now;
_logger.LogTrace ($"Signin user {loginModel.UserName}");

var stopwatch = new Stopwatch();
stopwatch.Start () ;

try
{
var user =
await userManager.FindByNameAsync (loginModel.UserName) ;
var isValid =
await signInManager.CheckPasswordSignInAsync (user,
loginModel.Password, true);

if (!isValid.Succeeded)
{

return SignInResult.Failed;

if (l!await userManager.IsEmailConfirmedAsync (user))
{
return SignInResult.NotAllowed;

if (await userManager.GetTwoFactorEnabledAsync (user))

return SignInResult.TwoFactorRequired;

await SignIn (httpContext, user);

return isValid;
}
catch (Exception ex)
{
_logger.LogError ($"Ca not sigin user
{loginModel .UserName} - {ex}");
throw ex;
}
finally
{
stopwatch.Stop () ;
_logger.LogTrace ($"Sigin user {loginModel.UserName}
finished in {stopwatch.Elapsed}");

}

private async Task SignIn (HttpContext httpContext, UserModel user)
{
var identity = new ClaimsIdentity (
CookieAuthenticationDefaults.AuthenticationScheme) ;
identity.AddClaim(new Claim(ClaimTypes.Name, user.UserName));
identity.AddClaim(new Claim(ClaimTypes.GivenName,
user.FirstName)) ;
identity.AddClaim(new Claim(ClaimTypes.Surname,
user.LastName)) ;
identity.AddClaim(new Claim("displayName",
S$"{user.FirstName} {user.LastName}"));

if (!string.IsNullOrEmpty (user.PhoneNumber))

{
identity.AddClaim(new Claim(ClaimTypes.HomePhone,
user.PhoneNumber)) ;

identity.AddClaim(new Claim("Score", user.Score.ToString()));

var roles = await userManager.GetRolesAsync (user);
identity.AddClaims (roles?.Select (r =>
new Claim(ClaimTypes.Role, r)));

if (user.FirstName == "Jason")
identity.AddClaim(new Claim("AccessLevel", "Administrator"));

await httpContext.SignInAsync (
CookieAuthenticationDefaults.AuthenticationScheme,

new ClaimsPrincipal (identity),

new AuthenticationProperties { IsPersistent = false });

}

Note that, in the example, the code to identify whether a user has
administrator privileges is intentionally very basic. You should
implement something more sophisticated in your applications.

2. Update the registeruser method in the userservice, add a new parameter to
automatically sign in a user after registration, and re-extract the User Service
Interface:

public async Task<bool> RegisterUser (UserModel userModel,
bool isOnline = false)

{

if (result == IdentityResult.Success)
{

if (isOnline)
{
HttpContext httpContext =
new HttpContextAccessor () .HttpContext;
await Signin (httpContext, userModel);
}

3. Update the rndex method in the vserregistrationcontrolier to automatically sign
in a newly registered user:

await userService.RegisterUser (userModel, true);

4. Update the ConfirmGameInvitation method il’l the GameInvitationController tO Sign
an invited user in automatically:

await userService.RegisterUser (new UserModel
{

Email = gameInvitation.EmailTo,

EmailConfirmationDate = DateTime.Now,

EmailConfirmed = true,

FirstName = "",

LastName = "",

Password = "Azertyl23!",

UserName = gamelInvitation.EmailTo

}, true);

Add a new pollcy called AdministratorAccessLevelPolicy 1O the Startup class, just
after the MVC Middleware configuration:

services.AddAuthorization (options =>
{
options.AddPolicy ("AdministratorAccessLevelPolicy",
policy => policy.RequireClaim("AccessLevel",
"Administrator"));
});

Update the SecuredPage method within the HomeController, LlSil’lg d Policy instead
of a ro1e to secure access, and replace the authorize decorator:

[Authorize (Policy = "AdministratorAccessLevelPolicy")]

Note that it can be required to limit access to only one specific

middleware, since several kinds of Authentication Middleware can be
used with ASP.NET Core 2.0 (Cookie, Bearer, and more) at the same
time.

For this case, the authorize decorator you have seen before allows you
to define which middleware can authenticate a user.

Here is an example to allow Cookie and Bearer:

[Authorize (AuthenticationSchemes = "Cookie,Bearer",
Policy = "AdministratorAccessLevelPolicy")]

Start the application, register a new user with an administrator access level, sign
in, and access nhttp://<host>/Home/securedpage. Everything should be working as
before.

Note that you might need to clear your cookies and log in again to
create a new authentication token with the required claims.

Try accessing the Secured Page as a user who does not have the required access
level; as before, you should be redirected to nttp://<host>/Account /Accessbenied?

ReturnUrl=%2FHome%2FSecuredPage.

I localhost x4+

< > (:) localhost

HTTP Error - Status Code: 404

9. Log out and then sign in as a user who has the administrator role; you should
now see the secured page, since the user has the necessary role.

Summary

In this chapter, you have learned how to secure ASP.NET Core 2.0 applications,
including managing authentication and authorization for your application users.

You have added basic forms authentication, and more advanced external provider
authentication via Facebook, to the example application. This should give you some
good ideas on how to approach these important topics in your own applications.

Furthermore, you have learned how to add standard reset password mechanisms,
because users forget their passwords all the time and you need to respond to this type
of request as securely as possible.

We have even talked about two-factor authentication, which can provide an even
higher security level for critical applications.

In the end, you have seen how to handle authorizations in multiple ways (basic,
roles, policies), so that you can decide which approach is best suited to your specific
use case.

In the next chapter, we will talk about the different options you will have when
hosting and deploying your ASP.NET Core 2.0 web applications.

Hosting and Deploying ASP.NET
Core 2.0 Applications

That's it, we are almost at the end of the book, which means that we have nearly
finished the entire application development life cycle, and, thus, customers will be
able to use your applications soon! Don't be sad; instead, be proud, because after
reading and understanding this penultimate chapter of the book, you will have
acquired strong skills to create and deploy your own mind-blowing applications with
strong technical foundations!

Let's recap, from the beginning of the book until now: you have seen how to set up a
development environment, how to use the various features of ASP.NET Core 2.0 to
develop modern web applications, how to connect them to a database via Entity
Framework Core, and, finally, in the last chapter, how to secure them against any
malicious cyber criminals.

Now, we need to talk about the last step in the cycle, which consists of hosting and
deploying your applications once they are production ready.

The goal of this chapter will be to explain the different options you have, how to
choose the right ones, and how to deploy your ASP.NET Core 2.0 web applications
using the most current technologies and cloud providers.

In this chapter, we will cover the following topics:

e Hosting applications

e Deploying applications in Amazon Web Services
e Deploying applications in Microsoft Azure

e Deploying applications into Docker containers

Hosting applications

You can build the best and most useful applications in the world, but if your
customers cannot access them easily and from any device, you may not get the
success expected. As you can see in the following diagram, applications need to be
more and more omnichannel, which means customers need to be able to start on one
device and then continue on another:

Web Users
Mobile Users

External Parfners 3 il

- . " Modern
Application

Social Network Users

% Local Network Users

Your applications need to be deployable to multiple targets and, in some cases,
multiple operation systems, to allow a high degree of flexibility and device
availability. This is where hosting comes into play.

A host is responsible for application startup and lifetime management, which
includes providing and configuring a server and request processing. Depending on
how you are hosting your ASP.NET Core 2.0 applications, you can support different
devices for your applications. The chosen technology has a significant impact on the
possible device and operations system choices.

ASP.NET Core 2.0 fully supports all current hosting mechanisms on multiple
platforms and operation systems. It all depends on your specific application context.

Some examples to host your ASP.Net Core 2.0 applications are as follows:

Host on Windows via IIS
Host in a Windows service
Host on Linux using Nginx
Host on Linux using Apache

During development time, or if you don't need to share your applications with others,
it may be interesting to use self-hosting mechanisms or IIS Express, which provide a
quick and easy solution for disconnected, proof-of-concept, or test projects.

However, if you start sharing your applications with others, you need some more
sophisticated hosting solutions and the corresponding server technologies.

For example, to expose your ASP.NET Core 2.0 applications over the internet, you
will need a web server, which is accessible outside of your local network. There are
several possible solutions to achieve this goal.

One is using an internet host provider to host your web server. However, you will
need to do the sizing and manage the server by yourself, which may be expensive
and time-consuming. Another option is using public cloud providers, which offer
much more flexibility and scalability, while allowing cost reduction and paying for
what you need. The most famous ones are Amazon Web Services and Microsoft
Azure which have data centers all around the world.

Furthermore, when using public cloud PaaS offers, you don't even have to manage
the OS or the platform anymore. The cloud platform is doing everything for you.
Instead, you can access cloud services, which provide web server or database server
functionalities with high SLAs. Some examples are AWS Elastic Beanstalk and
Microsoft Azure App Services.

After having seen the various hosting options at your disposal, you will be able to
decide on your deployment targets. For publicly available web applications, you will
want to deploy to a public cloud provider. The next sections will show you how to
deploy to the most common and famous public cloud providers, and how to use the
most recent technologies to do so.

Deploying applications in Amazon
Web Services

Amazon Web Services, a subsidiary of Amazon.com, provides a public cloud
computing platform for building, testing, deploying, and managing applications and
services within globally available AWS data centers all around the world. It supports
many different programming languages, tools, frameworks, and systems.

We will explore Amazon Web Services in the following sections and see how to
create an account and deploy your ASP.NET Core 2.0 applications to AWS Elastic
Beanstalk.

First, you have to sign up for an account on Amazon Web Services; it only takes five
minutes, but you will need a credit card for that.

Let's go through the account registration steps:

1. Open a browser, go to nttps://aws.amazon.com, and click on the Create a Free
Account button:

Products ~ Solutions Pricing Getting Started More ~ English ~ My Account ~ Create an AWS Account

reliability.

Create A Free Account

View AWS Free Tier Details »

Broad & Deep Platform Customer Success Pace of Innovation Global Infrastructure

AWS has more than 90 services and is Explore how millions of active customers The AWS Cloud platform expands daily. AWS operates 43 Availability Zones within

continually launching new features and every month are innovating with AWS. Take a look at what we launched this week. 16 geographic Regions around the world,

functionality. with 11 more Availability Zones and 4 more
Learn mare » Learn more »

Regions coming online soon.
Learn more »

Learn more »

(&%

Sign up for an AWS account Learn with 10-Minute Tutorials Start Building with AWS
Instantly get access to the AWS Free Tier. Explore and learn with simple tutorials. Begin building with step-by-step guides to

help you launch your AWS project.

2. Fill the Create a new AWS Account form and click on Continue:

https://aws.amazon.com

aws Englsh

N Amazon Web Services Sign Up

Create a new AWS Account

AWS account name

Email address
Password
AWS Accounts Include
R s 12 Months of Free Tier Access

Including use of Amazon EC2,
Amazon S3, and Amazon DynamoDB

Continue

Sion in to an existing AWS account Visit aws.amazon.com/free for full offer terms

3. Fill the Contact Information form and click on Create Account and Continue:

aws Engish ~| Sign Out

S Amazon Web Services Sign Up

— Contact Information

(O Company Account @ Personal Account
* Required Fields
Full Name* = Jazon De Qliveira

Country* | United Stabas v

Address* | Sireet, P.O. Box, Company Name, cfo

Apartment, suite, unit, building, floor, efc.
City*
State / Province or Region®
Postal Code*

Phone Number*

AWS Customer Agreement

Check here to indicate that you have read and agree to the terms
of the AWS Customer Agreement

Create Account and Continus

4. Fill the Payment Information form and click on Continue:

dWs

. =
""h'.-pl* F

Engish | Sign Out

Amazon Web Services Sign Up

& @

Credentials

Contact Payment Identity Support Plan
Information Informnation Werification

Confirmation

Payment Information

Please enter your payment information below. You will be able to fry 2 broad set of AWS products for free via
the Free Tier. We will only bill your credit or debit card for usage that is not covered by our Free Tier.

+ Frequently Asked Questions

Credit/Debit Card Number Expiration Date
W v | | 2HT v

Cardholder's Name

(®) Use my contact address
(123 example street Example City Example 75000 FR)

(1 Use a new address

| Continue |

5. Fill the Identity Information Verification form and click on Continue, then
select a support plan and click on Continue:

Credentials Contact Payment Identity Support Plan Confirmation
Information Information Verification

—— Support Plan

AWS Support offers a selection of plans to meet your needs. All plans provide 24x7 access to customer service,
AWS documentation. whitepapers, and support forums. For access fo technical support and additional resources
to help you plan, deploy, and optimize your AWS environment, we recommend selecting a support plan that best
aligns with your AWS usage.

——— Please Select One

(8 Basic

Description: Customer Service for account and billing guestions and access to the AWS
Community Forums.

Price: Included

() Developer
Use case: Experimenting with AWS

Description: One primary contact may ask technical questions through Support Center and
get a response within 12—-24 hours during local business hours.

Price: Starts at $29/month (scales based on usage)

() Business
Use case: Production use of AWS

Description: 24X7 support by phone and chat, 1-hour response to urgent support cases. and
help with common third-party software. Full access to AWS Trusted Advisor for optimizing
your AWS infrastructure, and access to the AWS Support AP for automating your support
cases and retrieving Trusted Advisor results.

Price: Starts at $100/month (scales based on usage)

() Enterprise
Use case: Mission-critical use of AWS

Description: All the features of the Business support plan, plus an assigned Technical
Account Manager (TAM) who provides proactive guidance and best practices to help plan,
develop, and run your AWS solutions, a Support Concierge who provides billing and account
analysis and assistance, access to Infrastructure Event Management to support product
launches, seasonal promotions/events, and migrations, and 15-minute response to critical
support cases with prioritized case handling.

Price: Starts at $15,000/month (scales based on usage)

If you select this option, customer support will contact you within 48 hours fo discuss your needs and finalize
the signup. Support resources will be available when signup is finalized, and no charges will be incurred
until that time.

6. After the registration has been done, you are automatically redirected to the
welcome page where you should click on the Launch Management Console
button:

aWS English v | Sign Out

Amazon Web Services Sign Up

Credentials Contact Payment Identity Support Plan Confirmation
Information Information Verification

Welcome to Amazon Web Services

Thank you for creating an Amazon Web Services (AWS) account. We are in the process of | Launch Management Consola |
activating your account so that you can begin using AWS. For most customers, activation
only takes a couple of minutes (but can sometimes take a few hours if additional account
verification is required). We will notify you by email once verification is complete and your
account is activated.

Contact Sales

Privacy Paolicy Terms of Use

@ 2017 Amazon Web Services, Inc. or its affiliates. All rights reserved.
An amazoncom company

After having created your new Amazon Web Services user account, you are now
ready to deploy your first ASP.NET Core 2.0 application in Amazon Web Services.

When working with Amazon Web Services, you basically have two choices to
deploy your Asp.Net Core 2.0 web applications:

e Amazon Web Services Elastic Beanstalk
e Amazon Web Services EC2 Container Service

The next section will shed some light on how to deploy your applications in Amazon
Web Services Elastic Beanstalk. So, stay tuned, engage your seat belt, and enjoy
your ride!

Deploying applications in AWS
Elastic Beanstalk

e AWS Elastic Beanstalk is a PaaS offering for web-based applications in
Amazon Web Services, which includes auto-scaling. In this regard, it is
comparable to Microsoft Azure App Services, which you will see in a later
section of this chapter.

e [t removes the need to manage infrastructure; instead, you only need to be
concerned about building and hosting your applications. For a full DevOps
approach, it is advised using this PaaS service if you want to work with
Amazon Web Services.

amazon.com/fr/elasticbeanstalk/.

o For more information on AWS Elastic Beanstalk, check out nttps://aws.

The following examples illustrate step by step how to deploy the Tic-Tac-Toe
application in Amazon Web Services Beanstalk.

Let's start with the creation of the AWS Beanstalk application:

1. Sign in to AWS and go to the AWS Management Console, enter seanstaix in the
AWS services textbox, and click on the displayed link; you will be redirected to
the Beanstalk Welcome Page:

Services ~ Resource Groups ~ *

7,7 o R . Lalnf] tine
MAVIY o Vi o Nl il Lo

|‘ eI sl I%T Manage your costs
Elastic Beanstalk . Get real-time billing alerts based on your cost
Run and Manage Web Apps and usage budgets. Start now
s ~ i Dies . p P i Hiciony +i
(@ Compute €5 Developer Tools ¢Jp Internet of Things @.-E Create an organization
EC2 CodeStar AWS loT Use AWS Organizations for policy-based
EC2 Container Service CodeCommit AWS Greengrass nagement of multiple AWS accounts. Start

Lightsail & CodeBuild now
Elastic Beanstalk CodeDeploy .
Lambda CodePipeline @ Contact Center
Batch X-Ray Amazon Cennect

2. On the Beanstalk welcome page, select .NET (Windows/IIS) and click on the

https://aws.amazon.com/fr/elasticbeanstalk/

Launch Now button:

aws

Services ~ Resource Groups ~ * [\ ingneius ~ N.virginia ~ Support ~

,,r Elastic Beanstalk Create New Application

SSSSSNaEESSSSENNNNN Welcome to AWS Elastic Beanstalk

With Elastic Beanstalk, you can deploy, menitor, and scale an application quickly and
easily. Let us do the heavy lifting so you can focus on your business.

