

Mastering PHP 7

Design, configure, build, and test professional web
applications in PHP 7

Branko Ajzele

 BIRMINGHAM - MUMBAI

Mastering PHP 7

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Production reference: 1220617

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78588-281-4

www.packtpub.com

http://www.packtpub.com

Credits

Author

Branko Ajzele

Copy Editor

Safis Editing

Reviewers

Martin Beaudry

Andrew Caya

Alexandru-Emil Lupu

Mario Magdic

Project Coordinator

Vaidehi Sawant

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Chaitanya Nair

Indexer

Pratik Shirodkar

Content Development Editor

Siddhi Chavan

Production Coordinator

Nilesh Mohite

Technical Editor

Dhiraj Chandanshive

About the Author
Branko Ajzele is an internationally respected and highly accomplished software developer,
book author, solution specialist, consultant, and team leader.

Strong technical knowledge coupled with the ability to communicate those technicalities
frequently and clearly with strong direction has enabled him to architect, develop, and
launch numerous successful businesses. He often feels comfortable proposing alternatives
to demands that he feels can be improved, even when it means pulling a late shift to meet
deadlines.

He holds several respected IT certifications, such as Zend Certified PHP Engineer, Magento
Certified Developer, Magento Certified Developer Plus, Magento Certified Solution
Specialist, and a few more.

Branko was crowned E-commerce Developer of the Year by Digital Entrepreneur Awards in
October 2014 for his excellent knowledge and expertise in e-commerce development. His
work is second to none, and he is truly dedicated to helping fellow developers around the
world.

He currently works as a full-time contractor for Lab Lateral Ltd, an award-winning team of
innovative thinkers, artists, and developers specializing in customer-centric websites,
digital consultancy, and marketing. Here, he holds the role of a lead developer and the head
of Lab's Croatia office.

The book, Instant E-Commerce with Magento: Build a Shop, by Packt was his first Magento-
related book oriented toward Magento newcomers, after which he decided to write his
second book, Getting Started with Magento Extension Development. The third book, Magento 2
Developers Guide, was released days after the official Magento 2 release. His fourth book,
Modular Programming with PHP 7, describes modular design techniques to help developers
build readable, manageable, reusable, and more efficient code, and doing so on a mini web
shop application written in the Symfony framework.

About the Reviewers
Martin Beaudry started his programming career 7 years ago by creating a software in C
after going through the K&R book. He then switched to PHP to work as a web developer,
becoming a Zend Certified PHP Engineer and Zend Certified Architect along the way.
Before learning computer languages, he worked with human ones as a professional
translator and editor.

Martin works in his own start-up and is one of Linux for PHP's contributors.

I want to thank my friend, Andrew Caya, for teaching me everything I needed to know to
review this book.

Andrew Caya discovered his passion for computers at the age of 11 and started
programming in GW-BASIC and QBASIC in the early 90s. He earned a master’s degree in
Information Science and master's short program in public administration. After doing some
software development in C, C++, and Perl, and some Linux system administration, he
became a PHP developer more than 7 years ago. He is also a Zend Certified PHP Engineer
and a Zend Certified Architect.

He is the creator of Linux for PHP, a lightweight, Docker-based, custom Linux project that
allows PHP developers to easily compile and use recent versions of PHP in a variety of
ways. He is also the lead developer of a popular Joomla! extension and has the great
pleasure of contributing code to many open source projects.

He is currently a professional contract programmer in Montreal, Canada, a technical
reviewer for Packt, and a loving husband and father.

Alexandru-Emil Lupu has about 10 years experience in the Web Development area. During
this time, he got a lot of skills from the implementation of e-commerce platforms and
presentation sites' code writing to online games. He is one of the developers who are
constantly learning new programming languages, and he has no problem in understanding
Ruby, PHP, Python, JavaScript, and Java code.

Alexandru is very passionate about programming and computer science. When he was
young, he did not own a computer or an Internet connection (hard to believe, but true). He
would go to an Internet cafe in order to read about his programming problems and would
then struggle to implement them at home. He fondly remembers those days and hopes he's
the same guy from 10 years ago with much more experience. For him, passion is the word
that describes the challenge he faced while learning. He says it was not easy to be a
youngster and one who was willing to learn new stuff. Coming home at 2-3 A.M.,
determined to install Linux just to learn about it, was not as easy as it sounds. He had a
Pentium I at 133 MHz in the Pentium IV in the 1800 MHz era!

He is constantly learning and likes to stay close to well-trained and passionate people who
better motivate him every day. This is the reason he joined the eJobs team to face a
challenge. He likes teams who work intelligently and are energetic.

Alexandru is a Certified Scrum Master and is passionate about Agile Development. His
experience also includes 3 years as a Ruby on Rails developer and CTO at 2Performant
Network (2Parale), 4 years at eRepublik.com, an online game, during which he was
responsible for a long list of tasks, including feature development, performance
optimization, and he was also the tech lead for an internal project. He has learned the hard
way the necessary skills to fulfill his day-to-day tasks at 2Performant.com and gained all the
experience he needed to face new kind of challenges at eJobs.ro.

In his little free time, he also develops small personal projects. If he still has spare time, he
reads some technical or project management books or articles. When he is relaxing, he
watches thriller movies and also likes playing shooter or strategy games.

He doesn't talk too much, but he is willing to teach programming to others. If you meet him
over a coffee, prepare yourself to be entertained--he likes to tell a lot of contextual jokes.

You can interact with him at h t t p ://g i t h u b . c o m /a l e c s l u p u .

Mario Magdic is a full-stack software developer originally from Croatia and currently
residing in Dublin, Ireland, where he moved 2 years ago to work for a FinTech company.
He was first introduced to the wonderful world of software development in a high school
programming class and decided to make it his career.

During his career, he has had an opportunity to work with various technologies and
programming languages and is always happy to improve and learn new things.

http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu
http://github.com/alecslupu

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1785882813.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813
https://www.amazon.com/dp/1785882813

I hereby dedicate this book to my loving late grandma, Katarina, whose help throughout my school days will
always be remembered and appreciated.

Table of Contents
Preface 1

Chapter 1: The All New PHP 7

Scalar type hints 8
Return type hints 11
Anonymous classes 12
Generator delegation 15
Generator return expressions 17
The null coalesce operator 18
The spaceship operator 20
Constant arrays 21
Uniform variable syntax 22
Throwables 24
Group use declarations 26
Catching multiple exceptions types 27
Class constant visibility modifiers 28
Iterable pseudo-type 29
Nullable types 30
Void return types 32
Summary 33

Chapter 2: Embracing Standards 34

PSR-1 - basic coding standard 36
PSR-2 - coding style guide 40
PSR-3 - logger interface 47
PSR-4 - autoloading standard 50
PSR-6 - caching interface 52
PSR-7 - HTTP message interface 54
PSR-13 - hypermedia links 59
Summary 61

Chapter 3: Error Handling and Logging 62

Error handling 63
Error 66

ArithmeticError 68
DivisionByZeroError 69
AssertionError 71

[ii]

ParseError 72
TypeError 73
Uncaught error handler 75
Triggering errors 77

Exception 78
Creating a custom exception handler 79
Rethrowing exceptions 80
Uncaught Exception handler 81

Logging 82
Native logging 83
Logging with Monolog 86

Summary 91

Chapter 4: Magic Behind Magic Methods 92

Using __construct() 93
Using __destruct() 98
Using __call() 100
Using __callStatic() 103
Using __set() 104
Using __get() 106
Using __isset() 107
Using __unset() 109
Using __sleep() 110
Using __wakeup() 112
Using __toString() 114
Using __invoke() 116
Using __set_state() 117
Using __clone() 119
Using __debugInfo() 121
Usage statistics across popular platforms 121
Summary 123

Chapter 5: The Realm of CLI 124

Understanding PHP CLI 125
The Console component 127

Setting up the Console component 128
Creating a console command 131
Dealing with inputs 134
Using Console component helpers 138

Input/output streams 140
Process control 142

Ticks 143

[iii]

Signals 146
Alarms 149
Multiprocessing 151

Summary 154

Chapter 6: Prominent OOP Features 155

Object inheritance 156
Objects and references 161
Object iteration 163
Object comparison 166
Traits 168
Reflection 174
Summary 178

Chapter 7: Optimizing for High Performance 179

Max execution time 180
Memory management 182
File uploads 184
Session handling 187
Output buffering 189
Disabling debug messages 192
Zend OPcache 196
Concurrency 197
Summary 198

Chapter 8: Going Serverless 199

Using the serverless framework 200
Using Iron.io IronWorker 209
Summary 223

Chapter 9: Reactive Programming 224

Similarities with event-driven programming 225
Using RxPHP 227

Installing RxPHP 227
Observable and observer 229
Subject 234
Operator 236
Writing custom operators 241

Non-blocking IO 244
Using React 250

Installing React 250

[iv]

React event loop 252
Observables and event loop 256

Summary 259

Chapter 10: Common Design Patterns 260

Base patterns 261
The registry pattern 261

Creational patterns 262
The singleton pattern 263
The prototype pattern 264
The abstract factory pattern 265
The builder pattern 267
The object pool pattern 269

Behavioral patterns 271
The strategy pattern 271
The observer pattern 272
The lazy initialization pattern 274
The chain of responsibility pattern 276

Structural patterns 277
The decorator pattern 278

Summary 280

Chapter 11: Building Services 281

Understanding the client-server relationship 282
Working with SOAP 282

XML extensions 284
Creating server 289
Creating WSDL file 292
Creating client 296

Working with REST 298
JSON extensions 299
Creating server 300
Creating client 304

Working with Apache Thrift (RPC) 306
Installing Apache Thrift 306
Defining service 308
Creating server 311
Creating client 312

Understanding microservices 313
Summary 315

[v]

Chapter 12: Working with Databases 316

Working with MySQL 317
Installing MySQL 318
Setting up sample data 322
Querying via the MySQLi driver extension 325

Connecting 325
Error handling 325
Selecting 326

Binding parameters 329
Inserting 330
Updating 332
Deleting 333
Transactions 333

Querying via the PHP Data Objects driver extension 335
Connecting 336
Error handling 336
Selecting 337
Inserting 340
Updating 341
Deleting 341
Transactions 342

Working with MongoDB 343
Installing MongoDB 344
Setting up sample data 344
Querying via the MongoDB driver extension 345

Connecting 346
Error handling 347
Selecting 347
Inserting 349
Updating 350
Deleting 352
Transactions 353

Working with Redis 354
Installing Redis 354
Setting up sample data 355
Querying via the phpredis driver extension 356

Connecting 357
Error handling 357
Selecting 357
Inserting 359
Updating 361
Deleting 361
Transactions 362

Summary 363

[vi]

Chapter 13: Resolving Dependencies 364

Mitigating the common problem 365
Understanding dependency injection 367
Understanding dependency injection container 371
Summary 374

Chapter 14: Working with Packages 375

Understanding Composer 376
Understanding Packagist 378
Using third-party packages 380
Creating your own package 382
Distributing your package 385
Summary 389

Chapter 15: Testing the Important Bits 390

PHPUnit 391
Setting up the PHPUnit 392
Setting up a sample application 393
Writing test 398
Executing tests 402
Code coverage 403

Behat 406
Setting up Behat 407
Setting up a sample application 408
Writing test 410
Executing tests 416

phpspec 418
Setting up phpspec 418
Writing test 419
Executing tests 423

jMeter 426
Writing test 426
Executing tests 433

Summary 434

Chapter 16: Debugging, Tracing, and Profiling 435

Xdebug 436
Installation 437
Debugging 441
Tracing 449

[vii]

Profiling 451
Zend Z-Ray 453

Installing Zend Server 454
Setting up the virtual host 460
Using Z-Ray 466

Summary 469

Chapter 17: Hosting, Provisioning, and Deployment 470

Choosing the right hosting plan 471
Shared server 471
Virtual private server 472
Dedicated server 474
PaaS 475

Automating provisioning 478
Setting up the workstation machine 480
Setting up the server machine 481
Configuring Ansible 484
Provisioning a web server 486

Automating the deployment 487
Installing Deployer 488
Using Deployer 489

Continuous integration 495
Jenkins 496

Summary 497

Index 499

Preface
The PHP language has been around for quite some time now. What started out as a humble
set of scripts, soon turned into a powerful scripting language. The rise of various
frameworks and platforms paved the way into the hearts of many developers. Over time,
PHP coding standards sprung out, along with numerous testing solutions. These gave it
the solid enterprise foothold it has today.

The latest PHP 7.1 release brings forth enormous amount of improvements, both from the
language syntax and overall performance perspective. There has never been a better time to
dig into a PHP than now.

Throughout this book, we will be covering a wide range of topics. These might seem
seemingly random at first, but they reflect a minimum skill level PHP developers are
required to possess nowadays.

What this book covers
Chapter 1, The All New PHP, talks about the latest changes introduced to the PHP 7.1
language, most of which directly improve the quality and elegancy of written code.

Chapter 2, Embracing Standards, introduces you to important standards in the PHP
ecosystem. Presented standards affect the quality and elegancy of code, pushing ypu closer
to truly mastering PHP.

Chapter 3, Error Handling and Logging, stresses on the importance of robust error handling
and effective logging. You will learn how to handle errors and log truly important bits of
information--two disciplines that often lack proper attention in everyday PHP coding.

Chapter 4, Magic Behind Magic Methods, discusses the magic functions available in PHP
classes, and their beauty and importance. You will learn every PHP magic method, and
its meaning and use through practical examples.

Chapter 5, The Realm of CLI, explores command-line PHP, and its tools and processes. You
will learn how to use Symfony's Console component, work with input/output streams, and
handle processes.

Preface

[2]

Chapter 6, Prominent OOP Features, looks at a subset of features that turn PHP into a
powerful OOP language. You will learn important concepts behind PHP OOP features, part
of which may escape everyday code base as they find more use as building blocks of
various frameworks.

Chapter 7, Optimizing for High Performance, talks about the importance of performance
optimization, providing hands-on solutions along the way. You will learn about details of
the PHP performance optimization, where small configuration changes can affect the
overall application performance.

Chapter 8, Going Serverless, outlines using PHP and its use in serverless infrastructure. You
will gain an insight into the emerging serverless architecture, along with utilizing it via two
of the dominant PaaS (platform as a service) solutions in the market.

Chapter 9, Reactive Programming, covers the emerging reactive programming paradigm that
found its way into the PHP ecosystem. You will learn the basic principles of reactive
programming using the synchronous coding techniques to write asynchronous code via
icicle, one of the most dominant libraries in the ecosystem now.

Chapter 10, Common Design Patterns, focuses on the subset of design patterns, and the most
common ones used in PHP programming. You will learn the practical implementation of
several important design patterns, which, in turn, will result in more elegant, readable,
manageable, and testable code.

Chapter 11, Building Services, takes you through REST, SOAP, and RPC style services,
alongside with the microservice architecture. You will learn how to create a SOAP and
REST web server, alongside their respective client counterparts.

Chapter 12, Working with Databases, explains the several types of database PHP
programmers need to interact with, such as transactional SQL, NoSQL, key-value, and
search databases. You will learn how to query the MySQL, Mongo, and Redis databases.

Chapter 13, Resolving Dependencies, explores the dependency issue and the means to resolve
it. You will learn how to solve the dependency issue using the dependency injection and
dependency container techniques.

Chapter 14, Working with Packages, covers the ecosystem around PHP packages, and their
creation and distribution. You will learn how to find and use third-party packages to enrich
applications, along with a quick glimpse of possibly creating and distributing its own
packages.

Preface

[3]

Chapter 15, Testing the Important Bits, dives into several types of testing, emphasizing
where one might be more important than the other. You will learn several most common
types of testing done for PHP web applications.

Chapter 16, Debugging, Tracing, and Profiling, teaches you the most common tools for
debugging, tracing, and profiling PHP applications. You will learn how to utilize several
various tools to achieve effective debugging, tracing, and profiling of your application.

Chapter 17, Hosting, Provisioning, and Deployment, discusses making an informed decision
for hosting the application, along with provisioning, deployment, and continuous
integration processes in place. You will learn about the difference between hosting solutions
and the automated process of getting the code from local to production machines.

What you need for this book
Throughout this book, there are a number of simple and self-contained code and
configuration examples. To successfully run these, we can easily make use of the Ubuntu
powered desktop (h t t p s ://w w w . u b u n t u . c o m /d e s k t o p) and server (h t t p s ://w w w . u b u n t u . c

o m /s e r v e r) machines. Those of you using Windows or OSX machines can easily install
Ubuntu within a VirtualBox. Installation instructions for VirtualBox can be found on the
official VirtualBox page (h t t p s ://w w w . v i r t u a l b o x . o r g /).

Who this book is for
Target readers are assumed to be intermediate-level PHP developers. This book will
embark you on a journey to become a master in PHP. Solid knowledge of PHP is implied
across areas such as basic syntax, types, variables, constants, expressions, operators, control
structures, and functions.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Objects
might utilize the PHP Serializable interface, __sleep() or __wakeup() magic
methods."

https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/desktop
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.ubuntu.com/server
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/

Preface

[4]

A block of code is set as follows:

interface RequestInterface extends MessageInterface
{
 public function getRequestTarget();
 public function withRequestTarget($requestTarget);
}

Any command-line input or output is written as follows:

php index.php
serverless invoke local --function hello

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "We start by clicking the
New Project button under the Iron.io dashboard."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Mastering-PHP-7. We also have other code
bundles from our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t

P u b l i s h i n g /. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-PHP-7
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
The All New PHP

Programming languages nowadays are a dime a dozen. New languages spring into
existence every so often. Choosing the right one for the job is so much more than just a
checklist of its features. Some of them target specific problem domains, others try to
position themselves for more general use. This goes to say that software development is a
dynamic ecosystem where languages need to constantly adapt to ever-changing industry in
order to stay relevant to its consumers. These changes are particularly challenging for
already established languages such as PHP, where backward compatibility is an important
consideration.

Originally created by Rasmus Lerdorf around 1995, PHP started its life as nothing more
than a few Common Gateway Interface (CGI) programs in C. At that time, it was a simple
scripting solution that empowered developers to build dynamic HTML pages with ease.
Without the need to compile, developers could easily throw in a few lines of code into a file
and see the results in the browser. This gave a rise to its early popularity. Two decades
later, PHP matured into a rich general-purpose scripting language suited to web
development. Throughout all these years, PHP managed to yield an impressive set of
features with each new release whilst maintaining a trustworthy level of backward
compatibility. Nowadays, large number of its core extensions ultimately simplify working
with files, sessions, cookies, databases, web services, cryptography, and many other
features common to web development. Its outstanding support for the object-oriented
programming (OOP) paradigm made it truly competitive with other leading industry
languages.

The All New PHP

[8]

The decade-old ruling of PHP 5 has been overthrown by the release of PHP 7 in December
2015. It brought forth the all new execution engine, Zend Engine 3.0, which significantly
improved performance and reduced memory consumption. This simple software update
now allowed us to serve more concurrent users without adding any physical hardware to
the mix. Acceptance among developers has been almost instant, all the more so because
backward incompatibility was minimal, making migration as painless as possible.

In this chapter, we will take a detailed look into some of the new features introduced in
PHP 7 and 7.1 releases:

Scalar type hints
Return type hints
Anonymous classes
Generator delegation
Generator return expressions
The null coalesce operator
The spaceship operator
Constant arrays
Uniform variable syntax
Throwables
Group use declarations
Class constant visibility modifiers
Catching multiple exceptions types
Iterable pseudo-type
Nullable types
Void return types

It is features like these that are bound to make a mark on the next generation of PHP
frameworks and libraries, as well as how we write our own code.

Scalar type hints
By classification, PHP is a dynamically typed and weakly typed language. These are two
different concepts that often get mixed together. Dynamically typed languages do not
require the explicit declaration of a variable before it is used. Weakly typed languages are
those in which the variable is not of any specific data type, that is, its type can change
through different value-type reassignments.

The All New PHP

[9]

Let's take a look at the following example:

// dynamic typed (no specific type defined, directly assigning value)
$name = "Branko"; // string
$salary = 4200.00; // float
$age = 33; // int

// weak typed (variable value reassigned into different type)
$salary = 4200.00; // float
$salary = $salary + "USD"; // float
$salary = $salary . "USD"; // string

In the preceding code, we see three different variables being used, none of which are
predefined with a certain type. We just have values declared into them. PHP then
determines the type on the go. Even when the variable type is determined, it can still be
changed by simply assigning another type of value to it. These are two very powerful
concepts, which, when used wisely, can save us lines and lines of code.

However, these powerful features often indirectly encourage bad design. This is
particularly noticeable when writing functions, either by forcing function designers into
multiple data type checks, or forcing them into multiple function return types.

Let's take a look at the following example:

function addTab($tab) {
 if (is_array($tab)) {

 } elseif (is_object($tab)) {

 } elseif (is_string($tab)) {

 } else {

 }
}

Given the type uncertainty of the input argument, the addTab function was forced to
branch its logic. Similarly, the same function might decide to return different types of data,
depending on the logic branch. Designs like these are usually a result of functions that
simply try to do too much. The real problem is not even in the function, it is on the
consumer side of things. If it happens that the developer using a function is not aware
enough of the passing parameter type, unexpected results might occur.

The All New PHP

[10]

To help us write more correct and self-documenting programs, PHP introduced type
hinting.

PHP has supported function parameter type hinting from version 5.0, but only for objects,
and from version 5.1 for arrays as well. With PHP 7, scalar types can be type-hinted as well,
making it one of the more exciting features of the release. The following are the scalar type
hints that are supported by PHP:

int

float

string

bool

We can now write functions in either of the following ways:

It can be function register($email, $age, $notify) { /* ... */}
It can be function register($email, int $age, $notify) { /* ...
*/}

It can be function register(string $email, int $age, bool $notify)
{ /* ... */}

However, simply hinting scalar types is not enough as type declarations are not enforced by
default. PHP will simply attempt to convert to the specified type without complaint. By
adding the declare(strict_types=1); directive as the first statement in a PHP file, we
can enforce the strict type checking behavior. It is worth noting that this directive only
affects the specific file it is used in, and does not affect other included files. The file-level
directive was used to preserve the backward compatibility with numerous extensions and
built-in PHP functions.

Let's take a look at the following example:

declare(strict_types=1);

function register(string $email, int $age, bool $notify) {
 // body
}

register('user@mail.com', '33', true);

The All New PHP

[11]

With strict types directive turned on, trying to pass an improper data type to a hinted scalar
parameter would result in a \TypeError exception, as per the following output:

Fatal error: Uncaught TypeError: Argument 2 passed to register() must be of
the type integer, string given, called in /test.php on line 11 and defined
in /test.php:5 Stack trace: #0 /test.php(11): register('user@mail.co...',
'33', true) #1 {main} thrown in /test.php on line 5.

Scalar type hints are a powerful new addition to the PHP language. They empower
developers with an extra layer of protection during runtime, without really sacrificing the
weak type system in general.

Return type hints
Type hinting features are not limited to function parameters only; as of PHP 7, they expand
to function return values as well. The same rules that apply to function parameters hinting,
apply to function return type hinting. To specify a function return type, we simply follow
the parameter list with a colon and the return type, as shown in the following example:

function register(string $user, int $age) : bool {
 // logic ...
 return true;
}

Developers can still write functions with multiple conditioned return statements; its just
that in this case, each of these return statements, when reached, will have to match the
hinted return type, otherwise \TypeError will be thrown.

The function return type hints play nicely with super types. Let's take a look at the
following example:

class A {}
class B extends A {}
class C extends B {}

function getInstance(string $type) : A {
 if ($type == 'A') {
 return new A();
 } elseif ($type == 'B') {
 return new B();
 } else {
 return new C();
 }
 }

The All New PHP

[12]

getInstance('A'); #object(A)#1 (0) { }
getInstance('B'); #object(B)#1 (0) { }
getInstance('XYZ'); #object(C)#1 (0) { }

We see that the function executes nicely for all three types. Given that B extends A directly,
and C extends B, the function accepts them as the return value.

Given the dynamic nature of PHP, function return types might seem like a step in the
wrong direction at first, more so because a lot of PHP code out there already uses the
PHPDoc @return annotation, which plays nicely with modern IDE tools, such as
PhpStorm. However, the @return annotation is merely informative, it does not enforce an
actual return type during runtime, and it really makes sense only with a powerful IDE.
Using the function return type hints ensures that our functions return what we intended
them to return. They do not stand in the way of PHP's dynamic nature; they merely enrich
it from a function consumer point of use.

Anonymous classes
Instantiating objects from classes is a pretty straightforward action. We use
the new keyword, followed by a class name and possible constructor parameters. The class
name part implies the existence of a previously defined class. Though rare, there are cases
where classes are only used during execution. These rare cases make it verbose to force a
class definition separately when we know that the class is only being used once. To address
this verbosity challenge, PHP introduced a new functionality called anonymous classes.
While the concept of anonymous classes has been around for quite some time in other
languages, PHP only got to it in the PHP 7 release.

The syntax of anonymous classes is pretty straightforward, which is as follows:

$obj = new class() {};
$obj2 = new class($a, $b) {
 private $a;
 private $b;
 public function __construct($a, $b) {
 $this->a = $a;
 $this->b = $b;
 }
};

The All New PHP

[13]

We use the new keyword , followed by the class keyword, followed by optional
constructor parameters, and finally the body of the class packed in curly braces. Both
objects are instantiated as a class@anonymous type. The functionality of objects
instantiated through anonymous classes is no different from those instantiated via named
classes.

Compared to named classes, anonymous classes are pretty much equal, in that, they can
pass contractor parameters, extend other classes, implement interfaces, and use traits.
However, anonymous classes cannot be serialized. Trying to serialize an instance of an
anonymous class, as shown in the following code snippet, throws a fatal Serialization
of class@anonymous is not allowed… error.

There are few other caveats to keep in mind when using anonymous classes. Nesting an
anonymous class within another class hides the private and protected methods or
properties of that outer class. To circumvent the limitation, we can pass the outer class'
private and protected properties into an anonymous class constructor, as follows:

interface Salary {
 public function pay();
 }

 trait Util {
 public function format(float $number) {
 return number_format($number, 2);
 }
 }

 class User {
 private $IBAN;
 protected $salary;
 public function __construct($IBAN, $salary) {
 $this->IBAN = $IBAN;
 $this->salary = $salary;
 }

 function salary() {
 return new class($this->IBAN, $this->salary) implements Salary {
 use Util;
 private $_IBAN;
 protected $_salary;

 public function __construct($IBAN, $salary) {
 $this->_IBAN = $IBAN;
 $this->_salary = $salary;
 }

The All New PHP

[14]

 public function pay() {
 echo $this->_IBAN . ' ' . $this->format($this->_salary);
 }
 };
 }
 }
 $user = new User('GB29NWBK60161331926819', 4500.00);
 $user->salary()->pay();

In this strip down User class example, we have a salary method that returns an
anonymous class. To showcase the more robust use of anonymous classes, we make it
implement the Salary interface and use the Util trait. The Salary interface forces the
anonymous class to implement the pay method. Our implementation of pay method
requires IBAN and salary member values from the outer class. Since an anonymous class
does not allow access to private and protected members of the outer class, we pass those
through anonymous class constructors. While the overall example certainly does not reflect
notions of a good class design, it does showcase how to bypass the member visibility
limitation.

There is also an option for an anonymous class to fetch the private and protected members
of the outer class by extending the outer class itself. However, this requires the anonymous
class constructor to properly instantiate the outer class; otherwise, we might end up with a
warning, such as a missing argument, for User::__construct().

Even though they are namelessly defined, anonymous classes still get an internal name.
Using the core PHP get_class method on an instance of an anonymous class, gets us that
name, as shown in the following examples:

class User {}
class Salary {}

function gen() {
 return new class() {};
}

$obj = new class() {};
$obj2 = new class() {};
$obj3 = new class() extends User {};
$obj4 = new class() extends Salary {};
$obj5 = gen();
$obj6 = gen();

echo get_class($obj); // class@anonymous/var/www/index.php0x27fe03a
echo get_class($obj2); // class@anonymous/var/www/index.php0x27fe052
echo get_class($obj3); // class@anonymous/var/www/index.php0x27fe077
echo get_class($obj4); // class@anonymous/var/www/index.php0x27fe09e

The All New PHP

[15]

echo get_class($obj5); // class@anonymous/var/www/index.php0x27fe04f
echo get_class($obj6); // class@anonymous/var/www/index.php0x27fe04f

for ($i=0; $i<=5; $i++) {
 echo get_class(new class() {}); // 5 x
 class@anonymous/var/www/index.php0x27fe2d3
}

Observing these outputs, we see that the anonymous classes created in the same position
(function or a loop) will yield the same internal name. Those with the same name return
true for the equal (==) operator and false for the identity operator (===), an important
consideration in order to avoid potential bugs.

Support for an anonymous classes opens a door to some interesting use cases, such as
mocking tests and doing the inline class overrides, both of which, when used wisely, can
improve code quality and readability.

Generator delegation
Iterating through a list of items is among the most common things in any programming
language. PHP makes it easy to iterate over a diverse collection of data using the foreach
construct. Many languages differentiate various data types of collection data, such as
dictionary, list, set, tuple, and alike. PHP, however, does not dwell that much on data
structures and simply uses the array() or [] constructs most of the time for its collections.
This, in turn, can have a negative impact on creating large arrays in memory, which could
cause exceeding memory limits or even increased processing times.

Aside from the primitive array type, PHP also provides the ArrayObject
and ArrayIterator classes. These turn arrays into a first class citizens in
an OOP application.

Generators allow us to write code that uses foreach to iterate over a set of data without
needing to build an array. They are like a function that yields as many values as needed,
instead of returning just one, which gives them an iterator-like behavior. While generators
have been around from PHP 5.5, they lacked more advanced functionality. Generator
delegation is one of the improvements made available with the release of PHP 7.

The All New PHP

[16]

Let's take a look at the following example:

function even() {
 for ($i = 1; $i <= 10; $i++) {
 if ($i % 2 == 0) {
 yield $i;
 }
 }
}

function odd() {
 for ($i = 1; $i <= 10; $i++) {
 if ($i % 2 != 0) {
 yield $i;
 }
 }
}

function mix() {
 yield -1;
 yield from odd();
 yield 17;
 yield from even();
 yield 33;
}

// 2 4 6 8 1 0
foreach (even() as $even) {
 echo $even;
}

// 1 3 5 7 9
foreach (odd() as $odd) {
 echo $odd;
}

// -1 1 3 5 7 9 17 2 4 6 8 10 33
foreach (mix() as $mix) {
 echo $mix;
}

Here, we define three generator functions: even, odd, and mix. The mix function
demonstrates the concept of generator delegation via the use of yield from <expr>.
Whereas, <expr> is any expression that evaluates to a traversable object or array. We can
see that the result of looping through the mix function echoes all of the yielded values from
both itself as well as the even and odd functions.

The All New PHP

[17]

The generator delegation syntax allows the factoring of yield statements into smaller
conceptual units, giving generators the similar organizational functionality as methods give
to classes. Used carefully, this can improve our code quality and readability.

Generator return expressions
Though PHP 5.5 enriched the language by introducing generator functions functionality, it
lacked the return expressions alongside their yielded values. This inability of generator
functions to specify return values limited their usefulness with coroutines. The PHP 7
version addressed this limitation by adding support for the return expressions. Generators
are basically interruptible functions, where the yield statement flags the interruption
point. Let's take a look at the following simple generator, written in the form of a self-
invoking anonymous function:

$letters = (function () {
 yield 'A';
 yield 'B';
 return 'C';
})();

// Outputs: A B
foreach ($letters as $letter) {
 echo $letter;
}

// Outputs: C
echo $letters->getReturn();

Though the $letters variable is defined as a self-invoking anonymous function, the
yield statements are preventing immediate function execution, turning the function into
the generator. Generator itself stands still until we try to iterate over it. Once the iteration
kicks in, generator yields value A followed by value B, but not C. What this means is that
when used in the foreach construct, the iteration will only encompass yielded values, not
the returned ones. Once the iteration is done, we are free to call the getReturn() method
to retrieve the actual return value. Calling the getReturn() method prior to iterating over
generator results cannot get the return value of a generator that hasn't returned an
exception.

The All New PHP

[18]

The great thing about the generators is that they are not a one-way street; they are not
limited to only yielding values, they can accept them as well. By being the instances of
a \Generator class, they operate with several useful methods, two of which are
getReturn and send. The send method enables us to send values back to the generator,
which turns the one-way communication from the generator to the caller into a two-way
channel between the two, effectively, turning generators into coroutines. The addition of
the getReturn method empowered generators with the return statements, giving more
flexibility with coroutines.

The null coalesce operator
Working with variables in PHP is quite easy. Variable declaration and initialization is done
via a single expression. For example, the expression $user['name'] = 'John'; will
automatically declare variable $user of type array and initialize that array with a single key
name of value John.

Day-to-day development often includes checking for the existence of a variable value for
various branching decisions, such as if ($user['name'] =='John') { … } else { …
}. As we write our code ourselves, we tend to make sure that our code does not use non-
declared variables and non-initialized array keys. There are cases, however, where variables
come from outside, so we are not really in a position to guarantee their existence at runtime.
Calling for $user['name'] when $user is not set, or is set but with keys other than name,
will result in notice undefined index--name. Like any unexpected state in code, notices are
bad, more so because they do not actually break your code, they allow it to execute further.
When a notice occurs, unless we have the display_errors configuration set to true, and
error reporting configured to show E_ALL, we would not even see the notice in the browser.

This is bad, as we might depend on the existence of variables and their values that are not
there. This dependency might not even be handled in our code, and we would not even
notice it because the code will continue to execute unless a specific variable check is put in
place.

The All New PHP

[19]

The PHP language has a certain number of predefined variables called superglobals, which
we can use from any function, class, or file, regardless of the scope. The most used ones are
probably $_POST and $_GET superglobals, which are used to fetch the data submitted via
forms or URL parameters. Since we cannot guarantee the existence of $_GET['name'] in
such cases, we need to check for it. Usually, this is done using the isset and empty
functions in PHP, as shown in the following code block:

// #1
if (isset($_GET['name']) && !empty($_GET['name']))
 {
 $name = $_GET['name'];
 }
else {
 $name = 'N/A';
 }

// #2
if (!empty($_GET['name']))
 {
 $name = $_GET['name'];
 }
else {
 $name = 'N/A';
 }

// #3

$name = ((isset($_GET['name']) && !empty($_GET['name']))) ? $_GET['name'] :
'N/A';

// #4
$name = (!empty($_GET['name'])) ? $_GET['name'] : 'N/A';

The first example is the most robust one, as it uses both, the isset and empty functions.
These functions are not the same, so it's important to understand what each of them does.
The good thing about an empty function is that it will not trigger a notice if we try to pass it
a variable that might not be set, such as $_GET['name']; it will simply return true or
false. This makes the empty function a nice helper for most cases. However, even the
fourth example, written via the use of the ternary operator, is somewhat robust.

The All New PHP

[20]

PHP 7 introduced a new type of operator called the null coalesce (??) operator. It
empowers us with the ability of writing shorter expressions. The following example
demonstrates the elegance of its use:

$name = $_GET['name'] ?? 'N/A';

It returns the result of its first operand if it exists and is not null, or else its second operand.
In other words, reading it from left to right, the first existing value, which is not null, is the
value that will be returned.

The spaceship operator
Comparing two values is a frequent operation in any programming language. We use
various language operators to express the type of comparison we wish to execute between
two variables. In PHP, these operators include equal ($a == $b), identical ($a === $b),
not equal ($a != $b or $a <> $b), not identical ($a !== $b), less than ($a < $b), greater
than ($a > $b), less than or equal to ($a <= $b), and greater than or equal to ($a >= $b)
comparisons.

All of these comparison operators result in Boolean true or false. Sometimes, however,
there are cases where a three-way comparison is needed, in which case, the result of the
comparison is more than just a Boolean true or false. While we can achieve a three-way
comparison using various operators through various expressions, the solution is all but
elegant.

With the release of PHP 7, a new spaceship <=> operator has been introduced, with a syntax
as follows:

(expr) <=> (expr)

The spaceship <=> operator offers combined comparison. After comparison, it follows these
conditions:

It returns 0 if both operands are equal
It returns 1 if the left operand is greater
It returns -1 if the right operand is greater

Comparison rules used to yield the preceding results are the same as those used by existing
comparison operators: <, <=, ==, >=, and >.

The All New PHP

[21]

The usefulness of the new operator is especially apparent with ordering functions. Without
it, the ordering functions were quite robust, as per the following example:

$users = ['branko', 'ivana', 'luka', 'ivano'];

usort($users, function ($a, $b) {
 return ($a < $b) ? -1 : (($a > $b) ? 1 : 0);
});

We can shorten the preceding example by applying the new operator to it, as follows:

$users = ['branko', 'ivana', 'luka', 'ivano'];

usort($users, function ($a, $b) {
 return $a <=> $b;
});

Applying the spaceship <=> operator, where applicable, gives the expressions simplicity
and elegance.

Constant arrays
There are two types of constants in PHP, the constants and the class constants. The
constants can be defined pretty much anywhere using the define construct, while the class
constants are defined within the individual class or interface using the const keyword.

While we cannot say that one type of constant is more important than the other, PHP 5.6
made the difference between the two by allowing class constants with the array data type.
Aside from that difference, both types of constants supported scalar values (integer, float,
string, Boolean, or null).

The PHP 7 release addressed this inequality by adding the array data type to constants as
well, making the following into valid expressions:

// The class constant - using 'const' keyword
class Rift {
 const APP = [
 'name' => 'Rift',
 'edition' => 'Community',
 'version' => '2.1.2',
 'licence' => 'OSL'
];
}

// The class constant - using 'const' keyword

The All New PHP

[22]

interface IRift {
 const APP = [
 'name' => 'Rift',
 'edition' => 'Community',
 'version' => '2.1.2',
 'licence' => 'OSL'
];
}

// The constant - using 'define' construct
define('APP', [
 'name' => 'Rift',
 'edition' => 'Community',
 'version' => '2.1.2',
 'licence' => 'OSL'
]);

echo Rift::APP['version'];
echo IRift::APP['version'];
echo APP['version'];

Though having constants with the array data type might not be an exciting type of feature,
it adds a certain flavor to the overall constant use.

Uniform variable syntax
The new variable syntax is probably one of the most impacting features of the PHP 7
release. It brings greater order into variable dereferencing. The impacting part, however,
not only affects changes for better as it also introduces certain backwards compatibility
(BC) breaks. Among the main reasons for these changes were inconsistencies with variable
variable syntax.

Observing the $foo['bar']->baz expression, first a variable named $foo is fetched, then
the bar offset is taken from the result, and, finally, the baz property is accessed. This is how
normally variable accesses is interpreted, from left to right. However, the variable variable
syntax goes against this principle. Observing the $$foo['baz'] variable, $foo is fetched
first, then its baz offset, and finally looking for the variable with the name of the result is
done.

The newly introduced uniform variable syntax addresses these inconsistencies as per the
following example:

/*** expression syntax ***/
$$foo['bar']['baz']

The All New PHP

[23]

// PHP 5.x meaning
${$foo['bar']['baz']}

// PHP 7.x meaning
($$foo)['bar']['baz']

/*** expression syntax ***/
$foo->$bar['baz']

// PHP 5.x meaning
$foo->{$bar['baz']}

// PHP 7.x meaning
($foo->$bar)['baz']

/*** expression syntax ***/
$foo->$bar['baz']()

// PHP 5.x meaning
$foo->{$bar['baz']}()

// PHP 7.x meaning
($foo->$bar)['baz']()

/*** expression syntax ***/
Foo::$bar['baz']()

// PHP 5.x meaning
Foo::{$bar['baz']}()

// PHP 7.x meaning
(Foo::$bar)['baz']()

Other than addressing the preceding inconsistencies, several new syntax combinations have
been added that make the following expressions now valid:

$foo()['bar']();
[$obj1, $obj2][0]->prop;
getStr(){0}
$foo['bar']::$baz;
$foo::$bar::$baz;
$foo->bar()::baz()
// Assuming extension that implements actual toLower behavior
"PHP"->toLower();
[$obj, 'method']();
'Foo'::$bar;

The All New PHP

[24]

There are quite a few different syntaxes here. While some of this might seem overwhelming
and hard to find use for, it opens a door for new ways of thinking and code use.

Throwables
The exceptions in PHP are not a new concept. They have been around ever since PHP 5 was
released. However, they did not encompass all of PHP's error handling because errors were
not considered to be exceptions. PHP, at the time, had two-error handling systems. This
made it tricky to deal with, as traditional errors were not catchable via the try...catch
blocks exceptions. Certain tricks were possible, where one could have used the
set_error_handler() function in order to set a user-defined error handler function,
basically listening for errors and turning them into exceptions.

Let's look at the following example:

<?php

class Mailer
{
 private $transport;

 public function __construct(Transport $transport)
 {
 $this->transport = $transport;
 }
}

$transport = new stdClass();

try {
 $mailer = new Mailer($transport);
} catch (\Exception $e) {
 echo 'Caught!';
} finally {
 echo 'Cleanup!';
}

PHP 5 would not be able to catch this, and instead throws Catchable fatal error, as
shown here:

Catchable fatal error: Argument 1 passed to Mailer::__construct() must be
an instance of Transport, instance of stdClass given, called in /index.php
on line 18 and defined in /index.php on line 6.

The All New PHP

[25]

By adding the implementation of set_error_handler() before this code, as follows, we
could turn that fatal error into an exception:

set_error_handler(function ($errno, $errstr) {
 throw new \Exception($errstr, $errno);
});

With the preceding code in place, the try...catch...finally blocks would now kick in
as intended. However, there were error types that could not be caught with
set_error_handler, such as E_ERROR, E_PARSE, E_CORE_ERROR, E_CORE_WARNING,
E_COMPILE_ERROR, E_COMPILE_WARNING, and most of E_STRICT raised in the file where
set_error_handler is called.

The PHP 7 release improved the overall error handling system by introducing the
Throwable interface, and moving the errors and exceptions under its umbrella. It is now
the base interface for any object that can be thrown via a throw statement. While we cannot
extend it directly, we can extend the \Exception and \Error classes. While \Exception
is the base class for all PHP and user exceptions, \Error is the base class for all internal
PHP errors.

We could now easily rewrite our preceding try...catch...finally block into one of the
following:

<?php

// Case 1
try {
 $mailer = new Mailer($transport);
} catch (\Throwable $e) {
 echo 'Caught!';
} finally {
 echo 'Cleanup!';
}

// Case 2
try {
 $mailer = new Mailer($transport);
} catch (\Error $e) {
 echo 'Caught!';
} finally {
 echo 'Cleanup!';
}

The All New PHP

[26]

Notice the use of \Throwable in the first example catch block. Even though we cannot
extend it, we can use it as a shorthand for catching both \Error and \Exception in a
single catch statement.

Implementation of \Throwable brings a much needed alignment between errors and
exceptions, making them easier to reason with.

Group use declarations
PHP introduced namespaces as part of the 5.3 release. It provided a way to group related
classes, interfaces, functions, and constants, thus making our code base more organized and
readable. However, dealing with modern libraries usually involves a lot of verbosity in
terms of numerous use statements used to import classes from various namespaces, as
shown in the following example:

use Magento\Backend\Block\Widget\Grid;
use Magento\Backend\Block\Widget\Grid\Column;
use Magento\Backend\Block\Widget\Grid\Extended;

To address this verbosity, the PHP 7 release introduced the group use declarations,
allowing the following syntax:

use Magento\Backend\Block\Widget\Grid;
use Magento\Backend\Block\Widget\Grid\{
 Column,
 Extended
};

Here, we condensed Column and Extend under a single declaration. We can further
condense this using the following compound namespaces:

use Magento\Backend\Block\Widget\{
 Grid
 Grid\Column,
 Grid\Extended
};

The group use declarations act as a shorthand to condense use declarations, making it
slightly easier to import classes, constants, and functions in a concise way. While their
benefits seem somewhat marginal, their use is completely optional.

The All New PHP

[27]

Catching multiple exceptions types
With the introduction of throwables, PHP pretty much aligned its efforts around error
detection, reporting, and handling. Developers are able to use the
try...catch...finally blocks to handle the exceptions as they see fit. The possibility to
use multiple catch blocks can give finer control over the response to certain types of
exceptions. Sometimes, however, there are groups of exceptions we would like to respond
equally. In PHP 7.1, exception handling was further refined to accommodate this challenge.

Let's take a look at the following PHP 5.x example:

try {
 // ...
 }
catch (\InvalidArgumentException $e)
 {
 // ...
 }
catch (\LengthException $e)
 {
 // ...
 }
catch (Exception $e)
 {
 // ...
 }
finally
 {
 // ...
 }

Here, we are handling three exceptions, two of which are quite specific, and a third one that
catches in if the previous two are not matched. The finally block is merely a cleanup, if it
happens that one is needed. Imagine now that the same response is needed for both
the \InvalidArgumentException and \LengthException blocks. The solution would
be to either copy an entire chunk of code from one exception block into another, or, at best,
write a function that wraps the response code and then calls that function within each
exception block.

The newly added exception handling syntax is enabled to catch multiple exception types.
By using a single vertical bar (|), we can define multiple exception types for the catch
parameter, as per the following PHP 7.x example:

try {
 // ...

The All New PHP

[28]

 }
catch (\InvalidArgumentException | \LengthException $e)
 {
 // ...
 }
catch (\Exception $e)
 {
 // ...
 }
 finally
 {
 // ...
 }

Aside from a touch of elegance, the new syntax directly affects code reuse for the better.

Class constant visibility modifiers
There are five types of access modifier in PHP: public, private, protected, abstract,
and final. Often called visibility modifiers, not all of them are equally applicable. Their
use is spread across classes, functions, and variables, as follows:

Functions: public, private, protected, abstract, and final
Classes: abstract and final
Variables: public, private, and protected

Class constants, however, are not on the list. The older versions of PHP did not allow a
visibility modifier on the class constant. By default, class constants were merely assigned
public visibility.

The PHP 7.1 release addresses this limitation by introducing the public, private, and
protected class constant visibility modifiers, as per the following example:

class Visibility
 {
 // Constants without defined visibility
 const THE_DEFAULT_PUBLIC_CONST = 'PHP';

 // Constants with defined visibility
 private const THE_PRIVATE_CONST = 'PHP';
 protected const THE_PROTECTED_CONST = 'PHP';
 public const THE_PUBLIC_CONST = 'PHP';
 }

The All New PHP

[29]

Similar to the old behavior, class constants declared without any explicit visibility default to
public.

Iterable pseudo-type
Quite often, functions in PHP either accept or return an array or object implementing
the \Traversable interface. Though both types can be used in the foreach constructs,
fundamentally, an array is a primitive type; objects are not. This made it difficult for
functions to reason about these types of iterative parameters and return values.

PHP 7.1 addresses this need by introducing the iterable pseudo-type to the mix. The idea is
to use it as a type declaration on a parameter or return type to indicate that the value is
iterable. The iterable type accepts any array, any object implementing Traversable,
and generators.

The following example demonstrates the use of iterable as a function parameter:

function import(iterable $users)
 {
 // ...
 }

function import(iterable $users = null)
 {
 // ...
 }

function import(iterable $users = [])
 {
 // ...
 }

Trying to pass the value to the preceding import function other than an array instance of
Traversable or generator will throw \TypeError. If, however, the default value is assigned,
be it null or an empty array, the function will work.

The following examples demonstrates the use of iterable as a function return value:

 function export(): iterable {
 return [
 'Johny',
 'Tom',
 'Matt'
];

The All New PHP

[30]

 }

 function mix(): iterable {
 return [
 'Welcome',
 33,
 4200.00
];
 }

 function numbers(): iterable {
 for ($i = 0; $i <= 5; $i++) {
 yield $i;
 }
 }

One thing to be careful about is that iterable is implemented as a reserved class name in
PHP. What this means is that any user class, interface, or trait named iterable will throw
an error.

Nullable types
Many programming languages allow some sort of optional or nullable types, depending on
terminology. The PHP dynamic type already supports this notion via the built-in null type.
A variable is considered to be of the null type if it has been assigned a constant value null, it
has not been assigned any value, or it has been unset using the unset() construct. Aside
from variables, the null type can also be used against the function parameters, by assigning
them a default value of null.

However, this imposed a certain limitation, as we could not declare a parameter that might
be null without flagging it as optional at the same time.

PHP 7.1 addressed this limitation by adding a leading question mark symbol (?) to indicate
that a type can be null, unless specifically assigned to some other value. This also means
that type could be null and mandatory at the same type. These nullable types are now
permitted pretty much anywhere where type declarations are permitted.

The All New PHP

[31]

The following is an example of the nullable type with a mandatory parameter value:

function welcome(?string $name) {
 echo $name;
}

welcome(); // invalid
welcome(null); // valid

The first call to the welcome function throws an \Error, because its declaration is making
the parameter mandatory. Goes to say that the nullable type should not be mistaken with
null being passed as a value.

The following is an example of a nullable type with an optional parameter value, optional
in the sense that it has been assigned a default value of null already:

function goodbye(?string $name = null)
 {
 if (is_null($name))
 {
 echo 'Goodbye!';
 }
 else
 {
 echo "Goodbye $name!";
 }
 }

goodbye(); // valid
goodbye(null); // valid
goodbye('John'); // valid

The following is an example of function declaration using the nullable return type:

function welcome($name): ?string
 {
 return null; // valid
 }

function welcome($name): ?string
 {
 return 'Welcome ' . $name; // valid
 }

function welcome($name): ?string
 {
 return 33; // invalid
 }

The All New PHP

[32]

The nullable types work both with scalar types (Boolean, Integer, Float, String) and
compound types (Array, Object, Callable).

Void return types
With all the power of function parameter types and function return types introduced in
PHP 7, there was one thing missing from the mix function. While function return types
allowed specifying a desired return type, they did not allow specifying the lack of return
value. To address this inconsistency, the PHP 7.1 release introduced a void return type
feature.

Why is this important, we might ask ourselves? As with previously mentioned function
return types, this feature can be extremely useful for documentation and error-checking
purposes. By its nature, PHP does not require a return statement in its function
definitions, making it unclear at first look if the function simply executes certain actions or
returns a value. Using the void return type makes it clearer that a function's purpose is to
perform an action, rather than producing a result.

Let's take a look at the following example:

function A(): void {
 // valid
}

function B(): void {
 return; // valid
}

function C(): void {
 return null; // invalid
}

function D(): void {
 return 1; // invalid
}

The All New PHP

[33]

The function A and function B methods showcase a valid use of the void type
parameter. The function A method has no explicitly set return value, but that's OK, as
PHP implicitly always returns null. The function B method simply uses the return
statement without any following type, which also makes it valid. The function C method
is a bit strange, as it looks like it might be valid at first, but it's not. How is it that function
C is invalid while the function A method is, even though they do the same thing? Even
though return and return null are technically equivalent in PHP, they are not really the
same. The existence of a return type, or its lack, denotes a function intent. Specifying return
values, even if its null, suggests the value is significant. With a void return type, the return
value is insignificant. The use of the void return type, therefore, signifies an unimportant
return value, the one that won’t be used anywhere after the function is called.

The differentiation between explicit void and implicit null return might
come as somewhat foggy. The takeaway here is that using void return
types conveys that the function is not supposed to return any kind of
value. While they do not make any major impact on the code itself, and
their use is fully optional, they do bring a certain richness to the language.

Summary
The PHP 7 and 7.1 releases have introduced quite a few changes. Some of these changes
transform the language beyond what PHP once was. While still pertaining the dynamic
typing system, function parameters and return types can now be strictly defined. This
changes the way we look and work with functions. Among function-related changes, there
are several others targeting improvements over a decade old PHP 5. The ecosystem, as a
whole, will take some time to catch up. For developers with experience in PHP 5, these
changes are not merely technical in nature; they require change of mindset in order to
successfully apply what is now possible.

Moving forward, we will look into the current state of PHP standards, who defines them,
what they describe, and how can we benefit from embracing them.

2
Embracing Standards

Every profession and industry has its own set of standards. Whether formal or informal,
they govern the way of doing things. The software industry tends to formalize standards
into documents that establish various specifications and procedures designed to ensure the
quality and reliability of products and services. They further incite the compatibility and
interoperability processes, which otherwise might not be possible.

Putting the code into the context of products, various coding standards have emerged over
the years. Their use yields greater code quality and reduced cognitive friction over our
codebase. With code quality being one of the pillars of sustainable software development,
it's no surprise standards are of impeccable importance to any professional developer.

When it comes to PHP, there are several layers of standards we need to take into
consideration. There are coding standards specific to the language itself, and those specific
to the individual library, framework, or platform. While some of these standards follow
each other, others tend to clash sometimes. Usually, this clash is about little things, such as
putting the opening function bracket in a new line or leaving it on the same line. That being
the case, specific library, framework, and platform standards should take precedence over
the pure language standards.

Embracing Standards

[35]

Back in 2009, at the php[tek] conference in Chicago, a number of developers joined forces
and founded the PHP Standards Group. Organized around the mailing list at
standards@lists.php.net, the initial goal was to establish the proper autoloading
standard. Autoloading was a serious challenge for framework and platform developers.
Different developers were using different conventions when naming their class files. This
had a serious impact on interoperability. The PHP Standards Recommendations,
codenamed PSR-0, set out to solve this issue by outlining practices and constraints that
must be followed for autoloader interoperability. At its early stages, group acceptance into
the PHP community was quite reserved. They had yet to earn the right to call themselves
that in the eyes of the community. Two years later, the group renamed itself into
Framework Interoperability Group, abbreviated to PHP-FIG. To this date, PHP-FIG has
produced several PSRs, reaffirming its position among developers with each of them.

The PHP-FIG and its PSRs were predated by the PEAR Coding Standard, which is still quite
dominant today. It focuses mostly on the elements of the PHP language itself. These
elements address the way we write functions, variables, classes, and so on. The PSRs on the
other hand mostly focus on the interoperability side of things. The PHP-FIG and PEAR
intersect within the bounds of PSR-1 and PSR-2; this makes developers free to follow a
single set of standards now, the ones provided by the PHP-FIG group.

In this chapter, we will take a detailed look at currently published and accepted PSR
standards:

PSR-1 - basic coding standard
PSR-2 - coding style guide
PSR-3 - logger interface
PSR-4 - autoloading standard
PSR-6 - caching interface
PSR-7 - HTTP message interface
PSR-13 - hypermedia links

Throughout the PSRs, there is an extensive use of the MUST, MUST
NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL keywords. The meaning of
these keywords is described in more detail under RFC 2119 (h t t p ://w w w .

i e t f . o r g /r f c /r f c 2119. t x t).

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

Embracing Standards

[36]

PSR-1 - basic coding standard
PSR-1 is the basic coding standard. It outlines the rules our code should follow, as seen by
the members of PHP-FIG. The standard itself is quite short.

Files MUST use only <?php and <?= tags. At one time, PHP supported several different tags
(<?php ?>, <? ?>, <?= ?>, <% %>, <%= %>, <script language="php"></script>).
The use of some depend on the configuration directives short_open_tag (<? ?>) and
asp_tags (<% %>, <%= %>). The PHP 7 release removed ASP tags (<%, <%=), and the script
tag (<script language="php">) altogether. The use of only <?php ?> and <?= ?> tags
is now recommended in order to maximize compatibility.

Files MUST use only UTF-8 without BOM for PHP code. The byte order mark (BOM) is a
Unicode character, U+FEFF BYTE ORDER MARK (BOM), appearing at the beginning of a
document. When used correctly, BOM is invisible. The HTML5 browsers are required to
recognize the UTF-8 BOM and use it to detect the encoding of the page. PHP, on the other
hand, can experience issues with BOM. Positioned at the start of the file, BOM clashes with
PHP headers by causing the page to begin output before the header command is
interpreted.

Files SHOULD either declare symbols (classes, functions, constants, and so on) or cause side-effects
(for example, generate output, change .ini settings, and so on) but SHOULD NOT do both. Quite
often, the simplicity of PHP becomes its downside. The language is quite loose when it
comes to its use. We can easily start from a blank file and code an entire application in it.
This implies having dozens of different classes, functions, constants, variables, includes,
requires, and other directives, all stacked one next to another. While this might come in
handy for a quick prototyping, it is, by no means, an approach to be taken when building
our applications.

The following lines of code demonstrate an example to avoid:

<?php

// side effect: change ini settings
ini_set('error_reporting', E_ALL);

// side effect: loads a file
include 'authenticate.php';

// side effect: generates output
echo "<h1>Hello</h1>";

// declaration
function log($msg)

Embracing Standards

[37]

{
 // body
}

The following lines of code demonstrate an example to follow:

<?php

// declaration
function log()
{
 // body
}

// conditional declaration is *not* a side effect
if (!function_exists('hello')) {
 function hello($msg)
 {
 // body
 }
}

Namespaces and classes MUST follow an autoloading PSR: [PSR-0, PSR-4]. Autoloading plays a
big role in PHP. The concept cuts down the use of require constructs by pulling in our
classes and functions automatically from various files. By default, the language itself
provides the __autoload() and spl_autoload_register() functions to assist with that.
The PHP-FIG group produced two autoloading standards. The PSR-0 standard was the first
PSR to come out, and it soon became widely adopted across many PHP frameworks. As of
October 2014, PSR-0 has been marked as deprecated, leaving PSR-4 as an alternative. We
will touch upon PSR-4 in more detail later on. For the moment, it's suffice to say that the
code written for PHP 5.3 and after must use formal namespaces.

The following lines of code demonstrate an example to avoid:

<?php

class Foggyline_User_Model
{
 // body
}

The following lines of code demonstrate an example to follow:

<?php

namespace Foggyline\Model;

Embracing Standards

[38]

class User
{
 // body
}

Class names MUST be declared in StudlyCaps. The class names, among other things,
sometimes comprise of multiple words. Imagine, for example, the class in charge of XML
parsing. Reasonably enough, we might call it Xml_Parser, XmlParser, XML_Parser,
XMLParser, or some similar combination. There are many different rules used to squeeze
together multiple words that contribute to better readability of the code, such as camel case,
kebab case, snake case, and so on. This standard proposes the use of StudlyCaps, where
capitalization of letters varies arbitrarily. They resemble the , but might be carried out in a
more random fashion.

The following lines of code demonstrate an example to avoid:

<?php

class xmlParser
{
 // body
}

class XML_Parser
{
 // body
}

The following lines of code demonstrate an example to follow:

<?php

class XmlParser
{
 // body
}

class XMLParser
{
 // body
}

Embracing Standards

[39]

Class constants MUST be declared in all upper case with underscore separators. The PHP system
has two types of constants, the ones that live outside the class and are defined using the
define construct, and the other ones that live inside the class. Given that constants represent
immutable variables, their name is supposed to stand out. This standard clearly states that
any class constant name should be fully capitalized. It, however, avoids any
recommendation regarding the property names. We are free to use any of the following
combinations ($StudlyCaps, $camelCase, or $under_score) as long as we are being
consistent.

The following lines of code demonstrate an example to avoid:

<?php

class XmlParser
{
 public const APPVERSION = 1.2;
 private const app_package = 'net.foggyline.xml.parser';
 protected const appLicence = 'OSL';
}

The following lines of code demonstrate an example to follow:

<?php

class XmlParser
{
 public const APP_VERSION = 1.2;
 private const APP_PACKAGE = 'net.foggyline.xml.parser';
 protected const APP_LICENCE = 'OSL';
}

Method names MUST be declared in camelCase. Functions enclosed within a class are called
methods. The naming pattern here differs from previously mentioned StudlyCaps, as it
uses camelCase, which is less arbitrary. More specifically, lowercase camelCase is used,
which implies method names starting with lowercase letters.

The following lines of code demonstrate an example to avoid:

<?php

class User
{
 function say_hello($name) { /* … */ }
 function Pay($salary) { /* … */ }
 function RegisterBankAccount($account) { /* … */ }
}

Embracing Standards

[40]

The following lines of code demonstrate an example to follow:

<?php

class User
{
 function sayHello($name) { /* … */ }
 function pay($salary) { /* … */ }
 function registerBankAccount($account) { /* … */ }
}

The official, full-length PSR-1 Basic Coding Standard guide is available at h t

t p ://w w w . p h p - f i g . o r g /p s r /p s r - 1/.

PSR-2 - coding style guide
PSR-2 is an extension of PSR-1. This means that when talking about PSR-2, the PSR-1
standard is sort of implicitly understood. The difference is that PSR-2 expands beyond basic
class and function formatting by enumerating a set of rules on how to format PHP code.
The outlined style rules are derived shared similarities across the various PFP-FIG member
projects.

Code MUST follow a coding style guide PSR (PSR-1). Goes to say that every PSR-2 code is
implicitly PSR-1 compliant.

Code MUST use 4 spaces for indenting, not tabs. The spaces versus tabs dilemma is quite an old
one in the programming world. There are those who the PHP-FIG group voted for the use
of spaces, whereas 4 spaces represent what is usually a single tab indent. The benefit of a
space over a tab is consistency. Whereas, a tab could show up as a different number of
columns depending on the environment, a single space is always one column. While this
might not be the most convincing argument of all, the standards goes on to say that 4 spaces
constitute for a single indent. Think of it as 4 spaces for what was once a single indent. Most
modern IDE editors nowadays, such as PhpStorm, handle this automatically for us.

http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/

Embracing Standards

[41]

There MUST NOT be a hard limit on line length; the soft limit MUST be 120 characters; lines
SHOULD be 80 characters or less. The 80 characters line length argument is as old as
programming itself. The IBM punch card, designed in 1928, had the 80 columns with 12
punch locations each, one character to each column. This 80 characters per row design
choice was later passed on to character-based terminals. Although the display device
advancements are far beyond these limitations, even today, some command prompts
remain set at 80 columns. This standard basically says that while we might use any length
we want, it is highly preferable to keep it below 80 characters.

There MUST be one blank line after the namespace declaration, and there MUST be one blank line
after the block of use declarations. Although this is not a technical requirement imposed by the
language itself, the standard mandates it. The requirement itself is more of a cosmetic
nature. The resulting use impacts code readability for the better.

The following lines of code demonstrate an example to avoid:

<?php
namespace Foggyline\User\Model;
use Foggyline\User\Model\Director;

class Employee
{
}

The following lines of code demonstrate an example to follow:

<?php
namespace Foggyline\User\Model;
use Foggyline\User\Model\Director;

class Employee
{
}

Opening braces for classes MUST go on the next line, and closing braces MUST go on the next line
after the body. Similarly, this is not a technical requirement of the language, rather a cosmetic
one.

The following lines of code demonstrate an example to avoid:

<?php

class Employee {
 // body
}

Embracing Standards

[42]

The following lines of code demonstrate an example to follow:

<?php

class Employee
{
 // body
}

Opening braces for methods MUST go on the next line, and closing braces MUST go on the next line
after the body. Again, this is a cosmetic type of requirement, it is not really imposed by the
language itself.

The following lines of code demonstrate an example to avoid:

<?php

class Employee {
 public function pay() {
 // body
 }
}

The following lines of code demonstrate an example to follow:

<?php

class Employee
{
 public function pay()
 {
 // body
 }
}

Visibility MUST be declared on all properties and methods; abstract and final MUST be declared
before the visibility; static MUST be declared after the visibility. Visibility is merely a shorthand
for what is officially called access modifiers. The class methods in PHP can use more than
one access modifier. The order of access modifiers in such cases is not relevant; we can
easily say abstract public function and public abstract function or final
public function and public final function. The same goes when we add the
static access modifier to the mix, where we effectively might have three different access
modifiers on a single method. This standard clearly specifies that the abstract and final
modifiers, if used, need to be set first, while the static modifiers, if used, need to follow
public and private modifiers.

Embracing Standards

[43]

The following block of code demonstrates an example to avoid:

<?php

abstract class User
{
 public function func1()
 {
 // body
 }

 private function func2()
 {
 // body
 }

 protected function func3()
 {
 // body
 }

 public static abstract function func4();

 static public final function func5()
 {
 // body
 }
}

class Employee extends User
{
 public function func4()
 {
 // body
 }
}

The following block of code demonstrates an example to follow:

<?php

abstract class User
{
 public function func1()
 {
 // body
 }

Embracing Standards

[44]

 private function func2()
 {
 // body
 }

 protected function func3()
 {
 // body
 }

 abstract public static function func4();

 final public static function func5()
 {
 // body
 }
}

class Employee extends User
{
 public static function func4()
 {
 // body
 }
}

Control structure keywords MUST have one space after them; method and function calls MUST
NOT. This is a rather cosmetic requirement, which merely affects code readability.

The following lines of code demonstrate an example to avoid:

<?php

class Logger
{
 public function log($msg, $code)
 {
 if($code >= 500) {
 // logic
 }
 }
}

The following lines of code demonstrate an example to follow:

<?php

class Logger

Embracing Standards

[45]

{
 public function log($msg, $code)
 {
 if ($code >= 500)
 {

 }
 }
}

Opening braces for control structures MUST go on the same line, and closing braces MUST go on
the next line after the body.

The following block of code demonstrates an example to avoid:

<?php

class Logger
{
 public function log($msg, $code)
 {
 if ($code === 500)
 {
 // logic
 }
 elseif ($code === 600)
 {
 // logic
 }
 elseif ($code === 700)
 {
 // logic
 }
 else
 {
 // logic
 }
 }
}

The following block of code demonstrates an example to follow:

<?php

class Logger
{
 public function log($msg, $code)
 {

Embracing Standards

[46]

 if ($code === 500) {
 // logic
 } elseif ($code === 600) {
 // logic
 } elseif ($code === 700) {
 // logic
 } else {
 // logic
 }
 }
}

Opening parenthesis for control structures MUST NOT have a space after them, and closing
parenthesis for control structures MUST NOT have a space before them. The closing parenthesis
space might be a bit confusing here to grasp, because, earlier, we saw the standard
enforcing spaces for indention instead of tabs. This means that we will have spaces
preceding closing brackets. However, there should only be enough space to represent the
actual indention at the point of the closing bracket, nothing more.

The demonstrates an example to avoid (notice the space on line 7, after the opening curly
brace):

Embracing Standards

[47]

The demonstrates an example to follow:

The official, full-length PSR-2 Coding Style guide is available at h t t p ://w w w

. p h p - f i g . o r g /p s r /p s r - 2/.

PSR-3 - logger interface
Logging different type of events is a common practice for applications. While one
application might categorize these types of events into errors, informational events, and
warnings, others might throw in more elaborate levels of severity logging. The same goes
for the actual format of the log message itself. Goes to say that every application might
easily have its own flavor of logging mechanism. This stands in a way of interoperability.

