
Apache Maven 2
Effective Implementation
Build and manage applications with Maven,
Continuum, and Archiva

Maria Odea Ching

Brett Porter

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

www.allitebooks.com

http://www.allitebooks.org

Apache Maven 2 Effective Implementation
Build and manage applications with Maven, Continuum, and Archiva

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2009

Production Reference: 1080909

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-54-1

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Maria Odea Ching

Brett Porter

Reviewers
Wendy Smoak

Emmanuel Venisse

Carsten Ziegeler

Acquisition Editor
Sarah Cullington

Development Editor
Dhiraj Chandiramani

Technical Editors
Neha Damle

John Antony

Indexer
Monica Ajmera

Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukherji

Project Coordinator
Leena Purkait

Drawing Coordinator
Nilesh Mohite

Proofreader
Lesley Harrison

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Maria Odea Ching grew up in Daet, a small town in the Philippines, then moved
to the country's capital, Manila, when she went to college. She took up Computer
Studies at De La Salle University, and graduated in 2004. She started using open
source tools from her first job after graduating. From then on, she got interested
in the open source philosophy. She was introduced to Apache Maven, Apache
Continuum, and Apache Archiva early on in her career. She became a committer
and a Project Management Committee member of Apache Maven. Eventually, she
was elected as PMC Chair of Apache Archiva. She is also a member of the Apache
Software Foundation.

Deng is currently a Senior Software Engineer and serves as the development lead for
the Maestro project.

First, I'd like to thank Brett for the whirlwind endeavor which is this
book. I'd also like to thank all our reviewers—Wendy, Emmanuel,
Carsten and the Packt team, for taking the time to review and go
through each chapter. You guys rock! And of course without the
communities of Maven, Continuum, and Archiva, we wouldn't
have anything to write about. So I'd like to thank each and everyone
(committers/developers, contributors, buggers) in these respective
communities. I'd also like to give special thanks to our Exist/G2iX
family for their continuous support.

And last but definitely not the least, I'd like to thank my family and
my boyfriend, Mike, for their unfaltering love and support and for
being so patient and understanding when I have to run off to work
on the book.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

www.allitebooks.com

http://www.allitebooks.org

Brett Porter is a software developer from Sydney, Australia with a passion for
development tooling and automation. Seeking a more standardized and reproducible
solution to organize, build, and deploy a number of software projects across
teams, he discovered an early beta of Maven 1.0 in 2003, and has been heavily
involved in the development of the project since. He is a member of the Apache
Maven Project Management Committee, and has conducted presentations and
training on Maven and related tooling at several conferences and events. He
founded the Archiva project in 2005. Brett is also a Director and Member of the
Apache Software Foundation.

Brett is currently VP, Product Development at G2iX, in charge of the MaestroDev
division. He and his team seek to make developers more efficient by offering
support and services for development and automation tools including Apache
Maven, Apache Continuum, Apache Archiva, and Selenium.

Brett was co-author of the book Better Builds with Maven, the first book to be written
about the Maven 2.0 release in 2005, and has been involved in reviewing Maven: A
Developer's Notebook and Java Power Tools.

I'd first like to thank my co-author and friend Deng for agreeing to
participate in this book and lending her experience with Archiva and
Continuum. I am grateful to all of the reviewers that volunteered
their time to help make this the best that it can be. My great thanks
go to all the members of the open source community that participate
in these projects—the developers, as well as those that contribute
patches, detailed bug reports, or answer questions on the user
lists—not only do we build great software together, but I get the
chance to work with truly remarkable individuals.

Finally, my love and thanks go to my wife Laura for sparing some
more of our precious time so that I could complete this book, and for
supporting me in everything I do.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Wendy Smoak is a member of The Apache Software Foundation and a committer
on several open source projects, where she focuses on user support, documentation,
and infrastructure. By day she is a Solutions Architect with G2iX, where her work
centers around enterprise adoption of Apache Maven and related technologies.

Emmanuel Venisse has been developing and architecting J2EE applications
for eleven years for bank, government, and holiday company projects. For the
past three years, he's been working for Mergere/Devzuz with some other Maven
contributors, like Brett and Deng, around a packaged Maven/Continuum/
Archiva product—Maestro. He has been working freelance for five years. For the
last six years, he's been working, in his spare time, on Maven, Continuum, and
Archiva projects as a core developer, and he's the Continuum project chair. He has
contributed too to Maven: A Developer's Notebook (O'Reilly) and Better build with
Maven (Exist). He lives in Versailles, France, with his wife Florence and two children.

I would first like to thank my wife, Florence, without whose love
and support, my work on Apache projects and this book wouldn't
have been possible. I'd also like to thank my children who have to
see their dad working on his laptop instead of playing with them.
Finally, I'd like to thank Brett and Deng for letting me help them on
this book.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Carsten Ziegeler is senior developer and software architect for JEE and portal
applications at Day Software. He is a member of the Apache Software Foundation
and has been participating in several open source projects for more than fifteen
years. Carsten is a member of several Apache communities and project management
committees such as Cocoon, Felix, Sling, Excalibur, and Portals. In addition to this,
Carsten frequently writes artcles, reviews books, and can be found presenting at
various conferences.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Table of Contents
Preface	 1
Chapter 1: Maven in a Nutshell	 7

A whirlwind tour	 7
Installing Maven	 7
Creating a new project from an archetype	 9
Building the project	 15
Reusing builds	 18
Adding dependencies	 19
Adding functionality through plugins	 22
Adding resources	 27
Running tests	 28
Getting help	 32
Enhancing the development process	 33
Viewing detailed project information	 34
Multiple module builds	 34
What if I need to convert an existing project?	 35

Summary	 35
Chapter 2: Staying in Control with Archiva	 37

Importance of a repository manager	 37
Installing Archiva	 40
Separating your repositories	 44
Hooking up Maven with Archiva	 46

Setting up a proxy	 46
Configuring your settings.xml	 51
Building your project	 52

Searching for artifacts in Archiva	 55
Deploying from Maven	 59

Creating a new user	 60

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Table of Contents

[ii]

Configuring and deploying from Maven	 61
Deploying via web form	 65
Summary	 66

Chapter 3: Building an Application Using Maven	 67
Introducing the sample project	 67
Setting up a multi-module build	 68

Creating the parent POM	 69
Creating the modules	 70
Dependency management	 73
Fleshing out the example application	 75

Creating an organization POM	 76
Configuring basic reports	 80
Preparing for non-code modules	 82

Creating a modules tree	 83
Adding a documentation module	 85

Building the site automatically	 88
Assembling the site for distribution	 88
Adding site resources	 90
Adding a skin	 91

Distributing the application	 93
Generating the runtime environment with the App Assembler plugin	 95
Generating the assembly archive	 99

Adding the documentation to the distribution archive	 104
Summary	 105

Chapter 4: Application Testing with Maven	 107
Types of testing in Maven	 108

Unit testing (or code testing)	 108
Integration testing (or module testing)	 109
Functional and other types of testing	 109

Working with tests	 110
Surefire plugin configuration	 110

Controlling the execution of tests	 111
Inclusion and exclusion of tests	 112
Running specific tests from the command line	 114
Skipping tests temporarily	 115

Producing a report for the test results	 115
Reviewing test coverage	 117

Coverage and multimodule projects	 123
Integration, functional, and other testing	 124

Running integration tests using naming patterns	 125
Operating the Selenium server	 130
Deploying the application to a container	 131

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Table of Contents

[iii]

Simplifying test grouping with TestNG	 133
Using a separate integration test module	 134
Altering integration tests with profiles	 138

Using TestNG parameters	 140
Measuring coverage for integration tests	 140

Summary	 141
Chapter 5: Reporting and Checks	 143

Review: Example application	 144
Constructing the developer's site	 144
Maven reports	 147

Adding reports to the project	 148
Configuring plugins for both reporting and the build	 150
Configuring reports in the site life cycle	 151

Setting up quality checks	 154
Setting a minimum coverage requirement	 155
Best practices for configuring coverage checks	 160

Reporting and quality tools	 161
Dependencies	 161
Javadoc	 162
Checkstyle	 163
PMD	 168
FindBugs	 174
Clirr	 176
Other tools	 177

Reporting best practices	 178
Choosing reports	 178
Site deployment	 179
Introducing and selecting failure thresholds	 180

Tying it all together	 180
Dashboard plugin	 181
Sonar	 183

Summary	 183
Chapter 6: Useful Maven Plugins	 185

The Remote Resources plugin	 186
Creating a Remote Resource bundle	 187
Processing Remote Resources in a project	 189

The Build Number plugin	 192
The Shade plugin	 196

Building a standalone artifact	 196
Shading dependencies	 199

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Table of Contents

[iv]

The Build Helper plugin	 203
Adding source directories	 203
Attaching arbitrary artifacts	 204
Other goals	 206

The AntRun plugin and scripting languages	 207
Running simple tasks	 207
Interacting with the Maven project	 208
Converting Ant or Maven 1 builds	 210
Maven plugins written in Ant	 211
Other scripting languages	 212

The Exec plugin	 213
Adding the Exec plugin to the Build life cycle	 214
Running the Exec plugin standalone	 215

Summary	 216
Chapter 7: Maven Best Practices	 217

Preparing the development environment	 218
Maven installation and user settings	 218

Encrypting server passwords	 220
Project settings	 220
Configuring repositories	 221

Keeping it simple	 225
Using conventions	 226
Using inheritance	 228
Decomposing the build into modules	 230

Aligning the source structure	 230
Selecting group and artifact identifiers	 231
Building modules together	 232
Each module should be independently useful	 232
Watching the dependencies	 232
Separating API from implementation	 232

Trimming dependencies	 233
Dependency version management	 236
Profiles and pipelining	 238
Scripting and writing plugins	 239
Creating and using archetypes	 240

Build portability	 240
Setting expectations	 241
Hard coding	 241
Portable profiles	 243
Portable artifacts	 243
Resource filtering	 246
Shared resources	 247

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Table of Contents

[�]

Build reproducibility	 249
Summary	 252

Chapter 8: Continuum: Ensuring the Health of your Source Code	 253
Knowing when your build breaks	 253
Setting up Continuum	 254

Setting up a source repository	 255
Installing prerequisites	 256
Installing and configuring Continuum	 257

Using Continuum	 260
At a glance	 260
The build queues	 266
The build definition	 267

Project group build definition	 267
Project build definition	 272

The notifiers	 272
Different types of notifiers	 273
Configuring notifiers in Maven	 277

The Build results	 278
Dependency changes	 279

Installations and build environments 	 280
Installations	 280
Build environments	 281

Summary	 282
Chapter 9: Continuum in Depth	 283

Releasing projects	 283
Release early, release often	 284
Maven release process	 284

Release profile	 290
Releasing projects using Continuum	 294

Preparing a release	 294
Finalizing a release	 300
Viewing release history	 301
Other types of releases	 302
Troubleshooting releases in Continuum	 302

Build pipelining and multiple build definitions	 303
Parallel builds	 308

How it works	 308
Configuring parallel builds	 309

Distributed builds	 311
Master and slave	 311
Configuring distributed builds	 313

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Table of Contents

[vi]

Doing project releases on a build agent	 316
Maintenance	 317

Configuring multiple local repositories	 317
Cleaning up local repositories	 318
Cleaning up directories	 320

Summary	 321
Chapter 10: Archiva in a Team	 323

Roles and permissions 	 323
Introducing repository groups 	 327

Configuring and using repository groups	 328
RSS feeds—discovering new artifacts in your repository	 332

Repository level feeds	 333
Artifact level feeds 	 336

Deleting artifacts in your repository 	 337
The Archiva reports	 339

Repository statistics	 340
Repository health	 341

The Archiva consumers 	 343
What is a consumer?	 343
Archiva's maintenance-savvy consumers	 343

Purging outdated snapshots	 344
Correcting Maven metadata	 346
Creating missing checksums	 347
Database cleanup consumers	 347

Summary	 347
Chapter 11: Archetypes	 349

What are Maven archetypes?	 349
Benefits of Maven archetypes	 350

Generating projects	 350
From archetype:create to archetype:generate	 350
Using archetypes within multi-module projects	 351

Common archetypes	 352
Maven site archetype	 352
Maven Mojo (plugin) archetype	 353
Maven simple J2EE archetype	 354
The AppFuse Spring archetype	 357
Other examples	 359

Writing a new archetype	 360
Creating an archetype from a skeleton	 361
Using the custom archetype	 364

Managing catalogs	 366
Summary	 368

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Table of Contents

[vii]

Chapter 12: Maven, Archiva, and Continuum in the Enterprise	 369
Configuring security	 369

A brief look at Redback	 370
Setting up security for multiple teams in Continuum	 372
Setting up security for multiple teams in Archiva	 376
Additional Redback configuration	 378
Using LDAP	 379

Interfacing with other tools in the enterprise	 382
Continuum web services	 383

Building the Continuum plugin	 383
Using Continuum's web services	 386

Archiva web services	 393
Building the Archiva plugin	 393
Using Archiva's web services	 397

Summary	 401
Appendix A: Troubleshooting Maven	 403

Examining Maven output	 403
Using debug mode	 404
Confirming the expected models	 405
Analyzing dependencies	 406
Download problems	 407

Appendix B: Recent Maven Features	 409
Server password encryption	 409
Reactor project selection	 411

Resuming a failed build	 411
Building a subset of modules	 412
The Reactor plugin	 414

Building modules with local changes	 416
Reconfiguring default life cycle goals	 416
Parallel artifact resolution	 420

Appendix C: Migrating Archiva and Continuum Data	 421
Using a different database	 421
Database backup and migrating between versions	 422

Migrating Continuum	 422
Migrating Archiva	 423

Index	 425

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Preface
This book offers a comprehensive look at using Maven on a project, covering
not only the build system itself, but how it is best used in concert with other
development infrastructures such as source control, continuous integration and build
servers, and an artifact repository. We cover this territory using Subversion, Apache
Continuum, and Apache Archiva, respectively, though the concepts learned should
apply to other comparable systems.

In many ways, this is the book we've always wanted to write about Maven, and it
takes a different approach to the existing Maven titles. Rather than being a reference
or documentation for the software, it takes the approach of walking through a
single example application and associated infrastructure in the same way that you
would develop your own projects. For this purpose, we have crafted the example
application Centrepoint—a simple but functional web application composed of
several modules that itself interacts with Maven, Continuum, and Archiva.

We believe this book will not only show you how to use Maven, but how to use
it effectively, covering concepts and best practices that should endure beyond the
current versions of Maven and apply to your development infrastructure and
teams in general.

What this book covers
Chapter 1: Maven in a Nutshell is a quick overview of the fundamentals of
Maven—from creating a simple Maven project to basic plugin configuration
to generating sites and reports. These are demonstrated in an easy to follow
step-by-step process. By the end of the chapter, you should be able to apply
and use the skills that you have learned to your own project.

Chapter 2: Staying in Control with Archiva introduces you to Archiva and its role
in building software. You will learn the basics of installing and configuring it for
internal use. It also shows you how Archiva complements Maven and how they
can be used together efficiently.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Preface

[�]

Chapter 3: Building an Application Using Maven delves into the details on how to
accurately set up and build an application using Maven. The Centrepoint project is
introduced in this chapter. This is the sample application that will be used for the
hands-on demonstrations throughout the book. You will see how Maven enforces
convention over configuration while building the Centrepoint project.

Chapter 4: Application Testing with Maven goes through the various types of automated
tests that can be executed from Maven. This includes unit testing, integration testing,
and testing web applications using Selenium to name a few. Instrumenting tests,
implementing test coverage, and reporting of test results are also covered.

Chapter 5: Reporting and Checks shows how to configure Maven to generate project
reports and incorporate them in the generated site. This chapter also tackles the
basics on enforcing certain rules or checks on your code such as conforming to
code styles and standards, and finding common bugs in the code while building
your application.

Chapter 6: Useful Maven Plugins discusses some of the Maven plugins, both from
Apache Maven and from the Codehaus Mojo project, that may be of great help in
your Maven builds. The functionality of these plugins range from keeping track of
the source revision number for the build to executing external applications as part of
the build. You will learn to identify when to use each plugin and how to configure
them properly to address your need.

Chapter 7: Maven Best Practices illustrates the effective usage of Maven. You will learn
tips and tricks for setting up your development environment to managing your
project dependencies to making your builds portable and reproducible. By the end of
this chapter, you should be able to apply what you've learned to your next project, or
even to your current one.

Chapter 8: Continuum: Ensuring the health of your source code highlights the importance
of continuous integration in software development through Continuum. It
covers basic installation and set up, adding projects to Continuum, and effective
configuration and build scheduling, at the same time demonstrating how it works
in accordance with Maven and also with Archiva.

Chapter 9: Continuum in Depth deals with releasing projects using both Maven
and Continuum. The different phases involved in the release process will be
covered along with a bit of troubleshooting on the side. You will also learn about
building multiple projects simultaneously in Continuum through parallel and
distributed builds.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Preface

[�]

Chapter 10: Archiva in a Team gives you the more advanced features of Archiva and
demonstrates how to configure it for use in a team. You will learn how to control
access to a repository, how to take advantage of repository groups, how to make use
of its reporting feature, and how to maintain your Archiva repositories.

Chapter 11: Archetypes covers Maven archetypes. It discusses some of the archetypes
available—what their purpose is and what the generated project from each archetype
looks like. You will also create a custom archetype specifically for the Centrepoint
application, which will be used in the last chapter.

Chapter 12: Maven, Archiva, and Continuum in the Enterprise shows how to configure
Archiva and Continuum effectively for use in the corporate environment. Tips
on how to set up projects and repositories across multiple projects with respect
to controlling who and what can be accessed by different teams covers the first
half of the chapter. The second part demonstrates the web services feature of both
applications by creating plugins for the Centrepoint application and using them to
get information from Archiva and Continuum.

Appendix A: Troubleshooting Maven provides techniques for troubleshooting Maven.
Incorrect POM or settings configuration, and dependency and download problems
are a few of the usual suspects that will be covered here.

Appendix B: Recent Maven Features discusses the new features in Maven 2.1 and
above. These features include password encryption, reactor project selection, and
parallel downloads of dependencies.

Appendix C: Migrating Archiva and Continuum Data illustrates how to migrate data in
Archiva and Continuum when upgrading to a higher version. How to switch to a
different database from the built-in one is also discussed.

What you need for this book
You need to have the following software installed:

Java 5 or above
Subversion 1.4
An outgoing mail server for some examples

We will be installing the following applications throughout the book:

Apache Maven 2.2
Apache Archiva 1.2
Apache Continuum 1.3

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Preface

[�]

Who this book is for
This book is for Java developers who want to get started with Apache Maven. If
you are tasked with build automation in your company, this book will help you
to quickly and easily get started with Maven in order to improve the efficiency of
your builds.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

<dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>model</artifactId>
 <version>${project.version}</version>
 </dependency>

</dependencies>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <forkMode>never</forkMode>

 </configuration>
</plugin>

Any command-line input or output is written as follows:

distribution$ mvn integration-test

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Preface

[�]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/4541_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration, and help us to improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata added to any list of
existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell
In this chapter, we will take a comprehensive look at the fundamentals of Maven, by
example. Moreover, we will also look at the associated terminology that we will be
using in this book. If you are already a frequent Maven user, you may only need to
skim through this chapter to refresh yourself on some of the basic principles.

For those who are new to Maven; other books and the Maven documentation have
covered some of this content in more detail already—so this is the only review we
will spend on the basics of Maven. Beyond this chapter, we will assume that you are
confident in updating the Maven project without step-by-step instructions so that we
can quickly get into more interesting examples.

A whirlwind tour
The best way to get to know Maven is by seeing it in action. In this section, we will
create a simple project and explore the different ways in which you can use Maven
in it.

Installing Maven
Of course, first we will need to install Maven. If you haven't done this already,
you can download and install the latest version by following the instructions from
http://maven.apache.org/download.html. The samples in this book have been
checked against Maven 2.2.1.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[�]

Luckily, this is a very simple process. It has only two steps, which any user should be
familiar with:

1.	 Unzip the Maven distribution to the location you would like to install it, such
as /usr/local or C:\Program Files. The distribution stores everything
under a subdirectory, for example apache-maven-2.2.1. We will refer to
this location as M2_HOME, so for example this would be /usr/local/
apache-maven-2.2.1.

2.	 Add the bin subdirectory of M2_HOME to your PATH variable.

You should verify the installation by running the following command:

$ mvn --version

A successful result will look similar to the following results from my machine:

Maven version: 2.2.1

Java version: 1.5.0_13

Default locale: en_AU, platform encoding: MacRoman

OS name: "mac os x" version: "10.5.4" arch: "i386" family: "unix"

Maven is now ready to use.

There is one situation where you will need to go through an additional
configuration step. As Maven downloads much of its functionality
from the Internet, and stores it locally, you will need a direct Internet
connection. If you would prefer to set up a permanent, shared storage
area in your own network (or on your machine) up front, look at how
to install a repository manager in Chapter 2, Staying in Control
with Archiva. Once populated, this can allow you to work without an
Internet connection whenever necessary.

If you are behind a firewall and need to use an HTTP proxy, you will need to edit
the <M2_HOME>/conf/settings.xml file, following the template for instructions on
how to add the HTTP proxy configuration. This file can also be copied to your home
directory, under <USER_HOME>/.m2/settings.xml, if you would prefer the settings
to be used when you install a different version of Maven.

Troubleshooting
If you have any further problems with Maven failing as it attempts to
download these components as you work through this chapter, check
out the Appendix A, Troubleshooting Maven later in this book.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[�]

Creating a new project from an archetype
Maven makes it very simple to start a new project with archetypes. An archetype
is a template project for a particular type of module, which ranges from a simple
JAR or WAR module to a more complete template application for many popular
frameworks. Archetypes extend the Maven concept of building on conventions by
allowing them to be shared in reusable chunks. In Chapter 11, Archetypes, we will
discuss how you can create and publish your own archetypes to establish reusable
conventions for starting modules and projects in your own organization.

In this chapter, we will create a simple Java web application from an archetype to
learn how to apply Maven's functionality to a sample project.

To start your sample project, run the following command from an empty directory to
invoke Maven's archetype plugin:

$ mvn archetype:generate

You may have seen a command similar to archetype:
create used in examples elsewhere. This is an older,
now deprecated, form of the archetype goal which can be
replaced by a corresponding archetype:generate goal.

If this is the first time you have run the archetype plugin, you will notice that Maven
spends some time downloading the archetype functionality as well as the other Java
libraries that it uses. These files are stored in your local repository for re-use in
the future.

The local repository consists of both a local cache of downloaded libraries and a
place to store your own projects as they are built, before they are published for other
users. By default, the local repository is stored in the .m2/repository subdirectory
of your home directory, which can be deleted at any time if necessary.

The local repository acts as an intermediary between your builds and a Maven remote
repository, which is a canonical shared storage area for builds that is commonly
hosted on an HTTP server, but can also be accessed using a local filesystem—FTP,
SSH, and more.

One particular remote repository that is of note is the Maven central repository.
Included by default in all Maven builds, and it contains not only Maven's plugins
and their required dependencies but also a large host of releases of other open
source projects.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[10]

On your machine, there is only one single local repository. You can connect to any
number of remote repositories for a single build if needed. It is important in all
Maven projects to carefully select the remote repositories to be used and to manage
your own remote repositories for sharing artifacts among projects. This will be
discussed more in detail in Chapter 7, Maven Best Practices.

Once the downloads finish from the earlier archetype command, you will be
prompted (with a long list!) to select an archetype to generate the project from.
A similar but abbreviated list is shown below:

Choose archetype:

1: internal -> appfuse-basic-jsf (AppFuse archetype for creating a web
application with Hibernate, Spring and JSF)

[...]

15: internal -> maven-archetype-quickstart ()

16: internal -> maven-archetype-site-simple (A simple site generation
project)

17: internal -> maven-archetype-site (A more complex site project)

18: internal -> maven-archetype-webapp (A simple Java web application)

[...]

Choose a number: (1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21/
22/23/24/25/26/27/28/29/30/31/32/33/34/35/36/37/38/39/40/41/42/43/44) 15:

Among the many choices, the default is the quick start archetype that is used in
Maven's getting started guide. This is a good choice for a minimal Maven project or
an archetype from which new modules can be built (particularly for JAR projects).

However, in this example, we will be using the simple Java web application. So go
ahead and enter the number corresponding to that archetype (at the time of writing
it was 18) and press Enter.

A number of projects take advantage of Maven's archetype
mechanism to deliver a template project for their framework. A
sample of these can be seen at http://docs.codehaus.org/
display/MAVENUSER/Archetypes+List. One in particular
to note is Appfuse (http://appfuse.org/), which assembles
ready-to-use stacks of popular combinations of open source web
application frameworks, and is based on Maven's archetype
technology. More information on these can be found in
Chapter 11, Archetypes.

Each Maven project needs some coordinates to allow it to be identified by
other Maven projects. These are called the group ID, artifact ID, and version
(sometimes referred to as the GAV).

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[11]

Group ID: An identifier for a collection of related modules. This is usually
a hierarchy that starts with the organization that produced the modules,
and then possibly moves into the increasingly more specialized project or
sub-projects that the artifacts are a part of. This can also be thought of as a
namespace, and is structured much like the Java package system.
Artifact ID: The Artifact ID is a unique identifier for a given module within
a group.
Version: The version is used to identify the release or build number of
the project.

The archetype plugin prompts you for these coordinates to add to the project after
you have chosen the type of archetype to use. We can use the following values for
our sample web application:

Define value for groupId: : com.effectivemaven.chapter01

Define value for artifactId: : simple-webapp

Define value for version: 1.0-SNAPSHOT: : 1.0-SNAPSHOT

Define value for package: : com.effectivemaven.chapter01

The final prompt for a package is the Java package that will be used for source code,
as this is a sample Java web application. It is not the packaging type that you want the
project to take as that is provided by the archetype itself.

You may have noticed that the version is referred to as a snapshot.
In Maven, there are two types of versions: releases and snapshots
(those that end in -SNAPSHOT). A snapshot should always be used by
your projects during development as it has a special meaning to Maven
to indicate that development is still occurring and that the project may
change. A release is assumed never to change, so release versions (such as
1.1, 2.0, or 3.0-beta-5) should only be used for a single state of the
project when it is released, and then updated to the next snapshot.

After entering the values above, you will be asked to confirm that the values are as
you intended, and then the project will be created. If you see this highly desirable
banner, then congratulations—you've created a Maven project!

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[12]

The created project will be stored in the simple-webapp subdirectory and should
look as shown next:

`-- simple-webapp
 |-- pom.xml
 `-- src
 `-- main
 |-- resources
 `-- webapp
 |-- WEB-INF
 | `-- web.xml
 `-- index.jsp

As far as web applications go, that is as simple as it gets. The src/main/webapp
directory contains the basic web application, while pom.xml specifies the information
Maven needs to know. This directory structure has followed the Maven convention
for web applications, which means that only a minimal amount of configuration
will be needed to construct a functional build. If you open pom.xml, you will see
the following:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.effectivemaven.chapter01</groupId>
 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple-webapp Maven Webapp</name>
 <build>
 <finalName>simple-webapp</finalName>
 </build>
</project>

As you can see, the archetype has substituted in the coordinates that it prompted for
earlier. It has also added the war packaging type to indicate that the build structure
for the project is a web application. A default name has been added, which you
would typically change to something which describes the project better.

This project file is sufficient to perform a large number of operations. For example,
it can be used to assemble the web application archive or run the web application
on a development server. Later, when we add some Java source code to the project,
the shown configuration is enough for Maven to compile and include it in the web
application, and even produce a source cross reference and Javadoc, if requested.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[13]

This is possible because Maven's declarative project model defines a number of
well-known properties that the whole build can reuse for a number of different
purposes. For this reason, the project file is referred to as the POM, which stands
for Project Object Model.

The POM contains important pieces of information about the project, which include:

The Maven coordinate of the project for reuse by other Maven projects
The project name, description and license
Project resource information such as the location of source control, issue
tracking, and continuous integration
The developers, contributors and organizations participating in the project

The POM will also include information about how the project should be built,
such as:

The source directory layout
Dependencies on other projects
Build requirements (by means of Maven plugins) and configuration

Maven projects use the concept of inheritance. This means that repetition can be
avoided by sharing information in a common ancestor of a project. Such parents of
the project are POMs themselves.

Nevertheless, let's take one step back—what does Maven mean by "a project"? In
software development, the term project is very ambiguous—it could mean just
one part of a larger application, a plan for one release of a particular subset of an
application, or it could be the entire application itself.

In Maven, the term project refers to a unit of work. That is, it takes one particular
set of sources and produces a build artifact identified by the project's coordinate.
While a conventional project has a single build artifact, it is possible to attach more
artifacts that are alternate derivatives of the same sources in some limited ways. It is
also worth noting that a POM can be both an artifact in itself, and a piece of metadata
associated with a particular artifact file.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[14]

While there are a number of fields in the project file that can be used to describe
your project, or change defaults such as the location of source code, Maven defines
a number of conventions that reduce the amount of configuration needed to get a
standard project up and running. For example, this section is inherited into every
Maven project as the default build paths:

<build>
 <directory>${project.basedir}/target</directory>
 <outputDirectory>
 ${project.build.directory}/classes
 </outputDirectory>
 <finalName>
 ${project.artifactId}-${project.version}
 </finalName>
 <testOutputDirectory>
 ${project.build.directory}/test-classes
 </testOutputDirectory>
 <sourceDirectory>
 ${project.basedir}/src/main/java
 </sourceDirectory>
 <scriptSourceDirectory>
 src/main/scripts
 </scriptSourceDirectory>
 <testSourceDirectory>
 ${project.basedir}/src/test/java
 </testSourceDirectory>
 <resources>
 <resource>
 <directory>
 ${project.basedir}/src/main/resources
 </directory>
 </resource>
 </resources>
 <testResources>
 <testResource>
 <directory>
 ${project.basedir}/src/test/resources
 </directory>
 </testResource>
 </testResources>

Various other settings are also pre-configured, including additional paths needed
for certain packaging types such as the web application source directory we saw
previously. Together these form the base of Maven's project conventions.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[15]

While each setting can be easily customized in an individual Maven project, the
strength of following the conventions is that the build remains simpler and more
familiar to someone new to a specific project.

For more information on what is available in the POM, refer to the POM Reference
documentation at http://maven.apache.org/pom.html. We will also revisit the
recommended practices for what information to include in the POM in Chapter 7,
Maven Best Practices.

Building the project
The vast majority of the time that Maven is run, it is to build a project. So let's see
how to do that for the simple web application we have created.

In Maven, the build is run using a predefined, ordered set of steps called the build
lifecycle. The individual steps are called phases, and the same phases are run
for every Maven build using the default lifecycle, no matter what it will produce.
The build tasks that will be performed during each phase are determined by the
configuration in the project file, and in particular the selected packaging.

Some of the most commonly used lifecycle phases in the default lifecycle are:

validate—checks build prerequisites
compile—compiles the source code identified for the build
test—runs unit tests for the compiled code
package—assembles the compiled code into a binary build result
install—shares the build with other projects on the same machine
deploy—publishes the build into a remote repository for other projects
to use

The following is a complete list of phases available in Maven 2.2:

validate, generate-sources, process-sources, generate-resources, process-
resources, compile, process-classes, generate-test-sources, process-test-
sources, generate-test-resources, process-test-resources, test-compile,
test, prepare-package, package, integration-test, verify, install, deploy.

The phases are designed to be run in sequence so that they can depend on the results
of the previous phases. For example, choosing to run the test phase will first run
validate, compile, and the other intermediate phases to ensure that the compiled
code is up-to-date before running the tests.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[16]

To see the build lifecycle in action, run the following command from the directory
that contains pom.xml:

simple-webapp$ mvn package

Again, if this is the first time you have built this project, Maven may download a
few more JAR files to the local repository. A few seconds later, it should complete
successfully, with an output that looks similar to the following:

[INFO] Scanning for projects...
[INFO] ---
[INFO] Building simple-webapp Maven Webapp
[INFO] task-segment: [package]
[INFO] ---
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] No sources to compile
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] No sources to compile
[INFO] [surefire:test]
[INFO] No tests to run.
[INFO] [war:war]
[INFO] Packaging webapp
[INFO] Assembling webapp[simple-webapp] in [/Users/brett/code/01/simple-
webapp/target/simple-webapp]
[INFO] Processing war project
[INFO] Copying webapp resources[/Users/brett/code/01/simple-webapp/src/
main/webapp]
[INFO] Webapp assembled in[78 msecs]
[INFO] Building war: /Users/brett/code/01/simple-webapp/target/simple-
webapp.war
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 4 seconds
[INFO] Finished at: Sat Aug 30 22:20:59 EST 2008
[INFO] Final Memory: 7M/14M
[INFO] ---

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[17]

As you can see, the build has gone through a number of tasks, such as [compiler:
compile], [war:war], and so on. These tasks are known as goals, and they are
attached to the build lifecycle to give the build substance. Behind the scenes, Maven
knows when to run all of these different goals in the build lifecycle based on the
project type. In the case of a web application, it may have resources to include,
Java source code to compile, and tests to compile and execute before finally being
packaged. Even though the project doesn't currently contain all of these elements,
Maven runs through the goals so that they are able to check their own input and
process them if they are found.

In the last step of the build above, the war:war goal is run to package up the web
application, including the resulting output from the earlier goals, as well as the
content in the default location of src/main/webapp. The web application archive
is produced in the target directory, which is Maven's default working directory.
There you will find both the target/simple-webapp subdirectory that contains
the exploded, or unpacked, web application contents ready to be packaged, and the
target/simple-webapp.war file that contains those files after the packaging process.

Notice that the filename simple-webapp.war omits the version
number. As a best practice, Maven appends the version number
to the archive by default, but in this case the project file specified a
finalName that did not include the version number. This is handy for
web applications as it is common to use the filename as the context path
when it is dropped into a servlet container.

By laying out a standard pattern for builds through the build lifecycle, Maven is able
to achieve a number of objectives. They are as follows:

Developers do not need to re-learn a new process each time they move to a
new project, as the phases are the same across Maven projects.
It is easy to incorporate new tools into the lifecycle by binding them to
certain phases, without any knowledge of which other tools and plugins
have already been incorporated.

The separation of the build order from the selection of goals is important in
incorporating new tools without repeating configuration or having to introduce new
variables. Take source generation for example—the Compiler plugin knows that it
can take a list of source directories from the project model and compile them into
the work directory. However, it cannot know all of the various source generation
mechanisms that it might need to run first to ensure that the sources are available
to compile. Instead, we bind any source generation goals to the generate-sources
phase of the lifecycle, which is guaranteed to occur before the compile phase, and
insert any created sources into the project model for compilation.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[18]

In addition to the default build lifecycle we have seen above, it is worth noting that
Maven has two other lifecycles built-in:

Clean lifecycle: The command mvn clean is often used to remove Maven's
work directory target. However, as some plugins can generate information
that does not reside in the work area, it is possible for them to bind to the
clean lifecycle to clean up after themselves as well. To help with ordering,
the complete list of phases in the lifecycle is pre-clean, clean, and
post-clean.
Site lifecycle: While much of the site generation is coordinated by Maven's
reporting mechanism, it is also possible to bind plugins to be executed as
part of the site generation lifecycle. The phases available are pre-site,
site, post-site, and site-deploy.

Reusing builds
Previously, we ran the command mvn package. If you just needed to produce a web
application to test manually, this would be sufficient. However, what if you need to
include it in a Java EAR file, or to build a self-contained distribution that includes the
web application along with a servlet container? More commonly, what if you were
building a JAR project instead that needed to be used by another Java project?

In Maven, instead of passing relative links to other projects and files in the build,
projects share their build products in the form of build artifacts, with the mechanism
for sharing these artifacts being the Maven repositories that we touched on earlier.
We have already seen that Maven downloads remote dependencies to the local
repository, and we can see here that this is also where Maven places artifacts to share
with other builds that you run yourself from the same machine. Note that the local
repository is not intended for sharing among multiple users, however, when it comes
to publishing a build for other developers or projects to use, a remote repository is
used instead.

To install the web application we have created already into the local repository,
run the command in the folder that contains the pom.xml file:

simple-webapp$ mvn install

This is the command (or perhaps mvn clean install) that you
will run in almost all cases while building Maven projects.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[19]

First, notice that thanks to the build lifecycle this runs everything that
mvn package did first—it is not necessary to run both. However, this time,
it runs an additional step:

[INFO] [install:install]

[INFO] Writing transformed POM using encoding: UTF-8

[INFO] Installing /Users/brett/code/01/simple-webapp/target/simple-
webapp.war to /Users/brett/.m2/repository/com/effectivemaven/chapter01/
simple-webapp/1.0-SNAPSHOT/simple-webapp-1.0-SNAPSHOT.war

As you can see, the web application has been copied into the local repository. This
file is now available as a dependency to other projects.

You might notice that the filename now includes a version again—this is
always the case for files in the local repository as it follows a predefined
format to allow Maven to access the files again later. The format starts
with the group ID split into paths, followed by the artifact ID and version
as separate paths, and finishing with the filename consisting of the
artifact ID, version, and extension for the given packaging. Therefore, the
finalName configuration we used earlier is only suited for manipulation
of a file within that project's build.

It is worth noting that Maven has one step beyond install, called deploy. This does
lead to some confusion, as it does not refer to deployment of an application into a
development or production server, but rather uploading the build product into a
remote repository. While this can be used as a location to deploy your applications
into a server from, that is not the direct purpose of Maven's deploy step.

We will look at remote repository deployment later in the book. For now, let's focus
on improving the project we have been constructing.

Adding dependencies
In any non-trivial project, it is unlikely (and unwise!) for the programmer to
write every single piece of code that it will use and bundle it all up in one large
all-or-nothing build. This is particularly true for a web application where generally
only the web-based functionality is part of the project, with business logic contained
in separate libraries. For this reason, one of the first features of Maven you will find
yourself using is the dependency mechanism.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[20]

A dependency is simply a way of expressing that the current project requires another
project in order to build or run in some way, using the Maven coordinates to locate
it. The dependency may be another project you are building at the same time,
another project you have already built on the current machine (shared from the local
repository), or a project built by another team member or a third party (downloaded
from a remote repository).

Let's see how this works with a simple example using Java source code. For this
example, create a source file called src/main/java/com/effectivemaven/
chapter01/ExampleAction.java with the following content:

package com.effectivemaven.chapter01;

import org.slf4j.*;

public class ExampleAction {
 final Logger logger =
 LoggerFactory.getLogger(ExampleAction.class);
 public boolean execute() {
 logger.info("Example action executed");
 return true;
 }
}

This is a very trivial example, but you will notice that the third party library SLF4J
(http://slf4j.org) is used. With this code added, we will try compiling the
project. In this case, we just run until the compile step, which includes the same
steps as in the earlier calls to package and install, but stops once the sources
are compiled.

simple-webapp$ mvn compile

However, you will notice that this time, the build fails with an error:

[INFO] [compiler:compile]
[INFO] Compiling 1 source file to /Users/brett/code/01/simple-webapp/
target/classes
[INFO] ---
[ERROR] BUILD FAILURE
[INFO] ---
[INFO] Compilation failure

/Users/brett/code/01/simple-webapp/src/main/java/com/effectivemaven/
chapter01/ExampleAction.java:[3,0] package org.slf4j does not exist

/Users/brett/code/01/simple-webapp/src/main/java/com/effectivemaven/
chapter01/ExampleAction.java:[6,10] cannot find symbol
symbol : class Logger
location: class com.effectivemaven.chapter01.ExampleAction

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[21]

/Users/brett/code/01/simple-webapp/src/main/java/com/effectivemaven/
chapter01/ExampleAction.java:[7,8] cannot find symbol
symbol : variable LoggerFactory
location: class com.effectivemaven.chapter01.ExampleAction

Here, compilation has failed because the SLF4J library has not been added to the
build. Maven makes including this very easy, by adding the dependency to the
project file pom.xml:

 [...]
 <dependencies>
 [...]
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.5.0</version>
 </dependency>
 </dependencies>

Its Maven coordinates identify the dependency—the group ID org.slf4j, the
artifact ID slf4j-api, and the version 1.5.0. Due to its Java heritage, Maven
defaults to looking for JAR files, so the type does not need to be given (though for
other types it can be). This is enough to retrieve and utilize the SLF4J library, and as
we will see, much more.

What if I don't know the Maven coordinates?
The above case may seem simple, but it might be hard to guess the values
to use if you didn't know them! While occasionally libraries will publish
the Maven coordinates to use in their documentation and examples, often
you will need to find out what they are yourself. In Chapter 2, Staying in
Control with Archiva, we will learn how to use Archiva to search for the
right library based on free text, a missing Java class, or a particular JAR
file that you already have.

With the dependency in place, let's try to compile the project again:

simple-webapp$ mvn compile

If all things have gone well, SLF4J will be downloaded and the build will succeed.
The generated class files will be produced in the target/classes subdirectory.

This is very useful, but adding the dependency has done more than just let us
compile the project. Try packaging the artifact again:

simple-webapp$ mvn package

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[22]

This process will follow the same steps as it did before, but with the addition of
the new class file and the dependency to the resulting web application. Firstly,
the compiled sources are placed in target/simple-webapp/WEB-INF/classes
(in addition to the main target/classes area). Secondly, the dependency added
has been copied to target/simple-webapp/WEB-INF/lib. This is because the
Maven WAR plugin now knows that it will be required to run the web application
by reading the project's dependencies. Of course, these files are also packaged into
the resulting WAR file.

We will see more examples of how the dependency definition is reused by other
plugins throughout this chapter.

It is also worth noting that while this pattern is the most common way to express
dependencies, Maven has a number of sophisticated ways to manage which
dependencies are used, how they are used, and what version should be used.
The SLF4J dependency we used is very simple, but other dependencies will have
dependencies of their own. When you use such dependencies in the future, you
will notice that Maven resolves these transitive dependencies as well.

Some of these concepts will be covered in the dependency management section of
Chapter 7, Maven Best Practices.

Adding functionality through plugins
The basic model presented above will construct a functional project for a number
of different built-in packaging types. However, most projects use a variety of
technologies that require additional steps at build time. In addition, there are a vast
array of development specific tools that have been integrated with Maven using its
plugin mechanism.

We saw how plugins are used several times throughout the introductory
walkthrough. In some cases, they are explicitly declared in the POM, sometimes
they are implied through the default build for a given packaging type, or, in the case
of the archetype plugin they are called directly from the command line without a
corresponding project.

A plugin is a self-contained piece of reusable functionality for incorporating into
the lifecycle of one or more Maven projects. There are two main types of plugin in
Maven: build plugins, used for all tasks related to the build process of the project;
and reporting plugins, used for obtaining a visual representation of the state of
the project.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[23]

Plugins are typically written in Java, but it is possible to write them in a number of
interpreted languages, or other languages that will run on the JVM. Through external
execution, it has even been possible to write plugins in other languages such as C#.

Maven obtains plugins in the same way as it retrieves other project dependencies; by
downloading their artifact and associated dependencies from a remote repository.

The first time you may encounter this is if your code targets Java 5. In another of its
conventions, Maven's Java compilation defaults to producing code that is compatible
with running on older versions of Java. This means that if you use source code that
uses the new features such as generics, you will get compilation failures.

The Maven developers are currently discussing upgrading the default
source and target versions to Java 5, so in a future version of Maven the
following example may work without the additional configuration.

You can try this for yourself by adding a line to the ExampleAction.java class
created in the previous example:

 private java.util.List<String> values;

If you compile this source code, the following error will appear:
/Users/brett/code/01/simple-webapp/src/main/java/com/effectivemaven/
chapter01/ExampleAction.java:[9,26] generics are not supported in -source
1.3

(try -source 1.5 to enable generics)

 private java.util.List<String> values;

Therefore, it is necessary to pass the -source and -target parameters to
the Java compiler. The goal that was running when the error occurred was
compiler:compile, so we know that the plugin we are concerned with is the
compiler plugin, and could look up its configuration page online (this particular
plugin is listed at http://maven.apache.org/plugins/maven-compiler-plugin/).
There you will find a reference for available configuration options for the
compiler:compile goal, as well as examples for this specific example
and others.

Let's add the compiler plugin within the build section of pom.xml as suggested on
that page:

<build>
 <finalName>simple-webapp</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[24]

 <version>2.0.2</version>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>

As you can see, a plugin declaration is much like a dependency declaration—the
Maven coordinates of the plugin are used. In fact, the plugins are retrieved in
an identical way to any dependencies you use, including being stored in your
local repository.

Specifying plugin versions
Even though you will see many examples where this is not the
case, it is always a good idea to specify the version of the plugin you
are using to ensure the build will be reproducible later! Without a
version number, Maven will look for the latest available version, and
should the plugin's behavior change then your build might change
unexpectedly too.

The addition of the plugin achieves the following in a Maven build:

Makes all the goals in the plugin available to run from the command line
for the project. However, note that some plugins that are designed to run
standalone, such as the archetype plugin we used earlier, can be run without
needing to be added to a project.
Makes any new packaging and dependency types for the project
available (this requires that you declare the project with the
<extensions>true</extensions> tag as well).
Allows the definition of additional goals to run in the default build.
Allows the configuration of the goals within the plugin.

It is this last feature that we have taken advantage of with the compiler plugin. The
specified source and target will be used by the compiler:compile goal in the plugin,
and passed on to the Java compiler that is executed.

With the configuration declared in the way that it has been, it will actually
be passed on to all goals that are used from that plugin—for example, the
compiler:testCompile goal that is automatically used to compile Java test
source code will take the same parameters. For this reason, you will notice that
we don't encounter the same compiler error we received earlier when Java 5
annotations are used in the next section on running unit tests.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[25]

Being able to configure plugins that are already used opens up a number of
variations on how the project can be built, but what about adding entirely new
pieces of functionality to the default build?

This is achieved with the executions section of a plugin definition. This allows
the addition of a goal or goals with a given configuration to a particular stage of
the build.

As an example, let's look at how to add a rule enforcement to the build. Let's say
that because we chose to use SLF4J already, we want to make sure that none of the
dependencies added in the future add the Commons Logging implementation into
the web application via their transitive dependencies.

To do this, we must add the enforcer plugin into the plugins section of pom.xml:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.0-beta-1</version>
 <executions>
 <execution>
 <id>enforce-dependencies</id>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <bannedDependencies>
 <excludes>
 <exclude>
 commons-logging:commons-logging
 </exclude>
 </excludes>
 </bannedDependencies>
 </rules>
 </configuration>
 </execution>
 </executions>
</plugin>

Here, there are three parts of the execution to note. Firstly, there is an identifier
id given. This is not mandatory when there is only one execution (it will use the
default identifier in this case), but it is always recommended. It is used to give a
visual clue to the execution that is running when multiple executions for a single
plugin are provided. It also acts as a key for Maven's inheritance mechanism if a
subproject wants to modify the configuration of the execution.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[26]

Secondly, a list of goals is given. In this case, we only have one goal to
add—enforce. However, it is possible to list multiple goals from the same
plugin if applicable.

Finally, we have the configuration for the goals. In case of the enforcer plugin,
this is a list of rules to execute. In the above example, we have a single rule, called
bannedDependencies, which as the name suggests takes a list of dependencies to
ensure never occur within the project's dependency tree. The configuration given will
be applied to all goals in this execution, and will be combined with the configuration
that applies to the whole plugin, as shown in the previous section. This allows you to
configure just a subset of goals, or all uses of a particular setting, as appropriate.

It is only possible to declare a plugin once in a given project file. If
you need to run a goal a number of times, with or without different
configuration, you must include multiple executions within the same
plugin definition. This will also allow you to place multiple executions
of a goal in different phases of the build lifecycle if necessary.

You may have noticed that in the configuration, the library is referred to as
commons-logging:commons-logging. It is common to refer to dependencies
using the format groupId:artifactId or even groupId:artifactId:version
when you are only able to use a single string. We will use this convention
throughout the rest of this book to simplify the text.

If we now proceed to build the project, the following line will appear towards the
start of the build thanks to the enforcer plugin:

[INFO] [enforcer:enforce {execution: enforce-dependencies}]

Because we are not using Commons Logging, there will be no error and the build
will continue as before. However, if you'd like to test that the plugin works correctly,
try adding commons-logging:commons-logging:1.1.1 as a dependency and build
the project again.

At this point, you might be wondering how Maven decided to run the goal at the
beginning, as the plugin didn't specify anything about when to run the goal. As
it turns out, running in the validate phase (at the beginning of the build) is the
default in the enforce goal, as it usually makes sense to enforce rules before wasting
any time processing the rest of the build. Not all goals specify a default, however,
and regardless you may wish to modify when the goal runs. If that is the case, you
would add the phase parameter to the execution, and all goals in that execution
would then be run in that stage of the build instead of the default.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[27]

For example, to check the dependencies only after packaging, you could add
the following:

<execution>
 <id>enforce-dependencies</id>
 <phase>package</phase>

 ...

The order that executions appear in the POM is retained, as the execution of the goal
will occur after any goals already in the package phase, including those earlier in the
current project file, inherited from a parent project, or declared in the default lifecycle
for the current packaging type.

It's worth stating here that there was no intent to pick on Commons
Logging with the previous example! Though it may have had a past
reputation for being hard to handle in many class loading scenarios in the
past, recent versions seem to have improved that situation. Nonetheless,
our example simply points out that multiple logging frameworks are
often not what you have intended for a single web application, and the
enforcer plugin is a useful way to ensure this remains the case.
One additional note: if this particular example were to be used in a real
project, should a library you introduce require Commons Logging and
you choose to exclude it in favor of SLF4J, you will need to include the
jcl-over-slf4j dependency from SLF4J instead.

Adding resources
In addition to source code, Maven uses the concept of resources. A resource is a
file that will be accessed by the code at runtime but is not required for compilation,
and is typically packaged in the artifact that is built. Common examples are static
configuration files and localization resources.

The standard build lifecycle for a web application already includes the [resources:
resources] command to copy any present resources from the default location of
src/main/resources into the final web application. Let's try that with the sample
application by creating src/main/resources/Application.properties as follows:

first.greeting=Hello, World!

Now, run the build again:

simple-webapp$ mvn package

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[28]

We will now see that the properties file is present in both target/classes and
target/simple-webapp/WEB-INF/classes. How the resource is packaged depends
on the type of packaging. In Java, a resource will always be accessible from the root
of the class loader at runtime. As such, it will be packaged in the root of a JAR file, or
in the WEB-INF/classes directory of a web application.

Other types of content resources, such as web application content, are specified by
different resource paths in an individual plugin's configuration, rather than using
the resources within the build section of the POM.

Resources can also be filtered by substituting values into the files under specific
build conditions. This can be useful for centralizing the specification of certain
values but comes with a similar number of pitfalls and common misuses that will
be discussed in Chapter 7, Maven Best Practices.

Running tests
You may have noticed as builds have run that Maven tried to execute the goal
surefire:test and found no tests to run. Unit testing is a fundamental concept
of Maven, built-in to the default lifecycle for all code project types, and run on
the majority of builds to encourage the practice of not only writing unit tests, but
writing fast unit tests.

There are two steps needed to add unit tests to this project:

1.	 Add a dependency for the test library you have chosen to use.
2.	 Add the test source code to your project in the src/test/java subdirectory.

Let's add a simple test case to illustrate this. Firstly, we will add the dependency on
the test library. You may see many Maven projects (and particularly those created
from basic archetypes) using JUnit 3.8.1—undoubtedly, the most widely used testing
framework today (even in comparison to newer versions of JUnit!). However, in
this book, we will be using TestNG (http://testng.org) as the test library. The
dependency declaration for TestNG looks like this:

<dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>5.8</version>
 <classifier>jdk15</classifier>
 <scope>test</scope>
</dependency>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[29]

You must have noticed the two new entries in this declaration. At the end was the
scope of the dependency, which was set to test. This is an important value to set
as a hint to the Maven dependency mechanism for a few reasons. The scope is used
to control which dependencies are passed to each plugin so that they get the most
appropriate set for the function they are performing. You will notice if you rebuild
the application that TestNG does not end up in the web application like SLF4J did,
because the WAR plugin does not bundle testing dependencies. Likewise, if you try
to use TestNG in your main application source code, it will fail. This is because the
compiler plugin does not use testing dependencies to build the compilation classpath.

Not all IDEs support this level of separation between testing dependencies
and build dependencies, even when configured with Maven integration.
If you find a build is succeeding in your IDE and failing in Maven due to a
missing library, you may need to review the scopes.

You may have noticed earlier that the scope wasn't specified for SLF4J as the default
is compile, which makes the dependency available to all plugins. If that naming
seems confusing, think of the primary scopes (compile, runtime, and test) as a
funnel: you will need all the dependencies you compile with to run the application,
and all the dependencies you run with to test the application, but the reverse is
not true.

The other new entry was a classifier. While a single Maven project is designed to
handle one set of source files and to produce one output, it can be necessary to
produce multiple files that are closely related to the same project. In the case of
TestNG, different versions that are suitable for JDK 1.4 projects and JDK 5+
projects are made available, but they are based on the same source project
(that is, testng-5.8.pom is the Maven project downloaded in either case).

Now, with the dependency in place, let's add a simple test case in
src/test/java/com/effectivemaven/chapter01/ExampleActionTest.java:

package com.effectivemaven.chapter01;

import org.testng.annotations.*;

public class ExampleActionTest {
 private ExampleAction action = new ExampleAction();

 @Test
 public void executionSucceeds() {
 assert !action.execute();
 }
}

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[30]

We have again taken advantage of Maven conventions here—by naming the class
with Test suffix the Maven testing plugin (called Surefire) will use it to run test
cases instead of considering it as just a test support class. Of course, these can all
be configured using configuration for the given plugin as demonstrated in the
previous section.

Let's try running this test:
simple-webapp$ mvn test

This will run the whole build including the testing stage.

Unfortunately, the build will fail rather spectacularly with an error in the middle,
similar to this:

 T E S T S

Running TestSuite
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further
details.

We didn't think far enough ahead here—we chose to compile against slf4j-
api, which was a good choice, but we didn't add a required SLF4J logging
implementation to use when the code is executed. What we have seen here is the
SLF4J library complaining about not being provided with an implementation to use.

To avoid this error, add the org.slf4j:slf4j-simple:1.5.0 dependency, with a
scope of runtime to the Maven project file.

Logging libraries
Here, we chose to add the logging implementation with a scope of
runtime, which will mean that it is bundled in the web application of
this sample application as well as being available for the tests. This may
or may not be what you desire, as some servlet containers will provide
logging libraries for web applications already.
Additionally, in the case of logging for an application library that will
be reused by others, the runtime scope will pass on your choice of
implementation and so again should be used with care.
For examples such as this, and particularly logging libraries, take care
with the scope you select. If you would like to defer the decision on
which implementation to use, just use the test scope to provide that
implementation to the test cases without passing it on to the final build
product or other projects that depend on the current project.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[31]

With the new dependency in place, we will try running the tests again. You should
still get a failure, but this time, a little more like you might have expected:

 T E S T S

Running TestSuite
221 [main] INFO com.effectivemaven.chapter01.ExampleAction - Example
action executed
Tests run: 1, Failures: 1, Errors: 0, Skipped: 0, Time elapsed: 0.5 sec
<<< FAILURE!

Results :

Failed tests:
 executionSucceeds(com.effectivemaven.chapter01.ExampleActionTest)

Tests run: 1, Failures: 1, Errors: 0, Skipped: 0

Here we see that the test (which was written to fail) has triggered TestNG to fail the
Maven build. However, this output doesn't say exactly where or what the failure
was. For this, you would look in the target/surefire-reports directory. Among
other files, TestNG will have generated both—TestSuite.txt (a text representation
of the test results) and index.html (a browsable version that may be easier to
navigate, especially if there are a large number of tests or errors).

Other test frameworks will store their results in the same directory,
but possibly in different filename formats. For example, JUnit
3.8.1 will generate text files for each test class, example com.
effectivemaven.chapter01.ExampleActionTest.txt.

The result file should point out the failure, which in this case is that the condition on
the assertion should be reversed:

 public void executionSucceeds() {
 assert action.execute();

 }

With this change made, we can run the tests again to see that the build has
finally succeeded.

The example code and test case here may have been a little simplistic, but it does
show that it is easy to add unit tests to a Maven project. With this small amount of
configuration in place, all that is required is to write test cases and place them in the
right location to have Maven run them automatically. We haven't seen it yet, but this
has also laid the groundwork for more advanced development scenarios, such as
measuring test code coverage.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[32]

Getting help
Sometimes, it is necessary to inspect what is going on inside Maven when you need
to make a configuration change or are troubleshooting a problem. In these cases,
some assistance can be provided by the help plugin.

To see the available goals, run the following:

$ mvn help:help

The selection available covers a variety of needs in telling you about your build or
your environment.

For example, one of particular use is to determine which version of a particular
plugin is actually being used. This information can be obtained through a command
such as this:

$ mvn help:describe -Dplugin=compiler

The plugin variable given is the short name, or the prefix, for the plugin shown in
the goal names as it is executed or would use from the command line. If this is not
specific enough, you can use the full coordinate of the plugin:

$ mvn help:describe -DgroupId=org.apache.maven.plugins \

 -DartifactId=maven-compiler-plugin

The resulting output will show the basic information available for the plugin, which
in this example would be:

[INFO] Plugin: 'org.apache.maven.plugins:maven-compiler-plugin:2.0.2'

Group Id: org.apache.maven.plugins
Artifact Id: maven-compiler-plugin
Version: 2.0.2
Goal Prefix: compiler

It isn't always convenient to visit the Maven web site to access the reference
documentation for a plugin to find out the correct way to configure a particular
plugin and so another use of the help:describe goal is to get that information
directly from the plugin:

$ mvn help:describe -Dplugin=compiler -Ddetail

Some of the other goals of the help plugin are described in Appendix A,
Troubleshooting Maven, later in this book.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[33]

Enhancing the development process
The examples so far have shown how to use Maven to automate the build process.
However, the information that is already available can also be of use to other types
of plugins, which can be of assistance throughout the development process.

While being able to build and install the web application from this chapter into the
local repository is useful, deploying that into a running server after every change
would be tedious. Many IDEs offer easier ways to manage this step, but you may
wish to reuse the setup from Maven instead.

A particularly relevant example for a web application is the Jetty plugin. Jetty
(http://jetty.mortbay.org/) is a small, fast, and fully compliant Java servlet
container that is particularly suited to being embedded in other applications.
We will use Jetty's Maven plugin to run the web application in a Jetty container.

First, we need to add the Jetty plugin to the list of plugins in the project so that the
goals will be available from the command line. At the time of writing, the Maven
coordinate for the plugin is org.mortbay.jetty:maven-jetty-plugin:6.1.14
(though in version 7.x and above it is expected to change the artifact ID to
jetty-maven-plugin). Once that is added, starting the server with the web
application is simply a matter of running the following command:

simple-webapp$ mvn jetty:run

The server will start on port 8080, and you can immediately browse the application
at http://localhost:8080/simple-webapp/.

The web application is pre-configured from the defaults and values from the project
file. This means that you can edit the content under src/main/webapp, and see it
reflected in the running web application without a restart.

The Jetty plugin has a large number of configuration options to help you get more
out of this environment, which can be found in the Jetty documentation. Because
it is using the Maven project model, it can also easily be configured to watch for
changes to the source code and dependencies in Maven's local repository, and then
recompile and reload the web application on the fly. It is also possible to configure
the Jetty server for more complete development options, for example to add JDBC
data sources.

Even if you are deploying to a different servlet container, it is still
useful to be able to test quickly from the Maven environment using
Jetty. However if this is the case, be sure to also test against your
target servlet container. We will examine this topic in Chapter 4,
Application Testing with Maven.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[34]

Viewing detailed project information
We have seen many ways to reuse the information stored in the Maven project,
but one of the most powerful has yet to be explored. Maven has a documentation
rendering framework and large set of plugins that will not only present information
about the current project, but will also allow the integration of information from a
number of external tools into a one-stop-shop project developer's mini-site.

To get a taste of this now, try the following command:

simple-webapp$ mvn site

For the basics, no further configuration is needed as the values from the
Maven project model are reused. You can now review the content by opening
target/site/index.html in a browser.

Working effectively with Maven sites, reports, and related practices will be examined
in more detail in Chapter 5, Reporting and Checks.

As you may have noticed, this site is rough. Poorly thought out, default
Maven project sites can do more harm than good! Be sure to take care in
considering what information you are trying to convey and where, then
use Maven to make it easier to keep up to date and structure it, rather
than relying on it to do all the work.

Multiple module builds
When we defined a Maven project earlier, we saw that it was described as a unit
of work, typically producing a single output from a single source. However, many
software projects are larger than that!

Maven was designed with this situation in mind, and so larger software projects can
be composed of multiple Maven projects. This in itself is still referred to as a project,
with the other projects that it is composed of referred to as its modules.

When multiple projects are built at once in Maven, the builder is referred to as the
reactor. Whether building a multi-module project or a series of separate projects, the
reactor collects the projects to be built and ensures the correct order is used based on
any dependencies declared on other projects within the same reactor build.

We won't extend our simple web application to illustrate this at this stage, as we will
see much more detail on Maven's support for multi-module projects in Chapter 3,
Building an Application Using Maven.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 1

[35]

What if I need to convert an existing project?
The example we have seen so far has been reasonably complete despite having to
provide very little information, because of the pre-defined behavior of the Maven
plugins and the conventions used.

That may make it easier to get started with a new project, but what if you wanted to
convert to Maven from an existing project? Such a project probably doesn't follow
the conventions already, or may have custom or slightly altered behavior to that
provided by the default Maven plugins.

There is unfortunately no single way to convert a project from Ant or some other
build system to Maven because they frequently use very different approaches.

A typical approach may look something like this:

1.	 Ensure that the current build behaves like a good "Maven citizen" by
publishing builds into a remote repository and starting to consume its
dependencies from there.

2.	 Restructure the existing build into modules and paths that match Maven
conventions to simplify the Maven build.

3.	 Build upon those conventions and the existence of a list of dependencies to
produce a concurrent Maven-based build.

4.	 Gradually migrate any remaining functionality until the Maven-build
becomes the only one needed.

Before starting a conversion of any size however, it is best to familiarize yourself
with how Maven works on a similar but new project, as this will help identify the
best places to adopt Maven's standard practices in a build conversion, and where it
will be easiest to retain custom behavior.

Summary
We have now seen a very quick, but comprehensive, introduction to the building
blocks that all Maven projects use, and should be confident in putting it to use
in a project.

In this chapter, we looked at how to create a new project or module and build some
typical Java artifacts. We then looked at how to put it into use with various plugins,
and the way to get more out of the Maven project model by generating a site and
reports. We then covered some terminology and "theory" of how Maven works,
and learned some tips for getting help when it is needed.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven in a Nutshell

[36]

In essence, this is all you will ever need to know about Maven to use it
well—everything else is about reapplying the same techniques to different
applications and learning about the specifics of various plugins.

While some topics, notably profiles, project inheritance, the various management
sections of the POM and multi-module builds, were not revised in this chapter, they
will be covered in far greater depth in later chapters.

Now that we are confidently using Maven, one of the most important pieces of
software anyone will use in a Maven-based infrastructure is a repository manager.
Hence, in the next chapter Deng will introduce Apache Archiva, and explain how it
addresses some fundamental concepts of repository management.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control
with Archiva

Have you ever heard of the term repository manager? If not, then this is the chapter
where you will get to know it and get a first-hand experience on the working of a
repository manager. If you already know what a repository manager is, you can skip
the first few sections of this chapter and go straight to the sections where we install
and configure one.

Putting these two words together—repository and manager, literally means
someone who manages a repository. In this case, that someone is an application.
We will be discussing this application here.

In this chapter, we introduce Apache Archiva—one of the many repository
managers available. If you are already an experienced user of Archiva or are already
familiar with it, Chapter 10, Archiva in a Team, covers Archiva more in detail.

For this chapter, you will learn about the importance of a repository manager—why
and when you should use one. We will also demonstrate how to set up Archiva
and start using it. This includes installation, and basic setup and configuration
of an Archiva repository. It also includes the procedure to configure Maven to
use Archiva.

Importance of a repository manager
Let us picture a small example. You have just been assigned to a new and big project
(let's say its source code is about 5GB). You have finished checking out the project
sources, and now it's time to build the project. What are the problems you think you
may encounter?

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[38]

Definitely one of the problems is the slow build time. A big factor of this is the
downloading of the dependencies of the project. Remember, if Maven doesn't find
a dependency in your local repository, it would get it from the central repository or
from other third party repositories that you have specified. Given this, if it is your
initial build, just imagine how long it would take you to finish building that project!
Also, what if your network connection is having hiccups? Every time an artifact
transfer gets corrupted—Eek! You would need to build it from the start again.

Now, let's say in order to solve this download problem, you have asked your
system administrator to mirror the Maven central repository and have that mirror
hosted locally. That would require your system administrator to synchronize your
local mirror regularly, so that its contents are always updated and newly deployed
artifacts are added to the mirror. Having a local mirror of the central repository is
no easy feat. You have to worry about maintaining it—think along the lines
of broken metadata, disk space and so on. Before the year ends, your system
administrator might no longer speak to you as you have saddled him with a
mirror maintenance headache!

Let's look at another, totally different, scenario—you have a continuous integration
server configured to build and deploy your project to a deployment repository each
night. We are assuming (again) that the generated project bundle is 5GB. Therefore,
each night your CI server deploys a 5GB-sized artifact to your deployment
repository. Doing some serious multiplication, which would mean in a week's time,
you have already consumed 35GB of disk space in your hard disk! In order to solve
that problem, you either write a script that cleans up the repository (don't forget to
fix the metadata!) or you delegate someone to regularly clean up the repository (now
that would be fun). Either way, you have to exert a lot of effort just to free up some
disk space.

This is where a repository manager comes in to picture. Let's take a look at each of
the features of a repository manager and see how it addresses the problems that we
have identified above.

A repository manager can act as a proxy cache. The ideal setup of a
repository manager is to have it running in your local network. You can
configure an internal repository to proxy on-demand a remote repository
thereby making the succeeding download of artifacts faster.
A repository manager can be used as a local host of your deployment
repository. It also usually provides a utility for regularly cleaning up hosted
repositories thereby giving you control over the size of your repositories.
A repository manager provides artifact search of internally hosted
repositories. This is very handy when you are looking for a specific class
that you want to use and you do not know which JAR it is packaged in.

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[39]

A repository manager provides utilities for maintaining repositories.
Aside from the regular clean up already mentioned in the second point, a
repository manager (usually) also provides other utilities for maintaining
a repository such as a utility for fixing up metadata, a utility for generating
artifact checksum files and so on.
A repository manager allows you to monitor the health of your repository
via reports. These reports allow you to identify which artifacts are defective
and help maintain the quality of your repository.
A repository manager provides access control to your repositories. It gives
you a way of controlling who can read and/or write to your repositories.

The above reasons are enough for us to start installing a repository manager. This is
where Archiva comes in.

Archiva was one of the first of the open source repository managers available. It is
simply a web application where you can host and store, and manage and maintain
your enterprise build artifact repositories. Aside from managing artifact repositories,
Archiva also provides features such as on-demand remote repository proxying, artifact
searching and browsing, reporting and security access control. Archiva is best used
with build tools such as Maven, Continuum (a continuous integration server), and
ANT. The diagram below shows a high-level view of Archiva and its components,
and how it interacts with other build systems.

Archiva UI

Search/Find Artifacts

Browse Repositories

Repository Reports

Upload Artifacts

Delete Artifacts

Apache Archiva

get dependencies from

get dependencies from

deploy artifacts to

deploy artifacts to

Archiva Repositories

deplyoment repositories

proxy repositories

Continuous Integraton
Server

Developer Machine
with Maven 2

Archiva Utilities:
- cleanup
- fix metadata and checksums

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[40]

We will get to see some of Archiva's features in the later sections of this chapter and
learn in more detail about Archiva in Chapter 10, Archiva in a Team.

Installing Archiva
Before we start installing Archiva, let's first take a quick look at how it all started and
where it is now.

Archiva became a top-level project at the Apache Software Foundation in March
2008, but it has been around as a sub-project of Apache Maven since 2005. The
first-ever release of Archiva was 0.9-alpha-1, followed by the 0.9-alpha-2 release.
Joakim Erdfelt re-vamped the whole source code and previewed it to the community.
After the re-vamp, development picked up as other developers (including myself)
started being active in the project again. Moreover, two years after the project
started, 1.0 was officially released to the public. As of the writing of this book,
the latest Archiva release is 1.2.1.

We have read the story of Archiva, now let's start installing it! Go to the website
http://archiva.apache.org/download.html and get the binary or WAR file.
We can install Archiva either as a standalone application or as a webapp (Web
Application) deployed to an application server. If we want to use the standalone
application, then we should get the Archiva Standalone TAR.GZ or ZIP binary.
Otherwise, get the Archiva WAR file.

The Archiva standalone bundle uses an embedded Jetty 6 application server.
Wrapper start up scripts for Linux, MacOSX, Solaris, and Windows are included in
the binary file. Specific configuration files that we need to take note of are located in
the conf/ directory:

jetty.xml: This file contains Jetty-specific configuration. In the latter part
of the configuration file, we will see the Archiva-specific JNDI resources.
These are the validation_mail, archiva, archivaShutdown, users and
usersShutdown. The validation_mail element defines the mail resource
used by Archiva for sending validation mail for newly registered users.
archiva and archivaShutdown on the other hand, are configurations for the
Archiva database while the last two resources, users and usersShutdown,
are for the users database created and maintained by Redback. The Archiva
standalone comes shipped with an embedded Derby database but if we want
to use a different database, we can easily switch it over by simply changing
the database connection in this file.
jetty-logging.xml: This is a configuration file for the Jetty logs.
wrapper.conf: This is a configuration file for Archiva's standalone bundle
Java service wrapper.