To deploy your existing web application, create an application source bundle and
then create a new application. If you're using Git and would prefer to use it with our
command line tool, please see Getting Started with the EB CLI.

To deploy a sample application with just one click, select a platform and click
[opa— Launch Now.

By launching the sample application, you allow AWS Elastic Beanstalk to administer
AWS resources and necessary permissions on your behalf. Learn more

o m e g - T yrrm—— NET (Windows/IIS) i

Looking for a different platform? Let us know

AWS Elastic Beanstalk will create an environment running 1IS 10.0 on 64bit
Windows Server 2016 v1.2.0. Change platform version

Note that you can change the I1S version and network settings (Network

Load Balancer or Single instance) by clicking on the Change platform
version link.

3. Wait until the Beanstalk application has been created; depending on your
internet connection and AWS, this may take a while:

aws

Services v Resource Groups ~ * [\ ingneius ~ N.Virginia ¥ Support *

,,r Elastic Beanstalk Create New Environment

All Applications > My First Elastic Beanstalk Application > Default-Environment (environment i: e-uaazueawmn, URL: Default-Environme| Actions ~

nt.kkhmbvztrd.us-east-1.elasticbeanstalk.com)

Dashboard ;
Overview Refresh

Configuration
Logs Health Running Version *
Monitoring Q Green Sample Application 0

Causes Upload and Deplo *
Alarms s £ i

Configuration
Events
64bit Windows Server 2016 v1.2.0

Tags running 1S 10.0

Change

The technical environment needs to be prepared in the next steps, before being able
to deploy the Tic-Tac-Toe application and then run it in the end.

As you may have seen in the preceding chapters, the application requires a database
to persist user and application data. For this purpose, we will provision an SQL
Server PaaS Service called RDS Service in Amazon Web Services, as in the
following example:

1. Return to the AWS Management Console and click on Elastic Beanstalk within
the Recent visited services section:

Services ~ Resource Groups ~ * ingneius ~ N. Virginia * Support ~

EJT Manage your costs
Get realtime billing alerts based on your cost

v Recently visited services
B and usage budgets. Start now

@ Elastic Beanstalk

2. On the Beanstalk All Applications page, select the desired environment and
then click on Default-Environment:

a\\J_V'S Services Resource Groups ~ * [\ ingneius ~ N.virginia ~ Support -
‘I' Elastic Beanstalk My First Elastic Beanstalk Application ~ Create New Application
Learn More « All Applications Fifter by Application Name:
Get Started using Elastic Beanstalk My First Elastic Beanstalk App”cation Actions ~

What Is AWS Elastic Beanstalk?
How Does AWS Elastic Beanstalk Work?

Default-Environment
Featured

Environment tier: Web Server
CredteyourowireUstom pRtion) Running versions: Sample Application
Last modified: 2017-10-25 03:47:20 UTC-0700

Command Line Interface (VB) URL: Default-Environment kkhmbvztrd.us-east-1..

Installing the AWS EB CLI
EB CLI Command Reference

If you want to use a command line to create,
manage, and scale your Elastic Beanstalk
applications, please use the Elastic
Beanstalk Command Line Interface (EB

cL

3. On the specific Beanstalk application page, click on Configuration in the left-
hand menu:

E{V_VS Services v Resource Groups ~ * [\ ingneius ~ N.virginia ~ Support ~

,!' Elastic Beanstalk Create New Environment

All Applications > My First Elastic Beanstalk Application > Default-Environment (environment I: e uaazueawmh, URL: Default environme| Actions ~

nt.kkhmbvztrd.us-east-1.elasticbeanstalk.com)

Dashboard Overview 2 Refresh

Configuration

Logs Health Running Version *
Monitoring Green Sample Application a
Causes Upload and Deploy *

Alarms
Configuration

Events
64bit Windows Server 2016 v1.2.0
Tags running IS 10.0
Change

4. Scroll down and click on the create a new RDS database link:
Network Tier

Load Balancing £t

Port: HTTP on port 80

Port: 80

Secure port: Off

Health: TCP pings on port 80

Cross zone load balancing is disabled

Connection draining is disabled

Data Tier

You do not have a database. You can create a new RDS database or use an existing database.

5. Select as DB Engine SQL Server Express (sqlserver-ex) and enter a master
username and password; leave the rest of the fields at their default values, click
on the Apply button at the bottom of the page, and wait for the database
creation to be finished:

All Applications > My First Elastic Beanstalk Application > Default-Environment (environment Ip: euaazueawmh, URL: DefauitEnvironme| Actions =

nt.kkhmbvztrd.us-east-1.elasticbeanstalk.com)

Dashboard Snapshot: | None ~ Refresh &
Configuration
DB engine: |sqlserver-ex v
Logs
a—— Engine version: | 13.00.4422.0.v1 v
Monitoring
Alarms Instance class: |db.t2.micro ~
Events
Allocated storage: 30 GB
Tags You must specify a value in the range 5 GB to 1024 GB.
Master username: tictactoe
Master password: sssssssee
Deletion policy: Create snapshot v

Note that, depending on your application's needs, the SOQL Server
Express Edition may not be enough, since it is limited in size, meaning
that the Enterprise or Web Editions may be necessary, which will result
in higher cloud provider costs. For the Tic-Tac-Toe sample
application, it is, however, largely sufficient.

6. Go to the AWS Management Console, enter ros in the AWS services textbox,
and click on the displayed link; you will be redirected to the Amazon RDS
page, click on Instances in the left menu:

Services Resource Groups ~ * L\ ingneius N virginia v

Support ~

Amazon RDS x @ Try out the new look and feel of the RDS console Provide feedback X
We've heard your feedback! We fixed a number of usability issues and improved the overall look and feel,
RDS is one of the first consoles to get this refresh and we'll be rolling it out to other consoles in the near
Dashboard future. Try it out and let us know what you think! Or, switch to the old console.
Instances
Clusters
Performance Insights (XD @ Antazon Auracs
Amazon Aurora is a MySQL- and PostgreSQL-compatible enterprise-class database, starting at <$1/day. Aurora supports
Snapshots up to 64T8 of auto-scaling storage capacity, 6-way replication across three availability zones, and 15 low-latency read
Reserved instances replicas. Learn more.
External licenses Launch an Aurora DB instance
Subnet groups Or, Restore Aurora DB cluster from 3
Parameter groups

7. Click on your instance; the instance dashboard will be displayed. Scroll down to
retrieve the endpoint address, which will be used to update the application
connection string before deployment:

Services v Resource Groups v % £\ ingneius ~ N.Virginia * Support v

Amazon RDS X
Connect
Dashboard
—— Endpoint Publicly accessible
aalllysmsrnkgah.cpkx6ruczo7.us- Yes
Clusters cast-1.rds.amazonaws.com
Performance Insights () Master username
Port i
Snapshots tictactoe
1433
Reserved instances
External licenses Security group (1)
Subnet groups Q A ®
Parameter groups
Option groups Security group Type Rule
Events rds-awseb-e-uaazueawmh-stack-awsebrdsdbsecuritygroup-1665hfakmfssv-2nfb Security Group 5g-569fdb24

Event subscriptions

8. Scroll further down on the Amazon RDS Instance Page and click on the
Security groups:

Services v~ Resource Groups ~ L\ ingneius ~ N.Virginia ~ Support ~
Security groups . ’
Amazon RDS X Automated backups Encryption details
Option Group awseb-e-
Enabled (1 Da
default:sqlserver-ex- jaadeeswmis . {2 Encryption enabled
Dashboard 13-00 stack-
awsebrdsdbsecuritygroup- Latest restore time No
Instances Parameter group 1665hfqkmfssy October 25, 2017
Clusters default.sqlserver-ex- ats2001iam
o Security groups uTC-7
Performance Insights (EE) 13.0 (in-sync)

59-569fdb24

9. On the Security Group page, click on Inbound in the menu at the bottom of the
page, then click on Edit for being able to update the inbound rules for the
security group of the database you have just created:

Services v Resource Groups ~ * [\ ingneius ~ N.virginia ~ Support ~
EC2 Dashboard a : 5
Create Security Grou Actions ¥
o s @
Events
Tags (), | search : sg-569fdh24 Add filter (2] Tto1of1
Reports L
] Name Group ID -« Group Name -~ VPCID Description
Limits
[] sg-569fdb24 rds-awseb-e-uaazueawmn-s.. vpc-280edc50 Security group for RDS DB Securi...
Instances
Spot Requests
B 9 Security Group: sg-569fdb24 |]
Reserved Instances
Scheduled Instances Description Inbound QOutbound Tags
Dedicated Hosts
Edit
AMIs
Type (i Protocol (i Port Range (i Source (| Description (i
Bundle Tasks
MS SQL TCP 1433 sg-c62561b4 (awseb-e-uaazu

10. Click on the Add Rule button, choose All TCP as the type, Anywhere as the
source, and enter a meaningful description, then click on the Save button:

Edit inbound rules

Type (i Protocol (i Port Range (i Source (i Description (i

TCP 1433 Custom | [sg-c62561b4 | |eo SSHiorAdminDeskiop | @
TCP 0- 65535 0.0.0.0/0, /0 [DBA Remote Access])
Add Rule

NOTE: Any edits made on existing rules will result in the edited rule being deleted and a new rule created with the new details. This will cause traffic that depends on that
rule to be dropped for a very brief period of time until the new rule can be created.

Cancel m

Note that you should configure the security group inbound rules
stricter in a real production environment and set real IP restrictions.
The source Anywhere should not be used for production environments.

11. Open SQL Server Object Explorer in Visual Studio 2017; sign in using the

endpoint address, username, and password from before, then create a new
database called TicTacToe:

SCL Server Object Explorer
¢l Es
4 ¥ SOL Server
b= (localdb)\MSSOLLocalDB (SQL Server 13.0.4001.0 - NTASUDL)

4 =

= aalllysmsrnkgah.cpblorvczoT.us-east-1.rds.armazonaws.com (S0L Server 13.0.4422 - tictactoe)

[Systen Publish Data-tier Application...
b i rdsadr Add Mew Database I}
4 Security
[+ Server Ob G Refresh

12. Update the DatabaseConnectionString in the appsettings.json ﬁle, and replace the
parameters with the corresponding values:

"Server=<YourEndPoint>;Database=TicTacToe;
MultipleActiveResultSets=true;
User id=<YourUser>;pwd=<YourPassword>"

You have successfully configured the technical environment, which means that you
are now able to publish the database schema as well as deploy the web application.

Are you eagerly awaiting to run the application in the cloud? Just stay concentrated

and continue a little bit further and you will see your application running in Amazon
Web Services very soon.

You have three choices when it comes to publishing the database schema:

1. Generate an SQL script to create the database from within Visual Studio 2017
via Entity Framework Migrations.

2. Change the default connection string in pata\GamedbcontextFactory.cs and execute
the update-patavase instruction within the Package Manager Console.

3. Run the application to create the database.

The most appropriate solution depends on the type and the size of your application
and 1ts database. As a rule of thumb, it is better to generate a script and then create
the database for larger applications, while it is acceptable to create the database
automatically when the application is running for the first time for smaller
applications.

Let's see what needs to be done before you can see the Tic-Tac-Toe application
running in Amazon Web Services:

1. Open the Package Manager Console in Visual Studio 2017 and execute the
script-Migration Instruction as shown here:

Package Manager Console

1%

Package source: All - L Default project: TicTacToe -
PM> Script-Migration

119% -~

2. Take the generated script and copy it into a query window for the Amazon RDS
database, then execute the script to create the database and the various database
objects.

3. Download and install the AWS Toolkit for Visual Studio 2017 from nttps://mar
ketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStud

i02017.

https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017

o Visual Studio | Marketplace

Visual Studio > Tools > AWS Toolkit for Visual Studio 2017

AWS Toolkit for Visual Studio 2017

Amazon Web Services | & 256059 installs | v % % Y % (10)

The AWS Toolkit for Visual Studio is an extension for Microsoft Visual Studio on Windows that
makes it easier for developers to develop, debug, and deploy .NET applications using Amazon
Web Services. With the AWS Toolkit for Visual Studio, you'll be able to get started faster ...

Download

4. Go to AWS Management Console, enter rav in the AWS services textbox, and

click on the displayed link; you will be redirected to the Amazon Identity and
Access Management page:

aws’, Services ~ Resource Groups ~ * [\ ingneius ~ Global ~ Support ~
« Welcome to Identity and Access Management Feature Spotlight
Dashboard
https://314395622280.signin.aws.amazon.com/console Customize | Copy Link - -

Groups Q =~ u (
[) 1

Users IAM Resources j { N H

Roles Users: 1 Roles: 2 Y

Policles Groups: 0 Identity Providers: 0

) X Customer Managed Policies: 0
Identity providers

5. On the Amazon Identity and Access Management page, click on Users and then
on the Add User button:

c & 0
Q Find users by username or access key Showing 0 results
User name « Groups Access key age Password age Last activity MFA

Learn more

6. On the Add User page, give the new user a meaningful username and grant him
Programmatic access, then click on the Next:Permissions button at the bottom
of the page:

Services v Resource Groups v * Q ingneius v Global + Support ¥

Details Permissions Review Complete

Set user details

You can add multiple users at once with the same access type and permissions. Learn more

Username* | V52017-Developer

© Add another user

Select AWS access type
Select how these users will access AWS. Access keys and autogenerated passwords are provided in the last step. Learn more
Access type* ¢ Programmatic access
Enables an access key ID and secret access key for the AWS AP, CLI, SDK, and other development tools.

AWS Management Console access
Enables a password that allows users to sign-in to the AWS Management Console

7. You now have to set the permissions for the new user; for that, click on the
Attach existing policies directly button:

Services Resource Groups v * Q. ingneius ~ Global + Support ¥

A - on
Add use o o

Details Permissions Review Complete

Copy permissions from Attach existing policies

Add user to grou
et existing user directly

© Get started with groups
You haven't created any groups yet. Using groups is a best-practice way to manage users’ permissions by job functions, AWS service access, or your custom permissions.
Get started by creating a group. Learn more

Create group

8. Select AdministratorAccess from the existing policies and click on the
Next:Review button at the bottom of the page:

aws

Services v Resource Groups ~ *

.1;\ ingneius v Global ~ Support ¥

~—

Attach one or more existing policies directly to the users or create a new policy. Learn more

Create policy 2 Refresh

Filter: Policy type - Q Search

Policy name Type Attachments

“ » AdministratorAccess Jab function 0
» AmazonAPIGatewayAdministrator AWS managed 0
» AmazonAP|GatewaylnvokeFullAcce. AWS managed 0
» AmazonAPIGatewayPushToCloudW.. AWS managed 0
» AmazonAppStreamFullAccess AWS managed 0
» AmazonAppStreamReadOnlyAccess AWS managed 0
» AmazonAppStreamServiceAccess AWS managed 0
» AmazonAthenaFullAccess AWS managed 0
» AmazonCloudDirectoryFullAccess AWS managed 0
N AmazanflandnirartanMaadfinkidn AWS mananed n

Showing 276 results

Description

Provides full access to AWS services and resources.

Provides full access to create/edit/delete APIs in Amazon AP| Gateway via the A...
Provides full access to invoke APls in Amazon AP| Gateway.

Allows API Gateway to push logs to user's account.

Provides full access to Amazon AppStream via the AWS Management Console.
Provides read only access to Amazon AppStream via the AWS Management Cons.
Default policy for Amazon AppStream service role.

Provide full access to Amazon Athena and scoped access to the dependencies ne.
Provides full access to Amazon Cloud Directory Service.

Pravides read nnhs arness tn Amaznn Clnnd Nirectnre Servica

Cancel

9. Verify that the User name and AWS access type as well as the selected policies
are correct, then click on the Create user button:

Services

Resource Groups v *

.D. ingneius ~ Global ~ Support ~

Review

O 0 ©

Review your choices. After you create the user, you can view and download the autogenerated password and access key

User details

User name VS82017-Developer

AWS access type Programmatic access - with an access key

Permissions summary

The following policies will be attached to the user shown above.

Type Name

Managed policy AdministratorAccess

Details Permissions Review Complete
Cancel Previous

10. Wait for the new user to be created; when the success page is displayed, you
can then download the .csv file, which we will use to configure Visual Studio

2017 with AWS:

Services v Resource Groups ~ * .Q. ingneius ~ Global ¥ Support ~

Details Permissions Review Complete

® Success
You successfully created the users shown below. You can view and download user security credentials. You can also email users instructions for signing in to the AWS Management
Console. This is the last time these credentials will be available to download. However, you can create new credentials at any time.