The PSR-3 standard sets out to fix this by defining a standard for the actual logger interface.
Such a standardized interface then enables us to write PHP application logs in a simple and
universal way.

http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/

Embracing Standards

[48]

The syslog protocol (RFC 5424), defined by Internet Engineering Task Force (IETF),
differentiates the following eight severity levels:

emergency: This states the system is unusable
alert: This states action must be taken immediately
critical: This states critical conditions
error: This states error conditions
warning: This states warning conditions
notice: This states normal but significant condition
info: This states informational messages
debug: This states debug-level messages

The PSR-3 standard builds upon the RFC 5424 by specifying LoggerInterface, which
exposes a special method for each of the eight severity levels, shown as follows:

<?php

interface LoggerInterface
{
 public function emergency($message, array $context = array());
 public function alert($message, array $context = array());
 public function critical($message, array $context = array());
 public function error($message, array $context = array());
 public function warning($message, array $context = array());
 public function notice($message, array $context = array());
 public function info($message, array $context = array());
 public function debug($message, array $context = array());
 public function log($level, $message, array $context = array());
}

We can also notice the ninth log() method, whose signature differs than the first eight. The
log() method is more of a convenience method, whose level parameter needs to indicate
one of the eight severity levels. Calling this method must have the same result as calling the
level-specific methods. Every method accepts a string as $message, or an object with a
__toString() method. Trying to call these methods with an unknown severity level must
throw Psr\Log\InvalidArgumentException.

Embracing Standards

[49]

The $message string may contain one or more placeholders, which the interface
implementors might interpolate with key-value parameters passed into the $context
string, as shown in the following abstract example:

<?php

//...
$message = "User {email} created, with role {role}.";
//...
$context = array('email' => ‘john@mail.com', ‘role’ => 'CUSTOMER');
//...

Without going into the implementation details, it's suffice to say that PSR-3 is a simple
standard set to sort an important role of a logger mechanism. Using the logger interface, we
are freed from having to rely on a specific logger implementation. We can type-hint our
application code against LoggerInterface to acquire a PSR-3 compliant logger.

If we were using Composer with our project, we could easily include the psr/log package
into it. This would enable us to integrate a PSR compliant logger with our project in one of
the following ways:

Implementing the LoggerInterface interface and defining all of its methods
Inheriting the AbstractLogger class and defining the log method
Using LoggerTrait and defining the log method

However, it is much easier to use an existing Composer package, such as
monolog/monolog or katzgrau/klogger, and avoid writing our own logger
implementation altogether.

The Monolog project is a nice example of a popular and robust PHP library
that implements the PSR-3 logger interface. It can be used to send our logs
to files, sockets, inboxes, databases, and various web services.

The official, full-length PSR-3: Logger Interface guide is available at h t t p

://w w w . p h p - f i g . o r g /p s r /p s r - 3/.

http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/

Embracing Standards

[50]

PSR-4 - autoloading standard
To this date, the PHP-FIG group has released two autoloading standards. Predating PSR-4
was PSR-0. It was the first standard released by the PHP-FIG group. Its class naming had
certain backward compatibility features aligned with an even older PEAR standard.
Whereas, each level of the hierarchy was separated with a single underscore, indicating
pseudo-namespaces and directory structure. The PHP 5.3 release then brought official
namespace support to the language. PSR-0 allowed both the old PEAR underscore mode
and the use of the new namespace notation. Allowing the underscores for some time to
follow eased the transition to namespaces and encouraged wider adoption. Pretty soon,
Composer came on the scene.

Composer is a popular dependency manager for PHP that deals with
packages and libraries by installing them in a vendor/ directory of our
project.

With Composer's vendor/ directory philosophy, there was no single main directory for
PHP sources as with PEAR. PSR-0 became a bottleneck and was marked as deprecated as of
October 2014.

PSR-4 is the recommended autoloading standard nowadays.

According to PSR-4, a fully qualified class name now has the form as per the following
example:

\<NamespaceName>(\<SubNamespaceNames>)*\<ClassName>

The term class here does not just refer to classes. It also refers to interfaces, traits, and other
similar structures.

To put this into context, let's take a look at the partial class code taken from the Magento 2
commerce platform, which is shown as follows:

<?php

namespace Magento\Newsletter\Model;

use Magento\Customer\Api\AccountManagementInterface;
use Magento\Customer\Api\CustomerRepositoryInterface;

class Subscriber extends \Magento\Framework\Model\AbstractModel
{
 // ...

Embracing Standards

[51]

 public function __construct(
 \Magento\Framework\Model\Context $context,
 \Magento\Framework\Registry $registry,
 \Magento\Newsletter\Helper\Data $newsletterData,
 \Magento\Framework\App\Config\ScopeConfigInterface $scopeConfig,
 \Magento\Framework\Mail\Template\TransportBuilder
 $transportBuilder,
 \Magento\Store\Model\StoreManagerInterface $storeManager,
 \Magento\Customer\Model\Session $customerSession,
 CustomerRepositoryInterface $customerRepository,
 AccountManagementInterface $customerAccountManagement,
 \Magento\Framework\Translate\Inline\StateInterface
 $inlineTranslation,
 \Magento\Framework\Model\ResourceModel\AbstractResource
 $resource = null,
 \Magento\Framework\Data\Collection\AbstractDb
 $resourceCollection = null,
 array $data = []
) {
 // ...
 }

 // ...
}

The preceding Subscriber class is defined within the Subscriber.php file present at
 vendor\Magento\module-newsletter\Model\, relative to the root of the Magento
project. We can see __construct using all sorts of fully classified class names. The
Magento platform has these types of robust constructors all over its codebase because of
the way it handles dependency injection. We can imagine the amount of additional code
needed to individually require all of these classes manually if it weren't for the unified
autoloading standard.

The PSR-4 standard also states that the autoloader implementation must not throw an
exception or raise an error of any level. This is to ensure that possible multiple autoloaders
do not break one another.

The official, full-length PSR-4: Autoloader Standard guide is available at h t t

p ://w w w . p h p - f i g . o r g /p s r /p s r - 4/.

http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/

Embracing Standards

[52]

PSR-6 - caching interface
Performance issues are the ever-hot topic of application development. The effects of poorly
performing applications can sometimes have serious financial impact. Back in 2007,
Amazon reported a 100 ms increase in h t t p s ://w w w . a m a z o n . c o m / load time and their sales
decreased by 1%. Several studies have also shown that nearly half of the users are likely to
abandon the website if the page load time is over 3 seconds. To address the performance
issues, we look into caching solutions.

Both browsers and servers allow caching of various resources, such as images, web pages,
CSS/JS files. Sometimes, however, this is not enough as we need to be able to control the
caching of various other bits on the application level, such as objects themselves. Over time,
various libraries rolled out their own caching solutions. This made it tough for developers,
as they needed to implement specific caching solutions in their code. This made it
impossible to easily change caching implementation later on.

To solve these problems, the PHP-FIG group brought forth the PSR-6 standard.

This standard defines two main interfaces, CacheItemPoolInterface and
CacheItemInterface, for working with Pool and Items. The pool represents a collection
of items in the caching system. Whereas, item represents a single key/value pair stored
within the pool. The key part acts as a unique identifier, so it must be immutable.

The following code snippet reflects the PSR-6 CacheItemInterface definition:

<?php

namespace Psr\Cache;

interface CacheItemInterface
{
 public function getKey();
 public function get();
 public function isHit();
 public function set($value);
 public function expiresAt($expiration);
 public function expiresAfter($time);
}

The following code snippet reflects the PSR-6 CacheItemPoolInterface definition:

<?php

namespace Psr\Cache;

https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/

Embracing Standards

[53]

interface CacheItemPoolInterface
{
 public function getItem($key);
 public function getItems(array $keys = array());
 public function hasItem($key);
 public function clear();
 public function deleteItem($key);
 public function deleteItems(array $keys);
 public function save(CacheItemInterface $item);
 public function saveDeferred(CacheItemInterface $item);
 public function commit();
}

Libraries that implement the PSR-6 standard must support the following serializable PHP
data types:

Strings
Integers
Floats
Boolean
Null
Arrays
Object

The compound structures such as arrays and objects are always tricky ones. The standard
says that the indexed, associative, and multidimensional arrays of arbitrary depth must be
supported. Since arrays in PHP are not necessarily of a single data type, this is the one to be
careful about. Objects might utilize the PHP Serializable interface, __sleep() or
__wakeup() magic methods, or similar language functionality. The important bit is that
any data passed to libraries that implement PSR-6 is expected to come back exactly as
passed.

There are several PSR-6 cache implementations available via Composer, all of which
support tags. The following is a partial list of the most popular ones:

cache/filesystem-adapter: Using filesystem
cache/array-adapter: Using a PHP array
cache/memcached-adapter: Using Memcached
cache/redis-adapter: Using Redis
cache/predis-adapter: Using Redis (Predis)

Embracing Standards

[54]

cache/void-adapter: Using Void
cache/apcu-adapter: Using APCu
cache/chain-adapter: Using chain
cache/doctrine-adapter: Using Doctrine

We can easily add any one of these caching libraries to our project just by using Composer
require new/package. The PSR-6 compliance makes it possible for us to easily swap
these libraries in our project without changing any of its code.

The Redis is an open source in-memory data structure store used as a
database, cache, and message broker. It is quite popular with PHP
developers as a caching solution. The official Redis page is available at h t t

p s ://r e d i s . i o /.

The official, full-length PSR-6: Caching Interface guide is available at h t t p

://w w w . p h p - f i g . o r g /p s r /p s r - 6/.

PSR-7 - HTTP message interface
The HTTP protocol has been around for quite some time now. Its development was
initiated by Tim Berners-Lee at CERN way back in 1989. Throughout the years, Internet
Engineering Task Force (IETF) and the World Wide Web Consortium (W3C) defined
series of standards for it, known as Requests for Comments (RFCs). The first definition of
HTTP/1.1 occurred in RFC 2068 in 1997, and was later deprecated by RFC 2616 in 1999.
Over a decade later, HTTP/2 was standardized in 2015. Although HTTP/2 is now supported
by major web servers, HTTP/1.1 is still widely used.

The underlying HTTP communication comes down to requests and responses, commonly
referred to as HTTP messages. Abstracted away from average consumers, these messages
form the foundation of web development, and are therefore of interest to every web
application developer. While RFC 7230, RFC 7231, and RFC 3986 spec out the details of
HTTP itself, PSR-7 describes common interfaces for representing the HTTP messages in
accordance with these RFCs.

https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/
http://www.php-fig.org/psr/psr-6/

Embracing Standards

[55]

PSR-7 defines a total of the following seven interfaces:

Psr\Http\Message\MessageInterface

Psr\Http\Message\RequestInterface

Psr\Http\Message\ServerRequestInterface

Psr\Http\Message\ResponseInterface

Psr\Http\Message\StreamInterface

Psr\Http\Message\UriInterface

Psr\Http\Message\UploadedFileInterface

They can be fetched via Composer as a part of the psr/http-message package.

The following block of code reflects the PSR-7 Psr\Http\Message\MessageInterface
definition:

<?php

namespace Psr\Http\Message;

interface MessageInterface
{
 public function getProtocolVersion();
 public function withProtocolVersion($version);
 public function getHeaders();
 public function hasHeader($name);
 public function getHeader($name);
 public function getHeaderLine($name);
 public function withHeader($name, $value);
 public function withAddedHeader($name, $value);
 public function withoutHeader($name);
 public function getBody();
 public function withBody(StreamInterface $body);
}

The preceding MessageInterface methods common to both the request and response
type of message. Messages are considered immutable. A class that implements
the MessageInterface interface needs to assure this immutability by returning a new
message instance for every method call that changes the message state.

Embracing Standards

[56]

The following block of code reflects the
PSR-7 Psr\Http\Message\RequestInterface definition:

<?php

namespace Psr\Http\Message;

interface RequestInterface extends MessageInterface
{
 public function getRequestTarget();
 public function withRequestTarget($requestTarget);
 public function getMethod();
 public function withMethod($method);
 public function getUri();
 public function withUri(UriInterface $uri, $preserveHost = false);
}

The RequestInterface interface extends MessageInterface serving as a representation
of an outgoing, client-side request. Like previously mentioned messages, requests are also
considered immutable. This means that the same class behavior applies. If the class method
is to change the request state, the new instance of request needs to be returned for every
such method call.

The following Psr\Http\Message\ServerRequestInterface definition reflects the
PSR-7 standard:

<?php

namespace Psr\Http\Message;

interface ServerRequestInterface extends RequestInterface
{
 public function getServerParams();
 public function getCookieParams();
 public function withCookieParams(array $cookies);
 public function getQueryParams();
 public function withQueryParams(array $query);
 public function getUploadedFiles();
 public function withUploadedFiles(array $uploadedFiles);
 public function getParsedBody();
 public function withParsedBody($data);
 public function getAttributes();
 public function getAttribute($name, $default = null);
 public function withAttribute($name, $value);
 public function withoutAttribute($name);
}

Embracing Standards

[57]

The implementations of ServerRequestInterface serve as a representation of an
incoming server-side HTTP request. They too are considered immutable; this means that
the same rules of state changing methods apply as previously mentioned.

The following code snippet reflects the
PSR-7 Psr\Http\Message\ResponseInterface definition:

<?php

namespace Psr\Http\Message;

interface ResponseInterface extends MessageInterface
{
 public function getStatusCode();
 public function withStatus($code, $reasonPhrase = '');
 public function getReasonPhrase();
}

With only three methods defined, the implementations of ResponseInterface serve as a
representation of an outgoing server-side response. These types of messages are
considered immutable as well.

The following piece of code reflects the
PSR-7 Psr\Http\Message\StreamInterface definition:

<?php

namespace Psr\Http\Message;

interface StreamInterface
{
 public function __toString();
 public function close();
 public function detach();
 public function getSize();
 public function tell();
 public function eof();
 public function isSeekable();
 public function seek($offset, $whence = SEEK_SET);
 public function rewind();
 public function isWritable();
 public function write($string);
 public function isReadable();
 public function read($length);
 public function getContents();
 public function getMetadata($key = null);
}

Embracing Standards

[58]

StreamInterface provides a wrapper around the common PHP stream
operations, including serialization of the entire stream to a string.

The following piece of code reflects the
PSR-7 Psr\Http\Message\UriInterface definition:

<?php

namespace Psr\Http\Message;

interface UriInterface
{
 public function getScheme();
 public function getAuthority();
 public function getUserInfo();
 public function getHost();
 public function getPort();
 public function getPath();
 public function getQuery();
 public function getFragment();
 public function withScheme($scheme);
 public function withUserInfo($user, $password = null);
 public function withHost($host);
 public function withPort($port);
 public function withPath($path);
 public function withQuery($query);
 public function withFragment($fragment);
 public function __toString();
}

The UriInterface interface here represents the URIs according to RFC 3986. The interface
methods force the implementor to provide methods for most common operations around
the URI object. The instances of URI objects are also considered immutable.

The following code snippet reflects the
PSR-7 Psr\Http\Message\UploadedFileInterface definition:

<?php

namespace Psr\Http\Message;

interface UploadedFileInterface
{
 public function getStream();
 public function moveTo($targetPath);
 public function getSize();
 public function getError();

Embracing Standards

[59]

 public function getClientFilename();
 public function getClientMediaType();
}

The UploadedFileInterface interface represents a file uploaded through an HTTP
request, which is a frequent role of web applications. The handful of methods force the class
implementation to cover the most common actions performed on files. Like with all of the
previous interfaces, class implementation needs to ensure object immutability.

Guzzle is a popular PSR-7 compliant HTTP client library that makes it easy
to work with requests, responses, and streams. It is available at h t t p s ://g

i t h u b . c o m /g u z z l e /g u z z l e , or as a Composer guzzlehttp/guzzle
package.

The official, full-length PSR-7: HTTP Message Interface guide is available at
h t t p ://w w w . p h p - f i g . o r g /p s r /p s r - 7/.

PSR-13 - hypermedia links
The hypermedia links form an essential part of any web application, whether we are
speaking about HTML or API formats. At the very minimum, each hypermedia
link consists of a URI representing the target resource and a relationship defining how the
target resource relates to the source. The target link must be an absolute URI or a relative
URI, as defined by RFC 5988, or possibly a URI template as defined by RFC 6570.

The PSR-13 standard defines a series of interfaces that outline a common hypermedia
format and a way to represent links between these formats:

Psr\Link\LinkInterface

Psr\Link\EvolvableLinkInterface

Psr\Link\LinkProviderInterface

Psr\Link\EvolvableLinkProviderInterface

These interfaces can be fetched via Composer as a part of the psr/link package.

https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
https://github.com/guzzle/guzzle
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/

Embracing Standards

[60]

The following code snippet reflects the PSR-13 Psr\Link\LinkInterface definition,
which represents a single readable link object:

<?php

namespace Psr\Link;

interface LinkInterface
{
 public function getHref();
 public function isTemplated();
 public function getRels();
 public function getAttributes();
}

The following code snippet reflects the
PSR-13 Psr\Link\LinkProviderInterface definition, which represents a single link
provider object:

<?php

namespace Psr\Link;

interface LinkProviderInterface
{
 public function getLinks();
 public function getLinksByRel($rel);
}

The following code snippet reflects the PSR-13
Psr\Link\EvolvableLinkInterface definition, which represents a single evolvable link
value object:

<?php

namespace Psr\Link;

interface EvolvableLinkInterface extends LinkInterface
{
 public function withHref($href);
 public function withRel($rel);
 public function withoutRel($rel);
 public function withAttribute($attribute, $value);
 public function withoutAttribute($attribute);
}

Embracing Standards

[61]

The following code snippet reflects the PSR-13
Psr\Link\EvolvableLinkProviderInterface definition, which represents a single
evolvable link provider value object:

<?php

namespace Psr\Link;

interface EvolvableLinkProviderInterface extends LinkProviderInterface
{
 public function withLink(LinkInterface $link);
 public function withoutLink(LinkInterface $link);
}

 here means that object instances of these interfaces exhibit the same behavior as those in
PSR-7. By default, objects need to be immutable. The moment an object state needs to
change, that change should be reflected into a new object instance. Thanks to PHP's copy-
on-write behavior, this is easy for the class to implement.

The copy-on-write behavior is a built-in mechanism of PHP code, whereas
PHP takes care of avoiding unnecessary variable duplicates. Until one or
more bytes of variable are changed, the variable is not being copied.

The official, full-length PSR-13: Hypermedia Links guide is available at h t t p

://w w w . p h p - f i g . o r g /p s r /p s r - 13/.

Summary
The PHP-FIG group addresses a wide range of things through its PSRs. Some of them focus
on the structure and readability of the code, others strive for increased interoperability by
defining numerous interfaces. These PSRs, directly or indirectly, contribute to improved
quality of our project and the third-party libraries we might use. The RFC 2119 standard
was a common base for each of the PSR. It removes any ambiguity around may, must,
should, and similar words that describe the standard. This ensures that the documentation
gets read just as PHP-FIG intended it. While we might not be in touch with each of the
standards on a day-to-day basis, it is worth paying attention to them when choosing the
libraries for our project. Standard compliant libraries, such as Monolog, usually mean more
flexibility, as we can easily switch between different libraries in later stages of the project.

Moving forward, we will look into configuration options, mechanisms, and libraries behind
error handling and logging.

http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/
http://www.php-fig.org/psr/psr-13/

3
Error Handling and Logging

Effective error handling and logging are essential parts of an application. Early
versions of PHP lacked the support for exceptions and only used errors to flag faulty
application states. The PHP 5 version brought forth the OOP features to the language and,
with it, the exception model. This empowered PHP with the try...catch blocks like other
programming languages. Later, the PHP 5.5 version brought support for the finally
block, which always executed after the try...catch blocks, regardless of whether an
exception was thrown or not.

Nowadays, the PHP language differentiates errors and exceptions as faulty states of an
application. Both are raised as unexpected to our application logic. There are numerous
types of errors, such as E_ERROR, E_WARNING, E_NOTICE, and others. When speaking of
errors, we default to the E_ERROR type that tends to signal the end of our application,
an unexpected state that an application should not try to catch and continue executing. This
might be due to a lack of memory, IO errors, TCP/IP errors, null reference errors and many
others. Exceptions, on the other hand, indicate an unexpected state that an application
might want to catch and still carry on executing. This might be due to the inability to save
an entry in a database at a given time, an unexpected e-mail sending failure, and many
others. This helps to think of an exception as an OO concept of an error.

PHP has its own mechanisms that allow interaction with some of the error types and
exceptions. Using set_error_handler, we can define the custom error handler to possibly
log or display an appropriate message to the user. Using the try...catch...finally
blocks, we can safely catch possible exceptions and continue executing the application. The
exceptions we don't catch automatically turn into a standard error and break our
application execution.

Handling errors would not really be complete without proper logging mechanism. While
PHP itself provides an interesting and useful error_log() function, there are far more
robust logging solutions available in the form of free community libraries, such as Mongo.

Error Handling and Logging

[63]

Moving forward, we will take a detailed look into the following areas of error handling and
logging:

Error handling
Error

ArithmeticError

DivisionByZeroError

AssertionError

ParseError

TypeError

Exception
Logging

Native logging
Logging with Monolog

NASA lost a $125 million Mars orbiter on September 1999 because
engineers failed to convert units from English to metric. While the system
had nothing to do with PHP or the fatal runtime errors as such, it goes to
say how great the impact a faulty software might have in real life.

Error handling
Having errors and exceptions as two different error handling system introduces a certain
level of confusion among developers. The older versions of PHP made it difficult to reason
with E_ERROR as they could not be caught with custom error handlers. The PHP 7 version
tried to address this confusion by introducing the Throwable interface, which is
summarized as follows:

Throwable {
 abstract public string getMessage (void)
 abstract public int getCode (void)
 abstract public string getFile (void)
 abstract public int getLine (void)
 abstract public array getTrace (void)
 abstract public string getTraceAsString (void)
 abstract public Throwable getPrevious (void)
 abstract public string __toString (void)
}

Error Handling and Logging

[64]

The Throwable interface is now the base interface for Error, Exception, and any other
object that can be thrown via a throw statement. The methods defined in this interface are
nearly identical to those of Exception. The PHP classes themselves cannot implement the
Throwable interface directly or extend from Error; they can only extend Exception, as
shown in the following example:

<?php

 class Glitch extends \Error
 {
 }

 try {
 throw new Glitch('Glitch!');
 }
 catch (\Exception $e) {
 echo 'Caught ' . $e->getMessage();
 }

The preceding code will result in the following output:

PHP Fatal error: Uncaught Glitch: Glitch! in index.php:7
Stack trace:
#0 {main}
thrown in /root/app/index.php on line 7

What's happening here is that the Glitch class is trying to extend the Error class, which is
not allowed and results in a Fatal error that does not get caught by our try...catch
block here:

<?php

 class Flaw extends \Exception
 {
 }

 try {
 throw new Flaw('Flaw!');
 }
 catch (\Exception $e) {
 echo 'Caught ' . $e->getMessage();
 }

Error Handling and Logging

[65]

The preceding example is a valid use of PHP Throwable, whereas, our custom Flaw class
extends the Exception class. The catch block is triggered, resulting in the
following output message:

Caught Flaw!

The new exception hierarchy in PHP 7 is as follows:

interface Throwable
 | Error implements Throwable
 | TypeError extends Error
 | ParseError extends Error
 | ArithmeticError extends Error
 | DivisionByZeroError extends ArithmeticError
 | AssertionError extends Error
 | Exception implements Throwable
 | ...

The obvious benefit of the new Throwable interface is that we can now easily catch both
Exception and Error objects in a single try...catch block, as per the following
example:

<?php

try {
 throw new ArithmeticError('Missing numbers!');
}
catch (Throwable $t) {
 echo $t->getMessage();
}

AssertionError extends Error, which in turn implements the Throwable interface. The
signature of the preceding catch block targets the Throwable interface, so the thrown
ArithmeticError would be caught and the output of Missing numbers! shown.

Though our classes cannot implement the Throwable interface, we can define the interface
that extends it. Such an interface can then only be implemented by a class extending either
Exception or Error, as per the following example:

<?php

 interface MyThrowable extends Throwable
 {
 //...
 }

 class MyException extends Exception implements MyThrowable

Error Handling and Logging

[66]

 {
 //...
 }

 throw new MyException();

While it might not be a common practice, such an approach might be useful with package-
specific interfaces.

Error
The Error class is the base class for internal PHP errors in PHP 7. Nearly all fatal and
recoverable fatal errors in PHP 5.x now throw instances of the Error object, making
themselves catchable via the try...catch blocks.

The Error class implements the Throwable interface, as per the following class synopsis:

Error implements Throwable {
 /* Properties */
 protected string $message ;
 protected int $code ;
 protected string $file ;
 protected int $line ;

 /* Methods */
 public __construct (
 [string $message = ""
 [, int $code = 0
 [, Throwable $previous = NULL]]]
)

 final public string getMessage (void)
 final public Throwable getPrevious (void)
 final public mixed getCode (void)
 final public string getFile (void)
 final public int getLine (void)
 final public array getTrace (void)
 final public string getTraceAsString (void)
 public string __toString (void)
 final private void __clone (void)
}

Error Handling and Logging

[67]

The following example demonstrates the use of the Error instance in the catch block:

<?php

class User
{
 function hello($name)
 {
 return 'Hello ' . $name;
 }
}

// Case 1 - working
try {
 $user = new User();
 $user->greeting('John');
}
catch (Error $e) {
 echo 'Caught: ' . $e->getMessage();
}

// Case 2 - working
try {
 $user = new User();
 $user->greeting('John');
}
catch (Throwable $t) {
 echo 'Caught: ' . $t->getMessage();
}

However, there are still cases where some errors are not catchable:

<?php

ini_set('memory_limit', '1M');

try {
 $content = '';
 while (true) {
 $content .= 'content';
 }
}
catch (\Error $e) {
 echo 'Caught ' . $e->getMessage();
}

The preceding example triggers the PHP Fatal error: Allowed memory size of
2097152 bytes exhausted... error.

Error Handling and Logging

[68]

Furthermore, even warnings get passed by, as shown in the following example:

 <?php

 error_reporting(E_ALL);
 ini_set('display_errors', 1);
 ini_set('memory_limit', '1M');

 try {
 str_pad('', PHP_INT_MAX);
 }
 catch (Throwable $t) {
 echo 'Caught ' . $t->getMessage();
 }

The preceding example triggers the PHP Warning: str_pad(): Padding length is
too long... error.

It goes to say that we should be careful with our expectations towards catching core
language errors, as some might slip through. Those that get caught are usually of the base
Error class. However, some errors will throw a more specific subclass of Error:
ArithmeticError, DivisionByZeroError, AssertionError, ParseError,
and TypeError.

ArithmeticError
The ArithmeticError class addresses the possibly faulty outcomes of performing
mathematical operations. PHP uses it for two situations--bit shifting by a negative number
or calling intdiv() with a dividend of PHP_INT_MIN and a divisor of -1.

The ArithmeticError class has no methods of its own; they are all inherited from the
parent Error class, as per the following class synopsis:

 ArithmeticError extends Error {
 final public string Error::getMessage (void)
 final public Throwable Error::getPrevious (void)
 final public mixed Error::getCode (void)
 final public string Error::getFile (void)
 final public int Error::getLine (void)
 final public array Error::getTrace (void)
 final public string Error::getTraceAsString (void)
 public string Error::__toString (void)
 final private void Error::__clone (void)
 }

Error Handling and Logging

[69]

The following example demonstrates the try...catch block with ArithmeticError
being thrown for bit shifting by a negative number:

 <?php

 try {
 $value = 5 << -1;
 }
 catch (ArithmeticError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

The resulting output is as follows :

 Caught: Bit shift by negative number

The following example demonstrates the try...catch block with ArithmeticError
being thrown for calling intdiv() with a dividend of PHP_INT_MIN and divisor of -1:

 <?php

 try {
 intdiv(PHP_INT_MIN, -1);
 }
 catch (ArithmeticError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

The resulting output is as follows:

 Caught: Division of PHP_INT_MIN by -1 is not an integer

DivisionByZeroError
Division by zero is an undefined mathematical expression, at least in elementary arithmetic;
hence, PHP needed a way to respond to such cases. DivisionByZeroError is thrown
when we try to divide a number by zero.

The DivisionByZeroError class has no methods of its own, they are all inherited from the
parent ArithmeticError class, as per the following class synopsis:

 DivisionByZeroError extends ArithmeticError {
 final public string Error::getMessage (void)
 final public Throwable Error::getPrevious (void)
 final public mixed Error::getCode (void)
 final public string Error::getFile (void)

Error Handling and Logging

[70]

 final public int Error::getLine (void)
 final public array Error::getTrace (void)
 final public string Error::getTraceAsString (void)
 public string Error::__toString (void)
 final private void Error::__clone (void)
 }

We need to be careful what expression we are using for division. Simply dividing dividend
number with 0 divisor number using the / operator will not yield the same result as using
the intdiv() function. Consider the following code snippet:

 <?php

 try {
 $x = 5 / 0;
 }
 catch (DivisionByZeroError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

The preceding example will not trigger the DivisionByZeroError catch block. Instead,
the following warning is raised.

PHP Warning: Division by zero

Using the intdiv() function instead of the / operator will trigger the catch block as
shown in the following code snippet:

 <?php

 try {
 $x = intdiv(5, 0);
 }
 catch (DivisionByZeroError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

The intdiv() function throws the DivisionByZeroError exception if the divisor is 0. If
the dividend is PHP_INT_MIN and the divisor is -1, then an ArithmeticError exception is
thrown, as shown in the preceding section.

Error Handling and Logging

[71]

AssertionError
Assertions are runtime checks used as a debugging feature. Using the PHP
7 assert() language construct, we can confirm whether certain PHP expressions are true
or false. Whenever the assertion fails, AssertionError is thrown.

The AssertionError class has no methods of its own, they are all inherited from the
parent Error class, as per the following class synopsis:

 AssertionError extends Error {
 final public string Error::getMessage (void)
 final public Throwable Error::getPrevious (void)
 final public mixed Error::getCode (void)
 final public string Error::getFile (void)
 final public int Error::getLine (void)
 final public array Error::getTrace (void)
 final public string Error::getTraceAsString (void)
 public string Error::__toString (void)
 final private void Error::__clone (void)
 }

PHP 7 provides two configuration directives to control the behavior of assert()--
zend.assertions and assert.exception. The assert() function will only get
executed and possibly throw AssertionError if zend.assertions = 1 and
assert.exception = 1, as per the following example:

 <?php

 try {
 assert('developer' === 'programmer');
 }
 catch (AssertionError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

Assuming the configuration directives are all set, the preceding code will output the
Caught: assert('developer' === 'programmer') message. If
only zend.assertions = 1 but assert.exception = 0, then the catch block will have
no effect and the following warning is raised: Warning: assert():
assert('developer' === 'programmer') failed.

The zend.assertions derivative may be completely enabled or disabled
only in the php.ini file.

Error Handling and Logging

[72]

ParseError
The eval() language construct enables us to execute any arbitrary PHP code. The only
requirement is that the code must not be wrapped in opening and closing PHP tags. Apart
from that, the passed code itself must be a valid PHP code. If it happens that the passed
code is invalid, then ParseError is thrown.

The ParseError class has no methods of its own, they are all inherited from the parent
Error class, as per the following class synopsis:

 ParseError extends Error {
 final public string Error::getMessage (void)
 final public Throwable Error::getPrevious (void)
 final public mixed Error::getCode (void)
 final public string Error::getFile (void)
 final public int Error::getLine (void)
 final public array Error::getTrace (void)
 final public string Error::getTraceAsString (void)
 public string Error::__toString (void)
 final private void Error::__clone (void)
 }

The following code snippet demonstrates the valid eval() expression:

 <?php

 try {
 $now = eval("return date('D, d M Y H:i:s');");
 echo $now;
 }
 catch (ParseError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

The following code block demonstrates a parse error in the evaluated code:

 <?php

 try {
 $now = eval("return date(D, d M Y H:i:s);");
 echo $now;
 }
 catch (ParseError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

Error Handling and Logging

[73]

Seeming nearly identical as a working example, you can notice the lack of the opening and
closing (') character around the date function parameter. This breaks the eval function,
triggering the ParseError catch block with the following output:

Caught: syntax error, unexpected 'M' (T_STRING), expecting ',' or ')'

Now, let's take a look at the following code snippet:

 <?php

 try {
 $now = date(D, d M Y H:i:s);
 echo $now;
 }
 catch (ParseError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

Here, we are not using the eval() expression, but have intentionally broken the code. The
resulting output triggers the parse error, but this time not through reacting to the catch
block, which is sort of expected. It is highly unlikely that this specific case would even
happen in the modern IDE environments, such as PhpStorm, Netbeans, and alike, as they
automatically alert us on broken syntax.

TypeError
PHP 7 brought forth the function type parameters and function return types. This, in turn,
implied the need to properly handle errors around their misuse. TypeError was
introduced to target these errors.

The TypeError class has no methods of its own, they are all inherited from the parent
Error class, as per the following class synopsis:

 ParseError extends Error {
 final public string Error::getMessage (void)
 final public Throwable Error::getPrevious (void)
 final public mixed Error::getCode (void)
 final public string Error::getFile (void)
 final public int Error::getLine (void)
 final public array Error::getTrace (void)
 final public string Error::getTraceAsString (void)
 public string Error::__toString (void)
 final private void Error::__clone (void)
 }

Error Handling and Logging

[74]

There are at least three possible error scenarios that throw TypeError, which are as
follows:

The type of argument passed to a function does not match the declared type
The function return value does not match the declared function return type
An invalid number of arguments is being passed to a built-in PHP function

The following code demonstrates the wrong function argument type:

 <?php

 declare(strict_types = 1);

 function hello(string $name) {
 return "Hello $name!";
 }
 try {
 echo hello(34);
 }
 catch (TypeError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

Here, we defined the hello() function that expects to receive a single string argument.
However, the function is passed to the integer value. The declare(strict_types = 1);
expression is required if we want the catch block to actually catch TypeError.
The preceding example results in the following output:

Caught: Argument 1 passed to hello() must be of the type string, integer
given, called in...

The following code demonstrates the wrong function return type:

 <?php

 declare(strict_types = 1);

 function hello($name): string {
 return strlen($name);
 }

 try {
 echo hello('branko');
 }
 catch (TypeError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

Error Handling and Logging

[75]

Here, the defined hello() function has no specific argument types defined, but it does
have a function return type defined. To simulate the faulty scenario, we changed the body
of the function to return the integer value rather than the string. Same as with the previous
example, the strict_types = 1 declaration was needed to trigger TypeError, resulting
in the following output:

Caught: Return value of hello() must be of the type string, integer
returned

The following code demonstrates the invalid number of arguments that are passed to a
built-in PHP function:

 <?php

 declare(strict_types = 1);

 try {
 echo strlen('test', 'extra');
 }
 catch (TypeError $e) {
 echo 'Caught: ' . $e->getMessage();
 }

Here, we are calling the strlen() function with two parameters. Though this core
PHP function itself is defined such that it accepts only one parameter, the strict_types =
1 declaration turns the standard warning into TypeError, thus triggering the catch block.

Uncaught error handler
While a great deal of Error can now be caught via try...catch, there is also an extra
mechanism to handle errors. PHP provides a mechanism in the form of a
set_error_handler() function that allows us to define a custom handler function for all
uncaught errors. The set_error_handler() function accepts two parameters, as per the
following description:

 mixed set_error_handler (
 callable $error_handler
 [, int $error_types = E_ALL | E_STRICT]
)

Error Handling and Logging

[76]

The $error_handler function is either a handler function name passed as string, or entire
anonymous handler function, whereas $error_types is one or more (separated by |)
masks specifying the type of error. The handler function itself also accepts several
parameters, as per the following description:

 bool handler (
 int $errno ,
 string $errstr
 [, string $errfile
 [, int $errline
 [, array $errcontext]]]
)

Let's take a look at the following two examples:

 <?php

 function handler($errno, $errstr, $errfile, $errline, $errcontext)

 {
 echo 'Handler: ' . $errstr;
 }

 set_error_handler('handler', E_USER_ERROR | E_USER_WARNING);

 echo 'start';
 trigger_error('Ups!', E_USER_ERROR);
 echo 'end';

 <?php

 set_error_handler(function ($errno, $errstr, $errfile, $errline,
 $errcontext) {
 echo 'Handler: ' . $errstr;
 }, E_USER_ERROR | E_USER_WARNING);

 echo 'start';
 trigger_error('Ups!', E_USER_WARNING);
 echo 'end';

These examples are nearly identical. The first one is using a separately defined handler
function, which is then passed as a string argument to set_error_handler(). The second
example uses the anonymous function with the same definition. Both examples use the
trigger_error() function, one triggering E_USER_ERROR and the other
 E_USER_WARNING. When executed, both outputs will contain the end string.

Error Handling and Logging

[77]

While the custom handler function enables us to handle all sorts of runtime errors, there are
some errors we cannot handle. The following error types cannot be handled with a user-
defined function: E_ERROR, E_PARSE, E_CORE_ERROR, E_CORE_WARNING,
E_COMPILE_ERROR, E_COMPILE_WARNING, and most of E_STRICT raised in the file where
set_error_handler() is called.

Triggering errors
The PHP trigger_error() function provides a way to trigger a user-level
error/warning/notice message. It can be used in conjunction with the built-in error handler,
or with a user-defined error handler, as we saw in the previous section.

The trigger_error() function accepts two parameters, as per the following description:

 bool trigger_error (
 string $error_msg
 [, int $error_type = E_USER_NOTICE]
)

The $error_msg parameter has a limitation of 1024 bytes, whereas $error_type is limited
to the E_USER_ERROR, E_USER_WARNING, E_USER_NOTICE, and
E_USER_DEPRECATED constants.

Let's take a look at the following example:

 <?php

 set_error_handler(function ($errno, $errstr) {
 echo 'Handler: ' . $errstr;
 });

 echo 'start';
 trigger_error('E_USER_ERROR!', E_USER_ERROR);
 trigger_error('E_USER_ERROR!', E_USER_WARNING);
 trigger_error('E_USER_ERROR!', E_USER_NOTICE);
 trigger_error('E_USER_ERROR!', E_USER_DEPRECATED);
 echo 'end';

Here, we have four different trigger_error() function calls, each accepting different
error types. The custom error handler kicks in for all four errors, and our code continues
executing all the way to show end as the output.

Error Handling and Logging

[78]

There are certain conceptual similarities between error model (set_error_handler and
trigger_error) on one side and throwable model (try...catch and throw new ...)
on the other. Seemingly, both can catch and trigger errors. The main difference is that the
throwable model is a more modern, object-oriented way. That being said, we should limit
our use of trigger_error() to when it's absolutely needed for some contextual reasons.

Exception
Exceptions were originally introduced in PHP 5, which brought forth the OOP model as
well. They remain pretty much unchanged throughout the time. Among significant
changes was the one added by PHP 5.5, which added the finally block, and PHP 7, which
added the possibility to use the | operator in order to catch multiple exception types via a
single catch block.

Exception is the base class for all user exceptions in PHP 7. Same as Error, Exception
implements the Throwable interface, as per the following class synopsis:

 Exception implements Throwable {
 /* Properties */
 protected string $message ;
 protected int $code ;
 protected string $file ;
 protected int $line ;

 /* Methods */
 public __construct (
 [string $message = ""
 [, int $code = 0
 [, Throwable $previous = NULL]]]
)

 final public string getMessage (void)
 final public Throwable getPrevious (void)
 final public mixed getCode (void)
 final public string getFile (void)
 final public int getLine (void)
 final public array getTrace (void)
 final public string getTraceAsString (void)
 public string __toString (void)
 final private void __clone (void)
 }

Exceptions remain the backbone of OO error handling. The simplicity of extending,
throwing, and catching exceptions makes them easy to work with.

Error Handling and Logging

[79]

Creating a custom exception handler
By extending the built-in Exception class, PHP lets us throw any object as if it were an
exception. Let's take a look at the following example:

 <?php

 class UsernameException extends Exception {}

 class PasswordException extends Exception {}

 $username = 'john';
 $password = '';

 try {
 if (empty($username)) {
 throw new UsernameException();
 }
 if (empty($password)) {
 throw new PasswordException();
 }
 throw new Exception();
 }
 catch (UsernameException $e) {
 echo 'Caught UsernameException.';
 }
 catch (PasswordException $e) {
 echo 'Caught PasswordException.';
 }
 catch (Exception $e) {
 echo 'Caught Exception.';
 }
 finally {
 echo 'Finally.';
 }

Here, we defined two custom exceptions, UsernameException and PasswordException.
They merely extended the built-in Exception, not really introducing any new methods or
functionality. We then defined two variables, $username and $password. The
$password variable was set to be an empty string. Finally, we set the
try...catch...finally blocks, with three different catch blocks. The first two catch
blocks are targeted to our custom exceptions, and the third targets the built-in Exception.
Due to an empty password, the preceding example would throw new
PasswordException, and, therefore, output the Caught PasswordException.
Finally. string.

Error Handling and Logging

[80]

Rethrowing exceptions
Rethrowing exceptions is a relatively common practice in development. Sometimes, we
wish to catch an exception, look into it, do a bit of an extra logic, and then rethrow the
exception back so that the parent catch block might handle it further.

Let's take a look at the following example:

 <?php

 class FileNotExistException extends Exception {}

 class FileReadException extends Exception {}

 class FileEmptyException extends Exception {}

 $file = 'story.txt';

 try {
 try {
 $content = file_get_contents($file);
 if (!$content) {
 throw new Exception();
 }
 }
 catch (Exception $e) {
 if (!file_exists($file)) {
 throw new FileNotExistException();
 }
 elseif (!is_readable($file)) {
 throw new FileReadException();
 }
 elseif (empty($content)) {
 throw new FileEmptyException();
 }
 else {
 throw new Exception();
 }
 }
 }

 catch (FileNotExistException $e) {
 echo 'Caught FileNotExistException.';
 }
 catch (FileReadException $e) {
 echo 'Caught FileReadException.';
 }
 catch (FileEmptyException $e) {

Error Handling and Logging

[81]

 echo 'Caught FileEmptyException.';
 }
 catch (Exception $e) {
 echo 'Caught Exception.';
 }
 finally {
 echo 'Finally.';
 }

Here, we defined three simple exceptions--FileNotExistException,
FileReadException, and FileEmptyException. These correspond to three different
faulty outcomes we might expect when dealing with our file. We then added some logic
around the file_get_contents function call, trying to wrap it in the try...catch
blocks. The file_get_contents function results in Boolean false if the file cannot be
read. Knowing that, and knowing that empty function call results in false if the file is
found empty, we can easily check if the file is alright or not in a single if (!$content)
statement. There are several possible scenarios once the general Exception is thrown. The
first and the most obvious one is the missing file. Surprisingly, even with the try...catch
blocks in place, if the file is missing, PHP would output the following:

Warning: file_get_contents(story.txt): failed to open stream: No such file
or directory in /index.php on line 13
Caught FileNotExistException.Finally.

We can clearly see that the core PHP language Warning has been raised, along with
triggering the proper catch and finally block. Ideally, we would like to get away with
the warning output. One possible way is to use the error control operator--the at sign (@). It
suppresses both errors and warnings. This is quite dangerous and should be used with the
utmost care. Generally speaking, errors and warnings are triggered to be handled, not to be
suppressed. However, in this case, we might just call it justified, as we are wrapping
everything in try...catch blocks. The last general catch block is merely there to catch an
unexpected faulty state that is not covered by our three custom exceptions.

Uncaught Exception handler
PHP provides a mechanism in the form of a set_exception_handler function that allows
us to define a custom handler function for all uncaught throwables, including exceptions.
The set_exception_handler function accepts a single callable parameter--either a
function name passed as string, or an entire anonymous function.

Error Handling and Logging

[82]

Let's take a look at the following function name passed as string example:

 <?php

 function throwableHandler(Throwable $t)
 {
 echo 'Throwable Handler: ' . $t->getMessage();
 }

 set_exception_handler('throwableHandler');

 echo 'start';
 throw new Exception('Ups!');
 echo 'end';

Let's take a look at the following anonymous function example:

 <?php

 set_exception_handler(function (Throwable $t) {
 echo 'Throwable Handler: ' . $t->getMessage();
 });

 echo 'start';
 throw new Exception('Ups!');
 echo 'end';

Both of these code examples do the same thing, there is no difference to them. Other than
the second example being more ascetically pleasing, as there is no need to define a separate
function like throwableHandler() that will only get used in one
place. The important thing to note here is that unlike the try...catch blocks, the call to
the handler function is the last thing that our application executes, which, in this case,
means that we will never see the end string on screen.

Logging
Logging is an important aspect of every application. Knowing how to catch errors does not
necessarily mean we are handling the faulty situation as best as we should. If we are not
logging the right details, and passing them on to the right consumer, then we are not really
handling the situation right.

Let's consider the following catch and generate user message example:

 try {
 //...

Error Handling and Logging

[83]

 }
 catch (\Exception $e) {
 $messages[] = __('We can't add this item to your shopping cart right
now.');
 }

Let's consider the following example:

<?php

try {
 //...
} catch (\Exception $e) {
 $this->logger->critical($e);
 $messages[] = __("We can't add this item to your shopping cart right
now . ");
}

Both examples react to the exception by storing the message into a $messages variable,
which is later shown on screen to the current user. This is great as the application does not
crash, the user is shown what happened, and the application is allowed to execute.
However, is it great? The examples are nearly identical, aside from one minor detail. The
first example merely responds to the error and reacts to it in the moment. The second
example uses the $this->logger->critical($e); expression to log the error,
presumably, but necessarily, to a file. By logging the error, we make it possible for
the consumer to review it later. The consumer is most likely a developer who might take a
look into log files every now and then. Notice how the $messages array is not passed
directly to the $e variable, rather, a custom message that fits the user situation. This is
because the user should never be shown the level of detail we might pass onto our logs. The
more details we pass to our log, the easier it gets to troubleshoot our application. By logging
an entire exception instance object, in this case, we pretty much provide all the details the
developer needs to know to try and prevent an error in the future.

Thoughtfully used, logging can provide quality analytics insight upon which we might
periodically reiterate over our codebase and prevent issues that might not be visible during
initial development. Aside from logging errors, we could easily log other analytical, or
otherwise important bits.

The open source Elastic stack, available at h t t p s ://w w w . e l a s t i c . c o ,
enables us to reliably and securely take data from any source, in any
format, and search, analyse, and visualize it in real time. The Kibana
product, available at h t t p s ://w w w . e l a s t i c . c o /p r o d u c t s /k i b a n a , gives
shape to our data through its interactive visualizations.

https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana

Error Handling and Logging

[84]

Native logging
PHP has a built-in error_log() function that sends an error message to the defined error
handling routines; thus, providing an out-of-the-box solution for simple logging.

The following code snippet describes the error_log() function definition:

 bool error_log (
string $message

[, int $message_type = 0
[, string $destination
[, string $extra_headers]]]

)

The parameters are defined as follows:

$message: This is a string type value, and a message we want to log
$message_type: This is an integer type value; it has one of four possible values,
which are as follows:

0: This is an operating system logging mechanism
1: This is sent by e-mail to the address in the destination parameter
2: This is no longer an option
3: This message is appended to the file destination
4: This is sent directly to the SAPI logging handler

$destination: This string type value kicks in only for $message_type =
1 and denotes an e-mail address
$extra_headers: This string type value kicks in only for $message_type = 1
and denotes e-mail headers

The error_log() function works closely with the log_errors
and error_log configuration options defined in php.ini:

log_errors: This is a boolean type configuration option. It tells if error messages
should be logged to the server error log or error_log. To log to a file specified
with the error_log configuration option, set this to 1.
error_log: This is a string type configuration option. It specifies the name of the
file where errors should be logged. If syslog is used, errors are logged to the
system logger. If no value is set, errors are sent to the SAPI error logger, which is
most likely an error log in Apache or stderr in CLI.

Error Handling and Logging

[85]

The following example demonstrates logging to a file:

 <?php

 ini_set('log_errors', 1);
 ini_set('error_log', dirname(__FILE__) . '/app-error.log');

 error_log('Test!');

The log_errors and error_log options might be defined in the .php file itself; however,
it is recommended to do so in php.ini, otherwise, logging won't log any errors if the script
has parse errors or cannot be run at all. The resulting output of the preceding example
would be an app-error.log file, located in the same directory as the executing script itself
with the following content:

 [26-Dec-2016 08:11:32 UTC] Test!
 [26-Dec-2016 08:11:39 UTC] Test!
 [26-Dec-2016 08:11:42 UTC] Test!

The following example demonstrates logging to an e-mail:

 <?php

 ini_set('log_errors', 1);
 ini_set('error_log', dirname(__FILE__) . '/app-error.log');

 $headers = "From: john@server.loc\r\n";
 $headers .= "Subject: My PHP email logger\r\n";
 $headers .= "MIME-Version: 1.0\r\n";
 $headers .= "Content-Type: text/html; charset=ISO-8859-1\r\n";

 error_log('<html><h2>Test!</h2></html>', 1, 'john@mail.com', $headers);

Here, we are first building the raw $headers string, which we then pass to the
error_log() function, along with the destination e-mail address. This is an obvious
downside of the error_log() function, as we are required to be familiar with e-mail
message headers standards.

Error Handling and Logging

[86]

The error_log() function is not binary-safe, which means
the $message argument should not contain a null character, otherwise, it
will be truncated. To bypass this limitation, we can use one of the
conversion/escape functions, such as base64_encode(),
rawurlencode(), or addslashes() before calling error_log(). The
following RFCs might be useful for dealing with e-mail message headers:
RFC 1896, RFC 2045, RFC 2046, RFC 2047, RFC 2048, RFC 2049, and RFC
2822.

Understanding the error_log() function, we can easily wrap it into a custom function of
ours, let's say app_error_log(), thus abstracting the entire e-mails' boilerplate, such as
the address and headers. We can also make our app_error_log() function log into file
and e-mail at once, thus making for a simple, one-line logging expression such as the
following, possibly across our application:

 try {
//...

 }
 catch (\Exception $e) {

app_error_log($e);
 }

Writing simple loggers such as these is quite easy. However, simplicity in development
usually comes with the cost of reduced modularity. Luckily, there are third-party libraries
out there that are quite robust when it comes to logging features. Best of all, they comply to
a certain logging standard, as we will see in the next section.

Logging with Monolog
The PHP community provides several logging libraries for us to choose, such as Monolog,
Analog, KLogger, Log4PHP, and others. Choosing the right library can be a daunting task.
More so because we might decide to change the logging mechanism later on, which might
leave us with a substantial amount of code to change. This is where the PSR-3 logging
standard helps. Choosing a library that is standards-compliant makes it easier to reason
with.

Error Handling and Logging

[87]

Monolog is one of the most popular PHP logging libraries. It is a free, MIT-licensed library
that implements the PSR-3 logging standard. It allows us to easily sends our logs to files,
sockets, inboxes, databases, and various web services.

We can easily install the Monolog library as a composer package by running the following
console command within our projects folder:

composer require monolog/monolog

If composer is not an option, we can download Monolog from the GitHub at h t t p s ://g i t h

u b . c o m /S e l d a e k /m o n o l o g . Those using leading PHP frameworks, such as Symfony
or Laravel, get the Monolog out-of-the-box.

The compliance to the PSR-3 logging standard also means that Monolog supports the
logging levels described by RFC 5424, as follows:

DEBUG (100): Debug-level messages
INFO (200): Informational messages
NOTICE (250): Normal but significant condition
WARNING (300): Warning conditions
ERROR (400): Error conditions
CRITICAL (500): Critical conditions
ALERT (550): Action must be taken immediately
EMERGENCY (600): System is unusable

These constants are defined as part of
the vendor/monolog/monolog/src/Monolog/Logger.php file, alongside a practical use
case example for most of them.

The core concept behind every Monolog logger instance is that the instance itself has a
channel (name) and a stack of handlers. We can instantiate multiple loggers, each defining a
certain channel (db, request, router, and alike). Each channel can combine various handlers.
The handlers themselves can be shared across channels. The channel is reflected in the logs
and allows us to easily see or filter records. Finally, each handler also has a
formatter. The formatter normalizes and formats incoming records so that they can be used
by the handlers to output useful information.

https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog

Error Handling and Logging

[88]

The following diagram visualizes this logger-channel-formatter structure:

Monolog provides quite an extensive list of loggers and formatters.

Loggers:
Log to files and syslog (StreamHandler, RotatingFileHandler,
SyslogHandler, ...)
Send alerts and e-mails (SwiftMailerHandler,
SlackbotHandler, SendGridHandler, ...)
Log-specific servers and networked logging (SocketHandler,
CubeHandler, NewRelicHandler, ...)
Logging in development (FirePHPHandler, ChromePHPHandler,
BrowserConsoleHandler, ...)
Log to databases (RedisHandler, MongoDBHandler,
ElasticSearchHandler, ...)

Formatters:
LineFormatter

HtmlFormatter

JsonFormatter

...

A full list of Monolog loggers and formatters can be obtained through the
official Monolog project page at h t t p s ://g i t h u b . c o m /S e l d a e k /m o n o l o g .

https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog

Error Handling and Logging

[89]

Let's take a look at the following simple example:

 <?php

 require 'vendor/autoload.php';

 use Monolog\Logger;
 use Monolog\Handler\RotatingFileHandler;
 use Monolog\Handler\BrowserConsoleHandler;

 $logger = new Logger('foggyline');

 $logger->pushHandler(new RotatingFileHandler(__DIR__ .
 '/foggyline.log'), 7);
 $logger->pushHandler(new BrowserConsoleHandler());

 $context = [
 'user' => 'john',
 'salary' => 4500.00
];

 $logger->addDebug('Logging debug', $context);
 $logger->addInfo('Logging info', $context);
 $logger->addNotice('Logging notice', $context);
 $logger->addWarning('Logging warning', $context);
 $logger->addError('Logging error', $context);
 $logger->addCritical('Logging critical', $context);
 $logger->addAlert('Logging alert', $context);
 $logger->addEmergency('Logging emergency', $context);

Here, we are creating an instance of Logger and naming it foggyline. We then use the
pushHandler method to push inline instantiated instances of two different handlers.

The RotatingFileHandler logs records to a file and creates one log file per day. It also
deletes files older than the $maxFiles argument, which, in our example, is set to 7.
Regardless of the log file name being set to foggyline.log, the actual log file created
by RotatingFileHandler contains the timestamp in it, resulting in a name such
as foggyline-2016-12-26.log. When we think about it, the role of this handler is
remarkable. Aside from just creating new log entries, it also takes care of deleting old logs.

The following is an output of our foggyline-2016-12-26.log file:

 [2016-12-26 12:36:46] foggyline.DEBUG: Logging debug
{"user":"john","salary":4500} []
 [2016-12-26 12:36:46] foggyline.INFO: Logging info
{"user":"john","salary":4500} []
 [2016-12-26 12:36:46] foggyline.NOTICE: Logging notice

Error Handling and Logging

[90]

{"user":"john","salary":4500} []
 [2016-12-26 12:36:46] foggyline.WARNING: Logging warning
{"user":"john","salary":4500} []
 [2016-12-26 12:36:46] foggyline.ERROR: Logging error
{"user":"john","salary":4500} []
 [2016-12-26 12:36:46] foggyline.CRITICAL: Logging critical
{"user":"john","salary":4500} []
 [2016-12-26 12:36:46] foggyline.ALERT: Logging alert
{"user":"john","salary":4500} []
 [2016-12-26 12:36:46] foggyline.EMERGENCY: Logging emergency
{"user":"john","salary":4500} []

The second handler we pushed to stack, BrowserConsoleHandler, sends logs to the
browser's JavaScript console with no browser extension required. This works on most
modern browsers that support the console API. The resulting output of this handler is
shown in the following screenshot:

With these few simple lines of code, we have added quite an impressive set of logging
capabilities to our application. RotatingFileHandler seems perfect for a later state
analysis of a production running application, while BrowserConsoleHandler might serve
as a convenient way to speed up ongoing development. Goes to say that logs serve a wider
purpose of just logging for errors. Logging various pieces of information at various log
levels, we can easily use the Monolog library as sort of an analytics bridge. All it takes is to
push proper handlers to the stack, which in turn push logs to various destinations, such as
Elasticsearch and alike.

Error Handling and Logging

[91]

Summary
Throughout this chapter, we took a detailed look through the PHP error handling
mechanism. PHP 7 made quite a cleanup of its error handling model by wrapping most of it
under the Throwable interface. This makes it possible to catch core errors via
try...catch blocks that were, prior to PHP 7, reserved for Exception only. This leaves a
bit of a terminology fuzz to digest now, as we come across Throwable, Error, Exception,
system-errors, user-errors, notices, warnings and alike. Speaking high level, we might say
that any faulty state is error. More specifically, we now have throwables on one side and
errors on the other. Throwables encompass thrown and catchable instances of Error and
Exception, whereas, errors encompass basically anything not catchable as Throwable.

Handling faulty states would not really be complete without proper logging. While the
built-in error_log() function provides enough to get us started, more robust solutions are
available in the form of various third-party libraries. The Monolog library is among the
most popular ones and is used across dozens of community projects.

Moving forward, we will look into the magic methods and the enormous power they bring
to the PHP language.

4
Magic Behind Magic Methods

The PHP language allows for both, a procedural and an object-oriented (OO) way of
writing code. Whereas the procedural way is more of a remnant of initial versions of PHP,
nothing really stops us from writing fully procedural applications even today. While both
approaches have their advantages and disadvantages, the OO way is by far the most
dominant one nowadays, the advantages of which are more evident in robust and modular
applications, which are nearly impossible to work on with the procedural style.

Knowing the individual features of the PHP OO model is vital to understand, write, and
debug modern applications. The magic methods are one of the more interesting and often
mystic features of the PHP language. They are the predefined class methods that the PHP
compiler executes under some event, such as object initialized, object destroyed, object
converted to string, object method accessed, object property accessed, object serialized,
object deserialized, and more.

In this chapter, we will cover the use of each of the magic methods available in PHP, as per
the following list of sections:

Using __construct()
Using __destruct()
Using __call()
Using __callStatic()
Using __set()
Using __get()
Using __isset()
Using __unset()
Using __sleep()
Using __wakeup()
Using __toString()

Magic Behind Magic Methods

[93]

Using __invoke()
Using __set_state()
Using __clone()
Using __debugInfo()
Usage statistic across popular platforms

The PHP language reserves all function names starting with __ as magical.

Using __construct()
The __construct() magic method represents a PHP constructor concept similar to that of
other OO languages. It allows developers to tap into the object creation process. Classes that
have the __construct() method declared, call it on each newly-created object. This allows
us to deal with any initialization that the object may need before it is used.

The following code snippet shows the simplest possible use of the __construct() method:

<?php

class User
{
 public function __construct()
 {
 var_dump('__construct');
 }
}

new User;
new User();

Both User instances will yield the same string(11) "__construct" output to the
screen. The more complex example might include constructor parameters. Consider the
following code snippet:

<?php

class User
{
 protected $name;
 protected $age;

Magic Behind Magic Methods

[94]

 public function __construct($name, $age)
 {
 $this->name = $name;
 $this->age = $age;
 var_dump($this->name);
 var_dump($this->age);
 }
}

new User; #1
new User('John'); #2
new User('John', 34); #3
new User('John', 34, 4200.00); #4

Here, we see a __construct() method that accepts the two parameters--$name and $age.
Right after the User class definition, we have four different object initialization attempts.
Attempt #3 is the only valid initialization attempt. Attempts #1 and #2 trigger the
following error:

Warning: Missing argument 1 for User::__construct() // #1
Warning: Missing argument 2 for User::__construct() // #1 & #2

Attempt #4, even though invalid, does not trigger the error. PHP does not generate an error
message, unlike with other methods, when __construct() is overridden with
extra parameters.

Another interesting case for the __construct() method is with the parent classes. Let's
consider the following example:

<?php

class User
{
 protected $name;
 protected $age;

 public function __construct($name, $age)
 {
 $this->name = $name;
 $this->age = $age;
 }
}

class Employee extends User
{
 public function __construct($employeeName, $employeeAge)
 {

Magic Behind Magic Methods

[95]

 var_dump($this->name);
 var_dump($this->age);
 }
}

new Employee('John', 34);

The output of the preceding code is as follows:

NULL NULL

The reason for this is that parent constructors are not called implicitly if the child class
defines a constructor. To trigger the parent constructor, we need to
run parent::__construct() within the child constructor. Let's amend our Employee
class to do just that:

class Employee extends User
{
 public function __construct($employeeName, $employeeAge)
 {
 parent::__construct($employeeName, $employeeAge);
 var_dump($this->name);
 var_dump($this->age);
 }
}

This will be the output now:

 string(4) "John" int(34)

Let's take a look at the following example:

<?php

class User
{
 public function __construct()
 {
 var_dump('__construct');
 }

 public static function hello($name)
 {
 return 'Hello ' . $name;
 }
}

echo User::hello('John');

Magic Behind Magic Methods

[96]

Here, we have a simple User class with a magic __construct() and a static hello()
method. Right after the class definition, we have a call towards the static hello() method.
This does not trigger the __construct() method.

The only output from the preceding example is as follows:

Hello John

The __construct() method only triggers when an object is being initiated via the new
keyword.

We would want to keep our __construct() method, as well as other magic methods,
under public access modifier only. However, if the situation demands it, we are free to
throw in the finally access modifier in the mix as well.

Consider the following example:

<?php

class User
{
 public final function __construct($name)
 {
 var_dump($name);
 }
}

class Director extends User
{

}

class Employee extends User
{
 public function __construct($name)
 {
 var_dump($name);
 }
}

new User('John'); #1
new Director('John'); #2
new Employee('John'); #3

Magic Behind Magic Methods

[97]

Unusual as it is, the initialization attempts #1 and #2 would operate even with the final
access modifier. This is because #1 instantiates the original User class that defines the
final __construct() method, and #2 instantiates the empty Director class that does not
try to implement its own __construct() method. The initialization attempt #3 would fail,
resulting in the following error:

Fatal error: Cannot override final method User::__construct()

This is really the basis of access modifiers and overrides, not specific to
the __construct() magic method itself. However, it is worth knowing that it is possible to
use the final modifier with the constructor, as it might come in handy.

Aside from instantiating simple objects, the practical use of the __construct() method in
OOP comes in the form of dependency injection. Nowadays, it is generally accepted that
injecting dependencies is a best-practice for dealing with dependencies. While
dependencies can be injected into an object through various setter methods, the use of
the __construct() method prevails as a dominant approach with some of the leading
PHP platforms, such as Magento.

The following code block demonstrates the __construct() method of Magento's
vendor/magento/module-gift-message/Model/Save.php file:

 public function __construct(
 \Magento\Catalog\Api\ProductRepositoryInterface $productRepository,
 \Magento\GiftMessage\Model\MessageFactory $messageFactory,
 \Magento\Backend\Model\Session\Quote $session,
 \Magento\GiftMessage\Helper\Message $giftMessageMessage
) {
 $this->productRepository = $productRepository;
 $this->_messageFactory = $messageFactory;
 $this->_session = $session;
 $this->_giftMessageMessage = $giftMessageMessage;
 }

There are several dependencies being passed here via the __construct() method, which
seems quite a step up from previous examples. Even so, the majority of
Magento's __construct() methods are much more robust than this, passing on tens of
parameters to the object.

We could easily summarize the role of the __construct() method as sort of a class
signature that represents how a consumer should fully instantiate a particular object.

Magic Behind Magic Methods

[98]

Using __destruct()
Alongside the constructor, the destructor is a common feature of the OO language. The
__destruct() magic method represents this concept. The method gets triggered as soon as
there are no other references to a particular object. This can happen either when PHP
decides to explicitly free the object, or when we force it using the unset() language
construct.

As with constructors, parent destructors don't get called implicitly by PHP. In order to run a
parent destructor, we need to explicitly call parent::__destruct(). Furthermore, the
child class inherits the parent's destructor if it does not implement one for itself.

Let's say we have a following simple User class:

<?php

class User
{
 public function __destruct()
 {
 echo '__destruct';
 }
}

With the User class in place, let's go ahead and look through instance creation examples:

echo 'A';
new User();
echo 'B';

// outputs "A__destructB"

The new User(); expression here instantiates an instance of the User class into thin
air as it does not assign the newly instantiated object into the variable. This is a trigger for
PHP to explicitly call the __destruct() method right there on the same line, resulting in
the A__destructB string output:

echo 'A';
$user = new User();
echo 'B';

// outputs "AB__destruct"

Magic Behind Magic Methods

[99]

The new User(); expression here instantiates an instance of User class into the $user
variable. This prevents PHP from triggering instantly, as the script might use the $user
variable further down the path. Still, PHP explicitly calls the __destruct() method when
it concludes that the $user variable is not being referenced, resulting in the AB__destruct
string output:

echo 'A';
$user = new User();
echo 'B';
unset($user);
echo 'C';

// outputs "AB__destructC"

Here, we are extending the previous example a little bit. We are using the unset()
language construct to force the destruction of the $user variable in between expressions.
The call to unset() is basically an implicit trigger for PHP to execute the
object's __destruct() method, resulting in the AB__destructC string output:

echo 'A';
$user = new User();
echo 'B';
exit;
echo 'C';

// outputs "AB__destruct"

Here, we are calling the exit() language construct right before the C string output. This
serves as an implicit trigger for PHP that there are no more references towards the $user
variable, and, therefore, the object's __destruct() method can be executed. The resulting
output is the AB__destruct string.

Certain situations might tempt us to call the exit() constructor from within
the __destruct() method itself. We should never do this, because calling exit()
within __destruct() prevents the remaining shutdown routines from executing.
Likewise, throwing an exception from the __destruct() method will trigger a fatal error,
but only if thrown at the time of script termination. This is, by no means, a way to handle
our application states.

Magic Behind Magic Methods

[100]

Most of the time, destructors are not something we will want or need to implement on our
own. Chances are that a great majority of our classes won't have a need for it, as PHP itself
does a pretty good job of cleaning up. There are, however, cases where we might want to
instantly release the resource consumed by the object after the object is not being referenced
anymore. The __destruct() method allows certain follow-up actions during the
object's termination.

Using __call()
Overloading is a familiar term in OOP. However, not all programming languages interpret
it in the same way. The PHP notion of overloading is quite different than that of other
OO languages. Where traditionally overloading provides the ability to have multiple
methods with the same name but different arguments, in PHP overloading means to
dynamically create methods and properties.

The unfortunate misuse of the term overloading adds a layer of confusion
for some developers, as the more proper term for this type of functionality
might have been interpreter hooks.

There are two magic methods in PHP supporting method overloading: __call() and
__callStatic(). Throughout this section, we will take a closer look at the
__call() method.