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[41]

archiva.xml: This is Archiva's default configuration file. If there is no
existing archiva.xml found in <USER_HOME>/.m2/, then Archiva will use
the default configuration file.

The Archiva log files on the other hand, are located under the logs/ directory.
We will find four types of log files in there—archiva.log, archiva-audit.log,
archiva-security-audit.log, and the rolling Jetty log file. archiva.log is
specific to the Archiva components. The archiva-audit.log is for Archiva actions
or events and for proxy requests while the archiva-security-audit.log is for
security-related actions or events. We can configure the log level for these files
in the apps/archiva/WEB-INF/classes/log4j.xml file of Archiva. All other output
outside the boundaries of these three files, such as application server and wrapper
logs, goes to the rolling Jetty log file.

If we don't want to use the standalone Archiva and instead would like to deploy
the WAR file to a different application server, we can easily follow the steps specified
on the Archiva site: http://archiva.apache.org/docs/1.2.1/adminguide/
webapp.html

Before we start Archiva, we must change the port it will run on, to avoid conflicting
with other applications on the default port 8080.

To change the port, edit the configuration below in the conf/jetty.xml file and
change the default value of the jetty.port system property from 8080 to 8081.

<Call name="addConnector">
 <Arg>
 <New class="org.mortbay.jetty.nio.SelectChannelConnector">
 <Set name="host"><SystemProperty name="jetty.host" /></Set>
 <Set name="port"><SystemProperty name="jetty.port"
 default="8081"/></Set>
 ...
 </New>
 </Arg>
</Call>

To start the application, go to bin/ and type in ./archiva console or ./archiva
start if you are running on Linux, MacOSX or Solaris. Use archiva.bat if you are
running on Windows.

Starting Archiva using the start command means that the application
was started as a service. To stop the application, ./archiva stop must
be executed from <ARCHIVA_INSTALLATION>/bin/. Starting Archiva
using the console command would have the output displayed in the
console where it was executed. Pressing Ctrl-C stops the application.

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[42]

Archiva can now be accessed at http://localhost:8081/archiva/. The Create
Admin User page is the first page we will see when we access the URL.

The admin user is the ultimate god of Archiva—the system administrator. Let's fill
out the Create Admin User form as follows:

Full Name: Administrator
Email Address: admin@example.com
Password: admin1
Confirm Password:� admin1

After we create the admin user and log in to Archiva, we will see the webapp view
as shown in the following figure:

•
•
•
•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[43]

The navigation menu on the left-hand side of the webapp is divided into three
sections: Find, Manage, and Administration. The Find section contains the
Search and Browse features of Archiva, the Manage section is for Reports and
User Management, and the Administration section is for basic configuration of
Repositories, proxies and consumers.

Before moving on to the next section, let's take a quick look at the Repositories page
under Administration. In there, we see that Archiva comes configured with two
managed and two remote repositories.

A managed repository is a repository residing in the local file system
where Archiva is installed. It can be set up as a proxy repository or as
a deployment repository. A remote repository on the other hand, is
a repository that is not located on the local file system and is usually
configured in Archiva as the repository to be proxied. Only the artifacts
in managed repositories can be searched and browsed in Archiva.

For now, our concern is the two managed repositories—internal and snapshots.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[44]

These managed repositories are still empty so performing an artifact search or
browsing the repository won't give us anything. As managed repositories reside in
the local file system, we can add existing repositories in Archiva. For example, if we
already have an internal local mirror of Maven's central repository that our system
administrators synchronize regularly, we can add this to Archiva and make it an
on-demand proxy cache so that it no longer needs to be synced regularly.
Alternatively, we can simply add it to Archiva to provide a UI for searching
and browsing artifacts in the repository.

One thing to keep in mind though is that before artifacts can be searched in Archiva,
they must first be indexed. When exactly are they indexed?

Artifacts are indexed when a managed repository is scanned. Archiva scans a
repository in order to gather and process the artifacts in it. Once an artifact is
processed, it should show up in the Browse page and can be searched. If we look
again at the Repositories page, there is a Scanning Cron field and a Scan Repository
Now button. These two fields indicate that a repository scan can be explicitly
triggered and/or executed on a scheduled basis. There are more to repository
scanning than this, as we will learn later in Chapter 10, Archiva in a Team.

Separating your repositories
In the previous section, we have learned that a managed repository can be
configured as a deployment repository or as a proxy repository. When setting
up repositories, there are two points that we need to keep in mind. First, keep
deployment and local proxy repositories separate. Second, keep snapshots and
released artifacts in separate repositories as well.

Let's tackle the first point. Why do you need to keep your deployment and local
proxy repositories detached from each other? The answer is permissions. Local
proxy repositories are usually used by everyone within the company (or within the
local network), and deployment repositories sometimes need to be on a per project
basis. You would not want everyone who has access to the local proxy repository to
be able to access your project too. It is also easier for the administrator to control
and manage who has read and/or write access to the repositories if they are
kept separate.

As for deployment repositories, it is recommended that snapshot artifacts are kept
separate from released artifacts. There are several reasons for this. First, snapshots
are only meant for developers. Clients usually get a hold of new releases of a project
by downloading it from a repository, which they have permission to access. If we
are also deploying our snapshots to this repository, we are exposing unstable and
untested versions of our project to our clients and I am sure you don't want to
do that.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[45]

The second reason is that it is easier to maintain the repository if it only consists
of either of the two—snapshots only or released artifacts only. Snapshots are
usually generated often and have timestamped versions when deployed, like from
continuous integration builds (we will learn all about CIs in Chapter 8, Continuum).
Therefore, snapshots usually need to be cleaned up regularly to keep their size at
bay. If all your artifacts are jumbled in one single repository, it would be harder
to clean it up as you have to make sure that you don't accidentally remove a
released artifact.

The third reason for keeping them separate is related to the second reason, but it is
concerned with maintaining an artifact's metadata.

Maven makes use of maven-metadata.xml files to keep track of the
versions of an artifact in a Maven 2 repository. Their contents change as
artifacts are deployed in the repository. There are two types of metadata
files—the artifact-level metadata and the version-level metadata.
Artifact-level metadata is located at the artifact-level (for example,
../[groupId]/[artifactId]/maven-metadata.xml) and lists
all the versions of a specific artifact in the repository. The version-level
metadata on the other hand, is located at the version-level (for example,
../[groupId]/[artifactId]/[version]/maven-metadata.xml)
and contains the unique versions of a snapshot version of an artifact. It is
only present for snapshot versions.

Maven greatly depends on these maven-metadata.xml files during build time.
It uses them to determine if a specific artifact exists in the repository and to
determine which version of the artifact to download when a dependency has
a snapshot version.

We will use the simple-webapp project that we have created in Chapter 1, Maven in
a Nutshell, as an example. Let's say we have a single repository where we keep all
our snapshots and released artifacts. We will assume that we are still developing our
simple-webapp project and it is still in version 1.0-SNAPSHOT. We have configured
our CI server to build and deploy our project every night; so after a week, we have a
number of timestamped versions of our artifact in the repository. Now let's say that
it is time to release 1.0, we tag and release our project, deploy 1.0 to our repository
and move on to the next development version which is 1.1-SNAPSHOT. After our
CI server builds and deploys the 1.1-SNAPSHOT to our repository, this is what the
metadata file of our simple-webapp artifact in the repository would look like:

<?xml version="1.0" encoding="UTF-8"?>
<metadata>
 <groupId>com.effectivemaven.chapter01</groupId>
 <artifactId>simple-webapp</artifactId>
 <versioning>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[46]

 <latest>1.1-SNAPSHOT</latest>

 <release>1.0</release>

 <versions>

 <version>1.0-SNAPSHOT</version>

 <version>1.0</version>

 <version>1.1-SNAPSHOT</version>

 </versions>

 <lastUpdated>20080914013919</lastUpdated>

 </versioning>

</metadata>

Isn't it strange that we still have 1.0-SNAPSHOT available for download even if
the final 1.0 version has already been released? Now if we decide to remove the
1.0-SNAPSHOT timestamped artifacts from our repository, we would have to
always keep in mind to update the artifact's metadata file. We must remove the
1.0-SNAPSHOT in the available <versions> in order to force everyone using that
snapshot version to use the released 1.0. Or else, they would still be left using the
1.0-SNAPSHOT and once it was removed, if the metadata file hasn't been updated,
then it would cause a build problem for them because Maven couldn't download
the snapshot artifact. A word of caution though, the removal of the artifact from the
deployment repository doesn't necessarily mean that the artifact will be removed
from a user's local repository. Therefore, if 1.0-SNAPSHOT still exists in the user's
local repository, the user would still be able to use it.

The last reason to keep snapshot and release repositories separate comes up when
we are looking for a certain artifact. If we are looking for a snapshot, then we just
have to go to the snapshots repository—or to the releases repository if we are looking
for a released artifact.

Archiva also implements the concept of virtual repositories, which is handy when
you have multiple proxy caches. We will talk about this in detail in Chapter 10,
Archiva in a Team.

Hooking up Maven with Archiva
We discussed deployment and local proxy repositories above. Let's get our hands
dirty and do some proxying.

Setting up a proxy
Although Archiva can work with different types of clients, we will be mainly using
Maven 2 in our examples.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[47]

We have learned in the previous sections that there are already managed and
remote repositories configured by default in Archiva. We didn't know it earlier
but the repository snapshots is intended to be a deployment repository where we
deploy our artifacts (we will learn how to do this in the later part of this chapter)
while repository internal is intended to be a proxy repository. How do we know
this? If we go to the Proxy Connectors page, we will see the internal repository and
underneath it are two proxy connector entries for maven2-repository.dev.java.net
and central (note that these two are the remote repositories already configured in
Repositories, which we saw earlier). We can also deploy artifacts in internal but it is
not recommended as we wish to keep them separate from the proxied artifacts.

The configuration in Proxy Connectors signifies that internal repository proxies
maven2-repository.dev.java.net and central. For consistency, we will refer to a
remote repository being proxied as a remote proxy and to a local or managed proxy
repository as a proxy cache.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[48]

By clicking on the Edit icon in the configured proxy connector, we will see the
different values that we can set for the connector.

We should specify a Network Proxy if we are using a proxy in our local area
network. Otherwise, we just set it to (direct connection).

A network proxy can be set in Network Proxies. The proxies that you
defined in that page will be listed in the drop-down Network Proxy field
in Proxy Connectors.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[49]

One of the most important things we need to understand with regard to proxy
connectors are the policies. There are six types of policies which we can define
for a proxy connector.

Return error when specifies that if a remote proxy causes an error, either return the
requested artifact if it exists in the proxy cache and return an error if it doesn't exist
(artifact not already present), or return the error regardless of whether the artifact
already exists or not in the proxy cache (always). On remote error specifies that if
there is a remote error, either stop and immediately return the error, queue error
and return all encountered errors after checking other remote repositories, or
ignore any errors.

The Releases and Snapshots policies, on the other hand, deal with the frequency
of download for these types of artifacts from the remote proxy when they are
requested. The always policy gets the artifact from the remote proxy each time it is
requested, hourly and daily gets it from the remote proxy if not yet retrieved during
the hour or day when it was requested. once policy means that if the requested
artifact has already been retrieved from the remote proxy at least once, then it would
no longer be retrieved again, and finally, never retrieve it from the remote proxy.
The Checksum policy deals with (you have guessed right!) incorrect checksums.

Checksums are fixed-sized calculated values of a file using a specific
algorithm. They are used to determine the integrity of a file. When a file
is downloaded, its checksum is calculated then compared to the value
contained in the file's checksum file. If they don't match, then there was a
problem during the transmission. Maven artifacts always have SHA1 and
MD5 checksum files.

We can set the connector to fix the checksums, ignore the checksum failures, or fail
the request. Last but not the least, the Cache failure policy simply specifies whether
to cache encountered failures (yes) or not (no).

The White List and Black List patterns are for specifying what types of artifacts
should and should not be handled by the connector based on the path of the
request respectively.

Let's try configuring one. For this exercise, we will be configuring our managed
repository internal to proxy the JBoss Maven2 repository.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[50]

The first thing that we need to do is add the JBoss Maven 2 repository as a
remote repository in Archiva. Go to the Repositories page and add a new
Remote Repository. Fill out the Add Remote Repository page as follows and
add the repository.

Next, we will go to the Proxy Connectors page and click Add to create a new
connector. We will assume that we will be connecting to the Internet directly so for
the Network Proxy, choose direct connection. Our proxy cache is internal and our
remote proxy is jboss.repo, so that is what we will set for the Managed Repository
and Remote Repository fields respectively. For the policies, let's say we want to
stop the build when an error is encountered during proxying and to propagate that
error to the requesting client (for example, Maven) so we set Return error when to
always and On remote error to stop. As the JBoss repository only contains releases
and releases should no longer be changed once it is released, we only need to get
Releases one time. As for the Snapshots policies, we will set it to never as we are
only dealing with released artifacts. For Checksum errors, we will set it to fix so
that Archiva would fix it for us. We don't want to Cache failures so we will set
that policy to no.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[51]

We will assume that we only need the javax artifacts from the JBoss repository. To
narrow this down during download, we shall add the specific path pattern javax/**
to the White List. Finally, we are done! Click on the Add Proxy Connector button
and we should have a new connector with a configuration similar to the one in the
following screenshot:

Now let's move on to the next set of configurations that we need to do to hook up
Maven with Archiva.

Configuring your settings.xml
Now we need to tell Maven that we want to use a nearby proxy cache for
downloading artifacts. In our case, that proxy cache is the internal repository.
We relay this information to Maven via the settings.xml file.

The settings.xml is a Maven configuration file. It is similar to the
pom.xml except that it contains configuration information that should
not be bundled with the project. Maven has a default settings.xml file
located at <M2_HOME>/conf/. It can also be created at <USER.HOME>/.
m2/ for user-specific configuration. Details on what can be configured in
the settings.xml file can be found at http://maven.apache.org/
settings.html.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[52]

In our case, we will be configuring the proxy cache at the settings.xml found in
<M2_HOME>/conf/. Look for the <mirrors> section and add the following inside
that section:

<...>
<mirror>
 <id>internal</id>
 <name>Proxy Cache - Internal Repository</name>
 <url>http://localhost:8081/archiva/repository/internal</url>
 <mirrorOf>*</mirrorOf>
</mirror>
<...>

The <url> we specify is the WebDAV URL of the internal repository displayed in
the Repositories page. The <mirrorOf> tag tells Maven which remote repository or
server is being mirrored. The asterisk (*) value signifies that repository internal
is mirroring all remote repositories. In short, we are locking down all Maven
artifact requests to a single repository, which, in our case, is the Archiva repository
internal. It should be kept in mind though that when having this configuration,
the mirror must be able to proxy the requests to the other repositories. Otherwise, Maven
would not be able to retrieve any artifacts and builds would fail.

Aside from the asterisk (*), it is also possible to set the specific server id of the
mirrored repository in the <mirrorOf> tag. For example, if you want to use a local
mirror of the Maven central repository, you can set <mirrorOf>central<mirrorOf>.

Another possible value for the <mirrorOf> tag is external:*. The external:*
is used to specify that the repository is a mirror of all repositories except those
repositories that are running on localhost or are file-based. Please take note that
this feature is only available in Maven versions 2.0.9 and onwards.

For more details on how to configure mirrors in Maven,
see http://maven.apache.org/guides/mini/
guide-mirror-settings.html.

Building your project
Most users are afraid of emptying their local repositories because that would
mean downloading everything again when you execute Maven. So for now, we will
just point our <M2_HOME>/conf/settings.xml to a different local repository. In
<USER_HOME>/.m2/, create a new directory book-repository then add the following
just inside the <settings> section in our settings.xml:

<localRepository><USER_HOME>/.m2/book-repository</localRepository>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[53]

By the end of this exercise, we should no longer be afraid of emptying our
local repository.

We will be using the simple-webapp project we created in Chapter 1, Maven Best
Practices, so let's open it in the command-line and package it:

simple-webapp$ mvn clean package

As your local repository is empty, Maven will download everything again so the
beginning output should be similar to the following:

[INFO] Scanning for projects...
[INFO] ---
[INFO] Building simple-webapp Maven Webapp
[INFO] task-segment: [clean, package]
[INFO] ---
Downloading: http://localhost:8081/archiva/repository/internal/org/
apache/maven/plugins/maven-clean-plugin/2.2/maven-clean-plugin-2.2.pom
3K downloaded
Downloading: http://localhost:8081/archiva/repository/internal/org/
apache/maven/plugins/maven-plugins/10/maven-plugins-10.pom
7K downloaded
Downloading: http://localhost:8081/archiva/repository/internal/org/
apache/maven/maven-parent/7/maven-parent-7.pom
20K downloaded
Downloading: http://localhost:8081/archiva/repository/internal/org/
apache/apache/4/apache-4.pom
4K downloaded
Downloading: http://localhost:8081/archiva/repository/internal/org/
apache/maven/plugins/maven-clean-plugin/2.2/maven-clean-plugin-2.2.jar
11K downloaded
....

Notice that Maven is downloading from our proxy cache internal instead of
getting everything from the central repository. This is the effect of the <mirror>
setting, which we set earlier and this means that Archiva is already doing the
proxying. We can go to the file system path where our internal repository is
located or we can access the repository in our browser via its WebDAV URL
(http://localhost:8081/archiva/repository/internal) to verify that the
artifacts were downloaded.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[54]

When we have finished packaging our project, notice how long it took to build it. In
my case, it took almost 12 minutes (11 minutes 53 seconds to be exact) to build, as
shown in the following output:

...
[INFO] [war:war]
[INFO] Packaging webapp
[INFO] Assembling webapp[simple-webapp] in [/home/deng/simple-webapp/
target/simple-webapp]
[INFO] Processing war project
[INFO] Webapp assembled in[151 msecs]
[INFO] Building war: /home/deng/simple-webapp/target/simple-webapp.war
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 11 minutes 53 seconds
[INFO] Finished at: Tue Sep 09 06:14:14 PHT 2008
[INFO] Final Memory: 12M/43M
[INFO] ---

Let's re-build the project again with a clean local repository. We will delete the
contents of our <USER_HOME>/.m2/book-repository local repository and then
package our project.

So, how long did our build go now? For me it took just 13 seconds!

...
[INFO] [war:war]
[INFO] Packaging webapp
[INFO] Assembling webapp[simple-webapp] in [/home/deng/simple-webapp/
target/simple-webapp]
[INFO] Processing war project
[INFO] Webapp assembled in[90 msecs]
[INFO] Building war: /home/deng/simple-webapp/target/simple-webapp.war
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 13 seconds
[INFO] Finished at: Tue Sep 09 06:33:00 PHT 2008
[INFO] Final Memory: 12M/82M
[INFO] ---

Now, that is the power of Archiva.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[55]

We have highlighted this as the first reason why we should install a repository
manager and we have just experienced it first-hand. In the beginning section of
this chapter, we mentioned that the ideal setup of a repository manager is to have
it running within a local area network. This would address such cases wherein we
have to build our project with a clean repository like when we have to re-format our
machine (so we're starting from scratch again) or when a new team member comes in
and builds the project for the first time.

Searching for artifacts in Archiva
Let's recall what we did in Adding Dependencies in Chapter 1, Maven in a Nutshell.
You have used Logger and LogFactory in the ExampleAction class and got a
compilation failure when you built the project. In order for Maven to build it
successfully, you have to add the artifact that has that class as a dependency in
your project's POM. However, what if you don't know which artifact that is?

A simple solution to this problem is to search for it in Archiva. As we already did
some proxying above, the slf4j-api.jar should already be in our proxy cache
internal so we can try to search for it.

Newly proxied and deployed artifacts are immediately indexed after they
arrive in the repository, which is the why we can already search and find
the artifact for Logger or LogFactory.

In Quick Search, simply type Logger, hit Search, and Archiva will give us the
artifact that contains the Logger class.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[56]

Aside from the Java class or package name search, we can also perform a basic text
search. Let's type in org in the search box. Archiva will search for all the artifacts
that contain the word org—whether it is an artifact that has a dependency with the
word org in its groupId or artifactId, or the artifact itself has the word org in its
identifiers, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[57]

Notice in the Quick Search that there is a Search within results checkbox. If you
want Archiva to search for a term within the bounds of the current result set, just
tick this checkbox.

Aside from quick search, Archiva also provides an Advanced Search option. From
the Quick Search page, click the Advanced Search link and a hidden frame will roll
out like the one in the following screenshot:

The fields that can be specified when performing an advanced search are listed in the
Advanced Search Fields drop-down box. These are Group ID, Artifact ID, Version,
Class/Package Name, and Row Count. To use any of these fields, for the search,
select it from the drop-down menu and then click on the plus sign (+). A text box
for the selected field will appear. That is where we will specify the value we want to
search for. We can also opt to search for an artifact in a specific repository or search
all repositories by selecting the appropriate value in the Repository field.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[58]

Let's try selecting the Group ID, Artifact ID and Version to see how the fields are
created. Make sure that you click the + icon after each selection. For example, if we
want to search for all artifacts in repository internal whose groupId starts with
org.apache then we would specify this value in the Group ID field and select
repository internal from the Repository list, then click Search. We should see
search results similar to the following:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[59]

Archiva has another feature called Find Artifact. The main use of Find Artifact is for
instances when we have a JAR file we want to use in our project but we don't know
what its identifiers are so we can not add it in our POM.

Find Artifact looks for that artifact by calculating the checksum of the specified
artifact and searches the index for the checksum that matches it. That is why we can
also specify the Checksum of our artifact (that is, if we know it) as an alternative to
providing the artifact itself.

In the code included with this chapter, you will find the file
mystery-artifact.jar. Go to the Find Artifact page, accept the
applet signed by Brett, browse to our mystery-artifact.jar then click
Search. And our mystery artifact is ... JUnit!

Deploying from Maven
We have learned how to use an Archiva repository as a proxy cache, now we
will learn how to use it as a deployment repository and how to deploy from
Maven. For this exercise, we will be using the simple-webapp project again
from Chapter 1, Maven Best Practices, and the default snapshots repository for
our deployment repository.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[60]

Recalling what we have learned about separating our repositories, we know that
snapshots and releases need to go into different repositories. We already have a
deployment repository for snapshots configured in our Archiva instance but we
don't have a deployment repository for releases yet. We will create one for that.
Go to the Repositories page again and add a Managed Repository with the
following configuration:

After creating our deployment repository for releases, we need to create a new user
account that we will use to deploy our project.

Creating a new user
In User Management, create a new user called archiva with pass123 as its
password. Grant the user a Repository Manager role for the repositories releases
and snapshots by editing the user account and checking the appropriate boxes in the
Resource Roles matrix.

As we can see, the User Roles page is divided into two groups—Redback Xwork
Integration Core and Archiva. The former is specific to Redback while the latter are
Archiva-specific roles. We will learn more about them in Chapter 12, Maven, Archiva
and Continuum in the Enterprise.

Assigning the user a Repository Manager role means that we are granting the user
read and write access to a repository (like what we did above). If we assigned the
user with a Repository Observer role, it implies that we are just giving the user read
access to the repository.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[61]

Finally, we must return to the user's page and uncheck the Force User to Change
Password checkbox, then click Update. Otherwise, the user will not be able to deploy
until their password is changed.

Configuring and deploying from Maven
Now we shall add the credentials for both the snapshots and releases repositories
in our <M2_HOME>/conf/settings.xml file. For security reasons, the <server>
configuration must be configured in the <USER.HOME>/.m2/settings.xml especially
when the machine is a shared resource. You do not want other people who have
access to the machine to be able to see your credentials. In our case, we are
assuming that we are the only user of the machine so we are configuring it at the
settings.xml in <M2_HOME>/conf/.

Starting with Maven 2.1.0, password encryption is possible. We will use this feature
to mask our Archiva repository credentials in our settings.xml.

The first thing that we need to do is to generate an encrypted password by executing
the following command:

$ mvn --encrypt-master-password [MY_MASTER_PASSWORD]

Copy and paste the result in your ~/.m2/security-settings.xml as follows:
<settingsSecurity>
 <master>{H76YGRZ4efoHWnMHJsD7ScbggOD3wS/Mt7NPHUYrhN370tdXqNkP6/
OnXFX5rn+O}</master>
</settingsSecurity>

Encrypt our Archiva repository password:

$ mvn --encrypt-password pass123

Copy and paste the result to the <M2_HOME>/conf/settings.xml file as follows:

...
<server>
 <id>snapshots</id>
 <username>archiva</username>
 <password>{UJnQYWnvmE8H2mcbITXKz2TGTtwVVcIuKT5upmjXrIw=}</password>
</server>
<server>
 <id>releases</id>
 <username>archiva</username>
 <password>{UJnQYWnvmE8H2mcbITXKz2TGTtwVVcIuKT5upmjXrIw=}</password>
</server>
...

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[62]

More details on password security in Maven are covered in
http://maven.apache.org/guides/mini/guide-encryption.html.

When configuring credentials in settings.xml, we must make sure
that the <id> of our <repository> or <mirror> matches the <id>
of our <server> in order for Maven to know which credentials to use
to access the proxy cache. These IDs may not necessarily be the same as
the ID of the repository in Archiva, we have just used the same ones for
consistency purposes.

Aside from setting the credentials in our settings.xml, we also need to tell our
project where it will be deployed. To do that, we need to add the following in our
project's pom.xml:

<project>
...
 <distributionManagement>
 <repository>
 <id>releases</id>
 <name>Archiva Managed Releases Repository</name>
 <url>http://localhost:8081/archiva/repository/releases</url>
 <layout>default</layout>
 </repository>
 <snapshotRepository>
 <id>snapshots</id>
 <name>Archiva Managed Snapshots Repository</name>
 <url>http://localhost:8081/archiva/repository/snapshots</url>
 <uniqueVersion>true</uniqueVersion>
 <layout>default</layout>
 </snapshotRepository>
 </distributionManagement>
...
</project>

Again, we need to keep in mind that the repository <id> we have set in
<distributionManagement> must match the server <id> we have specified
in our settings.xml.

The <distributionManagement> tag is required in order to deploy our project, or
else we will get the following error:

...

[INFO] ---

[ERROR] BUILD ERROR

[INFO] ---

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[63]

[INFO] Failed to configure plugin parameters for: org.apache.maven.
plugins:maven-deploy-plugin:2.3

check that the following section of the pom.xml is present and correct:

<distributionManagement>
 <!-- use the following if you're not using a snapshot version. -->
 <repository>
 <id>repo</id>
 <name>Repository Name</name>
 <url>scp://host/path/to/repo</url>
 </repository>
 <!-- use the following if you ARE using a snapshot version. -->
 <snapshotRepository>
 <id>repo</id>
 <name>Repository Name</name>
 <url>scp://host/path/to/repo</url>
 </snapshotRepository>
</distributionManagement>

Cause: Class 'org.apache.maven.artifact.repository.ArtifactRepository'
cannot be instantiated
[INFO] ---
[INFO] For more information, run Maven with the -e switch
[INFO] ---
[INFO] Total time: 1 minute
[INFO] Finished at: Tue Sep 09 07:45:44 PHT 2008
[INFO] Final Memory: 12M/82M
[INFO] ---

If the project's version is a release version, Maven will deploy the project
in the <repository> defined in the <distributionManagement>
section. However, if the project's version is a snapshot, then Maven
will deploy it in the defined <snapshotRepository>. If you want to
deploy your snapshots and releases to a single repository, just omit the
<snapshotRepository> and Maven will deploy it by default to the
<repository> you have defined. This is not recommended though as
this contradicts the Maven best practices as we have discussed in the
previous sections.

After setting the deployment repository in our pom.xml, we can now deploy our
project to our Archiva repository. To do this, just execute:

simple-webapp$ mvn deploy

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[64]

And Maven will run the deploy goal of the maven-deploy-plugin on our project.
We will see a similar output to the one below once the deployment is finished:

...
[INFO] [deploy:deploy]
altDeploymentRepository = null
[INFO] Retrieving previous build number from snapshots
[INFO] repository metadata for: 'snapshot com.example.chapter01:simple-
webapp:1.0-SNAPSHOT' could not be found on repository: snapshots, so will
be created
Uploading: http://localhost:8081/archiva/repository/snapshots/com/
example/chapter01/simple-webapp/1.0-SNAPSHOT/simple-webapp-1.0-
20080910.231236-1.war
23K uploaded
[INFO] Retrieving previous metadata from snapshots
[INFO] Uploading repository metadata for: 'artifact com.example.
chapter01:simple-webapp'
[INFO] Uploading project information for simple-webapp 1.0-
20080910.231236-1
[INFO] Retrieving previous metadata from snapshots
[INFO] Uploading repository metadata for: 'snapshot com.example.
chapter01:simple-webapp:1.0-SNAPSHOT'
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 12 minutes 30 seconds
[INFO] Finished at: Thu Sep 11 07:12:36 PHT 2008
[INFO] Final Memory: 13M/43M
[INFO] ---

Notice the version of our project. Instead of 1.0-SNAPSHOT, it became 1.0-
20080910.231236-1. The middle value in between the two hyphens (-) is the build
time stamp while the number 1 after the last hyphen (-) is the build number. This is
the effect of the <uniqueVersion> parameter, which was set to true, earlier for the
snapshots repository in the <distributionManagement>. So the next time we deploy
the same snapshot version of our project, it would get the current build's time stamp
and increment the build number (for example, 1.0-20080912.201032-2) making the
versions unique and no overwriting takes place. Otherwise, if it is set to false, then
the artifact will be deployed with its version as is (for example, 1.0-SNAPSHOT) and
will be overwritten each time we deploy that snapshot version.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 2

[65]

Deploying via web form
As an alternative to command-line deployment, Archiva also provides a web form
for uploading Maven 2 artifacts. You can find this page in the Manage section's
Upload Artifact. Only users with Repository Manager roles can upload artifacts in
the repository, as with deploying from Maven.

As we can see from the following screenshot, the Upload Artifact page requires us to
specify the groupId, artifactId, version, packaging, and the artifact file itself.

Archiva's Upload Artifact behaves like the deploy-file goal of the maven-deploy-
plugin, which is why these five fields are required.

The deploy-file goal is different from the deploy goal in that the
former is used in cases where we have the artifact file (JAR, WAR, ZIP,
and so on.) and not the sources and we want to deploy it to the repository,
whereas the latter is used when we have the Maven 2 project sources and
we want to build and deploy it to our repository. For more details about
the deploy-file goal, checkout http://maven.apache.org/plugins/
maven-deploy-plugin/file-deployment.html.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Staying in Control with Archiva

[66]

The Artifact File is where we specify the artifact we would like to deploy while the
POM File is where we specify that artifact's POM. If we don't have the POM file
on hand, we can opt to have Archiva generate the POM for us during deployment
by ticking the Generate Maven 2 POM field. This feature is equivalent to the
generatePom parameter of the deploy-file goal. We can choose from the list
of repositories in the drop-down box where to deploy our artifact.

Summary
In this chapter, we have learned the usual problems encountered with large
repositories and how repository managers address these pain points.

We have learned about Archiva and have seen up close some parts of it in
action—how to configure and set up a proxy cache, how to make use of Archiva's
search and find features, and how to deploy artifacts in an Archiva repository.
All of these were demonstrated with a highlight on how Maven and Archiva
can work together.

We have been building simple applications using Maven in the exercises of the
first two chapters of this book. In the next chapter, we will learn how to efficiently
configure and build a complete application using Maven.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application
Using Maven

Ok, so you can build Maven projects, but as we saw in Chapter 1, Maven in a Nutshell,
a Maven project is just a single unit of work and most development efforts produce a
number of artifacts to assemble an entire application.

We have already seen a part of how this is done using dependencies. You may
have already encountered Maven's inheritance mechanism for assembling multiple
projects into a single build elsewhere.

In this chapter, we will take a closer look at these concepts, and introduce a
convention for applications that covers all aspects of constructing a multi-module
Maven project. We will also introduce a sample project that will be used throughout
the other chapters of the book. Finally, we will look at various common scenarios for
assembling a project.

Introducing the sample project
Throughout this book, we will look at the development of a sample project
called Centrepoint, a basic but useful application that sets up a dashboard of
project information.

Centrepoint is the former name of Sydney Tower in Sydney, Australia.
It is an easily recognizable landmark in the skyline. It can also help you
get your bearings, as it is located near the center of the central business
district and is visible from several different areas of the city.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[68]

In this chapter, we will set up the basic structure of the web application, add
some documentation, and produce an assembly that can be used to distribute
the application easily.

In the sample code associated with this chapter, you will see the result, along with
the code to import a Maven project into the application, and display a basic view
and links.

In later chapters, we will expand on the tests and quality reports of the project, and
use the web services from Archiva and Continuum to view the latest deployments
and build results for the project.

To begin with, we will have the following modules in the project:

model: the application's data model for storing projects
store-api: the programming interface for persistent application data
store-file: a simple store implementation on the file system
webapp: a web application for viewing the latest project information
maven-importer: importing a Maven project file into the application

Artifact naming convention
You may have seen two styles of artifact naming conventions—simple
names as above, and something like centrepoint-model that includes
the last part of the group ID at the start of the artifact ID. The longer name
should be considered as the convention, particularly if third parties use
the artifact, as it makes the filename more recognizable. However, in an
application such as this, the shorter names can be more convenient. The
important convention that must be always retained is that the source
control directory matches the artifact ID.

Setting up a multi-module build
It is rare for a project to contain just a single module. Even in a relatively simple
application, having a monolithic source tree and build has quickly gone out of
fashion, particularly for Java applications.

There are several reasons why having multiple modules is a good idea for a project
whether it is using Maven or not:

Reusability: Where appropriate, discrete libraries can be reused in different
sections of the application or in other Maven projects as they are shared
through the Maven repository.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[69]

Readability: In many cases, it can be easier to navigate and understand an
application that is broken up into self-contained modules.
Development efficiency: By separating the build into logical subsystems,
development can be focused in a certain area. Moreover, the development
time can be improved by reducing compilation time and only running tests
for modified code. This is particularly useful if different members of a team
typically work on different modules.
Separate release cycles: Stable code can be released independently and can
be re-used by other projects too.
Enforced design constraints: By making certain code unavailable to other
modules, some expected design constraints could be enforced at build time.
For example, an API can be separated from the implementation(s) to avoid
consumers accidentally depending on implementation details.

Luckily, Maven makes modularization easy. A single POM remains the building
block, so adding more modules involves a simple, incremental change. Using Maven's
repository and dependency mechanism, the modules can then be linked together, with
just a few particular techniques needed to learn for assembling the final application.

By doing so, you can construct your build using the same principles that are
beneficial in other areas of software design, using inheritance and composition to
simplify and decouple individual segments of the application.

Of course, as with anything, this requires balance. Endlessly adding modules,
without justification, will increase complexity rather than decreasing it. Therefore,
you must monitor and refactor your build as well, and to whatever extent possible
plan for the application design as it affects the source code structure. Chapter 7,
Maven Best Practices, contains a number of tips for selecting the right level of detail
when modularizing your application.

Creating the parent POM
The first step for setting up the application structure is to create the parent POM.
This process is the same whether you are starting a new project or expanding on a
single module project by adding a common parent for a second module.

At the time of writing, there is no archetype for creating a parent
POM. However, given their simplicity, it is straightforward to
create the POM by hand.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[70]

The only change that is required to a normal project is that the packaging element
is set to pom. All other information is specified as you normally would, and the
information that will be common to various modules should be given in the parent
so that they don't need to be repeated, as Maven will ensure that they are inherited.

In our example application, we start by creating a working directory called
centrepoint, and within it create the pom.xml file as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <name>Centrepoint</name>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <artifactId>centrepoint</artifactId>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>
 <description>
 Centrepoint is a basic but useful application that sets up a
 dashboard of project information from Maven, Archiva and
 Continuum.
 </description>
</project>

We are now ready to create the modules of the application!

Parent POM naming convention
It is a good idea to use the name of the application as it is for the
parent POM, rather than suffixing the artifact ID with -parent,
which is typically more suitable for organization parent POMs.
Examples of these types of POMs are illustrated later in this chapter.

Creating the modules
The best way to structure modular applications with Maven is for the application's
parent to sit at the top of the directory tree; with the modules sitting in a subdirectory
under that (this may occur to multiple levels). Initially our directory structure will
look like the following:

centrepoint
|-- maven-importer
|-- model
|-- store-api
|-- store-file
`-- webapp

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[71]

With the parent POM in place, we can quickly add the modules we expect to have,
as listed earlier, by using the archetype:generate command. In each case, the
defaults will be suitable, with the exception of the webapp module where
the webapp archetype must be selected from the list rather than the default
quickstart archetype.

centrepoint$ mvn archetype:generate -DartifactId=model \
 -DgroupId=com.effectivemaven.centrepoint
[...]
centrepoint$ mvn archetype:generate -DartifactId=maven-importer \
 -DgroupId=com.effectivemaven.centrepoint
[...]
centrepoint$ mvn archetype:generate -DartifactId=store-api \
 -DgroupId=com.effectivemaven.centrepoint
[...]
centrepoint$ mvn archetype:generate -DartifactId=store-file \
 -DgroupId=com.effectivemaven.centrepoint
[...]
centrepoint$ mvn archetype:generate -DartifactId=webapp \
 -DgroupId=com.effectivemaven.centrepoint
[...]

Having run these commands, skeleton modules are in place for the entire
application. Though it doesn't yet do much, it can be built in its entirety from
the root POM using Maven. The reason for this can be seen if pom.xml is inspected,
as the archetype plugin added the following elements automatically:

...
 <modules>

 <module>model</module>

 <module>maven-importer</module>

 <module>store-api</module>

 <module>store-file</module>

 <module>webapp</module>

 </modules>

</project>

These module elements define which modules will also be built whenever
the top-level project is built, allowing an aggregated result to be produced in
one command.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[72]

The trick above is one of the benefits of using the Archetype plugin to generate
new modules, as it saves having to remember to type the new modules by hand.
However, this is not all that it does. If you inspect the POM of one of the new
modules, such as model/pom.xml, you will notice an additional parent element
that is not normally generated:

...
 <modelVersion>4.0.0</modelVersion>
 <parent>

 <artifactId>centrepoint</artifactId>

 <groupId>com.effectivemaven.centrepoint</groupId>

 <version>1.0-SNAPSHOT</version>

 </parent>

...

This is a link back to the parent project; it enables Maven's project inheritance
mechanism. If you haven't encountered the concept in Maven before, the referenced
POM has its fields inherited into the current project where appropriate. The project is
intended to be retrieved from the repository, allowing a project to be built regardless
of where the parent project is located. However, by default, ../pom.xml is also used
to make development in the standard structure easier. More information on using
project inheritance to your advantage can be found in Chapter 7, Maven Best Practices.

In this case, we have a bidirectional link between the parent and the child project
through the parent element and the module element. While it is possible to build a
set of projects that have different parents (or none at all), it is much less intuitive to
those building the project.

While the archetypes we have used here have simplified putting some of the
boilerplate in place, they have also generated some information that is no longer
necessary. Thanks to project inheritance, values that are inherited can be removed,
and some template values should be adjusted:

The groupId and version elements are identical to the parent and can be
removed in the children
The url element is incorrect and better removed as it will be inherited
once set
The name element defaults to the artifactId, but is better changed to a more
descriptive name such as Centrepoint Data Store API and so on.
The JUnit dependency should be removed and added to the parent project as
it is used in all submodules

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[73]

The resulting POMs for each of the modules now look much friendlier:

<?xml version="1.0"?>
<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <artifactId>centrepoint</artifactId>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <artifactId>store-api</artifactId>
 <name>Centrepoint Data Store API</name>
</project>

If the removed JUnit dependency was also added to the parent project, then building
from the top level should still succeed.

XML namespace declaration
Though it is not required, if you anticipate editing the pom.xml file in
an XML editor, having the namespace declaration that we added to the
parent POM is helpful for auto completion.

Dependency management
Even though we have created all the necessary modules for the application, as soon
as the code is added, they will need to refer to each other. To achieve this, as with
any external library, dependency elements are added to the modules.

In our example, we will add the following dependencies:

store-api will depend on model
store-file will depend on store-api and model
maven-importer will depend on store-api and model
webapp will depend on store-file and maven-importer

Thanks to Maven's transitive dependencies, the web application actually depends
on all of the modules, as you would expect. However, you may be asking why then
store-file depends on model, as it is available transitively through store-api.
While this is true and the model dependency could be omitted, it is a good practice
to explicitly declare all dependencies that you will use directly. This is discussed in
Chapter 7, Maven Best Practices.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[74]

The majority of dependencies can be added in the traditional way. For example,
within the store-api module, we add the following:

<dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>model</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

Note the optional use of expressions to avoid having to retype the values that are the
same throughout the application.

Even before code that utilizes the dependencies is in place, you can notice a
difference when the application is built. Where previously the build occurred in
the order defined in the modules section:

[INFO] Reactor build order:

[INFO] Centrepoint

[INFO] Centrepoint Data Model

[INFO] Centrepoint Maven Project Importer

[INFO] Centrepoint Data Store API

[INFO] Centrepoint Data Store (Flat file)

[INFO] Centrepoint Web Application

It now has been adjusted to honor the dependency relationships introduced:

[INFO] Reactor build order:

[INFO] Centrepoint

[INFO] Centrepoint Data Model

[INFO] Centrepoint Data Store API

[INFO] Centrepoint Maven Project Importer

[INFO] Centrepoint Data Store (Flat file)

[INFO] Centrepoint Web Application

Regardless of how the modules are ordered in the parent POM, the overall
interdependencies of the modules will be considered first, with the module
ordering specified in the POM used otherwise.

One further optimization is commonly made in multiple module projects.
Rather than declaring the version in every module again, we can add a
dependencyManagement block to the parent that specifies a template for the
use of any dependencies:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[75]

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>model</artifactId>
 <version>${project.version}</version>
 </dependency>
 ...
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>store-file</artifactId>
 <version>${project.version}</version>
 </dependency>
 </dependencies>
</dependencyManagement>

This does not mean that every project uses these dependencies (in contrast to the
JUnit dependency); otherwise, the model project would depend on itself!

With these in place, the dependency elements in the modules can be reduced to the
following format:

<dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>model</artifactId>
</dependency>

More information on using the dependency management feature effectively can also
be found in Chapter 7, Maven Best Practices.

It has previously been discussed that the above behavior might be made
the default for dependencies with the same group ID in future versions
of Maven. This will make the dependencyManagement element
unnecessary for this purpose and used only for the versions of external
dependencies. Look out for this change in new releases as a way to
simplify your POMs further.

Fleshing out the example application
At this point, we have most of the Maven infrastructure in place, so all that is needed
is to write the code!

As we used the default archetype, the first step is usually to rename App.java
and AppTest.java to the name of the first class in the package and start adding
functionality to replace the placeholders.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[76]

We won't examine the development of the application in further detail here. For
more information on how it was written, you can see the developer documentation
in the source tree (which we will be encountering shortly in this chapter). You can
refer to the completed example in the sample code for this chapter. The code in the
start directory is the application to this point in the chapter, while the code in the
final directory reflects the rest of the changes in the chapter.

We can observe that in this particular application, we have chosen to use TestNG
instead of JUnit 3.8, so the dependency in the parent POM earlier has been replaced,
and the test classes rewritten accordingly. This will be further discussed and
enhanced in the next chapter.

Thanks to our preemptive use of inheritance earlier, we only
had to replace JUnit with TestNG in one place!

Having the first prototype of the application written (including tests) is great, but
there are still more improvements that we can make to the Maven project structure
for use in a team, distribution of the final application, and further growth of the
project. We will continue to explore that throughout the rest of the chapter.

Creating an organization POM
We have already seen the benefits of applying common settings across an application
using inheritance, so why not take that one step further?

A commonly utilized concept in this situation is referred to as an Organization
POM. This means creating a parent POM that is shared among multiple applications
within an organization and contains Maven project settings that are relevant to all
projects in that organizational unit. The organization may be a team, a division, or an
entire company, and multiple levels of inheritance can be used to represent different
hierarchies where it makes sense to do so.

While Maven does not have any specialized handling for the use case—the behavior
is identical to any other parent POM—the conceptual difference leads to a slightly
different structure.

Firstly, the release cycle will be different. The organization unit is likely to be
changed less frequently than the application is released, so it tends to be on a
separate release cycle. As traditional version numbers don't often have the
same meaning for this use case, the commonly practiced convention is to use
an integer that increments upwards from 1 as the version.

Let's introduce an organization unit for this book, com.effectivemaven.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[77]

Let's create the new parent POM in ../effectivemaven-parent/pom.xml to look
like this:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <name>Apache Maven 2: Effective Implementations Book</name>
 <groupId>com.effectivemaven</groupId>
 <artifactId>effectivemaven-parent</artifactId>
 <packaging>pom</packaging>
 <version>1-SNAPSHOT</version>
 <organization>
 <name>Apache Maven 2: Effective Implementations Book</name>
 <url>http://www.effectivemaven.com</url>
 </organization>
</project>

As you can see, we retain the SNAPSHOT suffix on the version while it is in
development like any other project. Once the parent has been finalized for a first
version, it can be released as version 1, then changed to 2-SNAPSHOT, and so on.

To refer to the organization POM from a project, the normal Maven parent element is
added to the root POM of the Centrepoint build:

...
<modelVersion>4.0.0</modelVersion>
<parent>
 <groupId>com.effectivemaven</groupId>
 <artifactId>effectivemaven-parent</artifactId>
 <version>1-SNAPSHOT</version>
</parent>
...

Another consequence of having a separate release cycle is that the POM should be
stored in a separate source control trunk. This means that the parent must be built
and installed in the repository before it can be used, as it will not be in the default
location of ../pom.xml. If you have a consistent structure for checking out these two
trunks, however, it is possible to give Maven a hint where to find the latest version
without having to install it into the local repository.

<parent>
 <groupId>com.effectivemaven</groupId>
 <artifactId>effectivemaven-parent</artifactId>
 <version>1-SNAPSHOT</version>
 <relativePath>../effectivemaven-parent/pom.xml</relativePath>
</parent>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[78]

The use of relativePath can be quite useful in this situation, though it must be
remembered that it is only a hint, if it is not there then Maven will still refer to the
local repository, and eventually in a release scenario the file will not be present and
so the parent will be retrieved from the repository. For this reason, it should be
used cautiously—it is important that the correct parent is in the repository for
consistent behavior.

The relativePath field can also be used in a multi-module build that
does not follow the recommended conventions, with the same note of
caution as above.

It is worth noting that there is presently no way to automatically select the
right version of the organization POM to use. Therefore, when a release of the
organization POM is made, all projects will need to be updated by hand. It is not
always necessary to do this immediately, depending on the type of change made.
However, it is important that parent releases occur reasonably soon after a set of
changes so that they don't block the release of one of the projects needing to consume
the changes. Like other dependencies, it is not possible to release with a snapshot
parent that is not part of the current release, and it is important to lock it to a release
version for reproducibility reasons. The Versions Maven Plugin can help keep the
version of the organization POM up to date in your projects—for more information
see http://mojo.codehaus.org/versions-maven-plugin/examples/update-
parent.html.

As with any form of inheritance, you have the freedom to include any information
that you want to in the organization POM, removing them from the project's POM if
necessary to avoid duplication. The most commonly found elements are:

Infrastructure, and in particular the distribution management section
The developers on a team
Standardized plugin versions and configuration

For our project, we will add all three of these elements to the organization POM.
Firstly, there is the distributionManagement element pointing to Archiva, which
we configured in Chapter 2, Staying in Control with Archiva:

<distributionManagement>
 <repository>
 <id>releases</id>
 <url>http://localhost:8081/archiva/repository/releases</url>
 </repository>
 <snapshotRepository>
 <id>snapshots</id>

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[79]

 <url>
 http://localhost:8081/archiva/repository/snapshots
 </url>
 </snapshotRepository>
</distributionManagement>

Next, the developers on this project:

<developers>
 <developer>
 <id>brett</id>
 <name>Brett Porter</name>
 <timezone>+10</timezone>
 </developer>
 <developer>
 <id>oching</id>
 <name>Deng Ching</name>
 <timezone>+8</timezone>
 </developer>
</developers>

Finally, the now familiar plugin configuration for the compiler plugin to indicate all
of our projects will be using Java 5 by default:

<build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.0.2</version>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
</build>

In this section, it is quite common just to list plugins and versions to set some basic
standards for other projects to use. Another good set of configuration to share is
that of the team's standard quality checks, which we will encounter in Chapter 5,
Reporting and Checks.

We can now confirm that the build still works before continuing:

centrepoint$ mvn install

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[80]

Configuring basic reports
Returning now to the application code, one of the best steps to take near the start of a
project is to put the framework for documentation and reporting in place. By having
this in place early, the chance that it will be maintained throughout the life of the
project is increased.

As the structure we established earlier contains all Java code modules, it would
be useful to generate some information about it. For that purpose, we can add
the Javadoc and JXR (source code cross-reference) reporting plugins to create a
reference site.

Establishing this is quite simple when using the standard configuration, and for good
measure, we throw in the aggregate flag so that one copy is generated for the whole
project instead of a separate set for each module.

<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <aggregate>true</aggregate>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jxr-plugin</artifactId>
 <version>2.1</version>
 <configuration>
 <aggregate>true</aggregate>
 </configuration>
 </plugin>
 </plugins>
</reporting>

This plugin configuration is added to the topmost module where the aggregated
content will be produced (in this case, centrepoint/pom.xml). Note that we don't
put it into the organization POM, as some projects may not be Java projects, or may
not be code projects at all. This differs from the Compiler plugin example above,
which used pluginManagement to ensure the Java configuration would only be
used on Java projects that already use the Compiler plugin.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[81]

One of the disadvantages of using the reporting element is that
it is hard to share configuration across projects, with the lack of a
pluginManagement equivalent. If you are using the reports in addition
to the corresponding checks, it is worth considering using the site build
lifecycle instead and manually configuring your site navigation. For more
information, see Chapter 5, Reporting and Checks.

The reference site can be generated for the project from the centrepoint directory
using the standard site lifecycle that we saw in Chapter 1, Maven in a Nutshell:

centrepoint$ mvn site

The resulting references will be in target/site/apidocs and target/site/xref,
and linked in from the main site at target/site/index.html.

Depending on where you store your development documentation and how much
you already have in your Javadoc, you may like to add more content to the main site
that provides useful information for developers of the project itself. Note that this is
not for end-users of the application! Unless you are writing a framework where the
development documentation is part of what the end users need to read, and then end
user documentation can be handled separately at a later stage.

The sample application of this chapter provides some development specific
documentation on the front page of its site, with the source content in Almost Plain
Text (APT) formatted files under src/site/apt of the project, which provides a
working example to think about for your own projects.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[82]

For more information on the APT format, refer to
http://maven.apache.org/doxia/references/apt-format.html.

Preparing for non-code modules
I mentioned in the previous section that unless you are writing a framework, the
documentation for the code would likely not be the same as the documentation for
the rest of the application. If you intend to build that documentation with Maven
as well, then it will need to be built separately, outside of the tree of modules that
contains the code.

Likewise, there may be other modules that can be built separately. They include
the distribution of the application, which depends on all of the others but does not
necessarily need to be built every time, and does not have any specific functionality
or reporting of its own.

While these modules are apparently separate, they are still closely related to the rest
of the application. In fact, they should be part of the overall release and bear the
same version number as the modules themselves, so they should not be separated
entirely. In addition, we will need a place to configure plugins for the entire
application, as well as those specific to the code modules (such as reporting). While
most plugins can be configured to exclude certain modules selectively, it will be
simpler if that plugin is excluded from those modules altogether.

To address this, we are going to use a convention for such Maven builds, and add
another level of project inheritance to our application structure.

Documentation versions
Not all projects distribute their documentation with the application, or
even lock it down to a released version. At the time of writing, Maven
itself only has one copy of its documentation (which is always for the
latest version). Whether this approach suits you will depend on how
your documentation is maintained and used, and whether it is to be
distributed with the application. For frameworks and applications where
a particular version is expected to be used for some time after newer
revisions are available, maintaining a copy of the documentation
relevant to that particular version either online or as a separate
download is highly recommended.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[83]

Creating a modules tree
The first step is to create a new POM that will aggregate the existing
modules. It is faster to copy the existing one from centrepoint/pom.xml
into centrepoint/modules/pom.xml and adjust the fields, as most of the
current parent POM is related to the code modules.

Changing the new POM is simple. Change the artifact ID and project name, and
replace the parent reference with the new parent project:

<modelVersion>4.0.0</modelVersion>
<parent>

 <groupId>com.effectivemaven.centrepoint</groupId>

 <artifactId>centrepoint</artifactId>

 <version>1.0-SNAPSHOT</version>

</parent>

<artifactId>modules</artifactId>

<name>Centrepoint Java Modules</name>

<packaging>pom</packaging>

Note that as the parent now has the same group ID and version, we can remove them
from the current POM leaving just the new artifact ID. The description and license
can also be removed, as they will be inherited.

The next task is to move all of the module subdirectories into the new directory, in
this case called modules. If you are using version control, you should use the built-in
command to move these directories, such as:

centrepoint$ svn mv webapp modules

If you have not yet checked the structure into source control, you can move the
directories freely.

Eventually we have a complete directory structure that looks like the following:

|-- centrepoint
| `-- modules
| |-- maven-importer
| |-- model
| |-- src
| |-- store-api
| |-- store-file
| `-- webapp
`-- effectivemaven-parent

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[84]

Moving the directories will ensure that the aggregation side of the relationship
works correctly, but each project still points to the original parent. This is actually a
valid Maven configuration so it will not cause an error, even though it may not produce the
results you expect.

Maven doesn't enforce modules and parents to match up, so when
you are moving modules around within a multi-module project,
be sure to check that the parents have been adjusted accordingly.

To prevent future confusion, we should change the parent of all of the modules to
the new module parent, for example:

<parent>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <artifactId>modules</artifactId>
 <version>1.0-SNAPSHOT</version>
</parent>
<artifactId>model</artifactId>

Finally, the top-level parent POM needs to be adjusted to the new layout, by adding
the new module, and removing the elements that are no longer necessary. The result
should look similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.effectivemaven</groupId>
 <artifactId>effectivemaven-parent</artifactId>
 <version>1-SNAPSHOT</version>
 <relativePath>
 ../effectivemaven-parent/pom.xml
 </relativePath>
 </parent>
 <name>Centrepoint</name>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <artifactId>centrepoint</artifactId>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>
 <licenses>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[85]

 <license>
 <name>The Apache Software License, Version 2.0</name>
 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
 <distribution>repo</distribution>
 </license>
 </licenses>
 <description>
 Centrepoint is a basic but useful application that sets up a
 dashboard of project information from Maven, Archiva and
 Continuum.
 </description>
 <modules>
 <module>modules</module>
 </modules>
</project>

As you can see, this is very similar to the POM that we used in the beginning,
but now refers to the modules tree containing all of the Java modules that we
set up previously.

With all the directory movements, this may have seemed like the long
way around to achieve this result. While this would be the ideal technique
to introduce the separation to an existing project, if you were starting with
a clean slate it would certainly be easier to create this structure from
the beginning.

Note that the reference site that we generated earlier should now be generated only
from the modules subdirectory, not from the top-level project. As we will see in the
next section, we are now able to produce a different type of documentation for
the application.

Adding a documentation module
Whether you are building a small application for internal use, or a product that will
be shipped to thousands, you will need some form of documentation to accompany
it. The amount of documentation needed can range from just a few pages to
comprehensive manuals (though the number of pages written usually amounts
to much less!)

There are also varieties of tools that can be used to produce the documentation—
from simple text files to PDFs that have been carefully and professionally produced.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[86]

Maven provides a number of options for dealing with documents in one or more of
these forms, either by using plugins or Maven's site capabilities to generate the entire
documentation set, packaging up the pre-generated PDFs as is, or some combination
of both. It is important to remember that Maven sites don't have to be tied to project
reports, nor do they need to be styled with the boring, boxy, default theme that can
be found on open source projects all across the web. Regardless of which you choose,
if you intend to distribute the documentation with the application and freeze it at
release time with a particular version, you should add a module that contains the
documentation source and output.

Here we are not talking about a project web site, or documentation that
is constantly updated and not released. Such documentation should be
stored in a separate version control trunk and, if Maven is even used to
manage them, built by a separate Maven project.

For our example application, we will be using Maven to generate a web site
by transforming input files into HTML. However, we will also illustrate how
to incorporate other resources directly for those that wish to produce the
documentation separately. The resulting documentation will be both deployed
to a web server and distributed with the application.

The documentation project should be created in the top-level parent directory of the
application, so that it resides alongside the modules directory. Luckily, to get started
again we have an archetype. It is shown below:

centrepoint$ mvn archetype:generate -DartifactId=documentation \

 -DgroupId=com.effectivemaven.centrepoint \

 -DarchetypeArtifactId=maven-archetype-site-simple

This serves as a suitable starting point and generating the site from the documentation
directory will already work. Three files were created from the archetype:

pom.xml: the documentation POM
src/site/site.xml: the site descriptor with layout, navigation and
additional metadata
src/site/apt/index.apt: a simple front page in plain text format

The content of the site files will not be examined in detail here, however you can
refer to the code for this chapter that contains some complete documentation and a
site descriptor.

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[87]

As usual, some customization of the generated POM is needed:

The redundant group ID and version can again be removed as they match
the parent
The archetype doesn't create a name, so one needs to be added
As the site will be deployed, the url element that specifies which URL will
later be used to view it should be added to the POM
Disable the default reports to keep the site to a minimum by adding the
excludeDefaults flag to the reporting section
The distributionManagement element contains an example value that
needs to be replaced

The following is the content of the expected POM:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <artifactId>centrepoint</artifactId>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <artifactId>documentation</artifactId>
 <name>Centrepoint Documentation</name>
 <url>
 http://www.effectivemaven.com/centrepoint/docs/${project.version}/
 </url>
 <packaging>pom</packaging>
 <distributionManagement>
 <site>
 <id>website</id>
 <url>
 file:///${basedir}/www/centrepoint/docs/${project.version}
 </url>
 </site>
 </distributionManagement>
 <reporting>
 <excludeDefaults>true</excludeDefaults>
 </reporting>
</project>

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[88]

The deployment location in this example is contrived, storing it again in the project
directory when the site-deploy command is run, and would usually be replaced
with the remote server to deploy it to that corresponds with the url field of the
POM. However, it does point out that you can include the project version in the path
of the deployed documentation so that over time versions can be retained separately
for posterity.

Building the site automatically
The example so far has required that mvn site be run from the directory of the
documentation. However, this will not be automated or useful when it comes to
bundling the documentation.

To overcome this issue, the site goal can be bound to the lifecycle like any other goal.
This has obvious advantages for automation, but the disadvantage of missing the
rest of the site lifecycle preventing the use of more of the framework.

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-site-plugin</artifactId>
 <executions>
 <execution>
 <id>site</id>
 <phase>generate-resources</phase>
 <goals>
 <goal>site</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Here, the goal is bound to the generate-resources phase in anticipation that it will
be bundled for distribution with the application in the package phase. In addition
to the above, you may like to add the deploy goal to the deploy phase as well. This
can either be done in the default lifecycle to deploy every snapshot of the site, or can
be added to a release profile to perform only the deployment on release. For more
information on releases with Maven, see Chapter 9, Continuum in Depth.

Assembling the site for distribution
We have not quite come to the point of producing the distribution in this chapter, but
it is worth being prepared for that.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[89]

When producing artifacts in a multi-module build, one of the best practices to follow
is to avoid referencing files outside of the current module directly and using the local
repository to share all build artifacts. This will ensure that even if a subset of the
project is checked out and built, it will succeed and make the build more resistant
to problems, if there are layout changes later. For this reason, we create an assembly
of the site contents rather than referring to the generated output directly from other
parts of the build.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.1</version>
 <configuration>
 <descriptor>src/site/assembly/docs.xml</descriptor>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Here, we use the Assembly plugin to produce a ZIP file of the content. By using the
single goal, it can be bound to the lifecycle, and the resulting ZIP file is added to
the list of artifacts to be installed and deployed if those lifecycle phases are run. This
means that the ZIP file can later be used as a dependency by other modules.

The format of that ZIP file is described by the assembly descriptor, src/site/
assembly/docs.xml, which was specified by the assembly plugin configuration.

<assembly>
 <id>docs</id>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>target/site</directory>
 <outputDirectory>/</outputDirectory>
 </fileSet>
 </fileSets>
</assembly>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[90]

The Assembly plugin will be reviewed in more detail in the next section. However,
in this simple example it is clear that the generated site content from target/site is
being included in the ZIP file. This will allow us to extract the ZIP file directly into a
subdirectory of the final application distribution.

If we build the documentation module, we will see that the site is now built and
installed into the local repository automatically:
documentation$ mvn install

Adding site resources
Earlier in the section, it was mentioned that general resources could be included in
the documentation. How this is handled depends on whether or not the Site plugin is
being used.

The site plugin accommodates resources in the src/site/resources directory.
Regardless of the type of file, these will be copied into the target/site directory as
part of the site generation. As you can tell, this makes the process very simple, as the
existing assembly descriptor will pick up those resources.

However, what if (unlike the example in this chapter) we were just including
resources for the documentation and not generating a site? In this instance, while we
would have skipped the Site plugin above, we would still have the Assembly plugin,
but with a slight change to the file set that it contained.

Let's imagine that we had all of our documentation pre-generated in the src/docs
directory. In that case, the assembly descriptor would change as follows:

...
<fileset>
 <directory>src/docs</directory>

 <outputDirectory>/</outputDirectory>
</fileset>
...

This setup makes for a much simpler build process, however with the added
overhead of having to generate the documentation separately and copy it into
the build directory (and remember to do so at the right time!)

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[91]

When only few resources are being used, it might make as much sense to
simply include the resources directly into the final application assembly
instead of having a separate documentation module. This has some
advantages in simplicity and to some extent performance, but on the
downside, it makes adding generated documentation more difficult if it
is needed later, and does not allow the documents to be reused in
multiple different modules as a dependency, so this decision should
be weighed carefully.

Adding a skin
So far, in this chapter, we have generated two Maven sites—one for the development
documentation, and one for the end user documentation. These were useful, but
they were certainly not particularly attractive! Thankfully, the Site plugin includes a
mechanism to create a skin to produce a reusable set of style information, which can
then be used to apply an improved, consistent style to both sets of documentation.

Creating a skin module is just a standard JAR with some specific resources, so the
default archetype can be used as before, from the top-level centrepoint directory.

centrepoint$ mvn archetype:generate -DartifactId=skin \

 -DgroupId=com.effectivemaven.centrepoint

Of course, the regular post-generation cleanup is needed, and in this case, the Java
sources and tests should be removed, as the JAR will only need a set of resources.

The resources which can be added are:

src/main/resources/css/maven-theme.css—the CSS for the site
src/main/resources/META-INF/maven/site.vm—the Velocity template for
generating XHTML from the input content

In each case, a default will be used if one of these resources is not supplied. Other
resources stored under src/main/resources (such as an images directory) will be
copied into the eventual site root.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[92]

While demonstrating a new CSS and XHTML layout goes beyond the scope of this
book (and my creative abilities!), an improved skin is provided in the example code
for this chapter.

To use the skin from the projects that produce sites, the following needs to be added
to the descriptor of each site:

<project>
 <skin>

 <groupId>com.effectivemaven.centrepoint</groupId>

 <artifactId>skin</artifactId>

 <version>${project.version}</version>

 </skin>

...

The skin reference is a normal artifact from the repository, so the JAR that was
produced by the new module, once built, will be used from these two projects.

However, there is one problem with this setup. Maven doesn't read into the site
descriptor to realize that the project has a dependency on the skin, so the build will
not occur in the correct order.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[93]

One solution would be to add the skin to the dependency list for the documentation
project. However, this is not an option for the modules generation, which happens
to occur first. Likewise, it could be added as a plugin dependency for the site plugin.
However, this will only work with Maven 2.1.0 and above.

The simplest workaround available is to move the skin to the top of the list of the
modules in the POM file.

Regardless, with the new skin available, both sites now look much more attractive
and better integrated, and the skin build itself is conveniently included into the build
process for the application.

In many organizations, the skin will be reused across many projects. In
this case, rather than being contained in the application build process, it
would make sense to build and release the skin separately.

Distributing the application
We now come to the last step in the process of assembling an application—
producing the final distribution. This is the process that takes everything that
we build and gets it into the hands of our users—whether it is customers using
a software product, or system administrators that deploy the application into a
production environment.

In our example, we have a web application that we have already built. In some
environments, that may well be enough all by itself. The web application can be
deployed to a Maven repository and the version is always available for others to
retrieve it and deploy it to an application server. The other artifacts of the application
are also deployed, such as the Java libraries, and the documentation ZIP file from the
previous sections, all for separate consumption.

However, in many cases it also makes sense to bundle several of these into a single
artifact for easier consumption. This might be in a compressed archive (ZIP, TAR.GZ,
or TAR.BZ2), or an installer generated by one of many different products. Another
alternative for Java applications in some cases is a self-executable JAR—an example
of producing one of these using the Shade plugin is available in Chapter 6, Useful
Maven Plugins.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[94]

The plugin that will regularly be used for this task is the Assembly plugin. This
Maven plugin was designed to take a flexible set of input files, including build
artifacts and dependencies, and produce a structured archive in almost any format
that can then be compressed and shipped. Whether the distribution is a simple
archive of a web application, license, and a read me file, or a complex layout of a
complete application file system, or a distribution of the source code itself, the
Assembly plugin will have it covered.

In our standard application layout that we have been describing, the distribution
resides at the top level of the project, alongside the documentation and the modules,
as it is not a code module itself.

You might expect the distribution to be built from the top most project,
rather than from a subproject. While this is possible in some cases, and
often recommended for source distributions, the flexibility of this option
is limited in the current releases of Maven. It can be difficult to select what
to include, and ensure proper sequencing of the build so that it occurs
last. It is also more difficult to rebuild the assembly without rebuilding
the entire project. For this reason, a separate module is currently the
recommended approach for producing a distribution.

First, let's create the new module for the distribution. There are no standard
archetypes for assemblies at the time of writing, so we create a new project by
hand in distribution/pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <artifactId>centrepoint</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <name>Centrepoint Distribution</name>
 <artifactId>distribution</artifactId>
 <packaging>pom</packaging>
</project>

Notice that the packaging type is again pom, indicating there is no specific output for
the project. This is because the Assembly plugin does not have a packaging type and
lifecycle of its own, but is instead intended to be attached to existing builds.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[95]

Before continuing, let's not forget to add the new module to the parent POM:

<modules>
 ...
 <module>documentation</module>
 <module>distribution</module>

</modules>

This new project is now part of the build, so we can move on to adding the
functionality to assemble the distribution.

With all the modules now in place, you will notice that most of
the day-to-day modules that will be built during development
reside under the modules directory. This can be used to save time
building the project in development when the distribution and
documentation are not needed.

Generating the runtime environment with the
App Assembler plugin
In our example application, we will distribute the web application along with a
pre-configured Jetty servlet container, so that the application can be immediately run
after unpacking the archive rather than having to set up your own servlet container.
This technique is identical to how Archiva is distributed, and we saw how easy that
was to get running in Chapter 2, Staying in Control with Archiva.

Like in Archiva, in addition to the Jetty container we will set up Java Service
Wrapper (JSW) scripts to start Jetty with, and include the documentation for
easy reference.

For this task, we will use the App Assembler plugin from the Codehaus Mojo project.
This plugin is used to augment the Assembly plugin by generating the necessary
framework for the application to be run in various scenarios once unpacked from an
archive. It includes basic shell and batch scripts for running applications, as well as
generation for configuration of the Java Service Wrapper.

The App Assembler plugin uses an older version of the Java Service
Wrapper (v3.2.3), as it was the last to be licensed under the more
permissive BSD -style license. Newer versions and documentation
can be obtained from the following web site: http://wrapper.
tanukisoftware.org.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[96]

The Assembly plugin will be used to create an archive from this generated content.
It is notable that the Assembly plugin does not do very much processing of the
build results itself—its role is simply to archive a set of files that have already
been produced.

While the App Assembler plugin will simplify the configuration of this environment,
we don't have space to cover the entire configuration in this chapter, so will focus on
the main points of interest. For the complete example, refer to the sample code for
this chapter.

First, we will add the dependencies for the Jetty server to the project so that the App
Assembler plugin will pick them up and incorporate them into the server structure:

<dependencies>
 <dependency>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>jetty</artifactId>
 <version>${jetty.version}</version>
 </dependency>
 <dependency>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>start</artifactId>
 <version>${jetty.version}</version>
 </dependency>
</dependencies>
<properties>
 <jetty.version>6.1.14</jetty.version>
</properties>

Note the use of a property for the Jetty version to avoid
duplication and ease the upgrade process in future.

Next, we have the App Assembler plugin itself, which we will break down into
sections. First, the configuration contains a set of daemons, which are the application
scripts to generate for a particular situation. We have just one called centrepoint to
start the server using the Java Service Wrapper:

<daemons>
 <daemon>
 <id>centrepoint</id>
 <mainClass>org.mortbay.start.Main</mainClass>
 <commandLineArguments>
 ...

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[97]

 </commandLineArguments>
 <platforms>
 <platform>jsw</platform>
 </platforms>
 <generatorConfigurations>
 <generatorConfiguration>
 <generator>jsw</generator>
 <configuration>
 ...
 </configuration>
 <includes>
 <include>linux-x86-32</include>
 ...
 </includes>
 </generatorConfiguration>
 </generatorConfigurations>
 </daemon>
</daemons>

The daemon contains three sections, as you can see above:

•	 The command line information for the Java runtime, which includes the
main class and the command line arguments (in this example, the Jetty
configuration files would be passed in).