Users with AWS Management Console access can sign-in at: https://314395622280.signin.aws.amazon.com/console

&. Download .csv

User Access key ID Secret access key

» @& VS2017-Developer AKIAIHZHQFVGBK6CNWBQ FEREERE Show

Close

11. Open Visual Studio 2017 and display AWS Explorer by going to View | AWS
Explorer:

File Edit [View | Project Debug Team

] Solution Explorer Ctl+W, S
22 Team Explorer Ctrl+*, Ctrle M
B Serverbxplorer Crl+W, L
© Cloud Explorer Ctrler, CtrleX
[sQL Server Object Explorer Ctrl+*, Ctrl+S
AWS Explorer [} Ctik A

12. Click on the New account profile button (the only active button):

AWS Explorer v X
Profile: | &
Region: g

13. A wizard will be displayed; leave the Profile Name as default and fill the
Access Key ID and Secret Access key with the values coming from the .csv file
you have downloaded before during the new user creation process on AWS:

Profile Name: [default

allowss the SDK to fim
ed in your code or g

Access Key ID: [|

Secrat Access Key: |]
Import from csv file.

Account Number™: |]

Account Type: Standard AWS Account

Account information can found at: hitpy//aws.amazon.com/ Jaecess-keys/

* Account Number is an optional field used for constructing amazon resource names (ARN).

14. Since AWS is based on IIS as host for .NET Core applications, you now have to
add a web.config file to the TicracToe project:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<system.webServer>
<handlers>
<add name="aspNetCore" path="*" verb="*"
modules="AspNetCoreModule" resourceType="Unspecified" />

</handlers>
<aspNetCore processPath="dotnet"
arguments=".\TicTacToe.dl1l"

stdoutLogEnabled="true"
stdoutLogFile=".\1logs\stdout"
forwardWindowsAuthToken="true" />
</system.webServer>
</configuration>

15. You, furthermore, have to enable IIS integration; for that, open the rrogram.cs
file and change the WebHost builder configuration to enable IIS integration, as
follows:

public static IWebHost BuildWebHost (string[] args) =>
WebHost.CreateDefaultBuilder (args)
.UseStartup ("TicTacToe")
.CaptureStartupErrors (true)
.UseApplicationInsights ()
.UseIISIntegration ()
.Build() ;

16. Right-click on the ricracroe project and click on Publish to AWS Elastic
Beanstalk... in the context menu:

Selution Explorer ~ 01 X
@E-|o-= dB| s
Search Solution Explorer (Ctrl+§) R~

fa] Solution 'TicTacToe' (4 projects)

d"l Build tegrationTests
Rebuild ogging
Clean nitTests
View »
Pack

@ Publish...

‘7" Publish to AWS Elastic Beanstalk... [}

17. A wizard will be displayed; click on Redeploy to an existing environment and
select the default environment you have created before, then click on the Next
button:

Wl Publish to Amazen Web Services o O s

vunw Publish to AWS Elastic Beanstalk

Al Publish can create a new application/environment or redeploy to an existing environment.

Enips Profile

Application

Environment Account profile to use: default - Region: | =E US East (Virginia) ~
AWS Options

VPC

Deployment Target

Updates G B
Per 1551 Ny - . .

i ITWI i () Create a new application environment
Options
Review ®) Redeploy to an existing environment:

a My First Elastic Beanstalk Application
.’ Default-Environment Ready Defoult-Environment.kkhmbvzird us-east-1.elasticheanstalk.com

| Close | | Bak || Net || Finish |

18. Verify that the Framework version is set to netcoreapp2.0; leave all default
values and click on the Next button:

W Publish to Amazon Web Services = O *

L9EE Application Options

Set additional build and deployment options for your application.

Application Build and Deployment Settings

Environment Project build configuration: | Debug|Any CPU =

; !

AWS Options T ——— TRy =

VPC

Updates App path: |Defau|t Web Sitef
Permissions

] Application Settings

Options o g
Review Health check URL: | |

Deployment version label: |V201?10261 91920 |

MOTE: Changes have been announced for NET Core project files and the use of project,json. This wizard will be updated to be
compatible with the upcoming changes which might break compatiblity with older project files.

Close | | Back || Next || Finin

19. Select Generate AWSDeploy configuration, which will allow you to redeploy a
copy of your application with AWS, then click on the Deploy button:

Review

Profile

nmet Publish to AWS Elastic Beanstalk in region "US East (Virginia)' (us-east-1) using account credentials from profile ‘default’.

Application

Redeploy to environment 'Default-Environment' for application "My First Elastic Beanstalk Application'.

Application Options

Use project configuration ‘Debug|Any CPU’ when building fer deployment.
Deploy as application version 'v20171026191920°
Deploy a web application supperting .NET Core Framework netcoreapp2.0 with path 'Default Web Site/,

.|
139
i

Cpen environment status window when wizard closes,

Generate AWSDeploy configuration | Choose file

AWS User Guide.

‘ Close | | Back ‘ Mext

20. The deployment will start; you can see the advancement of the deployment
process by going to Output | Amazon Web Services:

Output

Show output from: Amazon Web Services - | | = = | E ia

...... uploaded 77% of application deployment package

...... uploaded 81% of application deployment package

...... uploaded 85% of application deployment package

...... uploaded 88% of application deployment package

...... uploaded 92% of application deployment package

...... uploaded 96% of application deployment package

...... uploaded 99% of application deployment package

...... uploaded 188% of application deployment package

.+« .upload complete

....creating new version 'v2@8171826191928' for application 'My First Elastic Beanstalk Application
...requesting update of environment 'Default-Environment' with application wersion 'vw28171825191928°'
Publish to A&WS Elastic Beanstalk environment 'Default-Environment' completed successfully

21. When the application is deployed, you can use the AWS Explorer to get the

URL of the application, as follows:

2 fure

¥1.20 running IS 10.0

"AWS Explorer - R
i g sta n

vent Type Version Label Event Details

T
i
H

» & Amasanvpc
» 8 WS CloudFo

b4

b;Awid

10/25/2017 2:13:24 PM INFO
10/25/2017 1:5424 PM INFO
10/25/2017 1:5408 PM INFO

10/25/2017 1:5351PM INFO
10/25/2017 15342 PM INFO

22. Open a browser and go to the application URL in Amazon Web Services, start

the application and try to register a new user.

Note that the application is not working as expected, you will get a 404
not rFound HITTP response. Everything is working locally and the
deployment in Amazon Web Services was successful, but something is
wrong. You will see in the next chapter, which is about logging and
monitoring, how to analyze, diagnose, understand and fix this problem.

Congratulations, you have successfully deployed your first application in the public
cloud. It i1s now available to the outside world and users can connect to it and start

working with it.

This concludes the examples for Amazon Web Services. However, we still have
some compelling content, since we will explore how to deploy to other targets such
as Microsoft Azure and Docker containers in the next sections; so, stay sharp and

continue reading the following sections.

Deploying applications in Microsoft
Azure

Microsoft Azure is a public cloud computing platform provided by Microsoft for
building, testing, deploying, and managing applications and services within globally
available Microsoft data centers all around the world. It supports many different
programming languages, tools, and frameworks, including Microsoft-specific, third-
party, and open source software and systems.

When deploying web applications in Microsoft Azure, you basically have four
choices:

e Azure App Services

e Azure Service Fabric

e Azure Container Services
e Azure Virtual Machines

However, before you can start deploying your applications in Microsoft Azure, you
need to sign up for a subscription; so, let's do that right now:

1. You need a Microsoft account to be able to sign up for a Microsoft Azure
subscription. You can use the same you have used for your Visual Studio
Team Services (VSTS) subscription, but if you do not have one yet, create it by
going to nttp://www.1ive.com and clicking on the Create one! link:

http://www.live.com

< O o 8 live.com ¥ fg T

@ This site uses cookies for analytics, personalized content and ads. By continuing to browse this site, you agree to this use. Learn more

B Microsoft

Sign in

No account? Create one!

2. GO tO nttps://portal.azure.com and log in with your Microsoft account; you will
be asked if you want to take a tour. Select Maybe later (you should really take
the tour later, though!) and you will be redirected to the Microsoft Azure
Management Portal:

Dashboa rd v -+ New dashboard I;:i? Edit dashboard Q Share / Fullscreen ﬁ‘ Clone m Delete

= New

All resources Quickstart tutorials
Dashboard ALL SUBSCRIPTIONS

B8 All resources
Windows Virtual Machines (2

= Provision Windows Server, SQL Server, SharePoint VMs
Resource groups

Mo resources to display

. App Services N o .
Try changing your filters if you don't see what you're looking for, Linux Virtual Machines &
Learn more [Provision Ubuntu, Red Hat, CentOS, SUSE, Core0S Vs

¥ Function Apps Create resources

=

st SOL databases
App Service &

Create Web Apps using .MET, Java, Node,s, Python, PHP

Azure Cosmos DB

Virtual machines Functions (2

Process events with a serverless code architecture

&
s
& Load balancers
=

Storage accounts 5QL Database &

fiin
Service Health nl Marketplace) .
Managed relational SQL Database as a Service

Virtual networks

@ Azure Active Directory

More services »

3. Click on More Services at the bottom of the left-hand menu, then click on the

https://portal.azure.com

Subscriptions button:

SQL databases
i Azure Cosmos DB

Virtual machin
Load balan
Storage ounts
Virtual networks
Azure Active Directory
Monitor
Advisor

@ curity Center

@ Cost Management + Bi

sa Help + support

More services »

X

Shift+Space to toggle favorites

| Filter

By category ~

GENERAL
D Dashboard
(] Resource groups

All resources

Subscriptions

Cost Management + Billing
<] Help + support
COMPUTE
“ virtwal machines
Virtual machine scale sets
’

% Container services

B3 Batch accounts

Help improve the service menu!

4. Click on the Add button:

SQL databases

¥ Azure Cosmos DB

Virtual machines

Load balan

rage accounts

My role @

X

oard () Share 7 Fullscreen [§) Clone [il Delete

Quickstart tutorials

Windows Virtual Machines @
Prowision Windows Server, SQL Server, SharePaint Vhis

Linux Virtual Machines 3
Provisien Ubuntu, Red Hat, CentOS, SUSE, Core0S VMs

App Service &
Create Web Apps using .MET, Java, Nodes, Python, PHP

Functions
Process events with a serverless code architecture

5QL Database @
Managed relational SOL Database as a Service

Status @

[7 selected

v || 3selected

Apply

D Search to filter items...

SUBSCRIFTION SUBSCRIPTION ID

None of the entries matched the given filter.

MY ROLE

tictactoenetcore@out
FBCDEF31-A31E-4B4A-93E4.

STATUS

5. Click on the Free Trial button and fill in the different forms until you have
created your Microsoft Azure subscription:

Add subscription T | S

Add subscription

Microsoft Azure Free Trial
Full access to all services.

Explore any service that you want.
@ Learn more

Pay-As-You-Go
Lol This flexible pay-as-you-ge plan invelves no up-front costs, and no long term commitment. You pay only for the

resources that you use,
@ Learn more

Developer support
@ Purchase Developer support, appropriate for individuals or companies using Azure in a non-production

enviranment or for evaluation. Includes reactive technical support only during business hours.

@ Learn more

Exciting! You are now ready to provision the technical environment and, then,
deploy your ASP.NET Core 2.0 web applications to the Microsoft Azure data center
all around the world!

Deploying applications in Microsoft
Azure App Services

Azure App Services is a PaaS offering for web-based applications in Microsoft
Azure, which includes auto-scaling. In this regard, it is comparable to AWS
Beanstalk, which you may have already seen in the section on AWS before.

It removes the need for managing infrastructure; instead, you only need to be
concerned about building and hosting your applications. For a full DevOps approach,
it is advisable to use this PaaS service if you want to work with Microsoft Azure.

For more information on Microsoft Azure App Services, check out nttps

://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview.

The following examples illustrate how to deploy the Tic-Tac-Toe application to
Azure App Services step by step:

1. Go to the Microsoft Azure Management Portal, click on App Services in the
left-hand menu, and then click on the Add button:

(>) tictactoenetcore@out...
p Q P @ © O FBCDEF31-A31E-4BAA-93E4-5... &

A rvic * X
-dbd: 5T1e3125!
New o add @ assic =2 Columns) Refresh
Dashboard No subscriptions in f8cdef31-a31e-4b4a-93e4-5f571e91255a directory.
— | ‘F;-‘:s.ﬂ by name.. All resource groups v No grouping A4
#55 All resources
Oitems
Resource groups
[] name STATUS APP TYPE APP SERVICE FLAN LOCATION SUBSCRIPTION

App Services
¥> Function Apps
M SOl databases
:"’ Azure Cosmos DB
B virtual machines

& Load balancers No App Services to display

B storage accounts standards-based wek apps

Create App Services

=2 Virtual netwarks

. Azure Active Directary

More services »

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview

2. Click on the Web App + SQL button in the Web Apps section:

tictactoenetco
4B

New Y Fiter
Dashboard
O Search Web + Mobile
All reso

Resource groups

App Services — Microsoft

Function Apps) A scalable and secure backend that can be used to power apps on

e any platform — i0S, Android, Windows or Mac. With Mobile
SQL databases
Services, it's easy to store app data, authenticate users, and send

’ Azure Cosmas DB . push notifications
B virtual machines

Load balancers

Storage accounts Web Apps

Virtual networks

Azure Active Directory [_| q
’ | [_(%_] sﬂ%re’ /%

Monitor Own the experience”
PREVIEW

Advisor Web App Web App + SQL App Service WordPress on Sitecore® Function App
Environment Linux (preview) Experience

Microsoft Microsoft Microsoft WordPress Sitecore Microsoft

3. Read the service details and click on the Create button:

tictactoenetco

e AppServices » Web+ Mobile » Web App +5QL ey

App +SQL
ft

New Create and deploy web sites in secands, as powerful as you need them

Leverage your existing tools to create and deploy applications without the hassle of managing
infrastructure. Microsoft Azure Web Sites offers secure and flexible development, deployment, and
scaling options for any sized web application. Use frameworks and templates to create web sites in
All resources seconds. Choose from source control options like TFS, GitHub, and BitBucket. Use any tool or 05 to
develop your site with .NET, PHP, Nodes or Python.

Dashboard

Resource groups

: even faster,
App Services

« Fastest way to build for the cloud

Function Apps + Provision and deploy fast

= Secure platform that scales automatically

- SOL databases « Great experience for Visual Studio developers
« Open and flexible for everyone

sy = Monitor, alert, and auto scale (preview)
" Azure Cosmos DB

8 Virtual machines n m E

Load balancers

Storage accounts

Virtual networks

$T Wiom
a
o

b Azure Active Directory - o
) Monitor

¥ Advisor

Security Center
reate

4. If you did not sign up for your Microsoft Azure subscription before, you can do
that now by clicking on the Sign up for a new subscription link; you will be
redirected to the same forms as you have seen at the beginning of the section:

@ AppServices > Web + Mobile » WebApp +50L

Get an Azure subscription
Dashboard

Al esources Develop + test cloud
RESDUFCE(_][OUPS Solutlons

App Services To create resources and track usage, you need admin access
for a subscription or resource group. It's easy to get a new
Function Apps subscription, and you'll enly be billed if you use premium
features.

% sOL databases

¥ Azure Cosmos DB

Sign up for a new subscription

B virtual machines

5. Choose a name for the application and a Resource Group, and click on the SQL
Database button to configure the database options:

2 AppServices » Web + Mobile > WebApp +5QL > WebApp +50L

App + SQL A X

MNew
* App name
Dashboard Enter a name for your App

.azurewebsites.net
Resource groups * Subscription

All resources

* Resource Group @

Recent ® Create new O Use existing

App Services

SQL databases * App Service plan/Location
ServicePlan02a1f40c-a303(South...

Virtual machines (classic)

5QL Database o 5
Configure reguired settings

Virtual machines

Cloud services (classic)
Application Insights @ On El
Subscriptions

& Azure Active Directory

& Monitor [] Fin ta dashboard

Automation options

More services »

6. Click on Create Database and choose a database name. Leave the other options
with their default values and click on Target server:

2 App Services » Web + Mobile » Web App +SQL > Web App + SQL Database » SOL Database

App + SQL X Databas: X SQL Database
* Name
P Create a new database
PP : |E-’.‘ff-" database name |
L Enter a name for your App
.azurewebsites.net Mo databases found

hs * Target server

Ll * Subscription i ¥ >
Configure required settings
v

* Resource Group @ Pricing tier @ a

® Createnew O Use existing Configure required settings

* Collation @
SQL Latin1_General_CP1_CI_AS

]

* App Service plan/Location 5
ServicePlanccd936c7-a065(South...

| 8

SOL Database 0 S
Configure required settings

Application Insights @ On III

® ~ ¢

D Pin to dashboard

Automation options m

7. Enter some values for Server name, Server admin login, and Password, then
click on the Select button, as shown here:

«

MNew

Dashboard

Resource groups

5= All resources

8 Recent

a
t
L 4
&

App Services

SQL databases

Virtual machines (classic)
Virtual machines

Cloud services (classic)
Subscriptions

Azure Active Directory

) Monitor

More services »

Web App + SQL >

Web App + 5QL » Database » SOL Database »»

O X

* Server name
Enter server name
databasewindows.net
* Server admin login

Enter user name
* Password

* Confirm password

* Location

| West Central US|

Allow azure services to access server @

Server

New server

8. Click on the Select buttons for the new database server, the new database, and
then finally on the Create button for the App Service; wait until it has been
provisioned:

MNew
Dashboard
Resource groups
All resources
Recent
App Services
SQL databases
Virtual machines (classic)
Virtual machines
Cloud services (classic)
Subscriptions
& Azure Active Directory

Q— Monitor

More services >

ZUre AppSemvices »

Web + Mobile > WebApp +SQL > Web App +5QL

Web App + SQL o 4

B8

tictactoenstcore

azurewebsites.net
* Subscription

* Resource Group @
= Pt L
®) Create new () Use existing

tictactoenetcore

* App Service plan/Location

ServicePlanccd936c7-a0e5(5outh...