The __call() magic method is triggered when invoking inaccessible methods in an object
context. This method accepts two parameters, as per the following synopsis:

public mixed __call(string $name, array $arguments)

However the __call() method parameters have the following meaning:

$name: This is the name of the method being called
$arguments: This is an enumerated array containing the parameters passed to
the $name method

Magic Behind Magic Methods

[101]

The following example demonstrates the use of the __call() method in the object context:

<?php

class User
{
 public function __call($name, $arguments)
 {
 echo $name . ': ' . implode(', ', $arguments) . PHP_EOL;
 }

 public function bonus($amount)
 {
 echo 'bonus: ' . $amount . PHP_EOL;
 }
}

$user = new User();
$user->hello('John', 34);
$user->bonus(560.00);
$user->salary(4200.00);

The User class itself declared only the __call() and bonus() methods. The $user object
tries to call the hello(), bonus(), and salary() methods. This effectively means the
object is trying to call two missing methods: hello() and salary(). The __call()
method kicks in for the missing two methods, thus yielding the following output:

__call => hello: John, 34
bonus: 560
__call => salary: 4200

We can find a nice use case example of the __call() method in the Magento platform, as
per the following entry taken from the vendor/magento/framework/DataObject.php
class file:

public function __call($method, $args)
{
 switch (substr($method, 0, 3)) {
 case 'get':
 $key = $this->_underscore(substr($method, 3));
 $index = isset($args[0]) ? $args[0] : null;
 return $this->getData($key, $index);
 case 'set':
 $key = $this->_underscore(substr($method, 3));
 $value = isset($args[0]) ? $args[0] : null;
 return $this->setData($key, $value);
 case 'uns':

Magic Behind Magic Methods

[102]

 $key = $this->_underscore(substr($method, 3));
 return $this->unsetData($key);
 case 'has':
 $key = $this->_underscore(substr($method, 3));
 return isset($this->_data[$key]);
 }
 // ...
}

Without getting into the details of Magneto itself, it's suffice to say that
their DataObject class serves as a root data object throughout the entire framework. The
code within the __call() method enables it to magically get, set, unset, and check for the
existence of the property on the object instance. This is used later in expressions, such as the
following entry taken from the vendor/magento/module-
checkout/Controller/Cart/Configure.php file:

$params = new \Magento\Framework\DataObject();
$params->setCategoryId(false);
$params->setConfigureMode(true);
$params->setBuyRequest($quoteItem->getBuyRequest());

The benefit is that we have easily empowered instances of DataObject here with magical
methods that might and might not exist. For example, setCategoryId() is a method that
does not exist on the DataObject class. Since it does not exist, calling it triggers the
__call() method. This might not be that obvious at first, so let's consider
another imaginary example where our custom class extends from DataObject:

<?php

class User extends \Magento\Framework\DataObject
{

}

$user = new User();

$user->setName('John');
$user->setAge(34);
$user->setSalary(4200.00);

echo $user->getName();
echo $user->getAge();
echo $user->getSalary();

Magic Behind Magic Methods

[103]

Notice the beauty and simplicity of setters and getters we have achieved here with the help of
the __call() magic method. Even though our User class is basically empty, we have
inherited the magic behind the parent's __call() implementation.

The __call() method empowers us with some truly interesting possibilities, most of
which will fit right in as a part of frameworks or libraries.

Using __callStatic()
The __callStatic() magic is nearly identical to the __call() method. Where
the __call() method is bound to the object context, the __callStatic() method is bound
to the static context, which means this method is triggered when invoking inaccessible
methods via the scope resolution operator (::).

The method accepts two parameters as per the following synopsis:

public static mixed __callStatic (string $name, array $arguments)

Notice the use of the static access modifier in the method declaration that is required by the
static context upon which this method operates. The following example demonstrates the
use of the __callStatic() method in the static context:

<?php

class User
{
 public static function __callStatic($name, $arguments)
 {
 echo '__callStatic => ' . $name . ': ' . implode(', ', $arguments)
 . PHP_EOL;
 }

 public static function bonus($amount)
 {
 echo 'bonus: ' . $amount . PHP_EOL;
 }
}

The preceding code will yield the following output:

User::hello('John', 34);
User::bonus(560.00);
User::salary(4200.00);

Magic Behind Magic Methods

[104]

The User class itself declared only the __callStatic() and bonus() methods. The User
class tries to call static hello(), bonus(), and salary() methods. This effectively means
that the class is trying to call two missing methods: hello() and salary(). The
__callStatic() method kicks in for the missing two methods, thus yielding the following
output:

__callStatic => hello: John, 34
bonus: 560
__callStatic => salary: 4200

In OO programming, the static context is less frequent than the object context, which makes
the __callStatic() method less frequently used than the __call() method.

Using __set()
Aside from method overloading, property overloading is another aspect of the PHP overloading
capabilities. There are four magic methods in PHP that support the property overloading:
__set(), __get(), __isset(), and __unset(). Throughout this section, we will take a
closer look at the __set() method.

The __set() magic method is triggered when trying to write data to inaccessible
properties.

The method accepts two parameters, as per the following synopsis:

public void __set(string $name, mixed $value)

Whereas, the __set() method parameters have the following meaning:

$name: This is the name of the property being interacted with
$value: This is the value that the $name property should be set to

Let's take a look at the following object context example:

<?php

class User
{
 private $data = array();

 private $name;
 protected $age;
 public $salary;

Magic Behind Magic Methods

[105]

 public function __set($name, $value)
 {
 $this->data[$name] = $value;
 }
}

$user = new User();
$user->name = 'John';
$user->age = 34;
$user->salary = 4200.00;
$user->message = 'hello';

var_dump($user);

The User class declares four properties with various access modifiers. It further declares the
__set() method that intercepts all the property write attempts on the object context.
 Attempting to set a non-existing ($message) or inaccessible ($name, $age) property
triggers the __set() method. The inner workings of the __set() method push the
inaccessible data into the $data property array, which is visible in the following output:

object(User)#1 (4) {
 ["data":"User":private]=> array(3) {
 ["name"]=> string(4) "John"
 ["age"]=> int(34)
 ["message"]=> string(5) "hello"
 }
 ["name":"User":private]=> NULL
 ["age":protected]=> NULL
 ["salary"]=> float(4200)
}

One practical use of the __set() method might be allowing the setting of a property if
some allow modifications parameter was set to true during object construction; otherwise,
throw an exception.

Trying to use any of the four property overloading methods (__set(), __get(),
__isset(), and __unset()) in a static context would result in the following error:

PHP Warning: The magic method __set() must have public visibility and
cannot be static...

Magic Behind Magic Methods

[106]

Using __get()
The __get() magic method is triggered when trying to read the data from an inaccessible
property. The method accepts a single parameter, as per the following synopsis:

public mixed __get(string $name)

The $name argument is the name of the property being interacted with.

Let's take a look at the following object context example:

<?php

class User
{
 private $data = [
 'name' => 'Marry',
 'age' => 32,
 'salary' => 5300.00,
];

 private $name = 'John';
 protected $age = 34;
 public $salary = 4200.00;

 public function __get($name)
 {
 if (array_key_exists($name, $this->data)) {
 echo '__get => ' . $name . ': ' . $this->data[$name] . PHP_EOL;
 } else {
 trigger_error('Undefined property: ' . $name, E_USER_NOTICE);
 }
 }
}

$user = new User();

echo $user->name . PHP_EOL;
echo $user->age . PHP_EOL;
echo $user->salary . PHP_EOL;
echo $user->message . PHP_EOL;

Magic Behind Magic Methods

[107]

The User class defines four different properties, across three different visibility access
modifiers. Since we don't have getter methods to access all of the individual properties, the
only directly accessible property is public $salary. This is where the __get() method
comes in handy, as it kicks in as soon as we try to access a nonexistent or otherwise
inaccessible property. The resulting output of the preceding code comes down to the
following four lines:

__get => name: Marry

__get => age: 32

4200

PHP Notice: Undefined property: message in...

The age and the name values are fetched from within the $data property as a result of
the __get() method's inner workings.

Using __isset()
The __isset() magic method is triggered by calling the isset() or empty() language
constructs on inaccessible properties. The method accepts a single parameter, as per the
following synopsis:

public bool __isset(string $name)

The $name argument is the name of the property being interacted with.

Let's take a look at the following object context example:

<?php

class User
{
 private $data = [
 'name' => 'John',
 'age' => 34,
];

 public function __isset($name)
 {
 if (array_key_exists($name, $this->data)) {
 return true;
 }

Magic Behind Magic Methods

[108]

 return false;
 }
}

$user = new User();

var_dump(isset($user->name));

The User class defines a single protected array property called $data, and a
magic __isset() method. The current method's inner workings simply do a name lookup
against the $data array key names and return true if the key is found in the array,
otherwise, false. The resulting output of the example is bool(true).

The Magento platform provides an interesting and practical use case for the __isset()
method as part of
its vendor/magento/framework/HTTP/PhpEnvironment/Request.php class file:

public function __isset($key)
{
 switch (true) {
 case isset($this->params[$key]):
 return true;

 case isset($this->queryParams[$key]):
 return true;

 case isset($this->postParams[$key]):
 return true;

 case isset($_COOKIE[$key]):
 return true;

 case isset($this->serverParams[$key]):
 return true;

 case isset($this->envParams[$key]):
 return true;

 default:
 return false;
 }
}

Magic Behind Magic Methods

[109]

The Magento\Framework\HTTP\PhpEnvironment\Request class here represents the
PHP environment and all of its possible request data. The request data can come from many
sources: a query string, $_GET, $_POST, and others. The switch case traverses through
several of these source data variables ($params, $queryParams, $postParams,
$serverParams, $envParams, $_COOKIE) in order to find and confirm the existence of the
request parameter.

Using __unset()
The __unset() magic method is triggered by calling the unset() language constructs on
inaccessible properties. The method accepts a single parameter, as per the following
synopsis:

public bool __unset(string $name)

The $name argument is the name of the property being interacted with.

Let's take a look at the following object context example:

<?php

class User
{
 private $data = [
 'name' => 'John',
 'age' => 34,
];

 public function __unset($name)
 {
 unset($this->data[$name]);
 }
}

$user = new User();

var_dump($user);
unset($user->age);
unset($user->salary);
var_dump($user);

Magic Behind Magic Methods

[110]

The User class declares a single private $data array property, alongside the __unset()
magic method. The method itself is quite simple; it merely calls for the unset()
constructor, passing it the value at a given array key. We are trying to unset to the $age and
$salary properties here. The $salary property does not really exist, neither as a class
property nor as a data array key. Luckily, unset() won't throw an Undefined index
notice type of error, so we do not need additional array_key_exists() checks. The
following resulting output shows the $age property being removed from the object
instance:

object(User)#1 (1) {
 ["data":"User":private]=> array(2) {
 ["name"]=> string(4) "John"
 ["age"]=> int(34)
 }
}

object(User)#1 (1) {
 ["data":"User":private]=> array(1) {
 ["name"]=> string(4) "John"
 }
}

We should not confuse the use of the unset() construct with the (unset) casting. These
two are different operations, and as such the (unset) casting will not trigger
the __unset() magic method:

unset($user->age); // will trigger __unset()
((unset) $user->age); // won't trigger __unset()

Using __sleep()
Object serialization is another important aspect of OOP. PHP provides a serialize()
function that allows us to serialize a value passed to it. The result is a string containing a
byte-stream representation of any value that can be stored in PHP. Serializing the scalar
data types and simple objects is pretty straightforward, as per the following example:

<?php

$age = 34;
$name = 'John';

$obj = new stdClass();
$obj->age = 34;
$obj->name = 'John';

Magic Behind Magic Methods

[111]

var_dump(serialize($age));
var_dump(serialize($name));
var_dump(serialize($obj));

The resulting output is shown as follows:

string(5) "i:34;"
string(11) "s:4:"John";"
string(56) "O:8:"stdClass":2:{s:3:"age";i:34;s:4:"name";s:4:"John";}"

Even a simple custom class can be easily serialized:

<?php

class User
{
 public $name = 'John';
 private $age = 34;
 protected $salary = 4200.00;
}

$user = new User();

var_dump(serialize($user));

The preceding code results in the following output:

string(81)
"O:4:"User":3:{s:4:"name";s:4:"John";s:9:"Userage";i:34;s:9:"*salary";d:420
0;}"

The issue occurs when our classes are either significant in size, or contain resource-type
references. The __sleep() magic method addresses these challenges in a way. Its intended
use is to commit pending data or perform related cleanup tasks. The function is useful
when we have large objects that do not need to be serialized completely.

The serialize() function triggers the object's __sleep() method if it exists. The actual
triggering is done before the serialization process starts. This empowers the object to
specifically list the fields it wants to allow for serialization. The return value of
the __sleep() method must be an array with the names of all the object properties that we
want to serialize. If the method doesn't return a serializable property name array, then NULL
is serialized and E_NOTICE is issued.

Magic Behind Magic Methods

[112]

The following example demonstrates a simple User class with a simple __sleep() method
implementation:

<?php

class User
{
 public $name = 'John';
 private $age = 34;
 protected $salary = 4200.00;

 public function __sleep()
 {
 // Cleanup & other operations???
 return ['name', 'salary'];
 }
}

$user = new User();

var_dump(serialize($user));

The implementation of the __sleep() method clearly states that the only two serializable
properties of a User class are name and salary. Notice how the actual names are provided
as a string, without a $ sign, which results in an output as follows:

string(60) "O:4:"User":2:{s:4:"name";s:4:"John";s:9:"*salary";d:4200;}"

Serializing objects in order to store them in a database is a dangerous
practice, and should be avoided by any means possible. Rare are the cases
that require complex object serialization. Even those are likely a mark of
improper application design.

Using __wakeup()
The topic of serializable objects would not be complete without the serialize() method
counterpart--the unserialize() method. If the serialize() method call triggers the
object's __sleep() magic method, it is logical to expect there is a similar behavior for
deserialization. Rightfully so, calling the unserialize() method upon a given object
triggers its __wakeup() magic method.

The intended use of __wakeup() is to reestablish any resources that might have been lost
during serialization and perform other reinitialization tasks.

Magic Behind Magic Methods

[113]

Let's take a look at the following example:

<?php

class Backup
{
 protected $ftpClient;
 protected $ftpHost;
 protected $ftpUser;
 protected $ftpPass;

 public function __construct($host, $username, $password)
 {
 $this->ftpHost = $host;
 $this->ftpUser = $username;
 $this->ftpPass = $password;

 echo 'TEST!!!' . PHP_EOL;

 $this->connect();
 }

 public function connect()
 {
 $this->ftpClient = ftp_connect($this->ftpHost, 21, 5);
 ftp_login($this->ftpClient, $this->ftpUser, $this->ftpPass);
 }

 public function __sleep()
 {
 return ['ftpHost', 'ftpUser', 'ftpPass'];
 }

 public function __wakeup()
 {
 $this->connect();
 }
}

$backup = new Backup('test.rebex.net', 'demo', 'password');
$serialized = serialize($backup);
$unserialized = unserialize($serialized);

var_dump($backup);
var_dump($serialized);
var_dump($unserialized);

Magic Behind Magic Methods

[114]

The Backup class accepts host, username, and password information through its
constructor. Internally, it sets the core PHP ftp_connect() function to establish a
connection towards the FTP server. A successfully established connection returns a resource
we store into a protected $ftpClient property of a class. Since resources are not
serializable, we made sure to exclude it from the __sleep() method return array. This
ensures that our serialized string does not contain the $ftpHost property. We have further
set a $this->connect(); call within the __wakeup() method to reinitialize the $ftpHost
resource. The overall example results in the following output:

object(Backup)#1 (4) {
 ["ftpClient":protected]=> resource(4) of type (FTP Buffer)
 ["ftpHost":protected]=> string(14) "test.rebex.net"
 ["ftpUser":protected]=> string(4) "demo"
 ["ftpPass":protected]=> string(8) "password"
}

string(119)
"O:6:"Backup":3:{s:10:"*ftpHost";s:14:"test.rebex.net";s:10:"*ftpUser";s:4:
"demo";s:10:"*ftpPass";s:8:"password";}"

object(Backup)#2 (4) {
 ["ftpClient":protected]=> resource(5) of type (FTP Buffer)
 ["ftpHost":protected]=> string(14) "test.rebex.net"
 ["ftpUser":protected]=> string(4) "demo"
 ["ftpPass":protected]=> string(8) "password"
}

The __wakeup() method sort of takes on the role of constructor during
the unserialize() function call. Because the object's __construct() method is not
called during deserialization, we need to be careful to implement the necessary
__wakeup() method logic so that the object can reconstruct any resources it might need.

Using __toString()
The __toString() magic method triggers when we use an object in a string context. It
allows us to decide how the object will react when it is treated like a string.

Let's take a look at the following example:

<?php

class User
{
 protected $name;

Magic Behind Magic Methods

[115]

 protected $age;

 public function __construct($name, $age)
 {
 $this->name = $name;
 $this->age = $age;
 }
}

$user = new User('John', 34);
echo $user;

Here, we have a simple User class that accepts the $name and $age parameters through its
constructor method. Other than that, there is nothing else to indicate how the class should
respond to the attempt of using it in the string context, which is exactly what we are doing
right after the class declaration, as we are trying to echo the object instance itself.

In its current form, the resulting output would be as follows:

Catchable fatal error: Object of class User could not be converted to
string in...

The __toString() magic method allows us to circumvent this error in a simple and
elegant way:

<?php

class User
{
 protected $name;
 protected $age;

 public function __construct($name, $age)
 {
 $this->name = $name;
 $this->age = $age;
 }

 public function __toString()
 {
 return $this->name . ', age ' . $this->age;
 }
}

$user = new User('John', 34);
echo $user;

Magic Behind Magic Methods

[116]

By adding the __toString() magic method, we were able to tailor the resulting string
representation of our object into the following code line:

John, age 34

The Guzzle HTTP client provides a practical use case example of the __toString()
method through its PSR7 HTTP messaging interface implementations; whereas, some of the
implementations make use of the __toString() method. The following code snippet is a
partial extract of Guzzle's vendor/guzzlehttp/psr7/src/Stream.php class file that
implements the Psr\Http\Message\StreamInterface interface:

 public function __toString()
 {
 try {
 $this->seek(0);
 return (string) stream_get_contents($this->stream);
 } catch (\Exception $e) {
 return '';
 }
 }

The try...catch block is pretty much a norm in the case of any logic-rich __toString()
implementations. This is because we cannot throw an exception from within a
__toString() method. Therefore, we need to make sure no error escapes.

Using __invoke()
The __invoke() magic method gets triggered when the object is being called as a function.
The method accepts an optional number of parameters and is is able to return various types
of data, or no data at all, as per the following synopsis:

mixed __invoke([$...])

If an object class implements the __invoke() method, we can call the method by
specifying parentheses () right after the object's name. This type of object is known as a
functor or function object.

The Wikipedia page (h t t p s ://e n . w i k i p e d i a . o r g /w i k i /F u n c t o r)
provides more information on the functor.

https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor

Magic Behind Magic Methods

[117]

The following block of code illustrates the simple __invoke() implementation:

<?php

class User
{
 public function __invoke($name, $age)
 {
 echo $name . ', ' . $age;
 }
}

The __invoke() method can be triggered either by using the object instance as a function
or by calling call_user_func(), as shown in the following code snippet:

$user = new User();

$user('John', 34); // outputs: John, 34

call_user_func($user, 'John', 34); // outputs: John, 34

Using the __invoke() method, we masquerade our classes as callable.

var_dump(is_callable($user)); // true

One of the benefits of using __invoke() is that it makes it possible to create a standard
callback type across the language. This is much more convenient than using combinations
of strings, objects, and arrays when referencing a function, object instance method, or class
static method via the call_user_func() function.

The __invoke() method makes for powerful language additions as we perceive
opportunities for new development patterns; although, its misuse can lead towards an
unclear and messy code.

Using __set_state()
The __set_state() magic method is triggered (not really) for classes exported by the
var_export() function. The method accepts a single array type parameter and returns an
object, as per the following synopsis:

static object __set_state(array $properties)

Magic Behind Magic Methods

[118]

The var_export() function outputs or returns a parsable string representation of a given
variable. It is somewhat similar to the var_dump() function, except that the returned
representation is a valid PHP code:

<?php

class User
{
 public $name = 'John';
 public $age = 34;
 private $salary = 4200.00;
 protected $identifier = 'ABC';
}

$user = new User();
var_export($user); // outputs string "User::__set_state..."
var_export($user, true); // returns string "User::__set_state..."

This results in the following output:

User::__set_state(array(
 'name' => 'John',
 'age' => 34,
 'salary' => 4200.0,
 'identifier' => 'ABC',
))

string(113) "User::__set_state(array(
 'name' => 'John',
 'age' => 34,
 'salary' => 4200.0,
 'identifier' => 'ABC',
))"

Using the var_export() function does not actually trigger the __set_state() method of
our User class. It merely yields a string representation of
the User::__set_state(array(...)) expression that we can either log, output, or pass
through the eval() language construct for execution.

The following piece of code is a more robust example demonstrating the use of eval():

<?php

class User
{
 public $name = 'John';
 public $age = 34;

Magic Behind Magic Methods

[119]

 private $salary = 4200.00;
 protected $identifier = 'ABC';

 public static function __set_state($properties)
 {
 $user = new User();

 $user->name = $properties['name'];
 $user->age = $properties['age'];
 $user->salary = $properties['salary'];
 $user->identifier = $properties['identifier'];

 return $user;
 }
}

$user = new User();
$user->name = 'Mariya';
$user->age = 32;

eval('$obj = ' . var_export($user, true) . ';');

var_dump($obj);

This results in the following output:

object(User)#2 (4) {
 ["name"]=> string(6) "Mariya"
 ["age"]=> int(32)
 ["salary":"User":private]=> float(4200)
 ["identifier":protected]=> string(3) "ABC"
}

Knowing how the eval() language construct is very dangerous as it allows execution of
arbitrary PHP code, its use is discouraged. Therefore, the use
of __set_state() itself becomes questionable for anything other than debugging
purposes.

Using __clone()
The __clone() magic method is triggered on newly cloned objects, where cloning is done
using the clone keyword. The method does not accept any parameters nor does it
return any values, as per the following synopsis:

void __clone(void)

Magic Behind Magic Methods

[120]

When it comes to object cloning, we tend to differentiate deep copy and shallow copy. Deep
copy copies everything--all of the objects an object might point to. Shallow copy copies as
little as possible, leaving the object references as references where possible. While shallow
copy might come in handy as a protection against circular references, replicating all
properties whether they are references or values is not always the desired behavior.

The following example demonstrates the implementation of the __clone() method and
the use of the clone keyword:

<?php

class User
{
 public $identifier;

 public function __clone()
 {
 $this->identifier = null;
 }
}

$user = new User();
$user->identifier = 'john';

$user2 = clone $user;

var_dump($user);
var_dump($user2);

This results in the following output:

object(User)#1 (1) {
 ["identifier"]=> string(4) "john"
}

object(User)#2 (1) {
 ["identifier"]=> NULL
}

The important takeaway when it comes to the __clone() method is that it is not an
override of the cloning process. The normal cloning process always occurs. The __clone()
method merely takes on the responsibility of amending the wrong doing, where we might
not normally be satisfied with the outcome.

Magic Behind Magic Methods

[121]

Using __debugInfo()
The __debugInfo() magic method gets triggered when the var_dump() function is called.
By default, the var_dump() function shows all public, protected, and private properties of
an object. However, if an object class implements the __debugInfo() magic method, we
get to control the output of the var_dump() function. The method does not accept any
parameters, and returns an array of key-values to be shown, as per the following synopsis:

array __debugInfo(void)

The following example demonstrates the __debugInfo() method implementation:

<?php

class User
{
 public $name = 'John';
 public $age = 34;
 private $salary = 4200.00;
 private $bonus = 680.00;
 protected $identifier = 'ABC';
 protected $logins = 67;

 public function __debugInfo()
 {
 return [
 'name' => $this->name,
 'income' => $this->salary + $this->bonus
];
 }
}

$user = new User();

var_dump($user);

This results in the following output:

object(User)#1 (2) {
 ["name"]=> string(4) "John"
 ["income"]=> float(4880)
}

While the __debugInfo() method is useful for tailoring our own var_dump() output, this
might not be something we will necessarily be doing in day-to-day development.

Magic Behind Magic Methods

[122]

Usage statistics across popular platforms
The PHP ecosystem is massive to say the least. There are dozens of free and open source
CMS, CRM, shopping cart, blog, and other platforms and libraries out there. WordPress,
Drupal, and Magento are probably among the most popular ones when it comes to blogs,
content management, and shopping cart solutions. They are all available for download from
their respective websites:

WordPress: h t t p s ://w o r d p r e s s . o r g

Drupal: h t t p s ://w w w . d r u p a l . o r g

Magento: h t t p s ://m a g e n t o . c o m /

Considering these popular platforms, the following table puts some perspective around the
magic method use:

Magic method WordPress 4.7
(702 .php files)

Drupal 8.2.4
(8199 .php files)

Magento CE 2.1.3
(29649 .php files)

__construct() 343 2547 12218

__destruct() 19 19 77

__call() 10 35 152

__callStatic() 1 2 4

__get() 23 31 125

__set() 15 24 86

__isset() 21 15 57

__unset() 11 13 34

__sleep() 0 46 103

__wakeup() 0 10 94

__toString() 15 181 460

__invoke() 0 27 112

__set_state() 0 3 5

__clone() 0 32 68

__debugInfo() 0 0 2

https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://wordpress.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/
https://magento.com/

Magic Behind Magic Methods

[123]

The table is a result of a crude function __[magic-method-name] search across an
entire codebase of individual platforms. It's hard to draw any conclusions on top of it,
as platforms differ significantly in number of .php files. One thing we can say for sure--not
all magic methods are equally popular. WordPress, for example, does not even seem to use
the __sleep(), __wakeup(), and __invoke() methods, which are of importance in OOP.
This might be because WordPress does not handle as many OO components as Magento,
for example, which is much more of an OOP platform in architectural sense. Drupal sort of
sits in the middle here, in terms of total .php file numbers and the magic methods it
uses. Inconclusive or not, the preceding table outlines the active use of pretty much every
magic method PHP has to offer.

Summary
Throughout this chapter, we took a detailed look into each and every magic method PHP
has to offer. The ease of their use is equally impressive as the power they bring to the
language. Simply naming our class methods appropriately, we were able to tap into pretty
much every aspect of an object state and behavior. While most of these magic methods are
not something we will be using on a day-to-day basis, their existence empowers us with
some nifty architectural styles and solutions that are not that easily possible with other
languages.

Moving forward, we will step into the realm of CLI and the more elusive use of PHP.

5
The Realm of CLI

A great deal of modern application development evolves around visible bits and pieces.
Whether we are talking about the server infrastructure, development tools, or the resulting
application itself, graphical interfaces dominate our experience nowadays. While the
diversity and overall list of available GUI tools seems endless, the console still remains an
important part of development that any self-respectful developer should be familiar with.

There are countless reasons why the console is simply the right tool for the job. Take large
database backups, for example. Trying to backup gigabytes of MySQL data via the GUI tool
is likely to result in a complete failure or a corrupt backup file, whereas the console-based
mysqldump tool is impervious to the size of the backup or the time it takes for it to execute.
Things such as large and time-consuming data imports, data exports, data
synchronizations, and so on are common operations of many PHP applications. These are
just some of the operations we would want to move away from the browser and into the
console.

The Realm of CLI

[125]

In this chapter, we will take a look at the following sections:

Understanding PHP CLI
The Console component
Input/output streams
Process control:

Ticks
Signals
Alarms
Multiprocessing

Understanding PHP CLI
Working with the console in PHP is quite easy via the help of PHP CLI SAPI, or just PHP
CLI for short. PHP CLI was first introduced in PHP 4.2.0 as an experimental feature, and,
soon after, it became fully supported and enabled by default in the later versions of
PHP. The great thing about it is that it is available on all popular operating systems (Linux,
Windows, OSX, Solaris). This makes it easy to write console applications that execute pretty
much on any platform.

Check out h t t p s ://e n . w i k i p e d i a . o r g /w i k i /C o m m a n d - l i n e _ i n t e r f a c e

and h t t p s ://e n . w i k i p e d i a . o r g /w i k i /S e r v e r _ A p p l i c a t i o n _ P r o g r a m m i

n g _ I n t e r f a c e for more elaborate descriptions of general CLI and SAPI
abbreviations.

PHP CLI is not the only SAPI interface supported by PHP. Using the php_sapi_name()
function, we can get a name of the current interface that PHP is using. Other possible
interfaces include aolserver, apache, apache2handler, cgi, cgi-fcgi, cli, cli-server, continuity,
embed, fpm-fcgi, and others.

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface

The Realm of CLI

[126]

Running a simple php -v command within our operating system console should give us an
output similar to the following:

PHP 7.1.0-3+deb.sury.org~yakkety+1 (cli) (NTS)
Copyright (c) 1997-2016 The PHP Group
Zend Engine v3.1.0-dev, Copyright (c) 1998-2016 Zend Technologies
 with Zend OPcache v7.1.0-3+deb.sury.org~yakkety+1, Copyright (c)
1999-2016, by Zend Technologies

This should serve as confirmation that PHP CLI SAPI is up and running. The CLI version of
PHP has its own php.ini configuration, separate from other SAPI interfaces. Running the
php --ini command on console will expose the following details about the currently used
php.ini file:

Configuration File (php.ini) Path: /etc/php/7.1/cli
Loaded Configuration File: /etc/php/7.1/cli/php.ini
Scan for additional .ini files in: /etc/php/7.1/cli/conf.d
Additional .ini files parsed: /etc/php/7.1/cli/conf.d/10-opcache.ini,
/etc/php/7.1/cli/conf.d/10-pdo.ini,
/etc/php/7.1/cli/conf.d/20-calendar.ini,
/etc/php/7.1/cli/conf.d/20-ctype.ini,
...

Here, we can see the location of the main configuration file (php.ini) and extension-
specific configuration files. Chaining the configuration of these configuration files takes
immediate effect, as they are loaded each time we invoke PHP.

The Realm of CLI

[127]

The Console component
A number of popular PHP frameworks and platforms utilize some sort of console
application in order to assist with development, deployment, and maintenance of our
projects. The Symfony framework, for example, comes with its own console application
empowered with dozens of nifty commands. These can be accessed by executing the php
bin/console command within the root directory of a Symfony project:

The Realm of CLI

[128]

Each of the listed commands executes a very specific purpose; therefore, assisting our
project in various ways. While the Symfony framework installation and overall details
are out of the scope of this book, there is a component within it that we are interested in.
The Console component, while part of the Symfony framework, can also be used as a
standalone component to build these types of console applications.

Setting up the Console component
The Console component is available in two flavors:

Composer package (symfony/console on Packagist)
Git repository (h t t p s ://g i t h u b . c o m /s y m f o n y /c o n s o l e)

Given that Composer is a de facto standard when it comes to dealing with PHP
components, we will use the composer require command to quickly kick off our first
console application, as follows:

mkdir foggyline
cd foggyline
composer require symfony/console

Running this command triggers the following output:

https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console
https://github.com/symfony/console

The Realm of CLI

[129]

Upon completion, Composer generates the following structure within our foggyline
directory:

All it takes for us now is to create an application entry file, let's say, app.php, and include
the vendor/autoload.php file generated by Composer, as follows:

The Realm of CLI

[130]

The very first line of our file, known as shebang, contains the instructions required for
autodetection of the type of script. While the line itself is not really necessary, it makes a
difference between normally running php app.php or just ./app.php in order to execute
our application script. Following the shebang line is the PHP code that deals with
the inclusion of autoload.php and instantiation of the Console\Application class. The
Console\Application class accepts two parameters: the name of the application and the
version we wish to assign to it. In between instantiating and running the app, we have a
few commented-out lines that merely demonstrate where we would normally register our
individual application commands.

To learn more about the shebang character sequence, check out the
Wikipedia article at h t t p s ://e n . w i k i p e d i a . o r g /w i k i /S h e b a n g _ (U n i x).

To put the shebang line into effect, the app.php file needs to be flagged as executable:

$ chmod +x app.php
$./app.php

With these four lines of PHP code in place, we already have enough to execute our
application:

The output comes out colored and nicely formatted, just as we would expect from modern
console applications. This is merely but a fraction of things that the Console component
takes care for us. With this, we conclude our Console component setup. We can now go
ahead and start registering our application commands using the add() method of an $app
instance.

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)

The Realm of CLI

[131]

Creating a console command
Now that we have our barebone console application set up, let's create three commands to
handle the following imaginary actions:

Customer register
Customer status set
Customer export

The word imaginary simply flags that we will not actually concern ourselves with the inner
details of the executed commands, as our focus is understanding how to reuse the Console
component.

We start by creating CustomerRegisterCommand.php,
CustomerStatusSetCommand.php, and CustomerExportCommand.php within our
project's src/Foggyline/Console/Command/ directory.

The CustomerRegisterCommand.php file has the following content:

<?php

namespace Foggyline\Console\Command;

use Symfony\Component\Console\{
 Command\Command,
 Input\InputInterface,
 Output\OutputInterface
};

class CustomerRegisterCommand extends Command
{
 protected function configure()
 {
 $this->setName('customer:register')
 ->setDescription('Registers new customer.');
 }

 protected function execute(InputInterface $input, OutputInterface
 $output)
 {
 // Some imaginary logic here...
 $output->writeln('Customer registered.');
 }
}

The Realm of CLI

[132]

The CustomerStatusSetCommand.php file has the following content:

<?php

namespace Foggyline\Console\Command;

use Symfony\Component\Console\{
 Command\Command,
 Input\InputInterface,
 Output\OutputInterface
};

class CustomerStatusSetCommand extends Command
{
 protected function configure()
 {
 $this->setName('customer:status:set')
 ->setDescription('Enables of disables existing customer.');
 }

 protected function execute(InputInterface $input, OutputInterface
 $output)
 {
 // Some imaginary logic here...
 $output->writeln('Customer disabled.');
 }
}

The CustomerExportCommand.php file has the following content:

<?php

namespace Foggyline\Console\Command;

use Symfony\Component\Console\{
 Command\Command,
 Input\InputInterface,
 Output\OutputInterface
};

class CustomerExportCommand extends Command
{
 protected function configure()
 {
 $this->setName('customer:export')
 ->setDescription('Exports one or more customers.');
 }

The Realm of CLI

[133]

 protected function execute(InputInterface $input, OutputInterface
$output)
 {
 // Some imaginary logic here...
 $output->writeln('Customers exported.');
 }
}

We can see that all three commands extend
Symfony\Component\Console\Command\Command and provide their own
implementation of the configure() and execute() methods. The configure() method
is sort of like the constructor, where we would place our initial configuration, such as name
of the command, its description, options, arguments, and so on. The execute() method is
where our actual command logic needs to be implemented, or called if implemented
elsewhere. With these three commands in place, we need to go back to the app.php file and
modify its content as follows:

#!/usr/bin/env php
<?php

$loader = require __DIR__ . '/vendor/autoload.php';
$loader->add('Foggyline', __DIR__ . '/src/');

use Symfony\Component\Console\Application;
use Foggyline\Console\Command\{
 CustomerExportCommand,
 CustomerRegisterCommand,
 CustomerStatusSetCommand
};

$app = new Application('Foggyline App', '1.0.0');

$app->add(new CustomerRegisterCommand());
$app->add(new CustomerStatusSetCommand());
$app->add(new CustomerExportCommand());

$app->run();

Compared to our initial app.php file, there are a few changes here. Notice the line where
we require the autoload.php file. If we actually took a look at that file, we would see it
returns an instance of the Composer\Autoload\ClassLoader class. This is the
Composer's PSR-0, PSR-4, and classmap class loader that we can use to our advantage to
load our commands. This is exactly what the $loader->add('Foggyline'... line is
doing. Finally, we register our newly created commands using the application's add()
method.

The Realm of CLI

[134]

With these changes in place, executing our application yields the following output:

Our three commands are now appearing on the list of available commands. The name and
description values we set within the command class configure() method are being
shown for each command. We can now easily execute one these commands:

The Customer disabled. label confirms the execution of our
CustomerStatusSetCommand execute() method. While the overall concept of our
console application and its commands was fairly easy to grasp so far, our commands are
hardly useful at the moment, as we are not passing any inputs to them.

Dealing with inputs
Making practical and useful commands usually requires the ability to pass on the dynamic
information from the operating system console to our application command. The Console
component differentiates two types of inputs--arguments and options:

Arguments are ordered, space-separated (John Doe), optional or required, string
types of information. Assignment of arguments comes after the command name
itself. We use the addArgument() method of
the Symfony\Component\Console\Command\Command instance to assign
arguments to our custom command.

The Realm of CLI

[135]

Options are unordered, two-dashes-separated (--name=John --surname=Doe),
always optional, assigned type of information. The assignment of options comes
after the command name itself. We use the addOption() method of
the Symfony\Component\Console\Command\Command instance to assign
options to our custom command.

The addArgument() method accepts four parameters, as per the following synopsis:

public function addArgument(
 $name,
 $mode = null,
 $description = '',
 $default = null
)

Whereas, the addArgument() method parameters have the following meanings:

$name: This is the argument name
$mode: This is the argument mode, which can be InputArgument::REQUIRED or
InputArgument::OPTIONAL

$description: This is the description text
$default: This is the default value (for the InputArgument::OPTIONAL mode
only)

The addOption() method accepts five parameters, as per the following synopsis:

public function addOption(
 $name,
 $shortcut = null,
 $mode = null,
 $description = '',
 $default = null
)

Whereas, the addOption() method parameters have the following meanings:

$name: This is the option name
$shortcut: This is the shortcut (it can be null)
$mode: This is the option mode, which is one of the InputOption::VALUE_*
constants
$description: This is the description text
$default: This is the default value (must be null for
InputOption::VALUE_NONE)

The Realm of CLI

[136]

We could easily build our commands such that they use the two input types together, as
they do not exclude each other.

Let's go ahead and modify our
src\Foggyline\Console\Command\CustomerRegisterCommand.php file with the
following changes:

<?php

namespace Foggyline\Console\Command;

use Symfony\Component\Console\{
 Command\Command,
 Input\InputInterface,
 Input\InputArgument,
 Input\InputOption,
 Output\OutputInterface
};

class CustomerRegisterCommand extends Command
{
 protected function configure()
 {
 $this->setName('customer:register')
 ->addArgument(
 'name', InputArgument::REQUIRED, 'Customer full name.'
)
 ->addArgument(
 'email', InputArgument::REQUIRED, 'Customer email address.'
)
 ->addArgument(
 'dob', InputArgument::OPTIONAL, 'Customer date of birth.'
)
 ->addOption(
 'email', null, InputOption::VALUE_REQUIRED, 'Send email to
 customer?'
)
 ->addOption(
 'log', null, InputOption::VALUE_OPTIONAL, 'Log to event system?'
)
 ->setDescription('Enables or disables existing customer.');
 }

 protected function execute(InputInterface $input, OutputInterface
$output)
 {
 var_dump($input->getArgument('name'));

The Realm of CLI

[137]

 var_dump($input->getArgument('email'));
 var_dump($input->getArgument('dob'));
 var_dump($input->getOption('email'));
 var_dump($input->getOption('log'));
 }
}

Our modifications mainly extend the group use declaration and the configure() method.
Within the configure() method, we are utilizing the addArgument() and addOption()
instance methods to add the number of inputs to our command.

Trying to execute our console command now, with no arguments, would
trigger RuntimaException, as shown in the following screenshot:

The error is descriptive enough to provide a list of missing arguments. However, it does not
trigger our own argument and option descriptions. To get those to show up, we could
easily run a ./app.php customer:register --help command. This tells the Console
component to show the command details we specified:

The Realm of CLI

[138]

Now that we see the exact descriptions behind our arguments and options, we can issue a
more valid command that would not trigger an error, such as ./app.php
customer:register John Doe --log=true. Passing all required arguments progresses
us to the execute() method, which has been modified to do a raw dump of the passed on
values for our inspection, as shown in the following screenshot:

We now have a simple, but working version of a command that is able to accept inputs. The
addArgument() and addOption() methods made it really easy to define and describe
these inputs via a single expression. The Console component has proven itself to be a really
handy addition to our console application.

Using Console component helpers
Understanding arguments and options is a first step towards utilizing the Console
component. Once we understand how to deal with inputs, we turn our attention to other,
more advanced features. The helpers feature helps us ease the common tasks, such as
format outputs, show running processes, show updatable progress information, provide
interactive QA process, display tabular data, and so on.

The following are several Console component helpers available for us to use:

Formatter Helper
Process Helper
Progress Bar
Question Helper
Table
Debug Formatter Helper

You can see the full helper implementations within our
project's vendor\symfony\console\Helper directory.

The Realm of CLI

[139]

To showcase the ease of use of these helpers, let's go ahead and implement the
simple progress bar and table helper within our customer export command.

We do so by modifying the execute() method of
the src\Foggyline\Console\Command\CustomerExportCommand.php class file:

protected function execute(InputInterface $input, OutputInterface $output)
{
 // Fake data source
 $customers = [
 ['John Doe', 'john.doe@mail.loc', '1983-01-16'],
 ['Samantha Smith', 'samantha.smith@mail.loc', '1986-10-23'],
 ['Robert Black', 'robert.black@mail.loc', '1978-11-18'],
];

 // Progress Bar Helper
 $progress = new
 \Symfony\Component\Console\Helper\ProgressBar($output,
 count($customers));

 $progress->start();

 for ($i = 1; $i <= count($customers); $i++) {
 sleep(5);
 $progress->advance();
 }

 $progress->finish();

 // Table Helper
 $table = new \Symfony\Component\Console\Helper\Table($output);
 $table->setHeaders(['Name', 'Email', 'DON'])
 ->setRows($customers)
 ->render();
}

We start our code by adding a fake customer data. We then instantiate ProgressBar,
passing it the count of entries in our fake customer data array. The progress bar instance
requires explicit start(), advance(), and finish() method calls to actually advance the
progress bar. Once the progress bar is done, we instantiate Table, passing it proper headers
and the row data from our customer data array.

The console component helpers provide great deal of configuration
options. To find out more, check out h t t p ://s y m f o n y . c o m /d o c /c u r r e n t

/c o m p o n e n t s /c o n s o l e /h e l p e r s /i n d e x . h t m l .

http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html
http://symfony.com/doc/current/components/console/helpers/index.html

The Realm of CLI

[140]

With the preceding changes in place, triggering the ./app.php customer:export
command on console should now give the following output whilst the command is
executing:

We will first see the progress par kicking in, showing the exact progress. Once the progress
bar is done, the table helper kicks in, making for the final output, as shown in the following
screenshot:

Using helpers impacts our console application user experience for better. We are now able
to write applications that provide informative and structured feeedback for user.

Input/output streams
Quite early in development, every programmer stumbles upon the streams term. This
seemingly frightening term represents a form of data. Unlike the typical finite type of data,
streams represent a potentially unlimited sequence of data. In PHP terms, a stream is a
resource object exhibiting streamable behavior. Using various wrappers, the PHP language
supports a wide range of streams. The stream_get_wrappers() function can retrieve a
list of all the registered stream wrappers available on the currently running system, such as
the following:

php

file

glob

data

http

ftp

zip

compress.zlib

The Realm of CLI

[141]

compress.bzip2

https

ftps

phar

The list of wrappers is quite extensive, but not finite. We can also register our own
wrappers using the stream_wrapper_register() function. Each wrapper tells the stream
how to handle specific protocols and encodings. Each stream is therefore accessed through
the scheme://target syntax, such as the following:

php://stdin

file:///path/to/file.ext

glob://var/www/html/*.php

data://text/plain;base64,Zm9nZ3lsaW5l

http://foggyline.net/

The scheme part of the syntax indicates the name of the wrapper to be used, while the
target part depends on the wrapper used. As a part of this section, we are interested in
the php wrapper and its target values because they deal with the standard streams.

The standard streams are the following three I/O connections made available to all
programs:

standard input (stdin) - file descriptor 0
standard output (stdout) - file descriptor 1
standard error (stderr) - file descriptor 2

The file descriptor is an integer representing a handle used to access an I/O resource. As a
part of the POSIX application programming interface, Unix processes are expected to have
these three file descriptors. Knowing the file descriptor value, we could use php://fd to
gain direct access to the given file descriptor, such as php://fd/1. However, there is a
more elegant way of doing it.

To learn more about POSIX, check out h t t p s ://e n . w i k i p e d i a . o r g /w i k i

/P O S I X .

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX

The Realm of CLI

[142]

Out of the box, the PHP CLI SAPI provides three constants for these three standard streams:

define('STDIN', fopen('php://stdin', 'r'));: This represents an
already opened stream to stdin
define('STDOUT', fopen('php://stdout', 'w'));: This represents an
already opened stream to stdout
define('STDERR', fopen('php://stderr', 'w'));: This represents an
already opened stream to stderr

The following simple code snippet demonstrates the use of these standard streams:

<?php

fwrite(STDOUT, "Type something: ");
$line = fgets(STDIN);
fwrite(STDOUT, 'You typed: ' . $line);
fwrite(STDERR, 'Triggered STDERR!' . PHP_EOL);

Executing it, we would first see Type something: on screen, after which, we would need to
provide a string and hit Enter, which finally gives the following an output:

While the example itself is ultimately simplified, it does showcase the ease of obtaining the
stream handles. What we do with those streams, further depends on the functions that
utilize the streams (fopen(), fputs(), and so on) and the actual stream functions.

PHP provides over forty stream functions, as well as the streamWrapper
class prototype. These provide us with a means of creating and
manipulating streams in pretty much any way imaginable. Check out h t t p

://p h p . n e t /m a n u a l /e n /b o o k . s t r e a m . p h p for more details.

Process control
Building CLI applications quite often implies working with the system processes. PHP
provides a powerful process control extension called PCNTL. The extension allows us to
handle process creation, program execution, signal handling, and process termination. It
only works on Unix-like machines, where PHP is compiled with the --enable-pcntl
configuration option.

http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php

The Realm of CLI

[143]

To confirm that PCNTL is available on our system, we can execute the following console
command:

php -m | grep pcntl

Given the power it bares, the use of the PCNTL extension is discouraged in production web
environments. Writing PHP daemons scripts for command-line applications is what we
want to use it for.

To start putting things into perspective, let's go ahead and see how we would use the
PCNTL features to handle process signals.

Ticks
PCNTL relies on ticks for its signal handling callback mechanism. The official definition (h t

t p ://p h p . n e t /m a n u a l /e n /c o n t r o l - s t r u c t u r e s . d e c l a r e . p h p) of a tick says:

A tick is an event that occurs for every N low-level tickable statements executed by the
parser within the declare block. The value for N is specified using ticks=N within the
declare block's directive section.

To elaborate on that, a tick is an event. Using the declare() language construct, we control
how many statements it takes to set off a tick. We then use register_ tick_
function() to execute our function upon each fired tick. Ticks are basically a side-effect of a
number of evaluated expressions; the side effect we can react to with our custom
functions. While most of the statements are tickable, certain condition expressions and
argument expressions are not.

A statement is executed, while an expression is evaluated.

Alongside the declare() language construct, PHP provides the following two functions to
work with ticks:

register_ tick_ function(): This registers a function to be executed on
each tick
unregister_ tick_ function(): This deregisters a previously registered
function

http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php
http://php.net/manual/en/control-structures.declare.php

The Realm of CLI

[144]

Let's take a look at the following example, where the declare() construct uses the {}
blocks to wrap the expressions:

<?php

echo 'started' . PHP_EOL;

function tickLogger()
{
 echo 'Tick logged!' . PHP_EOL;
}

register_tick_function('tickLogger');

declare (ticks = 2) {
 for ($i = 1; $i <= 10; $i++) {
 echo '$i => ' . $i . PHP_EOL;
 }
}

echo 'finished' . PHP_EOL;

This results in the following output:

started
$i => 1
$i => 2
Tick logged!
$i => 3
$i => 4
Tick logged!
$i => 5
$i => 6
Tick logged!
$i => 7
$i => 8
Tick logged!
$i => 9
$i => 10
Tick logged!
finished

The Realm of CLI

[145]

This is pretty much what we would expect, based on the carefully wrapped expressions
within the {} blocks of the declare() construct. A tick is being nicely fired every second
iteration of the loop.

Let's take a look at the following example, where the declare() construct is added as the
first line of the PHP script without any {} blocks to wrap the expressions:

<?php

declare (ticks = 2);

echo 'started' . PHP_EOL;

function tickLogger()
{
 echo 'Tick logged!' . PHP_EOL;
}

register_tick_function('tickLogger');

for ($i = 1; $i <= 10; $i++) {
 echo '$i => ' . $i . PHP_EOL;
}

echo 'finished' . PHP_EOL;

This results in the following output:

started
Tick logged!
$i => 1
Tick logged!
$i => 2
Tick logged!
$i => 3
Tick logged!
$i => 4
Tick logged!
$i => 5
Tick logged!
$i => 6
Tick logged!
$i => 7
Tick logged!
$i => 8
Tick logged!
$i => 9
Tick logged!

The Realm of CLI

[146]

$i => 10
Tick logged!
Tick logged!
finished
Tick logged!

The output here is not what we might expect at first. The N value, ticks = 2, does not
seem to be respected as the tick seems to be fired after each and every statement. Even the
last finished output is followed by one more tick.

Ticks provide the type of feature that may be useful to run monitoring, cleanup,
notification, debugging, or other similar tasks. They should be used with utmost care, or
else we might get some unexpected results, as we saw in the preceding example.

Signals
Signals are asynchronous messages sent to a running process within the POSIX-compliant
operating systems. They can be sent both by users of programs. The following is a list of
Linux-supported standard signals:

SIGHUP: Hangup (POSIX)
SIGINT: Terminal interrupt (ANSI)
SIGQUIT: Terminal quit (POSIX)
SIGILL: Illegal instruction (ANSI)
SIGTRAP: Trace trap (POSIX)
SIGIOT: IOT Trap (4.2 BSD)
SIGBUS: BUS error (4.2 BSD)
SIGFPE: Floating point exception (ANSI)
SIGKILL: Kill (can't be caught or ignored) (POSIX)
SIGUSR1: User-defined signal 1 (POSIX)
SIGSEGV: Invalid memory segment access (ANSI)
SIGUSR2: User-defined signal 2 (POSIX)
SIGPIPE: Write on a pipe with no reader, Broken pipe (POSIX)
SIGALRM: Alarm clock (POSIX)
SIGTERM: Termination (ANSI)
SIGSTKFLT: Stack fault
SIGCHLD: Child process has stopped or exited, changed (POSIX)
SIGCONT: Continue executing, if stopped (POSIX)

The Realm of CLI

[147]

SIGSTOP: Stop executing (can't be caught or ignored) (POSIX)
SIGTSTP: Terminal stop signal (POSIX)
SIGTTIN: Background process trying to read, from TTY (POSIX)
SIGTTOU: Background process trying to write, to TTY (POSIX)
SIGURG: Urgent condition on socket (4.2 BSD)
SIGXCPU: CPU limit exceeded (4.2 BSD)
SIGXFSZ: File size limit exceeded (4.2 BSD)
SIGVTALRM: Virtual alarm clock (4.2 BSD)
SIGPROF: Profiling alarm clock (4.2 BSD)
SIGWINCH: Window size change (4.3 BSD, Sun)
SIGIO: I/O now possible (4.2 BSD)
SIGPWR: Power failure restart (System V)

The user can initiate a signal message from the console manually using the kill command,
such as kill -SIGHUP 4321.

The signals SIGKILL and SIGSTOP are the ultimate kill switch as they
cannot be caught, blocked, or ignored.

PHP provides several functions to work with signals, some of which are as follows:

pcntl_ signal(): This installs a signal handler
pcntl_ signal_ dispatch(): This calls signal handlers for pending signals
pcntl_ sigprocmask(): This sets and retrieves blocked signals
pcntl_ sigtimedwait(): This waits for signals, with a timeout
pcntl_ sigwaitinfo(): This waits for signals

The pcntl_ signal() function is the most interesting one.

Let's take a look at an example utilizing the pcntl_ signal() function:

#!/usr/bin/env php
<?php

declare(ticks = 1);

echo 'started' . PHP_EOL;

The Realm of CLI

[148]

function signalHandler($signal)
{
 echo 'Triggered signalHandler: ' . $signal . PHP_EOL;
 // exit;
}

pcntl_signal(SIGINT, 'signalHandler');

$loop = 0;
while (true) {
 echo 'loop ' . (++$loop) . PHP_EOL;
 flush();
 sleep(2);
}

echo 'finished' . PHP_EOL;

We start our code with the declare ticks definition. Without it, the installation of our custom
signalHandler function via the pcntl_signal() function would have no effect. The
pcntl_signal() function itself installs the signalHandler() function for the SIGINT
signal. Running the preceding code will yield the following output:

$./app.php
started
loop 1
loop 2
loop 3
^CTriggered signalHandler: 2
loop 4
loop 5
^CTriggered signalHandler: 2
loop 6
loop 7
loop 8
^CTriggered signalHandler: 2
loop 9
loop 10
...

The ^C string indicates the moment when we hit Ctrl + C on our keyboard. We can see
that it was immediately followed by a Triggered signalHandler: N output from our
custom signalHandler() function. While we were successful at catching the SIGINT
signal, we did not follow up and actually execute it once we were done with
our signalHandler() function, which left the signal to be ignored, and allowed our
program to continue executing. As it turns out, we just killed the default operating system
functionality by allowing the program to keep executing after Ctrl + C is pressed.

The Realm of CLI

[149]

How do signals help us out? First of, a simple exit; call within the signalHandler()
function would sort out the broken functionality in this case. Beyond that, we are left with a
powerful mechanism where we get to tap into (almost) any system signal and execute any
arbitrary code we choose to.

Alarms
The pcntl_alarm() function enriches the PHP signals functionality by providing an alarm
clock for delivery of a signal. Simply put, it creates a timer that sends a SIGALRM signal to
the process after a given number of seconds.

Once the alarm is fired, the signal handler function kicks in. Once the signal handler
function code is done executing, we are taken back to the point in code where
the application stopped before jumping into a signal handler function.

Let's take a look at the following piece of code:

#!/usr/bin/env php
<?php

declare(ticks = 1);

echo 'started' . PHP_EOL;

function signalHandler($signal)
{
 echo 'Triggered signalHandler: ' . $signal . PHP_EOL;
}

pcntl_signal(SIGALRM, 'signalHandler');
pcntl_alarm(7);

while (true) {
 echo 'loop ' . date('h:i:sa') . PHP_EOL;
 flush();
 sleep(2);
}

echo 'finished' . PHP_EOL;

The Realm of CLI

[150]

We are using the pcntl_signal() function to register signalHandler as a signal handler
function for the SIGALRM signal. We then call the pcntl_alarm() function, passing it the
integer value of 7 seconds. The while loop is set to merely output something to the console,
in order for us to understand the alarm behavior more easily. Once executed, the following
output is shown:

$./app.php
started
loop 02:17:28pm
loop 02:17:30pm
loop 02:17:32pm
loop 02:17:34pm
Triggered signalHandler: 14
loop 02:17:35pm
loop 02:17:37pm
loop 02:17:39pm
loop 02:17:41pm
loop 02:17:43pm
loop 02:17:45pm
loop 02:17:47pm
loop 02:17:49pm
loop 02:17:51pm

We can see that the Triggered signalHandler: 14 string is shown only once. This is
because the alarm was triggered only once. The timing shown in the output indicates the
exact seven seconds of delay between the first loop iteration and the alarm. We could easily
fire another pcntl_alarm() function call within the signalHandler() function itself:

function signalHandler($signal)
{
 echo 'Triggered signalHandler: ' . $signal . PHP_EOL;
 pcntl_alarm(3);
}

This would then transform our output into something like this:

$./app.php
started
loop 02:20:46pm
loop 02:20:48pm
loop 02:20:50pm
loop 02:20:52pm
Triggered signalHandler: 14
loop 02:20:53pm
loop 02:20:55pm
Triggered signalHandler: 14
loop 02:20:56pm

The Realm of CLI

[151]

loop 02:20:58pm
Triggered signalHandler: 14
loop 02:20:59pm
loop 02:21:01pm
Triggered signalHandler: 14
loop 02:21:02pm

Though specifying multiple alarms is possible, doing so before the previous alarm was
reached, makes the new alarm replace the old alarm. The usefulness of alarms becomes
obvious when performing a non-linear processing inside our application.
The pcntl_alarm() function is non-blocking, making it easy to toss around, without
worrying about blocking the program execution.

Multiprocessing
When speaking of multiprocessing, we often come across two seemingly colliding terms:
process and thread. Where the process can be thought of as a currently running instance of
an application, a thread is a path of execution within a process. A thread can do pretty
much anything a process can do. However, given that threads reside within the process, we
look at them as a solution for lightweight tasks, or at least tasks lighter than those employed
by a process.

The PHP language leaves a lot to be desired in terms of multiprocessing/multithreading.
The following two stand out as the most popular solutions:

pcntl_fork(): This is a function that forks the currently running process
pthreads: This is an object-orientated API that provides multithreading based
on Posix threads

The pcntl_fork() function is a part of the PCNTL extension, whose functions we used in
previous sections as well. The function only forks processes and cannot make threads.
While pthreads is a more modern and OOP-aligned solution, we will continue
our journey throughout this section with the pcntl_fork() function.

When we run the pcntl_fork() function, it creates a child process for us. This child
process differs from the parent process only by its PID and PPID:

PID: This is the Process ID
PPID: This is the Parent Process ID, the one that launched this PID

The Realm of CLI

[152]

While the actual process forking with the pcntl_fork() function is quite easy, it leaves
several challenges for us to tackle. Challenges such as communication between processes and
zombie children processes make it tedious to deliver stable applications.

Let's take a look at the following use of the pcntl_fork() function:

#!/usr/bin/env php
<?php

for ($i = 1; $i <= 5; $i++) {
 $pid = pcntl_fork();

 if (!$pid) {
 echo 'Child ' . $i . PHP_EOL;
 sleep(2);
 exit;
 }
}

The preceding code results in the following output:

$ time php ./app.php

real 0m0.031s
user 0m0.012s
sys 0m0.016s
$ Child 1
Child 4
Child 2
Child 3
Child 5

$

The console returned the control immediately, despite having five children
processes running. The control was first returned right before the Child 1 string was
outputted, and then, a few seconds later, all of the Child strings were outputted and the
console returned the control once again. The output clearly shows that the children are not
necessarily executed in the order they are forked in. The operating system decides on this,
not us. We can further tune the behavior using the pcntl_waitpid() and
pcntl_wexitstatus() functions.

The Realm of CLI

[153]

The pcntl_waitpid() function instructs PHP to wait for a child, whereas the
pcntl_wexitstatus() function fetches the value returned by a terminated child. The
following example demonstrates this:

#!/usr/bin/env php
<?php

function generatePdf($content, $size)
{
 echo 'Started PDF ' . $size . ' - ' . date('h:i:sa') . PHP_EOL;
 sleep(3); /* simulate PDF generating */
 echo 'Finished PDF ' . $size . ' - ' . date('h:i:sa') . PHP_EOL;
}

$sizes = ['A1', 'A2', 'A3'];
$content = 'foggyline';

for ($i = 0; $i < count($sizes); $i++) {
 $pid = pcntl_fork();

 if (!$pid) {
 generatePdf($content, $sizes[$i]);
 exit($i);
 }
}

while (pcntl_waitpid(0, $status) != -1) {
 $status = pcntl_wexitstatus($status);
 echo "Child $status finished! - " . date('h:i:sa') . PHP_EOL;
}

While the majority of this example is similar to the previous one, notice the whole while
loop at the bottom. The while loop will loop until the pcntl_waitpid() function returns
-1 (no children left). Each iteration of the while loop checks for the return code of a
terminated child, and stores it into the $status variable, which is then again evaluated in
the while loop expression.

Check out h t t p ://p h p . n e t /m a n u a l /e n /r e f . p c n t l . p h p for more details
about the pcntl_fork(), pcntl_waitpid(),
and pcntl_wexitstatus() function parameters and return values.

http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php
http://php.net/manual/en/ref.pcntl.php

The Realm of CLI

[154]

The preceding code results in the following output:

$ time ./app.php
Started PDF A2 - 04:52:37pm
Started PDF A3 - 04:52:37pm
Started PDF A1 - 04:52:37pm
Finished PDF A2 - 04:52:40pm
Finished PDF A1 - 04:52:40pm
Finished PDF A3 - 04:52:40pm
Child 2 finished! - 04:52:40pm
Child 1 finished! - 04:52:40pm
Child 0 finished! - 04:52:40pm

real 0m3.053s
user 0m0.016s
sys 0m0.028s
$

The console did not return the control now until all of the children finished executing,
which is probably the preferred solution for most of the tasks we might be doing.

Though process forking opens up several possibilities for us, we need to ask ourselves, Is it
really worth the effort? If simply restructuring our application to use more message queues,
CRONs, and other simpler technologies can yield a similar performance with the benefit of
easier scaling, maintenance, and debugging, then we should probably avoid forking.

Summary
Throughout this chapter, we have familiarized ourselves with some of the interesting
features and tooling around PHP CLI. This chapter started with a basic introduction to PHP
CLI SAPI, as one of the many SAPI interfaces in PHP. We then took a look into a simple but
powerful Console component, learning how easy it is to create our own console
applications. The I/O streams section helped us understand the standard streams, and how
they are handled by PHP. Finally, we looked into the process control functions offered by
the PCNTL extension. Combined together, these functions open up a wide range of
possibilities to write our console applications. While the overall console application
development might not seem interesting enough in comparison to more browser-facing
applications, it certainly has its role in modern development. The CLI environment simply
allows much greater control of our application.

Moving forward, we will take a look into one of the most important and interesting OOP
features in PHP.

6
Prominent OOP Features

The term object-oriented (OO) has been around since the 70s, when it was coined by
computer scientist, Alan Kay. The term stood for a programming paradigm based on the
concept of objects. At that time, Simula was the first language to exhibit OO features, such
as objects, classes, inheritance, subtyping, and so on. Standardized as Simula 67 in 1977, it
became an inspiration for later languages. One such inspired language is Smalltalk, created
as a product of research led by Alan Kay at Xerox. Compared to Simula, Smalltalk greatly
improved the overall OO concept. Over time, Smalltalk became one of the most influential
OO programming language.

While there is much more to be said about these early days, the takeaway is that OOP was
born out of specific need. Where Simula used static objects for modeling real-world entities,
Smalltalk used dynamic objects that could be created, changed, or deleted as the foundation
for computation.

The MVC pattern, one of the most common object-oriented software
design patterns, was introduced in Smalltalk.

The ease of mapping physical entities into objects described by classes certainly influenced
the overall popularity of the OO paradigm among developers. However, objects are not just
about mapped out instances of various properties, they are also about messages and
responsibilities. While we may embrace OOP based on the first premise, we certainly start
to appreciate the latter one, as the key to making big and scalable systems lies in the ease of
object communication.

Prominent OOP Features

[156]

The PHP language embodies several paradigms, most notably: imperative, functional,
object oriented, procedural, and reflective. Whereas, the OOP support in PHP hasn't fully
kicked off until the PHP 5 release. The latest versions of PHP 7 brought forth some minor
yet noteworthy improvements to what is now considered a stable and mature PHP OOP
model.

In this chapter, we will explore some prominent features of object-oriented PHP:

Object inheritance
Objects and references
Object iteration
Object comparison
Traits
Reflection

Object inheritance
The OOP paradigm places objects at the heart of application design, where objects can be
looked at as units that contain various properties and methods. Interaction between these
properties and methods defines the internal state of an object. Every object is built from a
blueprint called a class. There is no such thing as an object without the class, at least not in a
class-based OOP.

We differentiate class-based OOP (PHP, Java, C#, ...) and prototype-based
OOP (ECMAScript / JavaScript, Lua, ...). In class-based OOP, objects are
created from classes; in prototype-based OOP, objects are created from
other objects.

The process of building or creating new objects is called instantiation. In PHP, like many
other languages, we use the new keyword to instantiate an object from a given class. Let's
take a look at the following example:

<?php

class JsonOutput
{
 protected $content;

 public function setContent($content)
 {
 $this->content = $content;
 }

Prominent OOP Features

[157]

 public function render()
 {
 return json_encode($this->content);
 }
}

class SerializedOutput
{
 protected $content;

 public function setContent($content)
 {
 $this->content = $content;
 }

 public function render()
 {
 return serialize($this->content);
 }
}

$users = [
 ['user' => 'John', 'age' => 34],
 ['user' => 'Alice', 'age' => 33],
];

$json = new JsonOutput();
$json->setContent($users);
echo $json->render();

$ser = new SerializedOutput();
$ser->setContent($users);
echo $ser->render();

Here, we are defining two simple classes, JsonOutput and SerializedOutput. We say
simple merely because they have a single property and two methods. These two classes are
nearly identical--they only differ in a single line of code within the render() method. One
class converts the given content into JSON, while the other converts it to a serialized string.
Right after our class declarations, we define a dummy $users array that we then feed to the
instances of the JsonOutput and SerializedOutput classes, that is, the $json and $ser
objects.

While this is far from an ideal class design, it serves as a nice introduction into inheritance.

Prominent OOP Features

[158]

Inheritance allows classes and, therefore, objects to inherit properties and methods of
another class. Terms such as superclass, base class, or parent class are used to flag the class
used as a basis for inheritance. Terms such as subclass, derived class, or child class are used
to flag the inheriting class.

The PHP extends keyword is used to enable inheritance. Inheritance has its limits. We can
only extend from a single class at a time as PHP does not support multiple inheritance.
However, having a chain of inheritance is perfectly valid:

// valid
class A {}
class B extends A {}
class C extends B {}

// invalid
class A {}
class B {}
class C extends A, B {}

The C class shown in the valid example will end up inheriting all the allowed properties
and methods of classes B and A. When we say allowed, we refer to the property and method
visibility, that is, access modifiers:

<?php

error_reporting(E_ALL);

class A
{
 public $x = 10;
 protected $y = 20;
 private $z = 30;

 public function x()
 {
 return $this->x;
 }

 protected function y()
 {
 return $this->y;
 }

 private function z()
 {
 return $this->z;
 }

Prominent OOP Features

[159]

}

class B extends A
{

}

$obj = new B();
var_dump($obj->x); // 10
var_dump($obj->y); // Uncaught Error: Cannot access protected property
B::$y
var_dump($obj->z); // Notice: Undefined property: B::$z
var_dump($obj->x()); // 10
var_dump($obj->y()); // Uncaught Error: Call to protected method A::y()
from context
var_dump($obj->z()); // Uncaught Error: Call to private method A::z() from
context

In the object context, the access modifiers behave as per the preceding example, which is
pretty much as we would expect them to. The object would exhibit the same behavior,
whether it was an instance of class A or class B. Let's observe the behavior of access
modifiers on the inner workings of the child class:

class B extends A
{
 public function test()
 {
 var_dump($this->x); // 10
 var_dump($this->y); // 20
 var_dump($this->z); // Notice: Undefined property: B::$z
 var_dump($this->x()); // 10
 var_dump($this->y()); // 20
 var_dump($this->z()); // Uncaught Error: Call to private method
 A::z() from context 'B'
 }
}

$obj = new B();
$obj->test();

We can see that the public and protected members (property or method) can be accessed
from child classes, whereas private members cannot--they are only accessible from the class
that defines them.