•	 The platforms to generate for the daemon (you can generate Unix or
Windows start scripts, or JSW which is capable of generating scripts for
many platforms).

•	 It also contains the configuration for each platform. For JSW, we provide
wrapper properties to add to wrapper.conf in the configuration element
and which JSW platforms to support in the includes element.

This next section of the configuration lets you construct a repository of artifacts
from the dependencies of the project in a certain directory (which is later generated
by the create-repository goal). In this case it will be generated without repository
paths and all the libraries will be placed directly in the lib directory.

<repoPath>lib</repoPath>
<repositoryLayout>flat</repositoryLayout>

Finally, the location to generate the application runtime to is specified in the
assembleDirectory:

<assembleDirectory>
 ${project.build.directory}/generated-resources/appassembler/
 jsw/centrepoint
</assembleDirectory>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[98]

To run the App Assembler as part of the build, the following goals are given:

<executions>
 <execution>
 <goals>
 <goal>generate-daemons</goal>

 <goal>create-repository</goal>

 </goals>
 </execution>
</executions>

There are some final steps needed to get a working server. If we were to generate
and run this now, we would find it fails to start up for two reasons:

The logs directory is missing
The conf directory that has the Jetty configurations specified as command
line arguments is missing

However, the App Assembler plugin does not have any directives for creating these.
We could do it later in the assembly plugin, but that would mean we can't test the
server directly from the target directory that we have generated it to.

Instead, we can add an instance of the Ant Run plugin to set these two areas up for
us in the target directory so that the assembled application is complete and ready
for assembly. The execution added to the Ant Run plugin would look like
the following:

<execution>
 <id>config</id>
 <phase>process-resources</phase>
 <configuration>
 <tasks>
 <copy todir="${project.build.directory}/generated-
 resources/appassembler/jsw/centrepoint/conf">
 <fileset dir="src/main/conf" />
 </copy>
 <mkdir dir="${project.build.directory}/generated-
 resources/appassembler/jsw/centrepoint/logs" />
 </tasks>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
</execution>

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[99]

In this case, we need the src/main/conf directory to exist first. For our example,
we have taken jetty.xml and jetty-logging.xml from the Jetty distribution and
included them in that directory.

By this point, we should have a POM that looks identical to the final sample
application with the Assembly plugin omitted (which we will cover in the next
section). To verify that everything is working as expected, we can generate and
run the server from the source directory.

distribution$ mvn package

Then, from the target/generated-resources/appassembler/jsw/centrepoint/
bin directory, run:

bin$ centrepoint console

On Unix, you may need to change the file mode of the files in the bin
directory by running chmod +x bin/*. In the next section, we will
ensure the Assembly plugin makes this unnecessary.

If everything has been configured successfully, the Jetty server will start, but the logs
will show that it failed to load any web applications. In the next step, we will bundle
the web application itself and produce an archive for redistribution.

Generating the assembly archive
Everything is now finalized and in place, ready to be bundled into an archive for
distribution. As mentioned previously, we will use the Assembly plugin for this task.

As the assembly is being generated in a separate module, we are able to bind it to
the lifecycle so that the generated archives can be attached to the installation and
deployment of the main artifacts into the repository. To do this, we use the single
goal, and bind it to the package phase, just as we did with the documentation earlier.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.1</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[100]

 </executions>
 <configuration>
 <descriptor>src/main/assembly/bin.xml</descriptor>
 </configuration>
</plugin>

The configuration for the Assembly plugin is very straightforward with most of the
interesting work being done inside the assembly descriptor, which was listed in the
configuration section of the plugin.

The format of the assembly descriptor is particularly flexible to different situations.
We have already seen a simple example in the documentation section earlier, and we
will utilize a few more capabilities here. However, if you are looking for a specific
method of assembling a project, refer to the online documentation for the plugin for
a full list of configuration options at http://maven.apache.org/plugins/maven-
assembly-plugin/.

We will start by configuring the descriptor for the already generated files from
the App Assembler. For this purpose, we need to construct a series of filesets
(the full set of required filesets can be seen in the sample code for this chapter).

<assembly>
 <id>bin</id>
 <formats>
 <format>tar.gz</format>
 </formats>
 <filesets>
 <fileSet>
 <directory>target/generated-
 resources/appassembler/jsw/centrepoint/lib</directory>
 <outputDirectory>lib</outputDirectory>
 <excludes>
 <exclude>maven-metadata-appassembler.xml</exclude>
 </excludes>
 <fileMode>0755</fileMode>
 </fileSet>
 ...
 </filesets>
</assembly>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[101]

In this code, we add all of the files from the generated directories. While it would
have been ideal to simply add the target/appassembler/jsw/centrepoint
directory once, as you can see certain includes and excludes elements are needed
in some directories, and more importantly, the file modes and line endings need to
be set correctly. The Windows batch files must have Windows line endings to work
correctly, and the Unix shell scripts Unix line endings. As we saw in the previous
section, all the files in the bin directory need to be set to executable.

You can now generate the assembly:

distribution$ mvn package

When the build completes, the TAR.GZ file will be created in the target directory and
can be used to run the Jetty server we had from the previous section.

However, the name of the file is distribution-1.0-SNAPSHOT-bin.tar.gz—not
a very friendly name for the file! Although in the repository it will use that name
regardless, we can use a more appropriate one locally without affecting the artifact
ID by using the finalName configuration element in the build section of the POM:

<build>
 <finalName>centrepoint-${project.version}</finalName>

 ...

Upon generating the assembly again, you will see the new name is used.

Now, we need to add our web application into the assembly. We achieve this
by adding it as a dependency of the project—no other application dependencies
are needed, as they will be brought in transitively from the web application as
needed. This is the standard pattern for producing a distribution of a project using
a standalone module. As we have here, the module depends on all of the artifacts
that you want to include, and then the assembly descriptor is able to refer to the
dependencies from the repository, rather than needing to determine relative file
paths within the build across projects.

First, the dependency must be added to the distribution POM itself:

<dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>webapp</artifactId>
 <version>${project.version}</version>
 <type>war</type>
</dependency>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[102]

Next, we need to exclude that dependency from the list added to lib in the assembly
descriptor, as it will be added to the webapps directory instead.

<outputDirectory>lib</outputDirectory>
<excludes>
 <exclude>*.war</exclude>

 <exclude>maven-metadata-appassembler.xml</exclude>
</excludes>

Finally, we must add the dependency to the assembly itself. We do this using the
dependencySet descriptor element:

<dependencySets>
 <dependencySet>
 <unpack>true</unpack>
 <outputDirectory>webapps/centrepoint</outputDirectory>
 <includes>
 <include>${project.groupId}:webapp</include>
 </includes>
 </dependencySet>
</dependencySets>

This new element expresses a simple behavior, that is, retrieve all the dependencies
of the project, and those that are included should be unpacked into the output
directory. In this case, this means retrieving the web application from the repository
(the dependency referred to by group ID ${project.groupId} and artifact ID
webapp) and unpacking it into the webapp/centrepoint directory of the
final assembly.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[103]

As Jetty was configured to run applications in the webapps directory by default, we
now are able to rebuild and unpack the resulting distribution, then run the server as
before and access the application at http://localhost:8080/centrepoint/.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Building an Application Using Maven

[104]

Adding the documentation to the distribution archive
When we created the user documentation in an earlier section, we specifically
packaged it up as a ZIP itself with the intention of including it in the distribution
once it had been created.

Achieving this now involves steps that are identical to those for the web application
above. Firstly, the dependency in the POM:

<dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>documentation</artifactId>
 <version>${project.version}</version>
 <classifier>docs</classifier>
 <type>zip</type>
</dependency>

Then the exclusion in assembly descriptor:

<outputDirectory>lib</outputDirectory>
<excludes>
 <exclude>*.war</exclude>
 <exclude>*.zip</exclude>

 <exclude>maven-metadata-appassembler.xml</exclude>
</excludes>

Finally, the dependency set:

<dependencySet>
 <unpack>true</unpack>
 <outputDirectory>docs</outputDirectory>
 <includes>
 <include>${project.groupId}:documentation</include>
 </includes>
</dependencySet>

Rebuilding the application will now show the documentation unpacked in the docs
subdirectory of the archive, for easy reference wherever it is deployed.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 3

[105]

The final directory structure that we obtained was:

|-- centrepoint
| |-- distribution
| |-- documentation
| |-- modules
| | |-- maven-importer
| | |-- model
| | |-- store-api
| | |-- store-file
| | `-- webapp
| `-- skin
`-- effectivemaven-parent

That's it! We can now go to the top level of the project and run the build:

centrepoint$ mvn clean install

This will produce the entire application, including the web application, a Jetty
application server runtime, and all the documentation—ready to unpack and use.

Summary
In this chapter, we have spent quite some time manipulating POM files to arrange
the overall project in a particular way. While there are quite a number of changes,
they are not very complex, and examining the projects now shows a clean separation
that is hopefully easy to understand. It is now very straightforward to add new
modules into the overall application structure with a minimal number of changes.

In subsequent chapters, we will look at adding more build functionality into these
basic project files to address specific needs related to quality through testing and
automated checks, and automating this process through a continuous integration
server such as Continuum.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing
with Maven

Ok, I admit it—I find testing one of the more rewarding parts of application
development. There is something to be said for seeing, for certain, that the
application works the way you intended it to, and being able to make sure it stays
that way. The whole cycle of firing up the application and viewing your changes
by hand is fun the first time, and horribly slow and tedious the next ten times, as
you fix the issues that you have found.

Even so, writing these tests is not very enjoyable and there is always great temptation
in skipping them just this once. One way to keep you honest is knowing that those tests
will bring repeated value as they run later. I like to think that if someone manages to
break my code with a subsequent change, it is my fault for not testing it properly, not
theirs. However, for this value to come, the tests need to be automated!

The concept of testing is built right into the Maven lifecycle for this reason, and in
this chapter we will expand on our example application to include a variety of types
of tests of varying complexity, and look at some other scenarios and how best to
incorporate testing into a Maven build. This sets the platform for testing to be a part
of our standard development process, and for it to be completely automated as we
take a closer look at automated builds in Chapter 8, Continuum—Ensuring the health
of your source code.

Aside from running various types of tests and reviewing the results, we will look at
how to keep ourselves even more honest by integrating code coverage.

While this is not a book about testing, the subject is an important part of application
development and so worth covering in some detail. However, we will focus on how
to automate tests that have already been written.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[108]

Types of testing in Maven
There are many different types of tests that can be automated in a build, which
can be categorized in several ways (and often overlap). While testing is built in to
Maven, it limits itself to two stages of testing within the build lifecycle: unit testing,
and integration testing. In addition, by building an entirely separate test project
a third type of testing can be achieved. In this chapter, we will refer to that as
functional testing.

These definitions might not match your own or the types of tests you are writing
to run at that stage. Particularly for integration tests, there are a varied number of
definitions for what it encompasses, and there are various other types of tests such
as system tests and acceptance tests, which can fit into other categories. However, the
names are not important to Maven as it does very little to constrain the types of tests
that can be run in each stage. Instead, it is defined by the three stages of the build
in which they can be run, and we use the names to reflect the types of tests most
commonly run within that stage.

Let's take a closer look at the different stages.

Unit testing (or code testing)
Unit testing is run after compilation but before packaging, therefore it is run on
nearly every build. This indicates more accurately that the purpose of tests in
this stage is those to be run on every build. They should pass before the build
can complete and the artifact can be used.

Note that the phase in Maven are simply called test, not unit-test. This reflects
that the phase is not specific to unit testing, but rather is the main test run for the
code of the current project.

Due to their frequency, these tests should be extremely quick. They should be
expected to run every time, and if they are slow, there is a greater inclination to
skip the tests.

For the same reason, the tests should be expected to never be broken on
checked-in code and be resilient to failure. This includes not relying on external
resources (for example, a web server or database). Even if the resource can
reasonably be expected to be present on every system, the greater chance of
variance can be a cause of intermittent failure. Such resources are best tested in
a different stage of testing.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[109]

Integration testing (or module testing)
Integration tests in Maven are run after the packaging, but before installation into
the local or a remote repository. These tests verify that the code is working when
put together with other modules that are already built.

Tests that are included in this phase by default can be used to fail the build if
the module should not be picked up by other projects as a dependency due to
some failure.

You will also need to use this particular phase if the packaged artifact itself must be
used to execute the tests. For example, if you have a test that relies on reading the
JAR manifest file, it should be in this phase instead of the main test phase before
the manifest has been created.

In reality, the occurrence of such use cases is rare, so the phase either serves as a
way to separate types of tests logically, or to run optional tests instead. As most
developers will still be running the integration-test phase on each build, those
that run by default should still be reasonably fast, and expected to pass every time.
This pushes many of the use cases for these tests into the functional test category.

Functional and other types of testing
While the Maven lifecycle only accommodates two types of testing within its
lifecycle, they don't cover the use cases for which many other types of testing are
performed. Other, broader, types of testing fall into this last category.

These types of tests are usually run in one of two ways:

As a separate project dedicated to running tests, containing only test code
and relying on pre-built application artifacts to test
As an optional part of an existing project through combining profiles and the
existing test phases

In general, these tests may be run multiple times to test various different
environmental combinations, and are not enabled by default.

Now that we have seen how the various test lifecycles are used in Maven, let's look
at specific examples for each case and how they can apply to the example application
we started building in Chapter 3, Building an Application Using Maven. We will
follow along by starting with the code from the final directory of the sample
code from Chapter 3.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[110]

Working with tests
We have been fortunate to encounter Maven's handling of unit tests on several
occasions already in this book. This should come as no surprise, because Maven so
closely links this type of test to the build lifecycle of all of the default packaging types.

To revise briefly, in Chapter 1, Maven in a Nutshell, we had an overview of the
Surefire plugin, how Maven picks up tests automatically, and how to treat unit test
failures. We also saw how to write a basic unit test with TestNG and configure that
to be used instead of JUnit. If you are interested in learning the basics of how to
write your own unit tests and have them configured in the build, take a look back
at this section.

In Chapter 3, Building an Application Using Maven, though we didn't look at unit
tests explicitly, we saw them co-exist with the code of the application that is being
constructed, as they were written at the same time as the code. We won't go through
them in detail here, however we will see them in action shortly as we take a closer
look at how well they work.

One area that we haven't yet examined is how to work with these tests outside of the
default mode of running every test on every build.

Surefire plugin configuration
By now, you have encountered the name Surefire a few times. Don't worry—this
isn't a new testing framework that you need to learn. In fact, the plugin configuration
is the only time you are likely to encounter it. Surefire is actually a test runner
designed to run tests from any supplied framework in a unified way and feed the
results back to Maven consistently. It handles the entire infrastructure for setting up
class loaders, forking the JVM, and tracking the total number of tests, passes, and
failures. At present, it is compatible with JUnit 3, JUnit 4, TestNG, or tests written as
plain Java classes without the use of these frameworks.

To alter the way the tests are run, we provide configuration information to the
Surefire plugin. There are two methods for doing this, as with any Maven plugin:

Configuration of options in the POM that are to apply to the tests every time
they are run
Configuration supplied on the command line for once off alterations during
the development cycle

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[111]

The following are the main configuration options that you will encounter. For a
more comprehensive list, refer to the Maven Surefire Plugin documentation online
at http://maven.apache.org/plugins/maven-surefire-plugin/.

It is worth noting that most of these configuration options will also be
relevant (and in some cases, more so) to the later types of testing we
will encounter, not just the main build tests.

Controlling the execution of tests
As the Surefire plugin is designed to run Java tests from one of the supported
frameworks, it needs to set up a clean Java environment to run the tests within. By
default, this involves starting a new Java virtual machine instance at the start of the
test run, and running all the tests from within that new instance.

This is a reasonably well balanced default. While it takes a little extra time to start
a new Java virtual machine, it is not going to greatly impact the time it takes to run
the tests, and it tends to match the settings used in IDEs, which makes the behavior
consistent between the two execution environments.

This behavior is configured by the forkMode configuration property. There are three
different modes for controlling the execution of tests:

once: The default mode, starting a new virtual machine to run all of
the tests
never: Runs all of the tests within the current virtual machine without
starting a new instance
always: The opposite mode, that starts a new virtual machine for each
test suite

Configuring the fork mode is most often done within the POM so that it applies
consistently to every execution of the tests. For example, to set the tests to run within
the existing virtual machine that is running Maven, the following would be used:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <forkMode>never</forkMode>

 </configuration>
</plugin>

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[112]

There are various reasons that you may wish to change the execution behavior of
the tests. While the default mode is usually sufficient, you may find that using the
never option provides a small performance boost—which can be very handy if you
are frequently running the tests. However, there are definite disadvantages to using
no forking, relating to the constraints of the existing virtual machine. There will be
less memory to use for the tests, and any increases will need to be applied to the
entire Maven execution, not just the tests themselves. Conversely, if the tests have
a memory leak or exceed the amount of memory available, the entire build will fail
with an error. This may happen not just during the tests, but perhaps, even after
the tests have finished running, thus making it harder to track down. In addition
to these, while Maven attempts to isolate the environment as much as possible, it is
possible that there will be additional classes available and different system properties
that may affect the behavior of your tests. Finally, using the never option constrains
your tests to the installation and version of the Java virtual machine being used by
Maven—it is not possible to take advantage of a different Java installation through
the Surefire configuration or a tool chain.

The always option has fewer drawbacks. It will behave identically to the default
once mode of operation however with a greater level of isolation between the
test suites. As a new virtual machine is started for each suite, any state, system
properties, or memory used will be gone by the time the next suite starts. While
these reasons make it a helpful option, the extra time that it requires to run the tests
can often be too costly for the option to be of value. Consider also that it is a good
practice to avoid consuming too many resources or altering the system state from
unit tests, so this option is better preserved for cases that have larger test runs
where the time to start the virtual machine is not the bottleneck.

Inclusion and exclusion of tests
By default, Maven looks in source files from the test source directory (src/test/
java) starting or ending in Test or ending in TestCase for tests to run (that is **/
Test*.java, **/*Test.java, **/*TestCase.java). This default is suitable for most
scenarios, however in some cases it might be necessary to alter the files included.

This configuration is also added to the Surefire plugin in the POM. For example, to
include source files ending in TestSuite instead, the following configuration would
be supplied to the Surefire plugin:

<configuration>
 <includes>
 <include>**/*TestSuite.java</include>
 </includes>
</configuration>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[113]

Any number of include lines can be added. When the tests are next run, only
those ending in TestSuite will be executed. A common use case for this is some
form of composite test suite that already executes the other test classes using the
internal mechanisms of JUnit or TestNG, so Surefire does not need to configure
them automatically.

The include directives are not additive with the defaults—if you also
want to keep the default patterns, those three lines would need to be
added to the include configuration in the same way.

The same applies for excluding tests. By default, the set of sources found by the
supplied include patterns is used in its entirety, so to remove specific test classes
from being run the corresponding exclude pattern needs to be supplied. For
example, the following might be used to remove a test that has been broken for
some time and needs to be repaired later:

<configuration>
 <excludes>
 <exclude>**/MyBrokenTest.java</exclude>
 </excludes>
</configuration>

Such temporary exclusion is one use case for exclusions, though it is hopefully a rare
one! More commonly, this is used for splitting a test tree across multiple executions
of the plugin, often through a profile, for example for a set of slow running tests. We
will encounter this variation later in the chapter when configuring Selenium tests.

Differences in TestNG
While Surefire will use the above configuration for TestNG, it is not
always necessary. TestNG provides its own, richer mechanism for
creating groups of tests, and using XML files to describe test suites.
If these suite files are used then the includes and excludes
configuration will be ignored.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[114]

Running specific tests from the command line
The previous configuration options were designed for setting up the way the tests
are run every time the build is run. However, during development, you might also
want to be more selective about the tests that you run rather than running through
the whole suite each time.

Surefire provides the test configuration option for this purpose. While it doesn't
make sense to use it within the POM (where includes and excludes are more
suitable), it can be used to override the configuration from the command line.

For example, to run just the test suite ViewProjectPageTest in the webapp module
of our example application:

webapp$ mvn test -Dtest=ViewProjectPageTest

This shorthand is the most typical syntax, and in the event that there is more than
one class that matches the name, it will run all classes with the given name in the
source tree. However, it is also possible to supply the entire package name of the
test (or the corresponding path) if it is necessary to be more specific.

In recent versions of Surefire, multiple tests can be run by using a combination of
either wildcards or commas to separate the tests to select. For example:

webapp$ mvn test -Dtest=*PageTest

For those that don't live in the command line during development, typical
development patterns will often involve running the tests from the IDE to ensure
that they all pass before verifying with Maven through the whole set, reducing the
need to use these options. However, even if this is your pattern for development,
they are worth remembering for situations where the Maven build may not agree
with the original results.

A final note—while it is possible to use the test command-line argument no matter
what type of Maven build you are running, there are two situations where this
should be avoided. When running in a multi-module build, the argument will be
applied to all of the modules, causing a number of tests to be skipped because they
don't match the expected pattern. Additionally, when running phases beyond test,
such as package or install, passing the test option allows you to build a complete
package while effectively skipping a number of tests—the reason to avoid this will
be examined next.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[115]

Skipping tests temporarily
A very popular configuration option is the maven.test.skip argument. Perhaps a
more popular configuration than it should actually be! This option is very simple. A
boolean value, when set to true, causes all tests to be neither compiled nor executed.

webapp$ mvn package -Dmaven.test.skip=true

The purpose of this option is primarily to speed up a build, or to avoid tests that are
known to be broken.

While both cases are in rare circumstances valid, those circumstances should also
be avoidable, ensuring that the option does not need to be used frequently. The
compulsory tests should be as fast as possible to prevent the temptation to skip
them, and chronically broken or unreliable tests should either be fixed or disabled in
order to avoid losing confidence in the whole test suite. Otherwise, skipping the tests
becomes addictive, it can start being used regularly and eventually test failures will
go unnoticed.

For more information on testing best practices, in particular related to skipping tests,
see Chapter 7, Maven Best Practices.

Producing a report for the test results
In earlier examples of running Surefire through the build, we have seen the results
of the tests generated into the target/surefire-reports directory in both text
and XML format. These are useful for quickly viewing one test suite, particularly
to see the reason for a test failure. However, it is also possible to generate a HTML
report—in the appearance of the application's generated Maven site—that allows
you a unified visual representation.

Let's try this with our example application—in this case from the modules/webapp
directory. To run the tests and generate the report, simply run the goal from the
command line:

webapp$ mvn surefire-report:report

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[116]

The resulting output can be found in target/site/surefire-report.html, which
will look something like the following:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[117]

If you have already run the tests and would just like the report generated, for
example to see which tests were particularly slow or to quickly access the failures
in one page, there is a separate goal to run:

webapp$ mvn surefire-report:report-only

These goals are very simple and can be used any time you need a one-off HTML
report of the results, no matter which test framework is being used.

If you are using TestNG, it also produces its own HTML report format if
it hasn't been suppressed by configuration. If you prefer this report, it can
be navigated to from the front page at target/surefire-reports/
index.html. There is no need to run the surefire-report goals in
this case.

Another alternative is to have the report run as part of the Maven site by adding it
to the reporting element. This ensures that there is always an updated view in the
site of the status of the tests, and uses the configured site skin instead of the Maven
default. Note again that the default goal will run the tests first, so if you already run
them before generating the site, you may want to reconfigure the plugin to use the
report-only goal.

You may be asking—Why would I want this? I don't generate my site until the project has
been successfully built and all the tests pass. Now that is a great question! It is true that
the report has limited utility as an automated part of the site, at least for the standard
test set. Other than to have a view of the performance of your tests (which may also
be displayed by your continuous integration server), you would expect it to simply
be many green bars.

This is certainly true, so it is less common for the report to be included, especially as
many continuous integration servers will offer you a suitably rendered report in the
same central location. The possible exception is again more complicated test sets that
may be more prone to failure, such as environmental based functional tests, where
the main build may not fail but failures will still need to be reported.

Reviewing test coverage
One of the most popular types of tools used related to testing are those that measure
the coverage. What this means is that while the tests are run, the tool analyzes which
parts of the actual code are run, to give a reasonable idea of how well tested the
code is.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[118]

Many tools will measure this for you. Some well-known options that have Maven
plugins are:

Clover (http://www.atlassian.com/software/clover/)
Cobertura (http://cobertura.sf.net/)
EMMA (http://emma.sf.net/)

Of these, Clover is the most feature-rich and is commercially available from
Atlassian. Cobertura and EMMA are both open source projects, each with Maven
plugins available from the Codehaus Mojo project (http://mojo.codehaus.org/).
Both are excellent choices if you are looking for a free alternative, and at the Maven
level, they have roughly comparable functionality.

For this chapter, we have chosen to use EMMA because it is open source (with the
more liberal license of the two), and because there are IDE plugins available for both
Eclipse (http://www.eclemma.org/) and IntelliJ IDEA (built-in to recent versions).

Before we can start using it in our example application, we need to make sure the
project knows how to locate the plugin. To do so, we add the plugin to the build
section of the modules/pom.xml file (recall from Chapter 3, Building an Application
Using Maven, that it is not needed in the top level project, as there are no Java
modules or tests outside of the modules tree).

<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>emma-maven-plugin</artifactId>
 <version>1.0-alpha-2</version>
 </plugin>
 </plugins>
</build>

Don't be put off by the 1.0-alpha-2 version of the plugin—it uses
EMMA 2.0 which has been stable for a number of years, and instead
reflects the early development stage of the Maven interface to EMMA.

Now, let's start by looking at the store-file module. From that directory, run the
following command:

store-file$ mvn emma:emma

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[119]

Similar to the Surefire report earlier, this command will both run the tests and
generate the coverage report. Let's take a closer look at the output. Firstly, after
compilation we see the following:

[INFO] [emma:instrument {execution: default-instrument}]
[INFO] Instrumenting classes with EMMA
processing instrumentation path ...
instrumentation path processed in 114 ms
[2 class(es) instrumented, 1 resource(s) copied]
metadata merged into [/Users/brett/code/04/centrepoint/modules/store-
file/target/coverage.em] {in 81 ms}

Here, the compiled classes have been instrumented to include information EMMA
needs to keep track of the coverage as the code is later run.

Following this the tests are run, concluding with an indication that EMMA
successfully collected data:

EMMA: runtime coverage data merged into [/Users/brett/code/04/
centrepoint/modules/store-file/coverage.ec] {in 6 ms}

At last we see that the report is generated:

[INFO] [emma:emma]
processing input files ...
2 file(s) read and merged in 2 ms
writing [xml] report to [/Users/brett/code/04/centrepoint/modules/store-
file/target/site/emma/coverage.xml] ...
writing [html] report to [/Users/brett/code/04/centrepoint/modules/store-
file/target/site/emma/index.html] ...

Fork modes and EMMA
EMMA, and many code coverage tools, are currently relying on a "JVM
shutdown hook" to know when to write out the code coverage results at
the end of a run of tests. This can be affected by the different fork mode
settings that we looked at earlier in the chapter. In the case of using the
default, coverage data is written once at the end of the tests, which works
perfectly as you would expect. The always option also works correctly,
writing coverage data out after every suite (which EMMA merges as it
progresses to get a complete set). However, the never option causes
problems. The coverage data typically won't be written out until Maven
itself exits—which will likely lead to an empty, incomplete, or missing
coverage report.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[120]

The report generated in target/site/emma/index.html looks like the following:

As you can see, we have some good coverage, but it is not perfect! In the figure, you
should be looking most closely for EMMAs block level coverage—this is its basic
unit of measurement of which pieces of code are being exercised. The line coverage
offers some information on which lines of code have been covered for visualization
purposes, however due to different choices in formatting it can mean very different
things about how much code is actually covered. The class and method coverage
metrics indicate how many classes and methods are touched during test execution
respectively. This can help to identify whole methods or classes that are not
tested at all.

The package and all classes groupings aggregate information about the type of
coverage to those respective levels for a birds eye view. You will notice the report
starts at this level, and you can drill down into individual packages, and then
individual classes.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[121]

A single class view will look like the following example for PropertiesProjectStore:

Here you can see a visual representation of the coverage of the class: the lines
that are completely executed (Lines: 92, 93, 96, 98, 100, and 123), those that are not
executed at all (Lines: 104 and 116), and those that are partially executed (Lines: 110,
114, and 119). Partially executed lines can mean any number of things depending on
the code involved—there may be a branch (here it is an if condition that is never
true), or there may be other reasons that byte-code is generated but never executed,
possibly highlighting inefficiencies in the code if it was unintentional. For more
information, refer to the FAQ on the EMMA web site: http://emma.sourceforge.
net/faq.html#q.fractional.examples.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[122]

Measuring coverage
This technique isn't flawless—One hundred percent coverage doesn't
mean one hundred percent tested. Among other things, it won't help you
if there are certain boundary conditions on calculations that need special
handling, if you have omitted handling a case altogether, or if the test
case itself is wrong! As such, it should be treated as just a part of your
toolbox (and in some cases, one that will help you with more than just test
coverage), but it is not a silver bullet!

Running the coverage on an ad-hoc basis can be quite helpful, but as with
many reports, it is most convenient to automate it as part of the Maven site
generation. The standard configuration works here—add the plugin to the
reporting section of the modules/pom.xml file and you are done! This has the
advantage of ensuring the report is included in the navigation of the module
sites without manual configuration.

<reporting>
 <plugins>
 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>emma-maven-plugin</artifactId>

 <version>1.0-alpha-2</version>

 </plugin>

With the configuration added, generate the Maven site as usual:

modules$ mvn site

Once it completes, you will notice that each module with tests now contains an
EMMA report for reviewing the coverage of that particular module.

Like the Surefire report, by default the EMMA plugin runs the tests every time. This
makes sense, as it was unlikely the project had previously compiled the tests to be
run with coverage information. However, it can cause large slowdowns to the site
generation if the tests need to be run multiple times.

However, what about the main test run? We still have the package phase running
the tests once, and the site phase running it a second time. This becomes even more
convoluted in Chapter 5, Reporting and Checks, when we want to have coverage over
the main test run to determine whether to pass or fail the build!

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[123]

The best answer to all of these points is that it is often better to run the site phase
in a separate iteration of Maven to the main package phase. There is a good reason
for this. The main build is meant to be fast, and even in the build server, you want
to see the results of the build as a pass or fail as quickly as possible, and then come
back for a second iteration to generate the site with additional information for
developers beyond that basic metric. At that time, it is probably acceptable to re-run
the tests to generate the information. This extra time spent by the build server will
greatly reduce the complexity of your project if you were to attempt to meld all the
generations into one attempt with appropriate layering for the initial fast build.

While the Surefire report discussed earlier can often be omitted for the main test
suite due to the likelihood of all the tests passing, the same is not usually the case
for the coverage report. Unlike tests, there is no binary answer. Coverage will often
be considered good enough at a certain percentage level below 100%, though that
will vary depending on the type of module. Even then, the coverage should be
occasionally reviewed to see if important code is not being tested adequately.

Conversely, just generating the report is not enough. Standing on its own, it is likely
to soon be ignored, especially once coverage drops below a certain percentage and it
starts suffering from the broken window syndrome (http://en.wikipedia.org/
wiki/Fixing_Broken_Windows).

In the next chapter, we will take a closer look at reporting, and also how to set up
enforcement rules that will show a warning or fail the build when there may be
reasons that the level of coverage is not good enough, which will prompt the reader
of the report to investigate.

Empty or missing report?
You may unexpectedly find that the report in target/site/emma is
missing, out of date, or empty on some occasions, particularly if you have
just started a module. In this case, take a close look at the output from the
build after the [emma:emma] goal. It will likely tell you that there was
no coverage at all (perhaps because there were no tests run), so no report
was generated.

Coverage and multimodule projects
When the site was generated earlier, you may have noticed that there was no
aggregated view of the coverage. Each module in the project gets a single report, and
you must navigate into those particular directories to see the coverage for that code.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[124]

While this type of configuration is possible, at the time of writing it is not something
that is supplied out of the box with the Maven plugins for EMMA and Cobertura.
However, if you are using Clover, their website describes how to produce an
aggregated report.

We won't cover the manual steps needed to produce the same effect with EMMA,
as it requires manually triggering some of the tools outside of the plugin. If you are
in need of aggregate data at this time, you might consider simply running the tests
together in the IDE plugin to produce a single result.

Integration, functional, and other testing
You may remember from the opening sections of the chapter that there is some
limited utility to the integration-test phase as part of the default lifecycle. If
wired up by default, the tests need to run fast for reasons of practicality, limiting
the normal types of tests that can be executed at this stage.

The integration-test phase in Maven was partially an afterthought, which has
perhaps led to some of these limitations of its use. Unlike the main test phases, it
does not have its own source tree and must be manually managed. We can just hope
that this will change in a future version of Maven.

One example of the phase's use to consider is a test that verifies that the artifact was
built correctly in the previous package phase. This need not be a conventional set of
tests. For example, something as simple as the following Enforcer rule can be used to
verify that the documentation was included in the packaged ZIP file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <executions>
 <execution>
 <phase>integration-test</phase>
 <goals>
 <goal>enforce</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <rules>
 <evaluateBeanshell>
 <condition>
 <![CDATA[zipFile = new java.util.zip.ZipFile(
 "${project.build.directory}/${project.build.finalName}-bin.zip"
);

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[125]

 entry = zipFile.getEntry(
 "${project.build.finalName}/docs/index.html"
);
 zipFile.close();
 entry != null
]]></condition>
 </evaluateBeanshell>
 </rules>
 </configuration>
</plugin>

This uses the BeanShell scripting language (http://www.beanshell.org) to run
dynamically interpreted Java code in a compact and easy-to-use way.

We can try this example for ourselves by adding it to the distribution/pom.xml
file of the example application, and running:

distribution$ mvn integration-test

These types of tests can be very useful in a distribution module, but what about
integration tests for the Java modules? For the answer to this question, we are going
to work through the scenario of adding functional tests using Selenium to the web
application module. While these may be different to the types of integration tests
you might need to incorporate, the principles for configuring them are likely to be
the same.

Running integration tests using naming
patterns
The simplest technique to incorporate integration tests into an existing project is
to add them to the default test tree of src/test/java, under a particular naming
convention. The execution of the tests is then controlled by inclusions and exclusions
(or additionally in TestNG, groups can be used).

This has the distinct advantage of a single POM and co-located sources with the
integration tests. However, it means that the tests are mixed in with the other tests
(which may be an advantage or disadvantage based on your situation).

This also means that all the tests will be compiled regardless of what is run. Despite
the extra configuration, setting up the separate tree is clearer cut, but the decision on
which option to take will depend on your individual circumstances.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[126]

Let's try this for ourselves by starting to add Selenium tests to the web application
POM, modules/webapp/pom.xml.

There are a couple of different ways to author and execute Selenium tests. Within
the Maven plugin, it uses Selenium RC (which stands for Remote Control) to start a
Selenium server that will run the test commands through the configured browser(s)
available on the system. We can then use the Selenium RC Java client library
bindings to write tests in Java to communicate with the server.

First, let's add the first Selenium test case to src/test/java/com/effectivemaven/
centrepoint/selenium/HomePageTest.java:

package com.effectivemaven.centrepoint.selenium;

import org.testng.annotations.AfterSuite;
import org.testng.annotations.BeforeSuite;
import org.testng.annotations.Test;
import com.thoughtworks.selenium.DefaultSelenium;
import com.thoughtworks.selenium.Selenium;

@Test(groups="selenium")
public class HomePageTest {
 private Selenium selenium;

 @BeforeSuite
 public void startSelenium() {
 selenium = new DefaultSelenium("localhost",

 4444, "*firefox", "http://localhost:8080");

 selenium.start();
 }
 public void homePage() {
 selenium.open("/");
 selenium.getTitle().equals("Centrepoint :: Project List");
 }

 @AfterSuite
 public void stopSelenium() {
 selenium.stop();
 }
}

Note the highlighted lines above that start the Selenium server. The first and
second indicates the host and port where Selenium is running respectively. We
will configure that shortly to be on the same machine as the build. The third is the
browser that it should run the tests in, which will need to be installed on the machine
running the build. We have set that to *firefox here. If you do not have Firefox
installed, try a different value such as *iexplore.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[127]

For this code to compile, we will need to add the corresponding dependencies to
the POM:

<dependency>
 <groupId>org.seleniumhq.selenium.client-drivers</groupId>
 <artifactId>selenium-java-client-driver</artifactId>
 <version>1.0.1</version>
 <scope>test</scope>
</dependency>

Because the test is in the main test tree, it will be picked up by Maven to run in
the default phase. However, at that point the web application will not be built, let
alone running, so we need to ensure that the test is excluded from the main set. The
preferred configuration for this is as follows:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 <executions>
 <execution>
 <id>unit-tests</id>
 <phase>test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <skip>false</skip>
 <excludes>
 <exclude>**/selenium/**</exclude>
 </excludes>
 </configuration>
 </execution>
 </executions>
</plugin>

This may not have been what you expected. Why not just add the exclude element
to the top-level configuration like usual? The problem there is that the configuration
is inherited to all children. This will include the integration tests we are about to
configure, resulting in both an inclusion and an exclusion of **/selenium/**,
which will cancel each other out.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[128]

The approach we have taken instead is to eliminate the pre-configured test run by
setting the default configuration of skip to true. We have then re-declared the
normal unit testing run using the exclusion we intended, but only to apply to the
unit tests. The skip value is configured back to false to override the default and
ensure the tests run.

Overriding default goals in Maven 2.2.0
Luckily the above situation can be avoided if you are using Maven 2.2.0 or
above. Instead of adding skips and a new test goal, the configuration can
be added to the default-test execution and it will be utilized by the
built-in lifecycle (and no other executions). However, if taking advantage
of this, make sure that the build is not used on earlier versions of Maven
where the configuration will not be used!

Next, we need to make sure those tests are run in the integration testing phase.
Before we start on that, however, we need to add a profile for activating the
tests. As these tests will take some time to execute, and will be in the main web
application POM, we don't want them to run on every build, but rather in controlled
environments at an appropriate interval. This is a practice often known as build
pipelining, which is covered in more detail in Chapter 7, Maven Best Practices.

For our purposes, the profile is very simple, added to the end of the project file:

<profile>
 <id>selenium</id>
 <build>
 </build>
</profile>

We have no need for an activation section as the command line -P option can be
used. If you are interested in more information about profile activation, refer to the
Maven documentation at http://maven.apache.org/guides/introduction/
introduction-to-profiles.html.

Now we are ready to add the additional execution of Surefire within the profile to
run the Selenium tests:

<profile>
 <id>selenium</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[129]

 <executions>
 <execution>
 <id>integration-tests</id>
 <phase>integration-test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <skip>false</skip>
 <includes>
 <include>**/selenium/**</include>
 </includes>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>

As you can see, this configuration looks very similar to the one created above,
but this time it is run in the integration-test phase, and the Selenium tests are
included instead of excluded. Because of the way the includes configuration works,
all of the non-Selenium tests are excluded from the integration test run.

This is now enough for us to run the test:

webapp$ mvn -Pselenium integration-test

However, there is a problem—the test fails. As we are using the default
configuration, the error report resides in the normal Surefire location of
target/surefire-reports/TestSuite.txt. Reviewing the file shows that
it was unable to locate the Selenium server – perhaps an unsurprising fact as
we didn't start it!

There are two tasks that we need to perform for Selenium. They are:

1.	 Starting the Selenium RC server.
2.	 Starting the container that runs the web application.

We are spending some time looking at tests very specific to web
applications in this section. If your application is not destined for the web,
you might like to skip ahead to the section on configuring a separate test
module. In addition, though we are focusing on Selenium here, other
types of web application testing frameworks exist. While they might not
require a server to operate, the other steps outlined in this section should
apply in the same way.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[130]

Operating the Selenium server
The availability of a Maven plugin for the Selenium RC server makes this process
very simple. As our tests are being run in the integration-test phase, we set up
the server in the pre-integration-test phase, and then turn it off again in the
post-integration-test phase.

The configuration we add to the POM (inside the selenium profile) is as follows:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>selenium-maven-plugin</artifactId>
 <version>1.0</version>
 <executions>
 <execution>
 <id>start</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>start-server</goal>
 </goals>
 <configuration>
 <background>true</background>
 <logOutput>true</logOutput>
 </configuration>
 </execution>
 <execution>
 <id>stop</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop-server</goal>
 </goals>
 </execution>
 </executions>
</plugin>

As you can see, only basic configuration is needed over the execution of the goals.
The background flag needs to be set to true so that execution continues to the
integration tests and the server will be stopped by the subsequent stop goal. The
default of running in the foreground is designed for those that might want to use
Maven as a launcher by using the selenium:start-server goal.

The logOutput configuration will create a log file of the Selenium server that may be
useful in troubleshooting issues.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[131]

Running headless
Most times, the Selenium tests will be run on a remote continuous
integration server. The configuration we have supplied here requires
that the browsers being tested (in this case, Firefox), be installed on the
same machine as the tests are run. However, it is also common for such
systems to be headless. That is, with no windowing system to run the
browser in. Servers can be configured to make this possible, and the
Selenium plugin provides an xvfb goal to start a virtual frame buffer on
Unix systems. If this is something you need in your environment, refer
to the documentation for the Selenium xvfb goal for more information
at http://mojo.codehaus.org/selenium-maven-plugin/
examples/headless-with-xvfb.html.

Now, if you run the tests again you will notice that they still fail, but that different
errors result. The Selenium server can be contacted, but the tests themselves fail, as
the browser will not be able to contact the running application. For that, we need to
get the web application running in a suitable container.

Deploying the application to a container
If you are testing for a Java web development environment, how you deploy
your application is one of the choices that is most specific to your development
environment. You may target one type of application server, or you may need to
test against multiple different servers (if you are distributing a web application for
general use). You may be able to run the server locally where the build is run, or you
may need to deploy the web application to a remotely running test server instead.
You may even have multiple applications to test, perhaps all together.

A popular framework for this purpose comes from the Cargo project
(http://cargo.codehaus.org/). Descended from the Jakarta Cactus project at
Apache (http://jakarta.apache.org/cactus/), it has the facility for starting and
stopping a variety of Java application servers, and deploying your application into
them, which can be very useful for these testing purposes. If you are deploying to a
server that doesn't have a more specific Maven plugin of its own, you might consider
trying Cargo out.

For our example, we will be using the Jetty plugin directly to achieve this task. We
have encountered Jetty and its Maven plugin earlier in the book. Of course, Jetty
is a very capable server to use in production—but even if you are deploying to a
different type of server you might consider using Jetty as a fast and simple way
to run your tests before running a later set of tests on your other environment.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[132]

Usually, the Jetty plugin is set up to run in the foreground so that it can be
used to preview the application in real time using the jetty:run command.
However, like the Selenium server, it is possible to set it up to start in the
background in the pre-integration-test phase (and again stopped in
the post-integration-test phase).

Add the following to the selenium profile of the POM:

<plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <version>6.1.14</version>
 <configuration>
 <contextPath>/</contextPath>
 <daemon>true</daemon>
 <stopKey>STOP</stopKey>
 <stopPort>8888</stopPort>
 </configuration>
 <executions>
 <execution>
 <id>start-jetty</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 <execution>
 <id>stop-jetty</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Here you can see the goals you would expect. As Jetty doesn't have a start goal,
we use the existing run goal, but set the daemon flag to true so that it runs in the
background. The stopKey and stopPort are supplied to make it possible to stop
the server when required.

The contextPath is supplied so that it will be deployed at
http://localhost:8080/ instead of http://localhost:8080/webapp/
(based on the artifact ID).

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[133]

Because both have been bound to the pre-integration-test phase, it's
not determined which order the Selenium and Jetty servers will be started in
(and likewise, stopped). However, for this exercise it is not important – the servers
do not depend on each other, as long as they both have started by the time the
integration tests run.

With all this in place, we should now be in the position to run the tests again and
see success:
webapp$ mvn -Pselenium integration-test

As the tests run, you will notice that Firefox (or the other browser you configured
earlier) is started.

Having problems?
As Selenium tests interact heavily with the configuration of your machine,
you may run into problems. Check the test results and log files from
the Selenium server to see if they indicate what the problem is. If you
continue to have problems getting it to work, try reaching the authors on
the book's forum.

We have now successfully configured the integration tests for the web application, to
be run optionally after the web application is built.

Simplifying test grouping with TestNG
One of the advantages of using TestNG for these types of tests is the availability of
groups. Each test can optionally be added to one or more groups, which can be used
to selectively run certain categories of tests.

These groups can be used to categorize tests in any way that you might like to
selectively run them, whether it is categorizing them by a particular feature line
across multiple tests, or a type of test such as the selenium group we assigned in
the previous example.

In our example, we can now use this to our advantage in the POM. The first Surefire
configuration would be replaced by the following:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>

 <excludedGroups>selenium</excludedGroups>

 </configuration>

</plugin>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[134]

Then later integration testing configuration can then be replaced with:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <executions>
 <execution>
 <id>integration-tests</id>
 <phase>integration-test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <groups>selenium</groups>
 <!-- Override inherited exclusion of selenium -->
 <excludedGroups>none</excludedGroups>
 </configuration>
 </execution>
 </executions>
</plugin>

We can see that this configuration is more intuitive and allows multiple
classifications of tests if needed. This setup can be useful even if the tests
reside in a separate module.

Should the Surefire plugin configuration not offer enough flexibility in the groups
to run, you can also use the suiteXmlFiles option to run handcrafted test sets
using testng.xml. For more information, see the TestNG documentation at
http://testng.org/doc/documentation-main.html#testng-xml.

Using a separate integration test module
Having the tests in the same module may be very convenient, but you will notice
that even with the TestNG simplifications, the POM has already grown to be quite
large. Moreover, if we were to look at reusing it or adding more variations it would
probably be un-maintainable. For this reason, including the tests in the same project
tends to be more suited to small projects or examples for frameworks where it is
more important to keep the project together.

Consider the case of the Maven integration tests. Plugins tend to be a single module,
so the integration tests are configured within the plugin build, so that there is only
ever one project to deal with. However, Maven itself consists of multiple modules
and the tests might be run against multiple versions, so the integration tests reside in
a separate module (or rather, a separate set of modules). The same principles apply
to your application when you decide how to design the build.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[135]

By setting up the separate module, we are able to cut back on the custom
configuration, getting a module that looks more like a standard Maven project. It also
allows us to separate the source tree completely, and consequently the dependencies,
allowing a more accurate build for the individual tests, as well as more flexibility in
how the tests can be constructed.

Let's examine what is needed to take the previous example and construct a separate
test module.

First, we construct a new module in the same way that we learned from Chapter 3,
Building an Application Using Maven. Even though this does not need to be packaged
itself, we create a project with a packaging of jar in modules/selenium-tests/
pom.xml, so that we are able to take advantage of the default test lifecycle.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <artifactId>modules</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <artifactId>selenium-tests</artifactId>
 <name>Centrepoint Selenium Test Suite</name>
</project>

Next, we add this module to the parent POM like the others. However, we still want
to retain the optional nature of these tests in a regular build, and rather than encasing
the whole project in a profile, it is easier to just do that with the module in the parent.
Therefore, in the modules/pom.xml file, we create the same profile that exists in the
web application, this time with just the module listed:

<profiles>
 <profile>
 <id>selenium</id>
 <modules>
 <module>selenium-tests</module>
 </modules>
 </profile>
</profiles>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[136]

Now we can start to move the rest of the infrastructure from the webapp project into
the selenium-tests project. For the source code, in the new module the normal
src/test/java directory can be used again, so we move webapp/src/test/java/
com/effectivemaven/centrepoint/selenium to selenium-tests/src/test/
java/com/effectivemaven/centrepoint/selenium.

The changes in the POM result in a simplification. We can take the following steps to
continue the migration:

1.	 Move the Selenium dependency from webapp/pom.xml to selenium-tests/
pom.xml.

2.	 Move the contents of the selenium profile from webapp/pom.xml to
selenium-tests/pom.xml. The surrounding profile is not needed in the new
POM—they can be entered directly into the build section.

3.	 Remove the Surefire configuration sections from both POMs, which will not
be needed due to the separation of the source trees.

As we will now be using the standard test lifecycle, starting the Jetty and Selenium
servers in pre-integration-test phase is not suitable; we need to change them to
run in the process-test-classes phase:

<execution>
 <phase>process-test-classes</phase>

Likewise, the stop goals can be moved to the test phase (where they will run after
the tests have completed):

<execution>
 <phase>test</phase>

We also are no longer in the web application itself, so it is necessary to retrieve that
as a dependency and place it in the target directory to be used by the jetty:run
goal. We can do this using a dependency, and the Dependency plugin.

Therefore, first we add a dependency on the web application artifact in
selenium-tests/pom.xml. This will also ensure that the build order of the
multi-module project is correct.

<dependency>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <artifactId>webapp</artifactId>
 <version>${project.version}</version>
 <type>war</type>
 <scope>test</scope>
</dependency>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[137]

Next, we can add the Dependency plugin to unpack it into the
target/dependency directory:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.1</version>
 <executions>
 <execution>
 <goals>
 <goal>unpack-dependencies</goal>
 </goals>
 <configuration>
 <includeArtifactIds>webapp</includeArtifactIds>
 </configuration>
 </execution>
 </executions>
</plugin>

The only configuration that we needed to add to this goal was the
includeArtifactIds option that made sure that only the web application
was unpacked, not the Selenium dependencies that we added earlier.

Finally, we can configure Jetty to use these new locations to launch the web
application by adding these settings to the configuration section:

<configuration>
 <classesDirectory>
 target/dependency/WEB-INF/classes
 </classesDirectory>
 <webAppSourceDirectory>
 target/dependency
 </webAppSourceDirectory>

Let's try this from the top—building the whole tree from the modules directory.

modules$ mvn -Pselenium clean install

If everything goes to plan, you should see a successful result, including the execution
of the Selenium tests.

As you can see, even with the addition of a new module and some additions to
reference the WAR as a dependency, overall the structure is now more standardized.
This means that, for example, running the Surefire report works the same way that it
used to (though this is not quite the case for EMMA, which we will examine shortly).

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[138]

Altering integration tests with profiles
If we would like to introduce additional profiles, for example to provide an
alternative to Jetty for the application server, or to alter the configuration of the
browsers to use, we can now do this within the new POM. It would not have been
possible to nest the profiles in the previous POM.

Let's look at a practical example for running the tests against different browsers
based on the profile selected.

First, we need to make the browser configurable for the unit tests. In the earlier
example, the browser value was hard-coded to *firefox. We can change that to use
a system property to make it configurable from the POM.

 selenium = new DefaultSelenium("localhost", 4444,
 System.getProperty("selenium.browser", "*firefox"),
 "http://localhost:8080");

It is now possible to alter the browser from the POM, for example:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <systemProperties>
 <property>
 <name>selenium.browser</name>
 <value>safari</value>
 </property>
 </systemProperties>
 </configuration>
</plugin>

This is likely to be enough if all you need to do is run one browser at a time, and you
can re-run the module tests with a different setting. However, what if you needed to
run the test cycle with multiple browsers?

To do this, we will set up multiple executions of the Surefire plugin within
the test phase. Therefore, we need to return to some of the configuration we
used earlier.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
</plugin>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[139]

As in the earlier examples, it is necessary to skip the test plugin by default so that
only the configured instances are added.

Next, we add a profile for each of the browsers for which we want to be able to run
the tests. For example, the following would be the sample for Safari:

<profile>
 <id>safari</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <executions>
 <execution>
 <id>safari</id>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <skip>false</skip>
 <systemProperties>
 <property>
 <name>selenium.browser</name>
 <value>*safari</value>
 </property>
 </systemProperties>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

Such a profile can be repeated for all the browsers the project might want to support
testing against.

For the best user experience we should also select one (or more) of the browsers as
the default. For this, we use the activeByDefault configuration for the selected
profile, which will cause the given profile to be activated if none
are provided on the command line.

<profile>
 <id>firefox</id>
 <activation>

 <activeByDefault>true</activeByDefault>

 </activation>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Application Testing with Maven

[140]

This now allows us to run the tests for Firefox by default using the existing command:
selenium-tests$ mvn test

We can also run the tests just for Safari:
selenium-tests$ mvn test -Psafari

We can also run multiple copies of the tests:
selenium-tests$ mvn test -Pfirefox,safari

Of course, there are ways to achieve this programmatically, and such combinations
may not be suitable for your other objectives (such as measuring coverage, and test
results will be overwritten given the configuration above), not to mention the lengthy
POM fragments needed compared to running using the default configuration and a
system property. These considerations need to be weighed against the needs of your
own projects.

In the example application, we will instead keep the earlier configuration for a single
browser for simplicity.

Using TestNG parameters
In the previous section, we saw how to pass configuration parameters into the
tests using system properties. While this is quite effective, there is a slightly
cleaner method built into TestNG that our example application can use instead,
called parameters.

Consider the following change to the initialization method:

 @BeforeSuite
 @org.testng.annotations.Parameters({ "selenium.browser" })
 public void startSelenium(String browser) {
 selenium = new DefaultSelenium("localhost", 4444,
 browser, "http://localhost:8080");

In this example, we can request that TestNG pass in a parameter to a test method
rather than looking up a system property. Surefire uses the same configuration
as before to populate these parameters, although testng.xml can also be used to
configure them if that is in place.

Measuring coverage for integration tests
We have seen earlier the advantages of using a code coverage tool to assess which
code is well tested at the unit testing level. However, this was difficult to achieve
out of the box for multiple module projects, and this likewise affects integration
tests—particularly if they are in a separate module.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 4

[141]

Unfortunately, in its current alpha state of development, the Emma plugin is
not capable of assisting with the task automatically, however with some careful
configuration it is possible to establish. These principles should equally apply to
other coverage tools (some of which may have better support in the first place).

1.	 Establish a profile for enabling the use of coverage code in selected
environments.

2.	 Instrument the code, and ensure the coverage tool is configured to use a
single database for all modules.

3.	 Ensure that the instrumented code is included in the artifacts (however, be
cautious not to install them in the local or remote repositories).

4.	 Run the application with the instrumented code and run any necessary tests
against it (ensure it is run in a separate JVM so that coverage data is written
when it is stopped).

5.	 Generate a report from the coverage data.

In these cases, if the Maven plugin is not giving you enough flexibility to gather the
necessary data or generate the report from a given data set, you may need to fall
back to the Ant tasks for the coverage tool. For more information on using Ant from
your Maven projects, refer to Chapter 6, Useful Maven Plugins.

Summary
We've now seen a variety of different configurations for automated testing within
Maven. We've also applied these to the example application that we encountered in
the previous chapter and seen them in action.

There is a much wider range of ways to address testing needs by using the variety of
available testing libraries and toolkits, particularly as the type of test becomes more
specific or encompasses a larger part of the application. However, the techniques
above should be applicable to other tools equally when run in the same scenario.

We have also had a close look at integrating EMMA into the application—and
though our examples were specific to EMMA the concepts tend to match other
coverage tools with a Maven plugin such as Cobertura and Clover. In the next
chapter, we will look at EMMA in more depth as we start enforcing the coverage
rules to the point of failing the build.

Tests are the predominant method of ongoing measurement of quality in application
code. However, there are a number of other tools available in the Java ecosystem that
can be used to identify current or potential problems or otherwise analyze your code.
In the next chapter, we will look at integrating some of these into your Maven build.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks
So far, in this book we have learned about how Maven projects are established. With
the exception of the integration of specific tools that might be required for the build,
everything that is needed should be in place—the application can be built, tested,
packaged, and shared.

We might well stop at this point and be happy with what we have achieved.
However, we are not done yet!

There are a number of tools available, particularly for Java projects, which are
useful for keeping track of other metrics and information about the project. We have
encountered some of these already when the Javadoc and cross reference were set
up in Chapter 3, Building an Application Using Maven, and the Surefire and EMMA
reports in Chapter 4, Application Testing with Maven.

While these tools may be used to help you set your own personal standards, they
become especially important in the team environment where shared standards can
help team members work together effectively, and the availability of a common
source of information about the project can keep them aligned.

Maven is particularly well suited to the integration of these tools by allowing them
to reuse the standard project model that is at its heart, as well as other techniques
such as team project inheritance for shared settings. While admittedly, the reporting
mechanism in Maven hasn't entirely lived up to its promise in this regard (perhaps
by being associated too closely to the rendering of the Maven site itself), when used
conscientiously and deliberately it can bring great value to your team's project
development infrastructure.

In this chapter, we'll be continuing with the example application that we have been
working with to illustrate how these concepts can be applied to a typical project
layout. We will look at the principles behind how reports are configured, some of
the reports that are available for use in Java projects, and how to correctly configure
them. We will also look at how to enforce certain constraints related to the reports,
and how to use this to our advantage in ensuring code quality.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[144]

Review: Example application
Even though we have only lightly touched on Maven's site and report capabilities to
this point, we have already achieved quite some functionality:

Setting up a basic site for developers with shared information about the
project's code and development
Including some simple reports in Javadoc and the source cross reference to
the developer's site, aggregated across all of the Java modules
Creating a separate site for user-oriented documentation for the project
Applying a skin to both of the sites
Configuring the Surefire and EMMA HTML reports to be run from the
command line or integrated into the developer's site if desired

As we now move to enhance the project, we will be focusing on the modules
subdirectory, enhancing both the developer-oriented site through reports, and the
build itself through the addition of enforcement based on these reporting tools.

Constructing the developer's site
In Chapter 3, Building an Application Using Maven, we saw that you could generate
a small site with information for developers by running the following from the
modules directory:

modules$ mvn site

When this command is run, the site can be viewed from target/site/index.html.
From what we have done already, there is a short description of the project as well
as aggregated Javadoc and a source cross reference.

You will also see a menu for individual modules in the left-hand navigation. The
purpose of this is to link to the same sites for each of the individual modules in the
project, as Maven generates a site on a per-project basis. However, if you attempt to
click on the link, you will find that the page is not found, even though the previous
command would have generated sites for those modules.

The reason this occurs is that the relative link on the eventual site will be the
artifact ID of the module. However, in the generated content it will be under the
module's target directory. For example, for the model module, it will be in
model/target/site instead of target/site/model.

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[145]

As you can see this can make it quite tedious to test a multi-module site, and to make
matters worse, the Site plugin (as of version 2.0) contains a number of bugs and
feature gaps related to multiple module sites, such as:

The site:stage goal, intended to ensure sites are aggregated into one
directory, incorrectly constructs links for the modules
The site:run goal does not support multi-module projects
Site menu inheritance and the parent module menu have a number of
outstanding issues reported against them
The Site plugin's dependence on using the url from the POM and the
distributionManagement URL for constructive relative links causes regular
problems and confusion, particularly if not deployed to the eventual location

Given all of these problems, you might wonder why we would recommend using
the Site plugin at all! It is true that you must think seriously about whether it is the
right technology for your project. At present if you are using it to write developer
documentation then you should expect to either house the majority in the root
project (which might not be feasible for very large multi-module projects with
independent functions), or maintain your own navigation between the modules.

One of the main advantages of the plugin in the reporting aspect is the automatic
generation and linking of configured reports for each module, which we will look
at in the following section. Some of these reports aggregate to the top level (such as
Javadoc and JXR). However, some will generate one report per module and need
additional navigation. We will be looking at the addition of some types of reports
in the following sections.

Later in this chapter, we will look at setting up enforcement checks on the thresholds
of some of the reporting plugins. That means that consulting the generated site is
only needed infrequently when the check fails (and in that case, there may also be
alternatives). In this instance, the structure of the site becomes less important.

Finally, we will also look at Sonar, which provides a different representation of the
data from the reports, and becomes an alternative to using the site plugin for the
reporting aspect.

But coming back to our site for now—what if we needed to preview the
multi-module site in a single directory? As site deployment generally works
in the end, it is best for us to use that now, but instead of using the final
destination, we can choose a known location on the filesystem.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[146]

To be able to deploy a site, you must first add a distributionManagement element
to the POM, so we add the following to modules/pom.xml:

<distributionManagement>
 <site>
 <id>website</id>
 <url>${siteDeploymentUrl}</url>

 </site>
</distributionManagement>

We have already encountered the distributionManagement element when we
were adding a repository to deploy the artifacts of the project. Our new addition
in this case is the site element, which looks much like a repository but instead
provides a URL for deploying the sites. Like a repository, this can be a URL using
protocols such as scp://, file://, http://, and so on. However as you can see we
have provided a property reference instead. This will allow us to choose a default
deployment URL, but to override it from the command line so that we can do our
test deployment.

First, let's add the default property value in the POM:

<properties>
 <siteDeploymentUrl>
 file:///${basedir}/www/centrepoint/dev/${project.version}
 </siteDeploymentUrl>
</properties>

This value is similar to the one used for the documentation in Chapter 3, Building
an Application Using Maven, but as you can see we create a new location for the
development documentation. Typically, a WebDAV, SSH or FTP location would be
given here instead that points to a shared web server to view the documents from.
For now, we can generate the site locally with the following command, overriding
the property:

modules$ mvn site-deploy -DsiteDeploymentUrl=file:target/staged

We have used a shortened file URL here, which will resolve to a relative path
within the modules directory and acts most consistently. You might consider a
more complete URL with an absolute path (for example, file://localhost/www/
staged-projects/centrepoint/) in some cases, however be aware that file
URLs behave differently based on the operating system and version of the JDK
being used.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[147]

You might like to set this value of the property in a profile to reduce the
amount of typing you need to use when generating the site, by activating
the profile instead of typing the full command. In addition, if you use this
frequently you might consider setting it as the default and instead having
your build server set the actual deployment location instead.

Of course, if all this seems like too much hassle, you can just browse to the
subdirectory of the module and into target/site from there—it just won't be an
integrated navigation in the web site! This may be more practical for some reports
as you may wish to just regenerate them for a single module while you are fixing a
problem anyway.

Maven reports
Let's now take a closer look at Maven's reporting infrastructure. We have
encountered several reports built on top of it already—the EMMA coverage report,
the Javadoc and source cross reference, and even the Project Information submenu
on the generated site. You will notice that not all of these are the same, or even
strictly reports about the project in the true sense of the word. What they do have
in common is that they integrate automatically into the Maven generated site and
are configured in a separate part of the project. This is the main service of Maven's
reporting infrastructure today—to stitch them together into the site without having
to run each individually and to remain separate from the main build process.

This might lead you to believe that the reporting mechanism and the site generation
mechanism (or rendering) are the same thing. While it is true that they are closely
related, it is important to realize there is a difference and that they can be used
independently for different tasks.

For example, it is possible to render a site without any reports at all for the purposes
of generating documentation—we saw this in Chapter 3, Building an Application
Using Maven, when we created the documentation module for our sample
application. Likewise, plugins such as EMMA and Javadoc render a report without
using the Maven site generation mechanism at all, and some plugins such as PMD
are able to generate a data set in XML instead of a rendered report for different forms
of consumption.

As Maven's support in this area evolves, it is likely that the latter forms of output
will be used solely to produce analytical and historical information without the need
to render it to a site, using the same configuration that exists today in the reporting
section. Therefore let's look at this in more detail.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[148]

Adding reports to the project
When you first generate a site for a project, you will notice that there is a Project
Information menu, but no Project Reports menu. This is because the former,
supplied by the maven-project-info-reports-plugin, is configured to run
by default (unless disabled), but no other reports have been added.

The standard information reports are useful for sharing information with
others—particularly the newcomers to the project who have encountered other
Maven projects and will already know where to look for the information that they
need to get started. However, the focus of this chapter is on the reports that generate
some analytical information about the project on which they are operating.

As we have seen, adding reporting plugins to the project is very much similar to
adding build plugins to the build section of the project—they are just added to
the reporting section instead. For example, take this configuration for the Javadoc
plugin that we added in Chapter 3, Building an Application Using Maven:

<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <aggregate>true</aggregate>
 </configuration>
 </plugin>
 </plugins>
</reporting>

This adds the report to the top-level project, and as a result, it will be inherited by
all of the child modules and will appear on their respective sites (unless, as with
the Javadoc and JXR plugins, they are configured to aggregate their information
in the parent).

Where reports start to differ from build plugins is in how they are bound to
execution. The above, if placed in the build section of the project, would only
reconfigure already configured executions of goals from the plugin, not run anything
new, as there is no executions section. In contrast, the above report definition tells
the Site plugin to run every report contained within it, using the configuration given.

Note that this is not currently a lifecycle as it is for the build—the Site plugin simply
takes the declaration given and executes the reports specified. The order in which
they are run is much less important than in the build lifecycle.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[149]

However, what about if you needed to run a particular report more than once, or
exclude a particular report? For this, there is the reportSets sub-element, which is
roughly equivalent to the executions element used in the main build section.

Firstly, let's look at how we can use this to limit the standard reports included on the
project web site. Let's exclude those that have no information in the example project
(such as continuous integration and mailing lists). This is as straightforward as
listing the reports within a report set, again in modules/pom.xml:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-project-info-reports-plugin</artifactId>
 <version>2.1</version>
 <reportSets>
 <reportSet>

 <reports>

 <report>index</report>

 <report>license</report>

 <report>dependencies</report>

 <report>dependency-convergence</report>

 <report>dependency-management</report>

 <report>plugin-management</report>

 <report>plugins</report>

 <report>summary</report>

 <report>project-team</report>

 <report>scm</report>

 </reports>

 </reportSet>

 </reportSets>
</plugin>

As you can see in the previous code, the report names are like goal names in other
plugins. This is no coincidence, they are in fact the goal names of each report if it
were to be run on its own from the command line (which is also a possibility, as
demonstrated by the use of the Surefire report in Chapter 4, Application Testing
with Maven). If you need to know which reports a plugin contains, take a look at
the plugin site for the goals that it lists.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[150]

Check the report names!
The Site plugin does not currently validate that the report names
are correct and will silently ignore any that are mistyped. Make
sure to double check them by validating the resulting site.

It is also possible to add a configuration element within the reportSet. Like in
the build section, this will be added to whatever configuration was given at the
plugin level but applied only to that set. This allows you to produce a second report
set with different configuration, perhaps to be able to repeat a particular report with
a different input source. Note that in that case the report must have the option to
reconfigure its output file name so that both will be visible on the site and the
reports won't overwrite each other!

In practice, reportSets are used infrequently, as the default tends to be sufficient.
In fact, many reporting plugins only contain one report that needs to be run once.

Configuring plugins for both reporting and
the build
We have already used the Javadoc plugin in the reporting section so that it can be
added to the site for the benefit of developers working on the project. However, what
if we wanted to generate the Javadoc as part of the build process so that it can be
included in a release?

The technique remains the same—it is added to the build and is configured to
execute at a certain stage. In fact, this is such a common behavior for Java projects
that it is configured by default for the release profile (for more information on the
release profile, refer to Chapter 9, Continuum in Depth).

However, the Javadoc plugin commonly requires some kind of configuration to
render as expected, and it would be frustrating to have to configure it twice so that
the report and the released version look the same. Luckily, Maven considers this,
and so all configurations in the reporting section are applied to the build.

The reverse does not apply though—configuration in the build section is not added
to the configuration of the report when it is run. The reason for this will become
apparent when we move on to the enforcement checks in the later sections of
this chapter.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[151]

To be more explicit, the rules for configuration of a given goal or report is as follows:

Top level reporting configuration is applied to build plugins at the top level,
as well as any report sets and executions
Top level build configuration is not applied to reporting plugins when run in
the site lifecycle
Report set and execution configuration is confined to that execution within
the lifecycle or the site
Command line execution picks up both top level configuration elements, but
not executions or report set

At first, this might seem a bit complicated, but in practice, it is quite simple.
Just follow these rules when considering where to add your configuration for a
reporting plugin:

Place the configuration only in the build section if the report should never be
included in the site, or the piece of configuration is only relevant to the build
(For example, if it causes the build to fail under some circumstances)
In all other instances, place the configuration in the reporting section

Of course, configuration can be split across the two depending on the type to
maximize reuse without conflict.

Configuring reports in the site life cycle
All that we have seen so far has assumed that the Site plugin will be responsible for
executing the reports. In most cases, this is a reasonable assumption, but there is one
limitation in Maven that may make this difficult: the lack of a pluginManagement
equivalent for the reporting section.

Consider the case where you have a corporate standard configuration for the
Checkstyle plugin (we will look closer at this plugin in the next sections). If you
were to configure it in the reporting section of the organization POM then due to
inheritance it would be applied to every child project for execution, whether it was
needed or not, with no mechanism to disable it. In many cases, this is acceptable as
reports won't execute on projects for which they are irrelevant (such as those with
a packaging of pom), but the universal nature of it may be a concern for projects of
other types added in the future.

The alternative is to use pluginManagement, from within the build section. Now,
if you are thinking "but you just told me the build configuration isn't used for
reports", you are correct! This means we'll need to also configure the reports in
the build lifecycle.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[152]

Luckily, site generation can also utilize a build lifecycle, so it is possible to configure
reports to run before the site is generated, resulting in similar behavior to that if the
reporting section had been used.

Let's take a look at how this might be configured for the Checkstyle plugin
example given. We won't be retaining this configuration as we progress with the
example project, but it can serve as an illustration of the concept for now. First,
we add the configuration we want to share to a pluginManagement section in
our effectivemaven-parent/pom.xml file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <configLocation>config/maven_checks.xml</configLocation>
 </configuration>
</plugin>

Now if we move to one of our sub modules, such as store-file, and run the
checkstyle command we will see the report generated using the new configuration:

store-file$ mvn checkstyle:checkstyle

Checking the configuration
The checkstyle goal doesn't tell us what checks it is actually using in
the default output, so how can you be sure that the configuration was
used? In this case, you could run the command with the -X flag and look
for the section that shows the arguments including the new value for
configLocation being passed to the checkstyle goal just before the
[checkstyle:checkstyle] marker.