* 50L Database
tictactoe

Application Insights @

on [Ton]

|:| Pin to dashboard

Automation options

9. You need to allow access to the SQL Database to execute the database
generation scripts for the ricracroe application; in the left-hand menu, click on
SQL databases and select the ricracroe database:

Ure SOL databases

- Mew + Add @ Assign Tac

== Columns O Refresh M Delete

Dashboard Subscriptions: MEGA RandD - Don't see a subscription? Switch directories

| IF.rI-‘:e.r by name...

Resource groups

1items

= All resources
[] mame

e Recent

. App Services

% SOL databases

Bl tictactoe

| All resource groups w All locations
STATUS REPLICATION R... SERVER PRICING TIER
Online None tictactoenetcore Standard: SO

10. Click on Set server firewall to be able to add a new rule to allow access to the

SQL Database from your IP:

Jre SQOLdatabases > tictactoe

—
sal 1

X Tools

[j] Copy 'O Restore * Export @ Setserverfirewall [Delete

-i— New | /'-" |Se.3.'d? (Ctrd =4}

IS Dashboard 5 :ts:c‘;gc:ngz;z s tsiztr:::o':ann;':iore.data base.windows.net
B Overview Status Elastic database pool

&#/ Resource groups Online Mo elastic pool
B Activity log Location Connection strings

2% Al resources West Central US Show database connection strings

11. Click on Add client IP, verify your IP, and click on Save to add the new rule:

‘Lre SQLdatabases » tictactoe > Firewall settings

Firewall settings

Mew [save 3 Discard == Add client IP
Dashboard

Resource groups

Connections from the IPs specified below provides access to all the databases in
tictactoenetcore.

All resources :
Allow access to Azure services OFF

12. Click on Connection strings to retrieve the connection string for the ricracroe
Azure database you have created before:

Ire S5QLdatabases tictactoe - Connection strings

jatabase

D tictactoe - Connection strings

New /',' Search (Cirl+/)

| ADOMET | JDBC ODBC PHP

Dashboard
Geo-Replication ADQ.NET (SQL authentication)
Resource groups
s +) erver=tcpihictactoenetcore database.windows.net, sInitial Catalog=tictactoe;Persist Secunty Info=False;User ID={yo
[£ Auditing & Threat Detection S peti datab ind 1433 Initial Catalog=ti Persist Security Info=False;User ID:
{your_p dl;MultipleActiveResultSets=False;Encrypt=True;TrustServerCertificate=False;Connection Timeout=30;

All resources
Vulnerability Assessment (Pre...

Recent & Dynamic Data Masking Download ADQ.NET driver for SQL server

@
. App Services

J Transparent data encryption

-
@ SOL databases %* Connection strings
EA virtual machines (classic) [##] Sync to other databases
B virtual machines Properties

ﬂ Locks

& Cloud services (classic)

= Automation script

f Subscriptions

13. Open Visual Studio 2017, go to the SQL Server Object Explorer and add a new
SQL Server using the connection information from the ricracroe Azure database
connection string.

14. Add a new database to the Azure SQL Server, as you would have done in the
Amazon Web Services example; it will be used to execute the ricracroe
database generation scripts:

SQOL Server Object Explorer > 01X
(VR B
4 g SOL Server
b= (localdb)\MSS0LLocalDE (SOL Server 13.0.4001.0 - NTASUDL)
4 = aalllysmsmkgah.cpBlodbryczoT.us-east-1.rds.amazonaws.com (SOL Server 13.0.4422 - tictactoe)
4 Databases
4 Security
2 Server Objects
A cﬁ tictactoenetcore. database.windows.net (SQL Server 12.0.2000 - tictactoe)
P Databases
B System Databases
b i@ tictactoe
2 Security
[Projects

15. If you have not done it in the Amazon Web Services example before, open the
Package Manager Console in Visual Studio 2017 and execute the script-
Migration Instruction; otherwise, you can reuse the same scripts.

16. Take the generated script and copy it into a query window for the Azure
TicracToe database, then execute the script to create the database and the various
database objects.

Now that the technical foundations have been provisioned and initialized in
Microsoft Azure, everything is ready for the next step, which consists of deploying
the sample application.

So, let's do exactly that—prepare the application and deploy it via Visual Studio
2017 into the Microsoft App Service you have created before:

1. Since App Services are based on IIS as the host for NET Core applications, you
now have to add a web.config file to the Ticracroe project; you should, however,
already have done that if you have followed the Amazon Web Services example
from before:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<system.webServer>
<handlers>
<add name="aspNetCore" path="*"
verb="*" modules="AspNetCoreModule"
resourceType="Unspecified" />
</handlers>
<aspNetCore processPath="dotnet"
arguments=".\TicTacToe.dll"
stdoutLogEnabled="true"

stdoutLogFile=".\logs\stdout"
forwardWindowsAuthToken="true" />
</system.webServer>
</configuration>

2. Furthermore, you have to enable IIS integration; for that, open the progran.cs
file and change the WebHost builder configuration to enable IIS integration.
You should, however, already have done that if you have followed the Amazon
Web Services example from before:

public static IWebHost BuildWebHost (string[] args) =>
WebHost.CreateDefaultBuilder (args)
.UseStartup ("TicTacToe")
.CaptureStartupErrors (true)
.UseApplicationInsights ()
.UseIISIntegration|()
LBuild();

3. Go to the Microsoft Azure Management Portal and click on App Services in the
left-hand menu, select the ricracroe application you have created before, click
on Get publish profile, and download the Azure App Service Publish profile:

AZure AppSenices > tictactoenetcore

oenetcore

| O |search (Ctri+A) | [/ Browse M Stop %y Swap) Restart [Delete W Getpublish profile € Reset publish profile
Dashboard .f Click here to access our Quickstart guide for deploying code to your app =
Overview
Resource group (changs) URL
Resource groups E Activity | tictactoenetcore hitp://tictactoenetcore.azurewebsites.net
tivity lo:
? Status App Service plan/pricing tier
HH ces Runnin ServicePlanccd936¢7-a065 (Standard: 1 Small
if All resources =i Access control (JAM) . 9
Location FTP/deployment usermame

4. Right-click on the ricracroe project, click on Publish in the context menu, then
click on the Import Profile button, as shown here:

micracToe = >« |

Ohverview

Publish

Connected Services

Publish your app to Azure or another host. Learn more

« O = 0

15, FTP, etc Folder Import profile

Publish o3

5. Select the downloaded Azure App Service Publish profile and the publish
process should start automatically:

meractoe -+ |

Overview

Publish

Publish your app to Azure or ancther host, Learn more

Connected Services

] tictactoenetcore - Web Deploy v §
Create new profile
Summary
Site URL il Settings...
Configuration Release Preview..,
Username Stictactoenetcore Rename profile..,
Password i Delete profile

6. You can see the publish process in the Web Publish Activity view:

Web Publish Activity

Publish: tictactoenetcore - Web Deploy - @ it
Overall status [E———

Publish Succeeded.

http://tictactoenetcore.azurewebsites.net/

+ | View Details

Output Package Manager Console Error List SRRVl Wata 0ty _

7. Open a browser and go to the application URL in Microsoft Azure, start the
application and try to register a new user.

Note that the application is not working as expected, you will get a 404
not round HTTP response. Everything is working locally and the
0 deployment in Microsoft Azure was successful, but something is wrong.
You will see in the next chapter, which is about logging and
monitoring, how to analyze, diagnose, understand and fix this problem.

This concludes the examples for Microsoft Azure. The next sections will explain
how to deploy your application into Docker containers.

Deploying applications into Docker
containers

Docker simplifies building, deploying, and running applications by using containers.
Containers allow for the packaging of libraries, as well as any other dependencies,
into a single application package (container image), which can then be shipped as a
single coherent resource. This technology assures that the packaged application will
run correctly anywhere where the container can be used, regardless of any
environmental specific settings or configurations.

Here is a high-level schema of how Docker works:

Docker Host
The machine running the Docker Server

Docker client offers the capacity to
Docker Client communicate with any Docker server

Network communication y
installed on a host

Different IP

Docker Server allows to

Docker Server * Runimages as a Daemon

+ Build images

+ Download images from the repository
* Start containers

+ Stop containers

+ Expose all features via REST API

Container 1

Container 2
Lonuainer 3

You basically have three choices when working with Docker containers:

e Use a VM locally or in the cloud with Docker for Windows or Docker
Enterprise Edition for Windows 2016, depending on the operating system
e Use the Docker Hub (https://hub.docker.com) and the Docker Store (nttps://store

.docker. com)

e Use either Microsoft Azure Container Services or Amazon Web Services EC2
Container Service

For more information on Docker, visit the following links.

e\

https://hub.docker.com/
https://store.docker.com

“ https://www.docker.com

https://docs.microsoft.com/en-us/dotnet/core/docker/docker-basics-dotnet-
core

https://www.docker.com
https://www.docker.com
https://docs.microsoft.com/en-us/dotnet/core/docker/docker-basics-dotnet-core

Deploying applications into Docker
containers using Docker for
Windows and Docker Enterprise
Edition

Docker for Windows provides everything necessary to start using Docker containers
in a Windows environment, whereas Docker Enterprise Edition for Windows 2016 is
meant for companies that need to provide production environments based on the
Docker technologies with the necessary support.

Let's see how to use Docker in Windows and how to deploy your application in this
case:

1. If you do not have Docker for Windows installed yet, g0 to nttps://docs.docker.c
om/docker-for-windows/install/, click on the Get Docker for Windows (Stable)

button, and install it:

https://docs.docker.com/docker-for-windows/install/

Download Docker for Windows

If you have not already done so, please install Docker for Windows. You can download installers from the Stable or Edge channel.

Both Stable and Edge installers come with experimental features in Docker Engine enabled by default. Experimental mode can be toggled on

and off in preferences.
We welcome your feedback to help us improve Docker for Windows.

For more about Stable and Edge channels, see the FAQs.

Stable channel
Stable is the best channel to use if you want a reliable platform to
work with. Stable releases track the Docker platform stable

releases.

On this channel, you can select whether to send usage statistics
and other data.

Stable releases happen once per quarter.

Get Docker for Windows [5table)

Edge channel
Use the Edge channel if you want to get experimental features
faster, and can weather some instability and bugs. We collect usage

data on Edge releases.

Edge builds are released once per month.

Get Docker for Windows [Edge]

To install the Docker Enterprise Edition for Windows 2016, go to https
://docs.docker.com/engine/installation/windows/docker-ee/ and follow the
installation instructions. After the installation, you should skip the
following steps and continue directly with the fourth step.

2. Right-click on the Docker tray icon and click on Switch to Windows

containers... in the context menu:

About Docker

Settings...

Discover Docker Enterprise Edition

Check for Updates...
Diagnose and Feedback...

Docker Store

Documentation

Kiternatic

Swarms

Repositories

Quit Docker

Switch to Windows containers... [

Sign in / Create Docker 1D...

3. If the Container features have not yet been enabled in your Windows
installation, Docker will ask to do it for you; click on the Ok button:

https://docs.docker.com/engine/installation/windows/docker-ee/

ﬂn Containers feature is not enabled.

Do you want to enable it for Docker to be able to work properly?
= Your computer will restart automatically.

Ok Cancel

4. Open a new elevated Command Prompt, download the official Docker
Microsoft SQL Server image, and execute the docker pull microsoft/mssql-
server-windows-express instruction as follows:

5. Download the official Docker Microsoft ASP.NET Core image and execute the
docker pull microsoft/aspnetcore instruction like this:

C:\>docker pull microsoft/aspnetcore

Using default tag: latest

latest: Pulling from microsoft/aspnetcore

bce2fbc256ea: Pull complete

b8b5ed48cb339: Pull complete

d13fff5d417b: Pull complete

Safel@fa73el: Pull complete

dd2blc2+87dd: Pull complete

3c4b7ad74ff7: Pull complete

6ad64b%91cded: Pull complete

aft826c7b468: Pull complete

£33561c58c3b: Pull complete

cBbbl8ecel69: Pull complete

20988fda7dac: Pull complete

834d3575e8f8: Pull complete

Digest: sha256:3fe41b86bdlef456895d153defBebc283d1dB95d6Tfc6164cd9e539ba93f3cab
Status: Downloaded newer image for microsoft/aspnetcore:latest

C:\>docker images

REPOSITORY TAG IMAGE ID CREATED
microsoft/aspnetcore latest 8eb5Scff7a89e 4 days ago
microsoft/mssql-server-windows-express latest 68a5clc6babe 2 weeks ago

C:\>

6. To be able to compile and publish applications from Visual Studio 2017 directly
into Docker, you will also need to download the specific build image and
execute the docker pull microsoft/aspnetcore-build Instruction:

C:\>docker pull microsoft/aspnetcore-build
Using default tag: latest

latest: Pulling from microsoft/aspnetcore-build
bce2fbc256ea: Already exists

beb5ed48chb939: Already exists

d13fff5d417b: Already exists

cb2173F96015: Pull complete

B82636e6362b4: Pull complete

7d568d188495f: Pull complete

8cf343cfefo4: Pull complete

9fdf7d68+983: Pull complete

a791d6c448f4: Pull complete

3d5c8856ab68: Pull complete

44f7bbBc44ce: Pull complete

bc81208def396: Pull complete

eelcfla2ba2d: Pull complete

Af@d33afe7c8: Pull complete

1ad8d6+179f9: Pull complete

ffeee78278e8: Pull complete

b485c38fal43: Pull complete

Digest: sha256:611234bde3aelba23e7c53ef748204219c68f0basfclfds62a3225e5¢7c92c83
Status: Downloaded newer image for microsoft/aspnetcore-build:latest

C:\>docker images

REPOSITORY TAG IMAGE ID CREATED
microsoft/aspnetcore-build latest 8d95b2916edc 4 days ago
microsoft/aspnetcore latest 8eb5cff7a898 4 days ago
microsoft/mssql-server-windows-express latest 68a5c1cbbab® 2 weeks ago

>

7. Open Visual Studio 2017, then open the ricracroe project; in the menu, click on
Project | Docker Support and select the Windows operation system:

“_ﬂg TicTacToe - Microseft Visual Studio Preview
File Edit View | Project | Build Debug Team

Overview
% Add Class... Shift+Alt+C
0 Add New ltem...
0 Add Existing Item... Shift+Alt+A
2 Add Application Insights Telemetry...

Application Insights 3
> Edit TicTacToe.csproj
%5 Mew Folder
B Docker Support b
[E Show All Files

A new project called docker-compose Will be autogenerated and added to the
solution; it should contain a .dockerignore file (files to be ignored during
deployment) and a docker-compose.ym1 file (deployment instructions):

Solution Explorer « 0 X
AE-lo-c B p-=
Search Selution Explorer (Ctrl+5) P -

fad Solution TicTacToe' (5 projects)
4 Zg docker-compose

[.dockerignore
B[] docker-composeyml
] TicTacToe
TicTacToe.IntegrationTests
TicTacToe.Logging
TicTacToe UnitTests

L

Update the docker-compose.ym1 file in the Docker Compose Project like this:

version: '3'
services:
sgl:
image: "microsoft/mssgl-server-windows-express"
environment:
sa_password: "123TicTacToe!"

ACCEPT EULA: "y"
tictactoe:
image: tictactoe
build:
context:
dockerfile: TicTacToe\Dockerfile
ports:
- "8081:5000"
depends_on:
- sqgl

Update the pefaultconnection 1n the appsettings.json file in the TicracToe project
as follows:

"DefaultConnection":
"Server=sql;Database=Master;MultipleActiveResultSets=true;

| User id=sa;pwd=123TicTacToe!"