Prominent OOP Features

[160]

The extends keyword is also applicable to interfaces:

<?php

interface User {}
interface Employee extends User {}

Being able to inherit the class and interface properties and methods makes for a powerful
overall object inheritance mechanism.

Knowing these simple inheritance rules, let's see how we can rewrite our JsonOutput and
the SerializedOutput classes into a more convenient form using inheritance:

<?php

class Output
{
 protected $content;

 public function setContent($content)
 {
 $this->content = $content;
 }

 public function render()
 {
 return $this->content;
 }
}

class JsonOutput extends Output
{
 public function render()
 {
 return json_encode($this->content);
 }
}

class SerializedOutput extends Output
{
 public function render()
 {
 return serialize($this->content);
 }
}

Prominent OOP Features

[161]

We started off by defining an Output class with the content nearly identical to the
previous JsonOutput and SerializedOutput classes, merely changing its render()
method to simply return content as-is. We then rewrote the JsonOutput
and SerializedOutput classes in such a way that they both extend the Output class. In
this setup, an Output class becomes a parent class, whereas JsonOutput and
SerializedOutput become child classes. The child classes redefine the render() method,
thus overriding the parent class implementation. The $this keyword has access to all of the
public and protected modifiers, which makes it easy to access the $content property.

While inheritance might be a quick and powerful way to structure our code into convenient
chains of parent/child relationships, one should avoid the danger of misusing or overusing
it. This can be especially tricky with larger systems where we might end up spending more
time tackling a large class hierarchy than actually maintaining the sub-system interfaces.
Therefore, we should use it carefully.

Objects and references
There are two ways to pass arguments within the code:

By reference: This is where both the caller and callee use the same variable for
argument.
By value: This is where both the caller and callee have their own copy of the
variable for argument. If the callee decides to change the value of the passed
argument, the caller would not notice it.

Passing arguments by value is the default PHP behavior, as shown in the following
example:

<?php

class Util
{
 function hello($msg)
 {
 $msg = "<p>Welcome $msg</p>";
 return $msg;
 }
}

$str = 'John';

$obj = new Util();

Prominent OOP Features

[162]

echo $obj->hello($str); // Welcome John

echo $str; // John

Looking at the internals of the hello() method, we can see it is resetting the $msg
argument value to another string value wrapped in HTML tags. The default PHP passed by
the value behavior prevents this change to propagate outside the scope of a method. Using
the & operator just before the argument name in the function definition, we can force the
passed by reference behavior:

<?php

class Util
{
 function hello(&$msg)
 {
 $msg = "<p>Welcome $msg</p>";
 return $msg;
 }
}

$str = 'John';

$obj = new Util();
echo $obj->hello($str); // Welcome John

echo $str; // Welcome John

Being able to do something does not necessarily mean we should. The passing by reference
behavior should be used with caution, only if there's a really good reason to do it. The
preceding example clearly shows the side-effect of the internal hello() method to a simple
scalar type value within the outside scope. Object instance methods, or even plain functions,
should not have these types of side-effect to the outside scope.

Several PHP functions, such as sort(), use the & operator to force the
pass by reference behavior on a given array argument.

Prominent OOP Features

[163]

With all being said, where do objects fit in? Objects in PHP lean towards the passed by
reference behavior. When an object is passed as an argument, it is still being passed as a
value, but the value being passed is not the object itself, it is the object identifier. Therefore,
the act of passing the object as an argument feels more like it is being passed by reference:

<?php

class User
{
 public $salary = 4200;
}

function bonus(User $u)
{
 $u->salary = $u->salary + 500;
}

$user = new User();
echo $user->salary; // 4200
bonus($user);
echo $user->salary; // 4700

Since objects are bigger structures than scalar values, passing by reference
greatly minimizes the memory and CPU footprint.

Object iteration
The PHP arrays are the most frequent collection structure used in PHP. We can squeeze
pretty much anything into an array, ranging from scalar values to objects. Iterating through
elements of such a structure is trivially easy using the foreach statement. However, arrays
are not the only iterable types, as objects themselves are iterable.

Let's take a look at the following array-based example:

<?php

$user = [
 'name' => 'John',
 'age' => 34,
 'salary' => 4200.00
];

foreach ($user as $k => $v) {

Prominent OOP Features

[164]

 echo "key: $k, value: $v" . PHP_EOL;
}

Now let's take a look at the following object-based example:

<?php

class User
{
 public $name = 'John';
 public $age = 34;
 public $salary = 4200.00;
}

$user = new User();

foreach ($user as $k => $v) {
 echo "key: $k, value: $v" . PHP_EOL;
}

Executed on the console, both of these examples would yield an identical output:

key: name, value: John
key: age, value: 34
key: salary, value: 4200

By default, iteration works only with public properties, excluding any private or protected
properties from the list.

PHP provides an Iterator interface, making it possible to specify what values we want to
make available for iterating.

Iterator extends Traversable {
 abstract public mixed current(void)
 abstract public scalar key(void)
 abstract public void next(void)
 abstract public void rewind(void)
 abstract public boolean valid(void)
}

The following example demonstrates a simple Iterator interface implementation:

<?php

class User implements \Iterator
{
 public $name = 'John';
 private $age = 34;

Prominent OOP Features

[165]

 protected $salary = 4200.00;

 private $info = [];

 public function __construct()
 {
 $this->info = [
 'name' => $this->name,
 'age' => $this->age,
 'salary' => $this->salary
];
 }

 public function current()
 {
 return current($this->info);
 }

 public function next()
 {
 return next($this->info);
 }

 public function key()
 {
 return key($this->info);
 }

 public function valid()
 {
 $key = key($this->info);
 return ($key !== null && $key !== false);
 }

 public function rewind()
 {
 return reset($this->info);
 }
}

With this implementation, we are now seemingly able to iterate over the User class private
and protected properties. Although, this is not really the case. What's happening is that,
through the constructor, the class is filling the $info parameter with the data of all other
properties we wish to iterate. The interface mandated methods then ensure that our class
plays nicely with the foreach construct.

Prominent OOP Features

[166]

Object iteration is a neat, though often overlooked, feature of PHP when it comes to
everyday development.

Object comparison
The PHP language provides several comparison operators that allow us to compare two
different values, resulting in either true or false:

==: equal
===: identical
!=: not equal
<>: not equal
!==: not identical
<: less than
>: greater than
<=: less than or equal to
>=: greater than or equal to

While all of these operators are equally important, let's take a closer look at the behavior of
the equal (==) and identical (===) operators in the context of objects.

Let's take a look at the following example:

<?php

class User {
 public $name = 'N/A';
 public $age = 0;
}

$user = new User();
$employee = new User();

var_dump($user == $employee); // true
var_dump($user === $employee); // false

Prominent OOP Features

[167]

Here, we have a simple User class with two properties set to some default values. We then
have two different instances of the same class, $user and $employee. Given that
both objects have the same properties, with the same values, the equal (==) operator returns
true. The identical (===) operator, on the other hand, returns false. Even though objects are
of the same class, and have the same properties and values in those properties, an identical
operator sees them as different.

Let's take a look at the following example:

<?php

class User {
 public $name = 'N/A';
 public $age = 0;
}

$user = new User();
$employee = $user;

var_dump($user == $employee); // true
var_dump($user === $employee); // true

The identical (===) operator considers two objects to be identical only if they refer to the
same instance of the same class. The same operator behavior applies to the counterpart
operators, that is, the not equal (<> or !=) and not identical (!==) operators.

Aside from objects, the identical operator is applicable to any other type:

<?php

var_dump(2 == 2); // true
var_dump(2 == "2"); // true
var_dump(2 == "2ABC"); // true

var_dump(2 === 2); // true
var_dump(2 === "2"); // false
var_dump(2 === "2ABC"); // false

Looking at the preceding example clearly reveals the importance of an identical operator.
The 2 == "2ABC" expression evaluating to true is something that boggles the mind. We
might even think of it as a bug in the PHP language itself. While relying on PHP automatic
type conversion is mostly fine, there are times where unexpected bugs can squeeze in and
disrupt our application logic. The use of the identical operator reaffirms the comparison,
assuring that we consider not just the value but the type as well.

Prominent OOP Features

[168]

Traits
We mentioned previously that PHP is a single inheritance language. We cannot use the
extends keyword to extend multiple classes in PHP. This very feature is actually a rare
commodity only a handful of programming languages support, such as C++. For better or
worse, multiple inheritance allows some interesting tinkering with our code structures.

The PHP Traits provide a mechanism by which we can achieve these structures, either in
the context of code reuse or the grouping of functionality. The trait keyword is used to
declare a Trait, as follows:

<?php

trait Formatter
{
 // Trait body
}

The body of a Trait can be pretty much anything we would put in a class. While they
resemble classes, we cannot instantiate a Trait itself. We can only use the Trait from another
class. To do so, we employ the use keyword within the class body, as shown in the
following example:

class Ups
{
 use Formatter;

 // Class body (properties & methods)
}

To better understand how Traits can be helpful, let's take a look at the following example:

<?php

trait Formatter
{
 public function formatPrice($price)
 {
 return sprintf('%.2F', $price);
 }
}

class Ups
{
 use Formatter;

Prominent OOP Features

[169]

private $price = 4.4999; // Base shipping price

public function getShippingPrice($formatted = false)

 {
 // Shipping cost calc... $this->price = XXX

 if ($formatted) {
 return $this->formatPrice($this->price);
 }

 return $this->price;
 }
}

class Dhl
{
 use Formatter;

 private $price = 9.4999; // Base shipping price

 public function getShippingPrice($formatted = false)
 {
 // Shipping cost calc... $this->price = XXX

 if ($formatted) {
 return $this->formatPrice($this->price);
 }

 return $this->price;
 }
}

$ups = new Ups();
echo $ups->getShippingPrice(true); // 4.50

$dhl = new Dhl();
echo $dhl->getShippingPrice(true); // 9.50

The preceding example demonstrates the use of trait in a code reuse context, where two
different shipping classes, Ups and Dhl, use the same trait. The trait itself wraps a nice little
formatPrice() helper method that formats the given price to two decimal fields.

Prominent OOP Features

[170]

Like classes, traits have access to $this, 1 which means we could easily rewrite the
previous formatPrice() method of the Formatter trait as follows:

<?php

trait Formatter
{
 public function formatPrice()
 {
 return sprintf('%.2F', $this->price);
 }
}

This, however, severely limits our trait use, as its formatPrice() method now expects a
$price member, which some of the classes using the Formatter trait might not have.

Let's take a look at another example where we use traits in a grouping of functionality
context:

<?php

trait SalesOrderCustomer
{
 public function getCustomerFirstname()
 { /* body */
 }

 public function getCustomerEmail()
 { /* body */
 }

 public function getCustomerGender()
 { /* body */
 }
}

trait SalesOrderActions
{
 public function cancel()
 { /* body */
 }

 public function complete()
 { /* body */
 }

 public function hold()

Prominent OOP Features

[171]

 { /* body */
 }
}

class SalesOrder
{
 use SalesOrderCustomer;
 use SalesOrderActions;

 /* body */
}

What we did here was nothing more than cut and paste our class code into two different
traits. We grouped all of the methods related to possible order actions into a single
SalesOrderActions trait, and all methods related to order customer into
the SalesOrderCustomer trait. This brings us back to the possible-does-not-necessarily-
mean-preferable philosophy.

Using multiple traits can sometimes lead to conflicts, where the same method name can be
found in more than one trait. We can use the insteadof and as keywords to mitigate these
types of conflicts, as shown in the following example:

<?php

trait CsvHandler
{
 public function import()
 {
 echo 'CsvHandler > import' . PHP_EOL;
 }

public function export()
 {
 echo 'CsvHandler > export' . PHP_EOL;
 }
}

trait XmlHandler
{
 public function import()
 {
 echo 'XmlHandler > import' . PHP_EOL;
 }

 public function export()
 {
 echo 'XmlHandler > export' . PHP_EOL;

Prominent OOP Features

[172]

 }
}

class SalesOrder
{
 use CsvHandler, XmlHandler {
 XmlHandler::import insteadof CsvHandler;
 CsvHandler::export insteadof XmlHandler;
 XmlHandler::export as exp;
 }

 public function initImport()
 {
 $this->import();
 }

 public function initExport()
 {
 $this->export();
 $this->exp();
 }
}

$order = new SalesOrder();
$order->initImport();
$order->initExport();

//XmlHandler > import
//CsvHandler > export
//XmlHandler > export

The as keyword can also be used in conjunction with the public, protected, or private
keywords in order to change the method visibility:

<?php

trait Message
{
 private function hello()
 {
 return 'Hello!';
 }
}

class User
{
 use Message {
 hello as public;

Prominent OOP Features

[173]

 }
}

$user = new User();
echo $user->hello(); // Hello!

To make things even more interesting, traits can be further composed of other traits,
even supporting the abstract and static members, as shown in the following example:

<?php

trait A
{
 public static $counter = 0;

 public function theA()
 {
 return self::$counter;
 }
}

trait B
{
 use A;

 abstract public function theB();
}

class C
{
 use B;

 public function theB()
 {
 return self::$counter;
 }
}

$c = new C();
$c::$counter++;
echo $c->theA(); // 1
$c::$counter++;
$c::$counter++;
echo $c->theB(); // 3

Prominent OOP Features

[174]

Aside from being non-instantiatable, traits share many features with classes. While
they provide us with the tooling for some interesting code structuring, they also make it
easy to violate the single responsibility principle. The overall impression of trait usage is
often that of extending regular classes, which makes it hard to find the right use case. We
can use them to describe characteristics that are common to many, but not essential. For
example, jet engines are not essential on every airplane, but a lot of airplanes have them,
whereas others might have propellers.

Reflection
Reflection is a highly important concept every developer should be wary about. It denotes
the ability of a program to inspect itself during runtime, thus allowing easy reverse-
engineering of classes, interfaces, functions, methods, and extensions.

We can get a quick taste of the PHP reflection capabilities right from the console. The PHP
CLI supports several reflection-based commands:

--rf <function name>: This shows information about a function
--rc <class name>: This shows information about a class
--re <extension name>: This shows information about an extension
--rz <extension name>: This shows information about the Zend extension
--ri <extension name>: This shows the configuration for an extension

The following output demonstrates the result of the php --rf str_replace command:

Function [<internal:standard> function str_replace] {
 - Parameters [4] {
 Parameter #0 [<required> $search]
 Parameter #1 [<required> $replace]
 Parameter #2 [<required> $subject]
 Parameter #3 [<optional> &$replace_count]
 }
}

The output reflects on the str_replace() function, which is a standard PHP function. It
clearly describes the total number of parameters, along with their name and required or
optional assignment.

Prominent OOP Features

[175]

The real power of reflection, the one developers get to utilize, comes from the reflection
API. Let's take a look at the following example:

<?php

class User
{
 public $name = 'John';
 protected $ssn = 'AAA-GG-SSSS';
 private $salary = 4200.00;
}

$user = new User();

echo $user->name = 'Marc'; // Marc

//echo $user->ssn = 'BBB-GG-SSSS';
// Uncaught Error: Cannot access protected property User::$ssn

//echo $user->salary = 5600.00;
// Uncaught Error: Cannot access private property User::$salary

var_dump($user);
//object(User)[1]
// public 'name' => string 'Marc' (length=4)
// protected 'ssn' => string 'AAA-GG-SSSS' (length=11)
// private 'salary' => float 4200

We started off by defining a User class with three properties, each of a different visibility.
We then instantiated an object of the User class and tried changing the value of all three
properties. Normally, members that are defined as protected or private cannot be
accessed outside of an object. Trying to access them either in read or write mode would
throw a Cannot access... error. This is what we would consider a normal behavior.

Using the PHP reflection API, we can circumvent this normal behavior, making it possible
to access private and protected members. The reflection API itself provides several classes
for us to use:

Reflection
ReflectionClass
ReflectionZendExtension
ReflectionExtension
ReflectionFunction
ReflectionFunctionAbstract

Prominent OOP Features

[176]

ReflectionMethod
ReflectionObject
ReflectionParameter
ReflectionProperty
ReflectionType
ReflectionGenerator
Reflector (interface)
ReflectionException (exception)

Each of these classes expose a diverse set of functionality, allowing us to tinker
with internals of other classes, interfaces, functions, methods, and extensions. Assuming
our goal is to change the values of protected and private properties from the previous
example, we could use ReflectionClass and ReflectionProperty, as per the following
example:

<?php

// ...

$user = new User();

$reflector = new ReflectionClass('User');

foreach ($reflector->getProperties() as $prop) {
 $prop->setAccessible(true);
 if ($prop->getName() == 'name') $prop->setValue($user, 'Alice');
 if ($prop->getName() == 'ssn') $prop->setValue($user, 'CCC-GG-SSSS');
 if ($prop->getName() == 'salary') $prop->setValue($user, 2600.00);
}

var_dump($user);

//object(User)[1]
// public 'name' => string 'Alice' (length=5)
// protected 'ssn' => string 'CCC-GG-SSSS' (length=11)
// private 'salary' => float 2600

Prominent OOP Features

[177]

We started off by instantiating an object of a User class, as we did in the previous example.
We then created an instance of ReflectionClass, passing its constructor the name of
the User class. The newly created $reflector instance allows us to fetch a list of all User
class properties through its getProperties() method. Looping through properties, one
by one, we kick off the real magic of reflection API. Each property ($prop) is an instance of
the ReflectionProperty class. Two of the ReflectionProperty
methods, setAccessible() and setValue(), provide just the right functionality for us to
reach our goal. Using these methods, we are able to set the value of otherwise inaccessible
object properties.

Another simple, yet interesting reflection example is that of doc comment extraction:

<?php

class Calc
{
 /**
 * @param $x The number x
 * @param $y The number y
 * @return mixed The number z
 */
 public function sum($x, $y)
 {
 return $x + $y;
 }
}

$calc = new Calc();

$reflector = new ReflectionClass('Calc');
$comment = $reflector->getMethod('sum')->getDocComment();

echo $comment;

With merely two lines of code, we were able to reflect upon a Calc class and extract the doc
comment from its sum() method. While the practical use of the reflection API might not be
obvious at first, it is capabilities such as these that empower us with building powerful and
dynamic libraries and platforms.

The phpDocumentor tool uses the PHP reflection features to
automatically generate documentation from the source code. The popular
Magento v2.x eCommerce platform extensively uses the PHP reflection
features to automatically instantiate objects that are type-hinted as
__construct() arguments.

Prominent OOP Features

[178]

Summary
Throughout this chapter, we took a look into some of the most basic, yet lesser
known features of PHP OOP that sometimes do not get enough attention in our day-to-day
development. Nowadays, most of the mainstream work is focused around working with
frameworks and platforms, which tend to abstract some of these concepts from
us. Understanding the inner workings of objects is crucial to successfully developing and
debugging a larger system. The reflection API provides a great deal of power when it comes
to manipulating objects. Combined with the power of magic methods, which we mentioned
in Chapter 4, Magic Behind Magic Methods, the PHP OOP model seems quite feature-rich.

Moving forward, we will assume that we have a working application in place and focus
on optimizing it for high performance.

7
Optimizing for High

Performance
Throughout the years, PHP has grown into a remarkable language we use to build our web
applications. An impressive number of language features, alongside countless libraries and
frameworks, make our job ever so easier. We often write code which encompasses several
layers of stack without giving it a second thought. This makes it easy to overlook one of the
most important aspects of every application--performance.

While there are several aspects to performance that developers need to pay attention to, the
end user is only interested in one - the time it takes for their web page to be loaded. This is
really all that it comes down to. Nowadays, users expect their pages to load in less than
2 seconds. Anything more and we face decreased conversion, which often translates into
serious financial loss when it comes to big e-commerce retailers:

"A 1 second delay in page response can result in a 7% reduction in conversions."

"If an e-commerce site is making $100,000 per day, a 1 second page delay could potentially
cost you $2.5 million in lost sales every year."
 - kissmetrics.com

In this chapter, we will address some of the areas of PHP that directly or indirectly impact
the application performance and behavior:

Max execution time
Memory management
File uploads
Session handling
Output buffering

Optimizing for High Performance

[180]

Disabling debug messages
Zend OPcache
Concurrency

Max execution time
The maximum execution time is one of the most common errors developers come across.
By default, the maximum execution time of the PHP script executing in the browser is 30
seconds, unless we execute the script within the CLI environment, where there is no such
limitation.

We could easily test that through a simple example, given through the index.php and
script.php files, as follows:

<?php
// index.php
require_once 'script.php';
error_reporting(E_ALL);
ini_set('display_errors', 'On');
sleep(10);
echo 'Test#1';

?php
// script.php
sleep(25);
echo 'Test#2';

Executed from within the browser, this will return the following error:

Test#2
Fatal error: Maximum execution time of 30 seconds exceeded in
/var/www/html/index.php on line 5

Executed from within the CLI environment, this will return the following output:

Test#2Test#1

Luckily for us, PHP provides two ways to control the timeout value:

Using the max_execution_time configuration directive (php.ini file,
ini_set() function)
Using the set_time_limit() function

Optimizing for High Performance

[181]

The set_time_limit() function use has an interesting implication. Let's take a look at
the following example:

<?php
// index.php
error_reporting(E_ALL);
ini_set('display_errors', 'On');
echo 'Test#1';
sleep(5);
set_time_limit(10);
sleep(15);
echo 'Test#2';

The preceding example will result in the following error:

Test#1
Fatal error: Maximum execution time of 10 seconds exceeded in
/var/www/html/index.php on line 9

Interestingly enough, the set_time_limit() function restarts the timeout counter from
zero at the point where it was called. What this really means is that using the
set_time_limit() function throughout the code, in a largely complex system, we can
significantly extend the overall timeout beyond the initially imagined boundaries. This is
quite dangerous, as PHP timeout is not the only timeout in the mix when it comes to
delivering the final web page to a user's browser.

Web servers come with various timeout configurations of their own that might interrupt the
PHP execution:

Apache:
TimeOut directive, defaults to 60 seconds

Nginx:
client_header_timeout directive, defaults to 60 seconds
client_body_timeout directive, defaults to 60 seconds
fastcgi_read_timeout directive, defaults to 60 seconds

While we can certainly control script timeouts within the browser context, the important
question is why would we want to do so? Timeouts are usually a result of resource-intense
operations, such as various non-optimized loops, data exports, imports, PDF file
generations, and so on. The CLI environment, or ideally, dedicated services, should be our
go-to when it comes to all resource-intense jobs. Whereas the browser environment's prime
focus should be delivering pages to users in the shortest possible amount of time.

Optimizing for High Performance

[182]

Memory management
Quite often, PHP developers need to deal with a large amount of data. While large is a
relative term, memory is not. Certain combinations of functions and language constructs,
when used irresponsibly, can clog our server memory in a matter of seconds.

Probably the most notorious function is file_get_contents(). This easy-to-use function
literally grabs the content of an entire file and puts it into memory. To better understand the
issue, let's take a look at the following example:

<?php

$content = file_get_contents('users.csv');
$lines = explode("\r\n", $content);

foreach ($lines as $line) {
 $user = str_getcsv($line);
 // Do something with data from $user...
}

While this code is perfectly valid and working, it is a potential performance bottleneck. The
$content variable will pull the content of the entire users.csv file into memory. While
this could work for a small file size, of let's say a couple of megabytes, the code is not
performance optimized. The moment users.csv starts to grow, we will begin experiencing
memory issues.

What can we do to mitigate the issue? We can rethink our approach to solving a problem.
The moment we shift our mind into the must optimize performance mode, other solutions
become clear. Instead of reading the content of an entire file into the variable, we can parse
the file line by :

<?php

if (($users = fopen('users.csv', 'r')) !== false) {
 while (($user = fgetcsv($users)) !== false) {
 // Do something with data from $user...
 }
 fclose($users);
}

Instead of using file_get_contents() and str_getcsv(), we focus onto using another
set of functions, fopen() and fgetcsv(). The end result is absolutely the same, with the
added benefit of being fully performance friendly. Using functions with handles, in this
specific case, we have effectively assured that memory limitations are not an issue for our
script.

Optimizing for High Performance

[183]

The irresponsible use of loops is another common cause of memory :

<?php

$conn = new PDO('mysql:host=localhost;dbname=eelgar_live_magento',
'root', 'mysql');

$stmt = $conn->query('SELECT * FROM customer_entity');
$users = $stmt->fetchAll();

foreach ($users as $user) {
 if (strstr($user['email'], 'test')) {
 // $user['entity_id']
 // $user['email']
 // Do something with data from $user...
 }
}

Now, let's go ahead and see a modified, memory-friendly example with the same effect:

<?php

$conn = new PDO('mysql:host=localhost;dbname=eelgar_live_magento',
 'root', 'mysql');

$stmt = $conn->prepare('SELECT entity_id, email FROM customer_entity WHERE
email LIKE :email');
$stmt->bindValue(':email', '%test%');
$stmt->execute();

while ($user = $stmt->fetch(PDO::FETCH_ASSOC)) {
 // $user['entity_id']
 // $user['email']
 // Do something with data from $user...
}

The fetchAll() method is slightly faster than fetch(), but it requires more memory.

When PHP hits the memory limit, it stops the script execution and throws the following
error:

Fatal error: Allowed memory size of 33554432 bytes exhausted (tried to
allocate 2348617 bytes) ...

Optimizing for High Performance

[184]

Luckily, the memory_limit directive enables us to control the amount of memory available.
The default memory_limit value is 128M, which implies 128 megabytes of memory. The
directive is PHP_INI_ALL changeable, which means that apart from setting it via
the php.ini file, we can set it at runtime using ini_set('memory_limit', '512M');.

Aside from tuning the memory_limit directive, PHP provides the following two functions
that return memory usage information:

memory_get_usage(): This returns the amount of memory currently allocated
by our PHP script
memory_get_peak_usage(): This returns the peak amount of memory allocated
by our PHP script

While we might be tempted to increase this value, we should think twice about doing so.
The memory limit is per process, not per server. Web servers themselves can spin up
several processes. Using large memory limit values can therefore clog our server. Aside
from that, any script that might actually consume a large amount of memory is easily a
candidate for performance optimization. Applying simple, thought-through techniques to
our code can greatly reduce memory use.

When it comes to actual memory management, things are pretty automated here. Unlike C
language, where we get to manage memory ourselves, PHP uses garbage collection in
combination with a reference counting mechanism. Without going into the ins and outs of
the mechanism itself, it is suffice to say that variables are automatically released when they
are not being used any more.

For more details on garbage collection, check out h t t p ://p h p . n e t /m a n u a l

/e n /f e a t u r e s . g c . p h p .

File uploads
Uploading files is a common functionality to many PHP applications. So common that PHP
provides a convenient global $_FILES variable we can use to access uploaded files, or
errors behind the file upload tries.

http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php
http://php.net/manual/en/features.gc.php

Optimizing for High Performance

[185]

Let's take a look at the following simple file upload form:

<form method="post" enctype="multipart/form-data">
 <input type="file" name="photo" />
 <input type="file" name="article" />
 <input type="submit" name="submit" value="Upload" />
</form>

In order for PHP to pick up the files, we need to set the form method value to post, and
enctype to multipart/form-data. Once submitted, PHP will pick it up and fill in
the $_FILES variable appropriately:

array(2) {
 ["photo"] => array(5) {
 ["name"] => string(9) "photo.jpg"
 ["type"] => string(10) "image/jpeg"
 ["tmp_name"] => string(14) "/tmp/phpGutI91"
 ["error"] => int(0)
 ["size"] => int(42497)
 }
 ["article"] => array(5) {
 ["name"] => string(11) "article.pdf"
 ["type"] => string(15) "application/pdf"
 ["tmp_name"] => string(14) "/tmp/phpxsnx1e"
 ["error"] => int(0)
 ["size"] => int(433176)
 }
}

Without going into the details of the actual post-upload file management, it's suffice to say
that $_FILES contains enough information for us to either pick up and further manage files,
or indicate a possible error code during upload. The following eight error codes can be
returned:

UPLOAD_ERR_OK

UPLOAD_ERR_INI_SIZE

UPLOAD_ERR_FORM_SIZE

UPLOAD_ERR_PARTIAL

UPLOAD_ERR_NO_FILE

UPLOAD_ERR_NO_TMP_DIR

UPLOAD_ERR_CANT_WRITE

UPLOAD_ERR_EXTENSION

Optimizing for High Performance

[186]

While all of the errors should be equally addressed, two of them (UPLOAD_ERR_FORM_SIZE
and UPLOAD_ERR_PARTIAL) open up crucial performance questions: how big a file can we
upload and are there any timeouts in the process?

The answer to these two questions can be found in configuration directives, some of which
are directly related to file upload, while others are related to more general PHP options:

session.gc_maxlifetime: This is the number of seconds after which data will
be seen as garbage and cleaned up; it defaults to 1,440 seconds
session.cookie_lifetime: This is the lifetime of the cookie in seconds; by
default, the cookie is valid until the browser is closed
max_input_time: This is the maximum time in seconds a script is allowed to
parse input data, such as POST; by default, this is turned off
max_execution_time: This is the maximum time a script is allowed to run
before it is terminated; it defaults to 30 seconds
upload_max_filesize: This is the maximum size of an uploaded file; it defaults
to 2 megabytes (2M)
max_file_uploads: This is the maximum number of files allowed to be
uploaded in a single request
post_max_size: This is the maximum size of the post data allowed; it defaults to
8 megabytes (8M)

Tweaking these options ensures that we avoid timeouts and planned size limits. To ensure
that we can avoid the maximum file size limitation early in the process, MAX_FILE_SIZE
can be used as a hidden form field:

<form method="post" enctype="multipart/form-data">
 <input type="hidden" name="MAX_FILE_SIZE" value="100"/>
 <input type="file" name="photo"/>
 <input type="file" name="article"/>
 <input type="submit" name="submit" value="Upload"/>
</form>

The MAX_FILE_SIZE field must precede any other file field a form might have. Its
value stands for the maximum file size accepted by PHP.

Trying to upload a file larger than defined by the MAX_FILE_SIZE hidden field would now
result in a $_FILES variable similar to the one shown here:

array(2) {
 ["photo"] => array(5) {
 ["name"] => string(9) "photo.jpg"
 ["type"] => string(0) ""

Optimizing for High Performance

[187]

 ["tmp_name"] => string(0) ""
 ["error"] => int(2)
 ["size"] => int(0)
 }
 ["article"] => array(5) {
 ["name"] => string(11) "article.pdf"
 ["type"] => string(0) ""
 ["tmp_name"] => string(0) ""
 ["error"] => int(2)
 ["size"] => int(0)
 }
}

We can see that the error has now turned to value 2, which equals the
UPLOAD_ERR_FORM_SIZE constant.

While normally we would address the limitations of default configuration through code
optimization, file uploads are specific; in that, we really need to ensure that large file
uploads are possible if needed.

Session handling
Sessions are an interesting mechanism in PHP, allowing us to maintain state in what is
overall a stateless communication. We might visualize them as a per-user serialized array of
information saved to a file. We use them to store user-specific information across various
pages. By default, sessions rely on cookies, although, they can be configured to use the SID
parameter in a browser.

The cookie version of the PHP session works roughly as follows:

Read the session token from the cookie.1.
Create or open an existing file on disk.2.
Lock the file for writing.3.
Read the content of the file.4.
Put the file data into the global $_SESSION variable.5.
Set caching headers.6.
Return the cookie to the client.7.
On each page request, repeat steps 1-7.8.

Optimizing for High Performance

[188]

The SID version of the PHP session works pretty much the same way, aside from the cookie
part. The cookie here is replaced by the SID value we push via the URL.

The session mechanism can be used for various things, some of which include user login
mechanisms, storing minor data caches, parts of templates, and so on. Depending on the
usage, this might bring up the question of maximum session size.

By default, when a script executes, sessions are read from files into the memory. Therefore,
the maximum size of a session file cannot exceed the memory_limit directive, which
defaults to 128 megabytes. We could bypass this default session behavior by defining
the custom session handlers. The session_set_save_handler() function allows us to
register a custom session handler, which must comply to the SessionHandlerInterface
interface. With custom session handlers, we are able to move away from the file mechanism
to storing session data in the database. The added benefit of this is greater performance
efficiency, as we are now able to create scalable PHP environments behind a load
balancer where all application nodes connect to a central session server.

Redis and memcached are two data stores that are quite popular among
PHP developers. The Magento 2 e-commerce platform supports
both Redis and memcached for external session storage.

While the session storage plays a key role in terms of performance, there are a few
configuration directives worth keeping an eye on:

session.gc_probability: This defaults to 1
session.gc_divisor: This defaults to 100
gc_maxlifetime: This defaults to 1,440 seconds (24 minutes)

The gc_probability and gc_divisor directives work in conjunction. Their ratio
(gc_probability/gc_divisor => 1/100 => 1%) defines a probability of the garbage collector
running on each session_start() call. Once the garbage collector is run, value of
the gc_maxlifetime directive tells it if something should be seen as garbage and should
be potentially cleaned up.

When it comes to high-performance sites, sessions can easily become a bottleneck.
Thoughtful tuning and session storage selection can make just the right performance
difference.

Optimizing for High Performance

[189]

Output buffering
Output buffering is a PHP mechanism that controls the output of a script. Imagine we
write down echo 'test'; within our PHP script and do not see anything on screen. How
is that possible? The answer is output buffering.

The following piece of code is a simple example of output buffering:

<?php

ob_start();
sleep(2);
echo 'Chunk#1' . PHP_EOL;
sleep(3);
ob_end_flush();

ob_start();
echo 'Chunk#2' . PHP_EOL;
sleep(5);
ob_end_clean();

ob_start();
echo 'Chunk#3' . PHP_EOL;
ob_end_flush();

ob_start();
sleep(5);
echo 'Chunk#4' . PHP_EOL;

//Chunk#1
//Chunk#3
//Chunk#4

When executed within the CLI environment, we will first see Chunk#1 come out after a few
seconds, then a few seconds after, we will see Chunk#3 come out, and, finally, a few more
seconds after, we will see Chunk#4 come out. Chunk#2 would never be output. This is
quite a concept, given that we are used to having the echo construct outputting stuff just
after it is called.

Optimizing for High Performance

[190]

There are several output buffering related functions, of which the following five are the
most interesting ones:

ob_start(): This triggers a new buffer and creates stacked buffers if called after
another non-closed buffer
ob_end_flush(): This outputs the topmost buffer and turns this output buffer
off
ob_end_clean(): This cleans the output buffer and turns off output buffering
ob_get_contents(): This returns the content of the output buffer
ob_gzhandler(): This is the callback function for use with ob_start(), to
GZIP the output buffer

The following example demonstrates the stacked buffers:

<?php

ob_start(); // BUFFER#1
sleep(2);
echo 'Chunk #1' . PHP_EOL;

 ob_start(); // BUFFER#2
 sleep(2);
 echo 'Chunk #2' . PHP_EOL;
 ob_start(); // BUFFER#3
 sleep(2);
 echo 'Chunk #3' . PHP_EOL;
 ob_end_flush();
 ob_end_flush();

sleep(2);
echo 'Chunk #4' . PHP_EOL;
ob_end_flush();

//Chunk #1
//Chunk #2
//Chunk #3
//Chunk #4

The entire output here is being withheld for roughly 8 seconds, after which all four
Chunk#... strings are being output at once. This is because the ob_end_flush() function
is the only one that sends the output to the console, whereas the ob_end_flush() function
merely closes the buffer, passing it to the parent buffer present in the code.

Optimizing for High Performance

[191]

The use of the ob_get_contents() function can add further dynamic to output buffering,
as shown in the following example:

<?php

$users = ['John', 'Marcy', 'Alice', 'Jack'];

ob_start();
foreach ($users as $user) {
 echo 'User: ' . $user . PHP_EOL;
}
$report = ob_get_contents();
ob_end_clean();

ob_start();
echo 'Listing users:' . PHP_EOL;
ob_end_flush();

echo $report;

echo 'Total of ' . count($users) . ' users listed' . PHP_EOL;

//Listing users:
//User: John
//User: Marcy
//User: Alice
//User: Jack
//Total of 4 users listed

The ob_get_content() function allows us to grab a string representation of content stored
in the buffer. It is up to us to choose if we want to modify that content further, output it, or
pass it on to other constructs.

How does all this apply to web pages? After all, we are interested in the performance of our
scripts, mostly, in context of web pages. Without output buffering, HTML is sent to the
browser in chunks as PHP progresses through our script. With output buffering, HTML is
sent to the browser as one string at the end of our script.

Keeping in mind that the ob_start() function accepts a callback function, we can use the
callback function to further modify the output. This modification can be anything, either
form of filtering or even compression.

Optimizing for High Performance

[192]

The following example demonstrates the use of output filtering:

<?php

ob_start('strip_away');
echo '<h1>', 'Bummer', '</h1>';
echo '<p>', 'I felt foolish and angry about it!', '</p>';
ob_end_flush();

function strip_away($buffer)
{
 $keywords = ['bummer', 'foolish', 'angry'];
 foreach ($keywords as $keyword) {
 $buffer = str_ireplace(
 $keyword,
 str_repeat('X', strlen($keyword)),
 $buffer
);
 }
 return $buffer;
}

// Outputs:
// <h1>XXXXXX</h1><p>I felt XXXXXXX and XXXXX about it!</p>

Nowadays, however, we are not likely to write these kinds of structures ourselves, as the
framework abstractions masquerade it for us.

Disabling debug messages
The Ubuntu Server is a popular, free, and open source Linux distribution that we can use to
quickly set up a LAMP (Linux, Apache, MySQL, PHP) stack. The ease of installation and
long-term support of Ubuntu Server makes it a popular choice among PHP developers.
With a clean server installation, we can get the LAMP stack up and running just by
executing the following commands:

sudo apt-get update && sudo apt-get upgrade
sudo apt-get install lamp-server^

Optimizing for High Performance

[193]

Once these are done, visiting our external server IP address, we should see an Apache page,
as shown in the following screenshot:

The HTML we are seeing in the browser originates from the /var/www/html/index.html
file. After replacing index.html with index.php, we're good to play with the PHP code.

The reason for this Ubuntu Server-like introduction is to emphasize
certain server defaults. Out of all configuration directives, we should never blindly
accept defaults for error logging and error displaying directives without truly understanding
them. Constant switching between development and production environments makes it
way too easy to expose confidential information within the browser or miss logging the
right error.

With that in mind, let's assume we have the following broken index.php file on our freshly
installed Ubuntu Server LAMP stack:

<?php

echo 'Test;

Optimizing for High Performance

[194]

On trying to open this in the browser, Apache will send back HTTP 500 Internal
Server Error, which, depending on the browser, might be visible to the end user, as
shown in the following screenshot:

Ideally, we would have our web server configured with a nicely styled generic error page,
just to make it more user friendly. While the browser response might satisfy the end user, it
certainly does not satisfy the developer in this case. The information returned does not
indicate anything about the nature of the error, which makes it difficult to fix it. Luckily, for
us, the default LAMP stack configuration in this case includes logging the error
to a /var/log/apache2/error.log file:

[Thu Feb 02 19:23:26.026521 2017] [:error] [pid 5481] [client
93.140.71.25:55229] PHP Parse error: syntax error, unexpected ''Test;'
(T_ENCAPSED_AND_WHITESPACE) in /var/www/html/index.php on line 3

While this behavior is perfect for production, it is cumbersome for the development
environment. When developing, we would really like our errors to show up in the
browser, just to speed things up. PHP allows us to control the error reporting and logging
behavior through several configuration directives, the following being the most important:

error_reporting: This is the error level we wish to monitor; we can use the
pipe (|) operator to list several error-level constants. Its default value is E_ALL &
~E_NOTICE & ~E_STRICT & ~E_DEPRECATED.
display_errors: This specifies if errors should be sent to the browser/CLI or be
hidden from the user.
error_log: This is the file where we want to log PHP errors.
log_errors: This tells us if we should log the error to the error_log file.

Optimizing for High Performance

[195]

The available error-level constants are defined as follows:

E_ERROR (1)

E_WARNING (2)

E_PARSE (4)

E_NOTICE (8)

E_CORE_ERROR (16)

E_CORE_WARNING (32)

E_COMPILE_ERROR (64)

E_COMPILE_WARNING (128)

E_USER_ERROR (256)

E_USER_WARNING (512)

E_USER_NOTICE (1024)

E_STRICT (2048)

E_RECOVERABLE_ERROR (4096)

E_DEPRECATED (8192)

E_USER_DEPRECATED (16384)

E_ALL (32767)

Using the error_reporting() and ini_set() functions, we can use some of these
directives to configure logging and displaying during runtime:

<?php

error_reporting(E_ALL);
ini_set('display_errors', 'On');

careful using ini_set() for display_errors as it won't have any effect
if the script has fatal errors, simply because runtime does not get executed.

Error displaying and error logging are two different mechanisms that work hand in hand
with each other. While we are likely to benefit more from error displaying in development
environments, error logging is the way to go for production environments.

Optimizing for High Performance

[196]

Zend OPcache
One major downside of PHP is that it loads and parses the PHP script on every request.
Written in plain text, the PHP code is first compiled to opcodes, then the opcodes are
executed. While this performance impact might not be noticeable with small applications
that have one or few scripts in total, it makes a big difference with larger platforms, such as
Magento, Drupal, and so on.

Starting from PHP 5.5, there is an out-of-the-box solution to this problem. The Zend
OPcache extension addresses the repetitive compilation issue by storing the compiled
opcodes in shared memory (RAM). Turning it on or off is simply a matter of changing the
configuration directive.

There are quite a few configuration directives, a few of which will get us started:

opcache.enable: This defaults to 1 and is changeable via PHP_INI_ALL.
opcache.enable_cli: This defaults to 0 and is changeable via
PHP_INI_SYSTEM.
opcache.memory_consumption: This defaults to 64 and is changeable via
PHP_INI_SYSTEM, which defines the size of shared memory used by OPcache.
opcache.max_accelerated_files: This defaults to 2000 and is changeable via
PHP_INI_SYSTEM, which defines the maximum number of keys/scripts in the
OPcache hash table. Its maximum value is 1000000.
opcache.max_wasted_percentage: This defaults to 5 and is changeable via
PHP_INI_SYSTEM, which defines the maximum percentage of wasted memory
allowed before scheduling a restart.

While opcache.enable is flagged as PHP_INI_ALL, using ini_set() to enable it at
runtime won't work. Only disabling it with ini_set() will work.

Although fully automated, Zend OPcache also provides a few functions for us to use:

opcache_compile_file(): This compiles and caches a script without executing
it
opcache_get_configuration(): This fetches the OPcache
configuration information
opcache_get_status(): This fetches the OPcache information
opcache_invalidate(): This invalidates OPcache
opcache_is_script_cached(): This tells us if the script is cached via OPcache
opcache_reset(): This resets the OPcache cache

Optimizing for High Performance

[197]

While it is unlikely we will use these methods on our own, they do come in handy for
utility tools that deal with OPcache for us.

The opcache-gui tool shows OPcache statistics, settings, and cached
files whilst providing a real-time update. This tool is available for
download at h t t p s ://g i t h u b . c o m /a m n u t s /o p c a c h e - g u i .

One thing to be wary about with OPcache is its potential cache slam problem. Using
the memory_consumption, max_accelerated_files, and max_wasted_percentage
configuration directives, OPcache determines when it is time to flush the cache. When this
happens, servers with large amounts of traffic are likely to experience a cache slam
problem, with lots of requests simultaneously generating the same cache entries. Therefore,
we should try to avoid frequent cache flushing. To do so, we can use the cache monitoring
tool and tune the three configuration directives to suit our application size.

Concurrency
While concurrency is a topic applicable to multiple layers of stack, there are a few
configuration directives around web servers that every developer should be familiar with.
Concurrency refers to handling multiple connections inside a web server. The two most
popular web servers for PHP, Apache, and Nginx, both allow some basic configuration
for handling multiple connections.

While there are plenty of debates as to which server is faster, Apache with the MPM
event module is pretty much on par with the Nginx performance.

The following directives dictate the Apache MPM event concurrency, and are therefore
worth keeping an eye on:

ThreadsPerChild: This is the number of threads created by each child process
ServerLimit: This is the limit on the configurable number of processes
MaxRequestWorkers: This is the maximum number of connections to be
processed simultaneously
AsyncRequestWorkerFactor: This is the limit on concurrent connections per
process

https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui
https://github.com/amnuts/opcache-gui

Optimizing for High Performance

[198]

An absolute maximum numbers of possible concurrent connections can be calculated using
the following formula:

max_connections = (AsyncRequestWorkerFactor + 1) * MaxRequestWorkers

The formula is quite simple; however, changing AsyncRequestWorkerFactor is not just a
matter of punching in a higher configuration value. We would need to have a solid
knowledge about the traffic hitting the web server, which implies extensive testing and data
gathering.

The following directives dictate the Nginx concurrency, and are therefore worth keeping an
eye on:

worker_processes: This is the number of worker processes; it defaults to 1
worker_connections: This is the maximum number of simultaneous
connections that can be opened by a worker process; it defaults to 512

The ideal total number of users Nginx can serve comes down to the following formula:

max_connections = worker_processes * worker_connections

Though we have barely scratched the surface of web server concurrency and the overall
configuration directives for these two web servers, the preceding information should
serve us as a starting point. While developers don't usually tune web servers, they should
know when to flag misconfiguration that might impact their PHP application performance.

Summary
Throughout this chapter, we have addressed some aspects of the PHP performance
optimization. While these merely scratch the surface of the overall performance topic, they
outline the most common areas every PHP developer should be deeply familiar with. The
broad range of configuration directives allows us to tune application behavior that often
works in tandem with the web server itself. The backbone of optimal performance,
however, lies in the thoughtful use of resources across the stack, as we got to observe
through the simple SQL query example.

Moving forward, we will look into serverless architecture, an emerging abstraction of the
standard development environment.

8
Going Serverless

The serverless term is probably among the hottest terms in the software industry lately. It
may be described as the architecture style that partially or fully abstracts the infrastructure
needed to run our software. This abstraction is usually provided by various third-party
service providers.

To put it in the context of web application development, let's think about Single Page
Application (SPA). Nowadays, we can easily develop an entire SPA on top of a fully
managed infrastructure, such as AWS. Such a SPA may be written in Angular, having client
components served from the S3 bucket, managing users through the Amazon Cognito
service, whilst using DynamoDB as an application data store. The managed infrastructure
abstracts away any hosting or server dealings from us, allowing us to focus our efforts on
the application alone. What we end up with is one form of serverless application,
depending on how narrow our definition is.

Like any architectural style, serverless is far from being <<the solution>>.
While some types of application can benefit from it, others might find it a
total mismatch. The long-running applications for example, can easily turn
out to be expensive solution for serverless frameworks, rather
than running a workload on a dedicated server. The trick is to find the
right balance.

A more rigid and narrow definition of serverless is pure code/function hosting,
often referred to as Function as a Service (FaaS). Such infrastructures provide highly
concurrent, scalable, yet affordable solutions, given that they are mostly priced by pay-per-
execution model. AWS Lambda and Iron.io are two platforms that perfectly depict this
notion.

Going Serverless

[200]

In this chapter, we will take a closer look at how we can utilize both the AWS Lambda and
the Iron.io platforms to deploy chunks of our code:

Using the serverless framework
Using Iron.io IronWorker

Using the serverless framework
The AWS Lambda is a compute service provided by Amazon Web Services (AWS). What
makes it specific is that it lets us run code without provisioning or managing any servers
whatsoever. The auto-scaling features enable it to withstand thousands of requests per
second. With an added benefit of pay-per-execution pricing, this service caught some
traction among developers. Over time, the serverless framework was developed to make
the use of the AWS Lambda service easy.

The serverless framework is available at h t t p s ://s e r v e r l e s s . c o m .

Assuming we have an AWS account created, and a clean installation of the Ubuntu server at
hand, let's go ahead and outline the steps needed to set up and utilize the serverless
framework.

Before we can deploy applications on the AWS Lambda, we need to make sure we have a
user with the right set of permissions. AWS permissions are quite robust, in that we can
tune them per resource. The serverless framework uses several other AWS resources aside
from AWS Lambda itself, such as S3, API Gateway, and a few others. To make our
demonstration simple, we will first create an IAM User with Administrator access:

We start by logging into the AWS console at h t t p s ://a w s . a m a z o n . c o m /c o n s o l e1.
/. Once logged in, we need to proceed under the My Security
Credentials | Users screen:

https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://serverless.com
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/console/

Going Serverless

[201]

To add a new user, we click on the Add user button. This triggers a four-step2.
process, as shown in the following screenshot:

Going Serverless

[202]

We provide two pieces of information here, User name and Access type.3.
The Programmatic access type is what we need for our serverless integration.
Clicking on the Next: Permissions button gets us to the following screen:

There are a few ways we can attach permissions to the user here. To keep things4.
simple, we click on the Attach existing policies directly box, and type
in AdministratorAccess in the Policy type field filter. We then simply check
the AdministratorAccess policy and click on the Next: Review button,
which gets us to the following screen:

Going Serverless

[203]

Here, we merely review the current progress, and finally click on the Create user5.
button, which gets us to the following screen:

Going Serverless

[204]

We now have Access key ID and Secret access key, the two pieces of information6.
required by the serverless framework.

Creating users with full administrative permissions is generally
considered a bad security practice. Normally, we would create users with
a bare minimum of needed permissions.

With these steps out of the way, we can move forward with setting up the serverless
framework itself.

The serverless framework runs on top of Node.js. Assuming we have an instance of a clean
Ubuntu server, we can set it up by following these steps:

Install Node.js with the following console commands:1.

curl -sL https://deb.nodesource.com/setup_7.x | sudo -E bash -
sudo apt-get install -y nodejs

Once Node.js is installed, the npm console tool becomes available. The serverless2.
framework itself is available as an npm package at h t t p s ://w w w . n p m j s . c o m /p a c k

a g e /s e r v e r l e s s . Running the following console commands should get it
installed on our server:

sudo npm install -g serverless
serverless --version

With the serverless framework now installed, we need to set the console3.
environment variables: AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.
These get used by serverless during deploy:

export AWS_ACCESS_KEY_ID=<--AWS_ACCESS_KEY_ID-->
export AWS_SECRET_ACCESS_KEY=<--AWS_SECRET_ACCESS_KEY-->

https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless
https://www.npmjs.com/package/serverless

Going Serverless

[205]

We can now address the bits and pieces related to PHP. The official serverless4.
framework example uses an AWS lambda that runs a PHP function, which can be
found at h t t p s ://g i t h u b . c o m /Z e r o S h a r p /s e r v e r l e s s - p h p . We can install it via
the following console command:

serverless install --url
https://github.com/ZeroSharp/serverless-php

This should give us an output much like the following screenshot:

The serverless install command merely pulls the content of the Git repository into a local
directory. Within the newly created serverless-php directory, there is an index.php file
within which our PHP application code resides. Strangely enough, there are bits and pieces
here that, at first, look like they have nothing to do with PHP, such as handler.js. A quick
look into the handler.js reveals something interesting, which is that the AWS Lambda
service does not actually run the PHP code directly. The way it works is that handler.js,
which is a Node.js app, spawns a process with an included php binary file. In a nutshell,
 index.php is our application file, the rest is a necessary boilerplate.

As a quick sanity check, let's trigger the following two commands:

php index.php
serverless invoke local --function hello

https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php
https://github.com/ZeroSharp/serverless-php

Going Serverless

[206]

These should give us the following output, indicating that serverless is able to see and
execute our function:

Finally, we are ready to deploy our PHP application to the AWS Lambda service. We do
this by executing the following command:

serverless deploy

This simple command puts in motion a series of events that result in several different AWS
services being utilized within the AWS console.

Opening the link listed under endpoints shows that our application is publicly available:

Going Serverless

[207]

This was made possible by the automatically created API entry under the Amazon API
Gateway service, as shown in the following screenshot:

The API Gateway bridges the GET /hello URL action with the AWS
Lambda serverless-php-dev-hello application. A look under the AWS Lambda screen
that reveals this application:

Going Serverless

[208]

The CloudFormation stack has also been created, as shown in the following screenshot:

The S3 bucket has also been created, as shown here:

The CloudWatch log group has also been created, as shown in the following screenshot:

Going Serverless

[209]

In a nutshell, serverless deploy kicked off quite a few services for us, thus giving us
time to focus more on actual application development. Although AWS Lambda only
charges a fee when a code is run, some of the other services in the mix might be different.
This is why it is important to keep an eye on everything that gets automatically triggered
for us.

Luckily for us, serverless also provides a cleanup command, which is written as follows:

serverless remove

This command does an overall cleanup by removing all of the services and resources it
previously created.

Using Iron.io IronWorker
Iron.io is a serverless job processing platform designed for high performance and
concurrency. Built around Docker containers, the platform itself is language-agnostic. We
can use it to run pretty much any programming language, including PHP. There are
three main features of the Iron.io platform:

IronWorker: This is an elastic task/queue-like worker service that scales out
processing
IronMQ: This is a message queueing service designed for distributed systems
IronCache: This is an elastic and durable key/value store

While we cannot run real-time PHP within the Iron.io platform, we could utilize
its IronWorker feature for task/queue-like type of applications.

Assuming we have an Iron.io account opened and the Ubuntu server with Docker installed,
we'll be able to follow the next steps outlining the IronWorker workflow.

Going Serverless

[210]

We start by clicking the New Project button under the Iron.io dashboard. This opens up a
simple screen, where all we need is to punch in the project name:

Once the project is created, we can click on the project settings link. This opens up a screen
with several pieces of information, including the Authentication/Configuration
parameters:

Going Serverless

[211]

We will need these parameters as we will configure the iron.json file later on. With these
pieces of information at hand, we are ready to proceed with the application bits.

Application-wise, we start of by installing the iron console tool:

curl -sSL https://cli.iron.io/install | sh

Once installed, the iron command should be available via the console, as shown in the
following screenshot:

We are now ready to kick off our first Iron app.

Going Serverless

[212]

Assuming we have a clean directory where we want to put our application files, we start by
adding composer.json with the following content:

{
 "require": {
 "iron-io/iron_worker": "2.0.4",
 "iron-io/iron_mq": "2.*",
 "wp-cli/php-cli-tools": "~0.10.3"
 }
}

Here, we are just telling Composer what libraries to pull in:

iron_worker: This is the client library for IronWorker (h t t p s ://p a c k a g i s t . o r g

/p a c k a g e s /i r o n - i o /i r o n _ w o r k e r)
iron_mq: This is the client binding for IronMQ (h t t p s ://p a c k a g i s t . o r g /p a c k a g

e s /i r o n - i o /i r o n _ m q)
php-cli-tools: These are the console utilities for PHP (h t t p s ://p a c k a g i s t . o r

g /p a c k a g e s /w p - c l i /p h p - c l i - t o o l s)

We then create Dockerfile with its content as follows:

FROM iron/php

WORKDIR /app
ADD . /app

ENTRYPOINT ["php", "greet.php"]

These Dockerfile instructions help Docker to automatically build the necessary image for
us.

We then add the greet.payload.json file with its content as follows:

{
 "name": "John"
}

This is not really a necessary part of the process, but we are using it to simulate the payload
our application receives.

https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_worker
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/iron-io/iron_mq
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools
https://packagist.org/packages/wp-cli/php-cli-tools

Going Serverless

[213]

We then add the greet.php file with its content as follows:

<?php

require 'vendor/autoload.php';

$payload = IronWorker\Runtime::getPayload(true);

echo 'Welcome ', $payload['name'], PHP_EOL;

The greet.php file is our actual application. The job that gets created on the IronWorker
service will be queueing and executing this application. The application itself is simple; it
merely grabs the value of a payload variable named name, and echoes it out. This should
suffice for our IronWorker demonstration purposes.

We then create the iron.json file with a similar content, as follows:

{
 "project_id": "589dc552827e8d00072c7e11",
 "token": "Gj5vBCht0BP9MeBUNn5g"
}

We ensure that we paste project_id and token obtained from the Project settings screen
within the Iron.io dashboard.

With these files in place, we have defined our application, and are now ready to kick off
Docker related tasks. The overall idea is that we will first create a local Docker image for
testing purposes. Once we are done with the testing, we will push the Docker image to the
Docker repository, and then configure the Iron.io platform to use the image from the
Docker repository to power its IronWorker job.

We can now install our worker dependencies into Docker, as set by the composer.json
file. We will do so by running the following command:

docker run --rm -v "$PWD":/worker -w /worker iron/php:dev composer install

Going Serverless

[214]

The output should show the Composer installing dependencies, as you can see in the
following screenshot:

Once Composer is done installing dependencies, we should test to see if our application is
executing. We can do this via the following command:

docker run --rm -e "PAYLOAD_FILE=greet.payload.json" -v "$PWD":/worker -w
/worker iron/php php greet.php

The resulting output of the preceding command should be a Welcome John string, as
shown in this screenshot:

This confirms that our Docker image is working correctly, and we are now ready to
build and deploy it to h t t p s ://h u b . d o c k e r . c o m .

Docker Hub, available at h t t p s ://h u b . d o c k e r . c o m , is a cloud-
based service that provides a centralized solution for container image
management. While it is a commercial service, there is a free one-repository
plan available.

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com

Going Serverless

[215]

Assuming we have opened a Docker Hub account, executing the following command via
the console would flag us as logged in:

docker login --username=ajzele

Where ajzele is the username which should be replaced with our own:

We can now and package our Docker image by executing the following command:

docker build -t ajzele/greet:0.0.1 .

This is a standard build command that will create an ajzele/greet image, flagged
with version 0.0.1:

Going Serverless

[216]

With the image now created, we should test it first before pushing it to the Docker Hub.
Executing the following command confirms that our newly created ajzele/greet image is
working fine:

docker run --rm -it -e "PAYLOAD_FILE=greet.payload.json" ajzele/greet:0.0.1

The resulting Welcome John output confirms that our image is now ready to be deployed
to Docker Hub, which can be done using the following command:

docker push ajzele/greet:0.0.1

Once the push process is done, we should be able to see our image under the Docker Hub
dashboard:

Going Serverless

[217]

Quite a few steps up until now, but we are nearly there. Now that our application
is available as a Docker image within the Docker Hub repository, we can turn our focus
back onto the Iron.io platform. The iron console tool that we installed early on in the
process is able to register the Docker Hub image as a new worker under the Iron.io
dashboard:

iron register ajzele/greet:0.0.1

The following screenshot shows the output of this command:

At this point, we should see the ajzele/greet worker under the Iron.io
dashboard's TASKS tab:

Although the worker is registered, it is not executed at this point. The Iron.io platform
allows us to execute the worker either as a scheduled or queued task.

Going Serverless

[218]

The scheduled task, as shown in the following screenshot, allows us to choose the registered
Docker image along with the time of execution and a few other options:

Going Serverless

[219]

The queued task, as shown in the following screenshot, also allows us to choose the
registered Docker image, but this time without any specific timing configuration:

Using the iron console tool, we can create both, the schedule and queue tasks based on the
ajzele/greet worker.

The following command creates a scheduled task based on the ajzele/greet worker:

iron worker schedule --payload-file greet.payload.json -start-
at="2017-02-12T14:16:28+00:00" ajzele/greet

The start-at parameter defines a time in the RFC3339 format.

Going Serverless

[220]

For more information about the RFC3339 format, check out h t t p s ://t o o l

s . i e t f . o r g /h t m l /r f c 3339.

The following screenshot shows the output of the preceding command:

The Iron.io dashboard should now show this as a new entry under the SCHEDULED
TASKS section:

When the scheduled time comes, the Iron.io platform will execute this scheduled task.

The following command creates a queued task based on the ajzele/greet worker:

iron worker queue --payload-file greet.payload.json --wait ajzele/greet

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339

Going Serverless

[221]

The following screenshot shows the output of this command:

The Iron.io dashboard registers every executed task by increasing the Complete counter
(currently showing 3 in the following screenshot) under the TASKS section:

Going Serverless

[222]

Going into the ajzele/greet worker reveals details behind each job, both
scheduled and queued:

So far, you have learned how to create a PHP application Docker image, push it to the
Docker Hub, register it with the Iron.io platform, and start scheduling and queueing tasks.
The part about scheduling and queueing tasks may be a bit tricky as we were doing it from
the console and not the PHP code.

Luckily, the composer.json file references all of the libraries we need, to be able
to schedule and queue tasks from the PHP code. Let's assume, for a moment, that we
grabbed the iron.json and composer.json files and moved onto a completely different
server, maybe even our local development machine. All we need to do there is to
run composer install on the console, and create the index.php file with content as
follows:

<?php

require './vendor/autoload.php';

$worker = new IronWorker\IronWorker();

$worker->postScheduleAdvanced(
 'ajzele/greet',
 ['name' => 'Mariya'],
 '2017-02-12T14:33:39+00:00'

Going Serverless

[223]

);

$worker->postTask(
 'ajzele/greet',
 ['name' => 'Alice']
);

Once this code gets executed, it will create one scheduled and one queued task, just as the
iron console tool does.

While we might not host an entire PHP application with it, the Iron.io platform makes
it easy and hassle-free to create and run various isolated jobs, giving developers a
worthwhile serverless experience.

Summary
Throughout this chapter, we took a hands-on approach with two popular serverless
platforms--AWS and Iron.io. Using the serverless framework, we were able to quickly
deploy our code to the AWS Lambda service. The actual deployment involved a few AWS
services, exposing our little chunk of code as a REST API endpoint hitting AWS Lambda in
the background. With all of the services being managed by AWS, we were left with a true
serverless experience. Quite a powerful concept, if we think about it. Aside from AWS,
Iron.io is another interesting serverless platform. Unlike real-time code execution on AWS
Lamda, the code on Iron.io executes as scheduled/queued tasks (not to say that AWS does
not have its own queued solution as well). While AWS Lambda natively supports Node.js,
Java, Python, and .NET Core runtimes, Iron.io abstracts the language away by using Docker
containers. Still, we were able to run PHP, even on AWS Lambda, by wrapping the PHP
binary through Node.js.

The serverless approach certainly has its appeal. While it might not be the complete solution
for some of our applications, it can certainly take on the resource-intense bits. The effortless
use and pay-per-execution model can be a game changer for some.

Moving forward, we will take a look at what PHP has to offer when it comes to the
trending reactive programming paradigm.

9
Reactive Programming

Every so often, there is a shift in the software industry. A shift that enriches the ecosystem
with ideas promising easier systems and application development. The driving force behind
which is mostly the Internet nowadays, as it is a medium for all connected applications, not
just those running in our browser. Majority of mobile users consume a large number of
cloud services, without even realizing it. Ensuring consistent user experience in such a
connected world is a challenge addressed in multiple ways. One such viewpoint is the
reactivity, where programming language itself plays an important role.

Traditionally, PHP follows the synchronous programming model and is not really fit for
asynchronous programming. Although the standard library already has everything needed
to write asynchronous I/O applications, the reality could not be far from different.
Both MySQLi and MySQL (PDO), for example, remain blocking, making asynchronous
programming with PHP useless. Luckily, the tides are shifting, and awareness
about asynchronous is coming about with PHP.

Reactive programming is an emerging topic of the software industry that builds on top of
observables as its primitive. We associate asynchronous behavior with it, as observables
provide an ideal way to access asynchronous sequences of multiple items. On a higher
level, it's just another programming paradigm, just as procedural, object-
oriented, declarative, and functional programming are. While it requires a certain mind
shift to adopt observables, operators, observers, and other building blocks, in return, it
allows greater expressiveness and unidirectional data flow, leading to cleaner and simpler
code.

Reactive Programming

[225]

In this chapter, we will take a closer look at the following sections:

Similarities with event-driven programming
Using RxPHP:

Installing RxPHP
Observable and observer
Subject
Operator
Writing custom operator

Non-blocking I/O
Using React:

Installing React
React event loop
Observable and event loop

Similarities with event-driven programming
Wikipedia defines reactive programming as follows:

"A programming paradigm oriented around data flows and the propagation of change."

The very first thought of this may imply some similarities to a well-known event-driven
programming. The data flows and the propagation of change sound a bit like something we
may implement via the \SplSubject, \SplObjectStorage,
and \SplObserver interfaces in PHP, as per the following trivial example. The
\SplObjectStorage interface further encapsulates the \Countable, \Iterator,
\Traversable, \Serializable, and \ArrayAccess interfaces:

<?php

class UserRegister implements \SplSubject
{
 protected $user;
 protected $observers;

 public function __construct($user)
 {

$this->user = $user;
$this->observers = new \SplObjectStorage();

 }

Reactive Programming

[226]

 public function attach(\SplObserver $observer)
 {
 $this->observers->attach($observer);
 }

 public function detach(\SplObserver $observer)
 {
 $this->observers->detach($observer);
 }

 public function notify()
 {
 foreach ($this->observers as $observer) {
 $observer->update($this);
 }
 }

 public function getUser()
 {
 return $this->user;
 }
}

class Mailer implements \SplObserver
{
 public function update(\SplSubject $subject)
 {
 if ($subject instanceof UserRegister) {
 echo 'Mailing ', $subject->getUser(), PHP_EOL;
 }
 }
}

class Logger implements \SplObserver
{
 public function update(\SplSubject $subject)
 {
 if ($subject instanceof UserRegister) {
 echo 'Logging ', $subject->getUser(), PHP_EOL;
 }
 }
}

$userRegister = new UserRegister('John');
// some code...
$userRegister->attach(new Mailer());
// some code...
$userRegister->attach(new Logger());

Reactive Programming

[227]

// some code...
$userRegister->notify();

We may say that data flows translate to a sequence of updates coming from
the $userRegister instance's notify() method, the propagation of change translates to
triggering the update() method of the mailer and logger instances, and the
\SplObjectStorage method plays an important role This is just a trivial and superficial
interpretation of the reactive programming paradigm in the context of the PHP code.
Furthermore, there is no asynchronicity here at the moment. The PHP runtime and
standard library effectively offer all that is needed to write asynchronous code. Throwing in
a reactivity in the mix, is merely a matter of choosing the right library.

While the choice of PHP libraries for reactive programming isn't nearly as rich as those of
the JavaScript ecosystem, there are a few noteworthy ones, such as RxPHP and React.

Using RxPHP
Originally developed by Microsoft for the .NET platform, a set of libraries named ReactiveX
(reactive extensions) is available at h t t p ://r e a c t i v e x . i o . ReactiveX allows us to
write asynchronous and event-based programs using observable sequences. They do so by
abstracting away low-level concerns such as non-blocking I/O, which we will talk about
later. Over time, several programming languages made their own implementations
of ReactiveX, following a nearly identical design pattern. The PHP implementation,
named RxPHP, can be downloaded from h t t p s ://g i t h u b . c o m /R e a c t i v e X /R x P H P :

Installing RxPHP
The RxPHP library is available as a Composer reactivex/rxphp package. Assuming we
already installed PHP and Composer, we can simply execute the following command in an
empty directory:

composer require reactivex/rxphp

http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP

Reactive Programming

[228]

This should give us an output similar to the following one:

The output suggests installing react/event-loop; we need to be sure to follow up on that
by executing the following command:

composer require react/event-loop

This should give us an output much like the following one:

Reactive Programming

[229]

All that remains now is to create an index.php file, which includes autoload.php file
generated by Composer, and we are ready to start playing with

The RxPHP library is comprised of several key components, the most basic ones being the
following:

Observable
Observer
Subject
Operator

Moving forward, let's take a closer look at each of these components.