The report now exists in target/site/checkstyle.html. However, if you were
now to run the site, you will notice that the Checkstyle report is not generated:

store-file$ mvn clean site

This is to be expected, as we only put Checkstyle in a management section, not in the
build or reporting sections. To ensure it does run, we would add the following to
the build section of the modules/pom.xml file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <executions>
 <execution>
 <phase>pre-site</phase>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[153]

 <goals>
 <goal>checkstyle</goal>
 </goals>
 </execution>
 </executions>
</plugin>

You will notice that unlike in the reporting section, just listing the plugin is not
sufficient: we must actually execute the goal, and the execution phase we choose is
called pre-site. However, we did not need to list the configuration already given
in the pluginManagement section of the organization POM. If we now try generating
the site, we will see the report is generated:

store-file$ mvn site

However, there is another problem—let's look at the site now:

Notice the Project Reports menu. You will realize that it has not detected the
Checkstyle report like it usually would if it were declared in the reporting
section. We can correct this by adding it manually to an extra reports menu
in modules/src/site/site.xml:

<menu name="Additional Reports">
 <item name="Checkstyle report" href="/checkstyle.html" />
</menu>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[154]

There is one final downside: the navigation of the report itself will no longer match
the site, so users will need to use the browser back button to go back to the main
index after viewing the report.

Overall, this configuration is a little more complicated and less declarative, and also
means that you have opted out of potential future enhancements to the reporting
mechanism. However, despite this, the practice can be more flexible—and is
particularly useful if you don't intend to use the site functionality entirely but just
run the reports as part of the build. Until the Maven project allows mix-ins to include
fragments of configuration more easily, or supports a pluginManagement element in
the reporting section, this is one workaround that you might need to consider.

We now know everything we need to be able to configure reporting plugins
effectively for our project, so let's look at using the same tools to force a build
failure on certain reporting conditions.

Setting up quality checks
Before we start looking at these examples, it is worth noting that Maven has no
special notion of a quality check or a reporting enforcement rule at this time. The
examples we will see here are just regular Maven goals that will trigger the build
to fail under certain conditions. The behavior for what is judged a pass or fail is up
to the plugin itself and the configuration that you supply for it. In many ways, this
is similar to the Enforcer plugin that we have encountered in Chapter 1, Maven in a
Nutshell, however the rules that it uses are not specific to any particular plugin.

Now, why do we need this? Well, I am sure you are all familiar with the war stories
from your own projects. How often do the lower priority problems get fixed up if
nobody is keeping an active eye on them? Very little—and they tend to grow over
time until it gets to the point where some drastic action is needed to get things
coordinated again. Even high priority problems—like the build not succeeding
at all—can go left unattended if they are not continuously monitored and the
appropriate people nagged to fix them.

Therefore, a group of reports on a web site may well look impressive to your
management team, but if it starts trending in the wrong direction without
enforcement, it is going to start looking less impressive very quickly! Therefore,
what we need is to start configuring the build to fail when certain conditions are not
met, so that they can be fixed before getting any worse. Let's start by looking back to
the EMMA coverage report for an example.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[155]

Setting a minimum coverage requirement
Back in Chapter 4, Application Testing with Maven, we configured the EMMA plugin
to run as part of the developer site generation process to report on the code coverage
of the unit tests ran within the project. Now, what if we noticed that coverage was
slipping over time, and not just in unimportant areas of the code? For this reason,
the EMMA plugin has the emma:check goal.

It is a convention in Maven to name such goals as check so they are
easily recognized, but as we have already mentioned, any goal could
perform this function.

To try this out, we must first add the EMMA plugin to the build configuration in
modules/pom.xml if you have not already:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>emma-maven-plugin</artifactId>
 <version>1.0-alpha-2</version>
</plugin>

Before we can use this, we need to set some parameters for what to check. The
EMMA plugin supports four different metrics:

classRate: The percentage of classes that have some coverage
methodRate: The percentage of methods that have some coverage
blockRate: The percentage of actual executable code that is covered
lineRate: The percentage of source code lines that were covered

As explained on the EMMA site, the line rate can be
an unreliable measure of coverage as simple formatting
changes can affect it, and blocks of code can actually span
multiple locations. For this reason, it is better used only as
a visual indication.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[156]

As you can imagine, this actually gives us a useful ramp for introducing
coverage—we can start by just ensuring all the classes are covered to some extent,
then increase the number of methods, and then finally the code itself. For our
example, let's start with one hundred percent coverage of classes and blocks, then
work backwards to a more realistic expectation. To achieve this, we need to add the
following configuration to the plugin element that was just added:

<configuration>
 <check>
 <blockRate>100</blockRate>
 <classRate>100</classRate>
 </check>
</configuration>

With that in place in the parent, let's test it out on the maven-importer module:

maven-importer$ mvn emma:check

It seems we still have some work to do! The build fails with the following messages:

[INFO] [emma:check]

[INFO] Checking EMMA coverage results

[WARNING] Insufficient code coverage for blocks: 90% < 100%

So, we could change the block rate to be 90 and leave it, right? Doing so at the parent
POM configuration would be a bad idea, for starters as other modules that have
higher coverage will then be given more leeway. At the maven-importer module
level that might be a reasonable first step, to at least maintain the current amount of
coverage, but what if we wanted to be more specific?

First, let's see exactly what the results look like by generating the report:

maven-importer$ mvn emma:emma

Opening the report in target/site/emma/index.html, we see that the package
com.effectivemaven.centrepoint.maven.repository is the culprit.

To be more specific in the check, we can use patterns to configure different coverage
rates within a single module. Even though the package is unique to this module and
could be set from the modules/pom.xml file as before, we want the configuration to
be set in the same context as it will be used. Therefore, with the following added to
maven-importer/pom.xml, we could reduce the global configuration but increase it
on the packages that are well tested to ensure they do not slip by later.

<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[157]

 <artifactId>emma-maven-plugin</artifactId>
 <configuration>
 <check>
 <classRate>0</classRate>
 <blockRate>0</blockRate>
 <regexes>
 <regex>
 <pattern>com.effectivemaven.centrepoint.maven</pattern>
 <blockRate>100</blockRate>
 <classRate>100</classRate>
 </regex>
 <regex>
 <pattern>
 com.effectivemaven.centrepoint.maven.repository
 </pattern>
 <blockRate>90</blockRate>
 <classRate>67</classRate>
 </regex>
 </regexes>
 </check>
 </configuration>
 </plugin>
 </plugins>
</build>

If we run the check again now, you will see that it passes:

[INFO] Checking EMMA coverage results

[INFO] EMMA coverage results are valid

Note that the top-level values are not overridden by the later regular
expressions—they apply globally and must be satisfied in addition to
the specific checks listed underneath! This is why each package is listed
individually and the main checks are disabled by setting them to 0.

You may have wondered why it wasn't recommended to just go ahead and write
more tests at this point to raise the coverage percentages. While that is likely the
eventual outcome in many applications that have insufficient testing, just doing it
blindly is not recommended. Instead, by putting a stable configuration in place you
are well positioned to at least maintain it, and set objectives for increasing testing in
areas where it is needed. As we already saw, testing is a balancing act in this regard
that no metric can fully capture—the value of writing tests up to one hundred
percent may diminish rapidly for code that is not particularly crucial, and conversely
there are some circumstances where one hundred percent still does not actually
cover all the possibilities.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[158]

In the example code for this chapter you will notice that we have retained the
100% check requirements in the top level POM and then gone on to override that
for individual modules as needed. The reason for this is that when new modules
are later added, they are started with a stricter requirement and can lower it
as appropriate.

Having this configuration available is helpful for those diligent developers that may
check it before committing their work, or as a separately configured goal in your
continuous build environment. However, for true enforcement you will need to
add this to the default lifecycle at some point. The execution for this (to be added
to modules/pom.xml) will look familiar already:

<configuration>
 <check>
 <blockRate>100</blockRate>
 <classRate>100</classRate>
 </check>
</configuration>
<executions>
 <execution>

 <goals>

 <goal>check</goal>

 </goals>

 </execution>

</executions>

Note that the configuration element remains outside of the executions. This ensures
that if you run emma:check from the command line, the configuration will still be
applied. This would not be the case if it were associated with the lifecycle bound
check execution.

We can now try this again under the maven-importer module:

maven-importer$ mvn verify

The verify phase is used as that is the default phase that the check goal is bound to.

Firstly, you should notice the EMMA goal was run as expected:

[INFO] [emma:check {execution: default}]

[INFO] Checking EMMA coverage results

[INFO] EMMA coverage results are valid

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[159]

If you scroll further up though, you may notice something else—the tests were
run twice! This is because EMMA needs to instrument your class files, and the tests
are re-run using those class files instead of the normal ones (however, these are
instrumented in a separate directory, so are not packaged in your application).
There are a number of ways to approach this problem.

Firstly, the execution can be added to a profile. This is in fact a good idea regardless
to keep the default build as fast as possible, only adding the EMMA instrumentation
(and additional test run) when required for the check. Let's adjust modules/pom.xml
for this scenario by moving the execution that we just added:

<profile>
 <id>checks</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>emma-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

You will notice that we have only moved the execution here—the configuration
(now without the execution) remains in the main build section. This allows us to
continue to run emma:check correctly from the command line, but to trigger the
check in the default build we would need the profile:

maven-importer$ mvn verify -Pchecks

This is a good practice because it balances out the responsibilities. The developers
can largely ignore the profile, ensuring they have a fast default build that will
encourage them to continue running the unit tests in the first place, and can use
their IDE tools for the extended checks such as code coverage. On the flipside, the
continuous build server can vigilantly monitor the coverage, where the profile can
always be activated, and generate the reports at the same time so that failures can
be visualized.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[160]

While the purists may want to run the tests twice regardless to confirm
that the behavior is the same with and without coverage information, what
if you would prefer to run them only once? Unfortunately, at the time of writing
the EMMA plugin does not have a check-only style of goal similar to the
surefire-report:report-only goal, but this is something to look out for
in future versions.

Of course, none of this affects the site generation. If it contains the EMMA report
it will run the tests again as well and it is expected that the site generation is run
at a different time to the main build tests. For more information on staggering this
appropriately, see Chapter 9, Continuum in Depth.

This raises the question—why continue to generate reports if we now have a build
check that fails? To some extent, it becomes less necessary, and it depends on
the type of report in question, but the web site also provides a permanent record
of a project's health which everyone can see at any time. It provides additional
information to help determine the reasons for a failed build, and whether the
conditions for the checks are set correctly.

This is important, because if the bar is set too high, there will be too many failed
builds. This is unproductive as minor changes are prioritized over more important
tasks, to get a build to pass. Conversely, if the bar is set too low, the project will meet
only the lowest standard and go no further. This issue is important enough to look at
in more depth now.

Best practices for configuring coverage
checks
Choosing appropriate settings is the most difficult part of configuring any of the
reporting metrics in Maven. Some helpful hints for determining the right code
coverage settings are:

Like all metrics, involve the whole development team in the decision, so that
they understand and agree with the choice.
Don't set them too low, as it will become a minimum benchmark to attain
and rarely more.
Don't set them too high, as it will discourage writing code to handle
exceptional cases that are not being tested.
Set some known guidelines for what type of code can remain untested.
Remain flexible—consider changes over time rather than hard and fast rules.
Choose to reduce coverage requirements on particular classes or packages
rather than lowering them globally.

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[161]

In particular, don't become obsessed with the numbers. There is more to assessing
the health of tests than success and coverage. These reports won't tell you if all the
features have been implemented—this requires functional or acceptance testing.
They also won't tell you whether the results of untested input values produce the
correct results.

Reporting and quality tools
There are already a range of both open source and commercial tools that have been
integrated with Maven to supply reports and policy enforcement to projects. In this
section, we will look at some practical examples of some of the most popular and
well established of the tools.

You may already be using these tools, or others that are quite similar, and if you
have already configured them and added them to your build, you can quickly step
over that section. If not, this section may illustrate some new tools to consider in
your own projects.

Dependencies
Before looking at the external tools, let's look at one that comes with Maven itself.
Amongst the project information pages there are a set of reports on the dependencies
of the project. These are primarily for informational purposes, but there is one that
provides some metrics—the Dependency Convergence Report.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[162]

The report only appears in a multi-module build (so you will see it in the modules
site of our generated sites above, but not any of the sub-modules sites), and was
originally designed for confirming that throughout the build only one version of
each particular dependency is used. This is particularly helpful if you do not use
the dependencyManagement element consistently for defining the versions of
your dependencies.

The other metric is the number of snapshots there are from outside of the current
build. As long as such snapshots exist, it will not be possible to perform a release,
so the report gives some indication of the release readiness of the project without
needing to perform a dry run using the release plugin.

Unfortunately, there are no corresponding enforcement checks for either of these
metrics within the plugin itself so you must rely on manually checking the report.
Luckily, the Enforcer plugin does provide an enforcement rule for external snapshots
instead, and if dependency management best practice is being followed, dependency
convergence should not be of any concern for your projects. For more information on
how to achieve these, see Chapter 7, Maven Best Practices.

Javadoc
By this point, we are certainly familiar with this tool! It requires little explanation
here—put plainly, it serves as a complete wrapper around the Javadoc command
line tool and works to integrate the result into the Maven site.

As far as reports go, it possibly contains the most configuration options, exposing
most if not all of the options available to the command line version. The defaults
will generally give you satisfactory results. However, you may wish to review the
options available to see if they can improve your report.

One useful option to configure is links. In the online mode, this will link to an
external Javadoc reference at a given URL.

For example, the following configuration, when added to modules/pom.xml, will
link the JDK 6 and Wicket API documentation directly:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <aggregate>true</aggregate>
 <links>
 <link>http://java.sun.com/javase/6/docs/api/</link>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[163]

 <link>http://wicket.apache.org/docs/1.4/</link>
 </links>
 </configuration>
</plugin>

If you regenerate the site again, you will see that all references to the standard
JDK classes such as java.lang.String and java.lang.Object, are linked to API
documentation on the Sun Web site, as are the Wicket references in the classes from
the web application.

Checkstyle
Checkstyle is a tool that does exactly what it says—checks the style of the code,
to see if it conforms to a coding standard. Based on this behavior it has also added
some additional rules for code issues, though other tools for this purpose come in
the following sections with PMD and FindBugs. If you would like to know about
the other modules that it has available, refer to http://checkstyle.sf.net/
availablechecks.html.

How important this function is depends on the team involved in a project. While
some might view it as pedantic, having a consistent style is important for readability
of the code—it can be hard to follow if spacing changes regularly or you can't find
your usual reference points as you scan the code. In addition, if your development
environment relies on diffs in some way, then maintaining consistent formatting
is essential to keeping the differences to a minimum. This means that reviewing
commit logs is faster, and submission of patches or merging of changes from
another source is significantly easier.

Of course, if you are going to require a particular style then having a corresponding
formatter for the IDEs used by all the developers on the project is crucial. Nobody
should have to spend time fiddling with the formatting when they should be able to
run the built-in rules to do it automatically. There is very little point to choosing a
style guideline that cannot be achieved by one or both of these tools.

Let's take a look at how Checkstyle operates on our example project. For testing, try
running the following from the command line:

modules$ mvn checkstyle:checkstyle

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[164]

You will see that this generates a report for each module individually, in the normal
site location under target/site/checkstyle.html. The following is the start of the
report that is created for the store-file module:

The report has two sections—a summary at the top, and then the individual errors
broken down by file. The line number is also shown, and if the JXR plugin is being
used this will link to the line in the source code cross reference.

Unfortunately, at the time of writing, this technique of linking is not
compatible with aggregated cross references, so even if the site is
eventually deployed all together, the links from sub modules will
not work, as the Checkstyle plugin does not aggregate itself. If this is
important to you, you might consider turning off aggregation for the
source cross reference.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[165]

As you can see, there are many errors! This is because the default style definition is
the Sun coding standard, however this code uses a style closer to the current Maven
coding standard, which uses quite a bit more whitespace.

Before we move on to fixing this, let's look at how to set an enforcement check. As
is conventional, the goal for this is called check. Much as we did for EMMA in the
previous section, we can then add the following to our checks profile:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This can now be run using the same command as earlier:

modules$ mvn verify -Pchecks

Of course, if you would like to run just the individual test, you can also run
Checkstyle directly:

modules$ mvn checkstyle:check

In either case, the build will fail due to the style violations in the first module where
they are encountered, showing the number of errors that have occurred.

[INFO] [checkstyle:check {execution: default}]

[INFO] ---

[ERROR] BUILD FAILURE

[INFO] ---

[INFO] You have 311 Checkstyle violations.

In the report earlier, you would have seen that there are different severities of
violation—informational, warnings, and errors. In the default check, only errors
cause the build to fail, however this can be configured via the plugin configuration if
a stricter mode is desired.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[166]

Now, to resolve the failure, we need to switch the style definition to one that matches
the code (rather than reformat all of the code!). As we are using a similar style to the
Maven project itself, we can use one of the other built-in definitions from the plugin
by adding the following to the reporting section of modules/pom.xml (also adding
the report to the generated site when that is later built):

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <configLocation>config/maven_checks.xml</configLocation>

 </configuration>
</plugin>

If you were to run either of the above commands now you would see that the build
still fails, but with fewer errors:

[INFO] You have 67 Checkstyle violations.

Now, we could tweak the code to match these last few rules. This is convenient as we
used one of the built-in styles, but what if you needed to configure one that matches
your existing code?

The configLocation parameter can be set to a file within your build, an URL, or a
resource on the classpath. We have taken advantage of the last alternative here by
taking the file config/maven_checks.xml from the classpath of the plugin itself.
This technique is typically the best available, as URLs can cause offline build
and reproducibility problems, while standalone files are difficult to locate in a
multi-module build.

To achieve this in our example, we need to create a small bundle that contains
the necessary resources and add it to the build when the plugin is running. Let's
consider how you might create a custom bundle to incorporate into the standard
application structure.

As Checkstyle will be executed for all of the Java modules, we can't include it
within the modules directory, so we create a module at the top level of the project,
alongside the skin, documentation, and modules directories. Let's call the artifact
simply build.

centrepoint$ mvn archetype:generate -DartifactId=build \

 -DgroupId=com.effectivemaven.centrepoint

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[167]

While the template files can be removed, the project will remain as a standard JAR
project. The resources we will look to add are in src/main/resources, as you can
see from the sample code associated with this chapter. This includes not only the
Checkstyle configuration for our project, but a copy of the project license header.

Writing your own Checkstyle configuration
While this chapter will not go into an example of how to do this,
the Checkstyle documentation provides an excellent reference at
http://checkstyle.sf.net/config.html.

Now that we've created this bundle, let's install it in the local repository to make it
ready for use:

build$ mvn install

Finally, we need to modify the modules/pom.xml file to refer to the new build
resources. The first step is to adjust the Checkstyle plugin configuration to match
the new paths and to add the headerLocation configuration for the license header
we've included:

<configuration>
 <configLocation>checkstyle/checks.xml</configLocation>

 <headerLocation>checkstyle/header.txt</headerLocation>

</configuration>

The next step is to add the build resources to the classpath for the plugin. This can
be achieved using the dependencies element within the plugin—however, it comes
with a catch. In many versions of Maven, the element was not allowed inside a
reporting plugin. To work around this, we must declare the plugin in the build
section with the dependency we want to add, like so:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.2</version>
 <dependencies>

 <dependency>

 <groupId>${project.groupId}</groupId>

 <artifactId>build</artifactId>

 <version>${project.version}</version>

 </dependency>

 </dependencies>

</plugin>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[168]

Note that the entire configuration is not needed there and according to the practices
we discussed earlier, should actually remain in the reporting section.

Prior to Maven 2.1.0, plugin dependencies were not taken into account
when considering the build order. To ensure that your build works from
a clean repository with older versions of Maven, you should consider
moving the build resources module to the top of the modules list in the
parent POM.

With all of this in place, we can run the site to see the final, cleaned up report:

modules$ mvn site

You will see that Checkstyle has been included under the Project Reports menu for
each project where it was generated. Likewise, the check goal will now pass, so we
are all set to be confident of maintaining a consistent code style for the project.

PMD
PMD takes a set of either predefined or user-defined rule sets and evaluates
the rules across your Java source code. The result can help identify bugs,
copy-and-pasted code (through a separate but included tool, CPD), and
violations of a coding standard.

PMD won't operate on our Java 5 sources without some configuration, so to get
started let's add this report to the main set for the project in modules/pom.xml in
the reporting section:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <targetJdk>1.5</targetJdk>
 </configuration>
</plugin>

Now we can take a look at the PMD results with the default rulesets as we did
for Checkstyle:

modules$ mvn pmd:pmd

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[169]

When the command is run, the report is generated in target/site/pmd.html for
each module (where appropriate). Again looking at the store-file module, we
would see the following report:

This report looks very similar to the one that we encountered for Checkstyle earlier
(and as we noted previously, some of the rules such as the empty catch block
discovered above are also present in Checkstyle), however the errors generally
relate to the functionality of the code rather than the style.

PMD uses rule sets to determine what to check and report on from the source
code. When we run this report right now, we are getting the default settings, which
include the basic, unused code, and imports rule sets. The basic rule set includes
checks on empty blocks, unnecessary statements, and possible bugs such as incorrect
loop variables. The unused code rule set will locate unused private fields, methods,
variables, and parameters. Finally, the imports rule set will detect duplicate,
redundant, or unused import declarations.

However, PMD is one tool where you rarely want the defaults. The above are a good,
achievable starting point but you would be missing much of the power to not try
some of the others rule sets which are available.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[170]

Adding new rule sets is easy, by passing the rulesets configuration to the plugin.
However, if you configure these, you must configure all of them, including the
defaults, explicitly. For example, to include the default rules, and the finalizer
rule set, add the following to the plugin configuration you declared earlier:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <targetJdk>1.5</targetJdk>
 <rulesets>

 <ruleset>/rulesets/basic.xml</ruleset>

 <ruleset>/rulesets/imports.xml</ruleset>

 <ruleset>/rulesets/unusedcode.xml</ruleset>

 <ruleset>/rulesets/finalizers.xml</ruleset>

 </rulesets>

 </configuration>
</plugin>

We will revisit configuring the rule sets in a moment. However, as we have learned
by now, being able to generate the report is not enough—we need to have an
enforcement check in place! Let's get that into the build now, then work at gradually
enhancing the rule sets we want to use.

The process for this is identical to Checkstyle. You can start by testing the check from
the command line:

modules$ mvn pmd:check

This will run through all of the modules of the build and stop if it encounters a
problem in the source code as evaluated by the PMD rules selected. We can now
see the error we saw earlier:

[INFO] [pmd:check]

[INFO] ---

[ERROR] BUILD FAILURE

[INFO] ---

[INFO] You have 5 PMD violations. For more details see:.../modules/store-
file/target/pmd.xml

You might find the XML file that it refers to a little hard to read. However, we still
have the report that we generated before to reveal to us that the problem is the
empty catch blocks.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[171]

Before we go on to fix it, let's also add this to the checks profile so that it is automated:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <version>2.4</version>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
</plugin>

By default, the pmd:check goal is run in the verify phase, which occurs after the
package phase. If you need to run checks earlier, you could add the following to
the execution block to ensure that the check runs just after all sources exist:

<phase>process-sources</phase>

We can now run the build to confirm the same result as above:

modules$ mvn verify -Pchecks

Of course, with three checks in place this is getting a bit slower—so you may wish to
just use pmd:check for testing, and reserve this profile for the full-blown cycle on the
build server.

Getting back to the reported issues, there are three ways that this issue could
be fixed:

Fix the offending code—in most cases this is the most likely solution
If the code is valid and needs an exemption, a marker can be added to the
source code
If the rule is not one you are interested in, it can be excluded from
the rulesets

The first option is hopefully self-explanatory from the rule that has failed. In this
case, we could add some code, such as logging, to the empty catch blocks. But what
if it is intentional, such as the case of the failed close() operations? In this case, we
could mark it as special so PMD will ignore it:

catch (IOException e) // NOPMD

{
}

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[172]

This will skip the rule we set above—but note that it will also skip any other rules on
that line of code!

We could go ahead and do the same for the all the catch blocks, but we may decide
that we are going to require this regularly, and that it is better to disable that rule
while retaining all the others. To do this in PMD, you will need to create a custom
rule set, which can refer to existing rule sets or add new ones.

I don't recommend disabling the EmptyCatchBlock rule in anything
other than example code! As the PMD documentation says, "In most
circumstances, this swallows an exception which should either be acted
on or reported."

As with Checkstyle, you can supply several locations for the new rule set—including
a file or a resource on the classpath resource (as we did above with /rulesets/*). To
review the pros and cons of each see the previous section on Checkstyle. In this case,
we already have a build resources module that is perfect for reusing, not only will it
span the whole project, but also we could promote the artifact to represent an entire
team so that we can easily reuse a predefined set of rules elsewhere without copying
files around.

To create the custom rule set, let's add the following file to build/src/main/
resources/pmd/rules.xml:

<?xml version="1.0"?>
<ruleset name="custom">
 <description>
 Default rules, no empty catch block errors
 </description>
 <rule ref="/rulesets/basic.xml">
 <exclude name="EmptyCatchBlock" />

 </rule>
 <rule ref="/rulesets/imports.xml" />
 <rule ref="/rulesets/unusedcode.xml" />
 <rule ref="/rulesets/finalizers.xml" />
</ruleset>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[173]

Here, we have retained the same configuration as previously but have excluded one
particular rule from use. Now, to activate this rule set we must make two changes.
First, we must add the build resources as a dependency of the PMD plugin. Recall
from the previous section that this must be a new element in the build section,
rather than the reporting or profile sections:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <version>2.4</version>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>build</artifactId>
 <version>${project.version}</version>
 </dependency>
 </dependencies>
</plugin>

Secondly, we must adjust the configuration in the reporting section to refer to the
new ruleset:

<rulesets>
 <ruleset>/pmd/rules.xml</ruleset>

</rulesets>

Now, we are ready to test it all out again! Remember, we must install the build
resources to the local repository first as they have been updated. In fact, a simple
way may be to run an install from the top level of the project:

centrepoint$ mvn install -Pchecks

For more examples on customizing the rule sets, see the instructions on
the PMD web site at http://pmd.sf.net/howtomakearuleset.
html. It is also possible to write your own rules if you find that existing
ones do not cover recurring problems in your source code.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[174]

There we have it—a fully customized and reusable PMD setup, ready to start adding
more rules to, and gradually improving the source code quality accordingly. This now
raises the question of how to select the right rules to use. For PMD, try the following
guidelines from the web site at http://pmd.sf.net/bestpractices.html:

Pick the rules that are right for you. There is no point having hundreds of
violations you won't fix.
Start small, and add more as needed. basic, unusedcode, and imports are
useful in most scenarios and easily fixed. From this starting point, select the
rules that apply to your own project.

Before moving on to other tools it is worth noting the additional goal that PMD has
for copy/paste detection, cpd. This tool includes a list of duplicate code fragments
discovered across your entire source tree. As we enabled the PMD plugin in the
reporting section earlier, it will be included in the site by default. However, to
include the check, you would need to add cpd-check to the list of goals, alongside
check, in modules/pom.xml:

<goals>
 <goal>check</goal>
 <goal>cpd-check</goal>

</goals>

Unlike PMD, CPD does not take a set of rules – it solely performs copy/paste
detection. There is one configuration option that it accepts: minimumTokenCount
(which defaults to 100). This can be fine-tuned to the right size that identifies an
identical code block, and should likely be reduced if your code already passes at the
default level. Like the EMMA report, you may wish to configure this setting on a
module-by-module basis to match the type of code that it contains.

If you find that this rule is distracting, you do not have to use this particular
check, and can disable the report by using the reportSets element of the PMD
report plugin.

FindBugs
FindBugs is a tool for detecting potential bugs in Java software. Where PMD
performs analysis on source code, FindBugs performs static analysis on the Java byte
code to detect common bug patterns. For example, let's try running FindBugs on the
store-file module to compare the results. Unlike the previous examples, running
the goal from the command line does not generate a standalone report, so we must
add the configuration to the site in modules/pom.xml:

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[175]

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>2.0.1</version>
</plugin>

We can then go ahead and create the site. Note that FindBugs uses quite a lot
of memory, and so you may need to alter the Maven execution options from
the default:

store-file$ MAVEN_OPTS=-Xmx256m mvn site

When you open the report, you will notice that it contains a problem the others were
unable to detect, with an ignored return value:

The configuration for the FindBugs plugin follows the same pattern that we
have seen earlier, through the addition to the reporting section and the check
goal execution to the checks profile, which we can go ahead and add to the
example application.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[176]

Several configuration options to the plugin are available that match the original
FindBugs command-line options. For complete information on these options, you
can refer to the plugin web site at http://mojo.codehaus.org/findbugs-maven-
plugin and the FindBugs command line options reference at http://findbugs.
sourceforge.net/manual/running.html#commandLineOptions.

These are configured in the same way as the other reporting plugins that we have
encountered. For example, to limit the problems listed to those of a medium or
higher priority, we can add the following to the configuration in the reporting
section of modules/pom.xml:

<configuration>
 <threshold>Normal</threshold>
</configuration>

FindBugs can also accept a filtering file to determine which rules to include and exclude,
which class files they should operate on, and so on. Such files may also be included in
the build resources artifact that we created earlier. An example is given in the build
module under src/main/resources/findbugs/excludes.xml. To utilize this, we add
the FindBugs plugin to the main build section of modules/pom.xml in the same way
illustrated for Checkstyle.

Finally, to configure the exclusions filter file, we add the following option:
<configuration>
 <excludeFilterFile>findbugs/excludes.xml</excludeFilterFile>
</configuration>

In the example application, you will notice that this was added into the checks profile
directly, rather than into the reporting section as you may expect. This is a valid
use case if you would like the site to show all of the problems but only fail based
on a subset of the possible problems. However, in this case we have had to use this
configuration to work around a bug in the FindBugs plugin at the time of writing
which means that filter files from plugin dependencies are not supported when
generating the FindBugs report for the site (but work correctly for the check goal).

We can now confirm that the project passes our FindBugs checks using the profile,
running from the top-level directory centrepoint:
centrepoint$ mvn install -Pchecks

Clirr
An important tool in determining whether a project is ready to be released is Clirr,
which is a tool that detects whether the current version of a library has introduced
any binary incompatibilities with the previous release. Catching these before a
release occurs can eliminate problems that are quite difficult to resolve once the
code is in the wild.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[177]

This is particularly important if you are building a library or framework that will
be consumed by developers outside of your own project. Libraries will often be
substituted by newer versions to obtain new features or bug fixes, but then expected
to continue working as they always have.

Because existing libraries are not recompiled every time a version is changed, there is
no verification that a library is binary-compatible. Incompatibility will be discovered
only when there is a failure.

However, does binary compatibility apply if you are not developing a library for
external consumption? It certainly does! It is likely that you are developing some
small reusable modules that will spread across applications and start to have
differing versions. This is particularly true in a Maven-based environment, where
the dependency mechanism is based on the assumption of binary compatibility
between versions.

For the most part, configuring the Clirr plugin follows the same process as for the
others we have seen so far. There is a default report, as well as a check goal that fails
if there are any compatibility errors.

However, instead of taking a set of rules to process, Clirr takes a previous release
artifact. This can either be explicitly specified with a version, or with a different
artifact if it has moved, but by default it will look for the latest release in the
repository that is earlier than the version currently being built.

Other than a minimum severity threshold, Clirr's main configuration is the list of
classes to include and exclude in the comparison. By using these extra options it is
possible to ignore a class that has had a deliberate and managed API break without
removing the check altogether.

We won't run through Clirr on the example application, as we are not yet at the
point of having a release ready for it, let alone a past one to which we can compare!
However, if you are building your own artifacts that have to maintain an external
API, strongly consider adding the clirr:check goal to your build immediately
after the first release so that binary compatibility can be monitored.

Other tools
Here, we have touched on just some of the most common tools that are available for
analysis of your code using Maven. However, there are many more open source and
commercial tools that can provide such services, and it is worth researching what
best fits your needs and culture. Even if the tool does not have a Maven plugin, it is
likely they can be integrated into the build in some way using the antrun plugin or
the exec plugin which we will look at in the next chapter.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[178]

With our toolbox now well understood, let's look at some practices for how to choose
and use them most effectively.

Reporting best practices
Like any system in Maven, there are particular sweet spots for how to use reports,
and some common practices that are not to be recommended at all. In this section,
we will browse through some best practices to keep in mind if you choose to use the
reporting and check capabilities available.

Choosing reports
We have seen that there are a few reports at your disposal, and as you search for
those available online you will find that there are many more. In most cases, they are
trivial to add, just requiring the plugin definition to get started with the defaults. So
it might be tempting to just go ahead and add everything you can find, right?

Report selection is actually a very important choice. If developers are faced with too
much information or irrelevant information, it devalues the entire set and makes it
harder to find what is really needed and what the real problems are. Of course, each
report also adds to the build time and memory requirements that should be kept to
a minimum.

What this boils down to: only include something if it is really going to be used! The
report results and the checks performed should be accurate and conclusive – every
developer should know what they mean and how to address them.

When it comes to choosing which reports you intend to include in your project,
consider the following:

Reference documentation is a good start. These are reports such as Javadoc
and the source cross reference that provide a complete set of particular
information about the project. They tend to be linked in from other reports
to provide the necessary context, and are available to developers that need
a single place to look up something in particular if it isn't immediately
available in their development environment.
Decisions about including other reports must be accompanied by a decision
about a quality check. If the report has one, a corresponding check execution
to fail the build at a certain threshold will provide a good enforcement point
to check the report for problems.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[179]

How reports are configured once they are selected also needs consideration. We have
seen this as we looked at some examples in the previous sections for specific tools.
While the defaults are usually sensible, be sure to understand what they mean and
customize the configuration to your environment as necessary.

These points might seem obvious, but they are worth keeping in mind. After all,
how many times have you seen a project that lists a Checkstyle report that uses the
default style guidelines, which doesn't match their source and routinely reports
thousands of errors? How useful is that report in actually getting any errors fixed?

This extends to the standard project information reports as well. We saw in an
earlier example how to configure these for a particular project so that only a subset
is rendered. It makes sense to omit those that will not display useful information for
your project, or may be plain misleading.

We should also be reminded at this point of the significance of the documentation
structure in the example application. In a very deliberate move, the project
code reports (under the modules directory) was separated from the user-facing
documentation (in the top-level directory) and from any project web site content.
Really, the only reports that belong on those documentation-style sites are some of
the most basic project information reports such as mailing lists, the location of the
source repository, the team, and the license.

Site deployment
Being able to generate the site is an important first step, but it is often a task that
takes some time, and is best automated in your build server. However, what
happens with it after that?

It is important that there is a centralized location to deploy all of the reports so
that developers in the team know where to go to get the latest information, and
are operating from the same source. They can also use this information to visualize
problems or see what errors triggered a failed build due to a check going below a
certain threshold.

If there are multiple branches of development, then it is a good idea to include the
version in the site URL so that it can represent that particular branch of development.
This also becomes useful at release time as reference documentation such as Javadoc
can be deployed to a location that is permanent for that version.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[180]

Introducing and selecting failure thresholds
Just like choosing reports, choosing how and when to fail the build if a
certain metric is not met is an important decision. If the requirement is too low,
developers will tend to stop when they meet that minimum and go no further
(30.5% coverage—done!). However, if it is too high it will become too discouraging
and result in it being turned off or ignored. "Yeah, that build has always been failing
because we only have 99.95% coverage."

Here are some guidelines we might find helpful in introducing quality goals to
a project:

Use those that fit with the current culture, and add them gradually. Choose
an achievable baseline (probably a measure of the current state of the code),
and get used to monitoring it. Increase the target levels as the code evolves.
Choose checks that have clear benefits through early bug detection and
improved quality. Don't fail the build on style issues that the team weren't
committed to in the first place!
Remain consistent across teams and projects—use the organization POM to
set rules consistently. Shifting developers should not have to learn new rules
or change their culture.
If starting a new project, decide the quality goals from day one and code it
right into the template build—it is always harder to catch up later!
Just do it! Too often getting started is in the too hard basket—it isn't going to
get any easier, so make the commitment and get the checks running today.

Tying it all together
Previously in this chapter, a large amount of information was presented about a
project, each in discrete reports. Some of the reports linked to one another, but they
didn't relate information from one report to another, and very few of the reports
aggregated information across a multiple module build.

Finally, none of the reports presented how the information changes over time. These
are all important features required to have an overall view of the health of a project.

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[181]

There are a number of projects that have started to integrate well with Maven
to provide this information. Here we will look briefly at two that take quite a
different approach.

Dashboard plugin
Still in the beta level of development, the dashboard plugin has started to achieve a
reasonable level of functionality. Though it does not presently aggregate information
in a multi-module build, it does aggregate the results of various different metrics into
one report for each module and presents the ability to start capturing the information
over time.

To try it out on the example application, you must first add the following to the
build section of modules/pom.xml (as we will be running it from the command line
initially, not as a report):

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>dashboard-maven-plugin</artifactId>
 <version>1.0.0-beta-1</version>
</plugin>

Next, we will take it for a spin:

modules$ MAVEN_OPTS=-Xmx256m mvn site

modules$ mvn dashboard:dashboard

As you can see, at present the plugin requires that you have run the site goals in a
separate execution first.

This separation can be problematic when being used in
a continuous integration server.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[182]

The resulting output for the store-file module will look similar to the following:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 5

[183]

As you can see, the information is represented together, however because we have
fixed all the issues that we are testing, the information in the PMD section is not
particularly revealing! For this reason, such reports will be more of use where
active checks were not deemed practical or are operating on a threshold that is
lower than what might be desired and reported upon (such as is the case with
Checkstyle above).

Sonar
The Sonar project (http://sonar.codehaus.org/) takes quite a different approach.
It was built from the outset to accommodate historical information. While it uses the
same tools and configuration as above, it is in fact a complete replacement for the
reporting mechanism of Maven in those respects. If you are using it you may wish
to simply link your Maven site to the Sonar installation instead of including PMD,
Checkstyle, and so on as reports.

Sonar runs as part of the regular build lifecycle, integrated into your continuous
build schedule. It is designed to push the results of all of the tools configured for
the build to a common server. As above, this may mean that it is less effective to use
active checks and instead follow the trends within Sonar to see how your quality is
trending over time.

Discussing how to install Sonar is beyond the scope of this book, as it is another piece
of development infrastructure on the order of Archiva or Continuum to maintain,
however if this is the type of reporting functionality that you are looking for it may
be worth investigating for your environment.

Summary
Maven reports and the tools they are associated with are under-utilized in many
projects. While to some extent this may be because of the awkwardness of the
Maven site that they tend to be housed in, even the comparatively simple task of
establishing a quality check in the automated build is balked at—because of what it
will take to bring to keep the code up to that level. For this reason, taking a
slow but steady approach will bring the most benefit.

For reports that are added, add a corresponding enforcement check if
applicable.
Add both the reports and the checks to a continuous build system so that the
quality is monitored and does not degrade over time. Make it easy to meet at
first, and make it part of the teams' culture to maintain it.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Reporting and Checks

[184]

Add a profile for the checks so that they do not slow the default build and
can be enabled optionally or as part of the build system. It is likely easier to
use IDE tools for the developers to check the quality metrics rather than
the reports.

We have seen in this chapter that the power of Maven's declarative model is that
it is very simple to set up new tools and this information can be shared with your
team to visualize the quality of the project. We have also learned to set up automated
enforcement checks on certain metrics, and about the tools that are available for
these tasks.

So far, we have expanded on the example application to add a number of quality
metrics that we can monitor. Later in the book we will examine how best to automate
the site and report generation, as well as the new enforcement rules.

By this point, we have a relatively complete build environment for our application.
Further additions will only need to be to incorporate specific functionality for the
needs of the project, and so in the next chapter we move on to examine a cookbook
of sorts for common tools and tricks that might be beneficial in some builds.

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins
Nobody can tell exactly how many Maven plugins exist today—since, like
dependencies they can be retrieved from any specified remote repository, there are
likely hundreds to choose from, and likely even more that have been custom written
for use within the infrastructure of particular organizations.

A common practice for frameworks and tools that require build integration is to
publish a Maven plugin to accomplish the task—and it is becoming increasingly
common to encounter this as a standard part of the getting started section of a project
you might hope to use. However, there are also a number of plugins that would be
considered general purpose and handle some extended build cases in a wider variety
of projects.

In this chapter, we will take a closer look at some of these plugins from two locations:
those hosted as part of the Apache Maven project (http://maven.apache.org/
plugins/), and a number of plugins from the Codehaus Mojo project (http://
mojo.codehaus.org/plugins.html), which is oriented directly towards Maven
plugin development. Some of these have been covered already in this book, so this
will be an opportunity to examine their use in more depth, while others are new.

Where possible, we will apply the plugins to our example application to see how
they can be used in practice, and then cover some of the other use cases and best
practices for their use.

While this won't come close to covering all the plugins you are likely to encounter,
with these common tools in your arsenal it will cover many of your Maven build
needs, reducing the need for you to write your own plugins.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[186]

The Remote Resources plugin
Most projects will use the Resources plugin at some point, even if it isn't configured
directly—it is standard in the default life cycle for any packaging that produces some
type of artifact, bundling the resources found in src/main/resources.

However, what if you wanted to share those resources among multiple projects? The
best approach to doing that is to store the resources in the repository and retrieve
them for use in multiple builds—and that is where the Remote Resources plugin
comes in.

First, we should note that this is not the only alternative for handling the scenario.
The Dependency plugin's unpack goal is also quite capable of unpacking an artifact
full of resources directly into the location that will be packaged.

However, the Remote Resources plugin offers several advantages:

1.	 Re-integration with the resources life cycle so that retrieved resources will
automatically be processed in any goals in the process-resources phase.

2.	 The ability to perform additional processing on the resources (including the
optional use of Velocity templates to generate the resources) before inclusion.

3.	 A specific bundle generation goal for creating the resource artifact in the
first place.

These advantages can make the plugin very effective at dealing with some common
scenarios. For example the inspiration for the creation of the plugin, and one of its
more common uses, is to place aggregated license files within the final artifact.

There are other scenarios where the dependency:unpack goal
remains more suitable—for example, the bundling of plugin
configuration as seen in Chapter 5, Reporting and Checks. It is
best to select the Remote Resources plugin when the files will be
incorporated into the resources life cycle and the Dependency
plugin when the files will be utilized independently.

Let's look at how to create a license file for our Centrepoint application. We will
do this in two steps—the creation of the resource bundle that provides the generic
resources for any project by the same organization, and the processing of the
module resources.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[187]

Creating a Remote Resource bundle
Remote Resource bundles are regular JAR files packaged with additional information
generated by the remote resource plugin's bundle goal. Creating a module follows
the same process as with other JAR files.

In the example application, we will create the module outside of the Centrepoint
multi-module hierarchy, so that it could (theoretically) be used by other projects
from the same organization. This could be anywhere in source control, but we
will assume it sits side-by-side with the effectivemaven-parent module in
the workspace.

$ mvn archetype:generate -DartifactId=license-resources \

 -DgroupId=com.effectivemaven

As this is not going to be a code project, the src/main/java and src/test
directories can be removed from the generated content. We then continue to
add the parent project to the POM, so the result looks like the following:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.effectivemaven</groupId>
 <artifactId>effectivemaven-parent</artifactId>
 <version>1-SNAPSHOT</version>
 <relativePath>../effectivemaven-parent/pom.xml</relativePath>
 </parent>
 <artifactId>license-resources</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>License Resource Bundle</name>
</project>

We will add the Remote Resources plugin shortly, but first let's create the
resources that will be bundled. These are added to the src/main/resources
like regular resources.

Consider the following Velocity template file, src/main/resources/LICENSE.vm:

License Generator
#macro(showUrl $url)
 #if($url)

 ($url)
 #end
#end

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[188]

This software is distributed under the following license(s):
#foreach ($l in $project.licenses)
 - $l.name #showUrl ($l.url)

#end

#if (!$projectsSortedByOrganization.isEmpty())
The software relies on a number of dependencies. The individual
licenses are outlined below.

#set ($keys = $projectsSortedByOrganization.keySet())
#foreach ($o in $keys)
From: '$o.name' #showUrl($o.url)

#set ($projects = $projectsSortedByOrganization.get($o))
#foreach ($p in $projects)

 - $p.name #showUrl ($p.url)

 $p.artifact
#foreach ($l in $p.licenses)
 License: $l.name #showUrl ($l.url)

#end

#end
#end

#end

For those not familiar with Velocity, the purpose of this is to first iterate through
the project's licenses and list them, then secondly iterate through the project's
dependencies (grouped by the organization they are from) and list their license. The
$projectsSortedByOrganization variable is a special one added by the Remote
Resources plugin to assist in this task.

Before we can move on to use the bundle, we need to add the plugin to the bundle
project like so:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-remote-resources-plugin</artifactId>
 <version>1.0</version>
 <executions>
 <execution>
 <goals>
 <goal>bundle</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[189]

This goal is required to generate a bundle manifest, the contents of which tell the
plugin which resources to process when it is later called on to do so.

With this all in place, we can now install the bundle into the local repository, ready
for use:

license-resources$ mvn install

If you were to inspect the contents of the generated JAR file, you would see both the
LICENSE.vm file in the root, and the bundle manifest in META-INF/maven/remote-
resources.xml. You would also find that the Velocity template is unmodified—the
contents will be executed when the bundle is later processed in the target project,
which we will proceed to look at now.

Processing Remote Resources in a project
Using the resource bundle we have created is now quite straightforward. We start by
adding the folllowing to the build section of modules/pom.xml file of Centrepoint:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-remote-resources-plugin</artifactId>
 <version>1.0</version>
 <executions>
 <execution>
 <goals>
 <goal>process</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <resourceBundles>
 <resourceBundle>
 com.effectivemaven:license-resources:1.0-SNAPSHOT
 </resourceBundle>
 </resourceBundles>
 </configuration>
</plugin>

Here we have added a list of resource bundle artifacts to the configuration for the
process goal, in the familiar shorthand artifact notation of groupId:artifactId:
version. It has been added to the modules POM so that the license is included in the
JAR files, but not included in the other non-code modules such as the documentation
(which already generates a copy of the license from the reporting plugins).

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[190]

Normally, you should use a released version of the license bundle,
not a snapshot as we have here (as we have not yet covered the
release process!). Since the bundle is configured directly and not
through a dependency, the Release plugin will not detect this
unresolved snapshot later.

Now, if we build a module such as store-api, we will see the license included in the
root directory of the JAR file with the following content:

This software is distributed under the following license(s):
 - The Apache Software License, Version 2.0
 (http://www.apache.org/licenses/LICENSE-2.0.txt)

The software relies on a number of dependencies. The individual
licenses are outlined below.

From: 'Apache Maven 2: Effective Implementations Book'
 (http://www.effectivemaven.com/)

 - Centrepoint Data Model
 com.effectivemaven.centrepoint:model:jar:1.0-SNAPSHOT
 License: The Apache Software License, Version 2.0
 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'Google'
 (http://www.google.com/)

 - Guice
 (http://code.google.com/p/google-guice/)
 com.google.code.guice:guice:pom:1.0
 License: The Apache Software License, Version 2.0
 (http://www.apache.org/licenses/LICENSE-2.0.txt)

This is a good start, but we don't really need to include our own artifacts in the list,
so we go back to the plugin declaration in modules/pom.xml and add another line
of configuration:

<configuration>
 <excludeGroupIds>${project.groupId}</excludeGroupIds>
 <resourceBundles>
 ...

Regenerating the above artifact will alter the license to remove the dependencies
from the project's group.

A different case is the final distribution. As this is not part of the modules hierarchy,
first we need to include the plugin definition identical to the one added previously.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[191]

In the sample code for this chapter, you will notice that this has been
taken a step further with the version and common configuration pushed
into a pluginManagement section of the Centrepoint parent POM,
and just the execution of the plugin goal remains in the modules and
distribution POM files.

We can now build the assembly as usual:

distribution$ mvn clean install

Upon inspecting the generated assemblies, you will not see the license file included
yet. This is because the Assembly plugin does not pick up Maven resources by
default, as it does not participate in the normal life cycle.

To include the license file, we must alter the assembly descriptor distribution/
src/main/assembly/bin.xml and add the following file set:

<fileSet>
 <directory>target/maven-shared-archive-resources</directory>
 <outputDirectory>/</outputDirectory>
</fileSet>

The directory given is the standard location in which the Remote Resources plugin
stores the resources it has processed, so if you decide to configure that differently in
your own projects you would need to change this to the corresponding location.

Upon building the assembly again we will see that the license has been generated,
and that it includes the licenses of dependencies outside of the Centepoint
application. As you can see, the distributed application depends on Jetty (also under
the Apache License 2.0), which includes some portions of Glassfish (under the CDDL
1.0 License).

While the above technique can be very helpful in constructing some
useful information about your project and its dependencies, it cannot be
guaranteed to produce complete licensing information for a project. The
method relies on accurate information in the POMs of your dependencies,
and this can sometimes be inaccurate (particularly when using
public repositories such as the Maven Central Repository). If you are
redistributing your files, always confirm that you have correctly recorded
any necessary licensing information that must accompany them!

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[192]

The Remote Resources plugin is also capable of covering other scenarios that are
particularly suited to license handling or more generally recording information
about the project it is being processed for. These include:

1.	 The supplementalDataModels configuration option that allows you to fill
in incomplete or incorrect metadata for a project dependency before the
resources are processed (to avoid particular problems as described above).

2.	 The appendedResourcesDirectory, which allows you to store the above
models in a separate file.

3.	 The properties configuration, which allows the injection of other build
properties into the Velocity templates.

However, with this in mind, remember that the Remote Resources plugin is often
just as suitable for any type of reusable resource, even if it is a static file.

The Build Number plugin
In Maven Mojos, the goals within a plugin are always designed to be simple tasks.
Their aim is to do one thing, and do it well. A good example of this is the Build
Number plugin. This simple plugin has one goal (create), with one purpose—to
obtain a suitable build number and expose it to the build through properties or a file.

While the plugin focuses on exposing the current Subversion revision, it is
capable of generating an incremented build number (stored in a specified
properties file), and a representation of the current system date and
time. This feature can be very useful in identifying the exact heritage of
a particular build. The build number generated by the plugin is different
to that used by Maven to identify snapshots or artifact versions. While
it is possible that you might mark your version using the information
it generates, this plugin is typically used to record information about a
particular build—whether it is a snapshot, or a release—within the artifact
itself as a permanent record.

Using the plugin is straightforward. By adding the goal to the project, the
Subversion revision and a timestamp property will be exposed from the point
that it is run onwards.

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>buildnumber-maven-plugin</artifactId>
 <version>1.0-beta-1</version>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[193]

 <executions>
 <execution>
 <phase>generate-resources</phase>
 <goals>
 <goal>create</goal>
 </goals>
 </execution>
 </executions>
</plugin>

In this example, we execute the plugin in the generate-resources phase so that the
properties are available to any resource processing. Note that the values could be
used with the Remote Resources plugin that we have just seen.

There are two things to take into consideration with this configuration, however.
Firstly, not all source builds will be Subversion checkouts, but the plugin does not
verify that. To work around this potential problem, you can put the goal into
a profile:

<profile>
 <id>buildnumber</id>
 <activation>

 <file>

 <exists>.svn</exists>

 </file>

 </activation>

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>buildnumber-maven-plugin</artifactId>
 ...

This particular activation check will cause the profile to be used within a Subversion
checkout (that is, if .svn exists in the current directory), and to skip the plugin if not.
In this case, the properties will not be set (or the file will not be created), so the code
using these must take that into account.

Secondly, how the values will be accessed needs to be given careful consideration.
For example, it is unlikely that you want to create a convoluted build processing step
to filter the value into a particular JSP file to appear in a web application. For the sake
of keeping the build simple (and speedy), it is best to write the values into a single
file that the application can then load from its classpath.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[194]

This can be achieved by creating a filtered resource that contains references to the
values. The advantage of this method is that it is automatic if you have already
configured filtered resources, and automatically ends up in the classpath of the
application code that can load the file as a resource.

The plugin also supports a number of formatting options, in the event that you do
not wish to use the raw build number and timestamp integers. These options are also
used to trigger the manual build number increment feature of the plugin in the event
that Subversion is not used.

As our example application is one such case, let's apply this technique ourselves.
We will only need to include the build number plugin in one location—if it were to
be run on every module, the number would end up being different for each. Some
seemingly sensible options may not actually be appropriate here:

The parent project will cause the build number to be included in every
module, and executing it just in the parent may result in it not being
executed at all.
The final distribution might be the best place in some situations, but
what if you needed to reference the build number from the
application itself?

Considering these factors, the best location is the web application module, as
this will be the code which will eventually display the build number. In another
application where multiple modules were to require it, it might be best generated
in a common dependency instead.

The modules/webapp/pom.xml file requires two modifications. First, to enable
filtering, we must add both the new filtered resources location and the original
resources location to the build section (as Maven inheritance overrides resources
instead of adding to them). This will look like the following:

<resources>
 <resource>
 <directory>src/main/resources</directory>
 </resource>
 <resource>
 <directory>src/main/filtered-resources</directory>
 <filtering>true</filtering>
 </resource>
</resources>

Depending on what resources you have in src/main/resources, you may choose
to do away with it and include them in the filtered-resources directory instead.
However, if some resources may be corrupted by filtering (such as images and other
binary files), you will need to retain both.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[195]

Next, the addition of the build number plugin is needed with some particular
configuration:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>buildnumber-maven-plugin</artifactId>
 <version>1.0-beta-1</version>
 <configuration>
 <format>Build: #{0} ({1,date})</format>
 <items>
 <item>buildNumber\d*</item>
 <item>timestamp</item>
 </items>
 </configuration>
 <executions>
 <execution>
 <phase>generate-resources</phase>
 <goals>
 <goal>create</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Note the formatting options being used. The first, format, specifies what the
configured property (by default called buildNumber) will look like, using the Java
MessageFormat syntax. The items configuration provides a list of variables to
substitute into the message format for {0}, {1}, and so on. Here, the first configured
variable is buildNumber\d*, which is used to trigger the automatic number
generation. The second is the integer timestamp that represents the current
system date and time.

You may also configure the location of the file to be generated that
contains the incremented build number, with the default being
buildNumber.properties in the current directory. It is important to
place this in a location that will not be purged over time—for example, in
the target directory, as this is regularly cleaned!

The exposed property is referenced from the resource files using the normal
filtering syntax, so we can create src/main/filtered-resources/build.
properties like so:

build.message=${buildNumber}

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[196]

When we build the application, we will see the build number generated and
incremented each time:

[INFO] Storing buildNumber: Build: #1 (27/03/2009) at timestamp:
1238074038389

All that is left to do is to access the build number from the application, which you
can see in the BuildNumber class:

ResourceBundle bundle = ResourceBundle.getBundle("build");
msg = bundle.getString("build.message");

As you can see, if you are using Subversion it is likely a simpler option to use the
revision number instead of creating a new build number, or perhaps passing the
build number in from your build server using its own build numbering scheme.
Using an incremented number as we have above can be inconsistent depending on
the build order and build successes, with the additional requirement of maintaining
the separate tracking file.

The Shade plugin
Maven's dependency-based nature promotes the practice of proper
componentization of a build and producing a set of discrete artifacts that can be
aggregated into an application. Throughout a dependency tree, dependencies may
appear multiple times and can be mediated to the correct version so that a single
version can be used. However, circumstances will occur where, rather than the
discrete list of dependencies, it is necessary to merge, hide, or alter the parts of a
number of dependencies into a single artifact. This is the purpose for which the
Shade plugin was developed, and in this section we will look at two use cases in
more detail.

Building a standalone artifact
In Chapter 3, Building an Application Using Maven, we learned how to build a
suitable distribution for our example application. This was a suitable set up for a
server where there are multiple configuration files, startup scripts, as well as the
application itself. But for some Java applications, all that is needed is to run
static void main().

Distributing such applications if they have dependencies on other JAR files has
always been problematic. Java has a mechanism to run a JAR on its own through
the Main-Class manifest attribute, providing us with a simple command such as
the following:

client$ java -jar centrepoint-client-1.0-SNAPSHOT.jar

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[197]

However, this will generally fail as the dependencies required are not present on
the classpath. From here, you might add the Class-Path element to the manifest.
However, this requires that the JARs be placed in a particular location relative to the
other files, and we are back to distributing a complete archive.

To make this easier, the Assembly plugin contains a pre-built descriptor called
jar-with-dependencies. This simply collapses the JAR and all it's dependencies
into one large JAR so that the above type of execution can work. In some cases, this
configuration will work correctly, and no more work needs to be done.

One of the issues with the naïve approach of the assembly plugin is that many of the
dependencies will house files with identical names, and it is given little choice but to
pick just the last file that it encounters rather than dealing with the overlap properly.

This is where the Shade plugin can be useful, by providing hooks to transform these
resources into a single resource as appropriate.

This is similar in intent to the Uberjar plugin that you may have used in
Maven 1, however the technique is improved. In the assembly plugin
and the shade plugin, the resulting artifact collapses the dependency
JARs and corrects references instead of having to unpack and construct
classloaders, making it a much faster alternative.

For example, consider the following configuration:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.2</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer implementation="org.apache.maven.plugins.shade.
 resource.ComponentsXmlResourceTransformer" />
 </transformers>
 <artifactSet>
 <excludes>
 <exclude>xerces:xercesImpl</exclude>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[198]

 </excludes>
 </artifactSet>
 </configuration>
 </execution>
 </executions>
</plugin>

Here we have the shade goal bound to the package phase to produce the
collapsed JAR file as we might expect. In the transformers section, a transformer
is added that merges all encountered Plexus descriptor files under META-INF/
plexus/components.xml. Finally, we have the ability to configure the transitive
dependencies that are included and excluded from the final artifact using the
artifactSet configuration.

As of Shade version 1.2, the following transformers are supplied with the plugin:

ApacheLicenseResourceTransformer and
ApacheNoticeResourceTransformer: Specific to Apache license files such as
those we created with the remote resources plugin earlier
AppendingTransformer: To concatenate plain text resources
ComponentsXmlResourceTransformer: For merging Plexus descriptors
ManifestResourceTransformer: For merging Java JAR file manifests
ServicesResourceTransformer: For merging Java services metadata in
META-INF/services

XmlAppendingTransformer: To concatenate XML resource files with
appropriate nesting

These transformers will cover many of your needs when using the Shade plugin.
You may eventually need your own custom transformer if there are certain types
of resources that must be merged between two artifacts that are not accommodated
by the above. In that case, a transformer can be written in a separate artifact and
added as a plugin dependency, then referenced directly from the configuration. This
is similar to the technique illustrated for sharing other build resources such as the
reporting configuration files in Chapter 5, Reporting and Checks.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[199]

Shading dependencies
Another interesting use case of the Shade plugin is to hide or alter the dependencies
of an artifact. This can be helpful in several situations, such as:

Distributing classes from JARs that are difficult to access as dependencies (as
long as such redistribution is allowed). For example, you may need
to use a patched version of a common library and not want to cause conflict
for projects that might depend on both your library and the original version.
Avoiding conflicts with other instances of the dependency within
a classloader or to work around incompatible versions in a
dependency tree.
Reducing the amount of code shipped by selectively including code from a
particular dependency.

These situations are all similar and boil down to including some or all of the classes
from a set of dependencies into the current artifact and altering the transitive
dependency tree to compensate.

Let's consider this example within the context of the example application. In the
example code for this chapter, we have extended the model to use commons-lang,
which is used to construct the equals and hashCode methods. Now, if we were
to share the API and model with third party developers to create their own store
implementations, it would raise the same issues:

Requiring the dependency of commons-lang (about 260K in size) for just a
couple of classes.
Introducing a dependency with a potentially stricter requirement than the
rest of the application may later require (for example, if an incompatible, Java
5 enabled, commons-lang 3.0 is made available), again for very few classes.

In this situation, shading in just the portions of commons-lang that are needed may
be a viable alternative. It is important to note that we can only do this if the license of
the dependency allows such a combination, which in this case is true.

An important part of this scenario is that the dependency is being shared
outside of the current application. Inside an application, where you have
full control of the dependency tree, you are less likely to benefit from
shading dependencies for this purpose.

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[200]

To start with, we will add the Shade plugin configuration to the model/pom.xml file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.2</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <artifactSet>
 <includes>
 <include>commons-lang:commons-lang</include>
 </includes>
 </artifactSet>
 </configuration>
 </execution>
 </executions>
</plugin>

Running the package command with this in place will show the following:

[INFO] [jar:jar]

[INFO] Building jar: /Users/brett/code/06/centrepoint/modules/model/
target/model-1.0-SNAPSHOT.jar

[INFO] [shade:shade {execution: default}]

[INFO] Including commons-lang:commons-lang:jar:2.3 in the shaded jar.

[INFO] Replacing original artifact with shaded artifact.

[INFO] Replacing /Users/brett/code/06/centrepoint/modules/model/target/
model-1.0-SNAPSHOT.jar with /Users/brett/code/06/centrepoint/modules/

model/target/model-1.0-SNAPSHOT-shaded.jar

Multiple things are happening here. First, we can see that the normal JAR is
produced as usual, and then the shade goal runs (consistent with the execution
we added to the project). The plugin next shows that because of the artifactSet
that we gave, commons-lang will be included in the JAR. If there were other
dependencies, they would remain a regular dependency and not be included.
Finally, we see that using the Shade plugin's default configuration, the original
artifact is replaced with the shaded artifact so that this version will be installed or
used in the reactor instead.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[201]

However, we still have some work to do. Notice the size and contents of the JAR for
the model now—so far, we have added all of commons-lang. We would only like to
include the builder classes, so for that purpose we add artifact filters to the Shade
plugin configuration:

<filters>
 <filter>
 <artifact>commons-lang:commons-lang</artifact>
 <includes>
 <include>org/apache/commons/lang/builder/**</include>
 </includes>
 </filter>

</filters>

If we rebuild the project, we see that the JAR has reduced in size and upon inspection
would find that only the files under the given path are included. This also ensures
other files that might cause confusion (such as the pom.properties file under
META-INF from commons-lang) are not included.

Of course, some caution is required here—these classes may well have required some
of the now-excluded classes that are no longer present. In your own projects, ensure
that your integration test cases adequately exercise the code being used; so that
inadvertent runtime errors don't occur later.

Beware the catch here that unit tests won't exercise this change! Unit tests
run before the shading process occurs, so the tests need to occur in the
integration test phase or in a separate testing module.

The next thing that we might notice about the contents of the JAR file is that the
classes are still in their original packages under org/apache/commons/lang. This
poses a potential problem for other projects that use commons-lang and depend
on this API. There will now be two copies of these classes on the classloader that
contains both JARs, and depending on the order, either copy of the classes could be
used. If the wrong version is silently picked up, confusion will ensue on the part of
the developer that appears to be getting the right version of the dependency, but the
wrong behavior.

To prevent this, the Shade plugin allows us to encapsulate the use of commons-lang
entirely by using the relocations feature.

<relocations>
 <relocation>
 <pattern>org.apache.commons.lang</pattern>
 </relocation>
</relocations>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[202]

Now when we build the artifact, we will see that the class names have changed,
for example:

hidden/org/apache/commons/lang/builder/EqualsBuilder.class

This is more than a simple renaming—the Shade plugin has also adjusted the
bytecode of these classes and the references in our own Java classes to rename the
package to include hidden at the start. This will now avoid any conflict with other
instances of commons-lang!

Though this conflict is removed, you may still need to consider the
converse case, if a class depends on only being instantiated once to
operate correctly, or is accessed by a string using Class.forName
for example, shading may not work.

One slight adjustment should be made here, as the default pattern of prepending
hidden is not always a good choice. This can be confusing to see in stack traces,
and if two different dependencies shade the same classes in the same way then
the likelihood of conflict occurs again. Instead, we can choose to include them
within the namespace of our own package instead by a slight adjustment to the
relocation configuration:

<relocation>
 <pattern>org.apache.commons.lang</pattern>
 <shadedPattern>
 com.effectivemaven.centrepoint.model.shaded.lang
 </shadedPattern>
</relocation>

A final thing is worth noting about the configuration we have used so far. Initially,
the shaded artifact replaces the original artifact and is installed in the local
repository. In addition to replacing the original artifact, you may notice that the
POM file installed in the local repository is also replaced with a different version
that removes the commons-lang dependency. This is what we would expect as we
have completely incorporated our commons-lang needs within the classes of the JAR
through the shading process. This is thanks to the createDependencyReducedPom
configuration option being enabled by default.

In some scenarios, you may not wish to replace the artifact, but instead create an
additional artifact, with a different classifier, that contains the shaded alternative.
This can be a good middle ground to give users the choice between an all-in-one
artifact, or the default artifact that allows Maven to manage the dependencies
normally. In this case, the createDependencyReducedPom option should be set to
false, and the shadedArtifactAttached option set to true. Bear in mind, however,
that the dependency representation for the classified artifact in this instance will be
incorrect as the main artifact POM is used for classified artifacts as well.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[203]

The Shade plugin configuration contains a number of other configuration options for
altering inclusions and exclusions at each step of the process that we have seen here
and in particular for altering the technique and naming of artifacts that are attached
with a classifier. Refer to the Shade plugin documentation for more information:
http://maven.apache.org/plugins/maven-shade-plugin/shade-mojo.html

Before we move on, you may have observed a potential side effect of this change;
that there will now be two instances of each class in the application should another
use commons-lang. If multiple dependencies shade in the same classes, there may
be multiple copies so even though this is powerful it is worth being judicious about
using the technique, particularly if you have good control over how your artifact will
be used as a dependency. Maven's dependency mechanism and version management
is there for a reason. If it is possible to continue using discreet artifacts as they are,
then that may be the best and simplest alternative too!

The Build Helper plugin
Within Maven, there are a number of common tasks which plugins can perform to
alter the current project for changes occurring during the build. We have seen the
inclusion of new resources in the Remote Resources plugin, and the attachment of a
new artifact from the Shade plugin. It is also possible to have a plugin generate new
source code and include it for compilation, even though the directory is not included
in the POM file.

The role of the Build Helper plugin is to provide a set of goals that can help achieve
a collection of small but common tasks for which it would not be worth writing a
custom plugin.

Adding source directories
Maven's inability to have multiple source directories in the project model has often
been called into question. However, as time has progressed the request has died
down as the idea of a standardized source structure took hold.

The Build Helper plugin offers the ability to add another source directory or test
source directory to that configured in the POM. This is not necessarily to allow a
workaround for the deliberate limitation in the project model, but rather to facilitate
other use cases that require it. The most common need to use this technique is to
assist with the migration of a project in an existing layout to Maven temporarily.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[204]

Even with this capability it is still recommended not to add multiple
source directories without a particular reason—apart from breaking with
convention, you may find that some tools that operate based on the values
in the POM will not recognize the additional directories as containing
source code.

The following example illustrates the addition of a source directory:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.1</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>src/main/more-java</source>
 </sources>
 </configuration>
 </execution>
 </executions>
</plugin>

The need to use the Build Helper plugin for adding sources is now becoming more
rare. Maven plugins that generate source code would be likely to add the extra
directory to the project internally without the need for additional configuration. If
some other means is used to generate the sources—for example, from a scripting
plugin—it is common for the scripting plugin to have a way to add the source
directory with fewer configurations than using the Build Helper plugin. However,
if the need does arise, the Build Helper plugin will prove itself useful.

Attaching arbitrary artifacts
A similar scenario that can occur is the generation of additional artifacts that need
to be attached to the build process. This means they use the same POM to define
them, but are different types of related build artifacts, with their own classifier.
The artifacts are installed and deployed to the repository alongside the original.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[205]

Typically, this will be in the form of another JAR file, possibly generated by one of
the scripting plugins that did not attach the artifact itself.

However, it could be used for any number of files that need to be stored in the
repository alongside the main artifact. Consider the example of deploying the
license to the repository—if you were to run the install phase on the given project,
you would be able to have the license installed into the local repository alongside the
main artifact and its POM.

In reality, this particular configuration may be overkill, especially if the licenses
are identical across many projects, or can be derived from the POM. However,
depending on your deployment needs this possibility can be helpful in ensuring the
repository contains the information about an artifact that you need, at the time it was
deployed, in addition to any extra build artifacts that might be generated.

In our example application, we generated the license in two places—in all the Java
modules, and the final distribution. Deploying it along with the final distribution
makes some sense, so let's add it to the distribution/pom.xml file:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.1</version>
 <configuration>
 <artifacts>
 <artifact>
 <file>
 target/maven-shared-archive-resources/LICENSE
 </file>
 <type>txt</type>
 <classifier>license</classifier>
 </artifact>
 </artifacts>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>attach-artifact</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[206]

This goal will execute after the packaging has occurred, but before installation so
that it can be attached to the installation (and deployment) process. The file to attach
is the license generated earlier by the Remote Resources plugin and is given an
extension of .txt and classifier of -license. When running the install phase,
we now see the file being processed:

[INFO] [build-helper:attach-artifact {execution: default}]

[INFO] [enforcer:enforce {execution: default}]

[INFO] [install:install]

[INFO] Installing /Users/brett/code/06/centrepoint/distribution/target/
pom-transformed.xml to /Users/brett/.m2/repository/com/effectivemaven/
centrepoint/distribution/1.0-SNAPSHOT/distribution-1.0-SNAPSHOT.pom

[INFO] Installing /Users/brett/code/06/centrepoint/distribution/target/
centrepoint-1.0-SNAPSHOT-bin.zip to /Users/brett/.m2/repository/com/
effectivemaven/centrepoint/distribution/1.0-SNAPSHOT/distribution-1.0-
SNAPSHOT-bin.zip

[INFO] Installing /Users/brett/code/06/centrepoint/distribution/target/
centrepoint-1.0-SNAPSHOT-bin.tar.gz to /Users/brett/.m2/repository/com/
effectivemaven/centrepoint/distribution/1.0-SNAPSHOT/distribution-1.0-
SNAPSHOT-bin.tar.gz

[INFO] Installing /Users/brett/code/06/centrepoint/distribution/target/
maven-shared-archive-resources/LICENSE to /Users/brett/.m2/repository/
com/effectivemaven/centrepoint/distribution/1.0-SNAPSHOT/distribution-
1.0-SNAPSHOT-license.txt

Other goals
The Build Helper plugin also contains some other goals in the latest release at the
time of writing (v1.1) of more specific interest:

remove-project-artifact: To clean the local repository of artifacts from
the project being built to preserve space and remove outdated files. This
may occur if the build no longer produces those files, or if it is necessary to
remove older versions.
reserve-network-port: Many networked applications may want to use a
network port that doesn't conflict with other test cases. This goal can help
reserve unique ports to use in the tests. This is useful for starting servers
in integration tests and then referencing them in the test cases. However,
note that it won't be available when running such tests in a non-Maven
environment such as the IDE.