11. Update the program.cs file in the ricracToe project; remove the Application
Insights and IIS Integration because the Docker ASP.NET Core image is based
on Kestrel instead of IIS:

public static IWebHost BuildWebHost (string[] args) =>
WebHost.CreateDefaultBuilder (args)
.UseStartup ("TicTacToe")
.CaptureStartupErrors (true)
.Build() ;

12. Start the application by pressing F5 (the docker-compose project should be set as a
startup), the application should automatically be deployed into a Docker
container now; verify that everything is still working as expected:

‘4| TicTacToe - Microsoft Visual Studio Preview
File Edit View Project Build Debug Team XML Tools Test Analyze Window Help

- R-2 WM - = | Debug ~=| AnyCPU + docker-compose + P Docker =

13. Open a Command Prompt and execute the docker ps instruction; to see all
running Docker processes, there should be multiple running container instances:

B3 Administrator: Command Prompt . O X

C: \WINDOWS\system32>docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

cdab96blilbal tictactoe:dev "C:\\remote_debugge..." 3 minutes ago Up 2 minutes
0.0.0.0:34076->80/tcp, ©.0.0.0:8081->5000/tcp dockercomposel17038052087396899468_tictactoe_1

T4fcb17115f5 microsoft/mssqgl-server-windows-express "powershell -Comma..." 4 minutes ago Up 3 minutes
dockercomposel7038052087396899468_sql_1

C:\WINDOWS\system32>_

Publishing images to the Docker
Hub

You can upload your application images to the central cloud-based Docker
repository called Docker Hub, and then use them in Microsoft Azure, Amazon Web
Services, or any other Docker supported environments.

Note that there are also other Docker registries you could use, such as
Azure Container Registry and others. Since Docker provides its own
registry via Docker Hub, it is advised to use that though.

For more information on Docker Hub, check out nttps://docs.docker. com
/docker-hub.

The following example showcases how to publish and upload the sample ricracroe
application to the Docker Hub:

1. Right-click on the ricracroe project and select Publish in the context menu;
since you have already created a publish profile in the examples before, you
have to add a new one. Click on Create new profile:

ricracoe -+ < |

Chverview

Publish

Publish your app to Azure or another host. Learn more

Connected Services

& tictactoenetcore - Web Deplay v Publish

Create new profile

2. Click on the Container Registry button, select Docker Hub, and click on the
Publish button:

https://docs.docker.com/docker-hub

Pick a publish target

What publishing targets can you deploy your app to?

Targets

[L]
o @ h .

Microsoft Azure App

Semice Container Registry IIS, FTP, etc Eolder

() Create New Azure Container Registry
() Select Existing Azure Container Registry
® Docker Hub

() Custom

Publish Cancel o3

3. Enter your Docker Hub User Name and Password and click on Save:

Container Registry x

Publish to a personal repositary

User Mame: |

Password:

(Password is optional. Leave empty if the password is available in the docker login cache))

Save Cancel

4. Your container image will be published to Docker Hub; when it has been
finished, go to Docker Hub and verify that the image has been uploaded:

PRIVATE REPOSITORY

michelbruchet/tictactoe ¥

Repo Info Tags Collaborators Webhooks Settings

Tag Name Compressed Size Last Updated

20171023094406 452 MB a minute ago

Summary

In this chapter, we talked about the various options you have when it comes to
hosting and deploying your ASP.NET Core 2.0 web applications.

You learned what hosting is and how to choose the appropriate solutions for a given
use case. This will allow you to make better decisions for your own applications.

You have seen how to sign up for an Amazon Web Services account, how to
provision the technical environment, and how to deploy ASP.NET Core 2.0 web
applications.

Furthermore, you have seen how to sign up for a Microsoft Azure account, how to
provision the technical environment, and how to deploy ASP.NET Core 2.0 web
applications using this powerful public cloud computing platform.

We then talked about Docker and the various deployment choices you have when
using this modern, increasingly adopted, and impactful technology. You are well
prepared for the future since Docker may well completely change our way of
thinking concerning deploying and managing applications.

In the next chapter, we will explain how to manage and supervise deployed web
applications efficiently, which is very important for a DevOps approach.

Managing and Supervising
ASP.NET Core 2.0 Applications

After having finished the development life cycle, we could have stopped there.
However, this last chapter has been added to underline the importance of a thorough
DevOps approach.

For now, we have only talked about the Development (Dev) side, but you should
also embrace the Operations (Ops) side in DevOps, which consists of managing
and supervising your applications during runtime.

This very important subject is often underestimated and sometimes, even worse,
completely left aside. Developers tend to think that it is not a part of their job. They
often say things like, But it works on my machine and This is your problem not mine.
This is also commonly called the Wall of confusion. Agile methodologies and
DevOps aim to avoid this kind of thinking, and this chapter will give you some
advice and examples on how to better address those issues within your ASP.NET
Core 2.0 applications.

The success of your application will be depending on how you can help IT
Operations understand what is happening during runtime. This means providing
them with means to manage and supervise applications quickly and efficiently.

Only then will you be able to provide high-quality applications with a low Mean
Time To Repair (MTTR) for bugs, which can make the whole difference to
becoming a future market leader within your specific markets.

Furthermore, it is easy for you to address these subjects when using ASP.NET Core
2.0, since, most of the time, you can take advantage of integrated or provided
features without any bigger code changes.

In this chapter, we will cover the following topics:

e Logging in ASP.NET Core 2.0 applications
e Monitoring ASP.NET Core 2.0 applications

Logging in ASP.NET Core 2.0
applications

In chapter 10, Hosting and Deploying ASP.NET Core 2.0 Applications, we explained
how to deploy your ASP.NET Core 2.0 applications to Microsoft Azure, Amazon
Web Services, and Docker. Let's go further, and understand how to add logging and
monitoring in these environments, which is important to diagnose unexpected
behavior and errors.

First, some theoretical background, and then, some practical example. Are you ready
to learn what it takes to help IT Operations? Come on, it's the last chapter. Let's go!

Logging within applications consists of creating data to help understand what is
happening during runtime. Several types of messages can be logged, such as
information, warnings, and errors.

This data should then be persisted to log files, databases, SaaS solutions, or other
destinations. To improve application performance, it is recommended to allow IT
Operations to change the level of verbosity of the collected logging data during
application runtime. In production environments, only warnings and errors should be
logged for instance, while it makes perfect sense to enable logging everything during
development time to be more efficient and to better understand exactly what is
happening behind the scenes.

It is advisable to use a standard framework like ETW to structure and format logging
data, so that IT Operations can use their preferred monitoring tools to quickly and
easily read and diagnose error reasons. Famous logging frameworks such as Serilog
or Log4Net also support standard output formats, so you could also use them if you
like.

So, let's look at some concrete examples on how to handle logging for your
ASP.NET Core 2.0 applications in different environments such as on-premises, in
the public cloud, and in Docker.

In on-premises environments, logging data is stored in a log file most of the time. In
this case, the application needs to have write access to write to the log file, and it is

recommended to store all log files in a central folder called 104s under the application
path.

In Microsoft Azure, you have basically three different solutions to handle logging
within your applications:

e Standard file logging: This is the easiest method, without any code
modifications, but it is also the least powerful; you need to download files to
retrieve logging data for your application.

e Azure Application Service diagnostic: This is the recommended solution, if
you have not more than a single instance for your Application Service, since
there are no log centralization features provided.

e Azure Application Insights: This is the most integrated and most powerful
solution, which works across all application layers.

Amazon Web Services provides CloudWatch for logging and monitoring. The
provided logging mechanisms are very similar to Microsoft Azure. When you have
understood how to do it for Microsoft Azure, you will be able to apply your
knowledge to Amazon Web Services easily and quickly, as you will see in the given
examples.

For more information, you can visit the Amazon Web Services
0 CloudWatch website al https://aws.amazon.com/en/cloudwatch.

Docker does not provide any integrated monitoring or logging services like they
exist for Microsoft Azure or Amazon Web Services. This means that, for adding,
logging, and monitoring functionalities to your ASP.NET Core 2.0 applications in
Docker, you have to use a log file. Furthermore, you have to provide your own
centralized log recovery and analysis mechanisms to get consistent logging and
monitoring data.

However, since applications can be instantiated multiple times, this may not be the
best approach. Instead, you could also directly log to a centralized console, which
should be the most efficient and most appropriate solution in a Docker environment.

https://aws.amazon.com/en/cloudwatch

Logging in Microsoft Azure

Ok, now that you have seen several solutions for logging in different environments,
we will focus on Microsoft Azure. What happens if you take on the role of IT
Operations, who need to diagnose why an application is not working as expected in
Microsoft Azure? What are your choices, and what would be the best solution? That
1s exactly what you will learn in this section.

If you remember, we have already talked about logging on an application level in cha
pter 4, Basic Concepts of ASP.NET Core 2.0 - Part 1, of this book. There, we added
logging application events into a log file in a subfolder called 104s of the application
folder. This folder needs to be synchronized and monitored for disk space usage
because, when it gets too big, it may as well become a failure reason by itself.

Furthermore, there are multiple sources of logs, since application logs and
environmental logs (IIS, Windows, SQL Server, and so on) are handled separately.
You have to combine all the information to get a holistic view of what is happening
behind the scenes. This is very complicated and very time-consuming.

As you can see, it requires a lot of manual work to read and analyze application logs
in this case. This becomes even more of an issue if you need to monitor and
supervise a high number of applications at the same time. Doing everything
manually is not really an option. We need to find a better solution.

Moreover, there are better and more integrated solutions in Microsoft Azure! If you
deploy your applications in Azure Application Services, for instance, you can use the
Azure Diagnostic Application Service. This feature can be enabled directly from the
portal. Additionally, application logs and environmental logs are automatically
centralized in a single place, which helps to find problems in a much quicker and
more straightforward way.

Enabling Microsoft Azure Application Service diagnostic is very easy, so let's see
how to do that now:

1. Open the Tic-Tac-Toe Web Project in Visual Studio 2017 and add a new
extension called AzureAppServiceDiagnosticExtension 1n the extensions folder:

public class AzureAppServiceDiagnosticExtension
{
public static void AddAzureWebAppDiagnostics (IConfiguration
configuration, ILoggingBuilder loggingBuilder)
{
loggingBuilder.AddAzureWebAppDiagnostics () ;
}

Update the addroggingconfiguration method in the Configure Logging Extension,
and add a case for the newly added Azure Application Service Diagnostic
Extension from before:

public static class ConfigureloggingExtension
{
public static ILoggingBuilder AddLoggingConfiguration (this
ILoggingBuilder loggingBuilder, IConfiguration configuration)
{
var loggingOptions = new Options.LoggingOptions();
configuration.GetSection ("Logging") .Bind (loggingOptions) ;

foreach (var provider in loggingOptions.Providers)
{
switch (provider.Name.ToLower ())
{
case '"console":
{
loggingBuilder.AddConsole () ;
break;
}
case "file":
{
string filePath = System.IO.Path.Combine (
System.IO.Directory.GetCurrentDirectory(), "logs",
$"TicTacToe {System.DateTime.Now.ToString(
"ddMMyyHHmm") } . log") ;
loggingBuilder.AddFile (filePath,
(LogLevel)provider.LogLevel) ;
break;
}
case "azureappservices":
{
AzureAppServiceDiagnosticExtension
.AddAzureWebAppDiagnostics (configuration,
loggingBuilder) ;
break;
}
default:
{
break;

}

}

return loggingBuilder;

}

Update the appsettings.ison configuration file and add a new provider for Azure
App Services:

"Logging": {
"Providers": [
{
"Name": "Console",
"LogLevel": "1"
bo
"Name": "File",
"LogLevel": "2"
bo
{
"Name": "azureappservices"
}
1,
"MinimumLevel™: 1

Update the program.cs file, change the WebHost builder configuration to enable
IIS integration, and add the logging configuration as follows:

public static IWebHost BuildWebHost (string[] args) =>
WebHost.CreateDefaultBuilder (args)
.CaptureStartupErrors (true)
.UseStartup ("TicTacToe")
.PreferHostingUrls (true)
.UseApplicationInsights ()
.UselIISIntegration()
.ConfigurelLogging ((hostingcontext, logging) =>
{
logging.AddLoggingConfiguration (
hostingcontext.Configuration) ;
})
.Build();

Publish the Tic-Tac-Toe Web Application to an Azure App Services; if you do
not know how to do that, you can look it up in chapter 10, Hosting and
Deploying ASP.NET Core 2.0 Applications.

Go to the Microsoft Azure Portal Website, click on App Services in the menu,
select the Tic-Tac-Toe App Service you have deployed, and scroll down until
you see the Monitoring section:

L Search (Cirl+/)

ARl

AP definition
&y CORS
MONITORING
P Application Insights
' Alerts
Diagnostics logs

Bl Logstream

7. In the Monitoring section, click on the Application Logging (Filesystem) On
button, select Verbose Level, enable Detailed error messages and Failed request

l_l:-\:.: LA aiil

Application Logging (Filesystem) @
Off Cn

Application Logging (Blob) @

Web server logging @

Off Storage | File System

Detailed error messages @

Off Cn

Failed request tracing @
Off Cn

tracing, and then click on the Save button:

D Search (Cirf+/)

ARl

API definition

G5} CORS

MONITORING
@ Application Insights
' Aleris
Diagnostics logs
&l Log stream

sl Process explorer

H Save M Discard

Application Legging (Filesystem) @

or I

Application Logging (Blob) @
on
Web server logging @
Storage | File System
Detailed error messages @

or N

Failed request tracing @

or I

The Tic-Tac-Toe application will now start logging data into the Azure App Service
filesystem. However, this is only the first step. You will need to retrieve the logs to

be able to analyze them.

There are multiple ways of accessing the logs, depending on your specific needs.
Some of them are specified here:

e Using FTP or FTPS to browse the 10gs folder

e Configuring Azure Blob storage and then downloading the blob content, which
also has the benefit of centralizing logs for multiple services in a single place

e Using a dedicated application to retrieve logs automatically

Fortunately, the community has already worked on an open source solution on
GitHub, called Azure Web Site Logs Browser Extension, which you can use. This
solution consists of adding an extension to your Azure Portal.

You will now see how to add the Azure Web Site Logs Browser Extension to the
Microsoft Azure Portal to analyze logs:

1. Go to the Microsoft Azure Portal Website, click on App Services in the menu,
select the Tic-Tac-Toe App Service you have deployed in the preceding
example, scroll down until you see the Development Tools section, click on
Extensions, and then on the Add button:

£ Search (Cerl+/) o= Add
DEVELOPMENT TOOLS Extensions add functionality to your App Service. Click add to see the list of available
extensions.
Clone app
Bl Console NAME VERSION UPDATE AVAILAELE
I\ Advanced Tools ASP.MET Core Extensions 201 Mo

"+ App Service Editar (Preview)
&€ Performance test

y Resource explorer
= lesting in production

Extensions

2. Select and install Azure Web Site Logs Browser Extension published by Amit
Apple:

) i 3% Azure Web Site Logs Browser
1 Choose Extension . S .
Choose an extension

i*i Azure Websites Event Viewer

2 Batch Shipyard

3. After the installation has been finished, the extension will be added to the active
extensions for your Tic-Tac-Toe App Service:

o= Add

Extensions add functionality to your App Service. Click add to see the list of available
a extensions.

MAME VERSION UPDATE AVAILAELE
ASP.MET Core Extensions 201 Mo
Azure Web Site Logs Browser 1.7.2 Mo

4. Click on Azure Web Site Logs Browser Extension and you will see an overview
with the extension name, its author, and version number, as well as other
additional information. Click on the Browse button:

EI Azure Web Site Logs... # O X

E Browse C} Jpdate 0 Delete

NAME
Azure Web 5ite Logs Browser

AUTHORS
Amit Apple

WVERSION
1.7.2

5. A new browser window will be opened automatically, where you can see
different log file sources; click on File System - Application Logs:

Azure Web Site Log Browser

4 Log File / Directory Date Size
W File System - Application Logs 0
W IS Detailed Errors 0
™ File System - Kudu Logs 0
™ File System - Log Files Directory 0

Showing 1 to 4 of 4 entries

6. Select a log file with the diagnostic data you need to analyze:

Azure Web Site Log Browser

File System - Application Logs
D:\home\LogFiles\Application

4 Log File / Directory Date Size

diagnostics-20171128.txt 11/28/2017 2:16 PM 18800

Showing 1 to 2 of 2 entries

7. Read and scroll through the color-coded log file content. You will automatically
see generated log entries, as well as log entries you have added by yourself in
the preceding chapters:

N7 Azure Web Site Log Browser

diagnostics-20171128.txt Search Q

2817-11-28 22:57:18.723 +0@:0@ [Information] Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker: Executing action method TicTacToe.Controllers u;erﬂegistr‘atiﬂnfnntﬂ
2017-11-28 22:57:18.723 +0@:00 [Debug] Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker: Executed action method TicTacToe.Controllers.UserRegistrationController.
2017-11-28 22:57:18.724 +00:00 [Debug] Microsoft.AspNetCore.Mvc.Razor.RazorViewEngine: View lookup cache hit for view "Index' in controller 'UserRegistration’.

2017-11-28 22:57:18.724 +98:00 [Debug] Microsoft.AspNetCore.Mvc.ViewFeatures.Internal.ViewResultExecutor: The view 'Index’ was found.