Observable and observer
In our introduction example, we touched upon the observer pattern using \SplSubject
and \SplObserver. Now, we are introducing an RxPHP observable and observer
component. We might say that \SplSubject is analogous to Rx\Observable,
whereas \SplObserver is analogous to Rx\Observer\CallbackObserver. The whole
SPL and Rx, however, are only superficially analogous. Rx\Observable is more powerful
than \SplObserver. We can think of Rx\Observable as a lazy source of event, a thing
that produces value over time. Observables emit the following three types of events to their
observers:

The current item in the stream
The error, if one occurred
The complete state

Reactive Programming

[230]

In a nutshell, it is a reactive data source that knows how to signal internal data changes.

Let's take a look at the following simple example:

<?php

require_once __DIR__ . '/vendor/autoload.php';

use \Rx\Observable;
use \Rx\Observer\CallbackObserver;
use \React\EventLoop\Factory;
use \Rx\Scheduler;

$loop = Factory::create();

Scheduler::setDefaultFactory(function () use ($loop) {
 return new Scheduler\EventLoopScheduler($loop);
});

$users = Observable::fromArray(['John', 'Mariya', 'Marc', 'Lucy']);

$logger = new CallbackObserver(
 function ($user) {
 echo 'Logging: ', $user, PHP_EOL;
 },
 function (\Throwable $t) {
 echo $t->getMessage(), PHP_EOL;
 },
 function () {
 echo 'Stream complete!', PHP_EOL;
 }
);

$users->subscribe($logger);

$loop->run();

The output of which is as :

Logging: John
Logging: Mariya
Logging: Marc
Logging: Lucy
Stream complete!

Reactive Programming

[231]

We see that the subscribe() method of the Observable instance accepts an instance
of CallbackObserver. Each of the three parameters of an observer is a callback function.
The first callback handles the stream item, the second returns potential error, and the third
indicates a completed stream.

RxPHP provides few a type of observables:

AnonymousObservable

ArrayObservable

ConnectableObservable

EmptyObservable

ErrorObservable

ForkJoinObservable

GroupedObservable

IntervalObservable

IteratorObservable

MulticastObservable

NeverObservable

RangeObservable

RefCountObservable

ReturnObservable

TimerObservable

Let's take a look at a more elaborate example of observable and observer:

<?php

require_once __DIR__ . '/vendor/autoload.php';

use \Rx\Observable;
use \Rx\Observer\CallbackObserver;
use \React\EventLoop\Factory;
use \Rx\Scheduler;

$loop = Factory::create();

Scheduler::setDefaultFactory(function () use ($loop) {
 return new Scheduler\EventLoopScheduler($loop);
});

// Generator function, reads CSV file

Reactive Programming

[232]

function users($file)
{
 $users = fopen($file, 'r');
 while (!feof($users)) {
 yield fgetcsv($users)[0];
 }
 fclose($users);
}

// The RxPHP Observer
$logger = new CallbackObserver(
 function ($user) {
 echo $user, PHP_EOL;
 },
 function (\Throwable $t) {
 echo $t->getMessage(), PHP_EOL;
 },
 function () {
 echo 'stream complete!', PHP_EOL;
 }
);

// Dummy map callback function
$mapper = function ($value) {
 return time() . ' | ' . $value;
};

// Dummy filter callback function
$filter = function ($value) {
 return strstr($value, 'Ma');
};

// Generator function
$users = users(__DIR__ . '/users.csv');

// The RxPHP Observable - from generator
Observable::fromIterator($users)
 ->map($mapper)
 ->filter($filter)
 ->subscribe($logger);

$loop->run();

Reactive Programming

[233]

We started off by creating a simple generator function called users(). The great thing
about generators is that they act as iterator, which makes it easy to create RxPHP
observables from them using the fromIterator() method. Once we have the observable,
we can chain few of its methods, such as map() and filter(), together. This way, we
control the data stream hitting our subscribed observer.

Assume the users.csv file with following content:

"John"
"Mariya"
"Marc"
"Lucy"

The output of the preceding code should be something like this:

1487439356 | Mariya
1487439356 | Marc
stream complete!

Now, let's assume that we want to attach multiple observers to our $users stream:

$mailer = new CallbackObserver(
 function ($user) {
 echo 'Mailer: ', $user, PHP_EOL;
 },
 function (\Throwable $t) {
 echo 'Mailer: ', $t->getMessage(), PHP_EOL;
 },
 function () {
 echo 'Mailer stream complete!', PHP_EOL;
 }
);

$logger = new CallbackObserver(
 function ($user) {
 echo 'Logger: ', $user, PHP_EOL;
 },
 function (\Throwable $t) {
 echo 'Logger: ', $t->getMessage(), PHP_EOL;
 },
 function () {
 echo 'Logger stream complete!', PHP_EOL;
 }
);

$users = Observable::fromIterator(users(__DIR__ . '/users.csv'));

Reactive Programming

[234]

$users->subscribe($mailer);
$users->subscribe($logger);

This won't work. The code won't throw any error, but the result might not be what we
would expect it to be:

Mailer: John
Logger: Mariya
Mailer: Marc
Logger: Lucy
Mailer:
Logger:
Mailer stream complete!
Logger stream complete!

We cannot really attach multiple subscribers this way. The first attached observer consumes
the stream, which is why the second observer sees it empty. This is where
the Rx\Subject\Subject component may come in handy.

Subject
Rx\Subject\Subject is an interesting component--it's a class that acts both as observable
and observer. The benefit of this is seen in the following example:

use \Rx\Subject\Subject;

$mailer = new class() extends Subject
{
 public function onCompleted()
 {
 echo 'mailer.onCompleted', PHP_EOL;
 parent::onCompleted();
 }

 public function onNext($val)
 {
 echo 'mailer.onNext: ', $val, PHP_EOL;
 parent::onNext($val);
 }

 public function onError(\Throwable $error)
 {
 echo 'mailer.onError', $error->getMessage(), PHP_EOL;
 parent::onError($error);
 }
};

Reactive Programming

[235]

$logger = new class() extends Subject
{
 public function onCompleted()
 {
 echo 'logger.onCompleted', PHP_EOL;
 parent::onCompleted();
 }

 public function onNext($val)
 {
 echo 'logger.onNext: ', $val, PHP_EOL;
 parent::onNext($val);
 }

 public function onError(\Throwable $error)
 {
 echo 'logger.onError', $error->getMessage(), PHP_EOL;
 parent::onError($error);
 }
};

$users = Observable::fromIterator(users(__DIR__ . '/users.csv'));
$mailer->subscribe($logger);
$users->subscribe($mailer);

Using the anonymous classes, we were able to extend the Rx\Subject\Subject class on-
the-fly. The underlying onCompleted(), onError(Exception $error),
and onNext($value) methods are where we tap into our observer-related
logic. Once executed, the code results in the following output:

mailer.onNext: John
logger.onNext: John
mailer.onNext: Mariya
logger.onNext: Mariya
mailer.onNext: Marc
logger.onNext: Marc
mailer.onNext: Lucy
logger.onNext: Lucy
mailer.onNext:
logger.onNext:
mailer.onCompleted
logger.onCompleted

Reactive Programming

[236]

What is happening here is that the mailer first taps into the stream, and then streams back
into the logger stream. This is possible because of the dual nature of Rx\Subject\Subject.
It is important to note that the logger does not observe the original stream. We can test this
easily by adding the filter to $mailer:

// ...

$mailer
 ->filter(function ($val) {
 return strstr($val, 'Marc') == false;
 })
 ->subscribe($logger);

$users->subscribe($mailer);

The resulting output will now omit the user named on the logger observer:

mailer.onNext: John
logger.onNext: John
mailer.onNext: Mariya
logger.onNext: Mariya
mailer.onNext: Marc
mailer.onNext: Lucy
logger.onNext: Lucy
mailer.onNext:
logger.onNext:
mailer.onCompleted
logger.onCompleted

Operator
The observable model of RxPHP allows us to treat streams with simple and composable
operations. Each of these operations is done by an individual operator. The composition of
operators is possible because operators themselves mostly return observable as a result of
their operation. A quick peek into the vendor\reactivex\rxphp\lib\Rx\Operator
directory reveals 48 different operator implementations, classified in several different
categories

Creating o
Transforming observables
Filtering observables
Combining observables
Error-handling operators

Reactive Programming

[237]

Observable utility operators
Conditional and Boolean operators
Mathematical and aggregate operators
Connectable observable operators

The map, filter, and reduce methods are likely the most known and popular operators,
so let's start our example with them:

<?php

require_once __DIR__ . '/vendor/autoload.php';

use \Rx\Observable;
use \Rx\Observer\CallbackObserver;
use \React\EventLoop\Factory;
use \Rx\Scheduler;

$loop = Factory::create();

Scheduler::setDefaultFactory(function () use ($loop) {
 return new Scheduler\EventLoopScheduler($loop);
});

// Generator function
function xrange($start, $end, $step = 1)
{
 for ($i = $start; $i <= $end; $i += $step) {
 yield $i;
 }
}

// Observer
$observer = new CallbackObserver(
 function ($item) {
 echo $item, PHP_EOL;
 }
);

echo 'start', PHP_EOL;
// Observable stream, made from iterator/generator
Observable::fromIterator(xrange(1, 10, 1))
 ->map(function ($item) {
 return $item * 2;
 })
 ->filter(function ($item) {
 return $item % 3 == 0;
 })

Reactive Programming

[238]

 ->reduce(function ($x, $y) {
 return $x + $y;
 })
 ->subscribe($observer);

echo 'end', PHP_EOL;

$loop->run();

We started off by writing a simple generator function called xrange(). The beauty of the
generator here is that the xrange() function will always take the same amount of memory,
regardless of the range we choose. This gives us a great foundation to play with the
ReactiveX operators. We then created a simple $observer, utilizing only its $onNext
callable whilst ignoring the $onError and $onCompleted callables for the purpose of this
section. We then created an observable stream from our xrange() function, passing it a
range of 1 to 20. Finally, we got to the point where we hooked the map(), filter(),
reduce(), and subscribe() method calls to our observable instance.

If we were to execute this code now, the resulting output would be number 36. To
understand where this is coming from, let's take a step back and comment out the
filter() and reduce() methods:

Observable::fromIterator(xrange(1, 10, 1))
 ->map(function ($item) {
 return $item * 2;
 })
// ->filter(function ($item) {
 // return $item % 3 == 0;
// })
// ->reduce(function ($x, $y) {
 // return $x + $y;
// })
 ->subscribe($observer);

The output now is as follows:

start
2
4
6
8
10
12
14
16
18

Reactive Programming

[239]

20
end

The map() function transforms the emitted items by applying a function to each item. In
this case, that function is $item * 2. Now, let's go ahead and restore the filter()
function, but leave the reduce() function commented out:

Observable::fromIterator(xrange(1, 10, 1))
 ->map(function ($item) {
 return $item * 2;
 })
 ->filter(function ($item) {
 return $item % 3 == 0;
 })
// ->reduce(function ($x, $y) {
 // return $x + $y;
// })
 ->subscribe($observer);

Knowing now that the filter() function will receive the map() function output stream (2,
4, 6, ... 20), we observe the following output:

start
6
12
18
end

The filter() function transforms the emitted items by emitting back only those items that
pass a predicate test. In this case, the predicate test is $item % 3 == 0, which means, it
returns items evenly divisible by 3.

Finally, if we restore the reduce() function, the result comes back as 36. Unlike map() and
filter(), which accept a single emitted item value, the reduce() function callback
accepts two values.

A quick change to the body of the reduce() callback clarifies what's going on:

 ->reduce(function ($x, $y) {
 $z = $x + $y;
 echo '$x: ', $x, PHP_EOL;
 echo '$y: ', $y, PHP_EOL;
 echo '$z: ', $z, PHP_EOL, PHP_EOL;
 return $z;
 })

Reactive Programming

[240]

This gives output as follows:

start
$x: 6
$y: 12
$z: 18

$x: 18
$y: 18
$z: 36

36
end

We can see that $x comes in as a value of the first emitted item, whereas $y comes in as a
value of the second emitted item. The function then applies sum computation on them,
making the return result now a first emitted item in the second iteration, basically, giving
(6 + 12) => 18 => (18 + 18) => 36.

Given the sheer number of operators supported by RxPHP, we can imagine the real-life
complexities we get to solve in an elegant way by simply composing a number of operators
into a chain, as follows:

$observable
 ->operator1(function () { /* ...*/ })
 ->operator2(function () { /* ...*/ })
 ->operator3(function () { /* ...*/ })
 // ...
 ->operatorN(function () { /* ...*/ })
 ->subscribe($observer);

If existing operators are not enough, we can easily write our own by
extending Rx\Operator\OperatorInterface.

Reactive Programming

[241]

Writing custom operators
Though RxPHP provides over 40 operators for us to use, sometimes, there may be a need to
use an operator that does not exist. Consider the following case:

<?php

require_once __DIR__ . '/vendor/autoload.php';

use \Rx\Observer\CallbackObserver;
use \React\EventLoop\Factory;
use \Rx\Scheduler;

$loop = Factory::create();

Scheduler::setDefaultFactory(function () use ($loop) {
 return new Scheduler\EventLoopScheduler($loop);
});

// correct
$users = serialize(['John', 'Mariya', 'Marc', 'Lucy']);

// faulty
// $users = str_replace('i:', '', serialize(['John', 'Mariya', 'Marc',
'Lucy']));

$observer = new CallbackObserver(
 function ($value) {
 echo 'Observer.$onNext: ', print_r($value, true), PHP_EOL;
 },
 function (\Throwable $t) {
 echo 'Observer.$onError: ', $t->getMessage(), PHP_EOL;
 },
 function () {
 echo 'Observer.$onCompleted', PHP_EOL;
 }
);

Rx\Observable::just($users)
 ->map(function ($value) {
 return unserialize($value);
 })
 ->subscribe($observer);

$loop->run();

Reactive Programming

[242]

Executing this code with the correct $users variable gives us the following expected output:

However, if we were to remove the comment in front of the faulty $user variable, the
output comes out slightly unexpected, or at least not how we would like to handle it:

What we really want is to shift the unserialize logic into the RxPHP operator, and have it
gracefully handle the unsuccessful unserialize() attempts. Luckily, writing a custom
operator is an easy task. A quick look into the
vendor/reactivex/rxphp/src/Operator/OperatorInterface.php file reveals the
following interface:

<?php

declare(strict_types=1);

namespace Rx\Operator;

use Rx\DisposableInterface;
use Rx\ObservableInterface;
use Rx\ObserverInterface;

interface OperatorInterface
{
 public function __invoke(
 ObservableInterface $observable,
 ObserverInterface $observer
): DisposableInterface;
}

Reactive Programming

[243]

Easy enough, the interface only requires a single __invoke() method implementation. We
wrote about the __invoke() method extensively in Chapter 4, Magic Behind Magic
Methods. This method gets called when we try to call an object as a
function. OperatorInterface, in this case, lists three arguments to the __invoke()
method, two of which are mandatory:

$observable: This will be our input observable to which we subscribe
$observer: This is where we will emit our output value

With that in mind, the following is an implementation of our
custom UnserializeOperator:

<?php

use \Rx\DisposableInterface;
use \Rx\ObservableInterface;
use \Rx\ObserverInterface;
use \Rx\SchedulerInterface;
use \Rx\Observer\CallbackObserver;
use \Rx\Operator\OperatorInterface;

class UnserializeOperator implements OperatorInterface
{
 /**
 * @param \Rx\ObservableInterface $observable
 * @param \Rx\ObserverInterface $observer
 * @param \Rx\SchedulerInterface $scheduler
 * @return \Rx\DisposableInterface
 */
 public function __invoke(
 ObservableInterface $observable,
 ObserverInterface $observer,
 SchedulerInterface $scheduler = null
): DisposableInterface
 {
 $callbackObserver = new CallbackObserver(
 function ($value) use ($observer) {
 if ($unsValue = unserialize($value)) {
 $observer->onNext($unsValue);
 } else {
 $observer->onError(
 new InvalidArgumentException('Faulty serialized
string.')
);
 }
 },

Reactive Programming

[244]

 function ($error) use ($observer) {
 $observer->onError($error);
 },
 function () use ($observer) {
 $observer->onCompleted();
 }
);

 // ->subscribe(...) => DisposableInterface
 return $observable->subscribe($callbackObserver, $scheduler);
 }
}

Unfortunately, we cannot chain our operator directly as we chain the RxPHP operators. We
need to help ourselves with the lift() operator:

Rx\Observable::just($users)
 ->lift(function () {
 return new UnserializeOperator();
 })
 ->subscribe($observer);

With UnserializeOperator in place, the faulty serialized $users string now gives the
following output:

Our operator is now successfully handling errors, in that, it is delegating them onto the
observer onError callback.

Making the best out of RxPHP is mostly about knowing the ins and outs of
its operators. The vendor/reactivex/rxphp/demo/ directory provides
quite a few operator usage examples. It is worth spending some time
going through each.

Non-blocking IO
Using the RxPHP extensions opens up quite a few possibilities. Its observables, operators,
and subscribers/observers implementations are certainly powerful. What they don't
provide, however, is asynchronicity. This is where the React library comes into play, by
providing an event-driven, non-blocking I/O abstraction layer. Before we touch upon React,
let's first lay out a trivial example of blocking versus non-blocking I/O in PHP.

Reactive Programming

[245]

We create a small beacon script that will merely generate some standard output (stdout)
over time. Then, we will create a script that reads from the standard input (stdin) and see
how it behaves when reading is done in the stream blocking and stream non-blocking
mode.

We start by creating the beacon.php file with the following content:

<?php

$now = time();

while ($now + $argv[1] > time()) {
 echo 'signal ', microtime(), PHP_EOL;
 usleep(200000); // 0.2s
}

The use of $argv[1] hints that the file is intended to be run from console. Using $argv[1],
we provide a number of seconds we wish the script to run. Within the loop, we have a
signal... output, followed by a short 0.2 seconds of script sleep.

With our beacon script in place, let's go ahead and create index.php file with the following
content:

<?php

// stream_set_blocking(STDIN, 0);
// stream_set_blocking(STDIN, 1); // default

echo 'start', PHP_EOL;

while (($line = fgets(STDIN)) !== false) {
 echo $line;
}

echo 'end', PHP_EOL;

Aside from two obvious start/end outputs, we utilize the fgets() function to read from the
standard input. stream_set_blocking() method is deliberately left commented out for
the moment. Notice that the two scripts are completely unrelated to each other. At no point
is index.php referencing the beacon.php file. This is because we will use the console
and its pipe (|) to bridge the stdout of the beacon.php script to a stdin consumed by
the index.php :

php beacon.php 2 | php index.php

Reactive Programming

[246]

The resulting output is shown here:

There is nothing wrong with this output; this is what we expected. We first see the start
string showing up, then several occurrences of signal..., and finally, the end string.
However, there lies the catch, all of the signal... bits that are pulled by the fgets() function
from stdout are an example of blocking IO. While we might not perceive it as such in this
small example, we could easily imagine a beacon script sending output from a very large
file, or a slow database connection. Our index.php script would simply hang its execution
blocked during that time, or, better to say, it would wait for the while (($line =
fgets(STDIN)... line to resolve.

How can we resolve the problem? First, we need to understand that this is not really a
technical problem as such. There is nothing wrong with waiting to receive data. No matter
how much we abstract things, there will always be that someone or something who needs
to wait for data somewhere. The trick is positioning the somewhere bit at the right place, so
it does not stand in the way of user experience. The JavaScript promises and callbacks are
one example of where we may want to place that somewhere. Let's take a look at the simple
AJAX call made by the JavaScript jQuery library:

console.log('start-time: ' + Date.now());

$.ajax({
 url: 'http://foggyline.net/',
 success: function (result) {
 console.log('result-time: ' + Date.now())
 console.log(result)
 }
});

console.log('end-time: ' + Date.now());

Reactive Programming

[247]

The following screenshot shows the resulting output:

Notice how start-time and end-time have been outputted before the result-time.
The JavaScript did not block the execution at the $.ajax({... line, like PHP did on
its while (($line = fgets(STDIN)... line in the preceding example. This is because
JavaScript runtime is fundamentally different than PHP. The asynchronous nature of
JavaScript relies on the chunks of code to split off and execute separately, then update
what's needed via the callback mechanism, a functionality made possible by JavaScript
event loop based concurrency model and message queue mechanism. The callback in this
case was the anonymous function assigned to the success property of the ajax() method
call. Once the AJAX call executed successfully, it called the assigned success function,
which in turn resulted last on the output as the AJAX call takes time to execute.

Now, let's go back to our little PHP example and modify the index.php file by removing
the comment we placed in front of the stream_set_blocking(STDIN, 0); expression.
Running the command again, with the pipe (|) this time, now results in the output much
like the following:

Reactive Programming

[248]

This time, the while (($line = fgets(STDIN)... line did not block the execution by
waiting for beacon.php to finish. The trick lies in the stream_set_blocking() function,
as it enables us to control the stream blocking mode, which by default is set to block I/O.
Let's go ahead and make a more PHP-like example, this time without using the console
pipe. We will leave the beacon.php file as it is, but modify the index.php file as follows:

<?php

echo 'start', PHP_EOL;

$process = proc_open('php beacon.php 2', [
 ['pipe', 'r'], // STDIN
 ['pipe', 'w'], // STDOUT
 ['file', './signals.log', 'a'] //STDERR
], $pipes);

//stream_set_blocking($pipes[1], 1); // Blocking I/O
//stream_set_blocking($pipes[1], 0); // Non-blocking I/O

while (proc_get_status($process)['running']) {
 usleep(100000); // 0.1s
 if ($signal = fgets($pipes[1])) {
 echo $signal;
 } else {
 echo '--- beacon lost ---', PHP_EOL;
 }
}

fclose($pipes[1]);
proc_close($process);

echo 'end', PHP_EOL;

Reactive Programming

[249]

We started off with a proc_open() function, which allows us to execute a command and
open file pointers for standard input, output, and error. The 'php beacon.php 2'
argument does pretty much what our console command did, in regards to the part of
command left of the pipe character. The way we catch an output of beacon script is using
the fgets() function. However, we are not doing it directly, we are doing it through the
while loop here, whereas the condition is the process running state. In other words, as long
as the process is running, check whether there is any new output from the newly created
process or not. If there is an output, show it; if not, show the --- beacon lost --- message. The
following screenshot shows the resulting output with default (blocking) I/O:

If we now remove the comment in front of stream_set_blocking($pipes[1], 0);, the
resulting output changes into this:

Reactive Programming

[250]

The output here shows the non-blocking relationship between the beacon and our running
script. Unblocking the stream, we were able to utilize the fgets() function, which would
normally block the script to periodically check on the standard input for as long as the
process is running. In a nutshell, we are now able to read the output from a sub-process,
while being able to initialize a few more of the sub-processes along the way. Although the
example itself is a long-long way from the convenience of the jQuery promise/callback
example, it is a first step towards the complexities behind blocking and non-blocking I/O, as
it affects the way we write our code. This is where we will come to appreciate the role of the
RxPHP observables and React event loops.

Using React
React is a library that makes it possible to event-driven programming in PHP, much like
JavaScript does. Based on the reactor pattern, it essentially acts as an event loop, allowing
various other third-party libraries using its components to write asynchronous code.

The page at h t t p s ://e n . w i k i p e d i a . o r g /w i k i /R e a c t o r _ p a t t e r n states, The reactor design
pattern is an event handling pattern for handling service requests delivered concurrently to a service
handler by one or more inputs.

The library is available at h t t p s ://g i t h u b . c o m /r e a c t p h p /r e a c t

Installing React
The React library is available as a Composer react/react package. Assuming we are still
in our project directory where we installed RxPHP, we can simply execute the following
command in order to add React to our project:

composer require react/react

https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react
https://github.com/reactphp/react

Reactive Programming

[251]

This should give us an output similar to the following one:

Reactive Programming

[252]

We can see quite a few interesting react/* packages being pulled in, react/event-
loop being one of them. The messages suggesting we should install one of the more
performant loop implementations are definitely worthy of interest, though out of the scope
of this book.

React event loop
Without any of the suggested event loop extensions, React event loop defaults to
the React\EventLoop\StreamSelectLoop class, which is a stream_select() function-
based event loop.

The page at h t t p ://p h p . n e t /m a n u a l /e n /f u n c t i o n . s t r e a m - s e l e c t . p h p states, The
stream_select() function accepts arrays of streams and waits for them to change status

As we already saw in our previous examples, making an event loop in React is simple

<?php

require_once __DIR__ . '/vendor/autoload.php';

use \React\EventLoop\Factory;
use \Rx\Scheduler;

$loop = Factory::create();

Scheduler::setDefaultFactory(function () use ($loop) {
 return new Scheduler\EventLoopScheduler($loop);
});

// Within the loop

$loop->run();

We are using the Factory::create() static function, which is implemented as follows:

class Factory
{
 public static function create()
 {
 if (function_exists('event_base_new')) {
 return new LibEventLoop();
 } elseif (class_exists('libev\EventLoop', false)) {
 return new LibEvLoop;
 } elseif (class_exists('EventBase', false)) {
 return new ExtEventLoop;

http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php
http://php.net/manual/en/function.stream-select.php

Reactive Programming

[253]

 }
 return new StreamSelectLoop();
 }
}

Here, we can see that unless we have ext-libevent, ext-event, or ext-libev installed,
then the StreamSelectLoop implementation is used.

Each iteration of the loop is a tick. The event loop tracks timers and streams. Without
either of these two, there are no ticks, and the loop simply

<?php

require_once __DIR__ . '/vendor/autoload.php';

use \React\EventLoop\Factory;
use \Rx\Scheduler;

echo 'STEP#1 ', time(), PHP_EOL;

$loop = Factory::create();

Scheduler::setDefaultFactory(function () use ($loop) {
 return new Scheduler\EventLoopScheduler($loop);
});

echo 'STEP#2 ', time(), PHP_EOL;

$loop->run();

echo 'STEP#3 ', time(), PHP_EOL;

The preceding code gives us the following output:

Reactive Programming

[254]

As soon as we add some timers, the situation ch

<?php

require_once __DIR__ . '/vendor/autoload.php';

use \React\EventLoop\Factory;
use \Rx\Scheduler;

echo 'STEP#1 ', time(), PHP_EOL;

$loop = Factory::create();

Scheduler::setDefaultFactory(function () use ($loop) {
 return new Scheduler\EventLoopScheduler($loop);
});

echo 'STEP#2 ', PHP_EOL;

$loop->addTimer(2, function () {
 echo 'timer#1 ', time(), PHP_EOL;
});

echo 'STEP#3 ', time(), PHP_EOL;

$loop->addTimer(5, function () {
 echo 'timer#2 ', time(), PHP_EOL;
});

echo 'STEP#4 ', time(), PHP_EOL;

$loop->addTimer(3, function () {
 echo 'timer#3 ', time(), PHP_EOL;
});

echo 'STEP#5 ', time(), PHP_EOL;
$loop->run();

echo 'STEP#6 ', time(), PHP_EOL;

Reactive Programming

[255]

The preceding code gives us the following output:

Notice the order of the timer output, and the time next to each. Our loop still managed to
end, as our timers expired. To keep the loop running constantly, we can add a periodic timer

<?php

require_once __DIR__ . '/vendor/autoload.php';

use \React\EventLoop\Factory;
use \Rx\Scheduler;

echo 'STEP#1 ', time(), PHP_EOL;

$loop = Factory::create();

Scheduler::setDefaultFactory(function () use ($loop) {
 return new Scheduler\EventLoopScheduler($loop);
});

echo 'STEP#2 ', PHP_EOL;

$loop->addPeriodicTimer(1, function () {
 echo 'timer ', time(), PHP_EOL;
});

echo 'STEP#3 ', time(), PHP_EOL;

$loop->run();

echo 'STEP#4 ', time(), PHP_EOL;

Reactive Programming

[256]

The preceding code gives us the following output:

This loop will now continue to produce the same timer... output until we hit Ctrl + C on the
console. We might be wondering, how does this differ from a PHP while loop? Generally,
the while loop is of polling type, as it continuously checks things, leaving little to no room
for the processor to switch tasks. The event loop uses more efficient interrupt-driven I/O
instead of polling. However, the default StreamSelectLoop uses the while loop for its
event-loop implementation.

The addition of timers and streams is what makes it useful, as it abstracts the hard bits from
us.

Observables and event loop
Let's go ahead and see how we can make our observables work with an event loop:

<?php

require_once __DIR__ . '/vendor/autoload.php';

use \React\EventLoop\Factory;
use \Rx\Scheduler;
use \Rx\Observable;
use \Rx\Subject\Subject;
use \Rx\Scheduler\EventLoopScheduler;

$loop = Factory::create();

Scheduler::setDefaultFactory(function () use ($loop) {
 return new Scheduler\EventLoopScheduler($loop);
});

$stdin = fopen('php://stdin', 'r');

stream_set_blocking($stdin, 0);

Reactive Programming

[257]

$observer = new class() extends Subject
{
 public function onCompleted()
 {
 echo '$observer.onCompleted: ', PHP_EOL;
 parent::onCompleted();
 }

 public function onNext($val)
 {
 echo '$observer.onNext: ', $val, PHP_EOL;
 parent::onNext($val);
 }

 public function onError(\Throwable $error)
 {
 echo '$observer.onError: ', $error->getMessage(), PHP_EOL;
 parent::onError($error);
 }
};

$loop = Factory::create();

$scheduler = new EventLoopScheduler($loop);

$disposable = Observable::interval(500, $scheduler)
 ->map(function () use ($stdin) {
 return trim(fread($stdin, 1024));
 })
 ->filter(function ($str) {
 return strlen($str) > 0;
 })
 ->subscribe($observer);

$observer->filter(function ($value) {
 return $value == 'quit';
})->subscribeCallback(function ($value) use ($disposable) {
 echo 'disposed!', PHP_EOL;
 $disposable->dispose();
});

$loop->run();

Reactive Programming

[258]

There is quite a lot going on here. We started off by creating a standard input and then
flagging it as non-blocking. We then created the observer of the Subject type. This is
because, as we will see later, we want our observer to behave like observer and observable.
We then instantiated the loop, and passed onto EventLoopScheduler. In order for
observables to work with the loop, we need to wrap them with a scheduler. We then used
the instance of IntervalObservable, making its map() operator read the standard input,
whereas the filter() operator was set to filter out any empty inputs (pressing Enter key
on console with no text). We stored this observable into a $disposable variable. Finally,
given that our $observer was an instance of Subject, we were able to attach
the filter() operator to it as well as subscribeCallback(). We instructed the
filter() operator here to only filter out the input with the quit string. Once quit was
typed onto the console, followed by the Enter key, subscribeCallback() was executed.
Within subscribeCallback(), we have a $disposable->dispose() expression. Calling
the disposable's dispose method automatically unsubscribed $observer from
 $observable. Given that there were no other timers or streams within the loop,
this automatically terminated the loop.

The following screenshot shows the console output of the preceding code:

When the code was run, we first saw the start string, then we typed in John and press ,
then we say $observer.onNext..., which repeated all the way until we typed quit.

The React event loop opens an interesting possibility for us, much like we are used to seeing
in JavaScript and browser. While there is much more to be said about React, this should be
enough to get us started with RxPHP and React combination.

Reactive Programming

[259]

Summary
In this chapter, we touched upon RxPHP and React, the two libraries that promise to
bring reactive programming to PHP. While RxPHP brings the powerful observables
packaged in composable-looking syntax, React enriches our experience with event-loop
implementation. To carefully, we should emphasize that this is still a relatively
experimental area for PHP, and far from ready for mainstream production use. It does,
however, demonstrate that PHP is not limited with its runtime capabilities and shows
promise in the reactive area.

Moving forward, we will shift our focus on common design patterns found in modern PHP
applications.

10
Common Design Patterns

Those new to software development tend to focus their efforts on mastering the
programming language. Once that barrier is passed, it is time to embrace design patterns,
as writing high-quality and complex software is hardly possible without them. Mostly
attributed to experienced developer use, design patterns represent a well established
solution to common challenges faced in our applications. Successfully applying design
patterns is likely to lead to more extensible, reusable, maintainable, and adaptable code.

The examples within this chapter are not meant to be copied and pasted. They merely serve
a purpose of representing one possible implementation of design patterns. After all, real-life
applications are all about details. Furthermore, there are plenty of other design patterns out
there, with new ones being invented as technology and programming paradigms shift.

In this chapter, we will take a look at a few possible implementations of design patterns in
PHP:

Base patterns
The registry pattern

Creational patterns
The singleton pattern
The prototype pattern
The abstract factory pattern
The builder pattern
The object pool pattern

Behavioral patterns
The strategy pattern
The observer pattern
The lazy initialization pattern
The chain of responsibility pattern

Common Design Patterns

[261]

Structural patterns
The decorator pattern

Base patterns
In the coming section, we will take a look at the base pattern: the registry pattern.

The registry pattern
The registry pattern is an interesting one. It allows us to store and retrieve objects for later
use. The process of storing and retrieving is based on the keys we define. Depending on the
data scope, the association of keys and objects is made global across a process, thread, or a
session, allowing us to retrieve the objects from anywhere within the data scope.

The following example demonstrates a possible registry pattern implementation:

<?php

class Registry
{
 private
 $registry = [];

 public
 function get($key)
 {
 if (isset($this->registry[$key])) {
 return $this->registry[$key];
 }
 return null;
 }

 public
 function set($key, $value, $graceful = false)
 {
 if (isset($this->registry[$key])) {
 if ($graceful) {
 return;
 }
 throw new \RuntimeException('Registry key "' . $key . '"already
exists');
 }
 $this->registry[$key] = $value;

Common Design Patterns

[262]

 }

 public
 function remove($key)
 {
 if (isset($this->registry[$key])) {
 unset($this->registry[$key]);
 }
 }

 public
 function __destruct()
 {
 $keys = array_keys($this->registry);
 array_walk($keys, [$this, 'remove']);
 }
}

// Client use
class User
{
 public $name;
}

$user1 = new User();
$user1->name = 'John';
$user2 = new User();
$user2->name = 'Marc';

$registry = new Registry();
$registry->set('employee', $user1);
$registry->set('director', $user2);
echo $registry->get('director')->name; // Marc

Our Registry class implementation has three key methods: get(), set(), remove(). The
set() method allows graceful behavior based on the $graceful parameter; otherwise, it
triggers the RuntimeException for the existing key. We also defined a __destruct
method, as a sort of a cleanup mechanism that removes each item in the registry when
the $registry instance is destroyed.

Creational patterns
In this section, we will take a look at the creational patterns, such as the singleton,
prototype, abstract factory, and builder patterns.

Common Design Patterns

[263]

The singleton pattern
The singleton is among the first design patterns most developers learn. The goal of this
design pattern is to limit the number of class instantiations to only one. What this means is
that using the new keyword on a class will always return one and the same object instance.
This is a powerful concept that allows us to implement all sorts of application-wide objects,
such as loggers, mailers, registries, and other bits of functionality that we may want to act as
singletons. However, as we will soon see, we will avoid the new keyword altogether, and
instantiate an object via the static class method.

The following example demonstrates a possible singleton pattern implementation:

<?php

class Logger
{
 private static $instance;

 const TYPE_ERROR = 'error';
 const TYPE_WARNING = 'warning';
 const TYPE_NOTICE = 'notice';

 protected function __construct()
 {
 // empty?!
 }

 private function __clone()
 {
 // empty?!
 }

 private function __wakeup()
 {
 // empty?!
 }

 public static function getInstance()
 {
 if (!isset(self::$instance)) {
 // late static binding
 self::$instance = new self;
 }
 return self::$instance;
 }

 public function log($type, $message)

Common Design Patterns

[264]

 {
 return sprintf('Logging %s: %s', $type, $message);
 }
}

// Client use
echo Logger::getInstance()->log(Logger::TYPE_NOTICE, 'test');

The Logger class uses the static member $instance to keep an instance of one self, as per
the implementation of the getInstance() method. We defined __construct as
protected in order to prevent new instance creation via the new operator. The __clone()
method was defined as private in order to prevent instance cloning via the clone
operator. Similarly, the __wakeup() method was also defined as private, in order to
prevent instance unserializing via the unserialize() function. These few simple
restrictions make for a class that acts as a singleton. In order to fetch an instance, all it takes
is calling the getInstance() class method.

The prototype pattern
The prototype pattern is about creating new objects by means of cloning them. This is quite
a concept, as we are no longer using the new keyword to create new objects. The PHP
language provides a special clone keyword to assist with object cloning.

The following example demonstrates a possible prototype pattern implementation:

<?php

class Logger
{
 public $channel = 'N/A';
}

class SystemLogger extends Logger
{
 public function __construct()
 {
 $this->channel = 'STDIN';
 }

 public function log($data)
 {
 return sprintf('Logging %s to %s.', $data, $this->channel);
 }

Common Design Patterns

[265]

 public function __clone()
 {
 /* additional changes for (after)clone behavior? */
 }
}

// Client use
$systemLogger = new SystemLogger();
echo $systemLogger->log('test');

$logger = clone $systemLogger;
echo $logger->log('test2');

$logger->channel = 'mail';
echo $logger->log('test3');

// Logging test to STDIN.
// Logging test2 to STDIN.
// Logging test3 to mail.

Normally, all it takes to clone an object is to use an expression such as $clonedObj =
clone $obj;. This, however, does not give us any control over the cloning process. PHP
objects can be heavy, with lots of members and references. Sometimes, we would like to
impose certain limitations on the cloned object. This is where the magic __clone() method
comes in handy. The __clone() method triggers after the cloning process is done, which is
something to keep in mind for possible cleanup code implementations.

The abstract factory pattern
Abstract factory encapsulates a group of individual factories that have a common
functionality. It does so without specifying their concrete classes. This makes it easier to
write portable code, because clients can interchange concrete implementations without
changing the code.

The following example demonstrates a possible abstract factory pattern implementation:

<?php

interface Button
{
 public function render();
}

interface FormFactory
{

Common Design Patterns

[266]

 public function createButton();
}

class LoginButton implements Button
{
 public function render()
 {
 return '<button name="login">Login</button>';
 }
}

class RegisterButton implements Button
{
 public function render()
 {
 return '<button name="register">Register</button>';
 }
}

class LoginFactory implements FormFactory
{
 public function createButton()
 {
 return new LoginButton();
 }
}

class RegisterFactory implements FormFactory
{
 public function createButton()
 {
 return new RegisterButton();
 }
}

// Client
$loginButtonFactory = new LoginFactory();
$button = $loginButtonFactory->createButton();
echo $button->render();

$registerButtonFactory = new RegisterFactory();
$button = $registerButtonFactory->createButton();
echo $button->render();

Common Design Patterns

[267]

We started off by creating two simple interfaces, Button and FormFactory. The Button
interface defines a single render() method, which we then implement through two
concrete class implementations, LoginButton and RegisterButton. The two
FormFactory implementations, LoginFactory and RegisterFactory, then instantiate
the corresponding button classes as part of their createButton() method implementation.
The client uses only the LoginFactory and RegisterFactory instances, thus avoiding
directly instantiating concrete button classes.

The builder pattern
The builder pattern is quite a handy one, especially when it comes to large applications.
It separates the construction of a complex object from its representation. This makes it
possible for the same construction process to create numerous representations.

The following example demonstrates a possible builder pattern implementation using the
Image class as an example:

<?php

class Image
{
 private $width;
 private $height;

 public function getWidth()
 {
 return $this->width;
 }

 public function setWidth($width)
 {
 $this->width = $width;
 return $this;
 }

 public function getHeight()
 {
 return $this->height;
 }

 public function setHeight($height)
 {
 $this->height = $height;
 return $this;

Common Design Patterns

[268]

 }
}

interface ImageBuilderInterface
{
 public function setWidth($width);

 public function setHeight($height);

 public function getResult();
}

class ImageBuilder implements ImageBuilderInterface
{
 private $image;

 public function __construct()
 {
 $this->image = new Image();
 }

 public function setWidth($width)
 {
 $this->image->setWidth($width);
 return $this;
 }

 public function setHeight($height)
 {
 $this->image->setHeight($height);
 return $this;
 }

 public function getResult()
 {
 return $this->image;
 }
}

class ImageBuildDirector
{
 private $builder;

 public function __construct(ImageBuilder $builder)
 {
 $this->builder = $builder;
 }

Common Design Patterns

[269]

 public function build()
 {
 $this->builder->setWidth(120);
 $this->builder->setHeight(80);
 return $this;
 }

 public function getImage()
 {
 return $this->builder->getResult();
 }
}

// Client use
$imageBuilder = new ImageBuilder();
$imageBuildDirector = new ImageBuildDirector($imageBuilder);
$image = $imageBuildDirector->build()->getImage();

var_dump($image);
// object(Image)#2 (2) { ["width":"Image":private]=> int(120)
["height":"Image":private]=> int(80) }

We started off with a simple Image class that provides width and height properties and
corresponding getters and setters. We then created the ImageBuilderInterface interface,
which defines the image width and height setter methods, along with the getResult()
method. We then created an ImageBuilder concrete class that implements
the ImageBuilderInterface interface. The client instantiates the ImageBuilder class.
Another concrete class, ImageBuildDirector, wraps the creation or builder code within
its build() method by working with the instance of ImageBuilder passed through its
constructor.

The object pool pattern
The object pool pattern manages class instances--objects. It is used in situations where we
would like to limit unnecessary class instantiation due to resource-intense
operations. The object pool acts much like a registry for objects, from which clients can pick
up necessary objects later on.

Common Design Patterns

[270]

The following example demonstrates a possible object pool pattern implementation:

<?php

class ObjectPool
{
 private $instances = [];

 public function load($key)
 {
 return $this->instances[$key];
 }

 public function save($object, $key)
 {
 $this->instances[$key] = $object;
 }
}

class User
{
 public function hello($name)
 {
 return 'Hello ' . $name;
 }
}

// Client use
$pool = new ObjectPool();

$user = new User();
$key = spl_object_hash($user);

$pool->save($user, $key);

// code...

$user = $pool->load($key);
echo $user->hello('John');

Using nothing but an array and two methods, we were able to implement a simple object
pool. The save() method adds the object to the $instances array, while the load()
method returns it to the client. The client, in this case, is in charge of keeping track of the
key under which the object is saved. Objects themselves aren't destroyed after their use, as
they remain in the pool.

Common Design Patterns

[271]

Behavioral patterns
In this section, we will go through the behavioral patterns such as strategy, observer, lazy
initialization, and chain of responsibility.

The strategy pattern
The strategy pattern comes in handy where we have multiple chunks of code performing
similar operations. It defines an encapsulated and interchangeable family of
algorithms. Imagine an order checkout process where we want to implement
different shipment providers, such as UPS and FedEx.

The following example demonstrates a possible strategy pattern implementation:

<?php

interface ShipmentStrategy
{
 public function calculate($amount);
}

class UPSShipment implements ShipmentStrategy
{
 public function calculate($amount)
 {
 return 'UPSShipment...';
 }
}

class FedExShipment implements ShipmentStrategy
{
 public function calculate($amount)
 {
 return 'FedExShipment...';
 }
}

class Checkout
{
 private $amount = 0;

 public function __construct($amount = 0)
 {
 $this->amount = $amount;
 }

Common Design Patterns

[272]

 public function estimateShipment()
 {
 if ($this->amount > 199.99) {
 $shipment = new FedExShipment();
 } else {
 $shipment = new UPSShipment();
 }

 return $shipment->calculate($this->amount);
 }
}

// Client use
$checkout = new Checkout(19.99);
echo $checkout->estimateShipment(); // UPSShipment...

$checkout = new Checkout(499.99);
echo $checkout->estimateShipment(); // FedExShipment...

We started off by defining a ShipmentStrategy interface with a calculate() method.
We then defined the UPSShipment and FedExShipment classes which implement
the ShipmentStrategy interface. With these two concrete shipment classes in place, we
made a Checkout class that encapsulates the two shipment options in
its estimateShipment() method. The client then calls the estimateShipment() method
on the Checkout instance. Depending on the amount passed on, a different shipment
calculation kicks in. Using this pattern, we are free to add new shipment calculations
without changing the client.

The observer pattern
The observer pattern is quite a popular one. It allows for an event subscription type of
behavior. We differentiate the subject and observer(s) type of objects. The observer is an
object subscribed to subject object state change. When the subject changes its state, it notifies
all of its observers automatically.

The following example demonstrates a possible observer pattern implementation:

<?php

class CheckoutSuccess implements \SplSubject
{
 protected $salesOrder;
 protected $observers;

Common Design Patterns

[273]

 public function __construct($salesOrder)
 {
 $this->salesOrder = $salesOrder;
 $this->observers = new \SplObjectStorage();
 }

 public function attach(\SplObserver $observer)
 {
 $this->observers->attach($observer);
 }

 public function detach(\SplObserver $observer)
 {
 $this->observers->detach($observer);
 }

 public function notify()
 {
 foreach ($this->observers as $observer) {
 $observer->update($this);
 }
 }

 public function getSalesOrder()
 {
 return $this->salesOrder;
 }
}

class SalesOrder
{
}

class Mailer implements \SplObserver
{
 public function update(\SplSubject $subject)
 {
 echo 'Mailing ', get_class($subject->getSalesOrder()), PHP_EOL;
 }
}

class Logger implements \SplObserver
{
 public function update(\SplSubject $subject)
 {
 echo 'Logging ', get_class($subject->getSalesOrder()), PHP_EOL;
 }
}

Common Design Patterns

[274]

$salesOrder = new SalesOrder();
$checkoutSuccess = new CheckoutSuccess($salesOrder);
// some code...
$checkoutSuccess->attach(new Mailer());
// some code...
$checkoutSuccess->attach(new Logger());
// some code...
$checkoutSuccess->notify();

The PHP \SplSubject and \SplObserver interfaces allow an observer pattern
implementation. Our checkout success example uses these interfaces to
implement CheckoutSuccess as a class for the subject type of object, and Mailer and
Logger as classes for the observer type of object. Using the attach() method of
a CheckoutSuccess instance, we attached both observers to the subject. Once the subject
notify() method is called, the individual observer update() methods get triggered. The
getSalesOrder() method calls might come as a surprise, as there is no actual
getSalesOrder() method on direct instances of the SplSubject object. However, the
two update(\SplSubject $subject) method calls in our example will be receiving an
instance of CheckoutSuccess. Otherwise, type-casting the $subject argument directly to
CheckoutSuccess would give us a PHP fatal error as follows.

PHP Fatal error: Declaration of Logger::update(CheckoutSuccess $subject)
must be compatible with SplObserver::update(SplSubject $SplSubject)

The lazy initialization pattern
The lazy initialization pattern is useful for addressing objects whose instantiation is likely to
be resource-intense. The idea is to delay the actual resource intense operation until its result
is actually required. The PDF generation is an example of a light to moderately resource-
intense operation.

The following example demonstrates a possible lazy initialization pattern implementation
based on PDF generation:

<?php

interface PdfInterface
{
 public function generate();
}

class Pdf implements PdfInterface
{
 private $data;

Common Design Patterns

[275]

 public function __construct($data)
 {
 $this->data = $data;
 // Imagine resource intensive pdf generation here
 sleep(3);
 }

 public function generate()
 {
 echo 'pdf: ' . $this->data;
 }
}

class ProxyPdf implements PdfInterface
{
 private $pdf = null;
 private $data;

 public function __construct($data)
 {
 $this->data = $data;
 }

 public function generate()
 {
 if (is_null($this->pdf)) {
 $this->pdf = new Pdf($this->data);
 }
 $this->pdf->generate();
 }
}

// Client
$pdf = new Pdf('<h1>Hello</h1>'); // 3 seconds
// Some other code ...
$pdf->generate();

$pdf = new ProxyPdf('<h1>Hello</h1>'); // 0 seconds
// Some other code ...
$pdf->generate();

Depending on how the class is constructed, it might trigger the actual generation right after
we call the new keyword, as we have done with the new Pdf(...) expression. The new
ProxyPdf(...) expression behaves differently because it wraps around the Pdf class
implementing the same PdfInterface, but providing a different __construct() method
implementation.

Common Design Patterns

[276]

The chain of responsibility pattern
The chain of responsibility pattern allows us to chain code in a sender-receiver manner,
while the two are decoupled from each other. This makes it possible to have more than one
object handle incoming requests.

The following example demonstrates a possible chain of responsibility pattern
implementation using the logger functionality as an example:

<?php

abstract class Logger
{
 private $logNext = null;

 public function logNext(Logger $logger)
 {
 $this->logNext = $logger;
 return $this->logNext;
 }

 final public function push($message)
 {
 $this->log($message);

 if ($this->logNext !== null) {
 $this->logNext->push($message);
 }
 }

 abstract protected function log($message);
}

class SystemLogger extends Logger
{
 public function log($message)
 {
 echo 'SystemLogger log!', PHP_EOL;
 }
}

class ElasticLogger extends Logger
{
 protected function log($message)
 {
 echo 'ElasticLogger log!', PHP_EOL;
 }

Common Design Patterns

[277]

}

class MailLogger extends Logger
{
 protected function log($message)
 {
 echo 'MailLogger log!', PHP_EOL;
 }
}

// Client use
$systemLogger = new SystemLogger();
$elasticLogger = new ElasticLogger();
$mailLogger = new MailLogger();

$systemLogger
 ->logNext($elasticLogger)
 ->logNext($mailLogger);

$systemLogger->push('Stuff to log...');

//SystemLogger log!
//ElasticLogger log!
//MailLogger log!

We started off by creating an abstract Logger class with three methods: logNext(),
push(), and log(). The log() method was defined as abstract, which means the
implementation is left to child classes. The logNext() method is the key ingredient as it
moves the objects down the chain. We then created three concrete implementations of
the Logger class: SystemLogger, ElasticLogger, and MailLogger. We then
instantiated one of the concrete logger classes and passed the other two instances down the
chain using the logNext() method. Finally, we called the push() method to trigger the
chain.

Structural patterns
In this section, we will take a look at a structural pattern: the decorator pattern.

Common Design Patterns

[278]

The decorator pattern
The decorator pattern is a simple one. It allows us to add new behavior to object instances
without affecting other instances of the same class. It basically acts as a decorating wrapper
around our object. We can imagine a simple use case with a Logger class instance, where we
have a simple logger class that we would like to occasionally decorate, or wrap into a more
specific error, warning, and notice level logger.

The following example demonstrates a possible decorator pattern implementation:

<?php

interface LoggerInterface
{
 public function log($message);
}

class Logger implements LoggerInterface
{
 public function log($message)
 {
 file_put_contents('app.log', $message . PHP_EOL, FILE_APPEND);
 }
}

abstract class LoggerDecorator implements LoggerInterface
{
 protected $logger;

 public function __construct(Logger $logger)
 {
 $this->logger = $logger;
 }

 abstract public function log($message);
}

class ErrorLogger extends LoggerDecorator
{
 public function log($message)
 {
 $this->logger->log('ErrorLogger: ' . $message);
 }
}

class WarningLogger extends LoggerDecorator
{

Common Design Patterns

[279]

 public function log($message)
 {
 $this->logger->log('WarningLogger: ' . $message);
 }
}

class NoticeLogger extends LoggerDecorator
{
 public function log($message)
 {
 $this->logger->log('NoticeLogger: ' . $message);
 }
}

// Client use
(new Logger())->log('Test Logger.');

(new ErrorLogger(new Logger()))->log('Test ErrorLogger.');

(new WarningLogger(new Logger()))->log('Test WarningLogger.');

(new NoticeLogger(new Logger()))->log('Test NoticeLogger.');

Here, we started off by defining a LoggerInterface interface and a concrete Logger class
that implements that interface. We then created an abstract LoggerDecorator class
that also implements LoggerInterface. LoggerDecorator does not really implement
the log() method itself; it defines it as abstract for future child classes to implement.
Finally, we defined the concrete error, warning, and notice decorator classes. We can see
their log() methods decorate the output according to their roles. The resulting output is
shown as follows:

Test Logger.
ErrorLogger: Test ErrorLogger.
WarningLogger: Test WarningLogger.
NoticeLogger: Test NoticeLogger.

Common Design Patterns

[280]

Summary
Throughout this chapter, we took an introductory hands-on approach with some of the
most common design patterns used in PHP applications. The list is far from final, as there
are other design patterns available. While some design patterns are quite general, others
might be more suitable for GUIs or other areas of application programming.
Understanding how to use and apply design patterns makes our code more extensible,
reusable, maintainable, and adaptable.

Moving forward, we will take a closer look at building web services using SOAP, REST,
and Apache Thrift.

11
Building Services

A great deal of modern applications use HTTP (Hypertext Transfer Protocol)
nowadays. This stateless, application-layer protocol allows us to exchange messages
between distributed systems. The message exchange process can be observed through
a client-server computing model as it happens in the form of the request-response type of
messages. This allows us to easily write a service, or web service to be more specific, that
triggers various operations on server and feedback data back to the client.

In this chapter, we will take a closer look at this client-server relationship through the
following sections:

Understanding the client-server relationship
Working with SOAP:

XML extensions
Creating server
Creating WSDL file
Creating client

Working with REST:
JSON extensions
Creating server
Creating client

Working with Apache Thrift (RPC):
Installing Apache Thrift
Defining service
Creating server
Creating client

Understanding microservices

Building Services

[282]

Understanding the client-server relationship
To easily visualize the client-server relationship and the request-response type of
messaging, we can think of a mobile currency application acting as a client and some
remote website, such as http://api.fixer.io/, being the server. The server exposes one
or more URL endpoints, allowing communication exchange, such
as http://api.fixer.io/latest?symbols=USD,GBP. The mobile application can easily
issue a HTTP GET http://api.fixer.io/latest?symbols=GBP,HRK,USD request,
which then results in a response like this:

{
 "base": "EUR",
 "date": "2017-03-10",
 "rates": {
 "GBP": 0.8725,
 "HRK": 7.419,
 "USD": 1.0606
 }
}

The HTTP GET keyword is used to denote the type of operation we want to perform on the
receiver located on the remote (server) system that we contact via URL. The response
contains JSON-formatted data, which our mobile currency application can easily digest and
make use of. This specific message exchange example is what we flag as representational
state transfer (REST) or RESTful service.

The REST service itself is not a protocol; it is an architectural style on top of HTTP's stateless
protocol and standard operations (GET, POST, PUT, DELETE, and so on). There is much
more to it, than showcased in this simple example, as we will get to see later on in the
Working with REST section.

There are other forms of services that go beyond being just an architectural style, such as
the SOAP service and Apache Thrift service. While they come with their own sets of
protocols, they also play nicely with HTTP.

Working with SOAP
SOAP (Simple Object Access Protocol) is an XML-based message exchange protocol
that relies on application layer protocols such as HTTP for message negotiation and
transmission. The World Wide Web Consortium (W3C) maintains SOAP specification.

Building Services

[283]

The SOAP specifications document is available at h t t p s ://w w w . w 3. o r g /T

R /s o a p /.

The SOAP message is an XML document comprised of Envelope, Header, Body,
and Fault elements:

<?xml version="1.0" ?>
<env:Envelope>
<env:Header>
<!-- ... -->
 </env:Header>
<env:Body>
<!-- ... -->
 <env:Fault>
<!-- ... -->
 </env:Fault>
</env:Body>
</env:Envelope>

Envelope is a required element of each SOAP request, as it envelops an entire SOAP
message. Similarly, the Body element is also required as it contains request and response
information. Header and Fault, on the other hand, are optional elements. Using merely
XML-based request-response messages, we can establish client-server communication over
HTTP. While trading XML messages may look simple, it can become cumbersome when
one has to deal with a large number of method calls and data types.

This is where WSDL comes in play. WSDL is an interface definition language that can be
used to define a web service's data types and operations. The W3C maintains
WSDL specification.

The WSDL specification document is available at h t t p s ://w w w . w 3. o r g /T R

/w s d l .

A total of six major elements are used to describe the service, as per the following partial
example:

<?xml version="1.0" ?>
<definitions>
<types>
<!-- ... -->
 </types>

https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl

Building Services

[284]

<message>
<!-- ... -->
 </message>
<portType>
<!-- ... -->
 </portType>
<binding>
<!-- ... -->
 </binding>
<port>
<!-- ... -->
 </port>
<service>
<!-- ... -->
 </service>
</definitions>

While WSDL is not required for our service to be operational, it certainly comes in handy
for clients consuming our SOAP service. Sadly, PHP lacks any official tooling for easy
generation of WSDL files based on the PHP classes that our SOAP service uses. This makes
it tedious and time consuming for PHP developers to write WSDL files manually, which is
why some developers tend to overlook the WSDL completely.

Temporarily putting the WSDL file generation aside, it's safe to say that the only really
challenging part of the SOAP service is writing and reading XML messages. This is where
PHP extensions come in handy.

XML extensions
There are several ways to read and write XML documents in PHP, including regular
expressions and specialized classes and methods. The regex approach is error-prone,
especially with complex XML documents, which is why the use of extensions is advised.
PHP provides several extensions for this purpose, the most common ones being as follows:

XMLWriter: This allows us to generate streams or files of XML data
XMLReader: This allows to read the XML data
SimpleXML: This converts XML to an object and allows for an object to be
processed with normal property selectors and array iterators
DOM: This allows us to operate on XML documents through the DOM API

Building Services

[285]

The basics of dealing with an XML document are about proper reading and writing of its
elements and attributes. Let's assume the following simple.xml document:

<?xml version="1.0" encoding="UTF-8"?>
<customer>
 <name type="string"><![CDATA[John]]></name>
 <age type="integer">34</age>
 <addresses>
 <address><![CDATA[The Address #1]]></address>
 </addresses>
</customer>

Using XMLWriter, we can create the identical document by running the following code:

<?php

$xml = new XMLWriter();
$xml->openMemory();
$xml->setIndent(true); // optional formatting

$xml->startDocument('1.0', 'UTF-8');
$xml->startElement('customer');

$xml->startElement('name');
$xml->writeAttribute('type', 'string');
$xml->writeCData('John');
$xml->endElement(); // </name>

$xml->startElement('age');
$xml->writeAttribute('type', 'integer');
$xml->writeRaw(34);
$xml->endElement(); // </age>

$xml->startElement('addresses');
$xml->startElement('address');
$xml->writeCData('The Address #1');
$xml->endElement(); // </address>
$xml->endElement(); // </addresses>

$xml->endElement(); // </customer>

$document = $xml->outputMemory();

Building Services

[286]

We can see that writing down the necessary XML was a relatively straightforward
operation with XMLWriter. The XMLWriter extension makes our code a bit hard to read at
first. All those startElement() and endElement() methods make it a bit tedious to
figure out where each element in XML resides. It takes a bit of getting used to it. However,
it does allow us to easily generate simple XML documents. Using XMLReader, we can now
output the Customer John, at age 34, living at The Address #1 string based on
data from the given XML document using the following code block:

<?php

$xml = new XMLReader();
$xml->open(__DIR__ . '/simple.xml');

$name = '';
$age = '';
$address = '';

while ($xml->read()) {
 if ($xml->name == 'name') {
 $name = $xml->readString();
 $xml->next();
 } elseif ($xml->name == 'age') {
 $age = $xml->readString();
 $xml->next();
 } elseif ($xml->name == 'address') {
 $address = $xml->readString();
 $xml->next();
 }
}

echo sprintf(
 'Customer %s, at age %s, living at %s',
 $name, $age, $address
);

Although the code itself looks pretty simple, the while loop reveals an interesting nature of
XMLReader. The XMLReader reads the XML document top to bottom. While this approach
is a great choice for efficiently parsing large and complex XML documents in a stream-
based manner, it seems a bit of an overkill for simpler XML documents.

Let's see how SimpleXML handles writing of the same simple.xml file. The following code
generates nearly the same XML content as XMLWriter:

<?php

Building Services

[287]

$document = new SimpleXMLElement(
 '<?xml version="1.0" encoding="UTF-8"?><customer></customer>'
);

$name = $document->addChild('name', 'John');
$age = $document->addChild('age', 34);
$addresses = $document->addChild('addresses');
$address = $addresses->addChild('address', 'The Address #1');

echo $document->asXML();

The difference here is that we cannot specifically pass <![CDATA[...]]> to our elements.
There are workarounds using the dom_import_simplexml() function, but that's a
function from the DOM extension. Not that there is anything bad about it, but let's keep our
examples nicely separated. Now that we know we can write XML documents
with SimpleXML, let's see about reading from them. Using SimpleXML, we can now output
the same Customer John, at age 34, living at The Address #1 string using the
following code:

<?php

$document = new SimpleXMLElement(__DIR__ . '/simple.xml', null, true);

$name = (string)$document->name;
$age = (string)$document->age;
$address = (string)$document->addresses[0]->address;

echo sprintf(
 'Customer %s, at age %s, living at %s',
 $name, $age, $address
);

The XML reading process seems somewhat shorter with SimpleXML than it is
with XMLReader, although none of the examples have any error handling in them.

Let's take a look at using the DOMDocument class to write down an XML document:

<?php

$document = new DOMDocument('1.0', 'UTF-8');
$document->formatOutput = true; // optional

$customer = $document->createElement('customer');
$customer = $document->appendChild($customer);

$name = $document->createElement('name');
$name = $customer->appendChild($name);

Building Services

[288]

$nameTypeAttr = $document->createAttribute('type');
$nameTypeAttr->value = 'string';
$name->appendChild($nameTypeAttr);
$name->appendChild($document->createCDATASection('John'));

$age = $document->createElement('age');
$age = $customer->appendChild($age);
$ageTypeAttr = $document->createAttribute('type');
$ageTypeAttr->value = 'integer';
$age->appendChild($ageTypeAttr);
$age->appendChild($document->createTextNode(34));

$addresses = $document->createElement('addresses');
$addresses = $customer->appendChild($addresses);

$address = $document->createElement('address');
$address = $addresses->appendChild($address);
$address->appendChild($document->createCDATASection('The Address #1'));

echo $document->saveXML();

Finally, let's see how DOMDocument handles the reading of XML documents:

<?php

$document = new DOMDocument();
$document->load(__DIR__ . '/simple.xml');

$name = $document->getElementsByTagName('name')[0]->nodeValue;
$age = $document->getElementsByTagName('age')[0]->nodeValue;
$address = $document->getElementsByTagName('address')[0]->nodeValue;

echo sprintf(
 'Customer %s, at age %s, living at %s',
 $name, $age, $address
);

The DOM and SimpleXMLElement extensions make it quite easy to read the values from the
XML document, as long as we are confident about the integrity of its structure. When
dealing with XML documents, we should evaluate our use case based on factors such as
document size. While the XMLReader and XMLWriter classes are more verbose to deal
with, they tend to be more performance efficient when used properly.

Now that we have gained a basic insight into dealing with XML documents in PHP, let's
create our first SOAP server.

Building Services

[289]

Creating server
The PHP soap extension provides SoapClient and SoapServer classes. We can use the
SoapServer class to set up a SOAP service server with or without a WSDL service
description file.

When used without WSDL (non-WSDL mode), SoapClient and
SoapServer use a common exchange format, which removes the need for
a WSDL file.

Before moving forward, we should make sure we have the soap extension installed. We can
do so by observing the output of the php -m console command or taking a look at
the phpinfo() function output:

With the soap extension available and loaded, we can prepare our soap-service project
directory as per the following structure:

Building Services

[290]

Moving forward, we will assume that the web server is configured to serve content
from the soap-service/server directory to h t t p ://s o a p - s e r v i c e . s e r v e r requests, and
content from the soap-service/client directory to h t t p ://s o a p - s e r v i c e . c l i e n t

 requests.

Let's create a small SOAP service with two different classes, each with the same welcome()
method. We can start off by creating the soap-
service/server/services/Foggyline/Customer.php file with the following content:

<?php

namespace Foggyline;

class Customer
{
 /**
 * Says "Welcome customer..."
 * @param $name
 * @return string
 */
 function welcome($name)
 {
 return 'Welcome customer: ' . $name;
 }
}

Now, let's create the soap-service/server/services/Foggyline/User.php file with
the following content:

<?php

namespace Foggyline;

class User
{
 /**
 * Says "Welcome user..."
 * @param $name
 * @return string
 */
 function welcome($name)
 {
 return 'Welcome user: ' . $name;
 }
}

http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.server
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client
http://soap-service.client

Building Services

[291]

With the two classes in place, let's create a proxy class to wrap around them. We do so by
creating the soap-service/server/ServiceProxy.php file with the following content:

<?php

require_once __DIR__ . '/services/Foggyline/Customer.php';
require_once __DIR__ . '/services/Foggyline/User.php';

class ServiceProxy
{
 private $customerService;
 private $userService;

 public function __construct()
 {
 $this->customerService = new Foggyline\Customer();
 $this->userService = new Foggyline\User();
 }

 /**
 * Says "Welcome customer..."
 * @soap
 * @param $name
 * @return string
 */
 public function customerWelcome($name)
 {
 return $this->customerService->welcome($name);
 }

 /**
 * Says "Welcome user..."
 * @soap
 * @param $name
 * @return string
 */
 public function userWelcome($name)
 {
 return $this->userService->welcome($name);
 }
}

Building Services

[292]

Now that we have our proxy class, we can create the actual SoapServer instance. We do so
by creating the soap-service/server/index.php file with the following content:

<?php

require_once __DIR__ . '/ServiceProxy.php';

$options = [
 'uri' => 'http://soap-service.server/index.php'
];

$server = new SoapServer(null, $options);

$server->setClass('ServiceProxy');

$server->handle();

Here, we are instantiating the SoapServer instance, passing it null for the $wsdl
parameter and only a 'uri' option under the $options parameter. The URI must be
specified in a non-wsdl mode. We then use the setClass() instance method to set the class
that will handle incoming SOAP requests. Unfortunately, we cannot pass an array of classes
or call the setClass() method multiple times to add several different handling classes at
once, which is why we created the ServiceProxy class to wrap around both Customer
and User classes. Finally, we called the handle() method of the $server instance,
which handles a SOAP request. At this point, our SOAP service server should be fully
operational.