The goals available in the Build Helper plugin may increase over time, so if you
have some small, common adjustments to make it is a good place to look to first
for those utilities.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[207]

The AntRun plugin and scripting
languages
Maven was designed to be extended through plugins. Because of the fact that this is
so strongly encouraged, there are now many plugins available for a variety of tasks,
and the need to write your own customizations, particularly for common tasks, is
reduced. However, no two projects are the same, and in some projects, there are
likely to be some customizations that will need to be made that are not covered by
an existing plugin.

While it is virtuous to write a plugin for such cases so that it can be reused in
multiple projects, it is also very reasonable to use some form of scripting for short,
one off customizations.

One simple option is to use the AntRun plugin. Ant still contains the largest available
set of build tasks to cover the types of customizations that you might need in your
build, and through this plugin you can quickly string together some of these tasks
within the Maven life cycle to achieve the outcome that you need.

Running simple tasks
We have already used the AntRun plugin in the distribution module of the example
application. This snippet was used to copy some configuration files into place and
create a logs directory, ready for the Assembly plugin to create the archive from:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.1</version>
 <executions>
 <execution>
 <id>config</id>
 <phase>process-resources</phase>
 <configuration>
 <tasks>
 <copy todir="${project.build.directory}/generated-
 resources/appassembler/jsw/centrepoint/conf">
 <fileset dir="src/main/conf" />
 </copy>
 <mkdir dir="${project.build.directory}/generated-
 resources/appassembler/jsw/centrepoint/logs" />
 </tasks>
 </configuration>
 <goals>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[208]

 <goal>run</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This shows how quick and useful the AntRun plugin can be for simple tasks.
However, it also contains a number of other features that can be of benefit to the
build for more significant tasks.

Interacting with the Maven project
As we mentioned in the section, The Build Helper plugin, you can tell the plugin to
map some directories to new source directories. This functionality is identical to that
of the Build Helper plugin, but is more conveniently located when the directories are
being generated by Ant tasks.

This can be useful because even though tools are increasingly supplying native
Maven plugins in addition to Ant tasks, you might come across a source generation
tool that only has an Ant task. In this scenario, you can use the AntRun plugin to run
the tool, generate the source code, and use the sourceRoot parameter to have that
directory added back into the build life cycle.

In addition to injecting source directories back into the life cycle, the AntRun
plugin also injects Maven project information into Ant's context. Probably the most
important of these is the availability of the project's and plugin's dependencies as
Ant path references:

maven.compile.classpath: The dependencies in the compile scope (this
syntax will look familiar to those that used Maven 1's built in Ant-based files)
maven.runtime.classpath: The dependencies in the runtime scope
(including the above)
maven.test.classpath: The dependencies in the test scope (including both
of the above)
maven.plugin.classpath: The dependencies of the AntRun plugin itself,
including any added via the POM

Though we have not needed it in the example application, to illustrate how these two
options would work, consider if you needed to use the XJC Ant task from JAXB to
generate some sources.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[209]

JAXB is a Java-to-XML binding framework that can be used to generate
Java source code from XML schema (among many other things), using its
XJC tool. Though it serves as a suitable example here, you would not be
faced with this issue with JAXB itself, as it now offers a Maven plugin.

In this example, you might add the following configuration to an AntRun execution
in a POM file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.3</version>
 <executions>
 <execution>
 <id>xjc</id>
 <phase>generate-sources</phase>
 <configuration>
 <tasks>
 <taskdef name="xjc"
 classname="com.sun.tools.xjc.XJCTask"
 classpathref="maven.plugin.classpath" />

 <xjc destdir="${project.build.directory}/xjc"
 schema="src/main/jaxb/schema.xsd">
 <classpath refid="maven.compile.classpath" />

 </xjc>
 </tasks>
 <sourceRoot>${project.build.directory}/xjc</sourceRoot>

 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-xjc</artifactId>
 <version>2.1.9</version>
 </dependency>
 </dependencies>
</plugin>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[210]

We see here that the XJC Task is defined using the plugin classpath to locate the
task and its dependencies (and that task's artifact is added as a plugin dependency
to accommodate this). Additional built-in Ant tasks would also be added as plugin
dependencies (such as ant-nodeps).

AntRun and Ant versions
While in some cases they might be compatible, generally you should use
the same version of the Ant optional tasks as the version of Ant itself. The
version of Ant used by the plugin is predetermined by what it has been
built against. In AntRun v1.3, that is Ant 1.7.1. To use a different version
of Ant, consider a different version of the AntRun plugin.

Next, the task is run—being passed the project's dependencies and schema to
generate the source code from. The source code is output to target/xjc, which is
also added as a source directory by the AntRun plugin because of the configuration
specified. As the task runs in the generate-sources phase, it is available for
compilation in the same way as any other source code.

Again, the configuration of AntRun here has been relatively simple, and is
completely integrated with the Maven artifact handling and build life cycle such that
it would not likely be needed to write a plugin to wrap the tool completely if you
were faced with this decision in your environment.

Converting Ant or Maven 1 builds
The AntRun plugin can be most useful when it comes to converting an existing build
from Ant or Maven 1 (if it used custom Ant-based plugins or maven.xml heavily).

The approach to converting such a build varies depending on the project. For some
projects, it is easier to start over on the build and map in modules one by one,
interacting via the repository. For others, it might be a matter of gradually turning
the existing script into a POM file and using AntRun to execute the existing code for
the unconverted parts, keeping the flow wrapped in the new Maven life cycle.

The topic of build conversion is covered in more depth in the
Better Builds with Maven section in Chapter 8, available at
http://www.maestrodev.com/better-build-maven.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[211]

Let's look at another example. The following execution might be added to the
AntRun plugin, with the same pattern repeated for other such examples in different
parts of the life cycle:

<execution>
 <id>gen-src</id>
 <phase>generate-sources</phase>
 <configuration>
 <tasks>
 <ant antfile="build-migration.xml" target="gen-src" />
 </tasks>
 </configuration>
 <sourceRoot>${project.build.directory}/gen-src</sourceRoot>
 <goals>
 <goal>run</goal>
 </goals>
</execution>

In this source generation example, the previous build file is executed to perform a
certain task. As before, the resultant directory is added back into the Maven project
so that Maven can continue to control the build.

You will notice that the original script (perhaps broken up) is retained and called
rather than pasting the script fragment into the POM. While either is acceptable
(as long as the script does not contain multiple targets), it is a good idea to keep the
POM as trim as possible. Unless the Ant script is just one or two lines long, it is better
to put those commands into an external build file to execute.

This advice applies even if not performing a build conversion. If your
Maven build contains script fragments that are longer than a few lines,
consider placing them outside of the POM file. However, bear in mind
that in doing so it will not be available when reading the POM from the
repository later.

In some conversions, a particular task may be reusable in multiple places or projects
(particularly if migrating a Maven 1 plugin). In this case, instead of the AntRun
plugin, you may consider writing your own plugin for the task. Luckily, to reduce
the work involved Maven also offers the ability to run plugins written in Ant.

Maven plugins written in Ant
While the AntRun plugin offers a convenient way to string some simple tasks together,
as with any part of the build process in Maven it is worth taking into consideration a
simple rule of thumb: if you might use it twice, consider writing a plugin.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[212]

Of course, if you do take that step, it is not required to write the plugin in Ant.
However, having the option available is useful as:

It will be easier to use for converting from a previous Ant/Maven 1 build
Ant tasks may be more familiar to your team than writing Maven plugins in
another language
It can be easier to put together a set of Ant tasks for certain procedures than
to write the corresponding code in another language such as Java

The process for creating Ant plugins involves the following steps:

1.	 Create a Maven project of type maven-plugin.
2.	 Add the maven-plugin-plugin to the build section, including a plugin

dependency on maven-plugin-tools-ant.
3.	 Add an Ant build script for each goal to src/main/scripts directory under

the name goalName.build.xml. This should be a completely executable Ant
script containing one target definition.

4.	 Add a Mojo definition for each goal to src/main/scripts directory
under the name goalName.mojo.xml. This defines the mapping of Maven
information to the Ant target.

Plugin authoring (in Ant or other languages) is not something we will go into
detail on in this chapter. For more information on writing plugins in Ant, see the
documentation: http://maven.apache.org/guides/plugin/guide-ant-plugin-
development.html.

Other scripting languages
While this section has focused on Ant as one of the most common scripting tools
for builds, it is worth noting that other scripting languages can be used both for
executable fragments (such as the fragments that AntRun is used for) and whole
plugins (such as the Ant plugin tools are used for).

If you have expertise in a particular scripting language, and would like to use that
for your own plugins or to add fragments to the build, you might consider one or
more of the following projects:

GMaven: This is a mature solution for writing plugins in Groovy, and
running Groovy scripts from the POM. For more information, see
http://groovy.codehaus.org/GMaven.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[213]

JRuby Maven Plugin: This is an early but functional tool for writing plugins
in JRuby, or running Ruby scripts from the POM. For more information, see
http://mojo.codehaus.org/jruby-maven-plugin/howto.html.
Script Maven Plugin: This uses BSF (Bean Scripting Framework) for running
scripts in other languages directly from the POM. Supports a larger number
of languages, but does not allow the creation of native Maven plugins from
the source. For more information, see http://mojo.codehaus.org/script-
maven-plugin.

At the time of writing, the Script Maven Plugin has not
had an official release and needs to be built from source.

The Exec plugin
In some build situations, the best (or only!) way to get something done might be to
run an external application, or a piece of Java code. It was for this purpose that the
Exec plugin was created.

The plugin contains two goals: exec:exec and exec:java. They are similar in
purpose, however the java goal sets up an easier way to pass Java configuration and
execution parameters to a forked JVM instance, whereas the exec goal simply runs
any executable available on the system.

To use the exec goal, you pass the path of the executable program in the executable
configuration option, and optionally can add the environmentVariables or
arguments configuration to run the command as desired.

Portability
Keep in mind the question of portability when using the exec goal.
Some executables may not be available on all platforms that the build
will run on. You may need to clearly state the requirement in the build's
documentation, gracefully degrade the functionality, or use a profile to
run a different executable on a different platform.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[214]

In contrast, the java goal automatically locates the JVM executable to run,
and instead you provide the mainClass configuration option. The arguments
configuration can again be given, but can also include a classpath option that
helps construct Java -classpath arguments from the Maven build (though it is also
possible to pass this to the exec goal if you happen to be running a particular java
executable with it). You may also configure systemProperties for the plugin to pass
to the forked JVM instance.

By default, the java goal will construct its base classpath from the current project's
dependencies, though it is also possible to have it pass the plugin's dependencies
as well or instead of the project dependencies. For more information on configuring
either of the plugin goals, refer to the plugin website at: http://mojo.codehaus.
org/exec-maven-plugin.

Both of these goals provide a useful way to run external processes, depending on
what type of application it is. However, the context that it will be used in is also
important. For execution there are often two scenarios—integrating the external
process into the build life cycle (much like the examples we have seen with AntRun
previously), or pre-configuring the plugin to be able to be run from the command
line for a given project.

Adding the Exec plugin to the Build life cycle
In the first scenario, there may be an external tool or Java application that needs to
be run at a certain point in the build for which the plugin should be configured.
This occurs in the same way as for any other plugin, using a particular execution.

In The AntRun plugin and scripting languages, we looked at running the XJC tool from
Ant. Another alternative could be to run the tool from the command line (assuming
it had been pre-installed in the path):

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.1.1</version>
 <executions>
 <execution>
 <id>xjc</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>exec</goal>
 </goals>
 <configuration>
 <executable>xjc</executable>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 6

[215]

 <arguments>

 <argument>-d</argument>

 <argument>${project.build.directory}/xjc</argument>

 <argument>src/main/jaxb/schema.xsd</argument>

 </arguments>

 <sourceRoot>${project.build.directory}/xjc</sourceRoot>
 </configuration>
 </execution>
 </executions>
</plugin>

For this particular scenario of source generation, the Exec plugin also contains a
sourceRoot and testSourceRoot parameter for adding any generated sources into
the build for later—exactly like the AntRun plugin.

Notice in the example that the configuration is inside the execution element, and
therefore will not be able to be run from the command line. This is usually the best
course of action when binding to the life cycle so that multiple instances are possible.

Running the Exec plugin standalone
There are also a number of uses for running the Exec plugin directly from the
command line. This might be used with a particular project, or run independently.

A common reason to use this approach is if a particular Maven project produces
an executable JAR—we looked at such an example with the Shade plugin earlier.
By pre-configuring the Exec plugin with the necessary information, the JAR can be
easily run by Maven itself. The following POM snippet from the Archiva XMLRPC
Client illustrates this:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.1.1</version>
 <configuration>
 <mainClass>
 org.apache.archiva.web.xmlrpc.client.SampleClient
 </mainClass>
 <arguments>
 <argument>http://127.0.0.1:8081/xmlrpc</argument>
 <argument>admin</argument>
 <argument>${password}</argument>
 </arguments>
 </configuration>
</plugin>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Useful Maven Plugins

[216]

Here, the project dependencies are included and the given arguments passed to the
main function of the class specified. Notice that in contrast to the previous example,
the configuration is not in an execution, both because it is not bound to the life cycle,
but also so that it can be run from the command line.

Executing this is now a matter of running the following command:

$ mvn exec:java -Dpassword=ADMIN_PASSWORD

Clearly, this is much easier to remember than the full set of arguments!

In similar scenarios, the Exec plugin can become very useful in being able to give a
simple demonstration or quick use of an application while in development. In some
ways, it can be compared to jetty:run for web applications as bringing the same
functionality to executable standalone applications.

Summary
As we learned early in the first chapter, once you have the right framework in place
with Maven, it is a matter of finding and selecting the right combination of plugins to
assemble your build from there on. Here, we have seen a selection of such plugins to
help achieve some common builds goals.

The list doesn't stop here though. If you are looking to integrate a particular tool
or framework into your build, see if a plugin is already available for it. A number
of plugins such as the Dependency plugin, Enforcer plugin, Assembly and
App Assembler plugins, discussed elsewhere in the book, have more goals and
configurations that are worth investigating as well. If you have some other needs
that might apply to multiple builds, search for a plugin to serve that case, or beyond
that write one yourself in a scripting language, as a set of Ant tasks, or your own
Maven plugin. Online Maven repository search engines can be helpful in finding
other plugins to use.

In the first half of this book, we have covered all the pieces of the build puzzle
needed to build an application with Maven—from the basics to dependency
management, multi-module applications, distribution, reporting, and now a
variety of plugins to augment build functionality.

With this in place, in the next chapter we are going to review what we have learned
about Maven so far and lay out some best practices to keep in mind as you write or
review your own builds.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices
Poor Maven has a reputation for being too complicated, overly restrictive, and more
trouble than it is worth. Just try entering a word expressing frustration along with
Maven into Google, and see what results you get!

Of course, Maven is not perfect and it does suffer from a number of these failings
(perhaps more often than it should). However, it does not have to be that way—in
many cases it is because unnecessary flexibility is sacrificed for consistency and
conciseness, and trying to fight against that can make Maven harder to use than
it needs to be.

If you are frustrated with Maven right now, the troubleshooting appendix may be of
more use to you. In this chapter, we will look at the preventative medicine for you
and your teammates in the future. As you already know how to use Maven, we will
investigate a number of strategies for using Maven well.

Of course, this whole book is about Maven best practices, and some of the most
important decisions you will make about your environment came in the preceding
chapters, so we are already well on the way to using Maven effectively. It is always
helpful to learn about Maven from "first principles", so that you are prepared when
you work with it to recognize the techniques that look right, and those that have
a funny smell about them. However, here we will shift our context slightly to the
general principles that you can use at any stage of establishing a project, or to review
an existing project.

There are a number of day-to-day tips that we will cover that can improve the way in
which we use Maven. This includes some tips for avoiding the pitfalls that you may
have already seen, and other practices that you may not have encountered that can
take your Maven usage to the next level.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[218]

Preparing the development environment
You may remember from the earlier chapters that Maven is best used as part of a
bigger picture. It has a capability to be the focal point for continuous integration,
repository and dependency management, source control management, testing,
project reporting and metrics, and even issue tracking and other tooling.

Surprisingly few projects take full advantage of this. While changes are inevitable,
it is likely that most of your project infrastructure is in place before a project even
begins, and the more that you can have established and documented, the more
successful it will be as a part of the project's development.

When preparing Maven for use within your development environment, you need to
look at all levels of configuration available:

If you share a Maven installation, the installation settings are where you
specify what you share with others in your environment, such as the location
of team repositories and network proxy servers.
The user settings are for those settings that are not shared at all, such as server
usernames and passwords, and any local paths. They can also be used for
sharing settings across multiple installations of Maven on a single machine.
The project settings are those, declared in the POM, that are shared with
everyone building the project anywhere (that is, enough to make it work
out of the box).

We will first look at how each of these relate to the development environment.

As of Maven 2.0.9, additional settings (toolchains), are also supported.
However, at the time of writing plugin support is not sufficient for
regular use. These are worth considering for use in the future, as a way
to centralize paths to JDK installations and so on. However, in the mean
time this is best addressed through carefully defined properties in both
projects and settings.xml.

Maven installation and user settings
We have already encountered the Maven settings.xml file earlier in the book.
In many situations, the few simple settings that we have already added will be
sufficient for your environment.

This is an important fact to take note of—if you find that you require a lengthy
settings file then you might be establishing a bad practice that will be time
consuming for new members of the team to set up, and for existing members
to keep track of.

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[219]

Use the Maven settings files for those settings that apply to any
project built in a particular development environment. Above
all, keep your Maven settings files simple!

Now, what about those settings that you do include? It is rarely mentioned that there
are two locations for the Maven settings file, in the installation and the user's home
directory, and it is worth examining how best to use each.

Many prefer to use just the ~/.m2/settings.xml file. This is, of course, perfectly
fine, as it has the benefit of always being in the same location, and even when you
upgrade Maven (or change between versions you have installed) the file does not
need to be changed.

However, there are good reasons to consider using the installation settings file
(in conf/settings.xml where Maven was installed) as well, and these relate to
the situation where multiple users might be sharing a single Maven installation. The
most likely settings to share in this case will be the proxies and mirrors—in other
words, how to access remote files consistently.

To reduce the effort in keeping a large group of developers up-to-date,
share installation settings among users where appropriate.
However, don't share the local repository used by multiple developers!
A lack of synchronization and separate workspaces will cause problems
as multiple users write conflicting changes to the same directory.

How you go about sharing the settings will be highly dependent on which
environment you find yourself using. In some cases, it will only be necessary to share
the settings.xml file, in some it may make sense to ensure everyone is using the
same version of Maven itself by sharing the entire installation. Some alternatives are:

Shipping or updating the settings file using desktop management tools.
Checking the Maven installation into SCM so that a simple update command
will update the settings and Maven version.
Using a shared location, such as a network path or system-wide installation
when multiple users are on the same server.
Shipping a re-bundled distribution where the default settings file is replaced.
This option will also allow for adding custom components by default, though
bear in mind that any such changes limit the reproducibility of building a
project on different Maven versions.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[220]

Encrypting server passwords
For those using Maven 2.1.0 and above, a healthy practice to observe is to encrypt
the passwords in the server section of settings.xml. For more details on how
to achieve this, refer to Chapter 2, Staying in Control with Archiva, where this
was explained.

Project settings
An important step that you can take is to ensure as much of the infrastructure
as possible is registered in the POM. Even if your build may not use all of the
information immediately, it ensures the information is available later when a
new tool is introduced or a new use case is formed.

Consider the following elements to describe the project's infrastructure:

Distribution management (distributionManagement): We encountered
this element earlier; it is a prerequisite to deploying your artifacts into a
repository and to deploying the project web site. Note that when deploying
a site, the project's url element should correspond to the eventual location
given in this section.
Source control (scm): Even if only for documentation purposes, it is
valuable to include information about the location of source control in your
project descriptor. However, it is used by Maven and other tools for more
practical reasons as well, as we will examine in the next chapter, which
covers continuous integration.
Issue management (issueManagement): This straightforward element
is used to point users and developers to the issue, bug or task tracker for
the project.
Build management (ciManagement): Much like the issue tracker, this
element points users and developers in the direction of the continuous
integration or build server for the project. We will look at this in greater
depth in the next chapter.
Mailing lists (mailingLists): While mailing lists are a staple
communication mechanism in open source projects, they are also quite
common in some form in many corporate environments. If a project has such
a list, it is helpful to add it to the POM. This is another good candidate for
inheritance. In some cases, a team distribution list placed in an organization
POM will be sufficient.

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[221]

Participants (contributors and developers): Don't be shy! Information
such as the id and email are used to link a developer to their commits in
a number of places, and it can be of benefit to be able to search for what
projects a particular developer has been involved in. Inheritance should be
used as much as possible to avoid repetition, and you should be as specific
as you feel is necessary. Developer roles can be used to keep track of an
individual's current role in the project, or to mark that they have moved on
and keep a record for historical purposes.

Provide as much useful information as possible in every Maven POM
While here we are looking at the importance of describing development
infrastructure, it is just as important to supply descriptive project
information such as the name, description, license, and so on.
For example, consider what happens when your project is deployed to
Archiva—all of the information that you have referred to in your project
is captured and associated with a given release for the future. In a large
organization, the description element that you have given can be
used by others to search for a project they may not have been aware
they could use.

Project inheritance can be utilized to avoid repeating these elements in every project.
For example, the distributionManagement element may only need to be specified
once for your entire organization. Some elements that work with directories provide
additional assistance during inheritance if the conventions are being followed: scm,
url and the corresponding site section of distributionManagement. When these
are inherited, the artifact ID of the module is automatically appended to the path
of each. This assumes that the artifact ID of the module matches the directory name
used in source control. Should the automatic values not be correct, you would need
to redefine the elements with the correct values in the modules.

One set of elements we did not consider here are repositories (at least those used
for downloading dependencies and plugins). As they span both the POM and the
settings files they deserve some special attention.

Configuring repositories
Because the repositories can be specified in several places, it can often be confusing,
so let's look at the best practices for using repositories in your project.

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[222]

A repository can be assigned three ways for retrieving dependencies or plugins.
They are:

A repository element in the POM (including the default definition for the
central repository)
A repository element in a profile in settings.xml
A mirror element in settings.xml (replacing an existing repository above)

The mirror settings that have been demonstrated so far should be considered as
the primary means of managing your repositories in your environment when used
in conjunction with a repository manager. They have the ability to give you full
control over your dependencies, preventing other projects from introducing
repositories you were not expecting and reducing build times by avoiding
consultation of multiple repositories.

Use mirrors to lock down external access to your
repository manager, which can in turn manage any
further external use as needed.

In particular, be sure to use the following in at least one of your mirrors to ensure the
environment is properly locked down to a repository manager for which you have
full control of:

<mirror>
 <id>archiva.public</id>
 <url>http://localhost:8081/archiva/repository/public</url>
 <mirrorOf>external:*</mirrorOf>
</mirror>

This will instruct Maven to use this repository manager for all repositories except
those on the filesystem (which are special cases used by some projects).

If needed, you can specify additional repository mirrors, for example:

<mirror>
 <id>archiva.public</id>
 <url>http://localhost:8081/archiva/repository/public</url>
 <mirrorOf>external:*,!my.snapshot.repo</mirrorOf>
</mirror>
<mirror>
 <id>archiva.snapshots</id>
 <url>http://localhost:8081/archiva/repository/snapshots</url>
 <mirrorOf>my.snapshot.repo</mirrorOf>
</mirror>

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[223]

In this example, the repositories declared in projects using the identifier
my.snapshot.repo will be directed to Archiva's snapshot repository,
while all other repositories will be directed to the public repository group.
The exclusion on snapshots (!my.snapshot.repo) is not needed if the
public definition is given last, however it is a good practice to be explicit
rather than relying on ordering to avoid problems with an accidental cut
and paste later. The external:* and ! notations are only available in
Maven 2.0.9 and above.

This example does rely on a repository—my.snapshot.repo—being declared in a
project at some point, though. While declaring repositories in a project is increasingly
becoming a less necessary procedure, there are still some reasons to do so.

For a project intended to be consumed by the general public, it is best to ensure that
their first experience building the project is a positive one – after all this is one of
the advertised strengths of Maven. Failing with missing dependencies won't help
that cause! For this reason, it can be a good idea to declare any repositories that the
project needs to find its dependencies. However, this use should be minimized as
much as possible.

Addition of repositories means that the user needs to trust new sources, and it
decreases efficiency as the additional repositories are searched. It is particularly
problematic if your project will be consumed as a dependency by another project, as
this then transitively includes a new repository, almost unsuspectingly. In addition,
any repository in the POM must be perpetually available to all users that will be
attempting to build the project.

If your project is to be consumed by third parties as a dependency and
you need to access specific repositories, weigh up the pros and cons of
introducing a repository for them, or requiring them to add it to their
own build.

In an organization where the repositories are added consistently, it can make sense to
add them to an organization POM to share amongst all projects. This is particularly
useful for snapshot repositories as Maven does not declare a default snapshot
repository. However, note that the location of the organization POM must be able
to be found from existing repository definitions or the Maven settings. If this is not
possible, you may need to declare the repository in each user's settings file.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[224]

Consider the following settings.xml example, which picks up from the snapshots
example earlier:

<profile>
 <id>global.repositories</id>
 <repositories>
 <repository>
 <id>my.snapshot.repo</id>
 <url>
 http://localhost:8081/archiva/repository/snapshots
 </url>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
 </repositories>
</profile>

In this example, we add a snapshot repository to every project in the environment,
directing requests for snapshots (note that releases are disabled) to the repository
manager. It is important that we have named the repository my.snapshot.repo as
that was excluded from the mirror setting earlier. Likewise, the profile needs to be
enabled, so the following should be added to your settings file as well:

<activeProfiles>
 <activeProfile>global.repositories</activeProfile>

</activeProfiles>

Even though these repositories are configured to define where the default locations
are, it is still best to use the mirror settings to lock down the environment to a
repository manager housing these.

Another reason to declare repositories in the POM is to change the characteristics of
the repository that are not available through the mirror settings—to enable or disable
the use of snapshots or releases, and to change update policies. These could be set in
either the settings file as above or the POM depending on whether they are specific
to the environment or the build of the project.

For example, due to issues in Central, the default repository sets checksum failures
to warn only. This can avoid problems with bad metadata, but also means that
situations where incorrect content is received will go undetected and corrupt the
local repository.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[225]

To change this configuration, we can use a similar profile to that given above and set
the following override for Central in our settings:

<profile>
 <id>global.repositories</id>
 <repositories>
 <repository>
 <id>central</id>
 <url>http://repo1.maven.org/maven2/</url>
 <releases>
 <checksumPolicy>fail</checksumPolicy>
 </releases>
 </repository>
 </repositories>
</profile>

This will override the default definition (not add a new repository) which has the
same ID of central, and all mirrors will still be used.

As we saw in Chapter 2, Staying in Control with Archiva, Archiva
can also control how checksums are managed, including correcting
problems from remote repositories to ensure you have a trusted source
that makes enabling the above even more beneficial.

Having looked at various environmental properties of the POM and ways to make it
as complete as possible, we now turn our attention to the structural construction of
the project, and the build section in particular.

Keeping it simple
One of the great temptations in putting together a build environment, or to make
changes to it, is to do it as fast as possible. After all, once that is out of the way,
the real work can begin! As much as this makes sense, builds constructed without
enough thought can end up much like code approached in a similar way—bloated,
inconsistent, hard to understand, and hard to maintain.

Maven takes some measures to avoid this by enforcing build modularity through
plugins and encouraging reuse. However, there are still plenty of opportunities for
these problems to occur and measures need to be taken to avoid them.

The best recommendation that can be taken here is to think of the build file like any
other piece of code. Good development practices tend to apply in both areas. Plan,
design the build structure, and examine user stories to keep the scope for what you
are trying to achieve when you want to add a new feature.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[226]

Of course, don't over-do it! Over-architected code can be even harder to do anything
with than spaghetti code, and the same applies to build files. The build is no place to
try and get creative—it should be boring, reliable, and above all, simple. Avoiding
complexity wherever possible will lead to better long-term maintainability and
comprehension. Nobody wants to deal with 42 modules where four will do!

This advice applies to any build system, but luckily, Maven specifically provides
the tools to help, and we'll now look at some techniques to take advantage of its
strengths, while avoiding the temptation to get out of control.

Using conventions
If the goal is to keep the POM simple, then the first step is surely to reduce the
amount of information present. In the previous sections, we looked at adding more
information into the POM in the interest of adding value, now it is time to remove
information that isn't adding value.

This is one of the reasons Maven emphasizes conventions. Many choices are
arbitrary and one option or another may just be a matter of preference or policy.
In such a case, it is better to adopt a common convention for a number of reasons:

Developers familiar with the convention do not need to learn new options
Unimportant information can be omitted so that important information is
more obvious
A bonus for the indecisive—there is no need to make a decision

There are many areas in Maven that use conventions that we can take advantage of,
with the most common examples being:

The build life cycle itself is a fixed convention for all Maven builds
The POM contains a number of fields that are preset for the project type
The rules of inheritance for the POM construct paths and inherit fields in a
certain way
The configuration of plugins usually have sensible default values
In many of the above cases they work together to dictate a standard directory
structure for a project

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[227]

Consider the following example of identical projects that use a slightly different
directory layout. Firstly, the project that follows the conventions:

<project>
 <groupId>com.effectivemaven</groupId>
 <artifactId>test-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>
</project>

And now, the one that makes slight alterations:

<project>
 <groupId>com.effectivemaven</groupId>
 <artifactId>test-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>
 <build>
 <sourceDirectory>src/java</sourceDirectory>
 <testSourceDirectory>src/test</testSourceDirectory>
 <resources>
 <resource>
 <directory>src/java</directory>
 <excludes>
 <exclude>**/*.java</exclude>
 </excludes>
 </resource>
 </resources>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <warSourceDirectory>src/web</warSourceDirectory>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

As you can see, this is a lot more information that needs to be specified, understood,
and maintained—without adding much value other than changing some perhaps
arbitrary paths. While directory structures are not always to blame for these
occurrences, they are often the ones that require the most contortion of a build
to fit a certain layout, and often the most unnecessary.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[228]

But I have to!
For many reasons you may need to have a different directory structure.
This may be due to a policy, some other tooling, or an in-grained
convention or preference within a team. This is entirely possible, and
can still be effectively managed through judicious use of inheritance.
However, take this opportunity to consider whether adopting a common
convention might just make your life a little easier.

Using inheritance
Removing information that is part of a convention is a great start, but every build
needs to be customized. Inheritance is one of the easiest ways to adopt the principle
of Don't Repeat Yourself, though it can be applied in many other areas such as the
management sections and by creating plugins.

Consider the previous example, where a particular directory structure did need to be
adopted across a set of projects. With some slight modifications, the parts of the web
application that would be reused could be moved to a parent POM for the team:

<project>
 <groupId>com.effectivemaven</groupId>
 <artifactId>test-parent</artifactId>
 <version>1-SNAPSHOT</version>
 <build>
 <sourceDirectory>src/java</sourceDirectory>
 <testSourceDirectory>src/test</testSourceDirectory>
 <resources>
 <resource>
 <directory>src/java</directory>
 <excludes>
 <exclude>**/*.java</exclude>
 </excludes>
 </resource>
 </resources>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <warSourceDirectory>src/web</warSourceDirectory>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>
</project>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[229]

The two changes are highlighted. This project is now declared as the parent project.
The WAR plugin configuration has been moved into a pluginManagement section
so that the configuration will be ignored for different types of projects that do not
already use the WAR plugin.

The pluginManagement section operates like the
dependencyManagement section in Maven—the configuration and
executions are applied to any instance of that plugin encountered
(including if it is introduced implicitly by the packaging life cycle),
but if the plugin is never encountered then that pluginManagement
section is ignored.

The individual web application now looks much more like the original example:

<project>
 <parent>
 <groupId>com.effectivemaven</groupId>
 <artifactId>test-parent</artifactId>
 <version>1-SNAPSHOT</version>
 </parent>
 <artifactId>test-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>
</project>

The only addition is that of the parent reference, while all the changes are now
centralized to that project, avoiding repetition and allowing us to version certain
configurations and change between them based on the version of the parent. As an
added bonus, because the group is the same, we can use the inheritance convention
to avoid re-specifying it.

In this instance, we have used one level of organization POM to factor out
conventions common to a team. It has the separate, sequential versioning, and is
typically located outside of the project as we saw in Chapter 3, Building an Application
Using Maven.

The other situation for inheritance is in a multi-module build. The same changes can
be applied in that situation, though the emphasis will shift towards project specific
settings such as dependencies. In addition to this, there are a number of methods for
using modules to keep projects simple.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[230]

Decomposing the build into modules
Managing modularity is an important concern to address as it covers multiple
aspects of software development—the structure of the code itself, the packaging
and distribution for consumption by others, and the structure of the build. For this
reason, Maven builds the concept in to align these concepts and take advantage of
the common principles.

In Chapter 3, Building an Application Using Maven, we examined a reusable
module structure for Maven builds, and some of the advantages of modularizing
a project, including:

Re-use
Readability
Development efficiency
Release cycles
Enforced design constraints

Deciding on how to modularize is not a clear-cut choice, but rather a balance based
on experience. We don't want to under-modularize—one JAR that contains 15,000
classes and is 22MB might be OK for the prerequisite Java runtime class library but if
all you wanted from it was java.util then you would be hesitant to use it. On the
other side, over-modularizing can cause problems as well:

Needing to hunt around for the right module
Starting to drag in a large number of dependencies
Increasing the likelihood of version conflict problems
Circular dependencies
General maintainability problems such as longer build times, large numbers
of artifact deployments, and increased repository maintenance needs

The following are some tips that can help when making decisions about when to
create a new module.

Aligning��������������������� the source structure
In the examples that we have seen so far, it has been assumed that there is some
alignment between the source structure, the module structure, and the inheritance
structure. That is, a single releasable project is in one source tree, where the modules
are in subdirectories that match the artifact ID (and their parent project is then in the
parent directory).

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[231]

This is certainly encouraged by Maven with several advantages:

Source control is a single checkout, and matches the structure of the eventual
source distribution
The build always occurs from the top level project, following convention
The Maven release mechanism and Continuum set up are trivial to use
SCM elements and URLs can be automatically derived for modules

The limiting factor of using this structure in the past has been the inability of
Eclipse to handle nested projects (which occurs if you wish to add the parent and
the modules as separate projects). Recently, Eclipse integrations have learned to cope
with this well and should not be a concern, so the hierarchical module structure is to
be highly recommended.

Selecting������������������������������� group and artifact identifiers
As the number of modules being created grows, the challenge of choosing a unique
identifier can also increase. There is room to be flexible on this as long as it is
consistently applied in your organization, but the following tips may be useful.

The first consideration is the group ID. The main question here is when to nest
another level. Ideally, this would occur with each level of organization POM. So in
our example application this was com.effectivemaven and com.effectivemaven.
centrepoint. However, note that additional nesting was not added for modules, or
corresponding Java packages such as store. In most cases, a single releasable project
can use the same group ID no matter what nesting is present. New levels should
only be needed if there is a true subproject, or a need to segregate similar artifact IDs.

Choosing artifact IDs was covered in Chapter 3, Building an Application Using
Maven, and it was noted that short forms such as those in the example application
could be of benefit if they are unlikely to be used outside of the current application.
However, even though the group and artifact ID combined may be unique, often
the artifacts are used with just the artifact ID in the filename. For example, the JARs
which are included in a web application's WEB-INF/lib directory. If interacting
with other frameworks, there is a good chance that the simple name of model used
in the example might clash. If this is a possibility, or if the libraries are expected to
be used by others, a common practice is to prepend the last part of the group ID to
the artifact ID. Therefore, the module in the example would have an artifact ID of
centrepoint-model. For consistency, all other modules in the build should do
the same.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[232]

While this is often enough, it is a judgment call based on expected usage, and you
may wish to use other variants. For example, it is common for OSGi applications to
use a filename equivalent to com.effectivemaven.centrepoint.model-1.0. To
meet this particular convention, you might use a group ID of com.effectivemaven.
centrepoint and an artifact ID of com.effectivemaven.centrepoint.model. In
many cases, this is unnecessary duplication, but the opportunity is there if it makes
sense, as long as it is applied consistently.

Building modules together
Break the build into sections that you would tend to build together. If you build a
certain set of modules together frequently, making them their own subtree can make
building them easier.

The structure of an application outlined in Chapter 3, Building an Application Using
Maven, achieves this by keeping all of the Java modules together, while others such
as the distribution and documentation can be built separately, though if needed all
can be built together. If there were a large number of Java modules, they could be
further broken down (if it was found to be useful). For example, by grouping all of
the back-end modules, the web modules, and so on.

Each module should be independently ������useful
A single module should be useful when used on its own (along with its
dependencies). If you always need to include another module alongside it
that is not a direct dependency, it may have been broken down too far.

Watching the dependencies
If your module has a number of optional dependencies, then it may be too large
and can be broken down along the lines of the dependencies. This can ensure
that projects that use only one portion of the code need not drag in unnecessary
dependencies and you can avoid the complexity of declaring optional dependencies.

Separating API from implementation
It is not always useful to be able to provide an alternate implementation of an API,
but in those instances it is a good idea to separate the API from the implementation
in the packaging and make it clear from the artifact names. Users can then depend
on the API without polluting their dependency tree with the dependencies of
the default implementation. In some cases, the API may even go onto a separate
release cycle so that implementers can code against something stable across
product versions.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[233]

For example, consider the store API from the example application in earlier chapters.
While initially implemented against a flat file, it might later store the information in
a database using Hibernate through a different implementation. Now, if there were
a reporting library that needed to query the project store without being concerned
about the implementation it could depend on the API module and avoid making
the decision to include the Hibernate modules. The application that then uses the
reporting API could choose just to include the Hibernate module, or both, depending
on what it needed, without having to get additional transitive dependencies.

Trimming dependencies
We have just seen some recommended ways of breaking down a project into
modules, and saw how that positively affected the handling of dependencies
within the project. Such techniques can make the project a better player in the
Maven ecosystem.

However, what can be done when dealing with third party dependencies that are
outside of your control?

It is important to keep a close eye on your dependencies as you make changes over
time to ensure you are only using what you need. If you are producing a library to
be used by others, your dependencies will be passed on transitively, so you want to
limit them as much as possible. If you are packaging an application that will bundle
its dependencies, you will want to keep the size down.

Maven provides tools to help manage these situations, in the Dependency plugin.
From the command line, the first goal you will likely need is dependency:tree.
To try that for yourself, run the command on the maven-importer module in the
example application from earlier chapters:

maven-importer$ mvn dependency:tree

This reveals all of the dependencies used, both those used directly and those
acquired transitively. We can notice at least one, JUnit, that looks out of place:

[INFO] [dependency:tree {execution: default-cli}]

[INFO] com.effectivemaven.centrepoint:maven-importer:jar:1.0-SNAPSHOT

...

[INFO] +- org.codehaus.plexus:plexus-container-default:jar:1.0-alpha-10:
compile

[INFO] | +- junit:junit:jar:3.8.1:compile

[INFO] | \- classworlds:classworlds:jar:1.1:compile

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[234]

Some research would show that Plexus requires this artifact for a specialized test
case that it includes, which is not used by our application. Effectively, JUnit is an
optional dependency, though it has not been marked as such by Plexus in its POM.

Others will use the maven-importer library, and we don't want to pass on the JUnit
dependency. We already have such an example where it is unnecessarily included in
Centrepoint's web application under the WEB-INF/lib directory.

To ensure JUnit is not included, add the following to the dependency where it
came from:

<dependency>
 <groupId>org.codehaus.plexus</groupId>
 <artifactId>plexus-container-default</artifactId>
 <version>1.0-alpha-10</version>
 <exclusions>
 <exclusion>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 </exclusion>
 </exclusions>
</dependency>

As you can see by running the command again, JUnit is no longer included. In fact,
the same can be seen by running mvn clean install from the top-level modules
directory and examining the WEB-INF/lib directory of the web application that
is built.

While Maven currently does not support global exclusions, if you would
like to ensure a dependency never occurs the Enforcer plugin can be
used to set up some global rules. For an example of such a case, refer to
Chapter 1, Maven in a Nutshell.

There are two ways that the Plexus developers could have avoided propagating
this issue had this been foreseen. The first would be to mark JUnit as optional in the
Plexus POM, such as this:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <optional>true</optional>
</dependency>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[235]

This indicates that consumers of the library may or may not need to use the specified
dependency. Obviously, this is not very specific! This makes the dependency become
a hint, where it will not be used by default, but will be considered for scope and
version calculations. If you decide to use the library, it would need to be included in
the target POM again.

A better alternative is to split modules along functional lines where dependencies
are optional. In this case, the Plexus library could become plexus-container-
default (classes not depending on JUnit) and plexus-testcase (classes depending
on JUnit). Afterwards, plexus-container-default would depend on plexus-
testcase with a scope of test, so that the JUnit dependency is not passed on. While
this is ideal, the decision to split a library would need to be taken carefully as it
is not always a straightforward separation of classes (perhaps they have circular
dependencies that need to be further separated), and you would need to consider
backwards compatibility across versions.

Another piece of information that can be of benefit to reducing the size of the
transitive dependency tree is the scope of the dependency. In the previous example,
the JUnit dependency could be specified like the following if it is only used for
test cases:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
</dependency>

Without the scope, this dependency would be passed on to any other projects
that used the library. However, the test scope indicates that it should not be
exported at all.

This seems obvious when declaring JUnit for testing. However, how about other
libraries that contain implementations having no direct dependency in the code?
In this case, the dependency can be declared as runtime scope to ensure they are
not accidentally used during compilation in either the current project or those that
depend on it, but are still passed on and bundled for use at runtime.

An additional tool to help with trimming dependencies is the dependency:analyze
goal. This goal will examine your code and estimate which direct dependencies
could be removed. It will also identify those that are being used directly and
should be added to the POM to be more explicit. Let's try this command on the
maven-importer module:

maven-importer$ mvn dependency:analyze

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[236]

This results in the following output:

[dependency:analyze {execution: default-cli}]

Used undeclared dependencies found:

 org.apache.maven:maven-model:jar:2.1.0:compile

 org.apache.maven:maven-artifact:jar:2.1.0:compile

Unused declared dependencies found:

 org.apache.maven.wagon:wagon-http:jar:1.0-beta-5:runtime

 org.apache.maven.wagon:wagon-file:jar:1.0-beta-5:test

Here you see the two dependencies that contain classes that have been directly
used by the code (maven-model and maven-artifact). It is a good practice to
declare these explicitly, in case the transitive tree changes in future versions and
removes these required libraries. Therefore, we should add the following to
maven-importer/pom.xml:

<dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-model</artifactId>
 <version>2.1.0</version>
</dependency>
<dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-artifact</artifactId>
 <version>2.1.0</version>
</dependency>

We also see two unused dependencies listed. This is expected as one is used by
dynamic loading only at runtime and the other in test cases respectively. Should a
compile scope dependency appear here, you would want to assess if it should be
removed, or changed to runtime or test scope.

Unfortunately, the goal cannot make an assessment about what transitive
dependencies will be used. This requires knowledge of the dependencies that you
are using. However, as a first step to pruning unused dependencies the analyze goal
can be quite helpful.

Dependency version management
There is one final area to attend to with regard to dependencies in the project, and
that is the version of dependencies being used. While Maven is able to take two
dependency versions and decide which is best to use and discard the other, it makes
the build simpler—and faster—to reduce the variance for any versions across a
multi-module build.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[237]

This can be achieved using the dependencyManagement section of the POM in the
parent to assign a version for a particular dependency wherever it is encountered
throughout the build—whether it is declared directly or is found through the
tree of dependencies. This is most useful in incidences where Maven selects a
different version to the one desired, but can also be of benefit in making the build
more explicit.

We have already seen examples of this use in the example application, with the
modules/pom.xml file specifying unified versions for the application modules and
Guice, and overriding the version of plexus-utils transitively.

Managing dependencies has the added benefit of centralizing the specification of
versions. This ensures that a change need only be made once, and it is obvious where
that change should be made. However, much like modularity, caution and balance is
also needed in taking advantage of this ability—for dependencies that are only ever
used once it can be very verbose to list them in the parent POM and it adds a level of
indirection to finding the version for a given dependency when reviewing the POM.

While the dependencyManagement section lets you consistently set a version
for a single artifact at a time, there are some groups of dependencies that will
have the same version that you might want to set just once. For example, in the
maven-importer module, we now have three dependencies on Maven 2.1.0
libraries. The best way to unify these at present is to use a property.

We can make this modification to maven-importer/pom.xml to illustrate. First, we
must add the property:

<properties>
 <mavenVersion>2.1.0</mavenVersion>
</properties>

With this property in place, it can now be referenced from all of the dependencies:

<dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-model</artifactId>
 <version>${mavenVersion}</version>
</dependency>

This simple change can allow easy upgrading of a Maven version rather than
searching through multiple entries, as well as allowing experimentation with
different versions from the command line using -DmavenVersion=2.2.0,
for example.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[238]

Profiles and pipelining
The addition of profiles to a build, when used properly, can be an effective way to
segment a build into multiple functions to be run at different times. Though profiles
can add some complexity, they can help to ensure that the default build remains as
simple as possible.

This is sometimes referred to as build pipelining, where the most basic needs of the
build are addressed by default, and more advanced features are added optionally.
Often these additional levels are more time consuming to run and may be limited
to running mostly in an integration build environment. We have already seen an
example of this in Chapters 4 and 5 (Application Testing with Maven and Reporting and
Checks respectively), and in Chapter 9, Continuum in Depth, we will use Continuum to
put that into practice.

How to segment your build most effectively will depend on your team and their
development practices. It is important to have a build that is fast so that it can be
run frequently, though it is valuable to be able to run as many tests as possible in
the default build so that problems can be caught early. By the time they get to the
continuous integration server they may already be checked into source control and
in some ways it may be "too late" to avoid a broken build.

The best approach to creating profiles should include the following:

•	 Run as much as comfortable by default—keep the default build fast enough
that there is no inclination to skip tests.

•	 Make it easy to run additional checks and tests so that they can be done
before commit on the developer's machine (where reasonable).

•	 Ensure all additional checks and tests are run as soon as possible to give
feedback that ensures failures are fixed. Use additional layering if needed to
get earlier feedback on a particular set of tests.

Though profiles are very useful for this purpose, always take note of
the potential pitfalls of using them improperly as discussed later in this
chapter with regard to portability!

While profiles do participate in the project inheritance mechanism, it should be noted
that profiles cannot inherit from other profiles. This can mean that combined profiles
are hard to construct without some amount of duplication.

This can be eased by using properties for any values that must be duplicated
between profiles.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[239]

However, ideally you would avoid duplicated sections by separating profiles into
distinct uses and require the user to enable each individually. For example, consider a
set of Selenium tests that can run on combinations of multiple browsers and multiple
application servers. Instead of configuring how Internet Explorer and Tomcat are
run in one profile using -Ptomcat-over-iexplore, the application server setup and
Selenium setup can be split into profiles for each, ran with mvn -Piexplore,tomcat.

Scripting and writing plugins
While the large (and growing!) suite of plugins available for Maven cover many
build use cases, it is still common to need to add some functionality that cannot be
found elsewhere. This will usually lead to the urge to add a small piece of scripting
to the project. Such urges could soon lead to a much more complicated build, and
so it is worth weighing the pros and cons of scripting with regard to keeping the
build simple.

As we saw in Chapter 6, Useful Maven Plugins, there are a number of plugins
available that will allow you to introduce a small amount of scripting using Groovy,
Ruby, and other dynamic languages. The most commonly used is probably the Ant
Run plugin, which can be very beneficial in using existing tasks to achieve those
small one-off needs.

Exercise some caution though. Maven is declarative by design. If you find yourself
saying the life cycle is too restrictive!, it is possible you are trying to unnaturally cram
in tasks in a particular order rather than using the defined order.

These plugins should only be used for small fragments of script. Large chunks will
complicate the build and make the POM hard to read and large to deploy. If there is
a reason for a large script, consider executing it from an external file.

However, if a non-trivial task could be parameterized and used in more than one
project, consider writing a plugin instead. As an added bonus, the build will likely
be more portable because of it. Writing a plugin is not as hard as it may appear at
first. From a Maven perspective, they are constructed in the same way as any other
module, and though they lack the quick run and test scenario of most scripting
solutions, they can be written using existing tools and automated testing
where appropriate.

To illustrate how they can fit into a build, in the example code for this chapter
we have created a server-setup-maven-plugin module to replace the AntRun
functionality in the distribution/pom.xml file. Normally, this would be more work
than is necessary for these simple commands, but if this were a repeated task used
in other applications where changes needed to be made consistently, the value of
adding it to a plugin would start to show.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[240]

Whether a plugin is built as part of the application (that is, in the
centrepoint directory), or released separately (as is the case here), is
determined by the scope of where the plugin is expected to be used. The
same principles are used as for the license resources we have already
encountered, and other organization level modules.

Creating and using archetypes
Sometimes all that is needed to keep on top of a project is to start on the right foot.
For this reason, it is a good idea to create archetypes specifically tailored to your
environment so that new projects fit right in. For example, you can ensure that all
new projects start with something as simple as inheriting from the organization
POM parent.

We have encountered archetypes already, using them to create small projects quickly
from the shared set of template projects. This can be taken a step further by creating
projects specifically set up for an environment where new modules and projects are
created often.

This gives the advantage of simplifying the landscape of projects and increasing
consistency, which will help in the long term with keeping projects simple.

For more information on creating archetypes, see Chapter 11, Archetypes.

Build �����������portability
Have you ever felt the frustration of getting your hands on a project for the first time
and finding the build fails?

Maven strongly encourages making builds portable. This is a very important
trait—a single build needs to run in a large number of locations with a minimum
number of customizations. It will be shared by other developers, run in automated
environments, and possibly be built again at some time in the future when your
own environment has changed. Portability is not just about the ability to work
cross-platform, but building successfully anywhere. The last words you want to
hear from your team mates is works in my backyard when you are struggling against
a failing build.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[241]

Setting ������������expectations
The first step is to set the right expectations. While this is not a technical problem
with the build, it can be possible to change the build so that it behaves differently to
how an average Maven user expects.

As we have seen, Maven is heavily convention based, so a POM fragment such as
this can lead to confusion in the hands of a different developer:

<execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>install-file</goal>
 </goals>
</execution>

If the developer is only running the tests, but finding things added to the
local repository, confusion is bound to occur at some point. Such practices
are best avoided.

But sometimes, it can be more subtle. What is wrong with this picture?

$ mvn -Dmaven.test.skip=true test

Perhaps this is just because the tests are slow. There is no harm in that... until they
fail for someone else. At that point, you discover they have been failing for you
as well, or would have if you had been running them. Perhaps everyone has been
ignoring continuous build results because it has always been that way. The story
probably sounds familiar.

If you need to skip the tests, reconsider why—are they unstable? Could they be
faster? Perhaps this is a case for build pipelining.

Hard coding
A common cause for portability problems is hard coding values into a project. Hard
coding refers to anything that relies on a particular environment—whether it is a
particular developer's machine, or the central build environment itself.

While this might seem obvious, these can often be subtle, like relying on a single
database. Such scenarios work while one person is building, but as soon as two
people build at the same time, random tests fail.

Don't hard code paths
Don't hard code databases

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[242]

Don't hard code property values
Don't hard code URLs
Don't do it in the tests either!

The last point is often overlooked. As test cases are run throughout a build, hard
coding inside the test code has the same effect as doing so in the build file.

If it is necessary through some system requirement to have a hard coded path,
the best way to handle it is to use a property that can be overridden. The property
should also have a sensible default value so that most builds require minimal set up.

For example, you might add the following property with a sensible default to
your POM:

<properties>
 <weblogic.home>/usr/local/weblogic</weblogic.home>
</properties>

If a particular developer installs it in a different location, they can change it from
their settings.xml file:

<profiles>
 <profile>
 <id>global.settings</id>
 <properties>
 <weblogic.home>C:\Program Files\WLS</weblogic.home>
 </properties>
 </profile>
</profiles>
<activeProfiles>
 <activeProfile>global.settings</activeProfile>
</activeProfiles>

Databases, services, and other resources are generally more difficult to deal with.
Sometimes, they can be incorporated into the build itself by using the Dependency
plugin to download a resource, or an in-memory, pre-loaded database for testing
against. However, if you specifically need to test against an external resource
because of its nature or because you are specifically testing integration with that
implementation, you will be best to use some form of provisioning to be able
to get a unique resource for the given builder to avoid conflicts and minimize
up-front configuration.

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[243]

Portable profiles
Profiles are very useful for breaking up the build into different objectives, such as
the case for build pipelining examined earlier. They also have a number of activation
triggers that are based on the environment being used to build. These triggers can be
used to make a build more portable, by ensuring a build supports multiple platforms
where it might not otherwise. However, they can also be used to make a build less
portable by making the build significantly different between environments.

When it comes to introducing a profile, follow some simple guidelines:

Don't use profiles to cause the build to behave differently based on the
environment, use them to make sure the build works the same across
different environments
Document the existence of each profile so that users know which to enable
and when
Ensure the build works as expected without any profiles enabled, setting
default activation where necessary
Use profiles for additional, optional, build functionality
Keep the number of profiles to a minimum

Portable ���������artifacts
One of the most frequently asked questions by Maven users is how to manage
artifacts for different target environments, and how to manage resource filtering
for different target environments.

This is obviously an important feature. Projects need to be run in development,
staging, and production environments with different configuration. Java EE
applications often need to be deployed on multiple application server types that
require modifications or configuration. Some libraries for redistribution need to be
altered depending on the JDK it will be used on.

However, this would seem to be at odds with Maven's setup, as there is only one
repository where it can deploy. This is another case where Maven encourages a
particular development practice to promote consistency.

In remote repositories, where artifacts are finally deployed, artifacts are required
to be unique. It should not be possible to redeploy a version that has already been
placed there with a different one due to the confusion it would cause.

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[244]

This leaves some options (or possibly combinations of options) for your artifact
configuration needs:

•	 Utilize classifiers to produce tailored artifacts for each target environment
within a given artifact version.

•	 Incorporate a default configuration, but post-process the artifact before use to
replace it with the actual configuration.

•	 Incorporate all known configurations, and require the user select which
environment to target (for example, using a system property).

•	 Don't make any environment-specific settings into an artifact.

Let's look at when each is appropriate:

An example quoted for classifiers earlier was targeting various JDKs. As much as
Java is a backwards compatible language, there are cases where this is necessary. For
example, if you have developed the code using Java 5 syntax such as generics, but
would like to run it on 1.4 JRE's by using retro-translation. Classifiers are designed
for variant output based on the same set of source files, so they make sense to use
in this instance. Consumers can then choose either the jdk14 version or the leaner
jdk15 version depending on their own minimum requirement.

You might also consider classifiers when you produce mywebapp-1.0-dev.war,
mywebapp-1.0-stage.war, and mywebpp-1.0-prod.war to include alternate
configuration files containing the database connection information for
each environment.

This might make sense at first, but it could easily get out of control as you need
to produce a different version of each for Tomcat, JBoss, and Websphere. Next,
you might need different versions for each server in a deployment—ten different
production copies. As you can see, the multiples would become unmanageable
because of the combinations that would need to be built, as well as chewing up disk
space with mostly redundant information in each build. In addition, changes cannot
be made without re-releasing.

A better way to handle this situation is to make the artifact in the repository unique.
However, the configuration still needs to reside somewhere, so that leads to the other
alternatives and their individual pros and cons.

Post-processing the artifact for the target environment before deployment requires
the most complicated deployment steps for the application. However, it can provide
a single representation of the deployed system at a given time, which can be of
benefit if configuration options change with the application releases.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[245]

Baking in the available configurations gives the same result with a reduced
deployment complexity, but it makes it harder to change once it has been released,
particularly for new target environments. The inclusion of the actual settings for
non-production environments also introduces additional risk—you certainly don't
want to point your production systems at a testing database!

Finally, you can externalize the configuration. This alternative means not including
any hard coded configuration at all, instead ensuring that the application is written to
be able to locate it from an external source.

For maximum portability, this alternative is worth investigating if it is possible. This
requires a conscious design choice for the application in question, and libraries that
it might depend on. It is particularly beneficial if you are authoring a library for
others to use, as it is unlikely that configuration would be baked in to the artifact
you distribute without a way to manage the configuration externally.

Most common needs have technology available to facilitate this practice already.
In Java EE, JNDI can be used to push the resource and environment configuration
into the server set up so that the web application can remain unmodified using data
sources, mail sessions, and context properties. Frameworks such as Spring allow
configuration of beans outside of a packaged application by using the Java class
path. For other applications, there are frameworks to use designed specifically for
the purpose such as Commons Configuration (http://commons.apache.org/
configuration/) or the Java Preferences API.

Let's consider this with a common example from a Spring application. The following
may be a common set of configuration included into a web application that is
released into the repository:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.
DriverManagerDataSource">
 <property name="driverClassName"
 value="org.hsqldb.jdbcDriver" />
 <property name="url" value="jdbc:hsqldb:database" />
 <property name="username" value="sa" />
 <property name="password" value="" />
</bean>

As you can see, the application is hardcoded to a built-in database. Perhaps suitable
for a default development deployment, but hardly likely to be the production
database settings.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[246]

Instead, replace the configuration with the following:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName"
 value="java:comp/env/jdbc/database" />
</bean>

This allows you to configure the database however you need to in the application
server or other runtime environment, change the configuration at runtime, target
different databases from different servers, and so on.

Of course, this then raises the question—how can Maven help with managing the
configuration, getting the artifacts onto the server, or post-processing artifacts as
described earlier?

The simple answer is that it does not. While there may be Maven plugins for tools
that do, Maven's life cycle ends with deployment into the repository. It can be
used to ensure the artifact gets there, and to push up any amount of configuration
alongside it, but when it comes to using the artifacts, it is time for other tools to
come in.

With artifacts only being built once into the repository, there is an obvious impact on
the need for resource filtering, which is usually used to populate the values of those
configuration files.

Resource filtering
As we saw above, one of the main use cases for resource filtering—to populate
environment-specific configuration values in the generated artifact—is best avoided
by keeping the artifact and its configuration separate.

For that reason, I tend to avoid resource filtering as much as possible. It risks
introducing inconsistencies between builds of the same artifact, or baking in
harmful defaults to release artifacts such as build server test settings.

They do have a purpose though, when used wisely.

Firstly, they can be used to filter Maven project values into the artifact. This is
valuable to provide a simple way to provide the value to existing configuration
without the need to process the additional pom.xml and pom.properties files that
are already included. We saw an example of this in Chapter 6, Useful Maven Plugins,
with the Build Number plugin that can be seen in the example application. This
also covered the best practice of setting up an additional filtered-resources
directory to minimize the amount of filtering needed.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[247]

Filters can still be used for more generalized properties too, however. Of particular
value is centralization of properties, where they have the same value in multiple
places in the artifact but can be centralized to avoid repetition, increase visibility
and make them easier to change. For example, properties like the following could be
filtered into a web application's templates:

google.analytics.code=UA-1234567-1

This leads into the final case of one-off alterations. If there is a configuration property
that is generally the same in all environments, but might be changed for one-off
occasions, using a filter can help centralize the configuration location. For example:

debug.mode=false

Even in development, this might be turned off by default, and in rare occasions
enabled by a build property or system profile to be filtered into the artifact as true.

Shared resources
In the previous sections, we have discussed application configuration and the
best ways to manage it, including externalizing the configuration. The same can
be applied to pieces of the build process itself, and in the process assist with some
instances of hard coding.

A number of Maven plugins require a configuration file with which they can operate.
To use this, the build author seems faced with a few choices:

•	 Include the file in the build, duplicating it in every project even if it is
the same.

•	 Require it be installed on each developer's machine and reference it from a
certain path name (perhaps configured by a property to be a little less hard
coded). This might be the case software licenses, but in general is impractical.

•	 Refer to it from an external URL, avoiding the duplication but risking
long-term reproducibility if it moves location.

•	 Include some sort of materialization of the resource from a reliable location.

The last option sounds ideal, but also the most complicated—but thankfully Maven
already has all of the tools to achieve this. By placing configuration in the remote
repository, you can take advantage of the same versioning and management
techniques as all of the other project dependencies. The configuration can be
stored either as it is if it is a single file, or as a ZIP archive of one or more files.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[248]

As we have seen in Chapter 5, Reporting and Checks, some reporting plugins such as
Checkstyle and PMD already support directly consuming files from the repository in
this manner. We have also seen similar behavior from the Remote Resources plugin
in Chapter 6, Useful Maven Plugins. However, it is worth noting that the more general
purpose dependency:unpack goal can also be used for other, similar situations.

Sharing resources with the Dependency plugin
This technique can even be extended for use beyond build resources. In
fact, if you have any set of files that need to be included in another artifact
and need to avoid duplication, you can share them via the repository in
this way too.

Let's update the example application by moving css/flavour.css into a separate
resource ZIP so that it can later be used by other modules.

In the example code, you will see the web-resources module created. This will seem
familiar from the other examples in Chapter 3, Building an Application Using Maven,
and its purpose is to create a ZIP file, uploaded to the repository, containing the
shared resources (in this case, css/flavour.css).

We have then removed that CSS from the web application, added the web resources
as a dependency, and then added the following plugin to webapp/pom.xml:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.0</version>
 <executions>
 <execution>
 <id>configuration</id>
 <phase>validate</phase>
 <configuration>
 <outputDirectory>
 ${project.build.directory}/webapp
 </outputDirectory>
 <includeArtifactIds>web-resources</includeArtifactIds>
 </configuration>
 <goals>
 <goal>unpack-dependencies</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[249]

Because of this, the ZIP will be unpacked in the target/webapp directory for
packaging by the WAR plugin. We use the includeArtifactIds configuration to
limit the unpacking to just the web-resources dependency.

Note that it was important that a ZIP dependency be used here and not a JAR. The
latter would have also been copied into WEB-INF/lib as a dependency.

Alternatively, we could not use the unpack-dependencies goal and instead use the
generic unpack goal that takes a list of artifacts to resolve and unpack. However, this
would lose the ordering we gain from having a project dependency in the reactor,
and is only suitable if the resources are external to the current project.

Build reproducibility
Have you ever checked out a project from its last release and found the build no
longer worked? Or, maybe a project that you had just built yesterday seems to have
magically stopped building today.

If build portability is the ability to run a build anywhere with a minimum amount of
configuration, reproducibility is the ability to run the build the same way every time,
particularly at some point in the future.

This is particularly relevant for releasing, which we will examine in more detail in
later chapters. Once that build is locked down, you want to make sure it is already
equipped to be reproduced exactly at a point in the future.

The portability that we have just examined is a prerequisite to reproducibility,
particularly if the source code is being distributed to third parties to build instead
of consuming the official binary releases. To ensure reproducibility, the build must
be isolated from change, so dependence on external resources and configuration is
likely to be a problem unless they are guaranteed to be maintained over time.

Within Maven, there are several sources of variance that can hinder reproducibility:

The use of remote repositories, particularly metadata and POM files
Use of dependency ranges for versions
Open ended plugin versions
Use of snapshots
Varying versions of Maven itself
Other environmental factors

These are all manageable when given proper consideration.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[250]

Remote repositories can be locked down as we examined at the beginning of the
chapter, using the repository manager we have set up to ensure that metadata that
has been used is never altered.

Versions require a closer look as Maven allows some to be defaulted to
irreproducible values. In present incarnations of Maven, dependency ranges are best
avoided unless you have an alternate method for tracking the version used. Plugin
versions should be specified wherever possible, including those built in to Maven's
life cycles such as the Compiler plugin. While ideally the plugins will remain
backwards compatible, this introduces significant risk of altering the behavior
between builds.

Recent versions of Maven lock down the built in versions of plugins
by default, unless they are overridden in the POM. However, they will
change between releases. If you choose not to specify all plugin versions
used, you might consider specifying a required Maven version to build
with to ensure these remain consistent.

Snapshots are somewhat easier to manage through the update policies, repository
management, and their removal in advance of a release (which is a requirement of
the Maven release tools by default).

For the Maven version and the surrounding environment, you cannot control most
of the parameters from the build directly. However, you can verify that those that are
important to you are set correctly and fail the build if not.

Earlier in the book we have encountered the Enforcer plugin. This plugin is
particularly useful in ensuring a build is prepared for reproducibility.

Let's start with ensuring the plugins in the build are all released versions,
and that no automatic values have been used, by adding the following to the
centrepoint/pom.xml file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.0-beta-1</version>
 <executions>
 <execution>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requirePluginVersions>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 7

[251]

 <banLatest>true</banLatest>
 <banRelease>true</banRelease>
 </requirePluginVersions>
 </rules>
 </configuration>
 </execution>
 </executions>
</plugin>

As you can see, the familiar plugin configuration has been added, with the new rule
that requires plugin versions are set, and that the automatic values for the latest
snapshot or release may not be used.

Now we can try validating the project:

centrepoint$ mvn validate

We will notice that initially there are some failures:

[WARNING] Rule 0: org.apache.maven.plugins.enforcer.RequirePluginVersions
failed with message:

Some plugins are missing valid versions:(LATEST RELEASE SNAPSHOT are not
allowed)

org.apache.maven.plugins:maven-install-plugin. The version currently in
use is 2.3

org.apache.maven.plugins:maven-site-plugin. 	 The version currently in
use is 2.0.1

org.apache.maven.plugins:maven-deploy-plugin. 	 The version currently in
use is 2.4

org.apache.maven.plugins:maven-clean-plugin. 	 The version currently in
use is 2.3

These are built-in plugins that we have used but not supplied the version for
(even though they are built in to Maven). In some cases, the Enforcer plugin was
able to tell us what version was already being used. To resolve the issue, we can
add the versions to the pluginManagement section of the POM, for example:

<pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-site-plugin</artifactId>
 <version>2.0</version>
 </plugin>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven Best Practices

[252]

Running the command again will progress to further modules where more
missing plugin versions will be found. Repeating the above, we will eventually
get a build success.

Now, how about validating the environment? This is simply a matter of adding a
new rule or two such as the following:

<rules>
 ..
 <requireMavenVersion>
 <version>[2.2.0,)</version>
 </requireMavenVersion>
 <requireOS>
 <family>!windows</family>
 </requireOS>
</rules>

In this example, Maven versions 2.2.0 and above will successfully build the project,
but others will not (perhaps to avoid a more confusing failure on an earlier version
of Maven due to a build incompatibility). Likewise, it will fail to build on a Windows
platform (perhaps because the tests require X11 libraries).

This ability to fail fast makes the build easier to understand and self-documenting
for current users, and those seeking to reproduce a build on a distant environment
in the future.

Summary
There you have it—the secrets to reducing a number of pain points when using
Maven! They may well appear obvious. However, when used from the beginning of
a project they can save a lot of time.

If you have already been using Maven for some time, review the topics here against
your environment. How many have you already been using? How many did you
know you should be using but had not had the time to put in place? Perhaps now is
the time to start!

By this point we have established a complete application structure, learned how to
implement various testing techniques, and the best practices as we proceed to build a
project. Now it is time to automate it!

We already have one critical piece of infrastructure in place with a repository
manager. In the next chapter, we will look at setting up continuous integration
and automated builds for the project using Continuum.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the
Health of your Source Code

In this chapter, we will learn about the importance of a continuous integration, or CI,
server in a project (especially gigantic ones!).

We will be using Continuum to show you first-hand the formidable role of a CI
server in the development life cycle. We will learn the essentials of how to set up
Continuum, plus the basics of how to configure it so you will know when your
project's build breaks.

The first part of the chapter deals with setting up a source repository, installing any
required applications or tools, and setting up Continuum. The remaining sections
cover the systematic process of adding and building projects in Continuum.

Knowing when your build breaks
First, let us define a continuous integration, or CI server. A CI server is an
application that is used to monitor your project's build and ensure the health
of your source repository.

In a software development setup, a project includes a number of developers. If
it is a big project, expect the team to be larger as well. Apart from this, a team
can be physically distributed in different locations. An open source project is a
good example of this. Developers in open source communities are often located
in different parts of the world. All these developers commit or check their code
into a central source repository. Sometimes though, people only tend to build the
component which they have made changes to (especially when building the entire
project takes a while!). Moreover, when that component builds successfully, they
commit their changes without checking whether there are dependent components
that had been affected by these changes. Now, what if it turned out that one

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[254]

dependent component's build failed because of those changes? No one would know
until someone from the team updated his or her local copy and ran a full build. How
can everyone else proceed if they were then unable to build the project?