2@17-11-28 22:57:18.731 +0@:0@ [Information] Microsoft.AspNetCore.Mvc.ViewFeatures.Internal.ViewResultExecutor: Executing ViewResult, running view at path /Views/UserRegi

2817-11-28 22:57:18.732 +00:00 [Debug] Microsoft.Extensions.localization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for 'Title' in 'TicTacToe
2017-11-28 22:57:18.732 +008:00 [Debug] Microsoft.Extensions.lLocalization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for 'SubTitle’ in "TicTac
2917-11-28 22:57:18.732 +98:00 [Trace] Microsoft.AspNetCore.DataProtection.KeyManagement.KeyRingBasedDataProtector: Performing protect operation to key {c2f446e2-f388-46e
2017-11-28 22:57:18.732 +9@8:00 [Trace] Microsoft.AspNetCore.DataProtection.KeyManagement.KeyRingBasedDataProtector: Performing protect operation to key {c2f446e2-f388-46e
2017-11-28 22:57:18.733 +@8:0@ [Debug| Microsoft.AspetCore. Antiforgery.Internal. DefaultAntiforgery: A new antiforgery cookie token was created.

2017-11-28 22:57:18.733 +98:00 [Debug] Microsoft.Extensions.localization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for 'FirstMame® in 'TicTa
2017-11-28 22:57:18.733 +00:00 [Debug] Microsoft.Extensions.lLocalization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for 'FirstName' in 'TicTa
2017-11-28 22:57:18.733 +908:00 [Debug] Microsoft.Extensions.localization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for 'FirstNameRequired' i
2017-11-28 22:57:18.733 +9@8:00 [Debug] Microsoft.Extensions.localization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for ‘LastName’ in "TicTac
2817-11-28 22:57:18.734 +00:80 [Debug] Microsoft.Extensions.localization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for ‘LastName® in "TicTac
2017-11-28 22:57:18.734 +0@:00 [Debug] Microsoft.Extensions.Localization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for 'LastNameRequired’ in
2017-11-28 22:57:18.734 +08:00 [Debug] Microsoft.Extensions.localization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for 'Password’ in "TicTac
2017-11-28 22:57:18.734 +9@8:00 [Debug] Microsoft.Extensions.localization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for 'Password’ in "TicTac
2017-11-28 22:57:18.734 +908:00 [Debug] Microsoft.Extensions.localization.ResourceManagerStringlocalizer: ResourceManagerStringlocalizer searched for 'PasswordRequired’ in
2917-11-28 22:57:18.739 +98:00 [Debug] Microsoft.AspNetCore.Mvc.Razor.RazorViewEngine: view lookup cache hit for view ' _Menu' in controller 'UserRegistration’.

2@17-11-28 22:57:18.739 +80:00 [Debug] Microsoft.Extensions.Localization.ResourceManagerstringlecalizer: ResourceManagerStringlocalizer searched for 'DesktopTitle’ in ‘T>i'

Logging in Amazon Web Services

If you are using Amazon Web Services, then adding logging to your ASP.NET Core
2.0 application will be very straightforward for you. You just have to write your
application logs to the console, and the applications, which are deployed in Amazon
Web Services Elastic Beanstalk, will automatically store their logs in Amazon Web
Services CloudWatch. You will then be able to use the CloudWatch dashboard to
analyze what is happening. This is comparable to Application Insights and its
dashboard, which you have seen in the preceding example.

You will now learn how to access logs for applications you have deployed to the
Amazon Web Services Elastic Beanstalk:

1. Publish Tic-Tac-Toe Web Application to Amazon Web Services Elastic
Beanstalk; if you do not know how to do that, you can look it up in chapter 10,
Hosting and Deploying ASP.NET Core 2.0 Applications.

2. Start the application, go to AWS Management Console, enter seanstaik in the
AWS Services textbox, and click on the displayed link; you will be redirected to
the Elastic Beanstalk welcome page:

Services Resource Groups ~ *

NS canyireo Halnfi il tine
vl Sl Ul Lo

‘. A Q] I?JT Manage your costs
Elastic Beanstalk Get realtime billing alerts based on your cost
Run and Manage Web Apps and usage budgets. Start now
i e i Mo oy Ay e R L C 2 e
® Compute @5 Developer Tools 4 Internet of Things @.‘E Create an organization
EC2 CodeStar AWS loT Use AWS QOrganizations for policy-based
EC2 Container Service CodeCommit AWS Greengrass management of multiple AWS accounts. Start
Lightsail &' CodeBuild now
Elastic Beanstalk CodeDeploy e
: @ Contact Center
Lambda CodePipeline

Batch X-Ray Amazon Connect

3. On the Elastic Beanstalk welcome page, select the TicTacToe application you
deployed in the preceding step, as shown here:

Learn More « Al Applications

Get started using Elastic Beanstalk My First Elastic Beanstalk Application
Medify the code
Create and connect to a database
Add a custom domain Default-Environment
Featured Environment tier: Web Server
Platform: 64bit Windows Server 2016 v1.2.0 running IIS
Create your own custom platform 100

| Running versions: v20171026203846
Command Line Interface (v3) Last modified: 2017-10-26 13:44:20 UTC-0700

URL: Default-Envi nt.kkhmbwztrd. st-1.elast...
Installing the AWS EB CLI Cath NI R EEE S SR e

EB CLI Command Reference

If you want to use a command line to create, tictactoe
manage, and scale your Elastic Beanstalk

applications, please use the Elastic Beanstalk
Command Line Interface (EB CLI). Tictactoe-dev

Get Started

% mkdir HelloWorld

% cd HelloWorld

$ eb init -p PHP

$ echo "Hello World™ » index.html
$ eb create dev-env

Environment tier: Web Server

Platform: 64bit Windows Server 2016 v1.2.0 running IS
10,0

Running versions: v20171204142829
Last modified: 2017-12-04 07:15:17 UTC-0800
URL: tictactoedev.us-east-1.elasticbeanstalk.com

% eb open

4. Click on Logs in the left menu and click on Request Logs | Last 100 Lines; you
can now download the log files you need to analyze:

A” App“C&thhS > t|CtaCtoe > TIC‘taCtOE-dEV (Environment ID: e-mhexd4xxzm, URL: tictactoedev.us-east-1.elasticheanstalk.com) Actions v

Dashboard

Logs Request Logs ~ < Refresh
Configuration
Click Request Logs to retrieve the last 100 lines of logs or the entire set of logs from each EC2 instance. Learn more LaeLI 00 Lines
Logs
|
— Log file Time EC2 instance Type
Monitoring
Download 2017-12-04 09:09:33 UTC-0800 i062e77c44b002e6ba Last 100 Lines
Alarms

5. Download a log file and check its content:

AlSDeployment. log:

2017-12-84 12:47:84,603 INFO
2017-12-84 12:47:85,587 INFO
2817-12-84 12:47:85,587 INFO
2017-12-84 12:47:86,64% INFO
2017-12-84 12:47:88,25% INFO
2017-12-84 12:47:88,25% INFO
2017-12-84 12:47:88,25% INFO
2017-12-84 12:47:88,25% INFO
2017-12-84 12:47:88,25% INFO
2017-12-84 12:47:88,25% INFO
2817-12-84 12:47:88,25% INFO
2017-12-84 12:47:88,25% INFO
2817-12-84 12:47:88,274 INFO
2017-12-84 12:47:88,274 INFO
2017-12-84 12:47:88,298 INFO
2817-12-84 12:47:88,298 INFO
2017-12-84 12:47:88,306 INFO
2817-12-84 12:47:88,306 INFO
2017-12-84 12:47:88,321 INFO
2017-12-84 12:47:88,321 INFO
2817-12-84 12:47:88,337 INFO
2017-12-84 12:47:88,337 INFO
2817-12-84 12:47:88,337 INFO
2017-12-84 12:47:88,337 INFO
2017-12-84 12:47:88,352 INFO
2817-12-84 12:47:88,352 INFO
2017-12-84 12:47:088,368 INFO
2017-12-84 12:47:88,368 INFO
2817-12-84 12:47:88,39% INFO
2017-12-84 12:47:88,39% INFO
2817-12-84 12:47:88,415 INFO
2817-12-84 12:47:88,415 INFO
2017-12-84 12:47:88,415 INFO
2017-12-84 12:47:88,415 INFO
2017-12-84 12:47:088,415 INFO
2817-12-84 12:47:88,415 INFO
2017-12-84 12:47:88,415 INFO

AbisBeanstalkCfnDeployApp.DeployApp - Reading configuration from c:\Program Files\Amazen\ElasticBeanstalk\config\containerconfiguration
AbisBeanstalkCfnDeploy.ContainerConfiguration - Setting SiteMName to 'Default Web Site
AkliSBeanstalkCfnDeploy.ContainerConfiguration - Setting AppName to '/’

AbisBeanstalkCfnDeploy.Container - Could not find ElasticBeanstalk/environment section, creating in applicationHost.config
AbiSBeanstalkCfnDeploy.DeploymentUtils - Deleting directory (Default Web Site\aspnet_client\system web\2_@&_58727).
DeploymentLog - Deleting directory (Default Web Site\aspnet_client\system web\2 8 _58727).
ApsBeanstalkCfnDeploy.DeploymentUtils - Deleting directory (Default Web Sitel\aspnet client\system web\4 @ 38319).
Deploymentlog - Deleting directory (Default Web Sitelaspnet_client\system_web‘\4_86_38319).
AbisBeanstalkCfnDeploy.DeploymentUtils - Deleting directory (Default Web Site\aspnet_client\system_web).
DeploymentLog - Deleting directory (Default Web Site\aspnet_client\system web).

AWSBeanstalkCfnDeploy .DeploymentUtils - Deleting directory (Default Web Sitelaspnet_client).

DeploymentLog - Deleting directory (Default Web Site\aspnet_client).

AlSBeanstalkCfnDeploy.DeploymentUtils - Adding directory (Default Web Site\bin}.

DeploymentlLog - Adding directory (Default Web Sitel\bin)

AbisBeanstalkCfnDeploy.DeploymentUtils - Adding file (Default Web Site\bin\AWSBeanstalkHelloWorldWebApp.dll).
DeploymentlLog - Adding file (Default Web Site\bin‘%AWSBeanstalkHellolorldWebApp.dll)
AbiSBeanstalkCfnDeploy.DeploymentUtils - Adding file (Default Web Site\bin\AWSSDK.Core.dll).

Deploymentlog - Adding file (Default Web Site\bin\AWSSDK.Core.dll)

AbSBeanstalkCfnDeploy.DeploymentUtils - Adding file (Default Web Site\bin\AWSXRayRecorder.dll).

DeploymentlLog - Adding file (Default Web Site\bin‘AWSXRayRecorder.dll).

AlSBeanstalkCfnDeploy.DeploymentUtils - Adding file (Default Web Site\bin\logdnet.dll)

DeploymentLog - Adding file (Default Web Site\bin‘log4net.dll).

AlSBeanstalkCfnDeploy.DeploymentUtils - Adding file (Default Web Site\bin\Mewtonsoft.Json.dll)

Deploymentlog - Adding file (Default Web Site\bin‘\Mewtonsoft.Json.dll).

AbiSBeanstalkCfnDeploy.DeploymentUtils - Adding file (Default Web Site\bin\System.Net.Http.Formatting.dll)
DeploymentlLog - Adding file (Default Web Site\bin‘System.Net.Http.Formatting.dl1l).

AbSBeanstalkCfnDeploy .DeploymentUtils - Adding file (Default Web Site\bin\System.wWeb.Http.dll).

DeploymentlLog - Adding file (Default Web Site\bin‘System.Web.Http.dll).

AlSBeanstalkCfnDeploy.DeploymentUtils - Adding file (Default Web Site\bin\System.Web.Http.WebHost.d1l1}.
DeploymentLog - Adding file (Default Web Site\bin\System.Web.Http.WebHost.dll).
AlSBeanstalkCfnDeploy.DeploymentUtils - Adding file (Default Web Site\Default.aspx)

DeploymentlLog - Adding file (Default Web Site\Default.aspx).

AbisBeanstalkCfnDeploy.DeploymentUtils - Adding file (Default Web Site\Global.asax).

DeploymentlLog - Adding file (Default Web Site\Global.asax).

AbSBeanstalkCfnDeploy.DeploymentUtils - Deleting file (Default Web Sitehiisstart.htm).

DeploymentlLog - Deleting file (Default Web Site\iisstart.htm).

AlSBeanstalkCfnDeploy.DeploymentUtils - Deleting file (Default Web Site\iisstart.png).

el e e e e e e e o e o e e o e e e e e el el el

You have seen how to handle logging in various environments, on-premises and in
the cloud; the next section will introduce you to monitoring, and how it can aid you
to analyze problems in real time.

Monitoring ASP.NET Core 2.0
applications

In the previous section, you saw how to generate and analyze application logs for
your ASP.NET Core 2.0 web applications, which will help you better understand
unexpected behavior and application bugs. This will help IT Operations after an
event has occurred to trace the different steps until the root cause of a problem has
been found.

However, it will not help them to constantly monitor and supervise applications,
since using logging mechanisms for this case will result in bad performances and
negative overall application impacts. Logging is not the right solution for continuous
monitoring!

The goal of monitoring is to analyze and supervise a large number of application
metrics in real time, and to automatically detect application anomalies. The metrics
need to have a very low message footprint for this to work efficiently.

The most commonly known monitoring frameworks for ASP.NET Core 2.0 are
listed here:

e EventSource with ETW, which is very fast, and strongly typed, was introduced
with .NET 4 and works only on Windows

¢ DiagnosticSource, which is very similar to EventSource, works cross-platform,
like EventSource with ETW for Windows and like LTTNG for Linux

For more information on ETW, go to the following website:
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363668 (v=vs.85
) .aspx

For more information on LTTNG, go to the following website:
http://lttng.org

On top of these frameworks, most public cloud providers supply their own
monitoring solutions. For Microsoft Azure, it is recommended to use Azure
Application Insights for instance, while you should use CloudWatch for Amazon
Web Services. These two monitoring solutions are fully SaaS and much more

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363668(v=vs.85).aspx
http://lttng.org

integrated with the respective public cloud provider portals.

Monitoring on-premises and in
Docker

There are no standard monitoring solutions for on-premises and Docker
environments as such, but there are some community-approved monitoring
frameworks, such as EventSource or DiagnosticSource, which you can use to
implement your own solutions.

Since these frameworks respect market standards such as ETW, IT Operations will
be able to connect your ASP.NET Core 2.0 web applications using their standard
monitoring tools, and they will like that very much!

An example would be Perfmon on Windows, which can receive ETW events and
generate diagrams for monitoring purposes.

When using DiagnosticSource, you start by creating a listener. This listener receives
application events and provides event names and parameters. The easiest way to
create a listener is to create a POCO class, which contains methods that needs to be
decorated with the (piagnosticname] decorator, and is designed to accept parameters of
the appropriate types.

The following example explains how to use DiagnosticSource to add monitoring to
your ASP.NET Core 2.0 applications in on-premises and Docker environments:

1. Open Tic-Tac-Toe Web Project in Visual Studio 2017, and add a new folder
called monitoring; in this folder, add a new class called
ApplicationDiagnosticListener as follows:

public class ApplicationDiagnosticListener
{
[DiagnosticName ("TicTacToe.MiddlewareStarting")]
public virtual void OnMiddlewareStarting (
HttpContext httpContext)
{
Console.WriteLine ($"TicTacToe Middleware Starting,
path: {httpContext.Request.Path}");
}

[DiagnosticName ("TicTacToe.NewUserRegistration")]
public virtual void NewUserRegistration (string name)

{

Console.WriteLine ($"New User Registration {name}");
}
}

2. Update the Configure method in the Startup ClaSS, add a DiagnosticListener, and
subscribe to the app1icationbiagnosticristener as Shown here:

public void Configure (IApplicationBuilder app,
IHostingEnvironment env, DiagnosticListener diagnosticListener)
{
var listener = new ApplicationDiagnosticListener();
diagnosticListener.SubscribeWithAdapter (listener);

3. Update Communication Middleware, add a new private member called
_diagnosticsource, and update the constructor as follows:

private readonly RequestDelegate next;

private DiagnosticSource _diagnosticSource;

public CommunicationMiddleware (RequestDelegate next,
DiagnosticSource diagnosticSource)

{
_next = next;
_diagnosticSource = diagnosticSource;

}

4. Update the rnvoke method in Communication Middleware, and write an event if
the diagnostic source is enabled:

public async Task Invoke (HttpContext context)
{
if (context.WebSockets.IsWebSocketRequest)
{
if (diagnosticSource.IsEnabled (
"TicTacToe.MiddlewareStarting"))
{
_diagnosticSource.Write ("TicTacToe.MiddlewareStarting",
new
{
httpContext = context
})

5. Change the debugging settings in Visual Studio 2017 and set the project and
emulator to ricracroe:

ﬂ[{ TicTacToe - Microsoft Visual Studio Preview

File Edit View Project Build Debug Team Tools Test Analyze Window Help

< I -2 W - = | Debug =~ AnyCPU = TicTacToe ~ | P TicTacToe ~ 5 = | p¥ _
P TicTacToe

115 Express
TicTacToe

Web Browser (Microsoft Edge)

Browse With...

More Emulators...

1210(dxg P2lgQ J2s TS Xogjoo) R

6. Start the application in Debug mode by pressing F'5. A console will be opened
automatically; register a new user and check the console output; you will see
the TicTacToe Middleware Starting message, as shown here:

roller.EmailConfirmation (T
roller.EmailConfirmation (T

rset=utf-8

As already mentioned, sending logging and monitoring data to the console is a
possible solution for on-premises environments, and a recommended solution for
Docker environments.