Creating WSDL file
However, before we move onto the client, let's take a quick look at WSDL. The @soap tag
used on the ServiceProxy class methods has nothing to do with the functioning
of SoapServer as it is now. We used it merely because of the php2wsdl library that enables
us to auto-generate a WSDL file based on the provided class. The php2wsdl library is
provided as a composer package, which means we can install it by simply running the
following command within the soap-service/server directory:

composer require php2wsdl/php2wsdl

Building Services

[293]

Once installed, we can create the soap-service\server\wsdl-auto-gen.php file with
the following content:

<?php

require_once __DIR__ . '/vendor/autoload.php';
require_once __DIR__ . '/ServiceProxy.php';

$class = 'ServiceProxy';
$serviceURI = 'http://soap-service.server/index.php';

$wsdlGenerator = new PHP2WSDL\PHPClass2WSDL($class, $serviceURI);
$wsdlGenerator->generateWSDL(true);

file_put_contents(__DIR__ . '/wsdl.xml', $wsdlGenerator->dump());

Once we execute wsdl-auto-gen.php, either in the console or in the browser, it will
generate the soap-service/server/wsdl.xml file with the following content:

<?xml version="1.0"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://soap-service.server/index.php"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" name="ServiceProxy"
targetNamespace="http://soap-service.server/index.php">
<types>
<xsd:schema targetNamespace="http://soap-service.server/index.php">
<xsd:import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
</xsd:schema>
</types>
<portType name="ServiceProxyPort">
 <operation name="customerWelcome">
 <documentation>Says "Welcome customer..."</documentation>
 <input message="tns:customerWelcomeIn"/>
 <output message="tns:customerWelcomeOut"/>
 </operation>
 <operation name="userWelcome">
 <documentation>Says "Welcome user..."</documentation>
 <input message="tns:userWelcomeIn"/>
 <output message="tns:userWelcomeOut"/>
</operation>
</portType>
<binding name="ServiceProxyBinding" type="tns:ServiceProxyPort">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="customerWelcome">

Building Services

[294]

<soap:operation
soapAction="http://soap-service.server/index.php#customerWelcome"/>
<input>
<soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soap-service.server/index.php"/>
</input>
<output>
<soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soap-service.server/index.php"/>
</output>
</operation>
<operation name="userWelcome">
<soap:operation
soapAction="http://soap-service.server/index.php#userWelcome"/>
<input>
<soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soap-service.server/index.php"/>
</input>
<output>
<soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soap-service.server/index.php"/>
</output>
</operation>
</binding>
<service name="ServiceProxyService">
<port name="ServiceProxyPort" binding="tns:ServiceProxyBinding">
 <soap:address location="http://soap-service.server/index.php"/>
</port>
</service>
<message name="customerWelcomeIn">
 <part name="name" type="xsd:anyType"/>
</message>
<message name="customerWelcomeOut">
 <part name="return" type="xsd:string"/>
</message>
<message name="userWelcomeIn">
 <part name="name" type="xsd:anyType"/>
</message>
<message name="userWelcomeOut">
 <part name="return" type="xsd:string"/>
</message>
</definitions>

Building Services

[295]

This is quite a long file to write manually. The benefit of it is that various third-party tools
and other language libraries can easily consume our service once we set the WSDL file. As
an example, this is a screenshot of the Wizdler extension for the Chrome browser,
interpreting the WSDL file content:

With WSDL in place, we can now easily modify the soap-service/server/index.php
file as follows:

// NON-WSDL MODE: $server = new SoapServer(null, $options);

// WSDL MODE: $server = new
SoapServer('http://soap-service.server/wsdl.xml');

$server = new SoapServer('http://soap-service.server/wsdl.xml');

Now that we have the SOAP server bits sorted out, let's create a client.

Building Services

[296]

Creating client
Creating a SOAP client in PHP is a relatively simple task when we are using
the SoapClient class. Let's create the soap-service/client/index.php file with the
following content:

<?php

$options = [
 'location' => 'http://soap-service.server/index.php',
 'uri' => 'http://soap-service.server/index.php',
 'trace ' => true,
];

// NON-WSDL MODE: $client = new SoapClient($wsdl = null, $options);
// WSDL MODE: $client = new
SoapClient('http://soap-service.server/wsdl.xml', $options);

$client = new SoapClient('http://soap-service.server/wsdl.xml', $options);

echo $client->customerWelcome('John');
echo $client->userWelcome('Mariya');

Executing the client code should result in the following output:

What happens under the hood when the SOAP request is issued can be observed with
networking tools such as Wireshark:

Building Services

[297]

This shows us the exact content of an individual SOAP request, such as that for
$client->customerWelcome('John'):

POST /index.php HTTP/1.1
Host: soap-service.server
Connection: Keep-Alive
User-Agent: PHP-SOAP/7.0.10
Content-Type: text/xml; charset=utf-8
SOAPAction: "http://soap-service.server/index.php#customerWelcome"
Content-Length: 525

Building Services

[298]

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="http://soap-service.server/index.php"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <ns1:customerWelcome>
 <name xsi:type="xsd:string">John</name>
 </ns1:customerWelcome>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Understanding the structure and content of the SOAP request makes it possible to even use
the cURL functions to handle request-response communication, although that would be
much more cumbersome and error-prone than dealing with the SoapClient and
SoapServer classes.

Throughout this section, we have touched upon some of the key points of SOAP
services. While there is much more to be said about the SOAP specification, the examples
presented here are a nice starting point to writing SOAP services.

A somewhat simpler variant of a web service would be REST.

Working with REST
Unlike SOAP, REST is an architectural style. It has no protocols or standards of its own. It
relies on URLs and HTTP verbs, such as POST, GET, PUT, and DELETE, in order to
establish a message exchange process. The lack of standard makes it somewhat challenging
to talk about, as various REST service implementations may present a client with different
ways to consume services. When it comes to juggling data back and forth, we are free to
choose over JSON, XML, or any other format we prefer. The simplicity and lightweightness
of JSON made it a popular choice among many users and frameworks.

Loosely speaking, the very act of opening a web page in the browser can be interpreted as a
REST call, where the browser acts as a client and server acts as a REST service. Unlike
browser pages that may involve cookies and sessions, REST relies on stateless operations.

Building Services

[299]

Moving forward, we will assume that our web server is configured to serve content of
the rest-service/server directory for h t t p ://r e s t - s e r v i c e . s e r v e r requests, and
content of the rest-service/client directory for h t t p ://r e s t - s e r v i c e . c l i e n t

 requests.

JSON extensions
Over the years, the JSON data format has become somewhat of a default data
exchange format for REST. The simplicity of JSON made it quite popular with PHP
developers. Out of the box, the PHP language provides the json_encode() and
json_decode() functions. Using these functions, we can easily encode PHP arrays and
objects as well as decode various JSON structures.

The following example demonstrates the simplicity of using the json_encode() function:

<?php

class User
{
 public $name;
 public $age;
 public $salary;
}

$user = new User();
$user->name = 'John';
$user->age = 34;
$user->salary = 4200.50;

echo json_encode($user);
// {"name":"John","age":34,"salary":4200.5}

$employees = ['John', 'Mariya', 'Sarah', 'Marc'];

echo json_encode($employees);
// ["John","Mariya","Sarah","Marc"]

The following example demonstrates the simplicity of using the json_decode() function:

<?php

$user = json_decode('{"name":"John","age":34,"salary":4200.5}');

print_r($user);

http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.server
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client
http://rest-service.client

Building Services

[300]

// stdClass Object
// (
// [name] => John
// [age] => 34
// [salary] => 4200.5
//)

This is where limitations kick in. Notice how the JSON object was converted to a stdClass
type object in PHP. There is no direct way to pour this into a User type of object. We could,
of course, write a custom functionality that tries to convert a stdClass object to an instance
of User if needed.

Creating server
Put simply, REST servers send HTTP responses based on a given URL and HTTP verb.
Keeping that in mind, let's start with the following chunk of code added to the rest-
service/server/customer/index.php file:

<?php

if ('POST' == $_SERVER['REQUEST_METHOD']) {
 header('Content-type: application/json');
 echo json_encode(['data' => 'Triggered customer POST!']);
}

if ('GET' == $_SERVER['REQUEST_METHOD']) {
 header('Content-type: application/json');
 echo json_encode(['data' => 'Triggered customer GET!']);
}

if ('PUT' == $_SERVER['REQUEST_METHOD']) {
 header('Content-type: application/json');
 echo json_encode(['data' => 'Triggered customer PUT!']);
}

if ('DELETE' == $_SERVER['REQUEST_METHOD']) {
 header('Content-type: application/json');
 echo json_encode(['data' => 'Triggered customer DELETE!']);
}

Building Services

[301]

Funny as it looks, this, here, is already a simple REST service example--one that handles
four different operations for a single resource. Using a tool such as Postman, we can trigger
the DELETE operation on the h t t p ://r e s t - s e r v i c e . s e r v e r /c u s t o m e r /i n d e x . p h p resource

Obviously, this simplified implementation does not deal with any of the things you would
normally find in REST services, such as versioning, normalization, validation, Cross-Origin
Resource Sharing (CORS), authentication, and others. Implementing all of these REST
features from scratch is a time-consuming task, which is why we might want to take a look
at solutions provided by existing frameworks.

The Silex micro-frameworks is a neat solution for quickly getting started with REST
services. We can add Silex to our project simply by running the following command on
console, within the rest-service/server directory:

composer require silex/silex "~2.0"

Once we get it installed, we can dump the following code into the rest-
service/server/index.php file:

<?php

require_once __DIR__ . '/vendor/autoload.php';

use Silex\Application;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php
http://rest-service.server/customer/index.php

Building Services

[302]

$app = new Silex\Application();

// The "before" middleware, convenient for auth and request data check
$app->before(function (Request $request, Application $app) {
 // Some auth token control
 if (!$request->headers->get('X-AUTH-TOKEN')) {
 // todo: Implement
 }
 // JSON content type control
 if ($request->headers->get('Content-Type') != 'application/json') {
 // todo: Implement
 }
});

// The "error" middleware, convenient for service wide error handling
$app->error(function (\Exception $e, Request $request, $code) {
 // todo: Implement
});

// The "OPTIONS" route, set to trigger for any URL
$app->options('{url}', function ($url) use ($app) {
 return new Response('', 204, ['Allow' => 'POST, GET, PUT, DELETE,
OPTIONS']);
})->assert('url', '.+');

// The "after" middleware, convenient for CORS control
$app->after(function (Request $request, Response $response) {
 $response->headers->set('Access-Control-Allow-Headers', 'origin,
content-type, accept, X-AUTH-TOKEN');
 $response->headers->set('Access-Control-Allow-Origin', '*');
 $response->headers->set('Access-Control-Allow-Methods', 'POST, GET,
PUT, DELETE');
});

// The "POST /user/welcome" REST service endpoint
$app->post('/user/welcome', function (Request $request, Application $app) {
 $data = json_decode($request->getContent(), true);
 return $app->json(['data' => 'Welcome ' . $data['name']]);
})->bind('user_welcome');

$app->run();

Building Services

[303]

This too is a relatively simple example of the REST service, but one that does much more
than our initial example. The Silex framework, in this case, introduces several key concepts
that we can use to our advantage as we build our REST server. The before, after, and
error middleware enable us to hook into three distinctive stages of the request handling
process. Using the before middleware, we are able to inject an authentication code for
example, as well as various checks for the validity of incoming data. REST services
usually build their authentication around tokens, which are then passed along individual
requests. The general idea is to have an endpoint such as POST user/login, where the
user logs in with their username and password, and is then given an authentication token
for use with the rest of the REST service calls. This token then usually gets passed around as
a part of the request header. Now, every time the user tries to access a protected resource, a
token is extracted from the header and looked into the database (or any other storage where
it might be stored), to find out the user behind the token. The system then either allows the
user to continue with the original request or blocks it out. This is where middleware comes
in handy.

The web service authentication is an enormous topic by itself--one that
won't be covered in this book. OAuth is the industry-standard protocol for
authorization that is quite often used with REST style services. For more
information about OAuth, check out h t t p s ://o a u t h . n e t .

The way we wrap our responses is entirely up to us. Unlike with the SOAP, there is no
long-established standard that defines the data structure of the REST service
response. However, there are several initiatives in the last few years that try to tackle that
challenge.

JSON API is an attempt to formalize client-server interfaces that use
exchange JSON data; check out h t t p ://j s o n a p i . o r g /f o r m a t / for more
information.

To get the server working properly, we also need to add the rest-
service\server\.htaccess file with the following content:

<IfModule mod_rewrite.c>
Options -MultiViews
 RewriteEngine On
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^ index.php [QSA,L]
</IfModule>

https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
https://oauth.net
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/
http://jsonapi.org/format/

Building Services

[304]

Silex conveniently supports several key HTTP verbs (GET, POST, PUT, DELETE, PATCH,
and OPTIONS), for which, we can easily implement logic in a resource path + callback function
syntax:

$app->get('/resource/path', function () { /* todo: logic */ });
$app->post('/resource/path', function () { /* todo: logic */ });
$app->put('/resource/path', function () { /* todo: logic */ });
$app->delete('/resource/path', function () { /* todo: logic */ });
$app->patch('/resource/path', function () { /* todo: logic */ });
$app->options('/resource/path', function () { /* todo: logic */ });

This makes it easy to quickly draft a REST service, with merely a few lines of code. Our
server example does little to nothing in terms of server security. Its purpose is to merely
emphasize the usefulness of middleware when building REST services. Security aspects,
such as authentication, authorization, CORS, HTTPS, and others should be given utmost
attention.

Frameworks such as h t t p ://s i l e x . s e n s i o l a b s . o r g and h t t p s ://a p i g i l

i t y . o r g provide a great solution to write high-quality feature-rich REST
services.

Creating client
Given that REST services rely on HTTP, it's safe to assume that writing clients with PHP
CURL should be quite a straightforward process. Let's create a rest-
service/client/index.php file with the following content:

<?php

$ch = curl_init();

$headers = [
 'Content-Type: application/json',
 'X-AUTH-TOKEN: some-auth-token-here'
];

curl_setopt($ch, CURLOPT_URL, 'http://rest-service.server/user/welcome');
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode(['name' => 'John']));
curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$result = curl_exec($ch);

http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
http://silex.sensiolabs.org
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/
https://apigility.org/

Building Services

[305]

curl_close($ch);

echo $result;

The Wireshark network tool tells us that this code generates the following HTTP request to
a REST service:

POST /user/welcome HTTP/1.1
Host: rest-service.server
Accept: */*
Content-Type: application/json
X-AUTH-TOKEN: some-auth-token-here
Content-Length: 15

{"name":"John"}

While the CURL approach works just fine, it can quickly become cumbersome and error-
prone. This implies the challenges of having to deal with various types of error responses,
SSL certificates, and so on. A more elegant solution would be to use the HTTP client library,
such as Guzzle.

Guzzle is an MIT-licensed HTTP client written in PHP. It can easily
be installed through composer, by running the composer require
guzzlehttp/guzzle command.

Chances are that our REST services will be contacted more often by non-PHP clients than by
PHP clients. With that in mind, let's see how a simple HTML/jQuery client can talk to our
REST service. We do so by adding the following code to rest-
service/client/index.html:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Client App</title>
 <script src="https://code.jquery.com/jquery-3.1.1.min.js"
 integrity="sha256-hVVnYaiADRTO2PzUGmuLJr8BLUSjGIZsDYGmIJLv2b8="
 crossorigin="anonymous"></script>
 </head>
<body>
 <script>
 jQuery.ajax({
 method: 'POST',
 url: 'http://rest-service.server/user/welcome',
 headers: {'X-AUTH-TOKEN': 'some-auth-token-here'},
 data: JSON.stringify({name: 'John'}),

Building Services

[306]

 dataType: 'json',
 contentType: 'application/json',
 success: function (response) {
 console.log(response.data);
 }
 });
 </script>
 </body>
</html>

The jQuery ajax() method acts as an HTTP client. Passing it the proper parameter values,
it was able to successfully establish request-response communication with the REST service.

Throughout this section, we have touched upon some of the key points of REST services.
Although we have barely scratched the surface of the overall REST architecture, the
examples presented here should be enough to get us started. The ease of implementation
and simplicity of JSON and HTTP make REST quite an appealing choice for modern
applications.

Working with Apache Thrift (RPC)
Apache Thrift is an open source framework to build scalable cross-language services. It was
originally developed by Facebook, then entered the Apache Incubator around May
2008. Simplicity, transparency, consistency, and performance are the four key values behind
the framework.

Unlike the REST and SOAP type of services, Thrift services use a binary form of
communication. Luckily for us, Thrift provides a code generation engine to get us started.
The code generation engine can pick up any interface definition language (IDL) file and
generate PHP or other language bindings from it.

Before we start writing our first service definition, we need to install Apache Thrift.

Installing Apache Thrift
Apache Thrift can be installed from source files. Assuming that we have a fresh Ubuntu
16.10 installation, we can kick off the Apache Thrift installation steps using the following set
of commands:

sudo apt-get update
sudo apt-get -y install php automake bison flex g++ git libboost-all-dev
libevent-dev libssl-dev libtool make pkg-config

Building Services

[307]

These two commands should get us the necessary tooling to compile our Apache Thrift
source files. Once this is done, we can pull the actual source files on our machine:

wget http://apache.mirror.anlx.net/thrift/0.10.0/thrift-0.10.0.tar.gz
tar -xvf thrift-0.10.0.tar.gz
cd thrift-0.10.0/

With the source files unpacked, we can trigger the configure and make commands, as
follows:

./configure
make
make install

Finally, we need to make sure we have the /usr/local/lib/ directory on our
LD_LIBRARY_PATH path:

echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/" >> ~/.bashrc

We should now log out of the shell and then log back in. Using the following command, we
confirm that the Apache Thrift is installed:

thrift -version

This should give us the following output:

With the thrift tool installed and available through the console, we can prepare
our thrift-service project:

mkdir thrift-service
cd thrift-service/
mkdir client
mkdir server
mkdir vendor
cd vendor
git clone https://github.com/apache/thrift.git

Moving forward, we will assume that the web server is configured to serve content of
the thrift-service/client directory to h t t p ://t h r i f t - s e r v i c e . c l i e n t requests,
and content of the thrift-service/server directory to h t t p ://t h r i f t - s e r v i c e . s e r v e r

 requests.

http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.client
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server
http://thrift-service.server

Building Services

[308]

Defining service
Working with Apache Thrift in PHP can be described through the following few steps:

Defining the services through the IDL file
Autogenerating language bindings
Providing PHP implementation of defined interfaces
Exposing provided service implementation through the server
Consuming exposed services via client

Thrift services begin their life as .thrift files, that is, files described by IDL.

The IDL files support definition of several data types:

bool: This is a Boolean value (true or false)
byte: This is an 8-bit signed integer
i16: This is a 16-bit signed integer
i32: This is a 32-bit signed integer
i64: This is a 64-bit signed integer
double: This is a 64-bit floating point number
string: This is a UTF-8 encoded text string
binary: This is a sequence of unencoded bytes
struct: This is essentially equivalent to classes in OOP languages, but without
inheritance
Container (list, set, map): This maps to common container types in most
programming languages

To keep things simple, we will focus our use on the string type. Let's create our first
Apache Thrift service. We do so by creating a Greeting.thrift file within the thrift-
service/ directory, as follows:

namespace php user

service GreetingService
{
 string hello(1: string name),
 string goodbye()
}

Building Services

[309]

We can see that the Thrift file is a pure interface--there is no implementation here.
The namespace php user syntax translates to when code generation engine runs, generate
GreetingService within user namespace for PHP type of generated code. If we were using another
language alongside PHP, let's say Java, we could easily add another line saying namespace
java customer. This would then generate PHP bindings in one namespace, and Java in
another.

We can see that the service keyword is being used to specify the GreetingService
interface. Within the interface, we then have two method definitions. The hello(1:
string name) string receives a single name parameter, whereas goodbye() receives no
parameters.

See h t t p s ://t h r i f t . a p a c h e . o r g /d o c s /i d l for more details about IDL
syntax.

With the Greeting.thrift file in place, we can trigger code generation to get us the
necessary PHP bindings. We can do so by executing the following code on the console:

thrift -r -gen php:server Greeting.thrift

At this point, we should have our folder structure similar to the following screenshot:

https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl

Building Services

[310]

We can see that the thrift command generated two files for us under the gen-php/user
directory. The GreetingService.php is file quite a large one; with nearly 500 lines of
code, it defines various helper functions and structures needed to work with our Thrift
service:

Whereas, the Types.php file defines several different types for use:

Building Services

[311]

All of these types reside in thrift-service/vendor/thrift/lib/php/lib/Thrift,
which is why we did the git clone
https://github.com/apache/thrift.git command earlier. Up to this point, our
thrift-service/gen-php/user/GreetingService.php service still does not really do
anything in terms of the hello() and goodbye() method logic.

Creating server
The thrift-service/server/ directory is where we will implement our project's server
bits. Let's create a single all-in-one thrift-service/server/index.php file that
implements the hello() and goodbye() methods and exposes them through the h t t p

://t h r i f t - s e r v i c e . s e r v e r /i n d e x . p h p for any thrift request that may come in:

<?php

require_once __DIR__ .
'/../vendor/thrift/lib/php/lib/Thrift/ClassLoader/ThriftClassLoader.php';

use Thrift\ClassLoader\ThriftClassLoader;
use Thrift\Transport\TPhpStream;
use Thrift\Transport\TBufferedTransport;
use Thrift\Protocol\TBinaryProtocol;
use user\GreetingServiceProcessor;
use user\GreetingServiceIf;

$loader = new ThriftClassLoader();
$loader->registerNamespace('Thrift', __DIR__ .
'/../vendor/thrift/lib/php/lib');
$loader->registerDefinition('user', __DIR__ . '/../gen-php');
$loader->register();

class GreetingServiceImpl implements GreetingServiceIf
{
 public function hello($name)
 {
 return 'Hello ' . $name . '!';
 }

 public function goodbye()
 {
 return 'Goodbye!';
 }
}

header('Content-Type', 'application/x-thrift');

http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php

Building Services

[312]

$handler = new GreetingServiceImpl();
$processor = new GreetingServiceProcessor($handler);
$transport = new TBufferedTransport(new TPhpStream(TPhpStream::MODE_R |
TPhpStream::MODE_W));
$protocol = new TBinaryProtocol($transport, true, true);

$transport->open();
$processor->process($protocol, $protocol);
$transport->close();

We started off by including the ThriftClassLoader class. This loader class then enabled
us to set the auto-loading for the entire Thrift and user namespaces. We then moved onto
the hello() and goodbye() method implementations through
the GreetingServiceImpl class. Finally, we instantiated the appropriate handler, processor,
transport, and protocol in order to be able to process incoming requests.

Creating client
The thrift-service/client/ directory is where we will implement our project's client.
Let's create a single all-in-one thrift-service/client/index.php file that calls
the hello() and goodbye() methods from the Thrift service exposed on h t t p ://t h r i f t - s

e r v i c e . s e r v e r /i n d e x . p h p :

<?php

require_once __DIR__ .
'/../vendor/thrift/lib/php/lib/Thrift/ClassLoader/ThriftClassLoader.php';

use Thrift\ClassLoader\ThriftClassLoader;
use Thrift\Transport\THttpClient;
use Thrift\Transport\TBufferedTransport;
use Thrift\Protocol\TBinaryProtocol;
use user\GreetingServiceClient;

$loader = new ThriftClassLoader();
$loader->registerNamespace('Thrift', __DIR__ .
'/../vendor/thrift/lib/php/lib');
$loader->registerDefinition('user', __DIR__ . '/../gen-php');
$loader->register();

$socket = new THttpClient('thrift-service.server', 80, '/index.php');
$transport = new TBufferedTransport($socket);
$protocol = new TBinaryProtocol($transport);
$client = new GreetingServiceClient($protocol);

http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php
http://thrift-service.server/index.php

Building Services

[313]

$transport->open();

echo $client->hello('John');
echo $client->goodbye();

$transport->close();

Much like with the server example, here, we also started by including the
ThriftClassLoader class, which in turn enabled us to set the auto-loading for the entire
Thrift and user namespaces. We then instantiated the socket, transport, protocol, and
client, thus making a connection with the Thrift service. Both client and server are using the
same thrift-service/gen-php/user/GreetingService.php file. Given that
GreetingServiceClient resides within the auto-generated GreetingService.php file,
this makes it easy for the client to instantly be aware of any method
GreetingService may expose.

To test our client, all we need to do is open h t t p ://t h r i f t - s e r v i c e . c l i e n t /i n d e x . p h p in
the browser. This should give us the following output:

Throughout this section, we touched upon some of the key points of Apache Thrift
services. Although there is plenty more to be said about the Thrift's IDL and type system,
the examples presented here are a step in the right direction.

Understanding microservices
The term microservices denotes an architectural style of building applications taking the
form of loosely coupled services. These independently deployable services are tiny
applications most often built via a web service technology. While one service can
communicate via SOAP, the other can be do so via REST, Apache Thrift, or something else.
There is no standard to specify the firm requirements here. The general idea is to take a
large monolithic application and slice it down into several smaller applications, that is,
services, but doing so in a manner that serves a business goal.

http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php
http://thrift-service.client/index.php

Building Services

[314]

The following diagram tries to visualize this concept:

Popularized by the likes of Netflix and Amazon, the microservices style sets out to solve a
few key challenges of modern application development, some of which include the
following:

Development team size: This is a single microservice that can be developed by a
relatively small team
Diversity of development skills: These are different services that can be written
in different programming languages
Change/upgrade: These smaller pieces of code are easier to change or update
Integration and deployment: These smaller pieces of code are easier to deploy
Easier for newcomers: These smaller pieces of code are easier to catch up with
Business capabilities focus: This individual service code is organized around
specific business capability
Scalability: Not everything scales equally; smaller chunks of code can be scaled
more easily
Fault handling: This single faulty service does not bring an entire application
down
Technology stack: This is less dependency on fast-chaining technology stacks

Building Services

[315]

At the same time, they induce several new challenges, some of which include the following:

Service communication: This is an extra effort involved around service
communication
Distributed transactions: These are challenges caused by business requirements
spanning across several services
Testing and monitoring: These are somewhat more challenging than with
monolith applications
Network latency: Every microservice introduces an extra bit of network latency
Fault tolerance: These are microservices that have to be designed for failure from
the ground up

That being said, building microservices is all but an easy task. Going monolith first, with a
carefully decoupled and modular structure, may be a better starting point for most of the
applications. Once a monolithic grows to the point where its complexities begin to affect the
way we manage it, then it's time to consider slicing it into microservices.

Summary
Throughout this chapter, we took a look at two of the most common and well-established
web services: SOAP and REST. We also looked into a rising new star called Apache Thrift.
Once we pass the barrier of initial Apache Thrift installation and setup, features such as
simplicity, scalability, speed, and portability certainly come into focus. As we saw in our
client example, the RPC calls can easily be implemented with a central code repository--
the thrift-service/gen-php/ directory in our case.

While Apache Thrift has yet to catch up in terms of popularity, the fact that it is being used
by the likes of Facebook, Evernote, Pinterest, Quora, Uber, and other well-known names,
certainly speaks for itself. This is not to say that future-wise SOAP or REST are less
important. Choosing the right type of service is a matter of careful planning and forward
thinking.

Finally, we glossed over some of the key points of an emerging a new architectural style
called microservices.

Moving forward, we will take a closer look at working with some of the most commonly
used databases in PHP applications: MySQL, Mongo, Elasticsearch, and Redis.

12
Working with Databases

The PHP language has a pretty good support for several different databases. MySQL has
been embraced by PHP developers as the go-to database ever since the early days of the
PHP language. While the initial emphasis was mostly on relational database management
systems (RDBMS), other types of databases proved to be equally (or more) important for
modern applications. The document and data key-value databases have been growing in
popularity ever since.

Nowadays, it is not uncommon to see a PHP application making use of MySQL, Mongo,
Redis, and possibly a few more databases or data stores all at once.

The NoSQL ("non SQL", "non relational" or "not only SQL") nature of Mongo allows
building applications that generate massive volumes of new and possibly rapidly changing
data types. Relieved from the strictness of SQL (Structured Query Language), working
with structured, semi-structured, unstructured, and polymorphic data becomes a whole
new experience with the Mongo database. The in-memory data structure stores such as
Redis strive on speed, which makes them great to cache and message broker systems.

In this chapter, we will take a closer look at MySQL, Mongo, and Redis through the
following sections:

Working with MySQL
Installing MySQL
Setting up sample data
Querying via the mysqli driver extension
Querying via the PHP Data Objects driver extension

Working with MongoDB
Installing MongoDB
Setting up sample data
Querying via the MongoDB driver extension

Working with Databases

[317]

Working with Redis
Installing Redis
Setting up sample data
Querying via the phpredis driver extension

Throughout this chapter, we provide quick installation instructions for
each of the three database servers. These instructions are given on a
relatively basic level, without any post-installation configuration or tuning
that is usually done on production-type machines. The general idea here
was to merely get the developer machine up and running with each of the
database servers.

Working with MySQL
MySQL is an open source RDBMS that has been around for over 20 years now. Originally
developed and owned by the Swedish company MySQL AB, it is now owned by Oracle
Corporation. The current stable version of MySQL is 5.7.

Some of the key strengths of MySQL can be outlined as follows:

Cross-platform, runs on server
Can be used for desktop and web applications
Fast, reliable, and easy to use
Good for small and large applications
Uses standard SQL
Supports query caching
Supports Unicode
ACID compliance when using InnoDB
Transactions when using InnoDB

Working with Databases

[318]

Installing MySQL
Assuming we are using the fresh Ubuntu 16.10 (Yakkety Yak) installation, the following
steps outline how we can set up MySQL:

To install MySQL, we execute the following console commands:1.

sudo apt-get update
sudo apt-get -y install mysql-server

The installation process triggers a console GUI interface that asks us to enter a2.
root user password:

The provided password needs to be repeated for confirmation purposes: 3.

Working with Databases

[319]

Once the installation is done, we can execute the following mysql --version4.
command to confirm if the MySQL server is up and running:

root@vultr:~# mysql --version
mysql Ver 14.14 Distrib 5.7.17, for Linux (x86_64) using EditLine
wrapper

Once the server is running, we need to secure the installation. This is done by5.
running the following command:

sudo mysql_secure_installation

The secure installation process triggers an interactive shell with several prompts,6.
asking for the following information:

Enter password for user root:
Would you like to setup VALIDATE PASSWORD plugin?
Please enter 0 = LOW, 1 = MEDIUM and 2 = STRONG:
New password:
Re-enter new password:
Remove anonymous users?
Disallow root login remotely?
Remove test database and access to it?
Reload privilege tables now?

The following screenshot depicts this process:

Working with Databases

[320]

Working with Databases

[321]

Check out h t t p s ://d e v . m y s q l . c o m /d o c /r e f m a n /5. 7/e n /v a l i d a t e - p a s s

w o r d - p l u g i n . h t m l for more information about the password validation
plugin.

Once the secure installation process is done, we can go ahead and connect to7.
MySQL using the mysql console tool, as follows:

// INSECURE WAY (bare passwords in a command)
mysql -uroot -p'mL08e!Tq'
mysql --user=root --password='mL08e!Tq'

// SECURE WAY (triggers "enter password" prompt)
mysql -uroot -p
mysql --user=root --password

Notice the use of the single quote character (') around the password. While normally we
could use the " or ' quotes, the ! char used in password forces us to use '. Without
wrapping the password in a single quote, in this case, we will be seeing an error like !Tq:
event not found. This is because the exclamation mark (!) is a part of the history expansion
in bash. To use it as a part of the password, we need to enclose it in single
quotes. Furthermore, our passwords can contain the ' or " characters. To escape these
quotes in the password, we can either use a leading backslash (), or enclose the entire
argument in the opposite style of quotes. However, the simplest and safest way to get
around quirky password characters is to avoid assigning the password value with -p or --
password arguments, and provide the password through the Enter password: prompt.

This should give us the following output:

https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-plugin.html

Working with Databases

[322]

Check out h t t p s ://d e v . m y s q l . c o m /d o c /r e f m a n /5. 7/e n /m y s q l - s h e l l . h

t m l for more information about the MySQL shell.

Setting up sample data
Before we move onto querying MySQL, let's go ahead and set up some sample data.
MySQL provides a sample database called Sakila, which we can download from the official
MySQL site, as follows:

cd ~
wget http://downloads.mysql.com/docs/sakila-db.tar.gz
tar -xzf sakila-db.tar.gz
cd sakila-db/

Once downloaded and unpacked, this should give us the following three files:

Moving forward, we need to see how we can import sakila-schema.sql and sakila-
data.sql. Luckily, MySQL provides several ways to do this. A quick look at the sakila-
schema.sql file shows the following entries at the top of the file:

DROP SCHEMA IF EXISTS sakila;
CREATE SCHEMA sakila;
USE sakila;

https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html

Working with Databases

[323]

This means that the sakila-schema.sql file will create a schema (database) for us, as well
as set it as currently used database. This is an important bit to understand, as not all of
the .sql / backup files will have this, and we will be forced to do this part manually.
Knowing how sakila-schema.sql handles everything we need to import it, the following
commands show three different approaches we can use:

// Either this command
mysql -uroot -p < sakila-schema.sql

// Either this command
mysql -uroot -p -e "SOURCE sakila-schema.sql"

The second command uses the -e (--execute) argument to pass SQL statements to the
server. We could have easily used the mysql tool interactively and then executed SOURCE
sakila-schema.sql within it. With the schema in place, we can go ahead and import the
actual data:

// Either this command
mysql -uroot -p < sakila-data.sql

// Either this command
mysql -uroot -p -e "SOURCE sakila-data.sql"

If we now use the mysql tool interactively, we can check if the database is imported
successfully:

show databases;
use sakila;
show tables;

This should give us the following output:

Working with Databases

[324]

Working with Databases

[325]

Check out h t t p s ://d e v . m y s q l . c o m /d o c /s a k i l a /e n / for
more information about the Sakila sample database.

Querying via the MySQLi driver extension
There are several driver extensions that allow us to query MySQL. MySQLi is one of them.
In order to use MySQLi on the console, we need to ensure that we have the PHP CLI
and mysql driver extension installed:

sudo apt-get -y install php7.0-cli php7.0-mysql

Note that the name of the extension lacks the i suffix. Once the mysql driver extension is
installed, we can go ahead and start querying the MySQL server.

Connecting
We can either use the MySQLi functions or classes to interact with MySQL. In the spirit of
OOP, we will use the class approach for all of our examples. Using the mysqli class, we can
establish a MySQL connection from PHP, as follows:

$mysqli = new mysqli('127.0.0.1', 'root', 'mL08e!Tq', 'sakila');

This single line expression will look for MySQL on the 127.0.0.1 host and try to connect
to its sakila database using the root username and mL08e!Tq as its password.

Error handling
Handling errors around mysqli is relatively easy as we can use a simple try...catch
block, as follows:

<?php

mysqli_report(MYSQLI_REPORT_ALL);

try {
 $mysqli = new mysqli('127.0.0.1', 'root', 'mL08e!Tq', 'sakila');
} catch (Throwable $t) {
 exit($t->getMessage());
}

https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/

Working with Databases

[326]

Ideally, we would want to use mysqli_sql_exception for more targeted MySQL
exceptions-only handling:

<?php

mysqli_report(MYSQLI_REPORT_ALL);

try {
 $mysqli = new mysqli('127.0.0.1', 'root', 'mL08e!Tq', 'sakila');
} catch (mysqli_sql_exception $e) {
 exit($e->getMessage());
}

We can pass one of the following report levels to the mysqli_report() function:

MYSQLI_REPORT_INDEX: This reports if a bad index or no index at all was used in
a query
MYSQLI_REPORT_ERROR: This reports errors from the MySQL function calls
MYSQLI_REPORT_STRICT: This reports mysqli_sql_exception instead of
possible warnings
MYSQLI_REPORT_ALL: This reports everything
MYSQLI_REPORT_OFF: This reports nothing

While MYSQLI_REPORT_ALL may seem like an overkill, using it may
pinpoint MySQL errors that are not obvious on the application level, such
as the lack of an index on a column.

Selecting
We can select data from MySQL using the query() method of a mysqli instance, as
follows:

<?php

try {
 // Report on all types of errors
 mysqli_report(MYSQLI_REPORT_ALL);

 // Open a new connection to the MySQL server
 $mysqli = new mysqli('127.0.0.1', 'root', 'mL08e!Tq', 'sakila');

 // Perform a query on the database
 $result = $mysqli->query('SELECT * FROM customer WHERE email LIKE

Working with Databases

[327]

"MARIA.MILLER@sakilacustomer.org"');

 // Return the current row of a result set as an object
 $customer = $result->fetch_object();

 // Close opened database connection
 $mysqli->close();

 // Output customer info
 echo $customer->first_name, ' ', $customer->last_name, PHP_EOL;
} catch (mysqli_sql_exception $e) {
 // Output error and exit upon exception
 echo $e->getMessage(), PHP_EOL;
 exit;
}

The preceding example gives the following error:

No index used in query/prepared statement SELECT * FROM customer WHERE
email = "MARIA.MILLER@sakilacustomer.org"

If we have used MYSQLI_REPORT_STRICT instead of MYSQLI_REPORT_ALL, we would not
have got the error. However, using less restrictive error reporting is not a solution for
mitigating the error. Even though we might not be in charge of the database architecture
and maintenance, it is our duty as a developer to report overlooks like these as they will
most definitely affect our application performance. A solution, in this case, is to actually
create an index on the email column. We can do so easily via the following query:

ALTER TABLE customer ADD INDEX idx_email (email);

Working with Databases

[328]

idx_email is the freely given name of the index we are creating, while email is the column
for which we are creating an index. The idx_ prefix is merely a matter of convention some
developers use; the index can easily be named xyz or just email.

With the index in place, if we now try to execute the previous code, it should output
MARIA MILLER, as shown in the following screenshot:

The query() method returns either the mysqli_result object or the True and
False Boolean value, based on the following type:

SELECT type of query - mysqli_result object or Boolean False
SHOW type of query - mysqli_result object or Boolean False
DESCRIBE type of query - mysqli_result object or Boolean False
EXPLAIN type of query - mysqli_result object or Boolean False
other types of queries - Boolean True or False

The instance of the mysqli_result object has several different result fetching methods:

fetch_object(): This fetches the current row of a result set as an object,
and allows being called repeatedly
fetch_all(): This fetches all result rows as either MYSQLI_ASSOC, MYSQLI_NUM,
or MYSQLI_BOTH
fetch_array(): This fetches a single result row as either MYSQLI_ASSOC,
MYSQLI_NUM, or MYSQLI_BOTH
fetch_assoc(): This fetches a single result row as an associative array,
and allows being called repeatedly
fetch_field(): This fetches the next field in the result set, and allows being
called repeatedly
fetch_field_direct(): This fetches meta-data for a single field
fetch_fields(): This fetches meta-data for fields in an entire result set
fetch_row(): This fetches a single result row as an enumerated array
and allows being called repeatedly

Working with Databases

[329]

Binding parameters
More often than not, querying data comes with data binding. Security-wise, data binding is
the way to go, as we should never concatenate query string with variables on our own. This
leads to SQL injection attacks. We can bind data into a query using the prepare() and
bind_param() methods of the respective mysqli and mysqli_stmt instances, as follows:

<?php

try {
 // Report on all types of errors
 mysqli_report(MYSQLI_REPORT_ALL);

 // Open a new connection to the MySQL server
 $mysqli = new mysqli('127.0.0.1', 'root', 'mL08e!Tq', 'sakila');

 $customerIdGt = 100;
 $storeId = 2;
 $email = "%ANN%";

 // Prepare an SQL statement for execution
 $statement = $mysqli->prepare('SELECT * FROM customer WHERE customer_id
> ? AND store_id = ? AND email LIKE ?');

 // Binds variables to a prepared statement as parameters
 $statement->bind_param('iis', $customerIdGt, $storeId, $email);

 // Execute a prepared query
 $statement->execute();

 // Gets a result set from a prepared statement
 $result = $statement->get_result();

 // Fetch object from row/entry in result set
 while ($customer = $result->fetch_object()) {
 // Output customer info
 echo $customer->first_name, ' ', $customer->last_name, PHP_EOL;
 }

 // Close a prepared statement
 $statement->close();

 // Close database connection
 $mysqli->close();
} catch (mysqli_sql_exception $e) {
 // Output error and exit upon exception
 echo $e->getMessage();
 exit;

Working with Databases

[330]

}

This should give us the following output:

The bind_param() method has an interesting syntax. It accepts two or more
parameters. The first parameter--the $types string--contains one or more characters. These
characters specify the types for the corresponding bind variables:

i: This is the variable of a type integer
d: This is the variable of a type double
s: This is the variable of a type string
b: This is the variable of a type blob

The second and all of the following parameters represent the binding variables. Our
example uses 'iis' for the $types parameter, which basically reads the bind_param()
method and its parameters as: bind integer type ($customerIdGt), integer type
($storeId), and string type ($email).

Inserting
Now that we have learned how to prepare a query and bind data to it, inserting new
records becomes pretty easy:

<?php

try {
 // Report on all types of errors
 mysqli_report(MYSQLI_REPORT_ALL);

 // Open a new connection to the MySQL server
 $mysqli = new mysqli('127.0.0.1', 'root', 'mL08e!Tq', 'sakila');

Working with Databases

[331]

 // Prepare some teat address data
 $address = 'The street';
 $district = 'The district';
 $cityId = 135; // Matches the Dallas city in Sakila DB
 $postalCode = '31000';
 $phone = '123456789';

 // Prepare an SQL statement for execution
 $statement = $mysqli->prepare('INSERT INTO address (
 address,
 district,
 city_id,
 postal_code,
 phone
) VALUES (
 ?,
 ?,
 ?,
 ?,
 ?
);
 ');

 // Bind variables to a prepared statement as parameters
 $statement->bind_param('ssiss', $address, $district, $cityId,
$postalCode, $phone);

 // Execute a prepared Query
 $statement->execute();

 // Close a prepared statement
 $statement->close();

 // Quick & "dirty" way to fetch newly created address id
 $addressId = $mysqli->insert_id;

 // Close database connection
 $mysqli->close();
} catch (mysqli_sql_exception $e) {
 // Output error and exit upon exception
 echo $e->getMessage();
 exit;
}

Working with Databases

[332]

The example here pretty much follows the previous one where we introduced binding. The
obvious difference merely lies in the actual INSERT INTO SQL expression. It goes without
saying that mysqli does not have separate PHP classes or methods to handle selecting,
inserting, or any other action.

Updating
Much like selecting and inserting, we can also use the prepare(), bind_param(), and
execute() methods to handle record updating, as follows:

<?php

try {
 // Report on all types of errors
 mysqli_report(MYSQLI_REPORT_ALL);

 // Open a new connection to the MySQL server
 $mysqli = new mysqli('127.0.0.1', 'root', 'mL08e!Tq', 'sakila');

 // Prepare some teat address data
 $address = 'The new street';
 $addressId = 600;

 // Prepare an SQL statement for execution
 $statement = $mysqli->prepare('UPDATE address SET address = ? WHERE
address_id = ?');

 // Bind variables to a prepared statement as parameters
 $statement->bind_param('si', $address, $addressId);

 // Execute a prepared Query
 $statement->execute();

 // Close a prepared statement
 $statement->close();

 // Close database connection
 $mysqli->close();
} catch (mysqli_sql_exception $e) {
 // Output error and exit upon exception
 echo $e->getMessage();
 exit;
}

Working with Databases

[333]

Deleting
Again, we can use the prepare(), bind_param(), and execute() methods to handle
record deleting, as shown here:

<?php

try {
 // Report on all types of errors
 mysqli_report(MYSQLI_REPORT_ALL);

 // Open a new connection to the MySQL server
 $mysqli = new mysqli('127.0.0.1', 'root', 'mL08e!Tq', 'sakila');

 // Prepare some teat address data
 $paymentId = 500;

 // Prepare an SQL statement for execution
 $statement = $mysqli->prepare('DELETE FROM payment WHERE payment_id =
?');

 // Bind variables to a prepared statement as parameters
 $statement->bind_param('i', $paymentId);

 // Execute a prepared Query
 $statement->execute();

 // Close a prepared statement
 $statement->close();

 // Close database connection
 $mysqli->close();
} catch (mysqli_sql_exception $e) {
 // Output error and exit upon exception
 echo $e->getMessage();
 exit;
}

Transactions
While the SELECT, INSERT, UPDATE, and DELETE methods allow us to manipulate data in a
step-by-step manner, the real strength of MySQL lies in transactions. Using
the begin_transaction(), commit(), commit(), and rollback() methods of an
mysqli instance, we are able to control the transaction features of MySQL:

Working with Databases

[334]

<?php

mysqli_report(MYSQLI_REPORT_ALL);
$mysqli = new mysqli('127.0.0.1', 'root', 'mL08e!Tq', 'sakila');

try {
 // Start new transaction
 $mysqli->begin_transaction(MYSQLI_TRANS_START_READ_WRITE);

 // Create new address
 $result = $mysqli->query('INSERT INTO address (
 address,
 district,
 city_id,
 postal_code,
 phone
) VALUES (
 "The street",
 "The district",
 333,
 "31000",
 "123456789"
);
 ');

 // Fetch newly created address id
 $addressId = $mysqli->insert_id;

 // Create new customer
 $statement = $mysqli->prepare('INSERT INTO customer (
 store_id,
 first_name,
 last_name,
 email,
 address_id
) VALUES (
 2,
 "John",
 "Doe",
 "john@test.it",
 ?
)
 ');
 $statement->bind_param('i', $addressId);
 $statement->execute();

 // Fetch newly created customer id
 $customerId = $mysqli->insert_id;

Working with Databases

[335]

 // Select newly created customer info
 $statement = $mysqli->prepare('SELECT * FROM customer WHERE customer_id
= ?');
 $statement->bind_param('i', $customerId);
 $statement->execute();
 $result = $statement->get_result();
 $customer = $result->fetch_object();

 // Commit transaction
 $mysqli->commit();

 echo $customer->first_name, ' ', $customer->last_name, PHP_EOL;
} catch (mysqli_sql_exception $t) {
 // We MUST be careful with non-db try block operations that throw
exceptions
 // As they might cause a rollback inadvertently
 $mysqli->rollback();
 echo $t->getMessage(), PHP_EOL;
}

// Close database connection
$mysqli->close();

The valid transaction flags are as follows:

MYSQLI_TRANS_START_READ_ONLY: This matches the MySQL START
TRANSACTION READ ONLY query
MYSQLI_TRANS_START_READ_WRITE: This matches the MySQL START
TRANSACTION READ WRITE query
MYSQLI_TRANS_START_WITH_CONSISTENT_SNAPSHOT: This matches the
MySQL START TRANSACTION WITH CONSISTENT SNAPSHOT query

Check out h t t p s ://d e v . m y s q l . c o m /d o c /r e f m a n /5. 7/e n /c o m m i t . h t m l for
more information about the MySQL transaction syntax and meaning.

Querying via the PHP Data Objects driver
extension
The PHP Data Objects (PDO) driver extension comes with PHP by default, ever since PHP
5.1.0.

https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html

Working with Databases

[336]

Connecting
Using the PDO driver extension, we can connect to a MySQL database from PHP using the
PDO class, as follows:

<?php

$host = '127.0.0.1';
$dbname = 'sakila';
$username = 'root';
$password = 'mL08e!Tq';

$conn = new PDO(
 "mysql:host=$host;dbname=$dbname",
 $username,
 $password
);

This simple multiline expression will look for MySQL on the 127.0.0.1 host and try to
connect to its sakila database using the root username and mL08e!Tq password.

Error handling
Handling errors around PDO can be done using the special PDOException class, as
follows:

<?php

try {
 $host = '127.0.0.1';
 $dbname = 'sakila';
 $username = 'root';
 $password = 'mL08e!Tq';

 $conn = new PDO(
 "mysql:host=$host;dbname=$dbname",
 $username,
 $password,
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]
);
} catch (PDOException $e) {
 echo $e->getMessage(), PHP_EOL;
}

Working with Databases

[337]

There are three different error modes:

ERRMODE_SILENT

ERRMODE_WARNING

ERRMODE_EXCEPTION

Here, we are using ERRMODE_EXCEPTION in order to utilize the try...catch blocks.

Selecting
Querying for records with PDO is somewhat similar to querying for records with mysqli.
We use raw SQL statements in both cases. The difference lies in the convenience of PHP
methods and the subtle differences they provide. The following example demonstrates how
we can select records from a MySQL table:

<?php

try {
 $conn = new PDO(
 "mysql:host=127.0.0.1;dbname=sakila", 'root', 'mL08e!Tq',
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]
);

 $result = $conn->query('SELECT * FROM customer LIMIT 5');
 $customers = $result->fetchAll(PDO::FETCH_OBJ);

 foreach ($customers as $customer) {
 echo $customer->first_name, ' ', $customer->last_name, PHP_EOL;
 }
} catch (PDOException $e) {
 echo $e->getMessage(), PHP_EOL;
}

This gives the following output:

Working with Databases

[338]

The instance of the PDOStatement and $result object has several different result-fetching
methods:

fetch(): This fetches the next row from a result set, allows being
called repeatedly, and returns a value depending on the fetch style
fetchAll(): This fetches all of the result set rows as an array, and returns a
value depending on the fetch style
fetchObject(): This fetches the next row from a result set as an object, and
allows being called repeatedly
fetchColumn(): This fetches a single column from the next row of a result set,
and allows being called repeatedly

The following list shows available PDO fetch styles:

PDO::FETCH_LAZY

PDO::FETCH_ASSOC

PDO::FETCH_NUM

PDO::FETCH_BOTH

PDO::FETCH_OBJ

PDO::FETCH_BOUND

PDO::FETCH_COLUMN

PDO::FETCH_CLASS

PDO::FETCH_INTO

PDO::FETCH_FUNC

PDO::FETCH_GROUP

PDO::FETCH_UNIQUE

PDO::FETCH_KEY_PAIR

PDO::FETCH_CLASSTYPE

PDO::FETCH_SERIALIZE

PDO::FETCH_PROPS_LATE

PDO::FETCH_NAMED

While most of these fetch styles are quite self-explanatory, we can
consult h t t p ://p h p . n e t /m a n u a l /e n /p d o . c o n s t a n t s . p h p for
further details.

http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/pdo.constants.php

Working with Databases

[339]

The following example demonstrates a more elaborate select approach, one with parameter
binding in the mix:

<?php

try {
 $conn = new PDO(
 "mysql:host=127.0.0.1;dbname=sakila", 'root', 'mL08e!Tq',
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]
);

 $statement = $conn->prepare('SELECT * FROM customer
 WHERE customer_id > :customer_id AND store_id = :store_id AND email
LIKE :email');

 $statement->execute([
 ':customer_id' => 100,
 ':store_id' => 2,
 ':email' => '%ANN%',
]);

 $customers = $statement->fetchAll(PDO::FETCH_OBJ);

 foreach ($customers as $customer) {
 echo $customer->first_name, ' ', $customer->last_name, PHP_EOL;
 }
} catch (PDOException $e) {
 echo $e->getMessage(), PHP_EOL;
}

This gives the following output:

Working with Databases

[340]

The most obvious difference between binding with PDO and binding with mysqli is that
PDO allows named parameter binding. This makes for much more readable queries.

Inserting
Much like selecting, inserting involves the same set of PDO methods wrapped around
the INSERT INTO SQL statement:

<?php

try {
 $conn = new PDO(
 "mysql:host=127.0.0.1;dbname=sakila", 'root', 'mL08e!Tq',
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]
);

 $statement = $conn->prepare('INSERT INTO address (
 address,
 district,
 city_id,
 postal_code,
 phone,
 location
) VALUES (
 :address,
 :district,
 :city_id,
 :postal_code,
 :phone,
 POINT(:longitude, :latitude)
);
 ');

 $statement->execute([
 ':address' => 'The street',
 ':district' => 'The district',
 ':city_id' => '537',
 ':postal_code' => '31000',
 ':phone' => '888777666333',
 ':longitude' => 45.55111,
 ':latitude' => 18.69389
]);
} catch (PDOException $e) {
 echo $e->getMessage(), PHP_EOL;
}

Working with Databases

[341]

Updating
Much like selecting and inserting, updating involves the same set of PDO methods
wrapped around the UPDATE SQL statement:

<?php

try {
 $conn = new PDO(
 "mysql:host=127.0.0.1;dbname=sakila", 'root', 'mL08e!Tq',
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]
);

 $statement = $conn->prepare('UPDATE address SET phone = :phone WHERE
address_id = :address_id');

 $statement->execute([
 ':phone' => '888777666555',
 ':address_id' => 600,
]);
} catch (PDOException $e) {
 echo $e->getMessage(), PHP_EOL;
}

Deleting
Much like selecting, inserting, and updating, deleting involves the same set of PDO
methods wrapped around the DELETE FROM SQL statement:

<?php

try {
 $conn = new PDO(
 "mysql:host=127.0.0.1;dbname=sakila", 'root', 'mL08e!Tq',
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]
);
 $statement = $conn->prepare('DELETE FROM payment WHERE payment_id =
:payment_id');
 $statement->execute([
 ':payment_id' => 16046
]);
} catch (PDOException $e) {
 echo $e->getMessage(), PHP_EOL;
}

Working with Databases

[342]

Transactions
Transactions with PDO are not much different from those with MySQLi. Utilizing
the beginTransaction(), commit(), and rollback() methods of the PDO instance, we
are able to control the transaction features of MySQLi:

<?php

$conn = new PDO(
 "mysql:host=127.0.0.1;dbname=sakila", 'root', 'mL08e!Tq',
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]
);

try {
 // Start new transaction
 $conn->beginTransaction();

 // Create new address
 $result = $conn->query('INSERT INTO address (
 address,
 district,
 city_id,
 postal_code,
 phone,
 location
) VALUES (
 "The street",
 "The district",
 537,
 "27107",
 "888777666555",
 POINT(45.55111, 18.69389)
);
 ');

 // Fetch newly created address id
 $addressId = $conn->lastInsertId();

 // Create new customer
 $statement = $conn->prepare('INSERT INTO customer (
 store_id,
 first_name,
 last_name,
 email,
 address_id
) VALUES (
 2,
 "John",

Working with Databases

[343]

 "Doe",
 "john-pdo@test.it",
 :address_id
)
 ');

 $statement->execute([':address_id' => $addressId]);

 // Fetch newly created customer id
 $customerId = $conn->lastInsertId();

 // Select newly created customer info
 $statement = $conn->prepare('SELECT * FROM customer WHERE customer_id =
:customer_id');
 $statement->execute([':customer_id' => $customerId]);
 $customer = $statement->fetchObject();

 // Commit transaction
 $conn->commit();

 echo $customer->first_name, ' ', $customer->last_name, PHP_EOL;
} catch (PDOException $e) {
 $conn->rollback();
 echo $e->getMessage(), PHP_EOL;
}

Working with MongoDB
MongoDB is a free and open source NoSQL database developed by MongoDB Inc.

Some of the key strengths of MongoDB can be outlined as follows:

It is a document-based database
It is cross-platform
It runs on a single server as well as on distributed architectures
It can be used for desktop and web applications
It uses JSON objects to store data
It can use JavaScript map-reduce for information processing at the server side
It processes large volumes of data
It aggregates calculations
It supports fields, range queries, and regular expression searches
It is a native replication

Working with Databases

[344]

Installing MongoDB
Assuming we are using the fresh Ubuntu 16.10 (Yakkety Yak) installation, the following
steps outline how we can setup MongoDB:

We will install MongoDB using the following console command:1.

sudo apt-get update
sudo apt-get install -y mongodb

To further check that MongoDB is successfully installed and running, we can2.
execute the following command:

sudo systemctl status mongodb.service

This should give us the following output:3.

Setting up sample data
Running the mongo command on the Ubuntu terminal gets us into a mongo interactive
shell. From here on, with a simple few commands, we can add the sample data:

use foggyline
db.products.insert({name: "iPhone 7", price: 650, weight: "138g"});
db.products.insert({name: "Samsung Galaxy S7", price: 670, weight: "152g"
});
db.products.insert({name: "Motorola Moto Z Play", price: 449.99, weight:
"165g" });
db.products.insert({name: "Google Pixel", price: 649.99, weight: "168g" });
db.products.insert({name: "HTC 10", price: 799, weight: "161g" });
show dbs
show collections

Working with Databases

[345]

This should give us an output much like the following screenshot:

Using use foggyline and db.products.find(), we are able to now list all the entries
added to the products collection:

Querying via the MongoDB driver extension
We need to make sure we have the PHP CLI and MongoDB driver extension installed:

sudo apt-get -y install php-pear
sudo apt-get -y install php7.0-dev

Working with Databases

[346]

sudo apt-get -y install libcurl4-openssl-dev pkg-config libssl-dev
libsslcommon2-dev
sudo pecl install mongodb

Upon successful execution of these commands, we can confirm that the mongodb driver
extension is installed, as shown in the following screenshot:

Aside from the driver extension, we also need a mongodb/mongodb composer package
added to our project directory. We can do so by running the following console command:

sudo apt-get -y install composer
composer require mongodb/mongodb

Assuming we have the mongo.php file within our project directory, all it takes is to load the
MongoDB library, and start working with Mongo database:

<?php

require_once __DIR__ . '/vendor/autoload.php';

// Code...

Connecting
Using the mongodb driver extension and the mongodb/mongodb PHP library, we can
connect to the Mongo database from PHP using the MongoDBDriverManager class, as
follows:

<?php

require_once __DIR__ . '/vendor/autoload.php';

$manager = new MongoDBDriverManager('mongodb://localhost:27017');

This single-line expression will look for MongoDB on localhost under port 27017.

Working with Databases

[347]

Error handling
Handling errors is pretty straightforward with the try...catch blocks,
as MongoDBDriverExceptionException is being thrown whenever an error occurs:

<?php

require_once __DIR__ . '/vendor/autoload.php';

try {
 $manager = new MongoDBDriverManager('mongodb://localhost:27017');
} catch (MongoDBDriverExceptionException $e) {
 echo $e->getMessage(), PHP_EOL;
 exit;
}

Selecting
Fetching data with MongoDB comes down to working with three different classes,
MongoDBDriverManager, MongoDBDriverQuery, and MongoDBDriverReadPreference:

<?php

require_once __DIR__ . '/vendor/autoload.php';

try {
 $manager = new MongoDBDriverManager('mongodb://localhost:27017');

 /* Select only the matching documents */
 $filter = [
 'price' => [
 '$gte' => 619.99,
],
];

 $queryOptions = [
 /* Return only the following fields in the matching documents */
 'projection' => [
 'name' => 1,
 'price' => 1,
],
 /* Return the documents in descending order of price */
 'sort' => [
 'price' => -1
]
];

Working with Databases

[348]

 $query = new MongoDBDriverQuery($filter, $queryOptions);

 $readPreference = new
MongoDBDriverReadPreference(MongoDBDriverReadPreference::RP_PRIMARY);

 $products = $manager->executeQuery('foggyline.products', $query,
$readPreference);

 foreach ($products as $product) {
 echo $product->name, ': ', $product->price, PHP_EOL;
 }
} catch (MongoDBDriverExceptionException $e) {
 echo $e->getMessage(), PHP_EOL;
 exit;
}

This gives the following output:

The list of query operators we can pass onto $filter is quite an extensive one, but the
following comparison operators may be the most interesting ones:

$eq: These match all values that are equal to a specified value
$gt: These match all values that are greater than a specified value
$gte: These match all values that are greater than or equal to a specified value
$lt: These match all values that are less than a specified value
$lte: These match all values that are less than or equal to a specified value
$ne: These match all values that are not equal to a specified value
$in: These match all values that are specified in an array
$nin: These match the none values that are specified in an array

Check out t t p s ://d o c s . m o n g o d b . c o m /m a n u a l /r e f e r e n c e /o p e r a t o r /q u e

r y / for a full list of MongoDB query and projection operators.

https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/

Working with Databases

[349]

The list of query options we can pass onto $queryOptions is equally impressive, but the
following options may be the essential ones:

collation: These allow specifying language-specific rules for string comparison
limit: These allow specifying the maximum number of documents to return
maxTimeMS: These set the processing operations time limit in milliseconds
projection: These allow specifying which fields to include in the returned
documents
sort: These allow specifying sort ordering of the results

Check out h t t p ://p h p . n e t /m a n u a l /e n /m o n g o d b - d r i v e r - q u e r y . c o n s t r u

c t . p h p for a full list of the MongoDBDriverQuery query options.

Inserting
Writing new data with MongoDB comes down to working with three different classes,
MongoDBDriverManager, MongoDBDriverBulkWrite, and
MongoDBDriverWriteConcern:

<?php

require_once __DIR__ . '/vendor/autoload.php';

try {
 $manager = new MongoDBDriverManager('mongodb://localhost:27017');

 $bulkWrite = new MongoDBDriverBulkWrite;

 $bulkWrite->insert([
 'name' => 'iPhone 7 Black White',
 'price' => 650,
 'weight' => '138g'
]);

 $bulkWrite->insert([
 'name' => 'Samsung Galaxy S7 White',
 'price' => 670,
 'weight' => '152g'
]);

 $writeConcern = new

http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php
http://php.net/manual/en/mongodb-driver-query.construct.php

Working with Databases

[350]

MongoDBDriverWriteConcern(MongoDBDriverWriteConcern::MAJORITY, 1000);

 $result = $manager->executeBulkWrite('foggyline.products', $bulkWrite,
$writeConcern);

 if ($result->getInsertedCount()) {
 echo 'Record(s) saved successfully.', PHP_EOL;
 } else {
 echo 'Error occurred.', PHP_EOL;
 }
} catch (MongoDBDriverExceptionException $e) {
 echo $e->getMessage(), PHP_EOL;
 exit;
}

The instance of BulkWrite can store one or more insert statements through the insert()
method. We then simply pass $bulkWrite and $writeConcern to executeBulkWrite()
on the $manager instance. Once executed, we can observe the newly added records
through the mongo shell:

Updating
Updating existing data is a nearly identical process as writing new data. The obvious
difference being the use of the update() method on the MongoDBDriverBulkWrite
instance:

<?php

require_once __DIR__ . '/vendor/autoload.php';

try {
 $manager = new MongoDBDriverManager('mongodb://localhost:27017');

 $bulkWrite = new MongoDBDriverBulkWrite;

Working with Databases

[351]

 $bulkWrite->update(
 ['name' => 'iPhone 7 Black White'],
 ['$set' => [
 'name' => 'iPhone 7 Black Black',
 'price' => 649.99
]],
 ['multi' => true, 'upsert' => false]
);

 $bulkWrite->update(
 ['name' => 'Samsung Galaxy S7 White'],
 ['$set' => [
 'name' => 'Samsung Galaxy S7 Black',
 'price' => 669.99
]],
 ['multi' => true, 'upsert' => false]
);

 $writeConcern = new
MongoDBDriverWriteConcern(MongoDBDriverWriteConcern::MAJORITY, 1000);

 $result = $manager->executeBulkWrite('foggyline.products', $bulkWrite,
$writeConcern);

 if ($result->getModifiedCount()) {
 echo 'Record(s) saved updated.', PHP_EOL;
 } else {
 echo 'Error occurred.', PHP_EOL;
 }
} catch (MongoDBDriverExceptionException $e) {
 echo $e->getMessage(), PHP_EOL;
 exit;
}

The update() method accepts three different parameters: filter, a new object, and update
options. The multi option passed under update options, tells if all documents' matching
criteria will be updated. The upsert option passed under update options, controls the
creation of a new record if the existing record is not found. The resulting change can be
observed through the mongo shell:

Working with Databases

[352]

Deleting
Deletion is done in a manner similar to write and update, in that it uses an instance of
the MongoDBDriverBulkWrite object. This time, we are using the instance delete()
method, which accepts filter and delete options:

<?php

require_once __DIR__ . '/vendor/autoload.php';

try {
 $manager = new MongoDBDriverManager('mongodb://localhost:27017');

 $bulkWrite = new MongoDBDriverBulkWrite;

 $bulkWrite->delete(
 // filter
 [
 'name' => [
 '$regex' => '^iPhone'
]
],
 // Delete options
 ['limit' => false]
);

 $writeConcern = new
MongoDBDriverWriteConcern(MongoDBDriverWriteConcern::MAJORITY, 1000);

 $result = $manager->executeBulkWrite('foggyline.products', $bulkWrite,
$writeConcern);

 if ($result->getDeletedCount()) {
 echo 'Record(s) deleted.', PHP_EOL;
 } else {

Working with Databases

[353]

 echo 'Error occurred.', PHP_EOL;
 }
} catch (MongoDBDriverExceptionException $e) {
 echo $e->getMessage(), PHP_EOL;
 exit;
}

Using the false value for the limit option, we are effectively asking to delete all matching
documents. Using the mongo shell, we can observe the changes shown in the following
 screenshot:

Transactions
MongoDB does not have a full ACID (Atomicity, Consistency, Isolation,
Durability) support in a sense that MySQL has. It supports ACID transactions only at the
document level. The multi-document transactions are not supported. The lack of ACID
compliance certainly limits its use with platforms that depend on this feature. This is not to
say that MongoDB cannot be used with such platforms. Let's consider a popular Magento e-
commerce platform. There is nothing preventing Magento from adding MongoDB to the
mix. While the MySQL features can guarantee ACID compliance around sales-related
functionality, MongoDB can be used within the conjunction to cover bits around catalog
functionality. This type of symbiosis can then easily bring the best of both database features
to our platform.

Working with Databases

[354]

Working with Redis
Redis is an open source, in-memory data structure store, whose development is sponsored
by Redis Labs. The name originated from REmote DIctionary Server. It currently ranks as
one of the most popular key-value databases.

Some of the key strengths of Redis can be outlined as follows:

In-memory data structure store
Key-value data store
Keys with a limited time-to-live
Publish/subscribe messaging
It can be used for cache data stores
Transactions
Master-slave replication

Installing Redis
Assuming we are using the fresh Ubuntu 16.10 (Yakkety Yak) installation, the following
steps outline how we can setup the Redis server:

We can install the Redis server using the following console commands:1.

sudo apt-get update
sudo apt-get -y install build-essential tcl
wget http://download.redis.io/redis-stable.tar.gz
tar xzf redis-stable.tar.gz
cd redis-stable
make
make test
sudo make install
./src/redis-server

Working with Databases

[355]

This should give us the following output:2.

Setting up sample data
Running the redis-cli command on the Ubuntu terminal gets us into the
Redis interactive shell. From here on, with a simple few commands, we can add the
following sample data:

SET Key1 10
SET Key2 20
SET Key3 30
SET Key4 40
SET Key5 50

Working with Databases

[356]

This should give us the following output:

Using the KEYS * command within the redis-cli shell, we are able to now list all the
entries added by Redis:

Querying via the phpredis driver extension
Before we start querying, we need to ensure that we have the PHP CLI and
phpredis driver extension installed:

sudo apt-get -y install php7.0-dev
sudo apt-get -y install unzip
wget https://github.com/phpredis/phpredis/archive/php7.zip -O phpredis.zip
unzip phpredis.zip
cd phpredis-php7/
phpize
./configure
make
sudo make install
echo extension=redis.so >> /etc/php/7.0/cli/php.ini

Working with Databases

[357]

Upon successful execution of these commands, we can confirm that the phpredis driver
extension is installed as follows:

Connecting
Using the phpredis driver extension, we can connect to Redis from PHP using the Redis
class, as follows:

<?php

$client = new Redis();

$client->connect('localhost', 6379);

This single-line expression will look for Redis on localhost under port 6379.