If the developer who discovered the broken build were a Good Samaritan, he
would try to fix the build on his own (which would probably take a while). Tracking
down and identifying which changes caused the build to break is a tedious job.
Either that or the developer would notify his team mates about the broken build
so that whoever caused the build to fail would know and would be able to fix the
build. However, what if the person who caused the build to break has just left for
a vacation? His teammates could either track him down and bug him while he is
on vacation, or they could fix it themselves. Either of which would eat up a lot of
development time!

If only they had their project source in a CI server:

They would know that they broke some component in the project when the
build failed—whether it was a compilation failure or a test failure, because a
CI server ensures that the entire source code builds and all the tests pass.
They would know that the build is broken because the CI server would
notify them when it encountered the build failure.
They would know who caused the build to break, and they can contact that
person and help them to fix it.
They would know which changes caused the build to break as this
information is available in the CI server.
They would know when there is a problem in their build and deployment
infrastructure. For example, when their source repository is down or their
deployment repository is not accessible. We did not see these issues in the
scenario above but they do happen.

It is obvious from our definition and list above what the importance of a CI server is.
However, we will see in the following sections that it's useful for more than just that.

Setting up Continuum
Continuum is an open source continuous integration server that has support
for different types of projects such as Maven 2, Maven 1, Ant, and shell projects.
Some of its features include build automation, release management, source control
management, and build statistics.

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[255]

Archiva and Continuum used to be sub-projects of Maven.
Continuum officially became a top-level project at the ASF
in February 2008, just a couple of months before Archiva.

In this section, we will deal with basic source repository setup, the installation
of other applications or programs needed by Continuum, and the setup and
configuration of Continuum.

Setting up a source repository
We start off by setting up our source repository where we will be adding the
example application that we have been utilizing in the previous chapters. The source
repository server that we will be using is Subversion or SVN for short. More details
about Subversion can be found at http://subversion.tigris.org/.

First, let's download and install Subversion as specified from their site
http://subversion.tigris.org/getting.html#binary-packages. We
can then set up our local SVN repository by executing the following command:

$ svnadmin create /path/to/data/svn

Make sure that you replace /path/to from the above command with the actual
directory path where you will put your SVN data. This applies to all the commands
with the same convention in this chapter.

Before we add our example application centrepoint and its parent POM
effectivemaven-parent in the SVN repository, let's first create the appropriate
directories in the source repository by executing the following commands:

$ svn mkdir file://localhost/path/to/data/svn/effectivemaven-parent/

$ svn mkdir file://localhost/path/to/data/svn/effectivemaven-parent/trunk

$ svn mkdir file://localhost/path/to/data/svn/effectivemaven-parent/
 branches

$ svn mkdir file://localhost/path/to/data/svn/effectivemaven-parent/tags

$ svn mkdir file://localhost/path/to/data/svn/centrepoint/

$ svn mkdir file://localhost/path/to/data/svn/centrepoint/trunk

$ svn mkdir file://localhost/path/to/data/svn/centrepoint/branches

$ svn mkdir file://localhost/path/to/data/svn/centrepoint/tags

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[256]

The trunk/ directory is where the latest or current development happens. To
use software lingo, this is the bleeding edge. The branches/ directory contains
development code of certain versions of the project for maintenance purposes. It
may also contain temporary copies of the source code in trunk/ specifically for
developing major features or fixing critical bugs that may possibly break the code
(they eventually get merged back to trunk/ once the changes made are stable). The
tags/ directory on the other hand, contains all the released or tagged versions. A
tagged version should no longer be modified as that version has already been frozen.

It is a convention to structure your SVN repository as such because it
makes it easier to identify or to know where to look for specific sources.
Maven and Continuum both use this structure in determining the
default tag URL when releasing a project.

Now, let's import our example projects centrepoint and its parent project,
effectivemaven-parent, to our SVN repository. In the sample code for this chapter,
cd to the effectivemaven-parent first then execute the following command:

$ svn import . file://localhost/path/to/data/svn/effectivemaven-parent/
trunk

Do the same with centrepoint. cd to the centrepoint directory and execute:

$ svn import . file://localhost/path/to/data/svn/centrepoint/trunk

Before importing new projects in a source repository, make sure that there
are no unnecessary files (like the Maven generated target/ directory
or IDE descriptor files) present. Execute mvn clean to cleanup target/
directories or mvn eclipse:clean and mvn idea:clean to remove
Eclipse and IntelliJ IDEA descriptor files before adding the project in
source control.

Installing prerequisites
We know that Continuum supports four different types of projects: Maven 1, Maven
2, Ant, and Shell projects. In order for Continuum to build them, of course we need
to have the necessary tools installed. Not all of them are required to be installed
though, it really depends on the projects you will be adding to and building in
Continuum. It does not make sense to have Ant installed if all of your projects
are in Maven 2.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[257]

To install Maven 2, we can refer back to Brett's Installing Maven guide from Chapter
1, Maven in a Nutshell. We can also follow these steps to install Maven 1, but instead
of using M2_HOME as our environment variable, we use MAVEN_HOME to point to our
Maven 1 binaries. Maven 1 can be downloaded at http://maven.apache.org/
maven-1.x/start/download.html.

To install Ant, we can follow the steps specified at the following web page
http://ant.apache.org/manual/index.html.

Apart from the build tools above, we will also need a mail server. If you do
not have a mail server installed in your machine, you can use Apache James
(http://james.apache.org). Following steps 1 to 4 in http://wiki.apache.org/
james/JamesQuickstart should be enough to get you started.

Installing and configuring Continuum
Now that we have everything ready, we can proceed with the installation and setup
of Continuum.

Continuum can be downloaded from http://continuum.apache.org/download.
html either as a standalone bundle or as a WAR file (just like Archiva). In our case,
we will be using the standalone bundle.

To use the war file and deploy it to an application server, just follow the steps
specified in http://continuum.apache.org/docs/1.3.3/installation/
installation.html.

As of the writing of this book, the latest version of Continuum is 1.3.3. Just download
the bundle and unpack it.

In Chapter 2, Staying in Control with Archiva, we saw the different directories
included in the Archiva bundle. Both binaries have the same directories included in
their respective bundles. We will simply do a quick run through on some of them
with Continuum's.

I have identified below the directories and configuration files that we need to take
note of in Continuum:

conf/continuum.xml: This contains Continuum-specific configuration such
as the location of the build and release output directories, working copy
directory, and the base URL for accessing the webapp. The base URL is used
for emails and such, which provides a URL back to the application.
conf/jetty.xml: This is a Jetty-specific configuration. This is where the
Continuum and Redback databases and mail resources are configured.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[258]

data/: This is the default location of the Continuum and Redback databases
as seen in the jetty.xml file. This is also the default base location of the
working directory, build output directory, and release output directory for
projects being built in Continuum.
logs/: This is the default location of the Jetty and Continuum log files. The
location of the log files can be set in the jetty-logging.xml for Jetty and
apps/continuum/WEB-INF/classes/log4j.xml for Continuum-specific
logs. Once we start up Continuum, we will be seeing different types of log
files created in this directory. These are composed of the Continuum rolling
log file, audit logs, Jetty logs and wrapper log.

We can see in the bin/ directory that there are multiple Java wrappers for starting
up Continuum. The following OS platforms are supported: linux-x86-32, linux-
x86-64, windows, macosx-universal-32, solaris-sparc-32, solaris-sparc-64
and solaris-x86-32.

Before we start Continuum, we must change the port it will run on. Otherwise, we
will encounter an Address already in use error during startup.

To change the port, edit the configuration below in the conf/jetty.xml file. Change
the default value of the jetty.port system property from 8080 to 8082.

<!-- START SNIPPET: jetty_port -->
<Call name="addConnector">
 <Arg>
 <New class="org.mortbay.jetty.nio.SelectChannelConnector">
 <Set name="host"><SystemProperty name="jetty.host" /></Set>
 <Set name="port"><SystemProperty name="jetty.port"
 default="8082"/></Set>
 <Set name="maxIdleTime">30000</Set>
 <Set name="Acceptors">2</Set>
 <Set name="statsOn">false</Set>
 <Set name="confidentialPort">8443</Set>
 <Set name="lowResourcesConnections">5000</Set>
 <Set name="lowResourcesMaxIdleTime">5000</Set>
 </New>
 </Arg>
</Call>

Now let's fire up Continuum. In the bin/ directory, execute ./continuum console
if you want to see the logs in the console or ./continuum start to run it in the
background. If you are running on Windows, you need to execute continuum.bat
console to execute it in console mode or continuum.bat install then continuum.
bat start to run Continuum as a service.

I am sure you have noticed during startup that the Continuum standalone uses an
embedded Jetty server similar to the one Archiva uses.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[259]

Did you know that the Archiva and Continuum standalone bundles were
created using Maven plugins? These are the appassembler-maven-
plugin that was used to generate the Java Service Wrappers including
the wrapper configuration, and the maven-assembly-plugin, which
was used to package the binaries bundle. You can refer back to Chapter 3,
Building an Application Using Maven, for more details about these plugins.

Once Continuum has started up successfully, we can access it in the web browser via
the URL http://localhost:8082/continuum.

You can easily change Continuum's URL either by setting it in the
webapp through the General Configuration page or by manually setting
it in the <baseUrl> of continuum.xml. One thing to keep in mind
when changing the host or the context from the default in Jetty (or in the
application server), is to make sure that you change the <baseUrl> in the
configuration file as well.

Accessing the above URL gives us the Create Admin page (Yes, this is just
like Archiva.)

For consistency purposes, we will use the same credentials we used in Archiva for
the default System Administrator user. Fill in the required fields as follows:

Full Name: Administrator
Email Address: admin@example.com (this is our official phony admin
email address)
Password: admin1

After creating the admin user, we will be directed to the General Configuration
page, which looks like the following:

•
•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[260]

The Working Directory is where Continuum keeps the local checkouts of the
projects it is building, while the Build Output Directory and Release Output
Directory are where Continuum stores the respective output of the project builds
and the releases done in Continuum. We have already tackled what the Base URL
is for, so we will be skipping that. As for the last two fields—Number of Builds in
Parallel and Enable Distributed Builds, we will learn what these two are for when
we get to Chapter 9, Continuum in Depth. The contents specified in the fields above
will be saved in the continuum.xml file once we hit the Save button.

As a general practice, the Working Directory, Build Output Directory
and Release Output Directory should be kept separate from the
Continuum installation. This is to avoid accidentally deleting these
directories when upgrading Continuum.

Using Continuum
In Chapter 1, Maven in a Nutshell, you learned about Maven's build life cycle.
Now, we will see how Continuum builds a project, and how it uses and works
with Maven.

At a glance
Outlined below is a brief step-by-step explanation of how Continuum builds a project:

•	 Project build is triggered (either by the user explicitly triggering the build or
through the schedule).

•	 Continuum adds the build to the build queue and determines the build
definition and the build environment to be used for the build. You will
understand what it is I am talking about once we get to the middle parts of
this chapter.

•	 Continuum checks out a fresh copy or updates the project's working copy
(or working directory) from the source repository. A working directory is just a
checkout of the project's sources.

•	 Once the checkout or update is finished, Continuum builds the project using
the build definition from Step 2. It actually just invokes the configured build
tools such as Maven or Ant to build the project.

•	 When the build is finished, Continuum would collects the results of the build
and stores them in the database.

•	 Continuum sends out notifications or messages to the project team regarding
the result of the build execution—the build is broken, the build is fine,
and so on.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[261]

If you later install Continuum on a server where you do not have access
to the file system, you can browse the working directory through the
Working Copy tab of the project in the Continuum web application.

Now enough with these concepts and let's start exercising our fingers with some
CI action.

The first thing we need to do is to check out our example application and its parent
POM locally. As we did not host our SVN repository to be accessible via HTTP, we
will be adding our project from the filesystem. Execute:

$ svn co file://localhost/path/to/data/svn/effectivemaven-parent/trunk
effectivemaven-parent

$ svn co file://localhost/path/to/data/svn/centrepoint/trunk centrepoint

Now we will be adding our example application to Continuum from the filesystem.
In order to be able to do this, we must first enable the file:// protocol in
apps/continuum/WEB-INF/classes/META-INF/plexus/application.xml.
Otherwise, we will encounter a The specified resource isn't a file or the protocol
used isn't allowed error message, if we attempt to add it without enabling it first.

By default, the file:// protocol for adding projects is disabled
in Continuum due to security reasons. Only http, https and
ftp are allowed.

Let's stop Continuum first. As we are running on console, we will stop it via Ctrl+C.
Use ./continuum stop if Continuum is running in the background or as a service.

Now edit apps/continuum/WEB-INF/classes/META-INF/plexus/application.xml
and uncomment the file:// scheme in the following section:

<plexus>
...
 <component>
 <role>org.apache.maven.continuum.utils.ContinuumUrlValidator
 </role>
 <role-hint>continuumUrl</role-hint>
 <implementation>
 org.apache.maven.continuum.utils.ContinuumUrlValidator
 </implementation>
 <configuration>
 <allowedSchemes>
 <allowedScheme>http</allowedScheme>	
 <allowedScheme>https</allowedScheme>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[262]

 <allowedScheme>ftp</allowedScheme>
 <!-- <allowedScheme>file</allowedScheme> -->

 </allowedSchemes>
 </configuration>
 </component>
...
</plexus>

Start up Continuum again and so that we can add our projects. We need to add
effectivemaven-parent to Continuum first since it is our practice project's
(centrepoint) parent and we will not be able to add centrepoint without it.
Otherwise we will get a Missing artifact trying to build the POM. Check that
its parent POM is available or add it first in Continuum error.

It is possible to add the centrepoint project to Continuum without
having to add effectivemaven-parent first if and only if the
effectivemaven-parent POM is already installed in the local Maven
repository where Continuum is running. In our case, we will need the
parent when we get to the releasing part in Chapter 9, Continuum in
Depth, so we will be adding ours to Continuum.

Now, let's add effectivemaven-parent through the Add Maven 2.0+ Project page.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[263]

We provide the filesystem path to our check out of our example project's POM in the
POM Url field, which is file:///path/to/local/checkout/of/effectivemaven-
parent/pom.xml. We can leave the Username and Password fields empty, as we
did not set up security in our SVN repository. We will leave the rest of the fields
as they are.

We can tell Continuum whether to use the default group configured in the project's
POM or add it to a specific project group via the Project Group field. If we choose
the default Defined by POM, a new Project Group will be created based on the
<name> element set in the project's POM. The project (and its submodules) will be
added under that group. Now if we choose a specific Project Group, then that's
where our new project will be added.

Now, click Add and we will get a Missing "scm'' element in the POM, project
Apache Maven 2: Effective Implementations Book error. This is Continuum telling
us that we don't have the required information configured in our POM. Therefore,
here is what we will do:

In our local checkout of the project, we add the <scm> tag in the topmost POM.

...
<scm>

 <connection>scm:svn:file://localhost/path/to/data/svn/
effectivemaven-parent/trunk</connection>

 <developerConnection>scm:svn:file://localhost/path/to/data/svn/
effectivemaven-parent/trunk</developerConnection>

 <url>file://localhost/path/to/data/svn/effectivemaven-parent/trunk
 </url>

</scm>

...

Continuum requires the <scm> configuration because it uses that for
checking out and updating the project from the source repository.
For multi-module projects, Continuum determines the SCM URLs of
the sub-modules based from the SCM URL of the parent or topmost
POM. For more details about the SCM URL format used by Maven
and Continuum, check out http://maven.apache.org/scm/
scm-url-format.html.

Then we commit our changes to the source repository.

effectivemaven-parent$ svn commit

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[264]

Do the same for our centrepoint project and set the appropriate SCM URLs in
its POM.

...
<scm>
 <connection>scm:svn:file://localhost/path/to/data/svn/centrepoint/
trunk</connection>
 <developerConnection>scm:svn:file://localhost/path/to/data/svn/
centrepoint/trunk</developerConnection>
 <url>file://localhost/path/to/data/svn/centrepoint/trunk</url>
</scm>
...

(Don't forget to commit the changes you made.)

Add the effectivemaven-parent project in Continuum again and... success! We
now see it being added and after a while, we are directed to the Project Group
Summary page.

As we can see from the screenshot above, most of the information in the Project
Group were captured from the POM. The Project Group Id of the created project
group was from the <groupId> specified in the POM. If, for example, you add
another project which has the same groupId (and you specified the Project Group
field when you added the project as Defined by POM), the project will be added to
this Project Group.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[265]

Continuum groups its projects making it easier and far more flexible to
build a set of projects with just one click. This is designed to handle cases
such as multi-modules. We can build the entire project tree by building
the group as opposed to triggering the build for each one. Think about
the Maven reactor which was discussed in Chapter 1, Maven in a Nutshell.
When a build is triggered at the group level, all the projects underneath it
will be built sequentially with respect to their inter-dependencies.

Now, let's add our centrepoint application. Go back to the Add Maven 2.0+
Project page, and add this POM Url file:///path/to/local/checkout/of/
centrepoint/pom.xml. After it is added, we should see the project's Project Group
Summary as follows:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[266]

As centrepoint has a different groupId from its parent effectivemaven-parent, it
was added as a separate Project Group.

Project groups are especially handy when we have a huge project with a lot of
components that may be released independently. As releases are done by Project Group
in Continuum, we can add each component as a separate group so we can easily
release that component without the need to release the entire project.

The build queues
In Continuum, when a project build is triggered—either forced or from the schedule,
the project is added to a build queue. This build queue can be viewed via the Queues
page. The Queues page is divided into six sections, as we can see below:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[267]

The Current Build section contains the project currently being built. The Build
Queue, on the other hand, contains the projects waiting in line to be built next. The
Build Queue column in each section shows in which Build Queue the project is
going to be built. This is in relation to parallel builds, which we will cover, in the
next chapter.

The Current Checkout section contains the project currently being checked out from
the source repository. This would have a value, if and only if a new project was
just added to Continuum or a project which was set to be built fresh (checkout a
fresh copy of the project) each time was triggered to be built. The Checkout Queue
contains the projects waiting in line to be checked out from the source repository.

The Current Prepare Build section contains the project being prepared to be built.
When a project is in the prepare build stage, its build state and working directory
(if it already exists) is updated, making it ready for building. Once it is out of the
prepare build phase, the project will be added either to the Checkout Queue or the
Build Queue, depending on whether the project has already been checked out or
not. The Prepare Build Queue on the other hand, just lists the projects waiting to be
prepared for building.

After a project has finished building, it will be removed from the Queues page.
Administrators can access queues to stop the current build or remove builds from
the queue.

The build definition
As we have seen in the Continuum build life cycle overview earlier, Continuum uses
build definitions for building the projects.

We can think of build definitions as instructions for Continuum on how to build the
project. There are two levels of build definition: project group level and project level.

Project group build definition
Let's go back to the Project Group Summary page of our centrepoint application
and click on the Build Definitions tab. Continuum configures a default build
definition for each project group created. The content of the build definition depends
on the type of the project. For Maven 2 projects, goals such as clean install and
clean deploy need to be defined while Ant and shell projects do not require this.
Instead, they configure their respective command-line goals.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[268]

As we can see from the Project Group Build Definition of our Centrepoint project
group below, the goals to be executed for the build can be configured as well as the
schedule of its execution.

The default Project Group Build Definition has clean install as its goals. Having
install as a goal means that the project's artifacts will only be available locally (in the
local Maven repository) to where our Continuum instance is running. Consumers of
the project (for example, the project's Quality Assurance team) will not necessarily
have permission to access the machine itself and it is out of the question to obtain
the latest build from the local repository. Instead, the right way to do is to set up
a deployment repository for snapshot artifacts, configure Continuum to build the
project, and deploy the built artifacts to the snapshot repository, so that there is a
new build each day that can be consumed by the QA team for testing.

In previous chapters, we configured our project to deploy to the Archiva snapshots
repository that we created in Chapter 2, Staying in Control with Archiva:

...
<distributionManagement>
 <repository>
 <id>releases</id>
 <name>Archiva Managed Releases Repository</name>
 <url>http://localhost:8081/archiva/repository/releases</url>
 <layout>default</layout>
 </repository>
 <snapshotRepository>
 <id>snapshots</id>
 <name>Archiva Managed Snapshots Repository</name>
 <url>http://localhost:8081/archiva/repository/snapshots</url>
 <uniqueVersion>true</uniqueVersion>
 <layout>default</layout>
 </snapshotRepository>
</distributionManagement>
...

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[269]

We don't need to configure anything else in our settings.xml and
security-settings.xml as we are using the same <id> for our repositories
as what we have configured already in Chapter 2, Staying in Control with Archiva,
when we deployed to Archiva.

Now let's create a new build definition for our Centrepoint project group. Click the
Add button on the group build definitions page, then fill in the Build Definition
as follows:

The POM filename is the actual filename of our project's pom.xml that will be used
for the build. The Goals are the goals we want to execute when using this build
definition. As we want our artifacts to be available to the snapshots repository,
we will set clean deploy as our goals. The Arguments specify the additional
arguments that will be used when building the project. In our case, these are
Maven 2 arguments, as our project is a Maven 2 project. If you had wanted to do a
fresh checkout instead of just updating from the source repository during the build,
you would tick the Build Fresh checkbox.

One behavior of Continuum to take note of is that if there were no changes to the
SCM in the last build; Continuum would no longer build the project. This sometimes
causes people to panic and think their CI is broken, but it is actually not. When you
think about it, it makes sense that this is the default behavior. There were no changes
in the code, so why build it? To countermand this behavior, you would tick the
Always Build checkbox in the build definition. This would tell Continuum to always
build the project whether there were any changes in the SCM or not.

The Is it default? field signifies that the build definition is the default one that will
be used when the project build is explicitly triggered (forced build) from the Project
Group Summary and Project Summary pages. This field can only be edited if there
are multiple build definitions defined for the project.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[270]

We will discuss schedules next, but for now we will just use the DEFAULT_SCHEDULE.
The same goes for Build Environment. We will cover this at the end of this chapter.
For now, we will leave as it is.

As for the last two fields, they simply specify the type of project the build definition
is for and the description of the build definition respectively.

Click Save and our build definition is created.

Now for each project group, we can define multiple build definitions and attach it to
a schedule. A schedule is just a plain old schedule of when a build will be triggered
or executed. The diagram below, which Wendy Smoak created for Continuum
effectively shows how the project group, build definitions, schedules, build queues,
and notifiers (which we will discuss later on) work together.

Project Group

Project

Notifier

Build Definition

Build File

Goals and Args

Schedule

Build Environment

JDK Maven var=value

When to run

Max time

Build Queue(s)

Build Queue 1

Build Queue 2

Going back to the schedules, a default schedule running every hour is already
pre-defined in Continuum and that is where the default build definition is attached.
We will create a schedule for our project's nightly builds where we will attach the
build definition that we created so that there is a fresh snapshot each day which the
QA team can test for all the changes or fixes in the code from the previous day. From
the Schedules tab on the left you can add a new schedule. Fill in the form as follows:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[271]

The important field to take note of in the Schedule is the Cron Expression.

A Cron Expression is a representation of a time or times at certain
intervals. This is used typically to fire or trigger a schedule to do or
execute something.

From the Cron Expression we have specified above, we are configuring our schedule
to build each night at 12 midnight.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[272]

The other field to take note of is the Build Queue. This simply defines where the
project(s) attached to this schedule will be queued. If no build queue were set,
Continuum would use the DEFAULT_BUILD_QUEUE.

Save the schedule that we created. Go back to Centrepoint's Build Definitions tab,
edit the Project Group Build Definition we created earlier and attach it to our
NIGHTLY_BUILDS schedule.

When setting a schedule, sometimes an hour is too long to wait. If a
problem occurs it may be drowned out by other changes, or the developer
may have switched context. Builds should be kept short and scheduled
frequently. Long-running tasks, such as performance and functional tests,
and nightly builds can be run on separate schedules.

To demonstrate how build definitions are used, click the build icon (third column
from the right) of our snapshot deployment build definition. After the projects in
the group have finished building, go back to the Project Group Summary page and
click on the build number link (fifth column from the left) of one of the projects.
Clicking on the build number leads us to the build result of that specific build
including the build definition used and the build output. We will cover build
results in the succeeding sections. You can also check the snapshots repository at
http://localhost:8081/archiva/repository/snapshots to see that the projects
were deployed.

Project build definition
A project level build definition is essentially the same as a project group build
definition—it could be tied to a schedule and everything. The only difference is that
it's on a per project level. Therefore, when only that project was triggered to be built,
Continuum would use the default project level build definition.

The notifiers
We mentioned earlier in the chapter that one of the benefits of using a CI server is
that when the build breaks, the project members would immediately know of it. This
is where notifiers come in. Notifiers are a configuration in the CI, which send out
notifications to the project members regarding the status of the build.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[273]

Different types of notifiers
In Continuum, there are five types of notifiers that can be configured. These are the:

Mail notifier: The mail notifier sends out an email to a specific address
regarding the status of the build. For the mail notifier to work, it's good to
keep in mind to set up a mail server first. Remember, we did this whilst
installing prerequisites at the beginning of the chapter.
IRC notifier: This notifier sends out a message to a specific IRC channel
alerting the channel of the project's build condition.
Jabber notifier: This notifier sends out a message to a specific Jabber account.
MSN notifier: This notifier sends out a message to a specific MSN account.
Wagon notifier: This notifier deploys the build results to a specific URL
(for example, to the project's site) using Wagon.

These notifiers can be configured to notify the project team on certain conditions of
the build. They can be set up to Send on Success, Send on Failure, Send on Error,
and/or Send on Warning as seen in the following screenshot:

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[274]

They are self-descriptive, but we will give each one a quick run through:

Send on Success: Send out a notification if the build was successful.
Send on Failure: "Code red! Code red! Code RED!!!". Need we say more?
Okay, just to elaborate... a notification will be sent out when the build fails.
By fail, we mean that a problem was encountered during build execution.
This can be a compile failure, a test failure, or simply a dependency not
being found.
Send on Error: A notification will be sent out when there was an error
outside of the build execution. A good example of this is when the source
repository goes offline and Continuum cannot update its working copy.
Send on Warning: A notification will be sent out if the build was not a
successful build, a failed build, or an erroneous build.

A notification is sent only when a project's state is modified. For
example, if the previous state of all the projects in the group is
SUCCESS and on the next build, all the projects in the entire
group were built successfully again, no notification will be sent.
However, if the second build of one of the projects failed (state
is FAILURE), a notification will be sent specific to that project.

The Send a mail to latest committers field for the Mail Notifier tells Continuum to
send a notification mail to those developers who committed changes to the source
repository as part of the last build. The Mail Recipient Address does not have any
effect on the Send a mail to latest committers as the email addresses where the
notification mail will be sent are retrieved from the list of project developers.

Like build definitions, notifiers can also be configured at the
project group level and/or at the project level. Notifiers are
cumulative, which means notifiers configured at the group level
always takes effect whether or not there are notifiers configured
at the project level. This is similar to the concept of inheritance
in Maven.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[275]

Now, let's create a group mail notifier for our centrepoint application. In our
exercise, we will use our own valid email address for the mail notifier. We want to
know everything that is happening to our project build so we tick all the checkboxes
except for Send a mail to latest committers (we don't have usernames in our SVN
repository so we don't have any use for this). Let's build our project by pressing the
Build All Projects button on the Project Group Summary page. We should get a
successful build and the build states of all the projects in the group should show the
SUCCESS icon. However, no notification mail was sent. This is because there were
not any changes in the build state nor were there any changes in SVN.

Now, let's edit the test case of one of the modules of our Centrepoint application. Go
to your local checkout of the project and open PropertiesProjectStoreTest.java
located at modules/store-file/src/test/java/com/effectivemaven/
centrepoint/store/properties/ either in your IDE or in a text editor.
Add the following failing test to the class:

@Test
public void failingTest()
{
 assert false;
}

Commit the changes that we made and then let's build the Centrepoint project group
in Continuum. Now, we will see that we got an email notification (similar to the
one in the following screenshot) that contains a summarized build result status for
Centrepoint Data Store (Flat File) project, which had the failing test case.

Before continuing, make sure to remove the broken test and commit
again so that the build succeeds!

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[276]

To learn more about how to configure the different types of notifiers in Continuum,
visit http://continuum.apache.org/docs/1.3.3/user_guides/notification/
index.html.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[277]

Configuring notifiers in Maven
The Maven 2 project model allows configuration for the CI server officially used
by the project. This can be achieved through the <ciManagement> section, wherein
the type of CI server, the URL where it is running and the build notifiers to use can
be configured.

As we can see in the sample configuration below, it has similar parameters to what
we can configure in Continuum.

...
<ciManagement>
 <system>continuum</system>
 <url>http://localhost:8082/continuum</url>
 <notifiers>
 <notifier>
 <type>mail</type>
 <sendOnError>true</sendOnError>
 <sendOnFailure>true</sendOnFailure>
 <sendOnSuccess>true</sendOnSuccess>
 <sendOnWarning>false</sendOnWarning>
 <configuration>
 <address>continuum@example.com</address>
 </configuration>
 </notifier>
 </notifiers>
</ciManagement>
...

The value in the <configuration> section varies depending on the type of notifier
extended and used.

If a notifier is configured in the POM of a project when it was added to Continuum,
that notifier would be automatically configured in Continuum and will be used to
send out build notifications. Take note though that notifiers declared in the POM
cannot be edited or deleted through Continuum. It must be removed by hand in the
POM and checked in to the source repository.

In the case of some open source projects (like Maven for example), a
notifications mailing list specific for build notifications is set up and a
mail notifier is configured in the project's parent POM to send build
notifications to that mailing list. So whoever would like to be notified
of the builds can just subscribe to that list and there is no need to add
specific email addresses in the build server's notifier configuration.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[278]

The Build results
We already had a peek at the build results in our discussion on build definitions.
Now let's go back to the Centrepoint Data Store (Flat File) project. Click the Builds
tab. You should see a list of all the build results from building the project in the
previous section. Click the Result link (first column from the right) of the build
whose State shows FAILURE. We can see that it contains information about the
build (how it was triggered, the duration of the build, and such), the changes in SCM
and project dependencies, the build definition used, generated reports, and the build
output (which can also be downloaded).

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[279]

One other important piece of information to take note of is the generated reports. As
we can see, one of these reports is the Surefire Reports.

As we can see from the screen shot above, Surefire Reports is divided into three
sections. The first is the Summary, which contains the summary of the executed tests.
It is similar to what we see at the end of the test phase when we build a project from
the command line. The second section is the Package List. This contains the packages
and test classes that were executed during the build. It also includes the number of
test cases that passed, failed, or were in error. The last section is Test Cases, which is
a list of all the test methods that were executed, including the cause (or causes) of the
error or failure.

Surefire Reports is handy when there are test failures during the build. It is easy to
identify which test case(s) failed, as the reports are broken down to this level.

Dependency changes
Continuum builds the project when there are changes in its dependencies. These
dependencies must be projects that are also in the Continuum instance and is usually
evident in inter-dependent modules. Project dependencies are tracked from the
Maven POM, and this can be seen from the project information page.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[280]

Let's go back again to our Centrepoint Data Store (Flat File) project. Looking at
the pom.xml of the Centrepoint Web Application project, we can see that it has a
dependency on Centrepoint Data Store (Flat File).

...
<dependency>

 <groupId>${project.groupId}</groupId>

 <artifactId>store-file</artifactId>

</dependency>

Given this scenario, when the Centrepoint Data Store (Flat File) is build is triggered
from the schedule, Continuum will see that the Centrepoint Web Application
project has a dependency on it. If Continuum detects any SCM changes when it
updated the working copy of Centrepoint Data Store (Flat File), then it will also
build Centrepoint Web Application even if it is not attached to the same schedule.

One thing to take note of regarding dependency changes is that this only happens
for scheduled builds. If the build is explicitly triggered (forced), then Continuum will
only build that project and not the dependent projects.

Installations and build environments
In company settings, different projects have different build environments. Some
projects require a specific version of Java to be used while other projects need
additional environment variables to be set in order for them to be built. Because
of this, it is better to have different environments where we can build and test
our projects to ensure that they are platform independent and can be built on
these environments.

To address this need, Continuum has installations and build environments.

Installations
Installations or builders are tools or environment variable settings, which can be
configured if some projects require a different or specific tool apart from the default
tools installed in the server. An installation may be a tool, such as Java or Maven, or
it can even be an environment variable setting such as MAVEN_OPTS.

Let's say we want to increase the memory allocation for Maven when building our
example application. This can be achieved by setting the MAVEN_OPTS environment
variable before building the project. Now, we only want that to be used when
building our example application and not when building other projects in
Continuum. What we can do in this case is create a build environment in
Continuum where the MAVEN_OPTS environment variable is set.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 8

[281]

In the navigation menu, click on Installations and add a new one. Create an
Environment Variable type installation. Fill in the form as follows:

The Name field is just a name for the installation used by Continuum as reference.
The Environment Variable Name is the actual environment variable we want to set
and the Value/Path is the value we want to use for the environment variable. As for
the checkbox, ticking that box means a Build Environment (which we will discuss in
the next section) with a similar installation name will automatically be created.

Now click Save to create the Continuum installation.

Build environments
We can define multiple installations in a build environment. The purpose of this is so
that we can simulate and configure all the different variables that compose or affect
the environment. For example, we want to make sure that our project builds using
certain Maven versions.

Now lets create a build environment for our project where we will use the
MAVEN_OPTS installation we created in the previous section.

Click Build Environments from the navigation menu and add a new one. Fill in the
Build Environment form as follows:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum: Ensuring the Health of your Source Code

[282]

To configure our MAVEN_OPTS installation to the build environment, just select
MAVEN_OPTS and click the Add button. Then click the Save button to create
the build environment.

We can use this to build our example application. Let's go back to the Project
Group Summary page of Centrepoint and go to the Build Definitions tab. Edit
the default build definition and set Centrepoint Default Build Environment as the
Build Environment.

Save the changes and click the build icon (third column from the left) of our default
build definition. We can check the build result and see from the Build Definition
Used that the build environment we have just configured was used.

Summary
In this chapter, we have learned the proper way of setting up and using Continuum
to our best advantage.

We have learned what build definitions are, how to schedule a build in Continuum,
how to set up notification, and how to configure and use build environments.

We will learn more about Continuum's advanced features in the following chapter.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth
In this chapter, we will learn more about the nitty-gritty details of Continuum. We
will delve into the Maven release process and see step-by-step how Continuum
adopts the same process. However, it has been made simpler and easier. We will also
learn different strategies that we can use for building our projects in Continuum.

The two main approaches for how to build multiple projects at the same time
will also be covered in this chapter. Last, but certainly not the least, we will cover
maintenance. We will learn how to manage local repositories, working and build
output directories used by Continuum.

Releasing projects
As we saw earlier, Maven clearly distinguishes released projects from snapshots
of projects in the middle of development. A project release is simply a distribution
of the project or application containing specific changes to the project, fixed at that
point in time with an attached version. It does not necessarily need to be the final
production version, but something that you want to lock down for using later. While
developing software, it is crucial to segment the development of the project into
multiple iterations. Each iteration has its own development, release, and test phase.
It should aim to accomplish a specific set of features of the project. Making releases
easy and reliable is important for keeping this moving smoothly.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[284]

Release early, release often
When dealing with releases, it is always good to keep in mind the mantra release
early, release often. Why should you release early? You don't want to be dealing with
release difficulties for the first time at the end of a project with a deadline. Why
should you release often? If you keep the iteration too long, a lot of features tend
to be jammed into the release, making it more prone to bugs and resulting in a more
painful release process. Releases should also be reproducible so that if you need
to go back to something you've released in the past, you can ensure you can build
it (perhaps after fixing some critical bug) the same way that it was built before. In
Chapter 7, Maven Best Practices, some tips were given for making your Maven
builds reproducible.

Producing a release tends to be tricky and involves proper planning and a lot of
discipline. Releases are traditionally manual processes that require a number of
error-prone steps and changes that need to be checked. Maven aims to automate as
much of the tedium as possible, making releases easier and more reliable. Let's start
by looking at Maven's release capabilities directly.

Maven release process
Maven uses the Release plugin when releasing a project. While we will only discuss
the two most important goals of this plugin, there are other goals to help with related
tasks such as creating new development branches. To get a list of all of its available
goals and how to use them, visit http://maven.apache.org/plugins/maven-
release-plugin/.

A typical Maven release involves two stages (in the form of goals) and these
are—prepare and perform.

Only projects with SNAPSHOT versions can be released. If the <version>
in the POM does not contain the SNAPSHOT keyword, Maven will not go
through the release process.

As the name signifies, the prepare stage is when the project is prepared for the
release. The following phases are executed in order at this stage:

check-poms: POM(s) are checked to see if they are in the right state for a
release. For example, an error will be thrown if the current version of the
project during the release process is not a SNAPSHOT version. Without the
SNAPSHOT keyword in the version, Maven will expect that the project has
already been released.

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[285]

scm-check-modifications: The local checkout of the project is checked if
there are modifications that are not committed in the SCM repository, which
would make the release inconsistent with the current build.
check-dependency-snapshots: The working copy is checked for
dependencies with SNAPSHOT versions. The release will not continue if there
are any SNAPSHOT dependencies as they are not stable and may still change
over time. So, releases should not depend on them.
create-backup-poms: Backups of the current POM(s) will be created, as they
will be updated to the release version and committed to the source repository
when the release version is tagged. These backup POM(s) are used for rolling
back the release if it fails.
map-release-versions: The user will be prompted for the release version in
this phase if the release was triggered to be interactive. The projects will then
be mapped to the specified release version.
input-variables: Determine other input variables that are not yet
configured. For example, the tag or label of the release.
map-development-versions: The user will be prompted for the next
development version in this phase if the release was triggered to be
interactive. The projects will then be mapped to the specified
development version.
rewrite-poms-for-release: The POM(s) will be updated with the release
version. The SCM URLs in the <scm> section are also updated to the new
URL of the tag to be created.
generate-release-poms: The POM(s) that will be used for the release will
be generated.
run-preparation-goals: The project will be built using the preparation
goals specified. This verifies that the build is still correct with the new values
in the POM(s). The default goals are clean verify.
scm-commit-release: Commit the project with the modified POM(s) to the
source repository.
scm-tag: The release tag is created and committed to the source repository.
For example, svn copy is performed from the trunk if the SCM is Subversion.
rewrite-poms-for-development: The POM(s) are updated to the next
development version specified at the start of the preparation stage.
remove-release-poms: The generated POM(s) used for the release (if there
were any) are cleaned up.

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[286]

scm-commit-development: The local changes for the development versions
are committed to the source repository.
end-release: The release is finalized. This is the equivalent of the
release:clean goal of the release plugin.

Now, we will try releasing effectivemaven-parent project to see how each of these
phases are executed during release preparation.

If a project's parent is a SNAPSHOT version, the parent should be
released first. Otherwise, you will not be able to release the project until
the parent has been released and the project is referencing the released
parent version.

Let's go to the local checkout of our parent project from Chapter 8, Continuum—
Ensuring the Health of your Source Code, and execute the following command:

effectivemaven-parent$ mvn release:prepare

As Maven executes the prepare stage, you will be prompted for the release version,
the release tag, and the new development version. As we will be using the default
values, just hit Enter for each prompt. You can of course specify the specific values
for each if you do not want to use the default values. After the prepare stage is
finished, you should see an output similar to the following:

[INFO]--

[INFO] Building Apache Maven 2: Effective Implementations Book

[INFO] task-segment: [release:prepare] (aggregator-style)

[INFO]--

[INFO] [release:prepare]

[INFO] Verifying that there are no local modifications...

[INFO] Executing: svn --non-interactive status

[INFO] Working directory: ...

[INFO] Checking dependencies and plugins for snapshots ...

What is the release version for "Apache Maven 2: Effective
Implementations Book"? (com.effectivemaven:effectivemaven-parent) 1: :

What is SCM release tag or label for "Apache Maven 2: Effective
Implementations Book"? (com.effectivemaven:effectivemaven-parent)
effectivemaven-parent-1: :

What is the new development version for "Apache Maven 2: Effective
Implementations Book"? (com.effectivemaven:effectivemaven-parent) 2-
SNAPSHOT: :

[INFO] Transforming 'Apache Maven 2: Effective Implementations Book'...

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[287]

[INFO] Not generating release POMs

[INFO] Executing goals 'clean verify'...

[INFO] Executing: mvn clean verify --no-plugin-updates

[INFO] Scanning for projects...

 [INFO]--

 [INFO] Building Apache Maven 2: Effective Implementations Book

 [INFO] task-segment: [clean, verify]

 [INFO]--

 [INFO] [clean:clean]

 [INFO] [site:attach-descriptor]

 [INFO]--

 [INFO] BUILD SUCCESSFUL

 [INFO]--

 [INFO] Total time: 7 seconds

 [INFO] Finished at: Sat Aug 01 18:39:17 PHT 2009

 [INFO] Final Memory: 7M/82M

 [INFO]--

 [INFO] Checking in modified POMs...

[INFO] Executing: svn --non-interactive commit --file /tmp/maven-scm-
845985696.commit --targets /tmp/maven-scm-30757-targets

[INFO] Working directory: ...

[INFO] Tagging release with the label effectivemaven-parent...

[INFO] Executing: svn --non-interactive copy --file /tmp/maven-scm-
1973080933.commit

[INFO] Working directory: ...

[INFO] Transforming 'Apache Maven 2: Effective Implementations Book'...

[INFO] Not removing release POMs

[INFO] Checking in modified POMs...

[INFO] Executing: svn --non-interactive commit --file /tmp/maven-scm-
1477535264.commit --targets /tmp/maven-scm-30758-targets

[INFO] Working directory: ...

[INFO] Release preparation complete.

[INFO]--

[INFO] BUILD SUCCESSFUL

[INFO]--

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[288]

We should be able to match some of the phases we have discussed to the output
logs above and determine at which part of the build they were executed. For
example, the Verifying that there are no local modifications... log signifies the
scm-check-modifications phase, the prompt for the release version signifies
the map-release-versions phase, and so on.

While dealing with multi-module projects, you will be asked for the
release version and the next development version for each module.
If all of them have the same values for these parameters, you can add the
 -DautoVersionSubmodules=true parameter when executing mvn
release:prepare so that you will be asked for these parameters
only once.

You may also notice by browsing the effectivemaven-parent project directory that
there were two files generated: pom.xml.releaseBackup and release.properties.
The first one is the backup of the original POM that was created during the
create-backup-poms phase. This will be cleaned up later on once the release has
been finalized. As for the release.properties file, this contains the configuration
parameters used by the Release plugin all throughout the release process.

Next up, the perform stage is when the tagged version is built and deployed to the
deployment repository. Contrary to the prepare stage which involves a lot of phases
to be executed, the perform stage only has three phases:

verify-completed-prepare-phase: Checks whether the release preparation
stage has already been executed. It is a pre-requisite of the perform stage.
checkout-project-from-scm: The tagged version is checked out from the
source repository which will be built in the next phase.
run-perform-goals: The specified release perform goal(s) are executed on
the checked out tag. The default goal is deploy.

You may also want to take a look at the Maven Stage Plugin, which
is very useful if you are staging your releases first before pushing
them to the public or official releases repositories. More details about
this plugin is available at http://maven.apache.org/plugins/
maven-stage-plugin/.

To see how these phases are executed, we will finalize the release of our
effectivemaven-parent project. From the command line, execute the following:

effectivemaven-parent$ mvn release:perform

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[289]

We should see a build output similar to that below after the release:perform goal
has finished executing.

[INFO]--

[INFO] Building Apache Maven 2: Effective Implementations Book

[INFO] task-segment: [release:perform] (aggregator-style)

[INFO]--

[INFO] [release:perform]

[INFO] Checking out the project to perform the release ...

[INFO] Executing: svn --non-interactive checkout file://localhost/path/
to/data/svn/effectivemaven-parent/tags/effectivemaven-parent checkout

[INFO] Working directory: /path/to/local/checkout/of/effectivemaven-
parent/target

[INFO] Executing goals 'deploy'...

[INFO] Executing: mvn deploy --no-plugin-updates -DperformRelease=true -f
pom.xml

[INFO] Scanning for projects...

 [INFO]--

 [INFO] Building Apache Maven 2: Effective Implementations Book

 [INFO] task-segment: [deploy]

 [INFO]--

 [INFO] [site:attach-descriptor]

 [INFO] Preparing source:jar

 [WARNING] Removing: jar from forked lifecycle, to prevent
 recursive invocation.

 [INFO] No goals needed for project - skipping

 [INFO] [source:jar {execution: attach-sources}]

 [INFO] [javadoc:jar {execution: attach-javadocs}]

 [INFO] Not executing Javadoc as the project is not a Java
 classpath-capable package

 [INFO] [install:install]

 [INFO] Installing /path/to/local/checkout/of/effectivemaven-
 parent/target/checkout/pom.xml to /path/to/.m2/repository/
 com/effectivemaven/effectivemaven-parent/1/effectivemaven-
 parent-1.pom

 [INFO] [deploy:deploy]

 altDeploymentRepository = null

 Uploading: http://localhost:8081/archiva/repository/releases/com/
 effectivemaven/effectivemaven-parent/1/effectivemaven-parent-
 1.pom

 1K uploaded

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[290]

 [INFO] Retrieving previous metadata from releases

 [INFO] repository metadata for: 'artifact com.effectivemaven:
 effectivemaven-parent' could not be found on repository:
 releases, so will be created

 [INFO] Uploading repository metadata for: 'artifact com.
 effectivemaven:effectivemaven-parent'

 [INFO]--

 [INFO] BUILD SUCCESSFUL

 [INFO]--

 [INFO] Total time: 6 seconds

 [INFO] Finished at: Sun Aug 02 13:27:02 PHT 2009

 [INFO] Final Memory: 14M/80M

 [INFO]--

 [INFO] Cleaning up after release...

[INFO]--

[INFO] BUILD SUCCESSFUL

[INFO]--

Glancing at the output, you will see the different phases being executed—such as
when the tagged version was checked out from the source repository or when the
perform goal deploy was executed. Notice also the Cleaning up after release... log at
the end. This is executed by the plugin to remove all the generated files that we saw
earlier. If you browse the project directory again, the pom.xml.releaseBackup and
release.properties files have been removed.

You may also notice the execution of the [source:jar] and [javadoc:jar] goals
above. While they didn't have anything to do in this POM-only project, they provide
some default behavior that is helpful to other types of projects. Let's see how these
defaults are defined and can be customized.

Release profile
The Maven 2 super POM has a profile that is activated during the release
process. As all POMs inherit from the super POM, this profile is inherited by
all Maven 2 projects.

<profile>
 <id>release-profile</id>
 <activation>
 <property>
 <name>performRelease</name>
 <value>true</value>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[291]

 </property>
 </activation>
 <build>
 <plugins>
 <plugin>
 <inherited>true</inherited>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-source-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-sources</id>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <inherited>true</inherited>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-javadocs</id>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <inherited>true</inherited>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-deploy-plugin</artifactId>
 <configuration>
 <updateReleaseInfo>true</updateReleaseInfo>
 </configuration>
 </plugin>
 </plugins>
 </build>
</profile>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[292]

The above snippet from the super POM indicates that if the project is in the release
stage, Javadocs and sources will be generated and packaged along with the main
build artifact. Another configuration you will notice is the maven-deploy-plugin,
wherein the updateReleaseInfo parameter is set. This indicates that the artifact
being deployed is a released artifact and the artifact's metadata should be updated
as a release.

The release profile is activated through the property performRelease. Behind the
scenes in the previous build perform stage, the following goals were executed:

mvn deploy --no-plugin-updates -DperformRelease=true -f pom.xml

Now, let's say you want to customize your release and you want to add
additional steps such as signing the artifacts before they are deployed to the
repository, or creating a source distribution of the entire project aside from the
packaged per-module sources JAR. You can do this by extending the existing
release-profile profile.

However, you may decide that you do not need the original Javadoc and source
configuration, and would rather create and configure your own release profile.
As they won't be needed for the bundle, let's do this for the license-resources
module before we release it.

We have not yet added the License Resources to our Subversion repository,
so we need to do that now. First, we create the space in the same way that
was done in Chapter 8, Continuum - Ensuring the Health of your Source Code
(replacing /path/to/data/svn with your Subversion repository location):

$ svn mkdir file://localhost/path/to/data/svn/license-resources/

$ svn mkdir file://localhost/path/to/data/svn/license-resources/trunk

$ svn mkdir file://localhost/path/to/data/svn/license-resources/branches

$ svn mkdir file://localhost/path/to/data/svn/license-resources/tags

We can then import the code from this chapter into the repository:

license-resources$ svn import . file://localhost/path/to/data/svn/
license-resources/trunk

Now get a clean checkout of the location above and update the POMs with the scm
section for this location:

<scm>
 <connection>
 scm:svn:file://localhost/path/to/data/svn/license-resources/trunk
 </connection>
 <developerConnection>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[293]

 scm:svn:file://localhost/path/to/data/svn/license-resources/trunk
 </developerConnection>
</scm>

We also need to adjust the parent POM to the newly released version for our release
to succeed:

<parent>
 <groupId>com.effectivemaven</groupId>
 <artifactId>effectivemaven-parent</artifactId>
 <version>1</version>
 <relativePath>../effectivemaven-parent/pom.xml</relativePath>
</parent>

Now we can adjust our release profile by declaring the maven-release-plugin in the
<build> section of license-resources/pom.xml with the following configuration:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.0-beta-9</version>
 <configuration>
 <useReleaseProfile>false</useReleaseProfile>
 <arguments>-Plicense-release</arguments>
 </configuration>
</plugin>

The <useReleaseProfile>false</useReleaseProfile> parameter from the
configuration above disables the execution of the inherited release-profile.
The -Plicense-release argument will be included as an additional argument
when the release perform goal is executed to activate your custom release profile.
We then need to add this profile, with just the minimal configuration needed:

<profiles>
 <profile>
 <id>license-release</id>
 <build>
 <plugins>
 <plugin>
 <inherited>true</inherited>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-deploy-plugin</artifactId>
 <configuration>
 <updateReleaseInfo>true</updateReleaseInfo>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[294]

After committing these changes, we can proceed with the release, accepting
the defaults:

license-resources$ mvn release:prepare release:perform

This time, you will notice that the source and Javadoc JARs are not produced, as we
requested. With the two pre-requisites released, we are now able to look at releasing
Centrepoint itself, and for that we will use Continuum.

Releasing projects using Continuum
In Continuum, the release process also involves the two stages we saw in Maven's
release process. The only difference is that the release can be done via a GUI and in
a centralized location. By a centralized location, we mean that all releases are done
in just one place, compared to executing the release process via the command line
where anyone can do it locally. In the succeeding sections, we shall see how easy it is
to do a release in Continuum.

Preparing a release
Before a project can be prepared for release in Continuum, it must be in a
SUCCESSFUL build state. This is again one of the best practices implemented by
both Maven and Continuum. In Maven, the release process would fail in the middle
of the execution of the prepare goal when the build failure is encountered. However,
in Continuum, the build failure can be caught during the scheduled builds and
the build state of the project would be flagged as in FAILURE or in ERROR, and
Continuum would not allow the release process to start until the build state of the
project is in a SUCCESSFUL state.

We shall again use the Centrepoint project which we set up in Chapter 8,
Continuum— Ensuring the Health of your Source Code.

Remember what we did in Chapter 2, Staying in Control with Archiva,
when we deployed our project to an Archiva repository? We will see in
the later parts of this section how this is related to the release process.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[295]

Before we start preparing Centrepoint for a release, let's first update its parent to the
released version which we released earlier using the Release plugin. From the local
checkout of Centrepoint, edit the topmost POM and change the <version> of the
<parent> as follows:

<parent>
 <groupId>com.effectivemaven</groupId>
 <artifactId>effectivemaven-parent</artifactId>
 <version>1</version>
 <relativePath>../effectivemaven-parent/pom.xml</relativePath>
</parent>

We need to update its parent to the released version. Otherwise, the release will fail
because Continuum will see that it is still dependent on a SNAPSHOT version, which is
considered unstable.

Likewise, we should change the license-resources version:

<resourceBundles>
 <resourceBundle>
 com.effectivemaven:license-resources:1.0
 </resourceBundle>
</resourceBundles>

Don't forget to commit the changes that you made.

The Release plugin will not actually detect snapshots in the resource
bundles automatically (a limitation we already discovered in Chapter 6,
Useful Maven Plugins).

Now, let's take a look at the Project Group Summary page of our Centrepoint
project in Continuum. To start the release process, click the Release button in the
Group Actions frame. This takes us to the Release Goals page as follows:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[296]

Notice that the two release stages are listed and the Prepare project for release stage
is ticked by default. Click the Submit button and we should see the Prepare Project
for Release page.

Preparing the release requires a couple of parameters to be set as shown above.
Quickly running through the form, take notice of the similarities of the required
parameters here to those from the Release plugin.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[297]

As we don't have authentication configured for our source repository, we will leave
the SCM Username and SCM Password blank.

Configuring security in a source repository is not within the
scope of this book. However, in practice, source repositories
must always be secured.

The SCM Tag is the name of the release tag that will be created in the source
repository. You can set a different value from the default, but in our case, we will
use the standard convention. Next, the SCM Tag Base is the URL or identifier of
the source repository where the tag will be created. Continuum determined the
default path based on the project's Subversion URL and using the standard
structure of having trunk/, tags/, and branches/ at the same directory level
in the source repository.

The Preparation Goals are the goals that will be executed during the prepare
stage. In our case, we will be using clean install instead of the default clean
integration-test. The Centrepoint project has inter-dependent modules. Therefore,
once the snapshot version has been changed to the released version, Maven will try
to resolve these new versions and will look for them in the local repository when it
builds the project. These artifacts need to be installed in the local repository so that
the project can be built successfully during release preparation.

The Arguments are any arguments that we want to add when the preparation
goals are executed. It is also possible to use a specific Build Environment during
the release, but in our case we won't be using one. While not included here,
another option to consider is using the build environment we defined in Chapter 8,
Continuum—Ensuring the Health of your Source Code. You might also consider adding
the checks profile to the arguments to ensure they pass at release time. We'll take a
closer look at building this regularly later in the chapter.

On the lower half of the Prepare Project for Release page, each module of our
project has its own section with a Release Version and Next Development Version
fields defined for each. These fields are already filled in with their defaults. The
Release Version field's value contains the current version of the project minus
the SNAPSHOT, and the current version was incremented by one for the Next
Development Version field.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[298]

We will leave everything other than the preparation goals as it is and submit the
form. After doing this, we should be directed to the Executing Release Goal page
like the one we see in the following screenshot:

As I'm sure you've already noticed, the release prepare phases executed are similar
to that of the prepare stage when using the Release plugin. The only difference is
that Continuum has two additional phases at the start: update-working-copy and
generate-reactor-projects.

In the update-working-copy phase, Continuum's local checkout of the project is
updated in order to get the latest changes from the source repository. In our case,
as we are using Subversion, svn update is performed. In the generate-reactor-
projects phase, the modules or projects under the group are identified and the
build and release order of these projects are determined.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[299]

After all of these phases have been executed, we should see the View Output link,
the Rollback Changes button, and the Done button afterwards.

The Rollback Changes button is specifically for rolling back the
release in cases when you want to abort the release or if something
failed somewhere in the release preparation stage. However, this does
not remove a release tag (if one was already created) from the source
repository. It only reverts the changes made to trunk. You need to
explicitly delete the created tag.

To view the output logs of the preparation stage, just click on the View Output link
and you should be able to see something similar to the following:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[300]

To f﻿inish the preparation stage, go back to the previous page and click Done. We
should be brought back to the Release Goal page.

This time the version that we have just prepared for release is available in the list box
under Perform project release, telling us that the release is now ready to be finalized.

Finalizing a release
To finalize the release, select Perform project release with 1.0 selected from the
drop-down box and click Submit. The next page that should appear is the Perform
Project Release page where we can provide the Maven Arguments (these are
actually goals that will be executed during the perform phase). By default, this is set
to clean deploy. We will be pushing our project to the releases repository so we will
use the default goals.

The Arguments are the additional arguments that we want to add when the goals
are executed. In case you have a customized release profile, you can activate that
profile by adding a -P[PROFILE ID] in this field.

On the other hand, if you want to activate the inherited release profile from the
Maven 2 super POM which we covered earlier in the Maven release process, the
Use Release Profile checkbox must be ticked. Similar to the Release plugin's
behavior, this is enabled by default. Now, let's click the Submit button to trigger
the release perform process and we should see the following page showing the
release perform phases as they are executed.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[301]

These three phases are the same phases of the perform stage using the Release
plugin. Similarly to the release preparation stage, the View Output link, the
Rollback Changes button, and the Done button should appear once the last phase
has finished executing. Click Done and we're finished with the release! You can
check our releases repository in Archiva for the deployed artifacts.

Continuum and the Release plugin use the same underlying code in the
Maven Release component. This is the reason why both have the same
release process, their almost similar release preparation, and release
perform phases.

Viewing release history
Another advantage of using Continuum for releasing projects is that you will be able
to preserve the history of all the project releases done in the server. The summary
and output of each release is tracked by Continuum and can be viewed from the
web application.

From the Project Group Summary page of Centrepoint, click the Release Results
tab and you should be able to see the list and summary of all the project's releases.

Clicking the View Result of one of the release results should show us the output
log similar to what we saw when clicking the View Output link, after the respective
release prepare and release perform phases have been executed during the release.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[302]

Other types of releases
There are cases when the modules of a project have different release cycles. To
handle these instances, what you can do is to treat your modules as separate projects.
You will have to break the multi-module structure where the relationship between
the parent and its module is two-way. You need to make the relationship one-way,
so the module references the parent. This is similar to how effectivemaven-parent
and centrepoint relate to each other. If you take a quick look at effectivemaven-
parent's POM, you would notice that it does not have any <modules> ������������configured,
but centrepoint references it as its <parent>. After structuring your projects this
way, you should be able to release each one separately.

It is also possible to release only a set of projects within a group. You can do this by
clicking the Release icon (second column from the left) corresponding to the project
you want to release from the Project Group Summary page. The condition that its
parent and all of its dependencies have been released still applies, so make sure that
you are releasing the projects in the correct order.

Troubleshooting releases in Continuum
Not all releases run as smoothly as ours did earlier. We've identified below the usual
suspects that may cause you trouble during a release:

There is a snapshot dependency found in one of the POMs. Using plugins with
snapshot versions would also block the release. You need to either release the
dependency or plugin and upgrade to the released version, or downgrade to
the previous released version.
The tag base is incorrect. For example, the tags/ directory does not exist yet
or the structure of the source repository does not conform to the standard
layout and the SCM Tag Base property was not properly set.
The tag already exists. A bad release was rolled back and the tag was not
explicitly removed.
Unable to resolve ���������artifacts. ��� Sometimes the goals to be executed just need to be
tweaked. Going back to the release prepare stage in Continuum, we changed
the Release Preparation Goals from clean integration-test to clean
install so that the dependent modules would be able to see the other
modules they depend on and avoid this problem.

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[303]

Unable to deploy to the ������������������� artifact r���������epository. The usual causes for this are:
The credentials weren't set in the build server's settings.xml
The repository IDs and the server IDs do not match�
The user does not have write permission to the
deployment repository

The build simply failed. It could be because something went wrong during the
execution of your release profile or an additional argument was forgotten in
the preparation or perform goals.
The �� pom.xml already exists�� bug during release perform when using Subversion
1.5.x. This is a known issue with Subversion and affects the underlying
Maven SCM component. You can take a look at http://jira.codehaus.
org/browse/SCM-406 for more understanding of the issue. The easiest
workaround is to downgrade Subversion to 1.4.x.
Infrastructure problems. For example, if the source repository suddenly went
down or the build server machine's disk is full.

Now that we understand how to use Continuum to release, let's get back to its
regularly scheduled builds.

Build pipelining and multiple build
definitions
Recall what you have learned about multiple profiles and build pipelining from
earlier chapters:

Where it makes sense, layer advanced optional build features into profiles
with increasing scope.
Run as much as possible in your own environment while keeping the default
build fast.

From a best practices perspective, profiles that take a while to build should be put
on an integration server. Examples of these profiles are integration tests, Selenium
tests, and site generation. In this section, we shall see how to make this work
in Continuum.

The Centrepoint project has two profiles configured: selenium and checks. We will
see how we can configure each of them in Continuum.

•

°

°

°

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[304]

Make sure that you have the necessary browsers that will
be used for the Selenium tests installed in the build server
machine. Otherwise, the tests will not run.

First, we will configure the build to run the checks against the source code of the
Centrepoint project. We will configure this to execute in a separate schedule from the
nightly builds. From the Schedules page, add a new schedule and fill it in as follows:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[305]

We scheduled it to execute at the middle of the day in between development so that
problems in the source code will be caught early on.

Now, return to the Build Definitions page of Centrepoint and add a new build
definition as follows:

To activate our checks profile, we added the -Pchecks parameter in the Arguments.
We have also configured the goals to be executed as clean verify as our plugins for
verifying the source code are attached to the verify phase.

There is one potential problem with this—if there have not been any recent changes
then the build won't occur. To correct this, check the Always Build option on the
build profile. This will ensure it builds whether there have been SCM changes
or not.

If there have been SCM changes, this profile will "steal" the build from the normal
process. As this build covers everything the default build would have, this should
not be a problem. So, it is a good practice to ensure that this is the case.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[306]

Building the Site
The above profile would also be a good time to build the site (before
the checks are run), so that any failures can be reviewed visually. If you
have a suitable site deployment location already configured, this can be
achieved with the goals clean site-deploy verify.

The use of multiple schedules and build definitions is one way of build pipelining.
Another way in Continuum is by having a totally separate project group for building
only a subset of modules as needed. When the modules themselves change, or their
dependencies change, the build will be triggered, but the separate group allows us
to easily change the scheduling and build definitions for just these special modules.
One good example to use here is the selenium-tests model from our example
application. Let's see how this works.

Notice that the selenium-tests module was not included in the release process
above and still depends on 1.0-SNAPSHOT. We first need to adjust that value to
1.1-SNAPSHOT in the POM and commit it.

Now, let's add the project to Continuum. As the selenium-tests module is not
part of the regular build, we will add it in a separate project group. From the Group
Summary page, create a new project group with the following details.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[307]

Add the selenium-tests module to this project group as we learned in Chapter 8,
Continuum—Ensuring the Health of your Source Code.

After successfully adding it to the group, go to the Build Definitions tab and edit the
default build definition. Fill in the form as follows:

We attached the above build definition to the TEST_VERIFY_BUILDS schedule as
we want it to be executed in the middle of the day as well.

To verify the builds we configured, explicitly execute both of them from their
respective build definitions pages. You should be able to see the results for the
checks and also Firefox windows being opened and closed as the Selenium tests run.

Since only the verify phase is run, you may get an error about missing
dependencies on Centrepoint 1.1-SNAPSHOT in some modules. This
happens if it hasn't been built using the install phase yet—in this
case you should run the default build definition before re-running the
verification build definition.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[308]

Parallel builds
As more projects are added to the build server, the build schedule becomes too
crowded, especially if each project takes a while to build. Instead of having hourly
builds, you might end up with daily builds (and that is not the best practice).

To remedy this problem, concurrent or parallel builds were implemented in
Continuum (beginning at version 1.3). In this section, we will learn how to
configure and utilize parallel builds to our advantage.

How it works
Continuum makes use of multiple build queues to build projects concurrently. If
you look back at the diagram from Chapter 8, Continuum—Ensuring the Health of
your Source Code, which shows how project groups, build definitions, schedules, and
build queues are related, you will see the two build queues at the bottom. Those two
represent parallel builds.

Projects belonging to the same project group are always queued
on the same build queue.

Let's take a look at how it works exactly in the scenario when a scheduled build
is triggered.

When a schedule executes, Continuum gathers all the projects attached to that
schedule. It then determines the build order of the projects and groups them together
based on their interdependencies and project groups. Assuming that we have two
build queues available for parallel builds, Continuum will add each group of projects
to the build queue which has the least amount of projects queued in it at the time of
checking. For example, Build Queue A has three projects queued while Build Queue
B has only two, Continuum will queue the group of projects in Build Queue B. If
both Build Queue A and Build Queue B each have three projects queued to them,
Continuum will queue the project to whichever of the two comes first in the build
queues list attached to the schedule.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[309]

Configuring parallel builds
Parallel builds are enabled by default in Continuum. However, this is not obvious
because only one build queue is pre-configured. To be able to add a new build
queue, we must first set the maximum allowed number of builds to be built in
parallel in the Configuration page. Change the value of Number of Allowed Builds
in Parallel field from 1 to 2 then click Save.

There is no limit to the number of allowed builds in parallel but make
sure that you consider the capacity of your build server machine. More
concurrent builds means more CPU memory and resources used, which
may actually make the builds slower.

We will use the builds we have configured in the previous section to demonstrate
how parallel builds work.

Let's create a new build queue. Go to the Continuum - Add/Edit Parallel Build
Queue page by clicking Build Queue from the navigation menu and add a new
one as follows:

After creating the build queue, go to the Schedules page again and edit the
TEST_VERIFY_BUILDS. Add BUILD_QUEUE_2 to the schedule as shown below:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[310]

Save the changes. Now, let's try building the Centrepoint and Centrepoint Selenium
Tests project groups by clicking their build icons on the verification build definition
from their respective group pages. We can then go to the Queues page and see both
projects being prepared or in the prepare build queue. After a while you should be
able to see the projects in the Centrepoint group queued or being built in one of the
build queues, while the Centrepoint Selenium Tests group is being built in the other
build queue similar to what we have below.

And that is how to utilize parallel builds!

Even though these projects do depend on each other (with the Selenium tests
depending on the web application), they are allowed in parallel as they were placed
in separate groups. This can be advantageous as the Selenium tests use different
types of resources to the main build and will eventually take much longer. However,
be aware that they might be building with an older version of the web application
while the main application is still building in the mean time.

One final thing to note about parallel builds is that they don't apply to releasing.
Meaning, only one release at a time can be done in Continuum even if there are
multiple build queues.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[311]

Distributed builds
Project builds can also be distributed among different machines. A few reasons why
to distribute your project builds include:

To build the project in different platforms. Some projects may need to be
built on a Windows machine, while others must be built on Linux. You can
use distributed builds to accomplish this.
To lessen the load on the server.

Parallel builds and distributed builds cannot be used simultaneously. You
can either build all projects concurrently in the build server or distribute
each build to a build agent.

This feature was implemented at the same time as parallel builds, so it is available
starting with Continuum 1.3.

Master and slave
Distributed builds in Continuum are implemented in a master-slave setup.
A Continuum instance is the master, while a Continuum build agent is the slave.
A build agent is a standalone light-weight web application, whose function is
simply to build the project(s) dispensed to it by its master. The master is the one
who distributes the build among the build agents registered to it. They have a
one-to-many relationship, where a master can have multiple build agents, but a
build agent can only have one master at a time. The master and build agents
communicate with each other using the XML-RPC protocol.

The XML-RPC protocol is a specification which allows separate or
dispersed applications that may be operating in different environments
to communicate with each other through Remote Procedure Calls
(RPC). It uses HTTP for transport and XML for encoding. For more
details about XML-RPC, visit http://www.xmlrpc.com/.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[312]

To give you a high-level view of how distributed builds are designed, look at the
descriptive diagram below, which Wendy Smoak prepared for her Continuum talk
at ApacheCon EU in March, 2009.

Project Group

Project

Build Definition

Build File

Goals and Args

Schedule

Build Environment

JDK Maven var=value

When to run

Max time

Continuum

Build Agent Group Build Agent Group

agent 1

agent 2

working copies

build output

user database

builds database

local repositories

Comparing this with parallel builds, instead of Build Queues attached to the
Schedule, what we have instead are sets of build agents attached to a Build
Environment. The reason behind this is related to the first reason we identified
concerning why we use distributed builds. For example, if you have a master
Continuum server running on Linux but you want to test if your project builds
on Windows. You can accomplish this simply by:

Installing a build agent on a Windows box
Creating a build environment (in the master Continuum instance) specific to
a Windows environment, then adding it to a build definition
Attaching the build agent to the created build environment

Afterwards, you should be able to test if your project builds on Windows by building
your project using the build definition, where you attached the build environment.

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[313]

Configuring distributed builds
Now, let's go through the process of configuring distributed builds in Continuum.
The first thing that you need to do is to enable distributed builds. From the
Configuration page, just tick the Enable Distributed Builds checkbox and save
the changes. You should be able to see the Parallel Builds section replaced by
Distributed Builds in the navigation menu. Before you can register a build
agent to the master Continuum server, you must install a build agent first.

It is possible to build a project locally to the machine where the master
Continuum instance is running by installing a build agent on the same
machine where the master is installed. The master Continuum instance
will simply treat it as a regular build agent.

In our case, we will install our build agent on our local machine. The steps are no
different if you will be installing it to a separate machine.

Download the Continuum Build Agent binaries from http://continuum.apache.
org/download.html. Unpack it to your build agent machine. By default, the
Continuum build agent runs on port 8181. If you want to change it to a different
port, just edit conf/jetty.xml in the same way as we have done for Continuum
previously. This also allows you to install multiple build agents in one machine.

You also need to configure conf/continuum-build-agent.xml and add the
following fields:

<continuum-buildagent-configuration>
 <buildOutputDirectory>
 /path/to/build/agent/data/build-output-directory
 </buildOutputDirectory>
 <workingDirectory>
 /path/to/build/agent/data/working-directory
 </workingDirectory>
 <continuumServerUrl>
 http://localhost:8082/continuum/master-xmlrpc
 </continuumServerUrl>
 <installations>
 <installation>
 <name>Maven 2 Home</name>
 <type>maven2</type>
 <varValue>/path/to/apache-maven-2.2.1</varValue>
 </installation>
 </installations>
</continuum-buildagent-configuration>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[314]

The first two specify where the build agent would put the build output and where to
check out the project it would be building respectively. The <continuumServerUrl>
is the URL of the master Continuum server. Make sure to replace the base URL with
the actual URL you are using. The /continuum/master-xmlrpc is necessary to be
specified in the URL in order for the master Continuum server to determine that
the requests came from a build agent. The <installations> contains the list of
installations (for example, Maven, JDK, and so on) that are available for use by the
build agent.