Monitoring in Microsoft Azure

Microsoft Azure provides an integrated solution called Azure Application Insights,
which allows IT Operations to monitor applications, resources, and services in real
time. It works for the whole Azure subscription, and includes dashboards and

diagrams for quick access to analytic data.

The following diagram illustrates some of the Azure Application Insights features:

- App Map Smart Detection VS Search

- Understand component Detects anomalies and /_3 Search and analyze your
dependencies alerts you telemetry in VS

—— Analytics Codelens Live Metrics

ssa 8] by fdata i Vi hod perfi See the effi f web

- uery terabytes of data in i2w method performance ee the effects of your we

Just seconds

inline with your code in V3

app in real time

Let's use Application Insights in an easy-to-understand example; for that, you will
start by creating a new Azure Application Insights resource in Microsoft Azure with
its corresponding API key:

1. Go to Microsoft Azure Portal Website, click on App Services in the menu,
select the Tic-Tac-Toe App Service you have deployed and configured in the
preceding example, scroll down until you see the Monitoring section, click on
Application Insights, fill out all the fields, and click on the Ok button. A new
Application Insights Resource will be created for you:

L Search (Cinl+/)

MONITORING

@ Application Insights

W Alerts

g Diagnostics logs
Log stream

s Process explorer

@ Application Insights

Application Insights helps you detect and diagnose quality issues in your web apps and web
services, and helps you understand what your users actually do with it. Learn more

® Create new resource

* Mew resource name * Location
ictactoe ERY West Europe v

(O Select existing resource

: SEE.'T;‘?...

2. Click on Monitor in the menu. A new tab will be displayed. Go to the Solution
section and choose Application Insights, then select the created Application

Insights Resource:

f Subscriptions

Resource groups

All resources

App Services

SOL databases

Crverview

SHARED SERVICES

B Aleris

il Metrics

ﬁi Metrics (preview)

P Log Analytics

Virtual machines (classic) B Activity log
Virtual machines Service Health

Cloud services (classic) SOLUTIONS

? Application Insights

. Azure Active Directory & Metwork watcher

‘- Monitor

:-F" Management solutions

3. The Application Insights Resource tab will be displayed; scroll down until you
see the Configure section, and then click on API Access:

L Search (Ctri+/)

COMFIGURE

di Getting started

' Previews
1! Properties
W Alerts
& Smart Detection settings
() Features + pricing

=4 Data volume management
() Continuous export
& Performance Testing

APl Access

Work ltems

Q) Search ﬂi Metrics Explorer

Essentials

- Live Stream

Click to
Alerts configure

Health

Owverview timeline
TICTACTOE

100ms
20msz
50msz
Admsz
20ms
Oms

25 fnalytics

Users

@ Time range

L Smart Detection

0

Detections (7d)

Learn how to collect server response time data.

{) Refrash +++ More

Availability App map

I SERVER RESPONSETL.. @

100ms
20msz

50mz
PR Learn how to collect browser page load data.

20ms
Oms

I PAGE VIEW LOAD TIME &

100
50 Learn how to collect server request data. | SERVER REQUESTS @

4. Click on Create API key to be able to generate a key, which will be used for the
Tic-Tac-Toe sample application:

O Search (Ctrl+/) + Create APlkey [Delete APl ke 4 Help

Application ID @
CONFIGURE

21016147-3b51-43c0-8f68-2f624753cda2
Getting started

' Previews APl KEY DESCRIPTION LAST USED CREATED ON PERMISSIONS
! Properties You haven't set up any AP| keys. Click "Create APl key' to get started. Learn more
W Alerts

& Srart Detection settings

s Features + pricing

l# Data volume management
{) Continuous export

& Performance Testing

APl Access

Work ltems

5. Configure the API key access rights (Read telemetry, Write annotations,
Authenticate SDK control channel) and give it a meaningful name:

Create an API key to read Application Insights data.

APl keys are used by applications outside the browser to access this resource,

Your APl keys should be managed like passwords. Keep them secret.

Provide a description to help you identify this AP| key in the future, @

TicTacToe Application Insights Key W

Choose what this APl key will allow apps to do:
Read telemetry @

Write annotations &
Authenticate SDK control channe! @&

You have now finished the creation and configuration of the Application Insights
resource in Microsoft Azure. Visual Studio 2017 contains some advanced built-in
features that will allow you to connect your ASP.NET Core 2.0 application directly
from within the IDE.

In the next steps, you will configure the ASP.NET Core 2.0 web application for
Azure Application Insights:

1. Open Tic-Tac-Toe Web Project, click on Project in the top menu, and select
Add Application Insights Telemetry...:

’qu TicTacToe - Microsoft Visual Studio Preview
File Edit View | Project | Build Debug Team

Chverdiew
% Add Class... Shift+Alt+C
i1 Add Mew ltem...
a0 Add Existing ltem... Shift+Alt+ A

*? Add Application Insights Telemetry... I}
Application Insights

2. The Application Insights Configuration page will be displayed; click on the
Start Free button:

Applicston Insights Configuration = > [
@ Application Insights

Gain insights through telemetry, analytics and smart detection

Detect

= and diagnose exceptions and application performance issues
Monitor
ll wehbsites on Azure, hosted containers, on-premises and with other cloud providers
with your DevOps pipeline using Visual Studio, V5T5, GitHub, and web hooks

Start Free

3. Enter your account and subscription details, select a resource, and click on the
Register button:

@ . Integrate
0

Resource

tictactoe (Existing resocurce) -

Configure settings...

Base Monthly Price Free
Included Data 1GB/ Month
Additional Data 52.30 per GB*
Data retention (raw and aggregated data) 90 days

*Pricing is subject to change. Visit cur pricing page for most recent pricing details.

4. Republish the Tic-Tac-Toe Web Application to the Microsoft Azure

AppService so that the Application Insights configurations are applied.

5. Go to Microsoft Azure Portal Website, click on Monitor in the menu, scroll
down to the Solutions section and click on Application Insights, and then select
the newly created Application Insights Resource.

6. The Application Insights Dashboard will be displayed; it serves to get a global
overview, as well as to dive deep into the different monitoring areas:

o tictactoe

Application Insights - Last 24 houwrs (30 minute granularity) - ASP.MET web application

O Search (Ctrl+/)

@ Overview
B Activity log

.:,.'. Access control (JAM)

> 4 Tags

4 Diagnose and solve problems

INVESTIGATE
: Application map
& Smart Detection
A Live Metrics Stream
ilil Metrics Explarer
let Metrics (preview)
P Search

Availability

Q\ Search ﬁ;i Metrics Explorer E Analytics

@ Time range O Refresh *++ More

e MEW - Analyze conversion rates within your app with the Funnels tool. =

Essentials

A Live Stream
0 Click to 2
Alerts configure Users

Health

Owverview timeline
TICTACTOE

1,000ms
E00ms
600ms
400ms
200ms
Omz=

Q4 Smart Detection

0 = ||

Detsctions (7d) | Availability App map

‘ SERVER RESPONSETL.. @
I 828.91 s

20=
155
1=

55

0=

PAGE VIEW LOAD TIME @

19.55:

4

(4]

SERVER REQUESTS ©

13

7. Click on Search to see the application flow; here, you can see that the error has
occurred during the user registration process:

% Search

Last 24 hours (30 minute granularity) - tictactoe

o Time range Y Filters O Refresh '9 Reset =2 Analytics #++ More
Search @
Filtered on

9 total results between 11/29/2017 5:10 AM and 11/30/2017 5:10 AM

4
3

*A M 120M 6 PM Now 30
RECQUEST VIEW EXCEPTION TRACE EWEMT DEPENDENCY AVAIL
6 2 1 0 0 0 0

I 11/30/2017 5:04:11 AM - EXCEPTION

Value cannot be null. Parameter name: user

Exception type: Systern.ArgumentMullException

Failed method: TicTacToe Services. UserService + < GetEmailConfirmationCode>d__5.MoveNext
Problem Id: System.ArgumentNullException at TicTacToe.Services.UserService+ <GetEmailConfi..

I 11/30/2017 5:04:10 AM - REQUEST

GET UserRegistration/EmailConfirmation

Request URL: http://tictactoeexample2017.azurewebsites.net/UserRegistration/EmailConfirmati...
Response code: 404 Server response time: 1.36 s

Request URL path: /UserRegistration/EmailConfirmation

You may have already seen these errors in chapter 10, Hosting and Deploying
ASP.NET Core 2.0 Applications, after having deployed the Tic-Tac-Toe application
to either Microsoft Azure or Amazon Web Services, as well as in the preceding
logging section in this chapter. Everything is working locally and in Docker, but
when you deploy it to the public cloud, it is not working anymore. Very strange! We
cannot wait any longer; it really needs to be fixed!

We will now analyze the problem in more detail, and try to understand what needs to
be done to solve it:

1. In Azure Application Insights, you can clearly see that there is a problem with
the user registration, more specifically, a 404 not Founa HTTP response.

2. When looking into the log file, as explained in the preceding section, you can
see that the UserRegistrationEmail View in the EmailTemplates folder cannot be
found, which then leads to additional errors:

Azure Web Site Log Browser

diagnostics-20171130.txt Q

2017-11-38 22:29:25.598 +80:08 [Warning] Micresoft.AspNetCore.Identity.UserManager: User (null) validation failed: DuplicateUserhame

2817-11-39 22:29:26.426 180:80 [Error]| Microsoft.AspNetCore.Diagnostics.ExceptionHandlerMiddleware: An unhandled exception has eccurred: Unable to find
/Views//EmailTemplates/UserRegistrationEmail.en-US.cshtml
/Views//EmailTemplates/UserRegistrationEmail.en.cshtml
/Views//EmailTemplates/UserRegistrationEmail.cshtml
/Views/Shared/EmailTemplates/UserRegistrationEmail en-Us.cshiml
/Views/Shared/EmailTemplates/UserRegistrationEmail.en.cshtml
/Views/Shared/EmailTemplates/UserRegistrationEmail. cshtml
System.InvalidOperationException: Unable to find view 'EmailTemplates/
Views//EmailTemplates/UserRegistrationEmail.en-US.cshiml

istrationEmail’. The following locations were searched

Views//EmailTemplates/UserRegistrationEmail.en.cshtml
/Views//EmailTemplates/UserRegistrationEmail.cshtml
/Views,/Shared/EmailTemplates/UserRegistrationEmail.en-Us.cshtml
/Wiews/Shared/EmailTemplates/UserRegistrationEmail.en.cshitml
/Views/shared/EmailTemplates/UserRegistrationEmail. cshtml
at TicTacToe.ViewEngines.EmailViewEngine.FindView(ActionContext actionContext, String viewName) in C:\Book\Source\TicTacToe\TicTacToe\ViewEngines\Ema
at TicTacToe.ViewEngines.EmailviewEngine.<RenderEmailToString>d 5°1.MoveNext() in C:\Book\Source\TicTacToe\TicTacToe\ViewEngines\EmailviewEngine.cs
--- End of stack trace from previous location where exception was thrown ---
at System.Runtime.ExceptionServices.ExceptionDispatchInfo.Throw
at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task
at System.Runtime.CompilerServices.TaskAwaiter HandleMonSuccessAndDebuggerNotification(Task task

at TicTacTee.Helpers.EmailviewRenderHelper.<RenderTemplate>d 3" 1.MoveNext() in C:‘\Book\Source\TicTacToe\TicTacToelHelpers\EmailviewRenderHelper.cs:1

3. Go to the Microsoft Azure Portal Website, click on App Services in the menu,
select the Tic-Tac-Toe App Service you have deployed and configured in the
preceding example, scroll down until you see the Development Tools section,
click on App Service Editor (Preview), and then click on the Go link:

c

Service Editor (Preview)

L
DEVELOPMENT TOOLS App Service Editor (Preview)
Clone app
App Service Editor provides an in-browser editing experience for your App code. Learn more
Console
H\ Advanced Tools Ga 9

App Service Editor (Preview)

4. A new window with the App Service Editor page will automatically be opened;
click on the Search button and search for the emaiitempiates folder, it cannot be
found because all views are precompiled into a single DLL called
TicTacToe.Precompiledviews.dll during the publishing process:

<[» App Service Editor | tictactoeexample2017

SEARCH

EmailTemplates Aa Abl *

stdout 964 201711302216..

TicTacToe_3011172216.l0g...

5. Apply a temporary fix for this problem by deactivating the pre-compilation
during the publish process, open the .csproj file of the Tic-Tac-Toe Web
Project, and add the following configuration elements in the propertycroup
section:

<PropertyGroup>

<PreserveCompilationContext>true</PreserveCompilationContext>
<MvcRazorCompileOnPublish>false</MvcRazorCompileOnPublish>
</PropertyGroup>

reactivate pre-compilation and target the precompiled views in your

o Note that this is only a temporary fix for example purposes. You should
code for a more industrialized and production-ready solution.

6. Republish the Tic-Tac-Toe Web Application to the Microsoft Azure
AppService. Everything should now be working, including the user registration.

Note that you have to register a completely new user with a strong
password such as azertyi2341, for example, otherwise you might get
additional errors if you don't. The application is missing some more

o advanced error handling due to lack of space within the book. Keep in
mind that it was only given to better understand all the ASP.NET Core
2.0 concepts. You can, however, use the sample application as a base
and then refine it as you like, and add the missing error handling.

You have seen how to configure your ASP.NET Core 2.0 web applications and are
able to monitor them by using Azure Application Insights. You have even identified
a problem during the user registration of the application. You have analyzed the
logging and monitoring data, and you were able to solve the problem.

This works exceptionally well with .NET Core code, but, for now, you cannot see if
any errors occur in the JavaScript parts of your applications. Since modern

applications include a large number of JavaScript code, it would be great if you were
able to monitor these parts also, right? Well, you can do that, you just have to adapt
the code a little bit.

Let's see how to adapt the code and be able to monitor JavaScript application flows:

l.

Start Visual Studio 2017 and open the Tic-Tac-Toe Web Project, update the
_viewTmports.cshtml file in the views folder, and add the Application Insights
JavaScript snippet at the bottom of the file as follows:

@inject Microsoft.ApplicationInsights.AspNetCore
.JavaScriptSnippet JavaScriptSnippet

Update the Layout Page and Mobile Layout Page, and add the following line in
the head section of the two pages:

@Html.Raw (JavaScriptSnippet.FullScript)

. Update the startup class and register the Application Insights service as follows:

services.AddApplicationInsightsTelemetry(configuration);

. Republish the Tic-Tac-Toe Web Application to the Microsoft Azure

AppService so that the new Application Insights configuration is applied.

Start the application and open the Application Insights Dashboard in

the Microsoft Azure Portal Website, click on Search, and then click on Filters
and select Request only, deselecting all the other event types:

t

(T_-) Tirme range Y Filters O efresh '9 Reset E Analytics *o+ More b 4

I 12/1/2017 9:44:33 AM - REQUEST
GET /favicon.ico Event Types o
Request URL: http://localhost:39929/favicon.ico Response code: 404

Server response time: 12.25 ms Request URL path: /favicon.ico D Trace 284
I 12/1/2017 9:44:32 AM - REQUEST
GET /lib/bootstrap/dist/css/bootstrap.css Request 114
Request URL: http://localhost:59929/lib/baotstrap/dist/css/bootstrap.css Response code: 200 |:| Pace Vi 57
Server response time: 232,24 ms Request URL path: /lib/bootstrap/dist/css/bootstrap.css RO
I 12/1/2017 9:44:32 AM - REQUEST [] custom Event 14
GET GameInvitation/Index .
Request URL: http://localhost:39929/Gamelnvitation?email=example2 @example.com I:l Exception 8
Response code: 200 Server response time: 867 ms Request URL path: /Gamelnvitation |:| . = »
ependency

I 12/1/2017 9:44:32 AM - REQUEST
GET /lib/bootstrap/dist/js/bootstrap.is [] availability 0
Request URL: http://localhost:39929/lib/baotstrap/dist/js/bootstrap,js Response code: 200
Server response time: 277.25 ms Request URL path: /lib/bootstrap/dist/js/bootstrap.js :

Properties

I 12/1/2017 9:44:32 AM - REQUEST

GET /fcss/site.css

Request URL: http://localhost:59929/css/site.css Response code: 200
Server response time: 376.43 ms Request URL path: /ess/site.css

I 12/1/2017 9:44:32 AM - REQUEST
GET fjs/fsite.]s b City
Request URL: http://localhost:59929/s/site. jsTv=4YyZJOMMRRMazs01U2a)QbeSydQhGIXdaTB...
Response code: 200 Server response time: 468.5 ms Request URL path: /js/sitejs

I 12/1/2017 9:44:32 AM - REQUEST
GET /lib/jquery/dist/jquery.js » Cloud role name
Request URL: http://localhost:39929/lib/jguery/dist/jquery.js Response code: 200
Server response time: 519,12 ms Request URL path: flib/jquery/dist/jquery.js

P Application version

P AspNetCoreEnvironment

P Client IP address

P Cloud role instance

» Country or regicn

Great, you are able to constantly monitor your entire application, whether it be on the
JavaScript side or on the .NET Core side, which will turn out to be quite useful in
case of incorrect behavior.