Error handling
The phpredis driver extension throws RedisException for every error that occurs using
the Redis class. This makes it easy to handle errors via simple try...catch blocks:

<?php

try {
 $client = new Redis();
 $client->connect('localhost', 6379);
 // Code...
} catch (RedisException $e) {
 echo $e->getMessage(), PHP_EOL;
}

Selecting
Given that Redis is a key value store, selecting keys is as easy as using a single get()
method of the Redis instance:

<?php

Working with Databases

[358]

try {
 $client = new Redis();
 $client->connect('localhost', 6379);
 echo $client->get('Key3'), PHP_EOL;
 echo $client->get('Key5'), PHP_EOL;
} catch (RedisException $e) {
 echo $e->getMessage(), PHP_EOL;
}

This should give us the following output:

The Redis client class also provides the mget() method, which is able to fetch more than
one key value at a time:

<?php

try {
 $client = new Redis();
 $client->connect('localhost', 6379);

 $values = $client->mget(['Key1', 'Key2', 'Key4']);
 print_r($values);
} catch (RedisException $e) {
 echo $e->getMessage(), PHP_EOL;
}

This should give us the following output:

Working with Databases

[359]

Inserting
The simplicity behind the Redis key-value mechanism makes for a simple and
straightforward set() method, through which we insert new entries, as shown in the
following example:

<?php

try {
 $client = new Redis();
 $client->connect('localhost', 6379);

 $client->set('user', [
 'name' => 'John',
 'age' => 34,
 'salary' => 4200.00
]);

 // $client->get('user');
 // returns string containing "Array" chars

 $client->set('customer', json_encode([
 'name' => 'Marc',
 'age' => 43,
 'salary' => 3600.00
]));

 // $client->get('customer');
 // returns json looking string, which we can simply json_decode()
} catch (RedisException $e) {
 echo $e->getMessage(), PHP_EOL;
}

Working with Databases

[360]

This should give us the following output:

We should be careful when using the set methods with non-string like structures. The user
key value resulted in the Array string being stored in Redis, and not the actual array
structure. This is easily sorted by converting our array structure to JSON
using json_encode(), right before we pass it onto the set() method.

One great benefit of the set() method is that it supports the timeout in seconds, so we can
easily write expressions such as the following:

$client->set('test', 'test2', 3600);

Although, calling the setex() method is the preferred way for when we want to add a
timeout to our keys:

$client->setex('key', 3600, 'value');

Timeouts are a great feature to use when using Redis as a cache database.
They basically automate the cache lifetime for us.

Working with Databases

[361]

Updating
Updating a value via the Redis client is the same as inserting it. We use the same set()
method, with the same key. The new value simply overwrites the previous one, if any
exists:

<?php

try {
 $client = new Redis();
 $client->connect('localhost', 6379);

 $client->set('test', 'test1');
 $client->set('test', 'test2');

 // $client->get('test');
 // returns string containing "test2" chars
} catch (RedisException $e) {
 echo $e->getMessage(), PHP_EOL;
}

Deleting
Removing records from Redis is as easy as calling the Redis client del() method and
passing it the key that we want to delete:

<?php

try {
 $client = new Redis();
 $client->connect('localhost', 6379);
 $client->del('user');
} catch (RedisException $e) {
 echo $e->getMessage(), PHP_EOL;
}

Working with Databases

[362]

Transactions
Much like MongoDB, Redis also does not have ACID support in a sense that MySQL has,
which is alright really, as Redis is just a key/value store and not a relational database. Redis,
however, provides a level of atomicity. Using MULTI, EXEC, DISCARD, and WATCH, we are
able to execute a group of commands within a single step, during which Redis makes the
following two guarantees:

Another client request can never be served in the middle of our group-commands
execution
Either all or none of the commands are processed

Let's take a look at the following example:

<?php

try {
 $client = new Redis();
 $client->connect('localhost', 6379);

 $client->multi();

 $result1 = $client->set('tKey1', 'Test#1'); // Valid command
 $result2 = $client->zadd('tKey2', null); // Invalid command

 if ($result1 == false || $result2 == false) {
 $client->discard();
 echo 'Transaction aborted.', PHP_EOL;
 } else {
 $client->exec();
 echo 'Transaction commited.', PHP_EOL;
 }
} catch (RedisException $e) {
 echo $e->getMessage(), PHP_EOL;
}

The $result2 value comes out as false, which triggers $client->discard();.
Although, result1 is a valid expression, it came after the $client->multi(); call, which
means that its command is not really processed; so, we don't get to see the Test#1 value
stored in Redis. Although there is no classically looking rollback mechanism, like we had
with MySQL, this makes for a nice transaction model.

Working with Databases

[363]

Summary
Throughout this chapter, we touched upon the basics of querying three very different
database systems.

The MySQL database has been around for a very long time, and is likely the number one
database for most PHP applications. Its ACID compliance makes it irreplaceable for
applications dealing with financial or other sensitive data where atomicity, consistency,
isolation, and durability are key factors.

Mongo, on the other hand, tackles data storage through a schema-less approach. This makes
it much easier for developers to pace up application development, although the lack of
ACID compliance across documents limits its use in certain types of applications.

Finally, the Redis data store serves as a great caching, or even a session-storing solution for
our applications.

Moving forward, we will take a closer look at dependency injection, what it is, and what
role does it have within modular applications.

13
Resolving Dependencies

Writing a loosely coupled code has become an essential skill for any professional
developer. While legacy applications had a tendency to pack it all up, thus ending in one
big solid block of code, modern applications take a more gradient approach as they largely
rely on third-party libraries and other components. Nowadays, hardly anyone builds their
own mailer, logger, router, template engine, and so on. Great deal of these components are
out there, waiting to be consumed by our application through Composer. As individual
components themselves are tested and maintained by various community or commercial
entities, the cost of maintaining our application is significantly reduced. The overall code
quality itself improves as an indirect consequence of more specialized developers
addressing specific functionalities that otherwise might fall out of the area of our expertise.
Harmony that has been made possible via loosely coupled code.

There are a multitude of positive side-effects of loosely coupled code, some of which
include the following:

Easier refactoring
Improved code maintainability
Easier cross-platform utilization
Easier cross-framework utilization
Aspiration towards a single responsibility principle compliance
Easier testing

This magic of loose coupling is easily achieved by utilizing various language features, such
as interfaces, and design patterns, such as dependency injection. Moving forward, we
will take a look at the basic aspects of dependency injection through the following sections:

Mitigating the common problem
Understanding dependency injection

Resolving Dependencies

[365]

Understanding dependency injection container

Mitigating the common problem
The dependency injection is a well-established software technique that deals with the
problem of object dependencies, allowing us to write loosely coupled classes. While the
pattern itself has been around for quite some time, the PHP ecosystem hasn't really picked it
up until major frameworks such as Symfony started implementing it. Nowadays, it is a de
facto standard for anything other than trivial types of application. The whole dependency
problem is easily observed through a simple example:

<?php

class Customer
{
 protected $name;

 public function loadByEmail($email)
 {
 $mysqli = new mysqli('127.0.0.1', 'foggy', 'h4P9niq5', 'sakila');

 $statement = $mysqli->prepare('SELECT * FROM customer WHERE email =
?');
 $statement->bind_param('s', $email);
 $statement->execute();

 $customer = $statement->get_result()->fetch_object();

 $this->name = $customer->first_name . ' ' . $customer->last_name;

 return $this;
 }
}

$customer = new Customer();
$customer->loadByEmail('MARY.SMITH@sakilacustomer.org');

Here, we have a simple Customer class with a single loadByEmail() method. The
troubling part is the dependency on the database $mysqli object being locked in
a loadByEmail() instance method. This makes for tight coupling, which reduces
code reusability and opens the door for possible system-wide side-effects to be induced by
later code changes. To mitigate the problem, we need to inject the database $mysqli object
into $customer.

Resolving Dependencies

[366]

The MySQL Sakila database can be obtained from h t t p s ://d e v . m y s q l . c o

m /d o c /s a k i l a /e n /.

There are three ways to inject the dependency into an object:

Through an instance method
Through a class constructor
Through instance property

Whereas the instance method and class constructor approach seem slightly more popular
than instance property injection.

The following example demonstrates the approach of using an instance method for
dependency injection:

<?php

class Customer
{
 public function loadByEmail($email, $mysqli)
 {
 // ...
 }
}

$mysqli = new mysqli('127.0.0.1', 'foggy', 'h4P9niq5', 'sakila');

$customer = new Customer();
$customer->loadByEmail('MARY.SMITH@sakilacustomer.org', $mysqli);

Here, we are injecting an instance of the $mysqli object into an instance of the Customer
object through the customer's loadByEmail() instance method. While this is certainly a
better way than instantiating the $mysqli object within the loadByEmail() method itself,
it is easy to imagine how quickly our client code might become clumsy if our class were to
have a dozen of methods, each requiring different objects to be passed to it. While this
approach might seem tempting, injecting dependencies through instance methods violates
OOP's principle of encapsulation. Furthermore, adding arguments to methods for the sake
of dependency is anything but an example of best practice.

Another approach would be to utilize the class constructor method as per the following
example:

<?php

https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/

Resolving Dependencies

[367]

class Customer
{
 public function __construct($mysqli)
 {
 // ...
 }

 public function loadByEmail($email)
 {
 // ...
 }
}

$mysqli = new mysqli('127.0.0.1', 'foggy', 'h4P9niq5', 'sakila');

$customer = new Customer($mysqli);
$customer->loadByEmail('MARY.SMITH@sakilacustomer.org');

Here, we are injecting an instance of the $mysqli object into an instance of the Customer
object through the customer's __constructor() method. Whether a single or a dozen
objects are being injected, the constructor injection comes out as the clear winner here. The
client application has a single entry point for all injections, making it easy to keep a track of
things.

Without the notion of dependency injection, a loosely coupled code would be impossible to
achieve.

Understanding dependency injection
Throughout the introductory section, we touched upon passing dependency through the
class __construct() method. There is more to it than just passing the dependent object.
Let's consider the following three seemingly similar but different examples.

Though PHP has been supporting type hinting for quite a while now, it isn't uncommon to
come across pieces of code, which are as follows:

<?php

class App
{
 protected $config;
 protected $logger;

 public function __construct($config, $logger)
 {

Resolving Dependencies

[368]

 $this->config = $config;
 $this->logger = $logger;
 }

 public function run()
 {
 $this->config->setValue('executed_at', time());
 $this->logger->log('executed');
 }
}

class Config
{
 protected $config = [];

 public function setValue($path, $value)
 {
 // implementation
 }
}

class Logger
{
 public function log($message)
 {
 // implementation
 }
}

$config = new Config();
$logger = new Logger();

$app = new App($config, $logger);
$app->run();

We can see that the App class __construct() method does not utilize the PHP type
hinting feature. The $config and $logger variables are assumed by the developer to be of
a certain type. While this example will work just fine, it still keeps our classes tightly
coupled. There really is not that much difference between this example and the previous
one where we had the $msqli dependency within the loadByEmail() method.

Adding type hinting to the mix allows us to force the types we pass into the App
class __construct() method:

<?php

class App

Resolving Dependencies

[369]

{
 protected $config;
 protected $logger;

 public function __construct(Config $config, Logger $logger)
 {
 $this->config = $config;
 $this->logger = $logger;
 }

 public function run()
 {
 $this->config->setValue('executed_at', time());
 $this->logger->log('executed');
 }
}

class Config
{
 protected $config = [];

 public function setValue($path, $value)
 {
 // implementation
 }
}

class Logger
{
 public function log($message)
 {
 // implementation
 }
}

$config = new Config();
$logger = new Logger();

$app = new App($config, $logger);
$app->run();

This simple move sets us halfway through making our code loosely coupled. Although we
are now instructing our injectable objects to be of an exact type, we are still locked onto a
specific type, that is, implementation. Striving for loose coupling should not get us locked
into a specific implementation; otherwise, there would not be much use of a dependency
injection pattern.

Resolving Dependencies

[370]

This third example sets an important differentiation in regards to the first two examples:

<?php

class App
{
 protected $config;
 protected $logger;

 public function __construct(ConfigInterface $config, LoggerInterface
$logger)
 {
 $this->config = $config;
 $this->logger = $logger;
 }

 public function run()
 {
 $this->config->setValue('executed_at', time());
 $this->logger->log('executed');
 }
}

interface ConfigInterface
{
 public function getValue($value);

 public function setValue($path, $value);
}

interface LoggerInterface
{
 public function log($message);
}

class Config implements ConfigInterface
{
 protected $config = [];

 public function getValue($value)
 {
 // implementation
 }

 public function setValue($path, $value)
 {
 // implementation
 }

Resolving Dependencies

[371]

}

class Logger implements LoggerInterface
{
 public function log($message)
 {
 // implementation
 }
}

$config = new Config();
$logger = new Logger();

$app = new App($config, $logger);
$app->run();

Favoring interface type hints instead of concrete class type hints is among the key
ingredients to write loosely coupled code. Although we are still injecting dependencies
through the class __construct(), we are now doing so in a program to an interface, not an
implementation manner. This allows us to avoid tight coupling, making our code more
reusable.

Clearly, these examples are ultimately simple. We can imagine how quickly things start to
complicate when the number of injected objects increase, where each of the injected objects
might need one, two, or even a dozen of the __construct() parameters itself. This is
where the dependency injection container comes in handy.

Understanding dependency injection
container
A dependency injection container is an object that knows how to auto-wire classes together.
The auto-wire term implies both instantiating and properly configuring objects. This is by
no means an easy task, which is why there are several libraries addressing this
functionality.

The DependencyInjection component provided by the Symfony framework is a
neat dependency injection container that can be easily installed by Composer.
Moving forward, let's go ahead and create a di-container directory where we will
execute these commands and set up our project:

composer require symfony/dependency-injection

Resolving Dependencies

[372]

The resulting output suggests we should install some additional packages:

We need to make sure we add the symfony/yaml and symfony/config packages by
running the following console commands:

composer require symfony/yaml
composer require symfony/config

The symfony/yaml package installs the Symfony Yaml component. This component parses
the YAML strings into PHP arrays and the other way around. The
symfony/config package installs the Symfony Config component. This component
provides classes to help us find, load, combine, autofill, and validate configuration
values from sources, such as YAML, XML, INI files, or even a database itself.
The symfony/dependency-injection, symfony/yaml, and symfony/config
packages themselves stand as a nice example of loosely coupled components. While the
three work hand in hand to deliver the full scope of dependency injection functionality,
components themselves follow the principles of loose coupling.

Check out h t t p ://s y m f o n y . c o m /d o c /c u r r e n t /c o m p o n e n t s /d e p e n d e n c y _

i n j e c t i o n . h t m l for more information about the
Symfony's DependencyInjection component.

Now let's go ahead and create the container.yml configuration file within the di-
container directory:

services:
 config:
 class: Config
 logger:
 class: Logger
 app:
 class: App
 autowire: true

http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html

Resolving Dependencies

[373]

The container.yml file has a specific structure that begins with the keyword services.
Without delving any deeper into it, suffice it to say that the service container is the
Symfony's name for dependency injection container, while the service is any PHP object
performing some task--basically, an instance of a class of any sort.

Right below the services tag, we have the config, logger, and app tags. These denote a
declaration of three distinctive services. We could have easily named them the_config,
the_logger, the_app, or whatever else we prefer. Drilling deeper into individual services,
we see the class tag being common to all three services. The class tag tells the container
what class to instantiate when a given service instance is asked for. Finally, the autowire
feature used within the app service definition allows the autowiring subsystem to detect the
dependencies of the App class by parsing its constructor. This makes it dead simple for a
client code to get an instance of the App class without even being aware of the $config and
$logger requirements on the App class __construct().

With the container.yml file in place, let's go ahead and create the index.php file within
the di-container directory:

<?php

require_once __DIR__ . '/vendor/autoload.php';

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\Loader\YamlFileLoader;

interface ConfigInterface { /* ... */}
interface LoggerInterface { /* ... */}
class Config implements ConfigInterface { /* ... */}
class Logger implements LoggerInterface { /* ... */}
class App { /* ... */}

// Bootstrapping
$container = new ContainerBuilder();

$loader = new YamlFileLoader($container, new FileLocator(__DIR__));
$loader->load('container.yml');

$container->compile();

// Client code
$app = $container->get('app');
$app->run();

Resolving Dependencies

[374]

Be sure to replace everything from ConfigInterface to App with the
exact code we had in our third example from within the Understanding
dependency injection section.

We started off by including the autoload.php file so we get the auto-loading for our
dependency container component working. The code following the use statements is the
same code we had in the Understanding dependency injection section. The interesting part
comes after it. The instance of ContainerBuilder is created and passed
onto YamlFileLoader, which loads the container.yml file. Right after the file is loaded,
we call the compile() method on the $container instance. Running compile() allows
the container to pick up on the autowire service tag, among other things. Finally, we are
using the get() method on the $container instance to fetch an instance of the app
service. The client, in this case, has no upfront knowledge of arguments being passed to
the App instance; the dependency container handled it all by itself based on a
container.yml configuration.

Using interface type hints and the container, we are able to write more reusable, testable,
and decoupled code.

Check out h t t p ://s y m f o n y . c o m /d o c /c u r r e n t /s e r v i c e _ c o n t a i n e r . h t m l

for more information about the Symfony service container.

Summary
The dependency injection is a simple technique that allows us to escape from the shackles of
tight coupling. Combined with interface type hints, we get a powerful technique to
write loosely coupled code. This isolates and minimizes the impact of possible future
application design changes as well as its defects. Nowadays, it is considered irresponsible to
even write modular and large code base applications without embracing these simple
techniques.

Moving forward, we will take a closer look at the state of the ecosystem around PHP
packages, their creation, and distribution.

http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html
http://symfony.com/doc/current/service_container.html

14
Working with Packages

Modern PHP applications tend to be comprised of a large number of files. Take the
Magento 2 eCommerce platform as an example. Once installed, its vendor
directory contains over thirty thousand of the PHP class files. The sheer size of it is enough
to stunt anyone. Why so many files, one might wonder? Nowadays, it is popular, if not
mandatory, to make use of preexisting libraries and packages other developers have written
before us. It would not make much sense to reinvent the wheel all the time. This is
why package managers such as Composer are ever so popular among the PHP
developers. Making use of these package managers usually means pulling in a diverse set of
third-party packages into our project. While this usually hints increased application size, it
also allows us to jump-start our application development. The added benefit being the
quality and continuous maintenance of these packages by third parties, which we then
merely update into our application.

In this chapter, we will look into Composer, the most popular PHP package manager:

Understanding Composer
Understanding Packagist
Using third-party packages
Creating your own package
Distributing your package

Throughout the previous chapters, we already had certain touching points
with Composer, as we used some of its packages. The following sections
are to add some extra clarity on top of that, as well as showcase how we
can create our own packages.

Working with Packages

[376]

Understanding Composer
Composer is a per-project package manager for PHP. Originally released in 2011, it quickly
caught up and became a favorite package manager among PHP developers. Just by looking
at its GitHub statistics, we can see the project is being actively developed by the
community:

Nowadays, it is an integral part of almost every popular PHP project. Installing Composer
is a pretty straightforward task. Assuming we are using the fresh Ubuntu 16.10 (Yakkety
Yak) installation, the following command outlines how we can install Composer:

sudo apt-get -y install composer

Running composer -v after the installation should show the output similar to the
following screenshot:

Working with Packages

[377]

Now that we have it installed, using Composer is quite simple. Assuming we have an
existing project to which we would like to add the Twig library, we can do so just
by running the following command within our project root directory:

composer require "twig/twig:^2.0"

Upon execution, two files and a directory are created/modified: composer.json,
composer.lock, and vendor. The vendor directory is the physical location where
Composer places the packages we choose to install. We could have easily started off by
manually creating the same composer.json file with the content as follows, and then
running the composer install command within the project directory:

{
 "require": {

Working with Packages

[378]

 "twig/twig": "^2.0"
 }
}

Check out h t t p s ://g e t c o m p o s e r . o r g /d o c /04- s c h e m a . m d for full
information on possible composer.json content.

Now we could easily modify index.php or any other entry-point file to our root project
directory and include all of the installed composer packages by adding the following entry
to it as follows:

require_once __DIR__ . '/vendor/autoload.php';

The vendor/autoload.php file is created by the composer tool, which handles the
autoloading of all the packages we pulled in through composer, the content of which looks
like this:

<?php

// autoload.php @generated by Composer

require_once __DIR__ . '/composer/autoload_real.php';

return ComposerAutoloaderInitea5a081b69b5068b6eadbd8b638d57b2::getLoader();

This file is not something we should really concern ourselves with, aside from knowing
where it is.

Both PSR-4 and PSR-0 autoloading are supported, although PSR-4 is the
recommended way as it offers a greater ease of use.

As soon as we include /vendor/autoload.php into our script, all of the pulled in
packages become available to our application. Whether it is a new or existing project,
Composer makes it quite easy to add packages to it.

Learning about Composer in full is out of the scope of this section. Consult
the original documentation (h t t p s ://g e t c o m p o s e r . o r g /) for more details
on Composer.

https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/

Working with Packages

[379]

Understanding Packagist
Much like the Git and GitHub relationship, we have the Composer and Packagist
relationship. While Composer itself is the actual tool, Packagist is the default repository
service that provides packages for Composer. Service is easy enough to let us find packages
we would like to use for our project. Without getting into the internals, it is suffice to say
that the composer tool understands where to get the code for each of the packages hosted
on Packagist.

The Packagist repository service is hosted at h t t p s ://p a c k a g i s t . o r g :

https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org

Working with Packages

[380]

The popularity of Composer over time can be easily observed through the h t t p s ://p a c k a g

i s t . o r g /s t a t i s t i c s page, which shows the rapidly increasing number of packages in the
Packagist repository over the course of few years:

Using third-party packages
We already saw how easy it is to install the composer package via one of the following two
options:

Executing a command such as require vendor/package:2.*
vendor/package2:dev-master
Adding a package link information under composer.json require, and
executing composer install on console

https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics
https://packagist.org/statistics

Working with Packages

[381]

Without knowing which package exactly we might need, we could use the h t t p s ://p a c k a g

i s t . o r g search tool to find it. Let's consider, for example, we are looking for a package with
an e-mail sending functionality. This is where the sheer size of the Packagist repository
might take us some time to find the right package. Luckily, we can use Sort by downloads
or Sort by favorites to help ourselves out:

https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org

Working with Packages

[382]

Once we click on the individual package, we get to see the available versions we can install:

Running composer require swiftmailer/swiftmailer in this case would give us the
latest stable version 5.4.6.

Once installed, packages can later be updated to possible new stable versions simply by
running the composer update command within the project root.

Creating your own package
Using the composer init command, we can kick off the interactive
composer.json generator that we will use later on to distribute our package. The
interactive generator raises several questions, as per the following output:

Working with Packages

[383]

We used foggyline as our vendor name here, whereas mp7 (short for Mastering PHP 7)
was used for the package name. Upon completion, the composer.json file is generated
with the following content:

{
"name": "foggyline/mp7",
"description": "Just a test package.",
"type": "library",
"license": "MIT",
"authors": [
 {
"name": "Branko Ajzele",
"email": "ajzele@gmail.com"
 }
],
"require": {}
}

Working with Packages

[384]

Now, let's go ahead and create the src/Foggyline/MP7/Greeting/Goodbye.php file,
relative to the project root directory, with the following content:

<?php

namespace FoggylineMP7Greeting;

class Welcome
{
 public function generate($name)
 {
 return 'Welcome ' . $name;
 }
}

This is our dummy library class that we will soon distribute as the composer package.
Before we do so, we need to amend composer.json by adding the top-
level autoload entry to it, as follows:

"autoload": {
 "psr-4": {
 "FoggylineMP7": "src/Foggyline/MP7/"
 }
}

To test if autoload is set right, we run the composer dump-autoload --optimize
console command and create the index.php file with the following content. We
deliberately use the full path to the MP7 directory, as this will be our individual library, that
is, package:

<?php

require_once __DIR__ . '/vendor/autoload.php';

use FoggylineMP7GreetingWelcome;

$greeting = new Welcome();

echo $greeting->generate('John');

If all went well, running this script should give us a Welcome John output. Now that we
have composer.json describing our project, and src/Foggyline/MP7/ containing our
library code, we can go ahead and distribute this.

Working with Packages

[385]

Distributing your package
We first need to push composer.json and our library code from
within src/Foggyline/MP7/, into the GitHub repository. Assuming we have an empty
GitHub repository, such as git@github.com:ajzele/foggyline_mp7.git, waiting for
us, we can easily do so through the following few commands:

git init
git remote add origin git@github.com:ajzele/foggyline_mp7.git
git add composer.json
git add src/Foggyline/MP7/
git commit -m "Initial commit"
git push origin master

This should show up in GitHub, as follows:

Working with Packages

[386]

With the files in the GitHub repository, we can now visit the h t t p s ://p a c k a g i s t . o r g page
and Submit our package:

Once the Check is done, we should be able to see a screen similar to the following one:

https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org

Working with Packages

[387]

Once we hit the Submit button, we should be able to see a screen similar to the following
one:

We should now be able to use the foggyline/mp7 package within any project just by
running the following console command:

composer require foggyline/mp7:dev-master

Notice the dev-master suffix here. Our package is flagged as dev-
master only. This is because our h t t p s ://g i t h u b . c o m /a j z e l e /f o g g y l i n

e _ m p 7 repository has no tags defined on it.

Let's go ahead and add a v1.5 tag to our repository. We will do so by running the
following console commands:

git tag -a v1.5 -m "my version 1.4" 648e31cc4a
git push origin v1.5

https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7
https://github.com/ajzele/foggyline_mp7

Working with Packages

[388]

Since we are adding a tag to an already made commit, we use the commit ID 648e31cc4a
to attach the tag to it. Once the tag is pushed to the GitHub repository, we can go back to
Packagist and hit the Update button on the package edit screen. This should instantly
update the package versions list to show v1.5:

Assuming we have some project directory with merely an index.php file within it, we
should be able to use the foggyline/mp7 package by running the following console
command:

composer require foggyline/mp7

Working with Packages

[389]

This should result in a directory structure, as follows:

The index.php script can then start using our MP7 library just by including
/vendor/autoload.php.

Summary
Throughout this chapter, we took a look at PHP's most popular package manager--
Composer. We saw how easy it is to add third-party packages to our application, as well as
distribute our own packages using the Packagist repository. A great deal of modern PHP
applications rely on Composer, which is why understanding how to make the best of it is
crucial to our day-to-day development efforts.

Moving forward, we will take a look at the types of testing applicable to PHP applications.

15
Testing the Important Bits

Writing quality software is a technically challenging and expensive activity. The technically
challenging part comes from the need to understand and implement more than one type of
application testing. Whereas, the expensive part comes from the fact that proper testing
usually yields more code than the code we are testing, which translates to more time
needed to get the job done.

Unlike developers, businesses don't care as much about technicalities, as they care
about reducing cost. This is where the two worlds clash at the expense of quality. While
both understand the implications of a technical debt concept, rarely few take it seriously.
Web applications come to mind as a nice example of this clash. The good enough UX and
design is often sufficient to meet the needs of shareholders, while many of the internals and
far-from-the-eye parts of the software are left untested.

Check out h t t p s ://e n . w i k i p e d i a . o r g /w i k i /T e c h n i c a l _ d e b t for more
information on the technical debt concept.

https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt

Testing the Important Bits

[391]

There are many types of testing we can apply to our application, some of which are as
follows:

Unit Testing
Functional Testing
Performance Testing
Usability Testing
Acceptance Testing

It would be unjust to say that one is more important than the other, as each addresses a very
distinct segment of the application. The current state of the PHP ecosystem and tooling
indicates unit, functional, and performance testing to be among the popular ones. In this
chapter, we will take a quick look at a few of the tools and libraries that accommodate these
types of testing:

PHPUnit
Behat
phpspec
jMeter

Software that a typical programmer believes to be thoroughly tested has often had only
about 55 to 60 percent of its logic paths executed. Using automated support, such as
coverage analyzers, can raise that roughly to 85 to 90 percent. It is nearly impossible to
test software at the level of 100 percent of its logic paths.

 - Facts and Fallacies of Software Engineering
book.

PHPUnit
PHPUnit is a representative of unit testing frameworks, whose overall idea is to provide a
strict contract over an isolated piece of code that must be satisfied. This piece of code is what
we call unit, which translates to the class and its methods in PHP. Using
the assertions functionality, the PHPUnit framework verifies that these units behave as
expected. The benefit of unit testing is that its early problem detection helps mitigate
compound or down-the-line errors that might not be obvious initially. The more possible paths
of a program the unit test covers, the better.

Testing the Important Bits

[392]

Setting up the PHPUnit
PHPUnit can be installed as, provisionally named, a tool or a library. Both are the same
things actually, just differing in a way we install and use them. The tool version is really just
a PHP phar archive we can run via console, which then provides a set of console
commands we can execute globally. The library version on the other hand is a set of
PHPUnit libraries packed as a Composer package, as well as a binary that gets dumped into
the project's vendor/bin/ directory.

Assuming that we are using the Ubuntu 16.10 (Yakkety Yak) installation, installing the
PHPUnit as a tool is easy via the following commands:

wget https://phar.phpunit.de/phpunit.phar
chmod +x phpunit.phar
sudo mv phpunit.phar /usr/local/bin/phpunit
phpunit --version

This should give us the final output, much like the following screenshot:

The PHPUnit becomes a system-wide accessible console tool, not related to any project
specifically.

Installing PHPUnit as a library is easy as running the following console command within
the root of our project:

composer require phpunit/phpunit

Testing the Important Bits

[393]

This should give us the final output, much like the following screenshot:

This installs all the PHPUnit library files within our project's vendor/phpunit/ directory,
as well as the phpunit executable file under the vendor/bin/ directory.

Setting up a sample application
Before we start writing some PHPUnit test scripts, let's go ahead and create a very simple
application consisting of merely a few files. This will allow us to focus on the essence
of writing a test later on.

Testing the Important Bits

[394]

Test driven development (TDD), such as the one done with PHPUnit,
encourages writing tests before the implementations. This way, the tests
set the expectations for the functionality and not the other way around.
This approach requires a certain level of experience and discipline, which
might not sit well with newcomers to PHPUnit.

Let's assume that we are making a part of the web shopping functionality, thus dealing with
product and category entities for a start. The first class we address is the Product model.
We will do so by creating the src\Foggyline\Catalog\Model\Product.php file, with
its content as follows:

<?php

declare(strict_types=1);

namespace Foggyline\Catalog\Model;

class Product
{
 protected $id;
 protected $title;
 protected $price;
 protected $taxRate;

 public function __construct(string $id, string $title, float $price,
int $taxRate)
 {
 $this->id = $id;
 $this->title = $title;
 $this->price = $price;
 $this->taxRate = $taxRate;
 }

 public function getId(): string
 {
 return $this->id;
 }

 public function getTitle(): string
 {
 return $this->title;
 }

 public function getPrice(): float
 {
 return $this->price;
 }

Testing the Important Bits

[395]

 public function getTaxRate(): int
 {
 return $this->taxRate;
 }
}

The Product class relies on the constructor for setting up the product's ID, title, price, and
tax rate. Other than that, there is no actual logic to the class, aside from the simple getter
methods. With the Product class in place, let's go ahead and create a Category class. We
will add it to the src\Foggyline\Catalog\Model\Category.php file, with its content as
follows:

<?php

declare(strict_types=1);

namespace Foggyline\Catalog\Model;

class Category
{
 protected $title;
 protected $products;

 public function __construct(string $title, array $products)
 {
 $this->title = $title;
 $this->products = $products;
 }

 public function getTitle(): string
 {
 return $this->title;
 }

 public function getProducts(): array
 {
 return $this->products;
 }
}

The Category class relies on the constructor for setting up the category title and its
products. Other than that, there is no logic in it, aside from the two getter methods, which
merely return the values set through the constructor.

Testing the Important Bits

[396]

To spice things up a bit, for testing purposes, let's go ahead and create a dummy Layer
class as a part of the src\Foggyline\Catalog\Model\Layer.php file, with its content as
follows:

<?php

namespace Foggyline\Catalog\Model;

// Just a dummy class, for testing purpose
class Layer
{
 public function dummy()
 {
 $time = time();
 sleep(2);
 $time = time() - $time;
 return $time;
 }
}

We will use this class merely as an example, with the code coverage analysis later on.

With the Product and Category models, let's go ahead and create the
Block\Category\View class as a part of
the src\Foggyline\Catalog\Block\Category\View.php file, with its content as
follows:

<?php

declare(strict_types=1);

namespace Foggyline\Catalog\Block\Category;

use Foggyline\Catalog\Model\Category;
class View
{
 protected $category;

 public function __construct(Category $category)
 {
 $this->category = $category;
 }

 public function render(): string
 {
 $products = '';

Testing the Important Bits

[397]

 foreach ($this->category->getProducts() as $product) {
 if ($product instanceof \Foggyline\Catalog\Model\Product) {
 $products .= '<div class="product">
 <h1 class="product-title">' . $product->getTitle() . '</h1>
 <div class="product-price">' .
number_format($product->getPrice(), 2, ',', '.') . '</h1>
 </div>';
 }
 }

 return '<div class="category">
 <h1 class="category-title">' . $this->category->getTitle() .
'</h1>
 <div class="category-products">' . $products . '</div>
 </div>';
 }
}

We are using the render() method to render the entire category page. The page itself
consists of a category title, and a container of all of its products with their individual titles
and prices. Now that we have our truly basic application classes outlined, let's add a simple
PSR4 type loader to the autoload.php file, with its content as follows:

<?php

$loader = require __DIR__ . '/vendor/autoload.php';
$loader->addPsr4('Foggyline\\', __DIR__ . '/src/Foggyline');

Finally, we set up the entry point to our application as a part of the index.php file, with its
content as follows:

<?php

require __DIR__ . '/autoload.php';

use Foggyline\Catalog\Model\Product;
use Foggyline\Catalog\Model\Category;
use Foggyline\Catalog\Block\Category\View as CategoryView;

$category = new Category('Laptops', [
 new Product('RL', 'Red Laptop', 1499.99, 25),
 new Product('YL', 'Yellow Laptop', 2499.99, 25),
 new Product('BL', 'Blue Laptop', 3499.99, 25),
]);

$categoryView = new CategoryView($category);
echo $categoryView->render();

Testing the Important Bits

[398]

We will be using this utterly simple application across other types of tests
as well, so it's worth keeping its files and structure in mind.

Writing test
Getting started with writing PHPUnit tests requires grasping a few basic concepts, such as
the following:

The setUp() method: Analogous to the constructor, this is where we create the
objects against which we will perform the test.
The tearDown() method: Analogous to the destructor, this is where we clean up
objects against which we performed the test.
The test*() methods: Every public method whose name begins with test, for
example, testSomething(), testItAgain(), and so on, is considered a single
test. The same effect can be achieved by adding the @test annotation in a
method's docblock; although, this seems to be a less used case.
The @depends annotation: This allows expressing dependencies between the test
methods.
Assertions: The heart of the PHPUnit, this set of methods allows us to reason
about correctness.

The vendor\phpunit\phpunit\src\Framework\Assert\Functions.
php file contains an extensive list of the assert* function declarations,
such as assertEquals(), assertContains(), assertLessThan(), and
others, totaling to over 90 different assert functions.

With these in mind, let's go ahead and write
the src\Foggyline\Catalog\Test\Unit\Model\ProductTest.php file, with its
content as follows:

<?php

namespace Foggyline\Catalog\Test\Unit\Model;

use PHPUnit\Framework\TestCase;
use Foggyline\Catalog\Model\Product;

class ProductTest extends TestCase
{
 protected $product;

Testing the Important Bits

[399]

 public function setUp()
 {
 $this->product = new Product('SL', 'Silver Laptop', 4599.99, 25);
 }

 public function testTitle()
 {
 $this->assertEquals(
 'Silver Laptop',
 $this->product->getTitle()
);
 }

 public function testPrice()
 {
 $this->assertEquals(
 4599.99,
 $this->product->getPrice()
);
 }
}

Our ProductTest class is using a setUp() method to set up an instance of a Product
class. The two test*() methods then use the PHPUnit's built-in assertEquals() method
to test the value of the product title and price.

We then add the src\Foggyline\Catalog\Test\Unit\Model\CategoryTest.php file,
with its content as follows:

<?php

namespace Foggyline\Catalog\Test\Unit\Model;

use PHPUnit\Framework\TestCase;
use Foggyline\Catalog\Model\Product;
use Foggyline\Catalog\Model\Category;

class CategoryTest extends TestCase
{
 protected $category;

 public function setUp()
 {
 $this->category = new Category('Laptops', [
 new Product('TRL', 'Test Red Laptop', 1499.99, 25),
 new Product('TYL', 'Test Yellow Laptop', 2499.99, 25),
]);
 }

Testing the Important Bits

[400]

 public function testTotalProductsCount()
 {
 $this->assertCount(2, $this->category->getProducts());
 }

 public function testTitle()
 {
 $this->assertEquals('Laptops', $this->category->getTitle());
 }
}

Our CategoryTest class is using a setUp() method to set up an instance of a
Category class, along with the two products passed onto the Category class constructor.
The two test*() methods then use the PHPUnit's built-in assertCount() and
assertEquals() methods to test the instantiated values.

We then add
the src\Foggyline\Catalog\Test\Unit\Block\Category\ViewTest.php file, with
its content as follows:

<?php

namespace Foggyline\Catalog\Test\Unit\Block\Category;

use PHPUnit\Framework\TestCase;
use Foggyline\Catalog\Model\Product;
use Foggyline\Catalog\Model\Category;
use Foggyline\Catalog\Block\Category\View as CategoryView;

class ViewTest extends TestCase
{
 protected $category;
 protected $categoryView;

 public function setUp()
 {
 $this->category = new Category('Laptops', [
 new Product('TRL', 'Test Red Laptop', 1499.99, 25),
 new Product('TYL', 'Test Yellow Laptop', 2499.99, 25),
]);

 $this->categoryView = new CategoryView($this->category);
 }

 public function testCategoryTitle()
 {
 $this->assertContains(

Testing the Important Bits

[401]

 '<h1 class="category-title">Laptops',
 $this->categoryView->render()
);
 }

 public function testProductsContainer()
 {
 $this->assertContains(
 '<h1 class="product-title">Test Yellow',
 $this->categoryView->render()
);
 }
}

Our ViewTest class is using a setUp() method to set up an instance of a Category class,
alongside with the two products passed onto the Category class constructor. The two
test*() methods then use the PHPUnit's built-in assertContains() method to test the
presence of the value that should be returned through the category view render() method
call.

We then add the phpunit.xml file, with its content as follows:

<phpunit bootstrap="autoload.php">
 <testsuites>
 <testsuite name="foggyline">
 <directory>src/Foggyline/*/Test/Unit/*</directory>
 </testsuite>
 </testsuites>
</phpunit>

The phpunit.xml configuration file supports quite a robust list of options. Using
the bootstrap attribute of a PHPUnit element, we are instructing the PHPUnit tool to load
the autoload.php file prior to running the tests. This ensures that our PSR4 autoloader
will kick in, and that our test classes will see our classes within the src/Foggyline
directory. The foggyline test suite we defined within testsuites uses the directory
option to specify, in regex form, the path to our unit tests. The path we used was such so
that all of the files under both src/Foggyline/Catalog/Test/Unit/ and
possibly src/Foggyline/Checkout/Test/Unit/ directories are picked up.

Testing the Important Bits

[402]

Check out h t t p s ://p h p u n i t . d e /m a n u a l /c u r r e n t /e n /a p p e n d i x e s . c o n f i

g u r a t i o n . h t m l for more information on phpunit.xml configuration
options.

Executing tests
Running the test suite we have just written is as easy as executing the phpunit command
within our project root directory.

Upon execution, phpunit will look for the phpunit.xml file and act accordingly. This
means that phpunit will know where to look for the test files. Successfully executed tests
show an output like the following screenshot:

However, the unsuccessfully executed tests show an output like the following screenshot:

https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html
https://phpunit.de/manual/current/en/appendixes.configuration.html

Testing the Important Bits

[403]

We can easily modify one of the test classes, as we did with the preceding ViewTest, in
order to trigger and observe the reactions of phpunit to failures.

Code coverage
The great thing about PHPUnit is its code coverage reporting functionality. We can easily
add code coverage to our testing suite just by extending the phpunit.xml file as follows:

<phpunit bootstrap="autoload.php">
 <testsuites>
 <testsuite name="foggyline">
 <directory>src/Foggyline/*/Test/Unit/*</directory>
 </testsuite>
 </testsuites>
 <filter>
 <whitelist>
 <directory>src/Foggyline/</directory>
 <exclude>
 <file>src/config.php</file>
 <file>src/auth.php</file>
 <directory>src/Foggyline/*/Test/</directory>
 </exclude>
 </whitelist>
 <logging>
 <log type="coverage-html" target="log/report" lowUpperBound="50"
 highLowerBound="80"/>
 </logging>
 </filter>
</phpunit>

Here, we added the filter element, with an extra whitelist and logging element. We
can now trigger the testing again, but, this time, with a slightly modified command, as
follows:

phpunit --coverage-html log/report

This should give us the final output, as shown in the following screenshot:

Testing the Important Bits

[404]

The log/report directory should now be filled with HTML report files. If we expose it to
the browser, we can see a nicely generated report with valuable pieces of information about
our code base, as shown in the following screenshot:

The preceding screenshot shows a code coverage percentage across
the src/Foggyline/Catalog/ directory structure. Drilling further down into a Model
directory, we see our Layer class having 0% code coverage, which is expected, as we
haven't written any test for it:

Testing the Important Bits

[405]

Drilling further down into the actual Product class itself, we can see the PHPUnit code
coverage outlining each and every line of code covered by our test:

Testing the Important Bits

[406]

Looking directly into the actual Layer class gives us a nice visual on the lack of any code
coverage within this class:

Code coverage provides valuable visual and statistical information about the amount of
code we have covered with tests. Although this information is easily misinterpreted, having
100% code coverage is by no means a measure of our individual test quality. Writing
quality tests requires the writer, that is, the developer, to have a clear understanding of
what exactly is the unit testing. It goes to say that we can easily have 100% code coverage,
with 100% passing tests, and yet fail to address certain test cases or paths of logic.

Behat
Behat is an open source and free testing framework based on a notion of behavior-driven
development (BDD). The great benefit of the BDD frameworks, including Behat, is that a
significant portion of the functional documentation gets poured into the actual user stories
we end up testing. That is, to some extent, the documentation itself becomes a test.

Testing the Important Bits

[407]

Setting up Behat
Much like PHPUnit, Behat can be installed as a tool and library. The tool version being the
.phar archive, we can download it from the official GitHub repository, where the library
version comes packed as a Composer package.

Assuming that we are using the Ubuntu 16.10 (Yakkety Yak) installation, installing the
Behat as a tool is easy through the following commands:

wget https://github.com/Behat/Behat/releases/download/v3.3.0/behat.phar
chmod +x behat.phar
sudo mv behat.phar /usr/local/bin/behat
behat --version

This should give us the following output:

Installing Behat as a library is as easy as running the following console command within the
root of our project:

composer require behat/behat

This should give us the final output, as shown in the following screenshot:

Testing the Important Bits

[408]

The Behat library now becomes available under the vendor/behat directory and its
console tool executable under the vendor/bin/behat file.

Setting up a sample application
The sample application for Behat testing is the same one we used for PHPUnit testing. We
will merely extend it a bit by adding an extra class to it. Given the lack of any real
"behavior" in our PHPUnit sample application, our extension here will include a dummy
shopping cart functionality.

Therefore, we will add the src\Foggyline\Checkout\Model\Cart.php file, with its
content as follows:

<?php

declare(strict_types=1);

namespace Foggyline\Checkout\Model;

class Cart implements \Countable
{
 protected $productQtyMapping = [];

 public function addProduct(\Foggyline\Catalog\Model\Product $product,
int $qty): self
 {
 $this->productQtyMapping[$product->getId()]['product'] = $product;
 $this->productQtyMapping[$product->getId()]['qty'] = $qty;
 return $this;
 }

 public function removeProduct($productId): self
 {
 if (isset($this->productQtyMapping[$productId])) {
 unset($this->productQtyMapping[$productId]);
 }

 return $this;
 }

 public function getSubtotal()
 {
 $subtotal = 0.0;

 foreach ($this->productQtyMapping as $mapping) {

Testing the Important Bits

[409]

 $subtotal += ($mapping['qty'] *
$mapping['product']->getPrice());
 }

 return $subtotal;
 }

 public function getTotal()
 {
 $total = 0.0;

 foreach ($this->productQtyMapping as $mapping) {
 $total += ($mapping['qty'] * ($mapping['product']->getPrice() +
($mapping['product']->getPrice() * ($mapping['product']->getTaxRate() /
100))));
 }

 return $total;
 }

 public function count()
 {
 return count($this->productQtyMapping);
 }
}

Leaving the original index.php file as it is, let's go ahead and create the index_2.php file,
with its content as follows:

<?php

$loader = require __DIR__ . '/vendor/autoload.php';
$loader->addPsr4('Foggyline\\', __DIR__ . '/src/Foggyline');

use Foggyline\Catalog\Model\Product;
use \Foggyline\Checkout\Model\Cart;

$cart = new Cart();
$cart->addProduct(new Product('RL', 'Red Laptop', 75.00, 25), 1);
$cart->addProduct(new Product('YL', 'Yellow Laptop', 100.00, 25), 1);

echo $cart->getSubtotal(), PHP_EOL;
echo $cart->getTotal(), PHP_EOL;

$cart->removeProduct('YL');

echo $cart->getSubtotal(), PHP_EOL;
echo $cart->getTotal(), PHP_EOL;

Testing the Important Bits

[410]

We won't actually be needing this one for testing, but it goes to show how our dummy cart
can be utilized.

Writing test
Getting started with writing the Behat tests requires grasping a few basic concepts, such as
the following:

Gherkin language: This is a whitespace, business-readable, domain-specific
language created for behavior descriptions, with the ability to be used for a
project’s documentation and automated test at once through its Given-When-Then
concept.
Features: This is a list of one or more scenarios saved under the *.feature file.
By default, the Behat features are to be stored and found in the features/
directory relative to our project.
Scenarios: These are the core Gherkin structures, consisting of one or more steps.
Steps: These are also known as Givens, Whens, and Thens. Indistinguishable to
Behat, they should be distinguishable to developers as they are carefully selected
for their purpose. The Given steps put the system in a known state, prior to any
user interaction. The When steps describe the key action that the user performs.
The Then step observes the outcomes.

With these in mind, let's go ahead and write and kick off our Behat tests.

The vendor\phpunit\phpunit\src\Framework\Assert\Functions.
php file contains an extensive list of asert* function declarations, such
as assertEquals(), assertContains(), assertLessThan(), and
others, totaling to over 90 different assert functions.

Within the root of our project directory, if we run the behat --init console command, it
will generate a features/ directory, and, within it, a
features/bootstrap/FeatureContext.php file with the following content:

<?php

use Behat\Behat\Context\Context;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

/**
 * Defines application features from the specific context.
 */

Testing the Important Bits

[411]

class FeatureContext implements Context
{
 /**
 * Initializes context.
 *
 * Every scenario gets its own context instance.
 * You can also pass arbitrary arguments to the
 * context constructor through behat.yml.
 */
 public function __construct()
 {
 }
}

The newly created features/ directory is where we write our tests. Ignoring the newly
generated FeatureContext for the moment, let's go ahead and create our first .feature.
As we mentioned earlier, Behat tests are written in a special format called Gherkin. Let's go
ahead and write down our features/checkout-cart.feature file as follows:

Feature: Checkout cart
 In order to buy products
 As a customer
 I need to be able to put products into a cart

 Rules:
 - Each product TAX rate is 25%
 - Delivery for basket under $100 is $10
 - Delivery for basket over $100 is $5

Scenario: Buying a single product under $100
Given there is a "Red Laptop", which costs $75.00 and has a tax rate of 25
When I add the "Red Laptop" to the cart
Then I should have 1 product in the cart
And the overall subtotal cart price should be $75.00
And the delivery cost should be $10.00
And the overall total cart price should be $103.75

Scenario: Buying two products over $100
Given there is a "Red Laptop", which costs $75.00 and has a tax rate of 25
And there is a "Yellow Laptop", which costs $100.00 and has a tax rate of
25
When I add the "Red Laptop" to the cart
And I add the "Yellow Laptop" to the cart
Then I should have 2 product in the cart
And the overall subtotal cart price should be $175.00
And the delivery cost should be $5.00
And the overall total cart price should be $223.75

Testing the Important Bits

[412]

We can see the Given, When, and Then keywords being put to use. However, there are also
several occurrences of And. When there are several Given, When, and Then steps, we are
free to use additional keywords such as And or But to flag a step, thus allowing our
Scenario to be read more fluently. Behat does not differentiate any of these keywords; they
are only meant to be differentiated and experienced by the developer.

Now, we can update our FeatureContext class with the tests, that is, steps,
from checkout-cart.feature. All it takes is to run the following command, and the
Behat tool will do this for us:

behat --dry-run --append-snippets

This should give us the following output:

Testing the Important Bits

[413]

After executing this command, Behat automatically appends all the missing step methods
into our FeatureContext class, which now looks like the following code block:

<?php

use Behat\Behat\Tester\Exception\PendingException;
use Behat\Behat\Context\Context;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

/**
 * Defines application features from the specific context.
 */
class FeatureContext implements Context
{
 /**
 * Initializes context.
 *
 * Every scenario gets its own context instance.
 * You can also pass arbitrary arguments to the
 * context constructor through behat.yml.
 */
 public function __construct()
 {
 }

 /**
 * @Given there is a :arg1, which costs $:arg2 and has a tax rate of
:arg3
 */
 public function thereIsAWhichCostsAndHasATaxRateOf($arg1, $arg2, $arg3)
 {
 throw new PendingException();
 }

 /**
 * @When I add the :arg1 to the cart
 */
 public function iAddTheToTheCart($arg1)
 {
 throw new PendingException();
 }

 /**
 * @Then I should have :arg1 product in the cart
 */
 public function iShouldHaveProductInTheCart($arg1)
 {

Testing the Important Bits

[414]

 throw new PendingException();
 }

 /**
 * @Then the overall subtotal cart price should be $:arg1
 */
 public function theOverallSubtotalCartPriceShouldBe($arg1)
 {
 throw new PendingException();
 }

 /**
 * @Then the delivery cost should be $:arg1
 */
 public function theDeliveryCostShouldBe($arg1)
 {
 throw new PendingException();
 }

 /**
 * @Then the overall total cart price should be $:arg1
 */
 public function theOverallTotalCartPriceShouldBe($arg1)
 {
 throw new PendingException();
 }
}

Now, we need to go in and edit these stub methods to reflect on the classes we are testing
this behavior against. This means replacing all of the throw new PendingException()
expressions with the proper logic and assertions:

<?php

$loader = require __DIR__ . '/../../vendor/autoload.php';
$loader->addPsr4('Foggyline\\', __DIR__ . '/../../src/Foggyline');

use Behat\Behat\Tester\Exception\PendingException;
use Behat\Behat\Context\Context;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

use Foggyline\Catalog\Model\Product;
use \Foggyline\Checkout\Model\Cart;
use \PHPUnit\Framework\Assert;

/**

Testing the Important Bits

[415]

 * Defines application features from the specific context.
 */
class FeatureContext implements Context
{
 protected $cart;
 protected $products = [];

 /**
 * Initializes context.
 *
 * Every scenario gets its own context instance.
 * You can also pass arbitrary arguments to the
 * context constructor through behat.yml.
 */
 public function __construct()
 {
 $this->cart = new Cart();
 }

 /**
 * @Given there is a :arg1, which costs $:arg2 and has a tax rate of
:arg3
 */
 public function thereIsAWhichCostsAndHasATaxRateOf($arg1, $arg2, $arg3)
 {
 $this->products[$arg1] = new Product($arg1, $arg1, $arg2, $arg3);
 }

 /**
 * @When I add the :arg1 to the cart
 */
 public function iAddTheToTheCart($arg1)
 {
 $this->cart->addProduct($this->products[$arg1], 1);
 }

 /**
 * @Then I should have :arg1 product in the cart
 */
 public function iShouldHaveProductInTheCart($arg1)
 {
 Assert::assertCount((int)$arg1, $this->cart);
 }

 /**
 * @Then the overall subtotal cart price should be $:arg1
 */
 public function theOverallSubtotalCartPriceShouldBe($arg1)

Testing the Important Bits

[416]

 {
 Assert::assertEquals($arg1, $this->cart->getSubtotal());
 }

 /**
 * @Then the delivery cost should be $:arg1
 */
 public function theDeliveryCostShouldBe($arg1)
 {
 Assert::assertEquals($arg1, $this->cart->getDeliveryCost());
 }

 /**
 * @Then the overall total cart price should be $:arg1
 */
 public function theOverallTotalCartPriceShouldBe($arg1)
 {
 Assert::assertEquals($arg1, $this->cart->getTotal());
 }
}

Note the use of the PHPUnit framework for asserting. Using Behat does not mean we have
to stop using the PHPUnit library. It would be a shame not to reuse the wast number of the
assert functions available in PHPUnit. Adding it to the project is easy, as shown in the
following line of code:

composer require phpunit/phpunit

Executing tests
Once we sort out all of the stub methods within the
features\bootstrap\FeatureContext.php file, we can simply run the behat
command in our project root to execute tests. This should give us the following output:

Testing the Important Bits

[417]

The output indicates a total of 2 scenarios and 14 different steps, all of which are confirmed
to be working.

Testing the Important Bits

[418]

phpspec
Like Behat, phpspec is an open source and free testing framework based on the notion of
BDD. However, its approach to testing is quite different than that of Behat; we may even
say it sits somewhere in the middle of PHPUnit and Behat. Unlike Behat, phpspec does not
use the Gherkin format stories to describe its tests. Doing so, phpspec shifts its focus on
internal, rather than external application behavior. Much like PHPUnit, phpspec allows us
to instantiate objects, call its methods, and perform various assertions on the results. The
part where it differs is in its "think of specification", and not of "think of test" approach.

Setting up phpspec
Much like PHPUnit and Behat, phpspec can be installed as a tool and a library. The tool
version being the .phar archive, we can download it from the official GitHub repository,
whereas the library version comes packed as a Composer package.

Assuming that we are using the Ubuntu 16.10 (Yakkety Yak) installation, installing phpspec
as a tool is easy, as shown in the following commands:

wget
https://github.com/phpspec/phpspec/releases/download/3.2.3/phpspec.phar
chmod +x phpspec.phar
sudo mv phpspec.phar /usr/local/bin/phpspec
phpspec --version

This should give us the following output:

Installing phpspec as a library is as easy as running the following console command within
the root of our project:

composer require phpspec/phpspec

Testing the Important Bits

[419]

This should give us the final output, which looks like the following screenshot:

The phpspec library now becomes available under the vendor/phpspec directory and its
console tool is executable under the vendor/bin/phpspec file.

Writing test
Getting started with writing phpspec tests requires grasping a few basic concepts, such as
the following:

The it_*() and its_*() methods: This object behavior is made up of individual
examples, each one being flagged with the it_*() or its_*() methods. We can
have one or more of these methods defined per single specification. Each defined
method gets triggered when a test is run.
Matchers methods: These are analogous to assertions in PHPUnit. They describe
how an object should behave.

Testing the Important Bits

[420]

Object construction methods: Every object we describe in phpspec is not a
separate variable, but is $this. Sometimes, however, getting the
proper $this variable requires managing constructor parameters. This is where
the beConstructedWith(), beConstructedThrough(), let(), and letGo()
methods come in handy.
The let() method: This runs before each example.
The letGo() method: This runs after each example.

The matchers are likely something we will have most contact with, so it is worth knowing
there are several different matchers in phpspec, all of which implement the
Matcher interface declared in the src\PhpSpec\Matcher\Matcher.php file:

<?php
namespace PhpSpec\Matcher;
interface Matcher
{
 public function supports($name, $subject, array $arguments);
 public function positiveMatch($name, $subject, array $arguments);
 public function negativeMatch($name, $subject, array $arguments);
 public function getPriority();
}

Using the phpspec describe command, we can create a specification for either one of the
existing or new concrete classes we are yet to write. Since we already have our project set,
let's go ahead and generate a specification for our Cart and Product classes.

We will do so by running the following two commands within the root directory of our
project:

phpspec describe Foggyline/Checkout/Model/Cart
phpspec describe Foggyline/Catalog/Model/Product

The first command generates the spec/Foggyline/Checkout/Model/CartSpec.php file,
with its initial content as follows:

<?php

namespace spec\Foggyline\Checkout\Model;

use Foggyline\Checkout\Model\Cart;
use PhpSpec\ObjectBehavior;
use Prophecy\Argument;

class CartSpec extends ObjectBehavior

Testing the Important Bits

[421]

{
 function it_is_initializable()
 {
 $this->shouldHaveType(Cart::class);
 }
}

The second command generates
the spec/Foggyline/Catalog/Model/ProductSpec.php file, with its initial content as
follows:

<?php

namespace spec\Foggyline\Catalog\Model;

use Foggyline\Catalog\Model\Product;
use PhpSpec\ObjectBehavior;
use Prophecy\Argument;

class ProductSpec extends ObjectBehavior
{
 function it_is_initializable()
 {
 $this->shouldHaveType(Product::class);
 }
}

The generated CartSpec and ProductSpec classes are nearly identical. The difference lies
in the concrete classes they reference through the shouldHaveType() method call. Moving
forward, we will try to write a few simple tests only for the Cart and Product models.
That being said, let's go ahead and modify our CartSpec and ProductSpec classes to
reflect upon the use of matchers: the it_*() and its_*() functions.

We will modify the spec\Foggyline\Checkout\Model\CartSpec.php file with the
following content:

<?php

namespace spec\Foggyline\Checkout\Model;

use Foggyline\Checkout\Model\Cart;
use PhpSpec\ObjectBehavior;
use Prophecy\Argument;
use Foggyline\Catalog\Model\Product;

class CartSpec extends ObjectBehavior
{

Testing the Important Bits

[422]

 function it_is_initializable()
 {
 $this->shouldHaveType(Cart::class);
 }

 function it_adds_single_product_to_cart()
 {
 $this->addProduct(
 new Product('YL', 'Yellow Laptop', 1499.99, 25),
 2
);

 $this->count()->shouldBeLike(1);
 }

 function it_adds_two_products_to_cart()
 {
 $this->addProduct(
 new Product('YL', 'Yellow Laptop', 1499.99, 25),
 2
);

 $this->addProduct(
 new Product('RL', 'Red Laptop', 2499.99, 25),
 2
);

 $this->count()->shouldBeLike(2);
 }
}

We will modify the spec\Foggyline\Catalog\Model\ProductSpec.php file with the
following content:

<?php

namespace spec\Foggyline\Catalog\Model;

use Foggyline\Catalog\Model\Product;
use PhpSpec\ObjectBehavior;
use Prophecy\Argument;

class ProductSpec extends ObjectBehavior
{
 function it_is_initializable()
 {
 $this->shouldHaveType(Product::class);

Testing the Important Bits

[423]

 }

 function let()
 {
 $this->beConstructedWith(
 'YL', 'Yellow Laptop', 1499.99, 25
);
 }

 function its_price_should_be_like()
 {
 $this->getPrice()->shouldBeLike(1499.99);
 }

 function its_title_should_be_like()
 {
 $this->getTitle()->shouldBeLike('Yellow Laptop');
 }
}

Here, we are making use of the let() method, as it triggers before any of the it_*() or
its_*() methods are executed. Within the let() method, we are
calling beConstructedWith() with arguments we would normally pass to a new
Product(...) expression. This builds our product instance, and allows all of the it_*()
or its_*() methods to execute successfully.

Check out h t t p ://w w w . p h p s p e c . n e t /e n /s t a b l e /m a n u a l /i n t r o d u c t i o n .

h t m l for more information on the advanced phpspec concepts.

Executing tests
Running only a phpspec run command at this point will likely fail with something like a
class ... does not exist message, because phpspec assumes a PSR-0 mapping by default. To
be able to work with the application we have done so far, we need to tell phpspec to include
our src/Foggyline/* classes. We can do so either through a phpspec.yml configuration
file, or using the --bootstrap option. Since we have already created the autoload.php
file, let's go ahead and run phpspec by bootstrapping this file as follows:

phpspec run --bootstrap=autoload.php

http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html

Testing the Important Bits

[424]

This generates the following output:

We have involved these two specs using phpspec describe on the existing class. We
could easily pass on the non-existing class name to the same command, as per the following
example:

phpspec describe Foggyline/Checkout/Model/Guest/Cart

The Guest\Cart class does not really exist in our src/ directory. phpspec has no trouble
creating a spec/Foggyline/Checkout/Model/Guest/CartSpec.php specification file,
just like it did for Cart and Product. However, running the phpspec describe now raises a
class ... does not exist error message, along with the interactive generator, as per the
following output:

As a result, the src\Foggyline\Checkout\Model\Guest\Cart.php file is additionally
generated with the following content:

<?php

namespace Foggyline\Checkout\Model\Guest;

class Cart
{
}

Testing the Important Bits

[425]

While all of these are simple examples, it goes to show that phpspec works both ways:

Creating specifications based on existing concrete classes
Generating concrete classes based on a specification

Running our test now should give us the following output:

Now, lets's deliberately fail a test by changing the its_title_should_be_like() method
of spec\Foggyline\Catalog\Model\ProductSpec.php into the following line of code:

$this->getTitle()->shouldBeLike('Yellow');

Running the test now should give us the following output:

There is much more to be said about phpspec. Things such as Stubs, Mocks, Spies,
templates, and extensions further enrich our phpspec testing experience. This section,
however, focuses on the basics to get us started.

Testing the Important Bits

[426]

jMeter
The Apache jMeter is a free and open source application designed for load and performance
testing. The functionality of jMeter extends across many different applications, servers, and
protocol types. In the context of web applications, we might be tempted to compare it to the
browser. However, jMeter works with HTTP and https at a protocol level. It does not render
HTML or execute JavaScript. Although jMeter is primarily a GUI application, it can easily
be installed and have its tests run in console mode. This makes it a convenient tool of choice
for quickly building our tests in GUI mode, and then running them on a server console later
on.

Assuming that we are using the Ubuntu 16.10 (Yakkety Yak) installation, installing jMeter
as a tool is easy, as shown in the following command line:

sudo apt-get -y install jmeter

However, this might not give us the latest version of jMeter, in which case, we can get one
from the official jMeter download page (h t t p ://j m e t e r . a p a c h e . o r g /d o w n l o a d _ j m e t e r . c g

i):

wget
http://ftp.carnet.hr/misc/apache//jmeter/binaries/apache-jmeter-3.2.tgz
tar -xf apache-jmeter-3.2.tgz

Using this second method of installation, we will find the jMeter executable at apache-
jmeter-3.2/bin/jmeter.

Writing test
Throughout this chapter, we used a simple project with a few classes in
the src/Foggyline directory to demonstrate the use of PHPUnit, Behat, and phpspec
testing. Those, however, can't quite serve the purpose of this type of testing. Since we don't
have any HTML pages to showcase in the browser, our focus with jMeter is on kicking off a
simple built-in web test plan in order to understand its components and how we can run it
later on.

http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi

Testing the Important Bits

[427]

Writing jMeter tests for web applications requires a basic understanding of several key
concepts, which are as follows:

Thread Group: This defines a pool of users who execute a specific test
case against our web server. The GUI allows us to control the several Thread
Group options, as shown in the following screenshot:

HTTP Request Defaults: This sets the default values that our HTTP Request
controllers use. The GUI allows us to control the several HTTP Request Defaults
options, as shown in the following screenshot:

Testing the Important Bits

[428]

HTTP Request: This sends the HTTP/HTTPS request to a web server. The GUI
allows us to control the several HTTP Request options, as shown in the following
screenshot:

Testing the Important Bits

[429]

HTTP Cookie Manager: This stores and sends cookies, just like a web browser
does. The GUI allows us to control the several HTTP Cookie Manager options, as
shown in the following screenshot:

HTTP Header Manager: This adds or overrides HTTP request headers. The GUI
allows us to control the several HTTP Header Manager options, as shown in the
following screenshot:

Graph Results: This generates a graph with all the sample times plotted out. The
GUI allows us to control the several Graph Results options, as shown in the
following screenshot:

Testing the Important Bits

[430]

We should never use the Graph Results listener component during
production load tests as it consumes a lot of memory and CPU resources.

The great thing about jMeter is that it already provides several different test plan templates.
We can easily generate a Web Test Plan simply by following these steps:

Click on the File | Templates... menu under the main application menu, as1.
shown here:

Testing the Important Bits

[431]

This in turn triggers the Templates selection screen:

Clicking on the Create button should kick off a new test plan, as shown in the2.
following screenshot:

Testing the Important Bits

[432]

While the test is just fine as it is, let's go ahead and change a few things before we run it:

Right-click on View Results Tree and click on Remove.1.
Right-click on build-web-test-plan and Add | Listener | Graph Results,2.
then set Filename to jmeter-result-tests.csv, as follows:

Click on Scenario 1 and edit Loop Count to value 2:3.

With these modifications in place, let's click on File | Save under the main menu4.
and name our test web-test-plan.jmx.

Out test is now ready to be run. While the test itself won't be load testing our own server in
this case, rather example.org, the value of this exercise lies in understanding how to build
the test via a GUI tool, run it via console, and generate the test results log for later
inspection.

http://example.org

Testing the Important Bits

[433]

Executing tests
Running a jMeter test via a console is quite easy, as the following command shows:

jmeter -n -t web-test-plan.jmx

The -n parameter, also works with --nongui, stands for run JMeter in nongui mode.
Whereas,, the -t parameter that also works with --testfile, stands for the jmeter
test(.jmx) file to run.

The resulting output should look the following screenshot:

A quick look into the jmeter-result-tests.csv file reveals the structure and data
captured:

While the example demonstrated here relies on a default test plan with some minor
modifications, the overall capabilities of Apache jMeter can enrich the whole testing
experience by multiple factors.

Testing the Important Bits

[434]

Summary
Throughout this chapter, we very briefly scratched the surface of some of the most popular
types of PHP application testing. The test driven development (TDD) and behaviour driven
development comprise of a very large and important chunk of it. Luckily, the PHP
ecosystem provides two excellent frameworks, PHPUnit and Behat, which makes these
types of testing easy to work with. Although fundamentally different, PHPUnit and Behat
complete each other in a sense that they ensure our application is tested both from the
smallest unit of functionality to a logical outcome of overall functionality point of view.
phpspec on the other hand seems to sit in the middle of the two, trying to address these two
challenges in its own uniform way. We further glossed over Apache jMeter, seeing how
easy it is to kick off a performance test with a simple web test plan. This allows us to take an
important step forward and confirms that our application not only works, but works fast
enough to meet user expectations.