Continuum 1.3.3 and earlier contain a bug that was fixed in Continuum
1.3.4. If you are using these versions, you must also copy all the
wagon-XXX.jars from apps/continuum/WEB-INF/lib/ in your
master Continuum server to the continuum-build-agent installation's
apps/continuum-buildagent/WEB-INF/lib/. This is needed for
retrieving parent POMs with snapshot versions. Otherwise, you will not
be able to build projects whose parent POM is a snapshot version.

Now, to get the build agent up and running, go to bin/ and execute:

bin$./continuum-build-agent console

Windows users should execute continuum-build-agent.bat console instead.

Once the build agent is started, you can register it in your master Continuum server.
In the master Continuum instance, go to the Build Agent page and create a new
build agent. Fill in the form with the following values:

Make sure to replace the base URL of the Build Agent URL with the actual value of
where your build agent is running.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[315]

Now, create a build agent group that will be used with a build environment. For
our sample configuration, we will create a Build Agent Group for all build agents
running on Linux, where we will add the local build agent configured earlier.

In order to build a project to a specific group of build agents, you need to add the
build agent group to a specific build environment.

We will attempt to build our Centrepoint Selenium Tests project on the Linux
build agent. Create a new build environment named Linux Build Environment then
add the Build Agent Group - Linux to it. Go back to Centrepoint Selenium Tests
Build Definitions tab and edit the default build definition clean test. Set the Build
Environment to Linux Build Environment and save the changes. Now, build the
project using this build definition. If you go to the Queues page, you should see
the Centrepoint Selenium Tests project being built in the build agent similar to
the following:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[316]

The <scm> configuration needs to be added to the project's
POM in order to avoid encountering this bug in Continuum
1.3.3 during release preparation, using distributed builds:
http://jira.codehaus.org/browse/CONTINUUM-2322.

After the Centrepoint Selenium Tests have finished building, you should be able to
view its build results in the master Continuum server.

Doing project releases on a build agent
Releasing a project when distributed builds is enabled is the same as a regular
release. The only difference is that you need to specify the Build Environment
where the specific Build Agent Group is attached when providing the Release
Prepare parameters.

With distributed builds, you can release multiple project
groups simultaneously as long as you are using different build
agent groups for each release.

Now, let's try releasing Centrepoint Selenium Tests. The first thing that we need
to do is to update the version of its parent to the released version. As we already
released Centrepoint 1.0 earlier, we can just flip the <version> of the parent
POM reference as follows:

 <parent>
 <artifactId>modules</artifactId>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <version>1.0</version>
 </parent>

As we updated the parent to the released version, we must add a <version> field
in the project itself. Otherwise, the parent's released version will be inherited and
we will not be able to release the project. We must also update the <version> of the
com.effectivemaven.centrepoint:webapp as it is using the project.version
property. See the following configuration:

<artifactId>selenium-tests</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Centrepoint Selenium Test Suite</name>
<dependencies>
 <dependency>
 <groupId>com.effectivemaven.centrepoint</groupId>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[317]

 <artifactId>webapp</artifactId>
 <version>1.0</version>
 <type>war</type>
 <scope>test</scope>
 </dependency>
</dependencies>

Commit the changes. Go to the Centrepoint Selenium Tests project group and start
the release process. There's no difference with the regular release process, all you
need to do is set the appropriate Build Environment in the Release Prepare input
form. Once the release has started, you can take a look at the Releases page (under
Distributed Builds section in the navigation menu) for the releases currently in
progress. It should show which build agent is executing the release and should look
similar to this:

Before continuing, we should now set the parent and web application versions back
to their original values so Continuum will test 1.1-SNAPSHOT.

That's it for Continuum's distributed builds. For further reading on this feature, you
can visit the following site:

http://continuum.apache.org/docs/1.3.3/administrator_guides/
distributed-builds.html.

Maintenance
This section is targeted specifically for administrators and deals with maintaining
local repositories and directories used by the running Continuum server.

Configuring multiple local repositories
One of the enhancements recently added to Continuum is the ability to set different
local repositories for each project group.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[318]

By default, the local repository that Continuum uses is the <localRepository>
defined in ~/.m2/settings.xml and if it is not defined, then it uses ~/.m2/
repository under the home directory of the user running Continuum. We can
configure other local repositories by adding one from the Local Repository page.

As we can see in the screenshot above, the Name and Location of the local repository
is required. Fill in ALTERNATE_LOCAL and <USER_HOME>/.m2/alternate for
these two fields, and select default for the layout.

Let's say we want our Centrepoint project group to use our alternate repository
instead. To do this, we'll just go to the Project Group Summary, click the Edit
button, and set ALTERNATE_LOCAL as the Local Repository to be used. The next
time the build is triggered for our Centrepoint project, Continuum would use the
ALTERNATE_LOCAL repository to build and install our project.

Why would you want to do this? Consider that you had two different build
definitions that were scheduled to run concurrently and you wanted to avoid the
builds conflicting with each other in the local repository. By using different local
repositories you can ensure they won't conflict. This does come with two drawbacks
though. First, both schedules must ensure to completely build all the projects needed
(or obtain them from the remote repository), as it won't be able to find them in the
local repository as it usually does. Secondly, it will re-download all of the dependencies
from the remote repository, taking up bandwidth (best solved by using a locally
installed repository manager) and disk space. For this reason, you may need to
occasionally clean up your local repositories.

Cleaning up local repositories
In the early sections of this chapter, we learned the best practice of release early, release
often. As more projects are released, more versions are consistently being added and
old snapshots of these released artifacts are left in our local repository. We may also
have multiple copies of artifacts in multiple local repositories. As time goes by, the
size of our local repositories grow. Before we know it, it has consumed a large chunk
of our hard disk space.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[319]

If our artifacts and dependencies are huge ones, we'll constantly be bothering our
system administrators to ask for help in freeing up some disk space. We know how
busy these guys are and we wouldn't want to bother them with that now, would we?

Don't worry, because Continuum has a built-in feature of cleaning up its local
repositories. All we need to do is configure it and set the schedule for when it should
run. Let's take a peek at the Purge Configurations page below.

We can see our two repositories listed with some corresponding figures set. The
purge or cleanup can be configured to behave in two ways:

1.	 Clean up the repository by removing snapshot artifacts older than a specific
number of days.

2.	 Clean up the repository by retaining only a specific number of timestamped
artifacts of each snapshot version.

The Days Older and Retention Count fields signify these two behaviors. In order to
activate the purge by Days Older behavior, just set the Days Older field to a number
greater than zero. Otherwise, if you want to activate the purge by Retention Count
behavior, you must set the Days Older field to zero.

The two columns on the right of Retention Count are Delete All and Delete
Released Snapshots. The Delete All field tells Continuum to wipe out the entire
contents of the local repository. On the other hand, the Delete Released Snapshots
field tells Continuum to remove a snapshot version from the local repository if it sees
a released version of the artifact in that local repository.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Continuum in Depth

[320]

The remaining fields are self-descriptive so we shall go over each briefly. The
Schedule field is the schedule of the clean up. This is the same schedule we have
learned about in Chapter 8, Continuum—Ensuring the Health of your Source Code,
and used in build pipelining earlier. We can attach a local repository cleanup to a
schedule the same way we attach a build definition.

It is good practice to have an entirely separate schedule for the purging,
so that it would not affect the build. If you use the same schedule for
purging and building, it is possible that the maven-metadata.xml
is being updated at the same time and Maven would have trouble
resolving snapshot artifacts.

The last two fields to take note of for the purging are Default and Enabled. These
two are important if there are multiple purging or cleanup configurations for a local
repository. There can only be one default configuration (purging configuration
whose Default field is set to true) for a local repository and it would be the one used
for scheduled purging.

The purging can also be forced by clicking on the Purge icon. It's the one
in the middle of the three icons on the rightmost part of the table.

Cleaning up directories
In the earlier sections of this chapter, we learned how to release projects in
Continuum. During the release process, Continuum creates a release directory
specifically for that release where it keeps the results of the release. This directory,
including its contents, is left for viewing and history purposes. The same also goes
for the results of each build (called the build results, which we have learned in the
previous chapter). They are also kept in a build output directory.

As time goes by, more and more historical data is created each time a build or a
release is made. This in turn means more files to fill up our server.

Continuum has got this covered too, so there is no need to worry about it. Going
back to the Purge Configuration screenshot in the previous section, notice the
Directory Purge Configuration table. That is the configuration for purging the
releases and build output directories. The same configuration and process applies
for these as with the repository purging.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 9

[321]

Summary
In this chapter, we have discovered the more advanced features of Continuum. We
walked through the Maven release process and saw how the same process is also
applied in Continuum except that it was quicker to do. We have also learned how to
utilize distribute builds and how to build projects concurrently in Continuum. And
last but not the least, we learned about its built-in maintenance features and how to
make use of them properly.

In the next chapter, we will recall what we have learned about Archiva in
Chapter 2, Staying in Control with Archiva. We will tackle its more complex
features and at the same time, learn how we can utilize them in a project team.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team
A continuation of Chapter 2, Staying in Control with Archiva, this chapter showcases
the different techniques and ways for getting the best out of using an Archiva
repository. We will learn a little bit about access control in Archiva, how to
configure and use a virtual repository, and a whole lot about maintenance.

Roles and permissions
In preparation for the latter sections of this chapter, let's familiarize ourselves with
the user roles and permissions available in Archiva. The list of available roles can be
seen by clicking a user account in User Management and then clicking on the Edit
Roles link.

Some of the roles in Archiva are resource-based with each repository
treated as a resource. This means that access is controlled at the
repository level.

There are eight types of roles available in Archiva. They are:

1.	 System Administrator: Provides access to Manage and Administration
sections, user administration privileges, and read and write permissions
to all repositories.

2.	 User Administrator: Provides access to User Management and
User Roles pages.

3.	 Global Repository Manager: Provides read and write permissions to
all repositories.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[324]

4.	 Global Repository Observer: Provides read permission to all repositories.
5.	 Repository Manager (resource level): Provides read and write permissions to

a given repository.
6.	 Repository Observer (resource level): Provides read permission to a

given repository.
7.	 Registered User: The default role assigned to a user who has registered

in Archiva.
8.	 Guest: Provides the same permissions that are enabled for the built-in guest

user account, which we will discuss later on.

A user assigned with a Global Repository Manager or resource level Repository
Manager role automatically gains the Global Repository Observer or resource level
Repository Observer role respectively.

Users assigned with a Repository Manager role should be able
to access the Find section as well as Upload Artifact and Delete
Artifact menu in the web application. On the other hand, users with
a Repository Observer role should only be able to access the Find
section. Repository-level security applies to each corresponding
operation. This means that a user will only be able to search,
browse, and upload to or delete artifacts from those repositories
that they have permission to access.

When managing roles and permissions, another thing to take note of is the
guest account. To enable access without authentication for a specific resource or
operation, just assign the guest user the appropriate role. By default, the guest
user is already assigned the Repository Observer role for internal and snapshots
repositories. This allows anyone to be able to browse and search for artifacts from
these repositories. If you edit the guest user account, you should be able to see the
following configuration:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[325]

As you can see the guest user doesn't yet have read access to the releases
repository. In our examples, we will assume that the repository will be available to
everyone that can access Archiva. So to make this consistent with the snapshots
repository, check the Repository Observer box for releases and submit the form.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[326]

You can see for yourself how the guest account works by logging out of Archiva and
clicking Browse on the navigation menu. The artifacts that were requested and were
downloaded to our proxy repository from the previous chapters should be visible in
the Browse page, similar to what is seen in the following screenshot:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[327]

As we work through the rest of the chapter, we will cover a few more things about
access control in Archiva. Now that we are familiar with the security basics, we are
ready to tackle some of the more advanced features of Archiva.

In Chapter 2, Staying in Control with Archiva, we configured the internal repository
to act as a proxy cache for the remote repositories such as: central , maven2-
repository.dev.java.net, and jboss.repo. In the next section, we will learn
additional techniques for configuring our Archiva repositories.

Introducing repository groups
In Archiva 1.1, the concept of repository groups (also known as virtual repositories)
was introduced. Taking the meaning of the term virtual literally, these repositories
are physically non-existent repositories. A virtual repository is simply a URL which
gives a single interface to a group of managed repositories.

Let's visualize this with a simple scenario. For example, we have a Maven 2 project
which has dependencies on artifacts that reside in multiple repositories. In this case,
we will assume that we have a nearby proxy cache configured in Archiva for each
of them. (You can refer back to Hooking up Maven with Archiva from Chapter 2,
Staying in Control with Archiva, on how to do this). Given this scenario, it would
mean that we have to configure each of these repositories in our settings.xml
(or POM), in order for us to get the needed artifacts and to be able to build our
project. If these repositories are secured, we also need to configure our credentials
for each. This leaves us with a long (and possibly messy) settings.xml. Remember,
a messy configuration is an attraction for errors.

To avoid this problem, we can make use of repository groups in Archiva. We can
create a repository group and configure or add multiple repositories under that
group. So when an artifact request is made (for example, by Maven) using the
repository group URL, the repositories underneath it will be searched until the
requested artifact is found and returned to the client.

The following section teaches us how to configure repository groups and experience
their strength first-hand.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[328]

Configuring and using repository groups
We shall be continuing to use the Centrepoint project from the sample for Chapter 9,
Continuum in Depth.

Before jumping into configuration, it is good to see how it will be without the aid
of repository groups. In Chapter 9, Continuum in Depth, we released the organization
POM Apache Maven 2: Effective Implementations Book and deployed it to the
releases repository in Archiva. As the Centrepoint project refers to that released
version, anyone who builds that project must be able to get the organization POM
from the releases repository. This is a perfect setup for using repository groups. Let's
begin by wiping out our local repository again and building the Centrepoint project.

centrepoint$ mvn clean install

The build should fail with the following error:

[INFO] Scanning for projects...

Downloading: http://localhost:8081/archiva/repository/internal/com/
effectivemaven/effectivemaven-parent/1/effectivemaven-parent-1.pom

[INFO] --

[ERROR] FATAL ERROR

[INFO] --

[INFO] Failed to resolve artifact.

GroupId: com.effectivemaven

ArtifactId: effectivemaven-parent

Version: 1

Reason: Unable to download the artifact from any repository

 com.effectivemaven:effectivemaven-parent:pom:1

from the specified remote repositories:

 internal (http://localhost:8081/archiva/repository/internal)

Our organization POM cannot be found because it resides in the Archiva
releases repository, and we don't have it configured in our settings.xml.
The version in ../effectivemaven-parent/pom.xml is also not used because
the versions now differ. To get past this problem, we must add the following
configuration in the settings.xml:

<profiles>
 <profile>
 <id>repositories</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[329]

 <repository>
 <id>releases</id>
 <name>Archiva Managed Releases Repository</name>
 <url>
 http://localhost:8081/archiva/repository/releases
 </url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 </profile>
</profiles>

We already configured the <server> credentials for the releases repository in
Chapter 2, Staying in Control with Archiva, when we tried deploying to Archiva using
Maven so we no longer need to configure that.

If you try building Centrepoint again, the build will still fail. Notice that Maven
didn't even seem to try looking for the artifact from the releases repository we
added previously. This is because we have locked down Maven to use only the local
mirror repository internal. This is the effect of the <mirrorOf>*</mirrorOf>
configuration in our settings.xml which we did in Chapter 2, Staying in Control
with Archiva. Just change it to <mirrorOf>*,!releases</mirrorOf> so that Maven
would respect the additional repositories.

Execute the build again. This time we should be able to get a successful build.

However, for every member of the team working on the Centrepoint project, the
settings.xml (now over 40 lines long) is needed at the minimum. As the project
grows bigger, more artifacts are added. Also, if these new artifacts are located in
other repositories, you would need to add this repository to your settings.xml
and so on and so forth.

We already learned at the start of this section that in situations such as this, a
repository group can make things easier for us developers. Let us see how we can
create one.

Let's go back to our running Archiva instance. Click Repository Groups, then type
public in the Identifier field on the upper right-hand corner of the page and click
Add Group. We now have a virtual repository named public with the following
URL: http://localhost:8081/archiva/repository/public.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[330]

You may change the name of the repository group to a more appropriate
one if the repositories are not really for public consumption.

To add managed repositories under the group, just select the repository you would
like to add from the list under the created group and click Add Repository. Add
the releases and internal repositories (this order is used so that requests for the
organization's artifacts are never made on external proxied repositories). Note that
we don't want to add the snapshots repository to the group as that might change
the behavior of the repository. One example of this is when dealing with version
ranges. You might end up getting a snapshot version instead of a released version.

Now, with this configuration, we are telling Archiva that if an artifact request is made
on the repository group public, it should look for the artifact in these two repositories
(based on the order they are listed) and return the first matching artifact it sees.

You can change the ordering of the repositories to be searched by
moving a repository up or down the repository group configuration via
the Up and Down icons.

After configuration, the page should look similar to the following:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[331]

Now that we have a repository group that we can use, let's configure it in our
settings.xml. Remove the profile we added previously, and adjust the mirror
section as follows:

<mirrors>
 <mirror>
 <id>public</id>
 <url>http://localhost:8081/archiva/repository/public</url>
 <mirrorOf>*</mirrorOf>
 </mirror>
</mirrors>

Notice how much shorter and simpler our settings.xml is now.

Group credentials
The guest user has access to all of the repositories in the group so we
don't need a corresponding <server> for the mirror. However, if read
access control applies to any repositories in the group, make sure to add
a <server> for the ID of the mirror (not the underlying repositories
that are no longer visible to Maven). The existing <server> definitions
continue to be used for deployment, as deployment cannot be done to
a group.

Let's try building Centrepoint again, but this time with a clean local repository,
using the new settings.xml. We should be able to see both com.effectivemaven:
effectivemaven-parent:pom:1 and the other dependencies from the central
repository being retrieved from our public repository group, ending with a
successful build as follows:

[INFO] Scanning for projects...

Downloading: http://localhost:8081/archiva/repository/public//com/
effectivemaven/effectivemaven-parent/1/effectivemaven-parent-1.pom

1K downloaded

[INFO] Reactor build order:

...

[INFO] --

[INFO] Building Centrepoint

[INFO] task-segment: [clean, install]

[INFO] --

Downloading: http://localhost:8081/archiva/repository/public//org/apache/
maven/plugins/maven-clean-plugin/2.2/maven-clean-plugin-2.2.pom

3K downloaded

Downloading: http://localhost:8081/archiva/repository/public//org/apache/
maven/plugins/maven-plugins/10/maven-plugins-10.pom

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[332]

What else can we do with repository groups? Consider, for example, that we added
new dependencies to our Centrepoint project and these dependencies are projects
being worked on by another team within the company. Let's say the other team have
their own deployment repository (separate from ours) managed by Archiva as well.
We no longer have need to make any changes in our settings.xml (or POM). The
repository just needs to be added in the public repository group and the appropriate
permissions assigned to the Centrepoint project developers' accounts.

Configuration is much simpler now and is concentrated in Archiva itself. Developers
and team members won't have to configure their settings.xml each time a new
repository is needed.

RSS feeds—discovering new artifacts in
your repository
RSS has become the de facto standard with regard to news feeds and updates on the
web. The Archiva community has seen how the project can take advantage of this
current trend by providing RSS feeds for new artifacts in the repository. Projects
that use or depend on specific libraries would be able to know when a new release
is available or when there is a new build. This is especially useful when a project is
dependent on a fix that would be available in the next release or in the next build.

A Repository Observer role is required at least in order to subscribe to a
feed in Archiva.

There are two levels of RSS feeds available in Archiva: repository level and
artifact level. In the following sections, we will be using Thunderbird's RSS feed
reader for demonstration purposes. You can get Thunderbird from http://
www.mozillamessaging.com/en-US/thunderbird/ and can set it up using the
installation guides at http://www.mozillamessaging.com/en-US/support/.
You can also use other RSS feed readers such as Google Reader. If access to your
repositories require authentication, your feed reader must support authentication.
If security is lenient, you can just disable authentication for read operations to your
repository by granting the guest account the Repository Observer role.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[333]

Repository level feeds
Repository level feeds notify subscribed users of new artifacts found in
the repository. To subscribe to a repository level feed, first go to http://
localhost:8081/archiva/admin/repositories.action (Repositories page).

Unfortunately, at the time of writing, only system administrators are able to access
this page so you must log in to Archiva using the admin account we created in
Chapter 2, Staying in Control with Archiva, if you have not already done that.

From this page, you can right-click on the RSS feed icon on the upper righthand
corner of repository snapshots configuration and copy the link location.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[334]

If you have not created an account for your RSS feeds in Thunderbird, go to
File | New | Account... in the top menu. Select RSS News & Blogs then click Next.
Use the default Account Name "News & Blogs", click the Next button then Finish.
A folder with the same name as the Account Name should appear on the left pane,
similar to the one in the following screenshot:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[335]

Under the RSS News & Blogs link seen in the previous screenshot, click Manage
subscriptions. Add a new RSS subscription for the snapshots repository
by pasting the URL we copied in step two into the Feed URL field.

The feed subscription to the snapshots repository should immediately appear
under the News & Blogs folder. Clicking on the feed should yield something
similar to the following:

Notice that the feed in the previous screenshot shows the subject line New Artifacts
in Repository 'snapshots' as of Sat Aug 08 12:48:27 PHT 2009. The date corresponds
to the date and time of an execution of the repository scan. It is during this scanning
when new artifacts in the repository are discovered. When the reader updates or
checks for new feeds, Archiva gets all the new artifacts found (if there are any)
during each execution of the repository scanner and sends them back as multiple
entries to the feed reader.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[336]

Artifact level feeds
In contrast to repository level feeds, artifact level feeds notify subscribed users of
new versions of a specific artifact deployed or discovered in the repository. You
can use this if you want finer grained notifications or if you are interested only in a
specific artifact. This is useful when you're waiting for certain project dependencies
to be released as it can provide you immediate notification once the release is
available in the repository. You can also use this to be notified of newly deployed
builds for purposes such as QA testing or simply for development.

Now, let's say we want to know when there are new builds of the Centrepoint
distribution available.

This time we start by logging in to Archiva and going to the Browse page.

Click on the group com.effectivemaven.centrepoint to view the artifacts under
the group. You should see the different Centrepoint projects listed, each with a
corresponding RSS feed icon beside it:

Again we can right-click the RSS feed icon next to distribution and copy the
link location.

Finally, we go back to Thunderbird and add it as a new feed under News & Blogs,
the same way we added the feed for the snapshots repository earlier. Check that
the feed URL you copied is: http://localhost:8081/archiva/feeds/com.
effectivemaven.centrepoint/distribution. The artifact path in the URL
distinguishes this feed from the repository feed.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[337]

After the feed is added in Thunderbird, clicking on the feed should display text
identical to the following:

Similar to the behavior of repository level feeds, when the reader updates or checks
for new feeds, information about newly found versions of the artifact in the Archiva
repositories will be sent back to the feed reader.

Let's try deploying a new snapshot of Centrepoint Distribution. Go to your local
checkout of Centrepoint and execute the following from the command-line:

centrepoint$ mvn clean deploy

After the project is deployed, go back to Thunderbird and force it to update the
feed for Centrepoint Distribution. You should see a new entry appear in its
corresponding folder.

So far, with Archiva, all we have been talking about is the end-user functionality like
deploying and discovering new artifacts in the repositories. The next sections discuss
the other side of the spectrum—the administrator functionality.

Deleting artifacts in your repository
Sometimes the need for deleting artifacts from the repository arises. For example, if
an artifact was deployed by accident to the repository or the artifact has already been
released but an old snapshot version is still available. In Archiva, there are different
ways of deleting artifacts from the repository—through WebDAV, via the web
application, through the scheduled repository purging, or by directly deleting it in
the file system.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[338]

It is not recommended that artifacts be deleted directly from the file
system. Not only does it require access to the server itself, it is also prone
to error. Artifacts that should not be deleted could be deleted by mistake.
In case you still want to directly delete an artifact from the file system, all
files related to the artifact such as metadata files and checksums must also
be deleted. The repository must be scanned as well in order to update the
metadata files. This can be done by clicking the Scan Repository Now
button of the repository configuration in the Repositories page. The
database scanning also needs to be explicitly executed to immediately
remove the deleted artifact from the database.

One of the advantages of using the Delete Artifact form in the web application is
that you do not need to have direct access to the server. All you need is the required
Archiva permissions, which come with the Repository Manager role (without the
permissions Delete Artifact will not be visible in the navigation menu). Another
advantage is that the repository scanning no longer needs to be explicitly executed as
Archiva already executes the repository and database scanning consumers to update
the index and the database for you.

Now, let's try deleting an old artifact from one of the repositories. You may recall
how in Chapter 9, Continuum in Depth, when we went through Continuum's release
process that we released Centrepoint 1.0. If you go to http://localhost:8081/
archiva/repository/snapshots/com/effectivemaven/centrepoint/
centrepoint, the old 1.0-SNAPSHOT version of the project still exists. We will
remove this artifact from the repository using the delete artifact web form.

First, click Delete Artifact from the navigation menu and then fill in the form
as follows:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[339]

Click the Submit button. After the artifact has been deleted, you should see the
confirmation message Artifact 'com.effectivemaven.centrepoint:centrepoint:1.0-
SNAPSHOT' was successfully deleted from repository 'snapshots'. If you browse
the repository at http://localhost:8081/archiva/repository/snapshots, the
related artifacts such as the POM, maven-metadata.xml, and the checksums were
also deleted.

To delete artifacts through WebDAV, just open the repository using a WebDAV
client and delete the artifact like in a regular file system. As for the scheduled
repository purging, we will discuss this in the following sections.

We have tackled the subjects of repository groups, RSS feeds, and deleting artifacts
in the repository. This chapter would never be complete without covering repository
maintenance. The succeeding sections will be all about that.

The Archiva reports
Archiva generates two types of reports. These are the repository statistics, providing
information such as statistical data of a repository's content and the repository health
report, which makes us aware of any problems in the repository such as artifacts that
have invalid POM files. Both accept different criteria for customizing the generated
output as seen in the following screenshot:

Now, let's discuss the configuration for each report.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[340]

Repository statistics
This report provides statistical repository information such as the total number of
artifacts in the repository, its total size, the number of plugins in the repository, and
the likes based on a given repository scan execution time. This report can be used for
analyzing the current content of your repositories, and tracking its growth, usage,
and evolution over time. The report can be constrained by the given Start Date
and End Date. If no Start Date and End Date are provided, all statistics right from
the start up to the current date will be included in the report (to a maximum of the
number of rows given in the Row Count).

For the Repository Statistics, we can also configure the Repositories To Be
Compared. If only one repository is selected in Repositories To Be Compared, the
generated report will contain details of a single repository. The following is a sample
report where only one repository is selected:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[341]

Let's run through the contents of the sample Repository Statistics report given
previously for repository internal. The Total File Count pertains to the total
number of files in the repository during each execution of the repository scan. The
Total Size, on the other hand, is the size (in bytes) of the repository at that time. The
number of unique groups and artifact names are broken down in the report as well
as the number of plugins, archetypes, JAR, and WAR files.

The last two columns—number of deployments and artifact requests—are
not yet implemented but will be fixed in the future releases.

On the other hand, if more than one repository is selected in the Repositories To Be
Compared, the generated report would contain a comparison of the latest statistics
of the repositories based on the specified End Date. This is useful for tracking which
repositories are the most utilized. For example, if different development groups host
their own repositories, the comparison can show which groups are using the most
space. Look at the following screenshot for a sample comparison report to see the
difference from the previous one:

To allow you to view this report outside of the web application, the report can be
exported as a CSV file by clicking on the Export to CSV link. You should be able to
open the exported file as an Excel spreadsheet.

Repository health
One of the secrets behind a successful and reproducible build is a clean and healthy
repository. Corrupt metadata or an invalid or missing POM file are the usual causes
for a build to break. To prevent this from happening, we must ensure that the
repositories we are getting our artifacts from are in good health.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[342]

Archiva provides a way of doing this through the Repository Health report and its
built-in utilities for updating metadata and fixing checksums. The Repository Health
report provides a detailed list of artifacts in the repository that are found to be
defective. It gives a starting point for correcting any problems and can be used when
diagnosing build errors with a particular artifact.

For example, a common reason for an artifact being defective is when the version of
the artifact specified in the POM is different from the actual version in its filename.
This could easily happen when using deploy:deploy-file (or even using the
Archiva web upload form) as the actual filename used for the uploaded artifact is
determined based on the supplied parameters. It is a possibility that the included
POM in the upload has different coordinates from the provided parameters. These
defects are discovered during Archiva's database scan, when the actual POM file
is read and added to the database. We can narrow down the report by providing a
specific Group ID and/or a Repository ID which will be used for querying defective
artifacts that match these criteria. If you try querying for the report using the default
configuration, you should be able to see a generated report similar to the following
one, which shows a defective POM in repository internal.

To repair such an error, you can manually fix the POM in the Archiva repository
by updating it in the file system. If the defect is caused by a transfer error when
the artifact was proxied, you can delete the artifact (including the metadata and
checksums) then force Archiva to retrieve it again by requesting it.

A word of caution though—making these changes could affect the reproducibility of a
dependent project's build. For example, it is possible that the actual artifact in the
central repository is the defective one. If you fixed the artifact in your internal
Archiva repository, project builds that go through the local proxy may get a
successful build. However, the project is built directly off central and the build
fails because the dependency artifact is defective.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[343]

That summarizes monitoring the health of our repositories. The next section
discusses the built-in Archiva utilities which in one way or another clean up and
repair broken artifacts and metadata in the repositories.

The Archiva consumers
We've talked a little about consumers in Chapter 2, Staying in Control with Archiva.
In this section, we'll go into the details about what they really are.

What is a consumer?
A consumer is a plugin-like component in Archiva. When repositories are scanned
or changes to the repository are made, they are able to process the change to keep
the rest of the system up to date and perform any other necessary operations. Some
examples of these operations are—indexing, repository clean up, adding of artifact
information to the database, and fixing metadata.

There are basically two types of consumers in Archiva. These are the repository
consumers and the database consumers. The former are attached to the repository
scanning and are executed on each artifact processed from the file system. On the
other hand, the latter are executed on each artifact in the database when the database
scanning is triggered. The list of available repository consumers is displayed at the
bottom section of the Repository Scanning page, while the database consumers are
listed in the Database Scanning page. Administrators can enable and disable the
consumers to be executed in these respective pages.

Archiva's maintenance-savvy consumers
The consumers that we'll be tackling in this section are those that do maintenance
work. We will only cover the four major consumers concerned with this kind of task:
the repository-purge, metadata-updater, create-missing-checksums, and
database-cleanup consumers.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[344]

Purging outdated snapshots
The main purpose of the repository-purge consumer is cleansing the repositories
of old snapshot artifacts. It can be configured to clean up the repository based on
two criteria: by the age of a snapshot artifact and by retention count. You will have
noticed these configuration options on the repository configuration pages—enabling
this consumer will put them into action. If the former criteria are used, the last
modified date of the artifact is checked to see if it is older by that number of days
from the current date, and if so, then the artifact will be deleted. Otherwise, if the
latter criteria are used, we can be rest assured that there will always be the given
number of artifacts retained for each snapshot version of an artifact and any older
artifacts will be deleted.

You can also use the criteria together. If we set the Repository Purge By Days Older
Than to 100 and the Repository Purge By Retention Count to 2, then there will
always be two artifacts for each snapshot version retained in the repository. The
rest of the artifacts for that snapshot version will be deleted, if and only if their last
modified date is older than 100 days from the current date.

If we want to specifically use the by retention count criteria, we need to set
the Repository Purge By Days Older Than to zero. For example, if we set the
Repository Purge By Retention Count to one and the Repository Purge By Days
Older Than to zero, then for every snapshot version there will always be one artifact
(the most recently deployed) retained and the rest of the artifacts for that snapshot
version will be deleted regardless of its age.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[345]

Let's try out purging by retention count. We will be using our Centrepoint project
again for this demonstration. First, we need to deploy a few snapshot builds of the
projects which we will be purging later on.

From the sample code we were working with earlier, deploy the project to the
snapshots repository at least twice:

centrepoint$ mvn deploy

If we look at the Centrepoint distribution in http://localhost:8081/archiva/
repository/snapshots/com/effectivemaven/centrepoint/distribution/
1.1-SNAPSHOT/, we should see something similar to what is shown in the following:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archiva in a Team

[346]

The repository purging is not enabled by default in Archiva. To turn it on, go to the
Repository Scanning tab and select it from the checklist at the bottom of the screen,
then press Update Consumers. Due to a bug in Archiva 1.2.1, you may need to
restart the server for this to take effect.

The next step is to configure the repository purge by retention count. Edit the
snapshots repository configuration and set Repository Purge By Days Older
Than to zero (0) to disable that criteria. Retain the Repository Purge By Retention
Count to two (2). Save the changes then execute the repository scanning by clicking
the Scan Repository Now button. After the repository scan finishes its execution,
refresh http://localhost:8081/archiva/repository/snapshots/com/
effectivemaven/centrepoint/distribution/1.1-SNAPSHOT/. This time, you
should only see the last two builds (the artifacts with -2 and -3 as build numbers) as
we told the repository-purge consumer we only want to retain two builds of each
snapshot version of an artifact for the snapshots repository.

Now, going back to the screenshot of the snapshots repository configuration earlier,
notice the Delete Released Snapshots checkbox near the bottom. This field is also
another configuration for the repository-purge consumer. When it is enabled, if a
released version for a given snapshot is found (in any Archiva managed repository),
all of the snapshots will be removed. We will again use the Centrepoint artifacts as
examples here. In the earlier section—Deleting artifacts in your repository—we only
removed com.effectivemaven.centrepoint:centrepoint:pom:1.0-SNAPSHOT.
Browsing to http://localhost:8081/archiva/repository/snapshots/com/
effectivemaven/centrepoint/ shows us that the other Centrepoint 1.0-SNAPSHOT
artifacts are still in the snapshots repository even though 1.0 has already been
released. We will use the Delete Released Snapshots feature to automatically
remove these old snapshot artifacts.

Now, edit the snapshots repository configuration and tick the Delete Released
Snapshots checkbox, then save the changes. As done earlier, execute the repository
scanner. After a while, if we check the snapshots repository again we will notice
that the old 1.0-SNAPSHOT Centrepoint artifacts are now gone.

Correcting Maven metadata
The metadata-updater consumer is used specifically for updating and fixing the
maven-metadata.xml files in the repository. This is very useful in cases when
artifacts are deleted from the file system and the metadata files weren't updated.
When this consumer is executed during the repository scan, artifact metadata files
are updated and fixed based on the actual versions of an artifact that is physically
present in the file system.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 10

[347]

Correcting metadata only affects reproducibility if ranges or automatic plugin
versioning are used. In those cases, reproducibility is likely to be affected over time
anyway as pointed out in Chapter 7, Maven Best Practices. For this reason, it is usually
a good idea to enable this consumer on your repositories.

Creating missing checksums
The create-missing-checksums consumer is simply for generating checksum files,
both MD5 and SHA-1, for artifacts with missing checksum files. It also fixes incorrect
checksums that it finds during repository scanning.

This can be useful if you have a number of problems with incorrect checksums, or if
you want them to be auto-corrected on deployment. However, caution is needed. If it
is possible that the checksum was actually correct and the artifact has been modified,
this will remove the ability to detect it (which is a more serious problem!).

Database cleanup consumers
There are three consumers that perform internal Archiva clean up: not-present-
remove-db-artifact, not-present-remove-db-project and not-present-
remove-indexed. These three are used for cleaning up the database of artifact and
POM information, and cleaning up the index of artifacts that have been removed
or no longer present in the file system, respectively. After these consumers are
executed, deleted artifacts should no longer appear in the web application Browse
and Search.

If you find that you receive stale information in the web interface, ensure these
consumers are enabled and re-scan the repositories.

Summary
In this chapter, we have learned about the different roles and permissions in Archiva.
We've also learned about repository groups and a couple of techniques on how to
configure them.

Other features provided by Archiva such as RSS feeds and artifact deletion were
covered, while the last parts of the chapter were dedicated to maintenance. We'll
learn more about enterprise needs of Archiva in Chapter 12, Maven, Archiva and
Continuum in the Enterprise, but next we will cover another important team
topic—Archetypes.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes
Throughout the previous chapters of the book, we have been using a few of the
Maven archetypes, such as the Quickstart archetype and the Webapp archetype, to
construct our sample project Centrepoint. In this chapter, we will cover archetypes
in more detail. We will see how useful these little things are and learn how each of
them works. We will also learn about custom archetypes and even write our own
archetype as an exercise.

What are Maven archetypes?
Wikipedia defines an archetype as follows:

An archetype is an original model of a person, ideal example, or a prototype after
which others are copied, patterned, or emulated.

This definition is also applicable to Maven's concept of archetypes. A Maven
archetype is simply a template of a Maven project.

Recalling what we have learned in the earlier chapters, we know that a Maven
project has a specific directory structure. There are different directories for sources,
tests, resource files, and more. Depending on what we need, we have to create some
(or all) of these directories by hand. A Maven archetype makes this easier for us. It
creates the directory structure and default files for us in just one command.

However, even though Maven projects are usually consistent, they are not always
the same. Each type of package contains a different set of content. For example, a
full J2EE project uses a different directory structure for its source and configuration
files from a simple web application. To make things easier (and quicker) for us, a
Maven archetype is available for different types of packages. These archetypes have
different structures, configuration files, and default POM configuration depending
on what type it is. Some of the available archetypes are for creating Maven plugins,
J2EE projects, web applications, AppFuse projects, and more. We will learn about
them in the succeeding sections.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes

[350]

Benefits of Maven archetypes
As the archetypes conform to Maven's standard directory layout, they also
implement best practices. One good example of this is the Maven Quickstart
Archetype which, when used, creates both the source and test directories suggesting
to users that they write unit tests. A default main class with a corresponding test
class is included in the generated project to illustrate the right location to place the
source files.

A few years ago, I conducted Maven 2 training for a group of instructors at one of
the smaller schools here in Manila. While I was discussing the standard directory
layout that Maven implements, one of the participants made fun of how deep the
directory structure was. We hadn't gotten to the demo/hands-on part yet so the
participants hadn't actually seen Maven in action. I just couldn't resist it, so I opened
the terminal in my laptop and showed them how I can create that directory layout
I've been droning on with just one command. That simple Maven show off did the
trick for them.

What the participant made fun of was actually true. Maven has a deep directory
structure, but aside from the obvious time savings in creating it automatically, being
able to create an error-free and consistent structure is one of the reasons why the
Maven archetypes were born.

Generating projects
The Archetype plugin makes it possible for Maven to create Maven projects
from a template. Let's start with the most popular goal of the plugin which is
archetype:generate.

From archetype:create to archetype:generate
In the previous releases of the Maven Archetype plugin, Maven projects were
created from archetypes using the archetype:create goal. When using the
archetype:create goal, you needed to know and provide all of the information
about the archetype plus the values you want to use on the command line.
For example:

mvn archetype:create -DgroupId=com.effectivemaven.chapter11 \

 -DartifactId=sample-app -Dversion=1.0-SNAPSHOT \

 -DpackageName=com.effectivemaven.chapter11.sample \

 -DarchetypeArtifactId=maven-archetype-webapp

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 11

[351]

It's easy to know this if we're using an archetype we created, but what if we're
not? We have to hunt through the documentation to find all the available Maven
archetypes (unless we've memorized all of them).

Now with the archetype:generate goal, we don't need to know any of this
information upfront (though we can still supply it on the command line if we
like). It's way more convenient as the default Maven archetypes configured for
archetype:generate consists of 46 (yes, 46!) archetypes. That's a lot, I must say.
Also, we don't have to dig around for the list of available archetypes somewhere
because it's already provided for us. By this point we are already familiar with
how archetype:generate works from previous examples in the book. Later in
the chapter, we will learn how to customize the catalog that determines the list of
archetypes that appears when the goal is run.

Using archetypes within multi-module
projects
Change is a constant thing in software development. We start with a simple
application and that simple application becomes larger as the project progresses. In
Maven terms—as we add more features, we add more modules. Thus, our simple
Maven project now becomes a complex multi-module project.

As we have already seen in Chapter 3, Building an Application Using Maven, we can
make use of archetypes for creating multi-module projects. Let's recall what we have
learned from that chapter:

To construct a multi-module project, always start with a parent POM first.
For each module you want to add, execute archetype:generate just inside
the directory where your parent POM resides. The generate mojo allows
you to define the type of module you want to add, be it a web app module, a
documentation module, a regular module, or even a custom one.
The generated module automatically references the existing POM where the
module was created as its immediate parent. On the other end, the generated
module is automatically configured as a new <module> in the existing POM.

You may be curious why there is no generic archetype for multi-module projects. It is
simply easier and far more flexible to just execute the Archetype plugin each time you
need to add a new module. For example, what if your project is composed of different
types of modules like in the case of the Centrepoint project (which has a web app
module and a documentation module) from the previous chapters? Another scenario
to consider is nested modules. You can't always determine at the beginning of the
project how many modules (and sub-modules) the project will eventually have.

•
•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes

[352]

Common archetypes
When we tried out the archetype:generate mojo in Chapter 3, Building an
Application Using Maven, a list of archetypes were shown to us. Aside from those
we've already used, there were a number of other standard Maven project types
available. Additionally, you may have noticed that some of them are framework and
application-specific. As some frameworks or applications require a specific directory
structure or format, archetypes conforming to these requirements and at the same
time with Maven's, have been created.

Here, we will look at examples of both and how they can be used to generate a
project of that type.

Maven site archetype
We already covered the simple site archetype in Chapter 3, Building an Application
Using Maven, but there is also a more complete skeleton—the maven-archetype-
site. This site contains examples of several documentation formats as well as
documentation in different languages. To generate a site using this archetype, just
execute the command:

$ mvn archetype:generate \

 -DarchetypeArtifactId=maven-archetype-site

You can also run the command without the parameter and select the desired
archetype from the list.

The generated site should have the following directory structure:

|-- pom.xml
`-- src
 `-- site
 |-- apt
 | |-- format.apt
 | `-- index.apt
 |-- fml
 | `-- faq.fml
 |-- fr
 | |-- apt
 | | |-- format.apt
 | | `-- index.apt
 | |-- fml
 | | `-- faq.fml
 | `-- xdoc
 | `-- xdoc.xml

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 11

[353]

 |-- site.xml
 |-- site_fr.xml
 `-- xdoc
 `-- xdoc.xml

The generated site's directory structure shows that you can set up any type of project
(even non-code projects). They don't have to contain a src/main/java directory.

Looking at the generated site's pom.xml, a <distributionManagement> section
is already present. This URL should be replaced by the URL where you will
be deploying your project's web site. Notice also that the maven-site-plugin
is configured for English and French localization. The corresponding files and
directories for the French localization are the site_fr.xml and fr/ directory.
The localization is already in place to help users to get started in the right way.
Archetypes can be used as examples to learn from as well as project starting points.

Maven Mojo (plugin) archetype
For creating Maven 2 plugins, a Mojo archetype is also available.
$ mvn archetype:generate \

 -DarchetypeArtifactId=maven-archetype-mojo

Using this archetype to generate a project, the following directory structure will
be created:

|-- pom.xml
`-- src
 `-- main
 `-- java
 `-- com
 `-- effectivemaven
 `-- chapter11
 `-- mojo
 `-- MyMojo.java

Here, a default mojo called MyMojo is created by default. If you take a look at
its source code, you would see that it already extends AbstractMojo (from the
dependency maven-plugin-api), which is a requirement for Maven plugins. Notice
that the mojo also has the @goal and @phase annotations denoting the command
that will be used to execute it and the phase in the Maven life cycle where it will
be bound by default, respectively. The default configuration gives you a hint of the
things you need to configure when developing Maven plugins.

As you can see, archetypes can be used to create projects for very specific purposes
as a refinement of the standard Java module (the code within them need not be a
trivial template).

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes

[354]

For more details about plugin development, visit http://maven.
apache.org/guides/introduction/introduction-to-
plugins.html.

Maven simple J2EE archetype
A widely used platform in developing enterprise Java applications is the Java EE
platform. In Java EE, components are divided into different layers. There's the web
layer, application/business layer, and the persistence layer. Having multiple layers
makes it a good candidate for using Maven to standardize its directory structure. To
help you with this, a Maven archetype called maven-archetype-j2ee-simple is at
your disposal.

$ mvn archetype:generate \

 -DarchetypeArtifactId=maven-archetype-j2ee-simple

Executing the generate mojo using this archetype results in the creation of the
following directory structure and configuration files:

|-- ear
| `-- pom.xml
|-- ejbs
| |-- pom.xml
| `-- src
| `-- main
| `-- resources
| `-- META-INF
| `-- ejb-jar.xml
|-- pom.xml
|-- primary-source
| `-- pom.xml
|-- projects
| |-- logging
| | `-- pom.xml
| `-- pom.xml
|-- servlets
| |-- pom.xml
| `-- servlet
| |-- pom.xml
| `-- src
| `-- main
| `-- webapp

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 11

[355]

| |-- WEB-INF
| | `-- web.xml
| `-- index.jsp
`-- src
 `-- main
 `-- resources

This is actually a multi-module archetype, but it is strictly specific for J2EE
applications, as we can see from the module names and the default configuration
files. So as you can see, it is possible to create multi-module archetypes where it
makes sense.

The ear module is where the J2EE project is assembled. If we take a look at the ear/
pom.xml, we will see the Maven Ear plugin configured. This plugin is the one that
packages the project into an ear file.

The ejbs/ directory is where the EJBs (Enterprise Java Beans) are placed. By
default, the maven-ejb-plugin that will be used for packaging the EJBs is already
configured in the pom.xml. The latest release of the plugin (2.2) assumes the version
used of EJB is 2.1—that's why an ejb-jar.xml deployment descriptor (which is no
longer mandatory for EJB 3.0) is also created. This can be overridden by setting the
appropriate version in the plugin configuration.

The primary-source/ directory should contain the core projects or modules of the
J2EE application while the projects/ directory must contain the sub-projects or
components used by the core modules. A logging/ component is also created by
default in the projects/ directory. Looking at the pom.xml in primary-source/,
the logging component is already configured as a dependency.

As for the web-specific components (web layer), these should be placed in the
servlets/ directory. The standard directory path for web applications, including a
default web descriptor (web.xml) and an index.jsp, is also ready for the servlet/
sub-directory.

And last but not the least, we have the root pom.xml. There are several things
already configured in the root pom—maven-site-plugin, dependencyManagement,
and distributionManagement. Notice that the maven-site-plugin
and the dependencies are configured inside the pluginManagement and
dependencyManagement respectively:

<build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-site-plugin</artifactId>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes

[356]

 <configuration>
 <unzipCommand>/usr/bin/unzip -o > err.txt</unzipCommand>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
</build>
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>root.project.projects</groupId>
 <artifactId>logging</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>root.project</groupId>
 <artifactId>primary-source</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>root.project.servlets</groupId>
 <artifactId>servlet</artifactId>
 <version>1.0</version>
 <type>war</type>
 </dependency>
 <dependency>
 <groupId>root.project</groupId>
 <artifactId>ejbs</artifactId>
 <version>1.0</version>
 <type>ejb</type>
 </dependency>
 </dependencies>
</dependencyManagement>
<distributionManagement>
 <site>
 <id>site</id>
 <name>project website</name>
 <url>scp://local.company.com/websites/project.company.com/</url>
 </site>
</distributionManagement>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 11

[357]

The reason behind this is inheritance. As we've seen in previous chapters,
shared configuration is best in the parent POM so it can be inherited and
duplication is avoided.

Analyzing the generated directory structure again demonstrates how Maven
enforces best practices. It keeps the whole project/application modularized
right from the start, making its components easier to modify, more readable,
and less coupled.

If we check the POM files in each of the generated modules given previously, we will
see that there are already a couple of J2EE/EJB-specific configurations in them—from
the building of EJBs up to the bundling of the components into an ear file. This
ensures that the project build goes through the required processes and generates
the necessary files for J2EE projects.

The AppFuse Spring archetype
AppFuse is an open source project whose main goal is to make building web
applications easier and more efficient, by providing a project skeleton depending on
the framework stack you want to use for your project. One of its means for providing
a project skeleton is through Maven archetypes. As of this writing, there are nine
AppFuse archetypes available:

JSF Basic archetype
Spring MVC Basic archetype
Struts 2 Basic archetype
Tapestry Basic archetype
AppFuse Core archetype
JSF Modular archetype
Spring MVC Modular archetype
Struts 2 Modular archetype
Tapestry Modular archetype

In this chapter, we will only cover one of the most commonly used among them,
which is the AppFuse Spring MVC Basic archetype. This archetype is specifically
for creating a web application using the Hibernate, Spring, and Spring MVC stack.

For more details about AppFuse, see
http://appfuse.org/display/APF/Home.

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes

[358]

Executing the generate mojo and using the appfuse-basic-spring archetype should
result in the following directory structure and configuration files being created:

|-- README.txt
|-- pom.xml
`-- src
 |-- main
 | |-- java
 | | `-- com
 | | `-- effectivemaven
 | | `-- chapter11
 | | `-- App.java
 | |-- resources
 | | |-- ApplicationResources.properties
 | | |-- ApplicationResources_de.properties
 | | |-- ApplicationResources_en.properties
 | | |-- ApplicationResources_es.properties
 | | |-- ApplicationResources_fr.properties
 | | |-- ApplicationResources_it.properties
 | | |-- ApplicationResources_ko.properties
 | | |-- ApplicationResources_nl.properties
 | | |-- ApplicationResources_no.properties
 | | |-- ApplicationResources_pt.properties
 | | |-- ApplicationResources_pt_BR.properties
 | | |-- ApplicationResources_tr.properties
 | | |-- ApplicationResources_zh.properties
 | | |-- ApplicationResources_zh_CN.properties
 | | |-- ApplicationResources_zh_TW.properties
 | | |-- META-INF
 | | | `-- persistence.xml
 | | |-- applicationContext-resources.xml
 | | |-- default-data.xml
 | | |-- ehcache.xml
 | | |-- hibernate.cfg.xml
 | | |-- jdbc.properties
 | | |-- log4j.xml
 | | |-- mail.properties
 | | `-- sql-map-config.xml
 | `-- webapp
 | |-- WEB-INF
 | | |-- applicationContext-validation.xml
 | | |-- applicationContext.xml

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 11

[359]

 | | |-- dispatcher-servlet.xml
 | | |-- menu-config.xml
 | | |-- urlrewrite.xml
 | | |-- validation.xml
 | | |-- validator-rules-custom.xml
 | | |-- validator-rules.xml
 | | `-- web.xml
 | `-- common
 | `-- menu.jsp
 |-- site
 | `-- site.xml
 `-- test
 |-- java
 | `-- com
 | `-- example
 | `-- chapter11
 | `-- AppTest.java
 `-- resources
 |-- config.xml
 |-- login.xml
 |-- sample-data.xml
 `-- web-tests.xml

We now see from this archetype that it is possible to build complex template projects
from the same archetype mechanics.

The required Hibernate and core Spring configuration files are created in src/main/
resources as they deal with the backend side of the web application. As for the
Spring MVC configuration files, they are created and placed in src/main/webapp/
WEB-INF/ as they contain configuration for the frontend. Different directories have
also been created for the unit tests and the documentation. This layout enforces
the implementation of a standard layout by defining a separation among the
components of the web application. If you take a look at the generated POM, you
will see that a lot has already been configured, making the project ready for use.
There's configuration for the database, for the IDEs, for running the application in
Jetty, for running database unit tests, and even for integration testing.

Other examples
Aside from the archetypes we covered in the previous sections, there are also other
framework-specific archetypes that are listed in the archetype catalog file in the
remote repository (http://repo1.maven.org/maven2). Unfortunately, we will not
be covering them in this book, but you will see that many of the same benefits we've
seen above can apply to these other project types.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes

[360]

We've listed below some of them which might be helpful if you're starting a project
with a specific framework already in mind:

Spring-OSGi archetype: Archetype for creating a Spring-OSGi bundle that
is ready for use. Details on how to use this archetype can be obtained from:
http://www.springsource.org/node/361

AppFuse archetypes: The archetypes for each framework stack are provided
by AppFuse. We covered one of them in the previous section. To see how
the other archetypes behave, visit http://appfuse.org/display/APF/
AppFuse+QuickStart

Groovy archetypes: The archetypes for creating projects written in Groovy.
More details about them are available at http://groovy.codehaus.org/
GMaven+-+Building+Groovy+Projects

MyFaces archetypes: The archetypes for creating Apache MyFaces projects
such as portlet-enabled webapps and webapps that use MyFaces Trinidad.
More details about them can be obtained from http://myfaces.apache.
org/build-tools/archetypes/index.html

Camel archetypes: The archetypes used for creating Apache Camel
projects configured to be used with other applications or languages such as
ActiveMQ, Java, and Scala. To get more details about these archetypes, visit
http://camel.apache.org/camel-maven-archetypes.html

Writing a new archetype
Aside from the archetypes included by default, we can also create our own custom
archetype. In this section, we will learn how to do that.

An archetype consists of the following files:

The archetype descriptor (archetype.xml): This is where the specific files for
the Maven directories are configured. For example, if we want App.java to
be in the source directory, then this is where we specify that.
The archetype's pom.xml: Each archetype is also treated like a regular
Maven project. In fact, they are just a JAR with resources in a special place.
The template directory structure: This will be copied into the generated
project (remember the src/main/java/... directory layout created by the
Maven Quickstart Archetype earlier).
The default pom.xml: It is included with the template directory structure and
this will be the pom.xml to be used (or rather placed) in the generated project.

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 11

[361]

Creating our own custom archetype involves a couple of steps. We will be returning
to the Centrepoint project we've been using throughout the book and creating a
plugin archetype for the project.

Creating an archetype from a skeleton
When creating an archetype for the first time, it is certainly possible to create it by
hand. However, if the content is non-trivial or contains a lot of files, the Archetype
plugin offers an easier way to create the proper archetype files from an existing
project by using the create-from-project goal.

To create our archetype, we will use the provided plugin-skeleton project
included with this chapter. This directory has been created as a fully-functional
plugin from which we can generate the archetype templates.

From the command-line, go to the root directory of the plugin-skeleton
and execute:

plugin-skeleton$ mvn archetype:create-from-project

You should see the archetype being generated. The build output should be similar to
the following:

[INFO] --

[INFO] Preparing archetype:create-from-project

[INFO] --

[INFO] Building My Centrepoint Plugin

[INFO] --

[INFO] No goals needed for project - skipping

[INFO] Setting property: classpath.resource.loader.class => 'org.
codehaus.plexus.velocity.ContextClassLoaderResourceLoader'.

[INFO] Setting property: velocimacro.messages.on => 'false'.

[INFO] Setting property: resource.loader => 'classpath'.

[INFO] Setting property: resource.manager.logwhenfound => 'false'.

[INFO] [archetype:create-from-project {execution: default-cli}]

[INFO] Setting default groupId: com.effectivemaven.centrepoint

[INFO] Setting default artifactId: centrepoint-plugin

[INFO] Setting default version: 1.0-SNAPSHOT

[INFO] Setting default package: com.effectivemaven.centrepoint.plugins

[INFO] Archetype created in target/generated-sources/archetype

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes

[362]

As you can see, the archetype has been created in the target/generated-sources/
archetype directory, ready for use. As this is a temporary location, we will move it
permanently into the Centrepoint project so that it can be built and distributed for
general use.

We will create a directory named plugin-archetype in the centrepoint directory
of the sample code (at the same level as the documentation module). To do this, we
copy the generated archetype from above plugin-skeleton/target/generated-
sources/archetype to centrepoint/plugin-archetype.

Now, we need to incorporate it into the Centrepoint project, in the same way as
we did for new modules in Chapter 3, Building an Application Using Maven. After
you've finished copying the archetype, edit plugin-archetype/pom.xml and add a
reference to the Centrepoint parent:

<parent>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <artifactId>centrepoint</artifactId>
 <version>1.1-SNAPSHOT</version>
</parent>

In case you didn't release Centrepoint from the previous chapter, you can
continue to rebuild the project and still use 1.0-SNAPSHOT version.

We can again remove the <groupId> and <version> elements which are already
inherited from the declared parent. Next, let's update the <artifactId> to
match the convention other modules have used and make it match the module's
directory name:

<artifactId>plugin-archetype</artifactId>

Also, let's improve the name to make it more appropriate and more descriptive.
Change the <name> value to:

<name>Centrepoint Plugin Archetype</name>

Finally, add the module to the top-most POM so that it will be included when we
build Centrepoint:

<modules>
 ...
 <module>plugin-archetype</module>
</modules>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 11

[363]

Going back to plugin-archetype/pom.xml, notice that it has a different
<packaging> from what we have encountered so far in the previous chapters. The
maven-archetype packaging is a new feature that is introduced in the 2.0 version
of the Archetype plugin to easily distinguish regular artifacts from archetypes and
to enhance the lifecycle. Using this type of packaging requires org.apache.maven.
archetype:archetype-packaging component to be included—that's why it was
already declared as a build <extension> in the POM.

To be able to use the plugin archetype, we need to install it in our local repository first.
Execute the following command from centrepoint/plugin-archetype directory:

plugin-archetype$ mvn clean install

In the build output log after installing the plugin-archetype, notice that there were
several archetype goals executed during the build:

[INFO] [clean:clean]

[INFO] [resources:resources]

[INFO] [archetype:jar]

[INFO] [archetype:add-archetype-metadata]

[INFO] [archetype:integration-test]

[INFO] [install:install]

[INFO] Installing /path/to/centrepoint/plugin-archetype/target/plugin-
archetype-1.1-SNAPSHOT.jar to /path/to/.m2/repository/com/effectivemaven/
centrepoint/plugin-archetype/1.1-SNAPSHOT/plugin-archetype-1.1-SNAPSHOT.jar

[INFO] [archetype:update-local-catalog]

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

The first one was the archetype:jar goal, which packages the archetype into a JAR
file. As it is simply a bundle of the template files and directories, it does not have a
MANIFEST.MF file included, unlike a regular artifact JAR.

The second goal executed was archetype:add-archetype-metadata. What this
goal does is it attaches the archetype artifact's metadata to the generated artifact, so
that it will be installed or deployed into the repository. This ensures that the latest
version in the repository metadata is up-to-date.

The third goal was the archetype:integration-test, which is already
self-descriptive. It executes the integration tests (if there are some) for the archetype.
Finally, there was archetype:update-local-catalog where the archetype catalog
file in the local repository is also updated to reflect the newly available archetype.
We will learn about the catalog file later on.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes

[364]

Using the custom archetype
Now, let's use our Centrepoint plugin archetype to create a sample plugin.
If you released the project in previous chapters, obtain the latest distribution
of our Centrepoint application from http://localhost:8081/archiva/
repository/releases/com/effectivemaven/centrepoint/distribution/1.0/
distribution-1.0-bin.zip. You can also build the sources from trunk and use the
generated distribution from the centrepoint/distribution/target directory.

Unpack the distribution. Now, start the Centrepoint application by executing the
following command from the bin/ directory:

centrepoint-1.0/bin$./centrepoint console

Access the application from the browser by navigating to http://localhost:8080/
centrepoint. Now, let's add the Centrepoint project itself to the application by
providing the following values:

Information about the latest version of the project that is available in our local
repository will be displayed after importing the project. If you take a look at the
project information page, notice that the right hand side is bare. Now, let's say we
want to add a links panel to that empty space to make it easier to navigate the web
application. Our Centrepoint application is actually designed to be pluggable. You
can add panels to the right-hand side of the project information page using plugins.

Stop Centrepoint first by executing Ctrl+C in the console. Now, let's start creating
our links panel by first creating the plugin skeleton from the plugin archetype, by
running the following in an empty directory:

$ mvn archetype:generate -DarchetypeCatalog=local

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 11

[365]

The choices will be fewer than we've seen in the past:

1: local -> plugin-archetype (Centrepoint is a basic but useful
application that sets up a dashboard of project information from Maven,
Archiva, and Continuum).

The Archetype plugin makes use of a special file called the archetype catalog
(archetype-catalog.xml) for determining the archetypes in a repository. When the
generate mojo executes, it looks for this file to get the list of archetypes or to check
if the specified archetype is in the repository. You can use -DarchetypeCatalog
parameter to specify the repository/repositories to check for the catalog file(s) like
what we did in the command previously. We can also set multiple locations for the
catalog file, delimited by a comma (,). There are five options for specifying each
catalog, namely:

internal (catalog file included with the Archetype plugin).
local (specifies the local repository path, which is <USER.HOME>/.m2/).
remote (specifies the central repository http://repo1.maven.org/maven2).
A specific path for a catalog file in the local file system (denoted by
file://PATH/TO/CATALOG/FILE).
A URL specifying the path to a catalog file in a remote location (denoted by
http://URLPATH/TO/CATALOG/FILE).

In our case, as our archetype is locally available, we locked down the Archetype
plugin to only look at the local catalog file for the archetype we specified.

Since the 2.0-alpha-5 release of the Archetype plugin, the default
value for the archetypeCatalog parameter was changed from
internal,local to remote,local. This implies that if no value is
explicitly configured, the plugin will get the catalog files from the central
repository and your local Maven 2 repository. Otherwise, if no catalog
files were retrieved from the specified locations, the internal catalog
file will be used.

Going back to our Centrepoint plugin, provide the following input parameters
when prompted:

groupId : com.effectivemaven.centrepoint.plugins

artifactId : my-sample-plugin

version : 1.0-SNAPSHOT

package : com.effectivemaven.centrepoint

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes

[366]

We will only use the skeleton plugin for demonstration purposes. After our sample
plugin has been created, package it into a JAR file by executing the following:

my-sample-plugin$ mvn package

Finally, copy the generated JAR file from target/my-sample-plugin-1.0-
SNAPSHOT.jar to the webapps/centrepoint/WEB-INF/lib of the Centrepoint
distribution which we ran earlier.

Start the Centrepoint application again in console mode. Once the application is
running, navigate to http://localhost:8080/centrepoint in your browser. This
time, when you access the Centrepoint project information page, you should see a
Links panel on the righthand side of the page (similar to what we have below) in
place of the previous empty space:

To add a link, click Edit Configuration. Set http://www.effectivemaven.com to
link to the project's site then click Update. A link to the project web site with the
name My Link under the Links panel should appear.

We will repeat the same process in the next chapter to create plugins for Archiva
and Continuum.

Managing catalogs
In the previous section, we've learned about the archetype catalog file and what
it's for. Now, we will see how this file is generated and kept in sync with the actual
archetypes in the repository.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 11

[367]

To generate an archetype catalog file for a repository, we can make use of the
crawl mojo of the Archetype plugin. This goal searches a repository in the local file
system for available archetypes and generates a catalog file listing all the archetypes
it found.

Let's crawl our Archiva repository internal which is conveniently in our local file
system. From the command line, execute:

$ mvn archetype:crawl -Drepository=/path/to/apache-archiva-1.2.1/data/
repositories/internal

You should see the artifacts in our internal repository listed in the command line,
similar to the output below.

[INFO] [archetype:crawl]

repository /path/to/apache-archiva-1.2.1/data/repositories/internal

catalogFile null

[INFO] Scanning /path/to/apache-archiva-1.2.1/data/repositories/internal/
cglib/cglib-nodep/2.1_3/cglib-nodep-2.1_3.jar

[INFO] Scanning /path/to/apache-archiva-1.2.1/data/repositories/internal/
javax/servlet/servlet-api/2.4/servlet-api-2.4.jar

[INFO] Scanning /path/to/apache-archiva-1.2.1/data/repositories/internal/
ant/ant/1.6.5/ant-1.6.5.jar

[INFO] Scanning /path/to/apache-archiva-1.2.1/data/repositories/internal/
ant/ant-launcher/1.6.5/ant-launcher-1.6.5.jar

[INFO] Scanning /path/to/apache-archiva-1.2.1/data/repositories/internal/
plexus/plexus-utils/1.0.3/plexus-utils-1.0.3.jar

[INFO] Scanning /path/to/apache-archiva-1.2.1/data/repositories/internal/
commons-lang/commons-lang/2.3/commons-lang-2.3.jar

[INFO] Scanning /path/to/apache-archiva-1.2.1/data/repositories/internal/
commons-lang/commons-lang/2.1/commons-lang-2.1.jar

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

An archetype-catalog.xml file should have been created in the root directory of
the internal repository. It should contain the archetypes found, including their
basic information, similar to what we have here:

<?xml version="1.0" encoding="UTF-8"?>
<archetype-catalog>
 <archetypes>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Archetypes

[368]

 <artifactId>maven-archetype-webapp</artifactId>
 <version>1.0</version>
 <description>webapp</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-site-simple</artifactId>
 <version>1.0</version>
 <description>plugin</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-quickstart</artifactId>
 <version>1.0</version>
 <description>quickstart</description>
 </archetype>
 </archetypes>
</archetype-catalog>

Having this lookup file makes it possible for the Archetype plugin to list all of the
available archetypes in the repository.

To explicitly update the catalog file with the artifacts information as it is
installed into the local repository, the Archetype plugin provides the
update-local-catalog goal. We actually saw this executed earlier when we
installed our plugin-archetype to the local repository. In that case, it added the
plugin-archetype in the local archetype catalog.

Summary
Archetypes are not only helpful in creating projects, they also provide an easy way
for implementing best practices. They provide us with a convenient way of creating
and conforming to Maven's standard directory layout and configuration.

In the next chapter, which is the last chapter of this book, we will go back to Archiva
and Continuum and learn how to effectively configure both applications in the
enterprise environment.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and
Continuum in the Enterprise

This chapter covers enterprise-specific setup and configuration of Archiva and
Continuum. The first half of the chapter tackles security configuration and setup
while the other half is centered on integrating the two with other applications in
the enterprise.

In the security section, we will learn about Redback, which is the security system
used by both Archiva and Continuum. We'll also do a quick run through of how to
configure it with other existing security systems—specifically with LDAP.

Also, in the integration section, we will explore how Archiva and Continuum can be
used with other applications.

Configuring security
Security is one of the most important and critical areas in an enterprise. Access to
sensitive information should be restricted to a limited number of people. Some
companies also require central security systems (such as LDAP, single sign-on, and
so on), so that they can be integrated with the applications they use.

This section is concerned with configuring security for Archiva and Continuum in
line with these points.

In the previous chapters, we learned that these two applications use Redback for
their security, but we haven't really dug deeper into how Redback is integrated
with them.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[370]

A brief look at Redback
Redback is a RBAC (role-based access control) security framework that can be easily
integrated in an application. It is divided into three major components, namely:
authentication, authorization, and user management. Apart from this, it also has
support for different frameworks to allow seamless integration with an application.
As of the current version, Redback can be integrated with Struts 2 applications, and
can use databases or LDAP to authenticate users.

Archiva and Continuum were previously using Webwork but both
migrated to Struts 2. James William Dumay (who also worked on
Archiva's migration to Struts 2 and developed the Atlassian XMLRPC
Binder which we will see later on) migrated Redback to align with these
two applications.

By default, Redback comes with four built-in roles: System Administrator, User
Administrator, Registered User, and Guest. The first two roles are specific to
administrative tasks while the last two are on the opposite end—these are the roles
with the least amount of rights or control over the application.

The User Administrator role grants the user the permissions necessary to manage
the users of the application. Users with this role can create a new user, update
a user's information, grant and remove a user's roles, and delete a user. On the
other hand, the System Administrator role grants all permissions or access to the
application including users and role management. The Registered User role specifies
that a user is registered through the application. Users with this role should be able
to edit their own account details. The last is the Guest role, which simply grants the
guest user access to the application.

Apart from the built-in roles, it also comes with two default users: admin and
guest. Neither of these users can be deleted. User admin is the default System
Administrator, which will be created when the application starts up (if there's no
user database detected). On the other hand, the guest user is the default user whom
we can assign specific roles which we want to allow to be accessed by anyone
without the need to authenticate themselves. You can refer back to the "Roles and
permissions" section of Chapter 10, Archiva in a Team, for an example of how the
guest account works.

Redback makes use of descriptor files (called redback.xml) to identify
the roles, operations, and permissions to be created in an application.
The built-in roles and permissions we've covered previously are defined
within Redback itself. For more information on how to integrate it to your
application, visit http://redback.codehaus.org/.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[371]

By default, Redback is configured to use a database. If you look at Archiva and
Continuum's Jetty configuration files (conf/jetty.xml) you should be able to
see something similar to the following:

<!-- Users / Security Database -->
<New id="users" class="org.mortbay.jetty.plus.naming.Resource">
 <Arg>jdbc/users</Arg>
 <Arg>
 <New class="org.apache.derby.jdbc.EmbeddedDataSource">
 <Set name="DatabaseName"><SystemProperty name="appserver.base"
 default=".."/>/data/databases/users</Set>
 <Set name="user">sa</Set>
 <Set name="createDatabase">create</Set>
 </New>
 </Arg>
</New>

<New id="usersShutdown"
 class="org.mortbay.jetty.plus.naming.Resource">
 <Arg>jdbc/usersShutdown</Arg>
 <Arg>
 <New class="org.apache.derby.jdbc.EmbeddedDataSource">
 <Set name="DatabaseName"><SystemProperty name="appserver.base"
 default=".."/>/data/databases/users</Set>
 <Set name="user">sa</Set>
 <Set name="shutdownDatabase">shutdown</Set>
 </New>
 </Arg>
</New>

The previous configuration is specific to Redback. If appserver.base is the default
value, it is recommended that you change the default location of the users database
and move it out of the application's installation directory to avoid accidental
deletion when upgrading. You could also choose to use a different database
(such as PostgreSQL, and so on) by reconfiguring these options.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[372]

Setting up security for multiple teams in
Continuum
Going back to our running Continuum instance from Chapters 8 and 9, let's create
a new user for demonstration purposes. From the Users page, create a new user
testuser1 whose password is pass123. After creating the user, you should see the
list of roles that can be assigned to the user:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[373]

As you can see, the roles are grouped into three categories. The first ones are the
built-in roles from Redback, which we covered in the previous section while the last
two are the user roles specific for Continuum.