In the last step, you will learn how to add and monitor custom metrics, which will
allow you to trace business metrics in your applications:

1.

Open the Tic-Tac-Toe Web Project and add a new service named
AzurelApplicationInsightsMonitoringService 1n the services folder:

public class AzureApplicationInsightMonitoringService

{
readonly TelemetryClient telemetryClient =
new TelemetryClient () ;

public void TrackEvent (string eventName, TimeSpan elapsed,
IDictionary<string, string> properties = null)

{

var telemetry = new EventTelemetry (eventName) ;
telemetry.Metrics.Add ("Elapsed", elapsed.TotalMilliseconds);

if (properties != null)
{

foreach (var property in properties)

{
telemetry.Properties.Add (property.Key, property.Value);

}

_telemetryClient.TrackEvent (telemetry);
}

2. Extract the interface from the Azure Application Insights Monitoring Service
anflcallitIMonitoringService.
3. Add anew OptiOI’l called MonitoringOptions in the Options folder:

public class MonitoringOptions
{
public string MonitoringType { get; set; }
public string MonitoringSetting { get; set; }
}

4. Update the conrigure method in the startup class, and register the Azure
Application Insights Monitoring Service if it has been configured in the
appsettings.json Conﬁguration file:

services.AddApplicationInsightsTelemetry(configuration);
var section = configuration.GetSection ("Monitoring");
var monitoringOptions = new MonitoringOptions();
section.Bind(monitoringOptions) ;

services.AddSingleton (monitoringOptions) ;

if (monitoringOptions.MonitoringType ==
"azureapplicationinsights")
{
services.AddSingleton<IMonitoringService,
AzureApplicationInsightsMonitoringService> () ;

5. Update userservice and add a new private member called teiemetryciient, and
then update the constructor to initialize the private member as follows:

private readonly IMonitoringService telemetryClient;
public UserService (RoleManager<RoleModel> roleManager,
ApplicationUserManager userManager, ILogger<UserService>
logger, SignInManager<UserModel> signInManager,
IMonitoringService telemetryClient)

{

_telemetryClient = telemetryClient;

6. Update the RegisterUser method in the userservice to use the rrackevent method,
and then add a custom metric called registeruser as follows:

finally
{
stopwatch.Stop () ;
_telemetryClient.TrackEvent ("RegisterUser", stopwatch.Elapsed);
_logger.LogTrace ($"Start register user {userModel.Email}
finished at {DateTime.Now} - elapsed
{stopwatch.Elapsed.TotalSeconds} second(s)");

7. Update the appsettings.json configuration file, add a new wmonitoring section, and
configure it for Azure Application Insights:

"Monitoring": {
"MonitoringType": "azureapplicationinsights",
"MonitoringSettings": ""

}

8. Republish the Tic-Tac-Toe Web Application to the Microsoft Azure
AppService so that the new Application Insights configurations are applied.

9. Start the application and open the Application Insights Dashboard on the
Microsoft Azure Portal Website, click on Search and enter registeruser as a
search term; you will only see the custom registeruser business metric now:

 Search
La

st 24 hours (30 minute granularity) - tictactoe
G) Time range Y Filters O Refresh ") Reset E:l Analytics *++ More

Search @

| RegisterUser

Filtered on

1 total results between 11/29/2017 7:10 AM and 11/30/2017 7:10 AM

D&
06
04
02

A

12 PM 6 PM MNow 30 G AR
EVENT REQUEST EXCEPTION VIEW TRACE DEPEMDEMCY AVAIL

1 0 0 0 0 0 0

11/30/2017 7:06:46 AM - CUSTOM EVENT
RegisterUser
Device type: PC Application version: 1.0.0.0

Monitoring in Amazon Web
Services

Just like Microsoft Azure, Amazon Web Services provides an integrated solution,
which allows IT Operations to monitor applications, resources, and services in real
time. In Amazon Web Services, it is called CloudWatch. It provides nearly the same
features as Applications Insights, meaning, it works for the entire AWS subscription
and includes dashboards and diagrams for quick access to analytic data.

The following example illustrates how to use Amazon Web Services CloudWatch to
monitor generic metrics and custom metrics so that you can learn how to do it for
your own needs:

1. Open the Tic-Tac-Toe Web Project and download and install the Amazon Web
Services SDK for .NET - Core Runtime NuGet package called awssox.core, as
well as the Amazon Web ServicesCloudWatch NuGet package called
AWSSDK.CloudWatch.

2. Add a new service called AmazonWebServicesMonitoringService in the services
folder, make it inherit the rvonitoringservice Interface, and implement the Tracx
method with the AWS specific code, as shown in the following piece of code:

public class AmazonWebServicesMonitoringService :
IMonitoringService
{
readonly AmazonCloudWatchClient telemetryClient =
new AmazonCloudWatchClient () ;

public void TrackEvent (string eventName, TimeSpan elapsed,
IDictionary<string, string> properties = null)
{
var dimension = new Dimension
{
Name = eventName,
Value = eventName

b

var metricl = new MetricDatum
{
Dimensions = new List<Dimension> { dimension },
MetricName = eventName,
StatisticValues = new StatisticSet (),
Timestamp = DateTime.Today,
Unit = StandardUnit.Count

if (properties?.ContainsKey ("value") == true)

metricl.Value = long.Parse (properties|["value"]);
else
metricl.Value = 1;

var request = new PutMetricDataRequest

{
MetricData = new List<MetricDatum> () { metricl },
Namespace = eventName

}i

_telemetryClient.PutMetricDataAsync (request) .Wait ()
}
}

3. Update the configure method in the startup class, and register the Amazon Web
Services Cloud Watch Monitoring Service if it has been configured in the
appsettings.json conﬁguration file:

if (monitoringOptions.MonitoringType ==
"azureapplicationinsights")
{
services.AddSingleton<IMonitoringService,
AzureApplicationInsightsMonitoringService> () ;
}
else if (monitoringOptions.MonitoringType ==
"amazonwebservicescloudwatch")
{
services.AddSingleton<IMonitoringService,
AmazonWebServicesMonitoringService> () ;

4. Update the monitoring section in the appsettings.json configuration file, and
configure it for Amazon Web Services CloudWatch:

"Monitoring": {
"MonitoringType": "amazonwebservicescloudwatch",
"MonitoringSettings": ""

}

5. Publish the Tic-Tac-Toe Web Application to Amazon Web Services Beanstalk,
so that the new Amazon Web Services CloudWatch configurations are applied;
if you do not know how to do that, you can look it up in chapter 10, Hosting and
Deploying ASP.NET Core 2.0 Applications.

6. Start the application. Go to the AWS Management Console, enter cioudwatch in
the AWS services textbox, and click on the displayed link; you will be
redirected to the AWS CloudWatch Welcome Page:

A

CloudWatch| Q

CloudWatch

Menitor Resources and Applications

3.-.'7‘-} Clastic beansialk w 1AM = KLU

{O} Ec2

7. On the CloudWatch welcome page, click on the Ticracroe application:

| cloudwatch
Dashboards

Alarms 4 Amazon CloudWatch monitors operational and performance metrics for your AWS cloud resources and applications. You currently
have 202 CloudWatch metrics available inthe US East (N. Virginia) region.
ALARM (1]

Metric Summary

Browse or search your metrics to get started graphing data and creating alarms.
G @ Browse Metrics | Q, Search Metrics X
Billing

Events

Rules Alarm Summary (o4

Event Buses
You have 1 alarm in ALARM state in US East (N. Virginia) region.

Logs Create Alarm
Metrics Create a billing alarm to receive e-mail alerts when your AWS charges exceed a threshold you choose.
Learn more
Favorites
° awseb-e-uaazueawmh-stack-AWS o awseb-e-uaazueawmh-stack-AWS _
oAdd adashboard NetworkOut = 2000000 NetworkQut > 6000000
2,500,000 8,000,000
3'233'333 T 6,000,000
1,000,000 4,000,000
500,000 2,000,000
e e e e
12/04 12/04 12/04 12/04 12/04 12/04
15:00 16:00 17:00 15:00 16:00 17:00

8. Click on an alarm to get more specific details about it:

Create Alarm Add to Dashboard Actions L & 9

Filter: Allalarms v Q Search Alarms X [Hide all AutoScaling alarms €@ 1€ € Vto2of2alarms » 3
State ~ Name ~ Threshold - Config Status v
] ALARM awseb-e-uaazueawmh-stack-AWSEBCloudwatchAlarmLow-V59V7ISBVH3I NetworkOut < 2,000,000 for 5 minutes
oK awseb-e-uaazueawmh-stack-AWSEBCloudwatchAlarmHigh-1FIIA48FRNAAT NetworkOut > 6,000,000 for 5 minutes
1 Alarm selected _ =]
Alarm:awseb-e-uaazueawmh-stack-AWSEBCloudwatchAlarmHigh-1FIIA48FRNAAT7
J Details History
State Details: State changed to OK at 2017/10/25. Reason: Threshold Crossed: 1 datapoint [18139.5 (25/10/17 i tack-AWSEB._.
10:36:00)] was not greater than the threshold (6000000.0) NetworkOut > 6000000
[l : ElasticB talk Default Scale Up al
Description: ElasticBeanstalk Default Scale Up alarm 8,000,000
Threshold: NetworkOut > 6,000,000 for 5 minutes
6,000,000
Actions: In ALARM: - For group awseb-e-uaazueawmh-stack- AWSEBAutoScalingGroup-1AGLVI6ZZ1LCS
use policy awseb-e-uaazueawmh-stack-AWSEBAutoScalingScaleUpPolicy- 4,000,000
JULZOK54HZMU (Add 1 instance) 2,000,000

Namespace: AWS/EC2 e A
12/04 12/04 12/04
Metric Name: NetworkOut 1500 16:00 17:00

Dimensions: AutoScalingGroupName = awseb-e-uaazueawmh-stack-AWSEBAutoScalingGroup-1AGLVIGZZ1LCS

9. Return to the CloudWatch welcome page, and enter registeruser as a search
term in the textbox, then click on Browse Metrics:

| Cloudwatch Metric Summary
Dashboards
Alarms 4 Amazon CloudWatch monitors operational and performance metrics for your AWS cloud resources and applications. You currently

have 202 CloudWatch metrics available in the US East (N. Virginia) region.

ALARM (1]

Browse or search your metrics to get started graphing data and creating alarms.

s @ Q. RegisterUser X

Billing

10. You will see a diagram, as shown here, with the custom registeruser business

metric:
0.4k BVtes
20.3k
815k
14:45 15:00 1515 15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30

All metrics Graphed metrics (1) Graph options

All > EC2 > PerlInstance Metrics NetworkOut @ | Q, Search for any metric, dimension or resource id

Instance Name (2) - Instanceld Metric Name

Default-Environment i-0cf548d1bf3a41345 NetworkOut

v Tictactoe-dev i-062e77c44b002e6ba NetworkOut

Summary

In this chapter, we discussed how to manage and supervise your ASP.NET Core 2.0
web applications to help IT Operations to better understand what is happening during
runtime before and after errors occur.

We talked about the concepts of logging, and how it can help reduce the time to
understand and fix bugs. We illustrated different logging solutions on-premises, in
Microsoft Azure, in Amazon Web Services, and in Docker.

You experienced how to configure logging in a Microsoft Azure environment using
Azure AppServices and Azure Application Service Diagnostic, as well as the Azure
Web Site Log Browser Extension for log file analysis in a detailed example.

You then saw how to do the same in Amazon Web Services by accessing and
downloading application logs using Amazon Web Services CloudWatch.

We then introduced the concepts of monitoring and explained how to add monitoring
in on-premises and Docker environments.

You configured Azure Application insights to monitor your ASP.NET Core 2.0 web
applications in real time. You were even able to understand and solve the mystery
behind the 404 wot rouna problem.

In the last step, we showed you how to work with monitoring in an Amazon Web
Services environment using Amazon Web Services CloudWatch.

In the next chapter, we will...well, there is no next chapter. You have seen
everything this book has to offer. We hope that you liked it and that you found some
value in understanding and assimilating the numerous examples we have given.

It is now up to you to make your own experiences and to further improve your
ASP.NET Core 2.0 skills.

You can now start your journey as a veteran, as Nicolas Clerc (Cloud Architect,
Microsoft France) has stated in his Foreword at the beginning of this book.

Good luck with that, and thank you for having taken the time to read the different
chapters, and for having stayed with us for so long!

	Preface
	Once upon a time, NGWS and the .NET Framework
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	What is ASP.NET Core 2.0?
	ASP.NET Core 2.0 features
	Cross-platform support
	Microservice architecture
	Working with Docker and containers
	Performance and scalability
	Side-by-side deployments
	Technology restrictions
	When to choose ASP.NET Core 2.0
	Summary

	Setting Up the Environment
	Visual Studio 2017 as a development environment
	How to install Visual Studio 2017 Community Edition
	First steps with Visual Studio 2017
	Creating your first ASP.NET Core 2.0 application in Visual Studio 2017
	Creating your first ASP.NET Core 2.0 application via the command line

	Visual Studio Code as a development environment
	How to install Visual Studio Code on Linux
	Creating your first ASP.NET Core 2.0 application in Visual Studio Code
	Creating your first ASP.NET Core 2.0 application in Linux

	Summary

	Creating a Continuous Integration Pipeline in VSTS
	Continuous integration, continuous deployment, and build and release pipelines
	Using VSTS for continuous integration and continuous deployment
	Creating a free VSTS subscription and your first VSTS project

	Organizing your work via work items
	Using Git as a version control system
	Using feature branches
	Merging changes and resolving conflicts

	Creating a VSTS build pipeline
	Creating a VSTS release pipeline
	Summary

	Basic Concepts of ASP.NET Core 2.0 - Part 1
	Building the Tic-Tac-Toe game
	Conceiving and implementing your first Tic-Tac-Toe feature

	Targeting different .NET Framework versions in the .csproj files of your projects
	Using the Microsoft.AspNetCore.All metapackage
	Working with the Program class
	Working with the Startup class
	Preparing the basic project structure
	Creating the Tic-Tac-Toe home page

	Giving your web pages a more modern look by using Bower and layout pages
	Creating the Tic-Tac-Toe user registration page

	Using dependency injection for encouraging loose coupling within your applications
	Creating the Tic-Tac-Toe user service

	Working with middlewares
	Working with static files
	Using routing, URL redirection, and URL rewriting
	Adding error handling to your applications
	Summary

	Basic Concepts of ASP.NET Core 2.0 - Part 2
	Client-side development using JavaScript
	Optimizing your web applications and using bundling and minification
	Working with WebSockets for real-time communication scenarios
	Taking advantage of session and user cache management
	Applying globalization and localization for multi-lingual user interfaces
	Configuring your applications and services
	Using logging
	Implementing advanced dependency injection concepts
	Building once and running on multiple environments
	Summary

	Creating MVC Applications
	Understanding the Model View Controller pattern
	Models
	Views
	Controllers
	Unit tests
	Integration tests

	Creating dedicated layouts for multiple devices
	Using View Pages, Partial Views, View Components, and Tag Helpers
	Using View Pages
	Using Partial Views
	Using View Components
	Using Tag Helpers

	Dividing web applications into multiple Areas
	Applying advanced concepts
	Using view engines
	Providing better quality by creating unit tests and integration tests
	Adding unit tests
	Adding integration tests

	Summary

	Creating Web API Applications
	Applying Web API concepts and best practices
	Building RPC-style Web APIs
	Building REST-style Web APIs
	Building HATEOAS-style Web APIs

	Summary

	Accessing Data using Entity Framework Core 2
	Getting started with Entity Framework Core 2
	Establishing a connection
	Defining primary keys and foreign keys via Data Annotations
	Using Entity Framework Core 2 Migrations
	Creating, reading, updating, and deleting data

	Summary

	Securing ASP.NET Core 2.0 Applications
	Implementing authentication
	Adding basic user forms authentication
	Adding external provider authentication
	Working with two-factor authentication
	Adding forgotten password and password reset mechanisms
	Implementing authorization

	Summary

	Hosting and Deploying ASP.NET Core 2.0 Applications
	Hosting applications
	Deploying applications in Amazon Web Services
	Deploying applications in AWS Elastic Beanstalk

	Deploying applications in Microsoft Azure
	Deploying applications in Microsoft Azure App Services

	Deploying applications into Docker containers
	Deploying applications into Docker containers using Docker for Windows and Docker Enterprise Edition
	Publishing images to the Docker Hub

	Summary

	Managing and Supervising ASP.NET Core 2.0 Applications
	Logging in ASP.NET Core 2.0 applications
	Logging in Microsoft Azure
	Logging in Amazon Web Services

	Monitoring ASP.NET Core 2.0 applications
	Monitoring on-premises and in Docker
	Monitoring in Microsoft Azure
	Monitoring in Amazon Web Services

	Summary