Moving forward, we will take a closer look at the debugging, tracing, and profiling PHP
applications.

16
Debugging, Tracing, and

Profiling
Tools such as PHPUnit and Behat take an automated approach to testing software. They
give us a great level of reassurance that our application will deliver according to the tests.
The tests, however, like the code itself, are subject to flaws. Be it a faulty test code or
an incomplete test case, having a fully written test for something does not necessarily mean
our code is perfect in a bug-free and performance-optimized way.

More often than not, there are unexpected bugs and performance issues that are far from
obvious during development cycles, only to occasionally resurface at production stage.
While perfect code is a far-reaching concept or, at the very least, a subject for debate, there
certainly is more we can do to improve the quality of our software. To complete the canvas
of software testing, a more methodical process and thorough insight into the application is
required during its runtime.

This is where debugging kicks in. The term is so common among developers that it usually
indicates the following three distinctive processes:

Debugging: This is process of detecting and fixing an application's bugs
Tracing: This is a process of logging an application's chronologically relevant
information
Profiling: This is a process of logging an application's performance-relevant
information

While the tracing and profiling processes automatically log the relevant information every
time an application is run, the debugging process is more of a manual undertaking.

Debugging, Tracing, and Profiling

[436]

In this chapter, we will take a closer look at the two PHP extensions that deal with the
debugging, tracing, and profiling functionalities:

Xdebug
Installation
Debugging
Tracing
Profiling

Zend Z-Ray
Installing Zend Server
Setting up the virtual host
Using Z-Ray

Xdebug
Xdebug is a PHP extension that provides debugging, tracing, and profiling capabilities. The
debugger component uses the DBGp debugging protocol in order to establish the
communication between a PHP scripting engine and a debugger IDE. There are several
IDEs and text editors that support the DBGp debugging protocol; the following are merely
a few of the more popular ones:

NetBeans: This is a free cross-platform IDE available at h t t p s ://n e t b e a n s . o r g /

Eclipse PDT: This is a free cross-platform IDE available at h t t p s ://e c l i p s e . o r g
/p d t /

PhpStorm: This is a commercial cross-platform IDE available at h t t p s ://w w w . j e
t b r a i n s . c o m /p h p s t o r m /

Zend Studio: This is a commercial cross-platform IDE available at h t t p ://w w w . z
e n d . c o m /e n /p r o d u c t s /s t u d i o

Sublime Text 3 : This is a commercial cross-platform text editor available at h t t p
s ://w w w . s u b l i m e t e x t . c o m /3

Notepad++: This is a free Windows platform text editor available at h t t p s ://n o t
e p a d - p l u s - p l u s . o r g /

Vim: This is a free cross-platform text editor available at h t t p ://w w w . v i m . o r g /

While the DBGp debugging protocol support may seem sufficient as a debugger selection
factor, what really differentiates these IDEs and text editors is their level of support for
latest versions of PHP.

https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://eclipse.org/pdt/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/
http://www.vim.org/

Debugging, Tracing, and Profiling

[437]

With its cutting-edge PHP support and innovative solutions, PhpStorm is
likely the most popular commercial choice among professional PHP
developers. Considering the average hourly rate of a skilled PHP
developer, the cost of tool seems all but expensive with regards to the
abundance of features that speed up the development work.

To get a better understanding of the Xdebug capabilities, let's go ahead and perform the
following steps:

Install LAMP stack.1.
Install the Xdebug extension.2.
Install NetBeans.3.
Pull in the sample PHP application as our playground for debugging.4.
Configure debugging.5.
Configure tracing.6.
Configure profiling.7.

Installation
Assuming that we have a fresh Ubuntu 17.04 (Zesty Zapus) installation, installing the
complete LAMP stack and Xdebug extension is easy via the following commands:

apt-get update
apt-get -y install lamp-server^
apt-get -y install php-xdebug
sudo service apache2 restart

Once this process is done, opening h t t p ://l o c a l h o s t /i n d e x . h t m l in our browser should
give us a default Apache page. Now, let's go ahead and do some permission changes:

sudo adduser user_name www-data
sudo chown -R www-data:www-data /var/www
sudo chmod -R g+rwX /var/www

Be sure to replace user_name with the name of the actual user on the system.

http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
http://localhost/index.html

Debugging, Tracing, and Profiling

[438]

The reason for doing this permissions update is to make it possible for a user's NetBeans
IDE to access the /var/www/html/ directory, where our project will be located. Once these
commands are executed, we need to log out and log in, or restart the computer for
permissions to kick in.

We can now execute the following command on the console and then
open http://localhost/index.php in order to confirm whether PHP and Xdebug are
up and running:

rm /var/www/html/index.html
echo "<?php phpinfo(); ?>" > /var/www/html/index.php

This should give us an output indicating the presence of the Xdebug extension, much like
the following screenshot:

To this point, we have merely installed the extension, but haven't really enabled any of its
three core features: debugging, tracing, and profiling. Before we go ahead with debugging,
let's quickly install NetBeans IDE. This will make our debugging efforts much easier. We
will first need to download NetBeans for PHP from h t t p s ://n e t b e a n s . o r g /d o w n l o a d s /.
Once downloaded and unpacked, we can execute the following command:

chmod +x netbeans-8.2-php-linux-x64.sh
./netbeans-8.2-php-linux-x64.sh

https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/
https://netbeans.org/downloads/

Debugging, Tracing, and Profiling

[439]

It is worth noting that the use of NetBeans IDE here is completely optional. We could have
easily used one of the other free or even commercial solutions. Now would be a good time
to open NetBeans IDE; click on File | New Project | Categories [PHP] | Projects [PHP
Application with Existing Sources] and point it to our /var/www/html/ directory, as
shown in the following screenshot:

Debugging, Tracing, and Profiling

[440]

Once we fill in the required data on the Name and Location screen, clicking on Next brings
us to the Run Configuration setup:

Clicking on the Finish button finishes the project setup, and we should now be able to see
our index.php file:

Debugging, Tracing, and Profiling

[441]

Finally, let's go ahead and pull in our sample application by executing the following console
commands:

rm /var/www/html/index.php
cd /var/www/html/
git init
git remote add origin git@github.com:ajzele/MPHP7-CH16.git
git pull origin master

The NetBeans IDE should be able to instantly pick up these changes in its Projects tab. To
this point, we haven't really actually done any configuration or setup related to Xdebug's
debugging, tracing, or profiling components. We merely installed LAMP stack, Xdebug
itself, NetBeans IDE and pulled in the sample application. Now, let's go ahead and look into
the debugging component of Xdebug.

Debugging
The debugging feature of Xdebug can be easily turned on with the
xdebug.remote_enable=1 option. With modern PHP, there is usually a special
xdebug.ini configuration file; otherwise, we would edit the default php.ini file. With
our Ubuntu installation, we add this to the /etc/php/7.0/apache2/conf.d/20-
xdebug.ini file as follows:

zend_extension=xdebug.so
xdebug.remote_enable=1

Once the file has been modified, we need to make sure the Apache server is restarted:

 service apache2 restart

While xdebug.remote_enable is the required option to turn on the debugging feature,
other related options include the following:

xdebug.extended_info

xdebug.idekey

xdebug.remote_addr_header

xdebug.remote_autostart

xdebug.remote_connect_back

xdebug.remote_cookie_expire_time

xdebug.remote_enable

xdebug.remote_handler

Debugging, Tracing, and Profiling

[442]

xdebug.remote_host

xdebug.remote_log

xdebug.remote_mode

xdebug.remote_port

Supplemental information about individual debugger configuration
options can be found under h t t p s ://x d e b u g . o r g /d o c s /a l l _ s e t t i n g s .

Back in NetBeans, we can turn our focus on the Debug toolbar:

When we click on the Debug Project button, NetBeans kicks off a browser with the URL
http://localhost/index.php?XDEBUG_SESSION_START=netbeans-xdebug and
activates the previously disabled buttons.

The buttons available on the Debug toolbar present us with several debugging options:

Step Into: This tells the debugger to go into the next function call and break
there.
Step Over: This tells the debugger to execute the next function and break
afterwards.
Step Out: This tells the debugger to finish the current function and break after it.
Run to Cursor: This has a bit of a dual role. When used in combination with
enabled breakpoints, it jumps directly from one breakpoint to another. When
breakpoints are disabled, it jumps straight to the line where we positioned our
cursor. We can, therefore, debug in a sort of free manner, as we decide on the
next breakpoint dynamically after the debugging process is started, simply by
placing our cursor where needed.

https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings
https://xdebug.org/docs/all_settings

Debugging, Tracing, and Profiling

[443]

The Run to Cursor option seems like a sensible and straightforward first approach. Let's go
ahead and set several breakpoints in our sample application as follows:

index.php: This is a total of six breakpoints:

Debugging, Tracing, and Profiling

[444]

src/Foggyline/Catalog/Model/Category.php: This is a total of one
breakpoint:

src/Foggyline/Catalog/Block/Category/View.php: This is a total of one
breakpoint:

Debugging, Tracing, and Profiling

[445]

The following steps outline a debugging using only the Run to Cursor button:

Click on Debug Project. This jumps to line 3 of index.php and records the1.
following:

Click on Run to Cursor. This jumps to line 11 of index.php and records the2.
following:

Notice how the Breakpoints tab now shows a green arrow next to index.php:11.

Click on Run to Cursor. This jumps to line 153.
of src/Foggyline/Catalog/Model/Category.php and records the following:

Debugging, Tracing, and Profiling

[446]

Click on Run to Cursor. This jumps to line15 of the index.php file and records4.
the following:

Click on Run to Cursor. This jumps to line 18 of the index.php file and records5.
the following:

Click on Run to Cursor. This jumps to line 23 of the index.php file and records6.
the following:

Debugging, Tracing, and Profiling

[447]

Click on Run to Cursor. This jumps to line 25 of the index.php file and records7.
the following:

Click on Run to Cursor. This jumps to line 22 of8.
the src/Foggyline/Catalog/Block/Category/View.php file and records the
following:

Click on Run to Cursor. This jumps to line 22 of9.
the src/Foggyline/Catalog/Block/Category/View.php file and records the
following:

Debugging, Tracing, and Profiling

[448]

Click on Run to Cursor. This jumps to line 22 of10.
the src/Foggyline/Catalog/Block/Category/View.php file and records the
following:

Click on Run to Cursor. This jumps to line 27 of the index.php file and records11.
the following:

Click on Run to Cursor. This leaves us at line 27 of the index.php file as it12.
reaches our last debug point where it records the following:

Now we can click on the Finish Debugger Session button.

Debugging, Tracing, and Profiling

[449]

Throughout this twelve-step process, we can clearly observe a behavior of IDE and the
values it manages to record. It makes it easy to target specific bits and pieces of our code
and then observe the variables as they change during the debugging process.

Note that in between steps 10 and 11, we never see the Variables tab recording values for
our third product. This is because variables get recorded after we move past the given
debug breakpoint, which, in this case, shifts the context from the View.php class file onto
an index.php file. This is where clicking on the Step Into button might have come in
handy, as it would enable us to drill further down the code within the body
of while during the execution of the third loop, thus yielding values for the third product.

We should encourage mixing and using all of the debugging options in
order to properly reach and read-out the variables of interest.

Tracing
The tracing feature of Xdebug can be easily turned on with
the xdebug.auto_trace=1 option. With our Ubuntu installation, we add this to
the /etc/php/7.0/apache2/conf.d/20-xdebug.ini file as follows:

zend_extension=xdebug.so
xdebug.remote_enable=1
xdebug.auto_trace=1

Once the file has been modified, we need to make sure the Apache server is re started :

 service apache2 restart

While xdebug.auto_trace is the required option to turn on the tracing feature, other
related options include the following:

xdebug.collect_assignments

xdebug.collect_includes

xdebug.collect_params

xdebug.collect_return

xdebug.show_mem_delta

xdebug.trace_enable_trigger

xdebug.trace_enable_trigger_value

xdebug.trace_format

Debugging, Tracing, and Profiling

[450]

xdebug.trace_options

xdebug.trace_output_dir

xdebug.trace_output_name

xdebug.var_display_max_children

xdebug.var_display_max_data

xdebug.var_display_max_depth

Supplemental information about individual tracing configuration options
can be found at h t t p s ://x d e b u g . o r g /d o c s /e x e c u t i o n _ t r a c e .

Unlike the debugging feature, which we control from IDE or text editor, we don't get to
control tracing. By default, the tracing feature creates a different trace.%c file under the
/tmp directory each time an application is run. What this means in the context of web
application is that, each time we refresh the page in the browser, the tracing feature creates
a trace.%c file for us.

Our specific example application, once executed, results in a trace file, much like the
following screenshot:

https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace
https://xdebug.org/docs/execution_trace

Debugging, Tracing, and Profiling

[451]

The output itself is relatively easy for a developer to read and understand. Surely, this gets
a bit clunky when it comes to large applications, as we end up with a large trace file. Still,
knowing the bits of code we are targeting, we can search the file and find the needed
occurrences of the code. Let's assume that we are looking for the use of
the number_format() function throughout our code. A quick search for
number_format would point us to line 22 of Category/View.php, with an execution time
next to it. This is a valuable piece of information for the overall debugging efforts.

Profiling
The profiling feature of Xdebug can be easily turned on with
the xdebug.profiler_enable=1 option. With our Ubuntu installation, we will modify
the /etc/php/7.0/apache2/conf.d/20-xdebug.ini file as follows:

zend_extension=xdebug.so
xdebug.remote_enable=1
xdebug.auto_trace=1
xdebug.profiler_enable=1

Once the file has been modified, we need to make sure the Apache server is restarted :

 service apache2 restart

While xdebug.profiler_enable is the required option to turn on the profiling feature,
other related options include the following:

xdebug.profiler_aggregate

xdebug.profiler_append

xdebug.profiler_enable

xdebug.profiler_enable_trigger

xdebug.profiler_enable_trigger_value

xdebug.profiler_output_dir

xdebug.profiler_output_name

Supplemental information about individual profiler configuration options
can be found at h t t p s ://x d e b u g . o r g /d o c s /p r o f i l e r .

https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler
https://xdebug.org/docs/profiler

Debugging, Tracing, and Profiling

[452]

Similar to tracing, we don't get to control the profiling feature from IDE or text editor. By
default, the profiling feature creates a different cachegrind.out.%p file under the /tmp
directory each time an application is executed.

Our specific example application, once executed, results in a cachegrind file, much like the
following screenshot (partial output):

The information contained here is far less readable than that of a tracing file, which is
alright as the two target different types of information. The cachegrind file can be pulled
into an application such as KCachegrind or QCacheGrind, which then gives us a much
more user -friendly and visual representation of the captured information :

Debugging, Tracing, and Profiling

[453]

The cachegrind file output delivers an important performance-related information. We get
an insight into all of the functions used within the application, sorted by time spent within
an individual function and all of its children. This allows us to spot performance
bottlenecks, even if it is within the millisecond time frame.

Zend Z-Ray
The Rougue Wave Software company offers a commercial PHP server called Zend Server.
One of Zend Server's outstanding features is its Z-Ray extension. Seemingly analogous to
Xdebug’s tracing and profiling functionality, Z-Ray offers comprehensive information
capturing and an improved user experience. Captured information ranges from execution
times, errors and warnings, database queries, and function calls to request information.
These are provided in a form that resembles a built-in browser’s developer tools, making it
easy for the developer to retrieve a vital piece of profiling information within seconds.

The Z-Ray extension itself is free, and can be used independently off the
commercially available Zend Server. We can install it just like any other
PHP extension. Although, at the time of writing, the stand-alone Z-Ray
extension is available only for the PHP 5.5 and 5.6 versions, which are now
considered outdated.

Debugging, Tracing, and Profiling

[454]

Installing Zend Server
Given that this book is targeting PHP 7, moving forward, we will grab a free trial version of
the Zend Server and install it. We can do so by opening the official Zend page and clicking
on the Download Free Trial button:

Assuming that we are using the fresh Ubuntu 17.04 installation, Zend's download service is
likely to offer us a tar.gz archive download:

Debugging, Tracing, and Profiling

[455]

Once downloaded and unpacked, we need to trigger the install_zs.sh command with
the PHP version argument as follows:

Upon installation completion, the console gives us information about how to access the
server administration interface through the browser :

Debugging, Tracing, and Profiling

[456]

Opening https://localhost:10082/ZendServer triggers the License Agreement step
of the Launch Zend Server process:

Debugging, Tracing, and Profiling

[457]

Agreeing to the license agreement and clicking on the Next button takes us to the Profile
step of the Launch Zend Server process:

Debugging, Tracing, and Profiling

[458]

The Profile step offers three distinctive options: Development, Production (Single Server),
and Production (Create or Join a Cluster). Choosing the Development option, we click on
the Next button, which takes us to the User Passwords step of the Launch Zend Server
process:

Debugging, Tracing, and Profiling

[459]

Here we provide admin and developer with user passwords. Clicking on the Next button
takes us to the Summary step of the Launch Zend Server process:

Debugging, Tracing, and Profiling

[460]

The summary step merely confirms our previous selections and entries. By clicking on the
Launch button, we finalize the Launch Zend Server process and land on the Getting
Started page:

The Zend Server provides a rich interface for managing pretty much every aspect of the
running sever. From here, we can manage virtual hosts, applications, job queues, caching,
security, and other bits. Before we can focus on Z-Ray functionality, we need to set up our
test application. We will use the same application we used with Xdebug, mapped on
the test.loc domain.

Setting up the virtual host
We first amend the /etc/hosts file by adding the 127.0.0.1 test.loc line entry to it.

Debugging, Tracing, and Profiling

[461]

With the test.loc host now added to the hosts file, we turn back to the Zend Server and
click on the Add virtual host button under the Applications | Virtual Hosts screen. This
takes us to the Properties step of the Add Virtual Host process:

Debugging, Tracing, and Profiling

[462]

Here we enter test.loc for Virtual Host Name and 80 for Listen on Port. Clicking on the
Next button takes us to the SSL Configuration step of the Add Virtual Host process:

Debugging, Tracing, and Profiling

[463]

To keep things simple, let's just leave the This virtual host does not use SSL selection
active and click on the Next button. This takes us to the Template step of the Add Virtual
Host process:

Debugging, Tracing, and Profiling

[464]

Likewise, let’s just leave the Use the default virtual host configuration template selection
active and click on the Next button. This takes us to the Summary step of the Add Virtual
Host process:

To complete the virtual host setup, we click on the Finish button. Our test.loc virtual
host should now be created, showing details such as the following:

Debugging, Tracing, and Profiling

[465]

The document root used for our newly created virtual host points to
the /usr/local/zend/var/apps/http/test.loc/80/_docroot_ directory. This is
where we will dump our sample application using the following git clone command:

sudo git clone https://github.com/ajzele/MPHP7-CH16.git .

Debugging, Tracing, and Profiling

[466]

The output of the preceding command is as follows:

With the code in place, accessing the http://test.loc URL within the browser should
give us the following output:

Using Z-Ray
Now that we have our test application up and running, we can finally focus on the Z-Ray
functionality. Within the Zend Server administration interface, under Z-Ray | Mode, we
need to make sure that the Enabled option is the active one. Now, if we access the
http://test.loc URL within the browser, we should be able to see the Z-Ray toolbar at
the bottom of the page:

Debugging, Tracing, and Profiling

[467]

The toolbar itself consists of several key sections, each of which gathers a specific metric:

Page Requests :

Execution Time and Memory Peak:

Monitor Events:

Errors & Warnings:

Debugging, Tracing, and Profiling

[468]

Database Queries:

While our specific sample application has no database interactions, the following output
illustrates Z-Ray capturing raw SQL database queries as well as their execution times
from a resource-intense Magento eCommerce platform:

Functions:

Debugging, Tracing, and Profiling

[469]

Request Info:

Z-Ray acts like a mix of Xdebug's trace and profile functionalities, delivered straight into
the browser. This makes it an extremely handy tool for developers. Capturing rawSQL
queries adds even more value to the tool, as, usually, these tend to be the unexpected
performance bottlenecks.

The Z-Ray feature can be easily enabled only for a specific host. The way
to do this is by activating the Selective option under the Z-Ray | Mode
screen. This type of setup makes it convenient to profile production sites.

Summary
Throughout this section, we touched upon three unique types of process we contribute to
overall application testing. Distinctively labeled as debugging, tracing, and profiling, these
processes provide a unique and remarkably informative perspective on our application
inner bits. While tracing and profiling gather application performance and path-of-
execution data for us in a sort of hands-free mode, debugging allows for a unique
experience of tapping into a specific bit of code. Whether we are a seasonal or a full-time
software developer, debugging, tracing, and profiling are absolutely essential skills to
master. Without them, resolving the really nasty bugs or writing performance-optimized
applications becomes a whole new challenge.

Moving forward, we will take a closer look at the landscape and available choices around
PHP application hosting, provisioning, and deployment.

17
Hosting, Provisioning, and

Deployment
Hosting, provisioning, and deployment are admittedly three very distinct activities that
often go hand in hand with the overall application life cycle management. Whereas, some
types of hosting solutions make it near impossible to achieve seamless deployments, others
make it an ultimately joyful and time-effective experience for developers. This brings us to
the most important point of all, which is, Why would developers even bother with these system
operations things? There are plenty of answers for this one. Whereas, the real sales pitch is
simple as: market demands it. Nowadays, developers are tangled in a web of
multidisciplinary activities, which often goes beyond coding skills itself and into system
operations at some level. The not my job mantra is all but reserved for us here, which is
ultimately alright, as having a strong knowledge about activities supporting an entire
application life cycle makes us more responsive in the face of possible outages.

In this chapter, we will take a high-level overview on some of these activities through the
following few sections:

Choosing the right hosting plan
Automating provisioning
Automating deployment
Continuous integration

Hosting, Provisioning, and Deployment

[471]

Choosing the right hosting plan
Choosing the right hosting plan for our next project can be a tedious challenge. There are
many types of solutions to choose from, some of which include the following:

Shared server
Virtual private server
Dedicated server
PaaS

They all have their pros and cons. Whereas once decision factors were dominated by features
such as memory, CPU, bandwidth, and disk storage, those became ever cheaper over the
years. Nowadays, auto-scaling and ease of deployment emerged as an equally important
metrics. While ultimately the pricing plays a crucial role, great deal of modern hosting
solutions have a lot to offer for an affordable price.

Shared server
The shared web hosting service is the one where many different users host their
applications. The hosting provider usually provides a well-tuned web server with MySQL
or PostgreSQL database and an FTP access. On top of that, there is usually a web-based
control panel system, such as cPanel, Plesk, H-Sphere, or alike. This allows us to manage a
limited set of features through a nice graphical interface, right from our browser.

The popular PC Mag magazine (h t t p ://w w w . p c m a g . c o m) shares the list of the best web
hosting services of 2017 as follows:

HostGator Web Hosting: h t t p ://w w w . h o s t g a t o r . c o m

1&1 Web Hosting: h t t p s ://w w w . 1a n d 1. c o m

InMotion Web Hosting: h t t p s ://w w w . i n m o t i o n h o s t i n g . c o m /

DreamHost Web Hosting: h t t p s ://w w w . d r e a m h o s t . c o m

GoDaddy Web Hosting: h t t p s ://w w w . g o d a d d y . c o m

Bluehost Web Hosting: h t t p s ://w w w . b l u e h o s t . c o m

Hostwinds Web Hosting: h t t p s ://w w w . h o s t w i n d s . c o m

Liquid Web Hosting: h t t p s ://w w w . l i q u i d w e b . c o m

A2 Web Hosting: h t t p s ://w w w . a 2h o s t i n g . c o m

Arvixe Web Hosting: h t t p s ://w w w . a r v i x e . c o m

http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.a2hosting.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com
https://www.arvixe.com

Hosting, Provisioning, and Deployment

[472]

Each of these web hosting services seems to provide a similar set of functionalities, as
shown in the following screenshot:

While the affordable shared server price might seem tempting, the lack of control over the
server limits its use with any serious applications. Our application shares the same CPU,
memory, and storage as a dozen, a hundred, or even a thousand other applications. We
don't get to install any software we want, which might even turn into a deal breaker if our
application requires some fancy PHP extension, which is why this type of a poor man's
hosting is something we should wholeheartedly try to avoid for anything other than the
business card or blog type of applications.

Virtual private server
The virtual private server (VPS) is a virtual machine provided by the hosting provider.
This machine then runs its own operating system to which we often have a full super-user
access. The VPS itself shares the same set of physical hardware resources as other VPS
machines. This means that our VPS performance can easily be impaired by other VPS
machines' processes.

Hosting, Provisioning, and Deployment

[473]

The popular PCMag magazine (h t t p ://w w w . p c m a g . c o m) shares the list of the best VPS web
hosting services of 2017 as follows:

HostGator Web Hosting: h t t p ://w w w . h o s t g a t o r . c o m

InMotion Web Hosting: h t t p s ://w w w . i n m o t i o n h o s t i n g . c o m /

1&1 Web Hosting: h t t p s ://w w w . 1a n d 1. c o m

DreamHost Web Hosting: h t t p s ://w w w . d r e a m h o s t . c o m

Hostwinds Web Hosting: h t t p s ://w w w . h o s t w i n d s . c o m

Liquid Web Hosting: h t t p s ://w w w . l i q u i d w e b . c o m

GoDaddy Web Hosting: h t t p s ://w w w . g o d a d d y . c o m

Bluehost Web Hosting: h t t p s ://w w w . b l u e h o s t . c o m

Media Temple Web Hosting: h t t p s ://m e d i a t e m p l e . n e t

There are quite a few variations between these hosting services, mostly in terms of memory
and storage, as you can see in the following screenshot:

http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net
https://mediatemple.net

Hosting, Provisioning, and Deployment

[474]

While VPS is still a form of shared resources, it allows us a much greater degree of
freedom than conventional shared hosting. Having full super-user access to the machine
means we can install pretty much any piece of software we want to. This also means a
greater degree of responsibility for us.

Dedicated server
The dedicated server assumes a real physical machine provided by the hosting provider.
Such a machine does not share resources with anyone else other than us. This makes it a
viable option for high-performance and mission-critical applications.

The popular PCMag magazine (h t t p ://w w w . p c m a g . c o m)shares the list of the best dedicated
web hosting services of 2017 as follows:

HostGator Web Hosting: h t t p ://w w w . h o s t g a t o r . c o m

DreamHost Web Hosting: h t t p s ://w w w . d r e a m h o s t . c o m

InMotion Web Hosting: h t t p s ://w w w . i n m o t i o n h o s t i n g . c o m /

1&1 Web Hosting: h t t p s ://w w w . 1a n d 1. c o m

Liquid Web Hosting: h t t p s ://w w w . l i q u i d w e b . c o m

Hostwinds Web Hosting: h t t p s ://w w w . h o s t w i n d s . c o m

GoDaddy Web Hosting: h t t p s ://w w w . g o d a d d y . c o m

Bluehost Web Hosting: h t t p s ://w w w . b l u e h o s t . c o m

SiteGround Web Hosting: h t t p s ://w w w . s i t e g r o u n d . c o m

iPage Web Hosting: h t t p ://w w w . i p a g e . c o m

There are quite a few variations between these hosting services, mostly in terms of memory
and storage, as you can see in this screenshot:

http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.pcmag.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
http://www.hostgator.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.dreamhost.com
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.inmotionhosting.com/
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.1and1.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.liquidweb.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.hostwinds.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.godaddy.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.bluehost.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
https://www.siteground.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com
http://www.ipage.com

Hosting, Provisioning, and Deployment

[475]

While they come at a higher cost, dedicated servers guarantee a level of performance and
full control over the machine. At the same time, managing scalability and redundancy can
easily turn into a challenge of its own.

PaaS
The platform as a service (PaaS) is a special type of hosting where a provider delivers
hardware and software tools needed to speed up application development. We may go so
far as to compare PaaS with the power and flexibility of dedicated servers backed by dozens
of easily connected services assisting the availability, reliability, scalability, and application
development activities. This makes it a popular choice among developers.

The popular IT Central Station site (h t t p s ://w w w . i t c e n t r a l s t a t i o n . c o m) shares the list of
the best PaaS clouds vendors of 2017 as follows:

Amazon AWS: https://aws.amazon.com
Microsoft Azure: h t t p s ://a z u r e . m i c r o s o f t . c o m

Heroku: h t t p s ://w w w . h e r o k u . c o m

Mendix: h t t p s ://w w w . m e n d i x . c o m

Salesforce App Cloud: h t t p s ://w w w . s a l e s f o r c e . c o m

Oracle Java Cloud Service: h t t p s ://c l o u d . o r a c l e . c o m /j a v a

https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://www.itcentralstation.com
https://aws.amazon.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.mendix.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://www.salesforce.com
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java
https://cloud.oracle.com/java

Hosting, Provisioning, and Deployment

[476]

HPE Helion: h t t p s ://w w w . h p e . c o m

Rackspace Cloud: h t t p s ://w w w . r a c k s p a c e . c o m

Google App Engine: h t t p s ://c l o u d . g o o g l e . c o m

Oracle Cloud Platform: h t t p ://w w w . o r a c l e . c o m /s o l u t i o n s /c l o u d /p l a t f o r m /

The following report has been taken for April 2017:

https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.hpe.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://www.rackspace.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/
http://www.oracle.com/solutions/cloud/platform/

Hosting, Provisioning, and Deployment

[477]

While all of these services have much to offer, it is worth pointing out Amazon AWS, which
was named by Gartner in 2016 Magic Quadrant for Cloud Infrastructure as a Service as
having the furthest completeness of vision. The evaluation criteria are based on several key
factors:

Market understanding
Marketing strategy
Sales strategy
Offering (product) strategy
Business model
Vertical/industry strategy
Innovation
Geographic strategy

The great starting point with Amazon AWS is its EC2 service, which provides resizable
virtual servers. These act much like the dedicated server, but in cloud, where we get to
choose the region of the world we would like to deploy these. On top of that, there are
dozens of other services within the Amazon AWS offering that enrich the overall
application management:

Hosting, Provisioning, and Deployment

[478]

An easy-to-use interface, rich service offering, affordable price, great documentation,
certification, and available tooling are some of the selling points for developers when it
comes to Amazon AWS.

Automating provisioning
The provisioning is a term that has gained a lot of traction among developers lately. It refers
to the activity of setting up and configuring servers with every bit of required software,
making it ready for application use. While this sounds a lot like the system operations type
of work, developers found it interesting with the rise of cloud services and the tooling
surrounding it.

Hosting, Provisioning, and Deployment

[479]

Historically, provisioning implied a lot of manual type of work. There were not as many
general purpose automated provisioning tools as there is today. This meant that there were
times when provisioning took days or even weeks. Looking through the prism of today's
market demands, such a scenario is hardly imaginable. Nowadays, a single application is
usually served by several different servers, each of which is targeting a single functionality,
such as web (Apache, Nginx, ...), storage (MySQL, Redis, ...), session (Redis, Memcached,
...), static content (Nginx), and so on. We simply cannot afford to spend days setting up each
of the servers.

There are several popular tools we can use to automate provisioning, some of which
include these popular four:

Ansible: h t t p s ://w w w . a n s i b l e . c o m .
Chef: h t t p s ://w w w . c h e f . i o /c h e f /

Puppet: h t t p s ://p u p p e t . c o m

SaltStack: h t t p s ://s a l t s t a c k . c o m

Like others tools of the same type, these are all built with the goal of making it easier to
configure and maintain dozens, hundreds, or even thousands of servers. While all of these
tools are more likely to get any provisioning job done with equal effect, let's take a closer
look at one of them. Released in 2012, Ansible is the youngest of the four. It is an open
source tool that automates software provisioning, configuration management, and
application deployment. This tool performs all of its functions over SSH, without requiring
any agent software installation on the target node/server. This alone makes it a favorable
choice among developers.

There are several key concepts around Ansible, some of which are as follows:

Inventories: This is the list of Ansible managed servers
Playbooks: This is Ansible's configuration expressed in YAML format
Roles: This is automation around include directives based on a file structure
Tasks: This is the possible actions that Ansible can execute

The h t t p s ://g a l a x y . a n s i b l e . c o m service acts as a hub that provides
ready-to-use roles.

https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com

Hosting, Provisioning, and Deployment

[480]

To get a very basic understanding of Ansible, let's do a very simple and
quick demonstration based on the following:

Ubuntu workstation machine
Ubuntu server machine

We will use the ansible tool to provision software on the server machine.

Setting up the workstation machine
Using Ubuntu powered workstation, we can easily install the Ansible tool just by running
the following set of commands:

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible
sudo apt-get update
sudo apt-get install ansible

If all went well, ansible --version should give us an output much like this screenshot:

The Ansible is a console tool for running ad-hoc tasks. Whereas ad-hoc implies
on something we do quickly, without writing the entire playbook for it.

Likewise, ansible-galaxy --version should give us an output much like the following
screenshot:

The ansible-galaxy is a console tool we can use to install, create, and remove roles, or
perform tasks on the Galaxy website. By default, tool communicates with the Galaxy
website API using the server address h t t p s ://g a l a x y . a n s i b l e . c o m .

https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com
https://galaxy.ansible.com

Hosting, Provisioning, and Deployment

[481]

Also, ansible-playbook --version should give us an output much like the following
screenshot:

The ansible-playbook is a console tool used for configuration management and
deployments.

With the Ansible tool in place, let's make sure our workstation has a proper SSH key, which
we will use later on to connect to the server machine. We can easily generate the SSH key by
simply running the following command, followed by hitting the Enter key when asked for a
file and passphrase:

ssh-keygen -t rsa

This should give us an output much like the following one:

Using the Ansible playbooks, we can define various provisioning steps in the easy-to-read
YAML format.

Hosting, Provisioning, and Deployment

[482]

Setting up the server machine
We previously mentioned there are several hosting solutions that allow full control over the
server machine. These solutions come in form of VPS, dedicated and cloud services. For the
purpose of this example, we will be using the Vultr Cloud Compute (VC2), which is
available at h t t p s ://w w w . v u l t r . c o m . Without going too deep into the ins and outs of
the Vultr service, it's suffice to say it provides an affordable cloud compute service via an
easy-to-use administration interface.

Assuming we have created a Vultr account, the first thing we want to do now is to add our
workstation SSH public key to it. We can easily do so through Vultr's Servers | SSH Keys
interface:

https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com
https://www.vultr.com

Hosting, Provisioning, and Deployment

[483]

Once the SSH Key is saved, we can go back to the Servers screen and click on the Deploy
New Server button. This brings us to the Deploy New Instance interface, which presents us
with several steps. The steps we focus our attention on are Server Type and SSH Keys.

For Server Type, let's go ahead and choose Ubuntu 16.04 x64:

For SSH Keys, let's go ahead and choose the SSH key we just added to Vultr:

With these two selected, we can click on the Deploy Now button, which should trigger
deployment of our server machine.

To this point, we might wonder, what the purpose of this exercise might be, as we have
clearly created a server machine pretty much manually. After all, Ansible has a module to
manage servers on Vultr so we could have easily used that for server creation. The exercise
here, however, is around the basics of understanding how easily it is to "hook" Ansible to an
existing server machine and then use it to provision further software to it. Now that we
have a server machine running, let's move on to the further configuration of Ansible on the
workstation.

Hosting, Provisioning, and Deployment

[484]

Configuring Ansible
Back on our workstation machine, let's go ahead and create a project directory:

mkdir mphp7
cd mphp7/

Now, let's go ahead and create an ansible.cfg file with its content as follows:

[defaults]
hostfile = hosts

Next, let's go ahead and create the hosts file with its content as follows:

[mphp7]
45.76.88.214 ansible_ssh_user=root

In the preceding lines of code, 45.76.88.214 is the IP address of our server machine.

We should now be able to run the ansible tool as follows:

ansible mphp7 -m ping

Ideally, this should give us the following output:

Hosting, Provisioning, and Deployment

[485]

The ansible tool might throw a MODULE FAILURE message in the case of a missing
Python installation on our server machine:

If this happens, we should SSH into our server machine and install Python as follows:

sudo apt-get -y install python

At this point, our workstation ansible tool should be set to have clear communication
with our server machine.

Now, let's go ahead and do a quick lookup for the LAMP server role on the Galaxy hub:

Hosting, Provisioning, and Deployment

[486]

Clicking on one of the results gives us information on how to install it:

By running the following command on the workstation, we install the
existing fvarovillodres.lamp role:

ansible-galaxy install fvarovillodres.lamp

Provisioning a web server
With the newly pulled fvarovillodres.lamp rule, we should be able to effortlessly
deploy a new web server. To do so, all it takes is creating a playbook, such as lamp.yaml,
with its content as follows:

- hosts: mphp7
 roles:
 - role: fvarovillodres.lamp
 become: yes

Hosting, Provisioning, and Deployment

[487]

Now, we can easily run our lamp.yaml playbook via the following command:

ansible-playbook lamp.yml

This should trigger the tasks within the fvarovillodres.lamp role that we pulled from
the Galaxy hub upon completion:

Finally, opening a http://45.76.88.214/ URL should give us an Apache page.

The overall topic of provisioning, or even Ansible, is a broad subject worth a book of its
own. The example given here is merely to showcase the ease of use of the available tooling
in order to address the provisioning in an automated way. There is one important takeaway
here, which is that we need full control over the server/node in order to utilize
the provisioning. This is why shared types of hosting are excluded from any such
discussions.

The exact example given here uses a single server box. However, it is not hard to imagine
how easily this approach can be scaled up to a dozen or even hundreds of server machines
just by amending the Ansible configuration. We could have easily used Ansible itself to
automate the deployment for our application, where each deployment, for instance,
might trigger a new server creation process with code being pulled from some Git
repository or alike. There are, however, more simpler, specialized tools to handle
automated deployments.

Automating the deployment
Deploying a PHP application primarily implies deploying PHP code. Since PHP is an
interpreted and not compiled language, the PHP applications deploy their code as-is, in
source files. This means that there is no real build process involved when deploying an
application, which further means that application deployment can be as easy as doing a git
pullwithin a server web directory. Surely, things are never that simple, as we often have
various other bits that need to fit in place when the code is deployed, such as
databases, mounted drives, shared files, permissions, other services connected to our server,
and so on.

Hosting, Provisioning, and Deployment

[488]

We can easily imagine the complexity of having to manually deploy code from a single git
repository onto dozens of web servers behind some load balancer at the same time. Such
manual deployments will surely have negative implications, as we end up with a time in-
between overall deployments, where one server might have newer versions of an
application code, while others still serve the old application. The lack of consistency is,
therefore, just a one of the impacting challenges to worry about.

Luckily, there are a dozen of tools that address the challenges of automated deployments.
While we won't be getting into the ins and outs of any of them specifically, for the sake of a
quick comparison, let's just mention the following two:

Deployer: This is an open source PHP-based tool suited for automating
deployments, available at h t t p s ://d e p l o y e r . o r g

AWS CodeDeploy: This is a code deployment service offered by AWS, available
at h t t p s ://a w s . a m a z o n . c o m /c o d e d e p l o y /

Unlike AWS CodeDeploy, the Deployer tool is service-independent. That is, we can use it to
deploy code to any server upon which we have control, including the AWS EC2 instances.
The AWS CodeDeploy, on the other hand, is a service tightly integrated into an AWS itself,
meaning we cannot use it outside of the AWS. This does not mean Deployer is better
than AWS CodeDeploy in this case. It simply goes to show that some cloud and PaaS
services offer their own integrated solutions to automated deployments.

Moving forward, let's take a quick look at how easily we can set Deployer to deploy code to
our server machine.

Installing Deployer
Installing Deployer is quite easy via the following few commands:

curl -LO https://deployer.org/releases/v4.3.0/deployer.phar
mv deployer.phar /usr/local/bin/dep
chmod +x /usr/local/bin/dep

https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://deployer.org
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/

Hosting, Provisioning, and Deployment

[489]

Running the dep console command now gives us the following output:

Using Deployer
There are several key concepts that comprise of the Deployer applications:

Configuration: Using the set() and get() functions, we set and fetch one or
more configurations options:

set('color', 'Yellow');
set('hello', function () {
 return run(...)->toString();
});

Tasks: These are units of work defined via the task() function, used together
with the desc() method that sets the task description. Within the task, there is
usually one or more functions, such as run():

desc('Foggyline task #1');
task('update', 'apt-get update');

Hosting, Provisioning, and Deployment

[490]

desc('Foggyline task #2');
task('task_2', function () {
 run(...);
});

Servers: This is the list of servers defined via the server() function, as shown in
the following code snippet:

server('mphp7_staging', 'mphp7.staging.foggyline.net')
 ->user('user')
 ->password('pass')
 ->set('deploy_path', '/home/www')
 ->set('branch', 'stage')
 ->stage('staging');

server('mphp7_prod', 'mphp7.foggyline.net')
 ->user('user')
 ->identityFile()
 ->set('deploy_path', '/home/www')
 ->set('branch', 'master')
 ->stage('production');

Flow: This represents a group of tasks. The common type project uses a default
flow as follows:

task('deploy', [
 'deploy:prepare',
 'deploy:lock',
 'deploy:release',
 'deploy:update_code',
 'deploy:shared',
 'deploy:writable',
 'deploy:vendors',
 'deploy:clear_paths',
 'deploy:symlink',
 'deploy:unlock',
 'cleanup',
 'success'
]);

We could easily create our own flow by changing this flow from the auto-
generated deploy.php file.

Functions: This is a group of utility functions that provide useful functionality,
such as run(), upload(), ask(), and others.

Hosting, Provisioning, and Deployment

[491]

Using the Deployer tool is quite straightforward. Unless we already have some previously
created recipes, we can create one simply by running the following console command:

dep init

This kicks off an interactive process, asking us to choose the type of project we are working
with. Let's proceed with the idea of deploying our MPHP7-CH16 application from h t t p s

://g i t h u b . c o m /a j z e l e /M P H P 7- C H 16 repository, flagging it as [0] Common:

This command generates the deploy.php file with its content as follows:

<?php
namespace Deployer;
require 'recipe/common.php';

// Configuration

set('ssh_type', 'native');
set('ssh_multiplexing', true);

set('repository', 'git@domain.com:username/repository.git');
set('shared_files', []);
set('shared_dirs', []);
set('writable_dirs', []);

// Servers

server('production', 'domain.com')
 ->user('username')
 ->identityFile()
 ->set('deploy_path', '/var/www/domain.com');

https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16
https://github.com/ajzele/MPHP7-CH16

Hosting, Provisioning, and Deployment

[492]

// Tasks

desc('Restart PHP-FPM service');
task('php-fpm:restart', function () {
 // The user must have rights for restart service
 // /etc/sudoers: username ALL=NOPASSWD:/bin/systemctl restart php-
fpm.service
 run('sudo systemctl restart php-fpm.service');
});
after('deploy:symlink', 'php-fpm:restart');

desc('Deploy your project');
task('deploy', [
 'deploy:prepare',
 'deploy:lock',
 'deploy:release',
 'deploy:update_code',
 'deploy:shared',
 'deploy:writable',
 'deploy:vendors',
 'deploy:clear_paths',
 'deploy:symlink',
 'deploy:unlock',
 'cleanup',
 'success'
]);

// [Optional] if deploy fails automatically unlock.
after('deploy:failed', 'deploy:unlock');

We should approach this file as a template that needs adjusting to our real servers.
Assuming we wish to deploy our MPHP7-CH16 application to our previously
provisioned 45.76.88.214 server, we can do so by adjusting the deploy.php file as
follows:

<?php

namespace Deployer;
require 'recipe/common.php';

set('repository', 'https://github.com/ajzele/MPHP7-CH16.git');

server('production', '45.76.88.214')
 ->user('root')
 ->identityFile()
 ->set('deploy_path', '/var/www/MPHP7')
 ->set('branch', 'master')
 ->stage('production');

Hosting, Provisioning, and Deployment

[493]

desc('Symlink html directory');
task('web:symlink', function () {
 run('ln -sf /var/www/MPHP7/current /var/www/html');
});

desc('Restart Apache service');
task('apache:restart', function () {
 run('service apache2 restart');
});

after('deploy:symlink', 'web:symlink');
after('web:symlink', 'apache:restart');

desc('Deploy your project');
task('deploy', [
 'deploy:prepare',
 'deploy:lock',
 'deploy:release',
 'deploy:update_code',
 'deploy:shared',
 'deploy:writable',
 //'deploy:vendors',
 'deploy:clear_paths',
 'deploy:symlink',
 'deploy:unlock',
 'cleanup',
 'success'
]);

after('deploy:failed', 'deploy:unlock');

We used the set() function to configure the location of the git repository. The server()
function then defines the individual server we called production, behind a 45.76.88.214 IP.
The identityFile() simply tells the system to use the SSH key instead of the password
for the SSH connection. Next to the server, we defined two custom tasks, web:symlink
and apache:restart. These make sure proper mapping is done from the
Deployer's /var/www/MPHP7/current/ directory to our /var/www/html/ directory. The
after() function calls simply define the order when our two custom jobs are supposed to
execute, which is after the Deployer's deploy:symlink event.

To execute the amended deploy.php, we use the following console command:

dep deploy production

Hosting, Provisioning, and Deployment

[494]

This should give us the following output:

To confirm that the deployment was successful, opening http://45.76.88.214/ should
give us the following page:

Hosting, Provisioning, and Deployment

[495]

This simple Deployer script gave us a powerful way of automatically deploying code from
our repository into a server. Scaling this to multiple servers is imaginably easy, given the
Deployer's server() functions.

Continuous integration
The idea behind continuous integration is to bind together the building, testing, and
releasing processes in an easy-to-oversee manner. As we mentioned before, the notion of
building is a bit of a specific one when it comes to PHP, given the interpreted nature of the
language itself; we are not talking about compiling code here. With PHP, we tend to relate it
to various configurations required by our application.

That being said, some of the strong points of continuous integration include the following:

Automated code coverage and quality check through static code analysis
Automation by running after each developer code push
Automated faulty code detection through unit and behavior testing
Reduced application release cycle
Increased visibility across project

There are a dozen of continuous integration tools to chose from, some of which include the
following:

PHPCI: h t t p s ://w w w . p h p t e s t i n g . o r g

Jenkins: h t t p ://j e n k i n s - p h p . o r g

Travis CI: h t t p s ://t r a v i s - c i . o r g

TeamCity: h t t p s ://w w w . j e t b r a i n s . c o m /t e a m c i t y /

Bamboo: h t t p s ://w w w . a t l a s s i a n . c o m /s o f t w a r e /b a m b o o

AWS CodePipeline: h t t p s ://a w s . a m a z o n . c o m /c o d e p i p e l i n e /

It would be unfair to say one of these tools is better than the others. Though Jenkins seems
to resurface slightly more than others when it comes to PHP.

https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
https://www.phptesting.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
http://jenkins-php.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/

Hosting, Provisioning, and Deployment

[496]

Jenkins
Jenkins is an open source, self-contained, cross-platform, ready to run Java-
based automation server. There are regularly two versions of Jenkins being released: long
term support (LTS) and weekly releases. The LTS version gives it a bit of an enterprise-
friendly feel, among other things:

Out-of-the-box, Jenkins does not really do anything for PHP code specifically, which is
where plugins come into the mix.

The rich Jenkins plugin system enables us to easily install the plugins to work with the
following PHP tools:

PHPUnit: This is a unit testing framework that is available at h t t p s ://p h p u n i t . d
e /

PHP_CodeSniffer: This is a tool that detects violations against a certain set
of coding standards, available at h t t p s ://g i t h u b . c o m /s q u i z l a b s /P H P _ C o d e S n i
f f e r

PHPLOC: This is a tool to quickly measure the size of a PHP project, which is
available at h t t p s ://g i t h u b . c o m /s e b a s t i a n b e r g m a n n /p h p l o c

https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://phpunit.de/
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc

Hosting, Provisioning, and Deployment

[497]

PHP_Depend: This shows the quality of code design in the terms of extensibility,
reusability, and maintainability, which is available at h t t p s ://g i t h u b . c o m /p d e p
e n d /p d e p e n d

PHPMD: This is the PHP mess detector, which is available at h t t p s ://p h p m d . o r
g /

PHPCPD: This is the copy/paste detector for PHP code, which is available at h t t p
s ://g i t h u b . c o m /s e b a s t i a n b e r g m a n n /p h p c p d

phpDox: This is a documentation generator for PHP projects, which is available
at h t t p ://p h p d o x . d e /

Plugins for these tools affect the automated testing bits that Jenkins is able to continuously
run for us. The bits about code deployments are generally language-agnostic. Going into the
details of plugin installation and the overall use of Jenkins, it is a topic for a book of its
own. The takeaway here is to understand the importance and role of of continuous
integration over the application life cycle, as well as to raise awareness of available tools.

See h t t p s ://j e n k i n s . i o /d o c / and h t t p s ://p l u g i n s . j e n k i n s . i o / for
more information.

Summary
In this chapter, we touched upon some of the non-coding essentials surrounding our
application. While developers tend to avoid much of these system operations related
activities, the hands-on experience with servers and their setups have a massive advantage
with deployments and quick outage responses. Drawing a not-my-job line within our line of
work is always a slippery slope. Working closely with system operations adds a layer of
quality around our applications. The layer which the end-user might otherwise perceive as
a fault in the application itself, rather than its infrastructure. Hosting, provisioning, and
deployment have become topics every developer needs to be familiar with. The tools
offering around these activities seem quite satisfactory in terms of availability and ease of
use.

https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://github.com/pdepend/pdepend
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://phpmd.org/
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
http://phpdox.de/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://jenkins.io/doc/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/

Hosting, Provisioning, and Deployment

[498]

Throughout the book, we covered a wide and seemingly independent range of topics. These
show us that building applications is all but an easy and quick task. Knowing the ins and
outs of the PHP language itself does not imply quality software. Giving structure to our
code is among the first signs of modularity, which, in turn, reduces the impact of technical
debt. This is where standards and design patterns play an important role. Testing, without a
doubt, proved to be an essential part of every application. Luckily the PHP ecosystem
provides rich testing frameworks to easily cover both the TDD and BDD styles. With the
great new features added in PHP 7, writing quality PHP applications has never been easier.

Hopefully, by now, we know enough about PHP, its ecosystem, and various other essential
bits and pieces that comprise quality applications, in order to become proficient at
developing them. With all being said, we conclude our journey.

Index

A
abstract factory pattern 265
access modifiers 42
advanced phpspec concepts
 reference link 423
Amazon Web Services (AWS) 200
anonymous classes 12, 14
Ansible
 about 479
 configuring 484, 485
 inventories 479
 playbooks 479
 roles 479
 tasks 479
Apache Thrift (RPC)
 client, creating 312
 installing 306
 server, creating 311
 service, defining 308, 309, 311
 working 306
ArithmeticError 68
AssertionError 71
Atomicity, Consistency, Isolation, Durability (ACID)

353

auto-scaling 471
auto-wire 371
autoloading standard
 about 50
 reference link 51
automate deployment
 about 487
 Deployer, installing 488, 489
 Deployer, using 489, 491, 493
automate provisioning
 about 478
 Ansible, configuring 484, 485

 server machine, setting up 482
 web server, provisioning 486
 workstation machine, setting up 480

B
backwards compatibility (BC) 22
base patterns
 about 261
 registry pattern 261
basic coding standard
 about 36, 37, 39
 reference link 39
Behat
 about 406
 application, setting up 408
 features 410
 Gherkin language 410
 scenarios 410
 setting up 407
 steps 410
 test, executing 416
 test, writing 410, 412, 414
behavior-driven development (BDD) 406
behavioral patterns
 about 271
 chain of responsibility pattern 276
 lazy initialization pattern 274
 observer pattern 272
 strategy pattern 271
builder pattern 267
byte order mark (BOM) 36

C
caching interface
 about 52, 53
 reference link 54
call

[500]

 using 100
callStatic
 using 103
chain of responsibility pattern 276
class constant visibility modifiers
 about 28
 classes 28
 functions 28
 variables 28
class constants 21
client-server relationship 282
client
 creating 305
clone()
 using 119
coding style guide
 about 40, 42, 44, 46
 reference link 47
command-line interface
 reference link 125
Common Gateway Interface (CGI) 7
Composer 49, 376, 377, 378, 379
concurrency 197
console component
 about 127
 console command 131, 133
 helpers, using 138
 inputs, dealing with 134, 137
 setting up 128
constant arrays 21
constants 21
construct
 using 93
continuous integration
 about 495
 Jenkins 496
 tools 495
creational patterns
 about 262
 abstract factory pattern 265
 builder pattern 267
 object pool pattern 269
 prototype pattern 264
 singleton pattern 263
Cross-Origin Resource Sharing (CORS) 301

custom exception handler
 creating 79

D
debug messages
 disabling 192, 194
debugging 435
debugInfo
 using 121
decorator pattern 278
dedicated server 474
dependency injection
 about 367, 369, 371
 container 371, 373
dependency
 issues, mitigating 365, 366
Deployer
 installing 488, 489
 using 489, 491, 493
design patterns 260
destruct
 using 98
DivisionByZeroError 69
Drupal
 URL 122
 usage statics 122

E
ease of deployment 471
Eclipse PDT
 reference link 436
Error class 67
 about 66
 ArithmeticError 68
 AssertionError 71
 DivisionByZeroError 69
 error handler 75
 ParseError 72
 triggering errors 77
 TypeError 73
error handler 75
error handling
 about 63, 65
 Error class 66, 67
 exception 78

[501]

error model 77
event driven programming
 similarities 225
exception, error handling
 custom exception handler, creating 79
 exception handler 81
 rethrowing exceptions 80

F
file uploads 184, 186
file-level directive 10
Framework Interoperability Group 35
Function as a Service (FaaS) 199
functor
 about 116
 URL 116

G
generator delegation 15
generator return expressions 17
get()
 using 106
Gherkin 411
group use declarations 26

H
handler function 75
HTTP client library
 reference link 59
HTTP message interface
 about 54, 56, 58, 59
 reference link 59
HTTP messages 54
hypermedia links
 about 59
 reference link 61
Hypertext Transfer Protocol (HTTP) 281

I
input/output streams 140
instantiation 156
interface definition language (IDL) 306
Internet Engineering Task Force (IETF) 47, 54
invoke()

 using 116
Iron.io platform
 IronCache 209
 IronMQ 209
 IronWorker 209
 using 209, 211, 212, 214, 216, 217, 220, 221,

222

isset()
 using 107
IT Central Station
 URL 475
iterable pseudo-type 29

J
Jenkins plugin
 PHP_CodeSniffer 496
 PHP_Depend 497
 PHPCPD 497
 phpDox 497
 PHPLOC 496
 PHPMD 497
 PHPUnit 496
Jenkins
 about 496, 497
 URL 497
jMeter
 about 426
 Graph Results 429, 431, 432
 HTTP Cookie Manager 429
 HTTP Header Manager 429
 HTTP Request 428
 HTTP Request Defaults 427
 test, executing 433
 test, writing 426
 Thread Group 427

L
lazy initialization pattern 274
Linux, Apache, MySQL, PHP (LAMP) 192
logger interface
 about 47, 48
 reference link 49
logging
 about 82
 native logging 84

[502]

 with Monolog 86, 89
long term support (LTS) 496

M
Magento
 URL 122
 usage statics 122
magic methods 92
maximum execution time 180
memory management 182, 184
methods 39
microservices 313
MongoDB driver extension
 connecting 346
 deleting 352
 error handling 347
 inserting 349
 selecting 347
 transactions 353
 updating 350
MongoDB
 installing 344
 MongoDB driver extension, querying through

345

 sample data, setting up 344
 working 343
Monolog
 reference link 87
multiple exceptions types
 catching 27
multiprocessing 151
MySQL Sakila
 reference link 365
MySQL transaction
 reference link 335
MySQL
 installing 318, 321
 MySQLi driver extension, querying through 325
 sample data, setting up 322
 working 317
MySQLi driver extension, selecting
 binding parameters 329
MySQLi driver extension
 connecting 325
 deleting 333

 error handling 325
 inserting 330
 querying 325
 selecting 326
 transactions 333
 updating 332

N
NetBeans
 reference link 436
non-blocking I/O 244, 246, 249
Notepad++
 reference link 436
null coalesce operator 18
nullable types 30

O
OAuth
 URL 303
object comparison 166
object inheritance 156, 158, 161
object iteration 163, 165
object pool pattern 269
object-oriented (OO) 92, 155
object-oriented programming (OOP) 7
objects 161
observer pattern 272
output buffering 189, 191

P
package
 creating 382, 384
 distributing 385, 386, 387, 388
Packagist 379
Packagist repository service
 reference link 379
ParseError 72
PC Mag magazine
 URL 471
PHP CLI 125
PHP Data Objects (PDO) 335
PHP Data Objects driver extension
 connecting 336
 deleting 341
 error handling 336

[503]

 inserting 340
 querying through 335
 selecting 337, 339
 transactions 342
 updating 341
PHP Standards Recommendations 34
PHP_CodeSniffer
 reference link 496
PHP_Depend
 reference link 497
PHPCPD
 reference link 497
phpDox
 reference link 497
PHPLOC
 reference link 496
PHPMD
 reference link 497
phpredis driver extension, Redis
 connecting 357
 deleting 361
 error handling 357
 inserting 359
 selecting 357
 transactions 362
 updating 361
phpredis driver extension
 querying through 356
phpspec
 about 418
 examples it() method 419
 its() method 419
 let() method 420
 letGo() method 420
 matchers method 419
 object construction method 420
 setting up 418
 test, executing 423, 425
 test, writing 419, 421, 423
PhpStorm
 reference link 436
PHPUnit
 about 391
 application, setting up 393, 395, 396
 assertions 398

 code coverage 403, 404, 406
 depends annotation 398
 reference link 496
 setting up 392, 393
 setUp() method 398
 tearDown() method 398
 test() method 398
 test, executing 402
 test, writing 398, 400
platform as a service (PaaS) 475
Portable Operating System Interface (POSIX) 141
powerful process control extension (PCNTL) 142
process 151
process control
 about 142
 alarms 149
 multiprocessing 151
 signals 146
 ticks 143
profiling 435
prototype pattern 264

R
React
 about 227
 event loop 252, 253, 256
 installing 250
 observables 256
 references 250
 using 250
ReactiveX (reactive extensions)
 about 227
 reference link 227
Redis
 installing 354
 phpredis driver extension, querying through 356
 reference link 54
 sample data, setting up 355
 working 354
references 161
reflection 174, 177
registry pattern 261
relational database management systems

(RDBMS) 316
REmote DIctionary Server 354

[504]

representational state transfer (REST)
 about 282
 client, creating 304
 JSON extensions 299
 server, creating 300, 301, 303
 working 298
Requests for Comments (RFCs) 54
rethrowing exceptions 80
return type hints 11
right hosting plan
 dedicated server 474
 platform as a service (PaaS) 475, 477
 selecting 471
 shared server 471
 virtual private server (VPS) 472
RxPHP
 about 227
 custom operator, writing 241, 243
 installing 227, 229
 observable 229, 231, 233
 observer 229, 231, 233
 operator 236, 238, 240
 subject 234
 URL, for downloading 227
 using 227

S
sample data
 setting up 322
scalar type hints 8, 10
Server Application Programming Interface (SAPI)
 reference link 125
serverless 199
serverless framework
 reference link 200
 using 200, 202, 204, 206, 207, 208
session handling 187
set state()
 using 117
set()
 using 104
shared server 471
Shebang (Unix)
 reference link 130
Simple Object Access Protocol (SOAP)

 client, creating 296, 298
 server, creating 289, 292
 working 282
 WSDL file, creating 292
 XML extensions 284, 286, 288
Single Page Applications (SPA) 199
singleton pattern 263
sleep()
 using 110
SOAP specification
 reference link 282
spaceship operator 20
standard input (stdin) 245
standard output (stdout) 245
strategy pattern 271
streams 140
structural patterns
 about 277
 decorator pattern 278
Structured Query Language (SQL) 316
StudlyCaps 38
Sublime Text 3
 reference link 436
superglobals 19

T
Technical debt
 reference link 390
test driven development (TDD) 393
third-party packages 380
thread 151
throwable model 78
throwables 24, 26
toString()
 using 114
tracing 435
traits 168, 170, 172
triggering errors 77
type hinting 9
TypeError 73

U
uniform variable syntax 22
unset()
 using 109

V
Vim
 reference link 436
virtual host
 setting up 461, 463, 464, 466
virtual private server (VPS) 472
visibility modifiers 28
void return types 32
Vultr Cloud Compute (VC2)
 about 482
 URL 482

W
wakeup()
 using 112
web server
 provisioning 486
WordPress
 URL 122
 usage statics 122
workstation machine
 setting up 480
World Wide Web Consortium (W3C) 54, 282
WSDL specification
 reference link 283

X

Xdebug
 about 436
 debugging 441, 443, 445, 446, 447, 448
 Eclipse PDT 436
 installation 437, 439, 440
 NetBeans 436
 Notepad++ 436
 PhpStorm 436
 profiling 451, 452
 Sublime Text 3 436
 tracing 449
 Vim 436
 Zend Studio 436
XML extensions
 DOM 284
 SimpleXML 284
 XMLReader 284
 XMLWriter 284

Z
Z-Ray extension 453
Zend Engine 3.0 8
Zend OPcache 196
Zend Server 453
 installing 454, 456, 458, 460
Zend Z-Ray
 about 453
 using 466, 468, 469

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: The All New PHP
	Scalar type hints
	Return type hints
	Anonymous classes
	Generator delegation
	Generator return expressions
	The null coalesce operator
	The spaceship operator
	Constant arrays
	Uniform variable syntax
	Throwables
	Group use declarations
	Catching multiple exceptions types
	Class constant visibility modifiers
	Iterable pseudo-type
	Nullable types
	Void return types
	Summary

	Chapter 2: Embracing Standards
	PSR-1 - basic coding standard
	PSR-2 - coding style guide
	PSR-3 - logger interface
	PSR-4 - autoloading standard
	PSR-6 - caching interface
	PSR-7 - HTTP message interface
	PSR-13 - hypermedia links
	Summary

	Chapter 3: Error Handling and Logging
	Error handling
	Error
	ArithmeticError
	DivisionByZeroError
	AssertionError
	ParseError
	TypeError
	Uncaught error handler
	Triggering errors

	Exception
	Creating a custom exception handler
	Rethrowing exceptions
	Uncaught Exception handler

	Logging
	Native logging
	Logging with Monolog

	Summary

	Chapter 4: Magic Behind Magic Methods
	Using __construct()
	Using __destruct()
	Using __call()
	Using __callStatic()
	Using __set()
	Using __get()
	Using __isset()
	Using __unset()
	Using __sleep()
	Using __wakeup()
	Using __toString()
	Using __invoke()
	Using __set_state()
	Using __clone()
	Using __debugInfo()
	Usage statistics across popular platforms
	Summary

	Chapter 5: The Realm of CLI
	Understanding PHP CLI
	The Console component
	Setting up the Console component
	Creating a console command
	Dealing with inputs
	Using Console component helpers

	Input/output streams
	Process control
	Ticks
	Signals
	Alarms
	Multiprocessing

	Summary

	Chapter 6: Prominent OOP Features
	Object inheritance
	Objects and references
	Object iteration
	Object comparison
	Traits
	Reflection
	Summary

	Chapter 7: Optimizing for High Performance
	Max execution time
	Memory management
	File uploads
	Session handling
	Output buffering
	Disabling debug messages
	Zend OPcache
	Concurrency
	Summary

	Chapter 8: Going Serverless
	Using the serverless framework
	Using Iron.io IronWorker
	Summary

	Chapter 9: Reactive Programming
	Similarities with event-driven programming
	Using RxPHP
	Installing RxPHP
	Observable and observer
	Subject
	Operator
	Writing custom operators

	Non-blocking IO
	Using React
	Installing React
	React event loop
	Observables and event loop

	Summary

	Chapter 10: Common Design Patterns
	Base patterns
	The registry pattern

	Creational patterns
	The singleton pattern
	The prototype pattern
	The abstract factory pattern
	The builder pattern
	The object pool pattern

	Behavioral patterns
	The strategy pattern
	The observer pattern
	The lazy initialization pattern
	The chain of responsibility pattern

	Structural patterns
	The decorator pattern

	Summary

	Chapter 11: Building Services
	Understanding the client-server relationship
	Working with SOAP
	XML extensions
	Creating server
	Creating WSDL file
	Creating client

	Working with REST
	JSON extensions
	Creating server
	Creating client

	Working with Apache Thrift (RPC)
	Installing Apache Thrift
	Defining service
	Creating server
	Creating client

	Understanding microservices
	Summary

	Chapter 12: Working with Databases
	Working with MySQL
	Installing MySQL
	Setting up sample data
	Querying via the MySQLi driver extension
	Connecting
	Error handling
	Selecting
	Binding parameters

	Inserting
	Updating
	Deleting
	Transactions

	Querying via the PHP Data Objects driver extension
	Connecting
	Error handling
	Selecting
	Inserting
	Updating
	Deleting
	Transactions

	Working with MongoDB
	Installing MongoDB
	Setting up sample data
	Querying via the MongoDB driver extension
	Connecting
	Error handling
	Selecting
	Inserting
	Updating
	Deleting
	Transactions

	Working with Redis
	Installing Redis
	Setting up sample data
	Querying via the phpredis driver extension
	Connecting
	Error handling
	Selecting
	Inserting
	Updating
	Deleting
	Transactions

	Summary

	Chapter 13: Resolving Dependencies
	Mitigating the common problem
	Understanding dependency injection
	Understanding dependency injection container
	Summary

	Chapter 14: Working with Packages
	Understanding Composer
	Understanding Packagist
	Using third-party packages
	Creating your own package
	Distributing your package
	Summary

	Chapter 15: Testing the Important Bits
	PHPUnit
	Setting up the PHPUnit
	Setting up a sample application
	Writing test
	Executing tests
	Code coverage

	Behat
	Setting up Behat
	Setting up a sample application
	Writing test
	Executing tests

	phpspec
	Setting up phpspec
	Writing test
	Executing tests

	jMeter
	Writing test
	Executing tests

	Summary

	Chapter 16: Debugging, Tracing, and Profiling
	Xdebug
	Installation
	Debugging
	Tracing
	Profiling

	Zend Z-Ray
	Installing Zend Server
	Setting up the virtual host
	Using Z-Ray

	Summary

	Chapter 17: Hosting, Provisioning, and Deployment
	Choosing the right hosting plan
	Shared server
	Virtual private server
	Dedicated server
	PaaS

	Automating provisioning
	Setting up the workstation machine
	Setting up the server machine
	Configuring Ansible
	Provisioning a web server

	Automating the deployment
	Installing Deployer
	Using Deployer

	Continuous integration
	Jenkins

	Summary

	Index