Let's first take a look at the last group—the Resource Roles. These are the
resource-level roles that are dynamically generated for each Project Group created
in Continuum. They are also removed once the Project Group is deleted. For each
resource, there are three types of roles generated, namely the Project Administrator,
Project Developer, and Project User. The Project Administrator is the role that is
necessary for performing administrative tasks for the specific project group. Users
with this role can grant or modify the roles of users with Project Administrator,
Project Developer, or Project User roles belonging to the same project group.
They can also perform the operations allowed for a Project Developer.

Users with a Project Developer resource role are allowed to perform the following
operations: add, edit, delete, and build a project in the group, build and release
the entire project group or a project in the group, configure build definitions and
notifiers for the group and for each project in the group, and view the build queues.
Also, last but not the least, users with the Project User role are only allowed read or
view-access to the project group and/or projects in the group and the build queues.

In Continuum, the main point of separation is at the project group level and it is the
major reason why it is the information grouping (or resource) that was chosen for the
dynamic roles.

In an enterprise, there are a large number of projects with each project having its
own development team. The ideal setup with regard to multiple projects within a
company is that one project is equal to one project group in Continuum, with the
team lead having the Project Administrator role and the team members having
the Project Developer role.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[374]

Sometimes though, a very large project can be divided into smaller development
teams with each team handling one or a set of modules in the project. If the project's
modules are big, the usual distribution or division of the teams is per module
(in short, one development team per module). As a best practice in Continuum,
project groups should match the logical development groupings. Let's see why. For
example, our user testuser1 belongs to the QA team which works on the Selenium
tests for our Centrepoint project. So in the resource roles matrix, assign the user with
a Project Developer role for Centrepoint Selenium Tests.

Click the Submit button then log out from Continuum. Now, we will log in as user
testuser1. Provide the credentials we set earlier. As this is our first login, we will
be asked to change our password. Specify pass1 as the new password (or select
something suitable).

The forced changing of passwords for an individual user can be disabled
by an administrator by not selecting the Force User to Change Password
checkbox in the User Edit page. In this case, they were forced to change
their password as the account was created by the administrator with a
temporary password.

After logging in and changing our password, notice that we're only able to see and
access the following in Continuum:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[375]

If you go to the Centrepoint Selenium Tests Project Group Summary, you should
be able to build, release, add, edit, and delete the projects in the group, and also
edit their build definitions and notifiers. Now, we know from the previous chapters
that Centrepoint Selenium Tests is dependent on Centrepoint itself as the tests are
specifically for the Centrepoint web application. Also because of this, developers of
the selenium-tests module need to be able to at least see the builds for Centrepoint
in some cases. For example, when they didn't get the latest snapshot of the webapp
module or the tests are failing because of changes in the webapp and they want to
know why. To address this need, we can grant our user testuser1 with a Project
User role for Centrepoint.

To do this, log out from Continuum and log in as admin again. Edit the testuser1
user account and assign it the resource role Project User for Centrepoint. Save the
changes you made and log out from Continuum.

Now, log in again as user testuser1. This time, we should be able to see
Centrepoint in the Project Groups list.

Notice that the build, release, and delete icons are disabled for the Centrepoint
group. This is because we're only a user of the project group and should not be able
to modify anything. If you look at Centrepoint's project group summary, you will
not be able to see any of the buttons for adding, building, deleting, and releasing the
group. All you will be able to do is view the project information and configuration,
and the results of the builds and releases.

As you can see from the setup we did previously, we were able to keep a separation
among the different development teams and at the same time exercise control over
which operations can be performed by whom on what projects. That is the big
advantage of having different resource-based roles.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[376]

Apart from the dynamic roles, there are ten other roles in Continuum to take note of.
Most of these roles deal with administrative tasks. The first three roles in the list are
equivalent to the resource roles we've discussed previously, but for all groups rather
than for a specific project group only. Let's run through the rest:

Continuum Manage Build Environments: Users with this role are allowed
to manage (add, edit, and delete) the build environments in Continuum.
This role usually comes hand-in-hand with the Continuum Manage
Installations role.
Continuum Manage Build Templates: This role allows the user to manage
(add, edit, and delete) build definition templates.
Continuum Manage Installations: This role allows the user to manage
(add, edit, and delete) Continuum installations.
Continuum Manage Queues: This role allows the user to view and cancel
builds in the build queues. It can be combined with the Continuum Group
Project Administrator to give the user control over the build queues.
Continuum Manage Scheduling: This role allows the user to manage
(create, update, and remove) schedules in Continuum.
Continuum Manage Purging: This role allows the user to configure
(create, update, execute, and remove) purging/cleaning up of local
repositories and working directories in Continuum.
Continuum Manage Local Repositories: Users with this role are allowed to
configure (create, update, and remove) local repositories in Continuum. They
can also execute purging on a local repository.

At the enterprise level where an application deals with a lot of users, it is necessary
to define and categorize the operations of an application into different roles. Not only
is this less confusing, it is also easier to manage.

Setting up security for multiple teams in
Archiva
In Chapter 10, Archiva in a Team, we discussed Archiva's dynamic roles a little and
learned that the basis for these roles are the repositories. We've also learned that it has
two types of dynamic roles, namely the Repository Manager and the Repository
Observer. Now, we will take a closer look at how we can best make use of them at
the enterprise level when multiple teams are involved.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[377]

When dealing with multiple teams, the following setup is usually effective:

Have one (or more) read-only local proxy cache that is accessible within the
local area network only. We can create one or more managed repositories
in Archiva, configure it to proxy remote repositories such as the central
repositories or java.net and serve all artifact requests made within the
network. Given this case, the guest account can be assigned the Repository
Observer role for these repositories.
Have separate snapshot and release repositories for each team, with
members of the team having Repository Manager roles for both repositories.
This can go hand-in-hand with deploying nightly builds from Continuum
where in each project group has its own deployment repository.
Grant the Repository Observer role to users outside the team (or the guest
account if it is public within its network) that need access to the releases. If
security is more of a concern for just some of the artifacts, you may want a
separate deployment repository for the different security realm.

In certain cases, when one internal project is dependent on another internal
project, we can either—configure only one repository for both projects, configure
the repository containing the dependency as an additional repository in the
settings.xml, or make use of virtual repositories (combo of local proxy cache
and repository containing the dependency). The last two options are recommended
as both the setups require just a Repository Observer role on the end of the team
members who need the artifact.

When configuring Continuum to deploy nightly builds in Archiva,
it is good practice to have a general user account in Archiva which
Continuum would use to deploy to the repository (for example, a user
account named buildserver). Make sure that this user has a Repository
Manager role for the deployment repository. The credentials would need
to be set in a settings.xml used by the local Maven installation used
by Continuum. Note that this should be different for different project
groups if extra security is needed, as anyone that can commit code can
read this password.

Setting the repository as the level of security separation can also be a restriction.
There can be instances when you only want a user to be able to access one artifact in
your repository, but you can't as access control is at the repository level. While not
available at the time of writing, improvements such as this will be available in future
versions of Archiva.

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[378]

Additional Redback configuration
For runtime configuration, Redback makes use of a properties file called security.
properties. Archiva and Continuum have their own default security.properties
files. In Archiva, it can be found in apps/archiva/WEB-INF/classes/org/apache/
maven/archiva/ while it can be found in apps/continuum/WEB-INF/classes/org/
apache/maven/continuum/ in the Continuum bundle. To customize the Redback
configuration, you can override it with a custom one by placing it in either the conf
directory of the bundle (if it is for one application) or in <USER_HOME>/.m2 (if it is for
both applications). Note that the latter means that a security.properties file in
<USER_HOME>/.m2 always takes precedence over the default one included with
the application.

If Continuum and Archiva are running on the same machine using
the same user account, keep in mind that if you place a security.
properties file in <USER_HOME>/.m2, both applications will be
using the same configuration file. There are some configurations
that are application specific—these options should be kept in their
respective application configuration files.

A number of things such as application configuration, LDAP configuration, email
settings, and security policies can be configured in the security.properties file.

The defaults are quite strict, so let's try configuring Archiva's security settings. If
your Archiva instance is currently running make sure that you stop it first. Go to
your Archiva installation and create conf/security.properties.

First, we will configure a few security policies. We will set the admin and archiva
user accounts from being locked:

security.policy.unlockable.accounts=admin
security.policy.unlockable.accounts=archiva

This is useful for automated and built-in accounts where they can get locked by
repeated bad attempts very easily and need to be kept available.

Let's say we also want to prevent passwords from expiring so users will not have to
keep changing them and worry about keeping track of their old passwords. To do
this, we need to add the following configuration:

security.policy.password.expiration.enabled=false

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[379]

Now, let's enforce a few password rules in Archiva. We will require all passwords
to be alphanumeric and must have a minimum length of five characters. Add the
following to put these restrictions in place:

security.policy.password.rule.alphanumeric.enabled=true
security.policy.password.rule.characterlength.minimum=5

We will also customize the contents of the validation mail sent by Redback for users
who register in Archiva. To change the subject heading of the email and the name of
who sent the email, just add this configuration:

email.from.name=Archiva

After adding the previous configuration, save the security.properties file and
start Archiva. To verify that the policies we have set in place are implemented, go
to Archiva and register as a new user. Once you've validated your account, try
providing a password that contains only alphabet characters or a password with less
than five alphanumeric characters. Neither should be accepted by the application.

You can also add the same security configuration for your Continuum instance
(in conf/security.properties). Just make sure that you change the validation
mail settings from Archiva to Continuum.

For a complete list of the properties that can be configured, see http://redback.
codehaus.org/configuration.html. The values shown in the page are the default
Redback configuration.

Using LDAP
Earlier, we learned that Redback can be integrated with LDAP. Configuring this
used to be a bit challenging to do, but thanks to Emmanuel Venisse (who is also the
current PMC Chair of Apache Continuum), it's now very easy to do. In this section,
we will go through the steps on how to set this up.

LDAP support in Redback is currently read-only, meaning you cannot
add, edit, or delete users from within the application, only directly on
the LDAP backend.

To configure LDAP in Archiva or Continuum, you need to edit the application.
xml (located in apps/[APPLICATION]/WEB-INF/classes/META-INF/plexus/) and
the security.properties used.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[380]

In the application.xml, you need to uncomment the following configuration:

<component>
 <role>org.codehaus.plexus.redback.common.ldap.connection.
 LdapConnectionFactory</role>
 <role-hint>configurable</role-hint>
 <implementation>org.codehaus.plexus.redback.common.ldap.connection.
 ConfigurableLdapConnectionFactory</implementation>
 <requirements>
 <requirement>
 <role>
 org.codehaus.plexus.redback.configuration.UserConfiguration
 </role>
 </requirement>
 </requirements>
</component>

This component is the one that manages Redback's connection to the LDAP server.
Now, in order for this to be used, you need to set a few configuration options in the
security.properties file. First, you need to tell Redback that you will be using
LDAP by setting this:

user.manager.impl=ldap
ldap.bind.authenticator.enabled=true
redback.default.admin=admin
security.policy.password.expiration.enabled=false

Then, you need to provide the connection parameters that will be used by Redback's
LDAP connection factory:

ldap.config.hostname=ldap.hostname
ldap.config.port=389
ldap.config.base.dn=o=com
ldap.config.context.factory=com.sun.jndi.ldap.LdapCtxFactory
ldap.config.bind.dn=uid=username,o=com
ldap.config.password=passw0rd

The first two properties correspond to the host name and the port of the LDAP server
to connect to. The third property—ldap.config.base.dn— is the baseDn (the
Distinguished Name) of the LDAP system at which to start the search. The fourth
property—ldap.config.context.factory—corresponds to the context factory for
LDAP connections. On the other hand, the last two properties specify the core user
and its password that will be used for authenticating to the LDAP server. This user
must be able to perform the necessary searches in the directory structure.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[381]

Going back to the application.xml, you also need to uncomment this section which
is needed for mapping attributes in the LDAP server to user information in Redback:

<component>
 <role>org.codehaus.plexus.redback.common.ldap.UserMapper</role>
 <role-hint>ldap</role-hint>
 <implementation>
 org.codehaus.plexus.redback.common.ldap.LdapUserMapper
 </implementation>
 <configuration>
 <email-attribute>email</email-attribute>
 <full-name-attribute>givenName</full-name-attribute>
 <password-attribute>userPassword</password-attribute>
 <user-id-attribute>cn</user-id-attribute>
 <user-base-dn>o=com</user-base-dn>
 <user-object-class>inetOrgPerson</user-object-class>
 </configuration>
 <requirements>
 <requirement>
 <role>
 org.codehaus.plexus.redback.configuration.UserConfiguration
 </role>
 </requirement>
 </requirements>
</component>

You can also set the configuration parameters highlighted previously in the
security.properties file. Again, if you're constantly upgrading your application,
it would be better if you move them out of the application.xml to the properties
file. To do that, remove the <configuration> section from the previous component
configuration, then set the following in the security.properties file instead:

ldap.config.mapper.attribute.email=mail
ldap.config.mapper.attribute.fullname=givenName
ldap.config.mapper.attribute.password=userPassword
ldap.config.mapper.attribute.user.id=cn
ldap.config.mapper.attribute.user.base.dn=o=com
ldap.config.mapper.attribute.user.object.class=inetOrgPerson

The first four properties correspond to the attribute names that contain the email
address, name, password, and user ID details of a user in the LDAP system. On
the other hand, the ldap.config.mapper.attribute.user.base.dn specifies the
subtree which will be searched for the users. Last, but not the least, is the ldap.
config.mapper.attribute.user.object.class property. This property signifies
the objectClass used in the LDAP server for identifying users.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[382]

With the previous configuration, you should be able to use LDAP in Archiva
or Continuum.

You can further improve the performance when looking up users in LDAP by
uncommenting this in the application.xml:

<component>
 <role>org.codehaus.plexus.redback.users.UserManager</role>
 <role-hint>cached</role-hint>
 <implementation>org.codehaus.plexus.redback.users.cached.
 CachedUserManager</implementation>
 <description>CachedUserManager</description>
 <requirements>
 <requirement>
 <role>org.codehaus.plexus.redback.users.UserManager</role>
 <role-hint>ldap</role-hint>
 <field-name>userImpl</field-name>
 </requirement>
 <requirement>
 <role>org.codehaus.plexus.cache.Cache</role>
 <role-hint>users</role-hint>
 <field-name>usersCache</field-name>
 </requirement>
 </requirements>
</component>

Make sure to change this in the security.properties file as well:

user.manager.impl=cached

For more details about LDAP configuration in Redback, you can take a look at
http://redback.codehaus.org/integration/ldap.html.

Interfacing with other tools in the
enterprise
Archiva and Continuum can also be integrated with other tools in the enterprise.
Both applications make this possible through web services. In this section, we will
see how this can be done. We will create plugins for both applications and use them
with our Centrepoint application.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[383]

Continuum web services
Continuum's web services feature is implemented using XML-RPC. If you
recall from Chapter 9, Continuum in Depth, XML-RPC is also used for the
distributed builds. To demonstrate how this works, we will create a Continuum
plugin which will retrieve build results from Continuum and display it in our
Centrepoint application.

Building the Continuum plugin
First, let's create a new directory named plugins. This will be a new top level tree, as
it does not need to be within the Centrepoint project. As these plugins are developed
independently of Centrepoint they can be versioned and released separately.

We will use the archetype we created from Chapter 11, Archetypes, to create our
Continuum plugin.

If you haven't followed the examples from the previous chapter, you can
rebuild the source code for this chapter from the centrepoint directory
to make the archetype available. You may also need to change the
generated model dependency from 1.0 to 1.1-SNAPSHOT if you haven't
run the release examples in Chapter 9, Continuum in Depth.

To create the plugin, execute the following command from inside the plugins
directory we created earlier:

plugins$ mvn archetype:generate \
 -DarchetypeGroupId=com.effectivemaven.centrepoint \
 -DarchetypeArtifactId=plugin-archetype \
 -DarchetypeVersion=1.1-SNAPSHOT

Provide the following input when prompted:
groupId : com.effectivemaven.centrepoint.plugins

artifactId : continuum-builds-plugin

version : 1.0-SNAPSHOT

package: com.effectivemaven.centrepoint.plugins.continuum

After the continuum-builds-plugin has been created, change the <name> and add a
<description> in the generated POM:

 <name>Centrepoint Plugin for Continuum Builds</name>
 <description>
 Retrieve build results from a Continuum server and display
 as a panel in the Centrepoint project page.
 </description>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[384]

Now, let's start customizing our plugin. Open the continuum-builds-plugin in
your IDE.

If you worked through Chapter 8, Continuum—Ensuring the
Health of your Source Code, this might be a good time to set the
plugins up in source control and add them to Continuum as well!

Once the plugin has been loaded in your IDE, rename the template classes MyModel
and MyModelTest to ContinuumModel and ContinuumModelTest respectively.
Rename MyPlugin and MyPluginTest as well to ContinuumBuildsPlugin and
ContinuumBuildsPluginTest. You also need to update src/main/resources/
META-INF/centrepoint/plugin.properties to reflect the new name of the plugin.

Now, in both ContinuumModel and ContinuumBuildsPlugin, and their corresponding
tests, change all the references from my-plugin to continuum-builds.

We also need to change the title for our Continuum panel, so in the
ContinuumBuildsPlugin, change the following part:

public String getTitle(Project project)
{
 return "Continuum Build Results";
}

We also need to update the test case for this change. In
ContinuumBuildsPluginTest, update the following:

public void testTitle()
{
 assert "Continuum Build Results".equals(
 plugin.getTitle(null));
 assert "Continuum Build Results".equals(
 plugin.getTitle(project));
}

We've now changed the archetype boilerplate into our basic but specific project. Let's
verify that our plugin builds by executing the following in the command line:

continuum-builds-plugin$ mvn install

You should get a successful build in the end.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[385]

Now that our plugin builds, we can start tweaking it to display build results from a
project in Continuum via web services. Starting with the ContinuumModel, change
the following variable:

private String link;

to

private Integer projectId;

The projectId variable represents the number or ID of the project in Continuum
which we will use shortly. We are using Integer so that it can be null initially. We
have replaced the link variable as we won't be using it. Make sure that you also
change its getter and setter methods. The last three methods in ContinuumModel
also need to be changed as follows:

public Map<String, String> getValuesAsMap()
{
 Map<String, String> values = new HashMap<String, String>();
 values.put("projectId", projectId != null ?
 Integer.toString(projectId) : null);

 return values;
}

public void setValuesFromMap(Map<String, String> values)
{
 String value = values.get("projectId");
 this.projectId = value != null ?
 Integer.valueOf(value) : null;
}
public List<String> getKeys()
{
 return Arrays.asList("projectId");

}

We also need to update the ContinuumModelTest to reflect the changes in the
variable name and data type. You can refer to the sample code included with this
chapter for the changes. Take note of the new method at the end which was added
to check that the Integer type is handled:

@Test(expectedExceptions=NumberFormatException.class)
public void testSetMapNonIntegerValue()
{
 Map<String, String> values =
 Collections.singletonMap("projectId", "foo");
 model.setValuesFromMap(values);
}

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[386]

The changes we made in the model also affect ContinuumBuildsPlugin. For now,
we will just empty out the items returned until we can obtain them from Continuum:

public List<PanelItem> getItems(Project project)
{
 //PanelItem item = new PanelItem("My Link",
 //getModel(project).getLink());
 //return Arrays.asList(item);
 return Collections.emptyList();

}

You can remove (or just comment out) the last three test cases in
ContinuumBuildsPlugin since we changed the plugin to return an empty items list.

Now that we are done with the model changes specific to the sample application,
we can construct the main part of the plugin that receives the build results, in the
next section.

There are some other potential configuration options you might like
to add yourself. We could set a maximum number of results to list as
another integer. If we were accessing a restricted part of Continuum
we might have wanted to configure the username/password here,
however we will grant guest access to the project so it is unnecessary
in this example.

Using Continuum's web services
Continuum has almost all of its features available as web services. The web services
are exposed by a single class called ContinuumService. To view this class' full API,
visit http://continuum.apache.org/ref/1.3.3/apidocs/org/apache/maven/
continuum/xmlrpc/ContinuumService.html.

Aside from the ContinuumService class, included with Continuum is a client
API which is the layer that we will use to access the Continuum services.
With XML-RPC, some objects are not mapped by default, but using the Continuum
XML-RPC Client there's no need to transform the objects returned. Instead, we get
the actual result object. (In XML-RPC, objects are returned as Map<Object, Object>
or an array of objects, for example, Objects[]). The full reference of the client is
available at http://continuum.apache.org/ref/1.3.3/apidocs/org/apache/
maven/continuum/xmlrpc/client/ContinuumXmlRpcClient.html.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[387]

Let's start configuring our plugin to get a project's build results from Continuum.
First, we must add the Continuum dependency to our plugin:

<dependency>
 <groupId>org.apache.continuum</groupId>
 <artifactId>continuum-xmlrpc-api</artifactId>
 <version>1.3.3</version>
</dependency>
<dependency>
 <groupId>org.apache.continuum</groupId>
 <artifactId>continuum-xmlrpc-client</artifactId>
 <version>1.3.3</version>
</dependency>

You can replace the version with the newest version of Continuum
you want to work with to access the newest features while retaining
backward compatibility.

Now, we will replace the getItems() method of ContinuumBuildsPlugin which
we commented out earlier. First, we will get the ID and URL from the configuration
by adding the following code in the method. If you look at the sample code included
with the chapter, you can see that we also added some error checks so that the panel
shows an appropriate message if they are not present:

int projectId = getModel(project).getProjectId();
String ciManagementUrl = project.getCiManagementUrl();

Now, let's get down to business. In order to get the project's build results, we need to
connect to Continuum:

List<BuildResultSummary> results;
ContinuumXmlRpcClient client;

try
{
 URL serviceURL = new URL(ciManagementUrl + "/xmlrpc");
 client = new ContinuumXmlRpcClient(serviceURL);
 results = client.getBuildResultsForProject(projectId);
}
catch (Exception e)
{
 logger.warning("Error reading build results: " + e.getMessage());
 return errorMessage("Unable to retrieve results: check application
 logs for details");
}

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[388]

Looking at the code we added previously, you will see that we created the client
and had it connect to /xmlrpc under Continuum. Note that we did not pass in the
username and password as we will be using guest accessible functions. Next, we
made a call to the ContinuumXmlRpcClient to get the build results for the given
project identifier.

We now have a series of results that summarize the details.

From the API of the Continuum client, we knew that getting the build results returns
a list of BuildResultSummary objects. The BuildResultSummary contains build
information such as the build definition used, the state of the build, the build trigger,
the start time and end time of the build, and so on. We will get the data that our
plugin will be displaying on the project dashboard in the Centrepoint application
from these results. We will construct a message like this on success:

2009-08-09 18:08:30 - #7 (0m11s)

That is, the (date build started, build number, and durationtime taken), or on failure:
2009-08-09 18:07:59 - Failed

To do this, we will loop through the build results and construct our message format:
String resultBaseUrl = ciManagementUrl +
 "/buildResult.action?projectId=" + projectId;
List<PanelItem> items = new ArrayList<PanelItem>();
for (BuildResultSummary result : results)
{
 String title = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").
 format(result.getStartTime()) + " - ";

 String status = client.getProjectStatusAsString(result.getState());
 if (result.isSuccess() || "OK".equals(status))
 {
 String time = new SimpleDateFormat("m'm'ss's'").format(result.
 getEndTime() - result.getStartTime());
 title += "#" + result.getBuildNumber() + " (" + time + ")";
 }
 else
 {
 title += status;
 }
 String url = resultBaseUrl + "&buildId=" + result.getId();
 PanelItem item = new PanelItem(title, url);
 items.add(item);
}
return items;

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[389]

Starting at the fourth line from the bottom in the previous code, we constructed a link
to the build result then added it as an item in the panel list which we will be returned
by the method. You can refer to the sample code for the full source of this method.

This particular example application does no caching of the items so the
request will be done on every execution. You may wish to cache the
Continuum results for a period of time to avoid hitting the Continuum
server with too many requests in a similar situation.

Now, we're almost ready to test it out!

A good practice would be to write a unit test for this new method.
For simplicity we haven't done so in the example code, but you'd be
able to by injecting a mock implementation of the XML-RPC client for
testing purposes.

Before we can use this in Centrepoint, there is one more thing that we need to do.
Our deployment process is to copy the plugin JAR into Centrepoint's WEB-INF/
lib directory. But we added dependencies, so these classes won't work on their
own. One alternative would be to add all the other JARs as well. But we learned in
Chapter 6, Useful Maven Plugins, that we can use the Shade plugin to make it easier.
Add the following in the <build> section of our plugin's POM:

<plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.2</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <artifactSet>
 <excludes>
 <exclude>com.effectivemaven.centrepoint:model</exclude>
 </excludes>
 </artifactSet>
 </configuration>
 </execution>
 </executions>
 </plugin>
</plugins>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[390]

What we are doing here is shading all of the dependencies except for the Centrepoint
model (as we need to use the one from the Centrepoint web application)

To ensure that the plugin has less chance of conflicting with others, in
a bigger system we should probably use the relocation feature to make
the dependencies self-contained. Of course, a more sophisticated plugin
system using something like OSGi could also dynamically load the
dependencies and ensure classloaders don't clash.

Now, let's build our plugin by executing this in the command-line:

continuum-builds-plugin$ mvn package

After the plugin has been packaged, copy target/continuum-builds-plugin-1.0-
SNAPSHOT.jar into centrepoint-1.0/webapps/centrepoint/WEB-INF/lib.
Start Centrepoint using ./bin/centrepoint console, then go to
http://localhost:8080/centrepoint.

You will need to make sure that your Continuum instance from Chapter 8 and 9 is
running. If you haven't set it up, you might like to skim Chapter 8 at this point.

Before we add the Centrepoint project to our dashboard, we need to make sure it
knows where to find Continuum.

Go to the centrepoint directory in your local checkout from the previous chapter.
It should have a version of 1.1-SNAPSHOT, and at present it has a parent of
effectivemaven-parent version 1. We should upgrade its parent to 2-SNAPSHOT.

Now, in the effectivemaven-parent directory, the POM should already have the
version 2-SNAPSHOT from when we released it in Chapter 9, Continuum in Depth. We
can now add the <ciManagement> information for the team:

<ciManagement>
 <system>continuum</system>
 <url>http://localhost:8082/continuum</url>
</ciManagement>

Install both POMs into the local repository for Centrepoint to find:

effectivemaven-parent$ mvn install
centrepoint$ mvn -N install

The -N option builds the parent POM only, and does not process
the modules. We have used it here for performance reasons.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[391]

Now, we can add our project to our dashboard. Go to http://localhost:8080/
centrepoint/project/add-maven and fill in the form with com.effectivemaven.
centrepoint as the Group ID and centrepoint as the Artifact ID, then click
Import. This will take you to the project page with information about the project.

If you have to re-add the project to change any information from the local
repository, such as adding the <ciManagement> element, you will need
to restart the server first as the underlying Maven libraries will cache the
POM information that was loaded the first time.

Notice that there is a panel on the right side of the screen for Continuum. Initially
it will say that there is no Continuum project configured. You can edit the
configuration and provide the ID of the Continuum project. In our case, we will
show the build results of the Centrepoint Distribution. To determine its project
ID in Continuum, go to the Project Group Summary page of Centrepoint in
Continuum then click Centrepoint Distribution. You should see the project ID from
the requested URL in the navigation bar (for example, /continuum/projectView.
action?projectId=11).

Now that you know the Continuum project ID of Centrepoint Distribution, go back
to the Centerpoint application and set it in the configuration as follows:

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[392]

When returning to the project page, you will see an error in the panel. From the logs,
you should see the following:

INFO: Connecting to http://localhost:8082/continuum/xmlrpc for
project 11

Aug 23, 2009 4:27:40 PM com.effectivemaven.centrepoint.plugins.
continuum.ContinuumBuildsPlugin getItems
WARNING: Error reading build results: Failed to invoke method
getBuildResultsForProject in class org.apache.maven.continuum.xmlrpc.
server.ContinuumServiceImpl: You're not authorized to execute this
action.

In case you get a different error, there might be another problem with
Continuum. For example, a WARNING: Error reading build
results: Failed to read servers response: Connection
refused means Continuum is not running on the specified URL.

To resolve this error, go back to Continuum and grant the guest user the Project User
role for Centrepoint. After doing this, return to the Centrepoint application again
and refresh the page. You should be able to see the build results listed, similar to
what we have here:

And that is how easy it is to use Continuum's web services. Aside from the work in
assembling the Centrepoint structure, just a few lines were needed to retrieve the
information from Continuum itself.

In the previous exercise , we only used one of the many methods exposed by
Continuum. Some of the methods that you may want to take note of are the
methods for adding and building projects in Continuum, retrieving individual
project information and build results, and for canceling project builds.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[393]

Archiva web services
Web services were introduced to Archiva in version 1.2. Similarly, what we did with
the Continuum plugin in the previous section, we will create an Archiva plugin to
demonstrate how web services work.

Building the Archiva plugin
First, let's extract common configuration into a parent POM for the Archiva and
Continuum plugins. Create a plugins-parent directory and add a POM with the
following information:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.effectivemaven</groupId>
 <artifactId>effectivemaven-parent</artifactId>
 <version>1</version>
 <relativePath>
 ../../effectivemaven-parent/pom.xml
 </relativePath>
 </parent>
 <groupId>com.effectivemaven.centrepoint.plugins</groupId>
 <artifactId>plugins-parent</artifactId>
 <version>1-SNAPSHOT</version>
 <packaging>pom</packaging>
 <dependencies>
 <dependency>
 <groupId>com.effectivemaven.centrepoint</groupId>
 <artifactId>model</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>5.8</version>
 <classifier>jdk15</classifier>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[394]

The Shade plugin was not moved up, for reasons we will see shortly. As we're
referencing the effectivemaven-parent POM, the plugins-parent will inherit
some of its information. Due to this, all of the above and the compiler settings
can be removed from the Continuum plugin POM once the parent is added. The
Continuum plugin's POM should look like the following after the changes are made:

...
<modelVersion>4.0.0</modelVersion>
<parent>
 <groupId>com.effectivemaven.centrepoint.plugins</groupId>
 <artifactId>plugins-parent</artifactId>
 <version>1-SNAPSHOT</version>
 <relativePath>../plugins-parent/pom.xml</relativePath>
</parent>
<artifactId>continuum-builds-plugin</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Centrepoint Plugin for Continuum Builds</name>
<description>
Retrieve build results from a Continuum server and display
as a panel in the Centrepoint project page.
</description>
<dependencies>
 <dependency>
 <groupId>org.apache.continuum</groupId>
 <artifactId>continuum-xmlrpc-api</artifactId>
 <version>1.3.3</version>
 </dependency>
 <dependency>
 <groupId>org.apache.continuum</groupId>
 <artifactId>continuum-xmlrpc-client</artifactId>
 <version>1.3.3</version>
 </dependency>
</dependencies>
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.2</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[395]

 </goals>
 <configuration>
 <artifactSet>
 <excludes>
 <exclude>
 com.effectivemaven.centrepoint:model
 </exclude>
 </excludes>
 </artifactSet>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>
...

Now, to create our Archiva plugin, execute the following from inside the
plugins/ directory:

plugins$ mvn archetype:generate \

 -DarchetypeGroupId=com.effectivemaven.centrepoint \

 -DarchetypeArtifactId=plugin-archetype \

 -DarchetypeVersion=1.1-SNAPSHOT

Provide the following input parameters when prompted:

group Id : com.effectivemaven.centrepoint.plugins

artifactId : archiva-search-plugin

version : 1.0-SNAPSHOT

package: com.effectivemaven.centrepoint.plugins.archiva

Similar to what we did with the Continuum plugin, we will also make a few
modifications. First, let's set the parent as we did previously, then remove
the inherited Compiler plugin configuration and Centrepoint Model and
TestNG dependencies. We will also update the <name> in the POM and add a
<description>:

<name>Centrepoint Plugin for Archiva Search</name>
<description>
Retrieve search results from an Archiva server and display
as a panel in the Centrepoint project page.
</description>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[396]

Now we can remove the generated model created by the archetype as this plugin
won't need any configuration. Remove MyModel and MyModelTest from the
generated plugin.

Because we removed the model, we also need to update the plugin. You can
open the Archiva plugin in your IDE to start making the changes. First, remove the
ConfigurablePanel<MyModel> interface from MyPlugin. Then, remove getModel()
and getId() methods from MyPlugin. You also need to modify the getItems()
method. For now, we can just empty out the items returned until we can obtain
them from XMLRPC:

public List<PanelItem> getItems(Project project)
{
 //PanelItem item = new PanelItem("My Link",
 //getModel(project).getLink());
 //return Arrays.asList(item);
 return Collections.emptyList();
}

We will also comment out for now the affected test cases in MyPluginTest.

Next, we will rename rename MyPlugin and MyPluginTest to
ArchivaSearchPlugin and ArchivaSearchPluginTest respectively. We also need
to update src/main/resources/META-INF/centrepoint/plugin.properties to
reflect the new plugin name.

Finally, in the plugin (and the corresponding test case), change the title on the panel
as follows:

public String getTitle(Project project)
{
 return "Archiva Search Results";
}

Let's see if our plugin builds:

archiva-search-plugin$ mvn install

You should get a successful build afterwards.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[397]

Using Archiva's web services
Archiva exposes two types of services: the administration service and the search service.
As the name implies, the administration service is for administrative tasks such
as executing a repository scan, retrieving Archiva repositories, and enabling and
disabling consumers. On the other hand, the search service provides methods for
searching artifacts in the Archiva repositories. The IAM project (a Maven integration
plugin for Eclipse) uses this service to provide artifact search from Archiva
repositories in Eclipse. You can refer to the latest API to see all the exposed methods
http://archiva.apache.org/ref/1.2.1/apidocs/org/apache/archiva/web/
xmlrpc/api/package-summary.html.

In our exercise, we will only be interfacing with the SearchService. Now, let's start
configuring our plugin. The first step is again to add the dependencies.

<dependencies>
 <dependency>
 <groupId>org.apache.archiva</groupId>
 <artifactId>archiva-xmlrpc-api</artifactId>
 <version>1.2.1</version>
 </dependency>
 <dependency>
 <groupId>com.atlassian.xmlrpc</groupId>
 <artifactId>atlassian-xmlrpc-binder</artifactId>
 <version>0.9</version>
 </dependency>
</dependencies>

As you may notice, this is a bit different from Continuum's. Instead of a custom
client for interfacing with the actual service, we use Atlassian's XMLRPC Binder. It
binds and converts the object types returned by the web services so we don't need to
do any conversion on our end.

Now going back to our plugin, add the following in the getItems() method:

 MavenCoordinates coordinates =
 (MavenCoordinates) project.getExtensionModel("maven");

We will use the Maven coordinates of the project to search for it in Archiva. Again,
we get the URL from the project:

String repositoryUrl = project.getRepositoryUrl();

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[398]

This is parsed to remove the repository ID so that we can determine what the
/xmlrpc URL should be. In this case, the Service URL is constructed using the
Atlassian Binder library:

Binder binder = new DefaultBinder();
URL serviceUrl = new URL(archivaUrl + "/xmlrpc");
ConnectionInfo connect = new ConnectionInfo();
connect.setUsername("guest");
connect.setPassword("");
SearchService searchService = binder.bind(SearchService.class,
 serviceUrl, connect);

Now, we are going to use the getArtifactVersions() method to get all available
versions in the repository:

artifacts = searchService.getArtifactVersions
(coordinates.getGroupId(), coordinates.getArtifactId());

Similar to what we did in the Continuum plugin, we will create the results by
iterating through the returned search results by the web service and add it to our
panel list:

String browseUrl = archivaUrl + "/browse/" +
 coordinates.getGroupId() + "/" +
 coordinates.getArtifactId() + "/";
List<PanelItem> items = new ArrayList<PanelItem>();
for (Artifact artifact : artifacts)
{
 PanelItem item = new PanelItem(artifact.getVersion(),
 browseUrl + artifact.getVersion());
 items.add(item);
}

You can refer to the final plugin code included with this chapter to view the
full source.

We're now getting ready to build our plugin but first, we need to add the Shade
configuration again. Unfortunately, the Archiva libraries drag a number of
implementation dependencies. Some clash with those from the Centrepoint web
application, so we also need to exclude them from shading. Add the following
configuration in the POM:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[399]

 <version>1.2</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <artifactSet>
 <excludes>
 <exclude>
 com.effectivemaven.centrepoint:model
 </exclude>
 <!--
 Exclude conflicts with the Centrepoint libraries
 -->
 <exclude>
 org.codehaus.plexus:plexus-component-api
 </exclude>
 <exclude>org.apache.maven:maven-model</exclude>
 <exclude>xerces:xerces</exclude>
 <exclude>xerces:xercesImpl</exclude>
 <exclude>xerces:xmlParserAPIs</exclude>
 </excludes>
 </artifactSet>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Now, let's build our project. Execute the following from the command-line:

archiva-search-plugin$ mvn package

Once the build finishes, copy target/archiva-search-plugin-1.0-SNAPSHOT.jar
into centrepoint-1.0/webapps/centrepoint/WEB-INF/lib. Start
Centrepoint again by executing ./bin/centrepoint console then go to
http://localhost:8080/centrepoint. Make sure that your Archiva instance
from Chapter 2 or 10 is running and that there are deployments of Centrepoint in it.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Maven, Archiva, and Continuum in the Enterprise

[400]

If you go back to the Centrepoint project page, you will see the Archiva panel on the
right-hand side. It has an error though, and if you take a look at the logs, you should
see the following:

WARNING: Error retrieving results from: http://localhost:8081/archiva:
Could not execute RPC method getArtifactVersions
java.lang.RuntimeException: Could not execute RPC method
getArtifactVersions
at com.atlassian.xmlrpc.RPCCallMethodInterceptor.invoke(RPCCallMethodI
nterceptor.java:74)
...
Caused by: org.apache.xmlrpc.XmlRpcException: Password expired.
...

It turns out that there is a bug in Archiva 1.2.1 that rejects the guest password
because it is set to force change on startup. A workaround for this is to log in to the
Archiva UI with the guest username and no password. When prompted to change
the password, just enter the new password and confirmation (anything will work).

With this change in place, return to Centrepoint and refresh the page—you should
now see the versions appear!

Aside from retrieving versions of an artifact, it is also possible to do a quick search
(like the one from the Archiva UI) via web services. Another similar feature from the
UI is searching for an artifact using checksums (like in Find Artifact). The same rule
applies with regard to permissions, only those repositories which a user has access to
will be included in the search.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Chapter 12

[401]

As for the administration service, you can retrieve and enable/disable the database
and repository consumers, execute a repository or database scan, delete an artifact
from a repository and retrieve all Archiva repositories. Of course, you must have the
necessary permissions in order to execute them.

Summary
We got to know more about Redback in this chapter. We were able to see how to
take advantage of Redback's dynamic roles in configuring security for both Archiva
and Continuum.

In the latter part of the chapter, we saw how we can integrate Archiva and
Continuum with other tools through web services.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Troubleshooting Maven
Maven's strengths can also be its weaknesses. With so much functionality provided
by plugins, when something goes wrong it can be hard to tell exactly what is at fault.
Here we will look at some common scenarios and learn how to investigate an
issue when it occurs.

These may not be solutions, or the ideal behavior for Maven to exhibit in many
cases, but it should give you the tools necessary to track down the cause of a
problem before investing too many hours into it.

Examining Maven output
If an error occurs that seems unfamiliar, the first step is to examine the output of
the build.

This can be as simple as looking for the last goal executed. In the event that the error
message is not clear enough, we will at least know what Maven was running at the
time it occurred, and can jump to the plugin web site for information on the possible
cause, or at least configuration options that will alter the behavior or output of the
plugin (such as the verbosity level) to help troubleshoot.

However, often the error is not that simple, and finding the cause in a large amount
of output is difficult. Two steps can be taken to make this part easier.

Firstly, you can scan the output for the [WARN] or [ERROR] prefix. While not
always used, anything logged at this level by a Maven plugin may indicate a
problem. If you prefer not to scan the output, you can also run Maven with the -q
option. This is an extremely quiet mode of operation, logging only warnings, errors,
and messages output directly to the system by plugins.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Troubleshooting Maven

[404]

A more reasonable measure you can take in advance is to reduce the amount of
output during the build. This has a number of side benefits, such as reducing the size
of build results in a continuous integration server, but more importantly helps you
see what is really happening in the build. A key offender in the area of build output
can be unit tests. As they often do their own logging or produce their own output,
this may appear during the build rather than just receiving the test summary.

However, Surefire has a configuration option to remedy this by channeling all of the
output into a separate file for each test. It can be configured like this:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.4.3</version>
 <configuration>
 <redirectTestOutputToFile>true</redirectTestOutputToFile>

 </configuration>
</plugin>

As simple as this step seems, it can be of great benefit in maintaining your build
without any loss of information.

Of course, another option that gives greater control is to avoid the use
of the System.out and System.err streams in your test cases, and to
configure the logging system used by your code to be as silent as possible,
or to write to a file directly.

A final note on Maven output: don't be misled. There are some plugins and even
internals of Maven that will report a [WARN] or even [ERROR] message where the
behavior is actually correct but it is trying to communicate something that may only
potentially be a problem, or is actually a programming fault. Review each message
carefully to see if it is the cause of a problem rather than assuming that it is by
the label.

Using debug mode
Often, rather than focusing on a piece of output to find an error, you will need more
information than is presented by default for successful debugging. Maven offers two
levels of extra information.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Appendix A

[405]

The first is the -e option. This simply reports the Java exception that caused Maven
to fail when a build error occurs. Intended more for developers troubleshooting bugs
in their plugins, it can be of benefit to all in certain circumstances. By examining the
stack trace, you have two extra courses of action:

Review the nested exceptions (by looking for the Caused by text) for a
potential cause that was not originally reported by Maven. This can occur
when a plugin does not carry along important information from an original
exception. For example, a download may fail due to a particular HTTP error
code, but that may only be reported at two or three levels of exceptions deep.
If the plugin is open source, you can use the stack trace to examine the source
code of the plugin and try to understand the actual problem. Obviously, this
would be a last resort!

The stack trace will also be helpful to developers that might later need to fix a bug
that caused the problem you are experiencing, so this option is helpful to capture
when reporting the issue.

The second option is the kitchen sink alternative, referred to as debug output,
which is the -X option. This outputs everything logged anywhere in Maven,
and unfortunately there is no middle-of-the-road alternative. It will contain
information on the parameters passed to plugins, class paths used to execute Java
code, command line parameters for external tools, information about dependency
resolution, and much, much more. You should almost certainly capture the output
to a file to examine the failure afterwards.

Confirming the expected models
The assembly of the actual project model used for the Maven build can be a
reasonably complex process through inheritance and the application of profiles and
management sections of the POM. For this reason, it can be useful to examine exactly
what model Maven is attempting to use to see if there is an error in the content.

The Help plugin can be of assistance here. In addition to the goals outlined
in Chapter 1, Maven in a Nutshell, three goals are particularly geared towards
troubleshooting.

The first is the effective-pom goal:
$ mvn help:effective-pom

The output of this goal is very straightforward. It consists of a full listing of the POM
file as Maven resolves it. This will have populated fields that have been inherited;
including defaults, as well as adjusting paths to the location you are running the
build from, and so on.

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Troubleshooting Maven

[406]

Its counterpart for your settings files is the effective-settings goal:
$ mvn help:effective-settings

Again, this will display the complete settings model being used by Maven, collapsing
the one located in the Maven installation with the one stored in the home directory.

Settings caution
Occasionally, your Maven settings will contain sensitive information
such as passwords in plain text. While these may be stored in a relatively
secure location on your hard drive, executing the above goal will output
them to the screen. In particular, do not blindly copy that output into a
bug report or mailing list post while you are investigating a problem!
Maven 2.1.0 and above have the capability to mask those passwords to
avoid such issues.

Analyzing dependencies
Problems are often much more subtle than a direct error in the build, however, and
dependencies can be a major cause. Because Maven resolves transitive dependencies,
it is common to be using dependencies, or versions, that you may not have expected.
Similar types of problems you are likely to see are:

Incorrect versions of dependencies being used
Duplicated dependencies (for example, if an artifact changes to a new group ID
in a more recent version, both versions will appear in the dependency tree)
Missing dependencies
Unwanted dependencies
Incorrect dependency scopes leading to incorrect classpaths for certain goals

As illustrated in Chapter 1, Maven in a Nutshell, the Enforcer plugin can be used as
preventative medicine against some of these problems.

One of the most useful tools you will be able to use in evaluating these problems is
the dependency:tree goal. Here is the output from the sample web application used
in Chapter 1, Maven in a Nutshell:
[INFO] [dependency:tree]

[INFO] com.effectivemaven.chapter01:simple-webapp:war:1.0-SNAPSHOT

[INFO] +- org.slf4j:slf4j-api:jar:1.5.0:compile

[INFO] +- org.slf4j:slf4j-simple:jar:1.5.0:runtime

[INFO] \- org.testng:testng:jar:jdk15:5.8:test

[INFO] \- junit:junit:jar:3.8.1:test

•
•

•
•
•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Appendix A

[407]

As you can see, we did not introduce many transitive dependencies, though it may
have been surprising to see that we are still using JUnit as a part of TestNG!

Much like the earlier effective-pom goal, the tree above will illustrate exactly
what dependencies Maven ends up using in the build. This information is also
shown in debug mode, though it contains a lot more of the decision points and
other interspersed debug output that can make it much harder to read.

The remedies for dependency problems vary—you may use the dependency
management section to enforce a particular version, the exclusions section of the
dependency declaration to prune a particular dependency from the tree, or alter
the repository metadata of another project to ensure it is correct in future. These
alternatives are also discussed in Chapter 7, Maven Best Practices.

One final issue is worth special attention here. Maven constructs its dependency
tree by reading the POM file for an associated dependency and drawing the
transitive dependencies from that. If Maven fails to resolve the POM due to a missing
file or other download problem, the build will still continue (as it is historically valid,
though now considered deprecated, to have a project without a POM). In this case,
the project will be considered to have no dependencies, even though they may have
been expected. If this occurs, Maven will display a prominent warning message early
in the build.

Download problems
Getting into trouble downloading artifacts for the build or dependencies of the
project can be a common issue in Maven builds as well. The following are some tips
for alleviating these issues.

If you have an outright connection issue, the debug output described earlier may
contain the exception that occurred, even if the build happened to continue. It is
worth taking the URL that Maven was attempting to download from and checking
that you can access it from a browser to rule out any external factors.

You might be inclined to use the command line application wget on
GNU-based systems. This may give you a false failure, however, as
applications that are capable of scraping content are banned from the
central repository from time to time to prevent bandwidth abuse.

You may notice a problem in these situations where a repository has been "blacklisted":

[INFO] Repository 'central' will be blacklisted

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Troubleshooting Maven

[408]

This is often misinterpreted as meaning that the repository will never be used
again—but this is not the case. It is actually only blacklisted during the same build to
avoid repeatedly trying to use a repository that cannot be reached or may have timed
out, for the speed of the build. The decision is not remembered across builds and the
repository will be used again on the next run.

If you operate in a constrained network environment, you should also check your
proxy settings or server username and password for the repository in question
(the help:effective-settings goal described above can be of assistance here).

If the download itself seems to succeed but the resolution process fails with
an artifact not being found, then you may have a problem with corrupted local
metadata. While the cases where this occurs have been reduced, there have been
some situations that can lead to this in particular:

Running offline or where network connections will regularly fail, causing
Maven to permanently assume an artifact cannot be found
Running in an environment where incorrect content is deliberately returned.
A classic example is the Wi-Fi in the airport lounge that throws up a perfectly
valid HTML login page on every single request, getting into the local
repository metadata and artifacts if checksums are not being enforced
(as shown in Chapter 7, Maven Best Practices)
Running with an incorrect clock time that can cause update checks to stop
running in the future as the files never appear out of date

While it is possible to prune out corrupted metadata selectively, it can be very
tedious. The most comprehensive solution is to delete the content from the local
repository entirely—and while this is technically harmless, it is not recommended,
as it will cause the need to download a large portion of the internet again on
subsequent runs!

For this reason, it is highly recommended to install a repository manager in a local
network, or even on your own machine. This can run with a low footprint and can
act as your personal proxy to all other remote repositories with a clean set of artifacts
and metadata. With this in place, it is possible to delete your local repository at any
time without having to worry about the cost of downloading the artifacts again on
subsequent builds. It can also reduce the number of potential download problems
you will experience and give you more control over how to handle issues with
metadata and checksums, for example.

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Recent Maven Features
Maven 2.0 has been the predominant version available over the last 4 years. Recently,
however, some new versions have introduced features that may not yet be widely
used. This appendix provides a summary of the new features and a manual on how
to use them if you are a new Maven user, or are mainly familiar with prior versions
of Maven.

Server password encryption
Password encryption has been available since Maven 2.1.0. At present, it is only
capable of masking server passwords in settings.xml.

With this solution, you must still protect access to a file in your home
directory to prevent users being able to find out your password. However,
it offers several enhancements:

Not storing the password in plain text avoids accidental exposure (on the
screen or by pasting the file)
Someone must access both the master key and the settings file to obtain
the passwords
The master key can be stored in a more secure location (for example, a USB
thumb drive or a personal mounted network drive)

This offers a reasonable level of security for your server passwords while still
allowing them to be used without regular keyboard entry.

Passwords might still be captured when the servers are used for
artifact downloads and uploads. Make sure you use a secure channel
such as HTTPS or SSH for repository access.

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Recent Maven Features

[410]

To use the feature, let us review what we learned in Chapter 2, Staying in Control with
Archiva, where we used it to mask the Archiva repository credentials.

The first thing that we need to do is to generate an encrypted password by executing
the following command:

$ mvn --encrypt-master-password abc123

Copy and paste the result in your ~/.m2/security-settings.xml as follows:

<settingsSecurity>
 <master>
 {JZi5su5v5boHBztoneIMgVyniJesHwvmXNHjFk6jo30=}
 </master>
</settingsSecurity>

Encrypt our Archiva repository password:
$ mvn --encrypt-password pass123

Copy and paste the result to the ~/.m2/settings.xml file as follows:

...
<server>
 <id>snapshots</id>
 <username>archiva</username>
 <password>
 {mTjtmOvhBxEHjiAzHStjYvmdi+KMIs/8Wz6/3LdUwIo=}
 </password>
</server>
<server>
 <id>releases</id>
 <username>archiva</username>
 <password>
 {mTjtmOvhBxEHjiAzHStjYvmdi+KMIs/8Wz6/3LdUwIo=}
 </password>
</server>
...

The configuration is now complete and will be used on repository requests with the
given repository ID.

Finally, if you would like to secure the ~/.m2/security-settings.xml file on
another drive, you can move it to the new location and replace the file contents with
the following pointing to the new secure location:

<settingsSecurity>
 <relocation>
 /Volumes/secure/settings-security.xml
 </relocation>
</settingsSecurity>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Appendix B

[411]

More details on password security in Maven are covered in http://maven.apache.
org/guides/mini/guide-encryption.html

Reactor project selection
Maven 2.1.0 introduced additional command line options for defining a subset of
the modules to build in a multi-module project. These choices can make regularly
building a part of a project much more efficient during development.

We will look at these examples in the context of the final application structure that
we built in Chapter 3, Building an Application Using Maven. Refer to the sample code
for that chapter to try these for yourself.

Resuming a failed build
The first mode of operation is when we want to resume a previous build. This is
most helpful when a build fails after some time in the middle of the list of modules,
where we fix the issue and then wish to continue from the same point, knowing that
any previously built modules are not affected.

Consider the reactor build order for Centrepoint when all default modules are built:

[INFO] Reactor build order:

[INFO] Centrepoint

[INFO] Centrepoint Documentation Skin

[INFO] Centrepoint Java Modules

[INFO] Centrepoint Data Model

[INFO] Centrepoint Data Store API

[INFO] Centrepoint Maven Project Importer

[INFO] Centrepoint Data Store (Flat file)

[INFO] Centrepoint Web Application

[INFO] Centrepoint Documentation

[INFO] Centrepoint Distribution

Now, let us say we encounter a broken test in the Maven Project Importer module.
Rather than building all of the modules again, we can continue from the same point:

centrepoint$ mvn -rf modules/maven-importer install

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Recent Maven Features

[412]

The -rf argument (which is short-hand for the argument --resume-from), specifies
a single directory of the module to continue building from. The order used in the next
build will match the previous execution, as we can see:

[INFO] Reactor build order:

[INFO] Centrepoint Maven Project Importer

[INFO] Centrepoint Data Store (Flat file)

[INFO] Centrepoint Web Application

[INFO] Centrepoint Documentation

[INFO] Centrepoint Distribution

This option can also be used for building a subset of the modules when you know
the others have not been affected during development. However, there is a better set
of options. These do not require building all of the modules in the existing order if
they are unaffected.

Building a subset of modules
The other mode of operation available allows the direct specification of the module(s)
to build, and corresponding type of dependencies to include.

This is achieved using the -pl argument (or alternatively, --projects) followed by
a comma-delimited list of directories of the modules to build.

You can also use the groupId:artifactId syntax instead of a directory
to define a module to build (which also works in the --resume-from
argument). However, this is typically going to be longer to type!

For example, to build just the model and documentation modules, you can run the
following command:

centrepoint$ mvn -pl modules/model,documentation install

As you can see, only those modules are built:

[INFO] Reactor build order:

[INFO] Centrepoint Data Model

[INFO] Centrepoint Documentation

However, this is rarely the complete build that you would want to run. Changing
the model potentially affects the testing of the modules that depend on it such as the
data store, and even more importantly, the web application and distribution need to
be rebuilt to include the updated library.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Appendix B

[413]

To ensure that these modules are included, we can add the -amd (or --also-make-
dependents) argument to Maven:

centrepoint$ mvn -amd -pl modules/model,documentation install

As you can see, all of the modules described above that depend on the model are
now included in the reactor build:

[INFO] Reactor build order:

[INFO] Centrepoint Data Model

[INFO] Centrepoint Data Store API

[INFO] Centrepoint Maven Project Importer

[INFO] Centrepoint Data Store (Flat file)

[INFO] Centrepoint Web Application

[INFO] Centrepoint Documentation

[INFO] Centrepoint Distribution

This argument is quite helpful in consistently building a subset of the application
when one or more modules have been changed and not everything is needed again.
In this example, we have just skipped the parent modules and skin, but if we were
building a module with fewer dependencies then the list would be much shorter.

If we were to remove the documentation from the project list in this
command, it would not be built, as it has no dependency (direct or
indirect) on the model.

Now, consider the opposite use case. Let us say that we had just checked out the
project and wanted to build the Maven Project Importer library. That depends
on some other libraries, but we do not want to build the web application and
distribution that are later in the chain.

For this purpose, we have the -am (or --also-make) argument. When added to the
project list argument, it will add to the reactor any modules that are required to build
the requested projects.

To illustrate the example stated above, run the following command:

centrepoint$ mvn -am -pl modules/maven-importer install

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Recent Maven Features

[414]

As you can see, the parent projects and dependencies of the importer module are
built, but no other modules are:

[INFO] Centrepoint

[INFO] Centrepoint Java Modules

[INFO] Centrepoint Data Model

[INFO] Centrepoint Data Store API

[INFO] Centrepoint Maven Project Importer

A final note: the -am and -amd options can also be used together to include the
dependencies in both directions in the reactor build. Consider the following command:

centrepoint$ mvn -am -amd -pl modules/maven-importer install

When this is executed, the union of the above two lists of modules are included:

[INFO] Centrepoint

[INFO] Centrepoint Java Modules

[INFO] Centrepoint Data Model

[INFO] Centrepoint Data Store API

[INFO] Centrepoint Maven Project Importer

[INFO] Centrepoint Data Store (Flat file)

[INFO] Centrepoint Web Application

[INFO] Centrepoint Distribution

Modules that are unrelated to the importer module such as the documentation and
skin are not built in this scenario.

The Reactor plugin
For those using versions earlier than Maven 2.1.0, the above functionality is available
through the Reactor plugin. As you'll see below, the plugin also offers an additional
goal (reactor:make-scm-changes) that is not available above and which will still be
of use to users of Maven 2.1.0 and above.

A complete reference to the plugin can also be found at http://maven.apache.org/
plugins/maven-reactor-plugin/.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Appendix B

[415]

While the plugin can still be used in newer releases of Maven, it has some drawbacks
in comparison to its command line counterpart:

It is slower as it has to run Maven to find the modules to build, then run a
new Maven instance with the restricted number of modules
Longer syntax to type
The ordering used for resumed builds can sometimes be different to the one
used originally

Let us take a look at the examples from above and how they would be applied using
the Reactor plugin.

The corresponding goal to resume a failed build is reactor:resume, passing a from
parameter that specifies the directory of the module to resume from. Our example
above for the -rf argument would instead be run using:

centrepoint$ mvn reactor:resume -Dfrom=modules/maven-importer

As you can see, this is a considerably longer command to type than the example
presented earlier if it is available!

We should note that as we are running a goal from Maven, we can't select the
goals to run as we did with the command line version. To address this, all of
the goals in the Reactor plugin support passing in the goals argument, which
defaults to install. For example, to resume using the clean deploy goals
instead, use the following:

centrepoint$ mvn reactor:resume -Dfrom=modules/maven-importer \

 -Dgoals="clean deploy"

There is no direct goal that represents the -pl option from the command line on
its own, but rather two goals reactor:make-dependents and reactor:make that
represent the two alternative switches -amd and -am respectively. To supply the
projects that would be specified by the -pl argument, both goals take the argument
-Dmake.folders.

Therefore, we have the following example corresponding to that of -amd above
which will build the model and documentation modules and everything that
depends on them:

centrepoint$ mvn reactor:make-dependents \

 -Dmake.folders=modules/model,documentation

•

•

•

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Recent Maven Features

[416]

Likewise, there is the following corresponding to the -am argument that builds the
importer and everything that it depends on:

centrepoint$ mvn reactor:make \

 -Dmake.folders=modules/maven-importer

There is no corresponding command available to build both lists simultaneously
as was possible with the combination of the -am and -amd arguments
shown previously.

Building modules with local changes
The additional goal that exists in the Reactor plugin, but not the command line, is the
reactor:make-scm-changes goal. The purpose of this goal is straightforward – to
rebuild all modules that have had some local changes that are not committed.

The goal is simply run as:

centrepoint$ mvn reactor:make-scm-changes

To determine what to build, the plugin uses the Maven SCM library to run a status
check, much like the Release plugin does before proceeding with a release. These are
then collapsed into the list of modules affected, which form the project list to build.
The build then continues with these modules, and any modules that depend
on them.

At present, changes to the POM in the directory where the goal is run are
not detected. If this is the case, assuming all modules use that POM as the
parent, then you can simply run mvn install to get the same behavior!

As with the previous goals, it is possible to customize the goals that are run using the
goals command line parameter. The default is to run install.

Reconfiguring default life cycle goals
One of the most interesting features that has appeared in Maven 2.2.0 and above is
the ability to add configuration specifically to the goal execution supplied by default
lifecycle bindings.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Appendix B

[417]

Previously, you could only do this at the plugin level, for example:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.4.3</version>
 <configuration>
 <excludes>
 <exclude>**/selenium/**</exclude>
 </excludes>
 </configuration>
</plugin>

There are two problems with this:

1. 	 It may not be appropriate for all goals in the plugin to take this configuration.
This is a common problem with the Compiler plugin, where you may want
different parameters for the compile and testCompile goals (such as the
JDK level—a problem well known by TestNG users developing on JDK 1.4!)

2. 	 You can't erase configuration through inheritance—so as the example above
shows, you are stuck with those excludes even if you define a new goal to
run a second set of tests

Consider the addition of the following to the above:

<profile>
 <id>selenium</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <executions>
 <execution>
 <id>selenium-tests</id>
 <configuration>
 <includes>
 <include>**/selenium/**</include>
 </includes>
 </configuration>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Recent Maven Features

[418]

This will do nothing, as only the Selenium tests are to be run (includes), but all
Selenium tests are disabled (by inheritance of excludes).

This leads to a convoluted combination of turning off the default binding and
re-adding it with its configuration, as a modification to the first sample:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.4.3</version>
 <configuration>
 <skip>true</skip>
 </configuration>
 <executions>
 <execution>
 <id>unit-tests</id>
 <configuration>
 <skip>false</skip>
 <excludes>
 <exclude>**/selenium/**</exclude>
 </excludes>
 </configuration>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The skip flag also needed to be added to the Selenium profile.

This example is also discussed in the section Running integration tests
using naming patterns in Chapter 4, Application Testing with Maven.

Maven 2.2.0 added a simple solution for this problem. All of the executions in the
default lifecycle are assigned IDs of the form default-phase. Because Maven's
inheritance merges executions with identical IDs, you can assign configuration
directly to the built in goal and no others.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Appendix B

[419]

This means that the previous section can be reduced to be closer to the original,
like so:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.4.3</version>
 <executions>
 <execution>
 <id>default-test</id>
 <configuration>
 <excludes>
 <exclude>**/selenium/**</exclude>
 </excludes>
 </configuration>
 </execution>
 </executions>
</plugin>

The goals are not necessary in the execution, as they were already given in the
default binding.

This results in a more intuitive pattern for setting up multiple test executions
(a common occurrence with profiles and integration tests), as well as use cases such
as configuring the Compiler plugin's main and test compilation goals separately.

However, there is one more thing to watch out for. Taking advantage of this will
mean the build is no longer compatible with earlier versions of Maven. To make sure
you are not caught out, you should add the Enforcer plugin somewhere in the build:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.0-beta-1</version>
 <executions>
 <execution>
 <id>enforce</id>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requireMavenVersion>[2.2.0,)</requireMavenVersion>
 </rules>
 </configuration>
 </execution>
 </executions>
</plugin>

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Recent Maven Features

[420]

In addition to changing the defaults, you can also now supply configuration that
is targeted at command line invocations (without affecting the main build). More
information on all of these can be found at http://maven.apache.org/guides/
mini/guide-default-execution-ids.html.

Parallel artifact resolution
By default, Maven 2.1.0 and above will download up to five artifacts at a time. There
is no need to add any additional configuration to enable this new feature.

At present, it will only download artifacts from different groups simultaneously.
This limit was made to prevent potential sequencing issues. This may be enhanced in
a later version of Maven, however at present it limits the possible performance gains
by raising the number of parallel downloads. The main gains will be when there
are a number of large artifacts to download, or when the local repository is
regularly cleaned.

Even with a repository manager very close by caching artifacts, parallel
downloads can improve performance in retrieving the artifacts with a
clean repository.

It is possible to change the number of active download threads, which is useful if you
wish to try to add a minimal amount more performance, or if you need to limit the
resources used by the Maven process.

To change the size of the thread pool, start Maven using -Dmaven.artifact.
threads. For example, to only download single artifacts at a time:

$ mvn -Dmaven.artifact.threads=1 clean install

You may wish to set this option permanently, in which case you can use the
MAVEN_OPTS environment variable. For example:

$ export MAVEN_OPTS=-Dmaven.artifact.threads=3

Such an option may be considered within your build server. In Continuum, this
can be added to a build definition via an installation environment variable. See
Installations in Chapter 8, Continuum: Ensuring the Health of your Source Code for an
example of configuring MAVEN_OPTS in Continuum.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Migrating Archiva and
Continuum Data

Databases are important components in both Archiva and Continuum. These are
where the data used within the applications is stored and kept track of. Due to this,
it is important to know how to configure and migrate them.

Using a different database
Archiva and Continuum both use embedded Derby databases for storing project and
artifact information. Most companies have a standard tool set or infrastructure for
the applications that they use. One good example of this is the database server. They
may require all databases used within the applications in the company to be MySQL
or PostgreSQL, or some other database server.

To use a different database for these applications, all you have to do is to change a
few configuration options.

If you are deploying the WAR to your own application server instead
of using the standalone bundle, refer to its documentation for how to
configure database drivers and JNDI connections.

First, you need to copy the database driver to the lib/ directory of the installation.
Make sure that the driver can be accessed by the application. Next, you need to
update the JNDI resources for the database configuration in conf/jetty.xml. In the
following example, we are assuming that we are using a MySQL database instead:

<New id="archiva" class="org.mortbay.jetty.plus.naming.Resource">
 <Arg>jdbc/archiva</Arg>
 <Arg>
 <New class="org.apache.commons.dbcp.BasicDataSource">

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Migrating Archiva and Continuum Data

[422]

 <Set name="driverClassName">com.mysql.jdbc.Driver</Set>

 <Set name="url">jdbc:mysql://[database_host]:3306/
 [db_name]</Set>

 <Set name="username">username</Set>

 <Set name="password">passw0rd</Set>

 </New>

 </Arg>
</New>

Make sure that the database already exists and the user account you've specified has
the correct permissions to read and write to the database.

You can also follow the same steps above for changing the users database.

Database backup and migrating between
versions
As new features, additional fixes and new releases come, the need to upgrade an
application to a more recent version becomes imminent. This holds true for both
Archiva and Continuum. Looking at the history of these two projects, they both
have come a long way already. A lot has changed since their very first releases.

One of the usual problems when upgrading an application is data migration.
Since both applications have their own databases, they also face the same problem
when upgrading.

Migrating Continuum
Project information, build configuration, build results, release results—these are just
a few of the things that Continuum keeps track of in its database. Since we're dealing
with history, we can't just wipe out the database and start anew.

It's a good thing that Continuum includes a database migration tool for each release.
For our demonstration, we will assume that we are upgrading from 1.2.3 to 1.3.3 and
we'll only be migrating just the Continuum database. The first thing that we need
to do is get the database migration tool for the respective releases. Just a caution
though, the 1.2.3 database migration tool has some problems so a 1.2.3.1 version of
the tool was released to address this. We can get these tools at:

http://repo1.maven.org/maven2/org/apache/continuum/data-management-
cli/1.2.3.1/data-management-cli-1.2.3.1-app.jar

http://repo1.maven.org/maven2/org/apache/continuum/data-management-
cli/1.3.3/data-management-cli-1.3.3-app.jar

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Appendix C

[423]

To perform the actual migration, you need to stop the running Continuum 1.2.3
instance first. Then to back up the old database, execute the following from the
command line:

java -Xmx512m -jar [PATH/TO/1.2.3.1_DB_MIGRATION_TOOL]/data-management-
cli-1.2.3.1-app.jar -buildsJdbcUrl jdbc:derby:[PATH/TO/1.2.3_DB]/data/
databases/continuum -mode EXPORT -directory backups

Once the backup action has finished executing and the old database has been backed
up, unpack the 1.3.3 binaries and start the instance. This is necessary in order to
create the new database schema. Once it has successfully started, shut it down.

Now from the command line, execute the following:

java -Xmx512m -jar [PATH/TO/1.3.3_DB_MIGRATION_TOOL]/data-management-
cli-1.3.1-app.jar -buildsJdbcUrl jdbc:derby:[PATH/TO/1.3.3_DB]/data/
databases/continuum -mode IMPORT -directory [PATH/TO/1.2.3_BACKUP]/
backups

Manually update the next sequence of the IDs of the tables in the database. Set the
next sequence to the highest ID value incremented by one. After doing this, start up
the 1.3.3 Continuum instance.

You can use Liquibase (http://www.liquibase.org/) to
verify if the database schema is correct after migration.

If you want to retain your old Continuum configuration, just copy the continuum.
xml file (in conf/) of the old Continuum instance to the new one.

Migrating Archiva
It is fairly easy to upgrade Archiva compared to Continuum, since the repositories
are in the local filesystem and the database and index can be easily re-created.

We will be upgrading Archiva from 1.1.4 to 1.2.1 for this demonstration. Assuming
that we're not overly concerned with re-creating the Archiva database and we just
want to retain the existing users, upgrading is as simple as follows.

Since the index format changed in Archiva 1.2 and 1.2.1, you need to
re-create the index when upgrading from an older version of Archiva.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Migrating Archiva and Continuum Data

[424]

First, stop the running 1.1.4 instance then unpack the 1.2.1 binaries. Copy the users
database from the 1.1.4 instance (found in data/databases/ if using the default
configuration) to the data/databases/ directory of the unpacked 1.2.1 binaries.
You also need to copy the Archiva configuration file so you won't have to configure
everything again. Just overwrite the archiva.xml file in the conf/ directory of the
new installation with the one from the old Archiva instance.

Now, delete the index of each repository configured in the archiva.xml file. The
default location is in the [REPOSITORY_ROOT_DIRECTORY]/.index, otherwise check
the <indexDir> of the repository set in the configuration file.

Start the 1.2.1 instance. Execute the repository scanning for each repository
and then the database scanning afterwards. Both are optional though since these
tasks are scheduled. Do this only if you want your index and database to be
immediately populated.

In cases when you want to retain the Archiva database, you need to execute the
command below for each repository. Archiva only processes artifacts for indexing
and database updates if and only if the artifact has been modified after the last
repository scan. As the database is already populated, Archiva will no longer
process the artifacts in the repositories when the scanning executes and our index
will not be created.

repositories$ find [REPOSITORY_DIRECTORY_NAME] | xargs touch

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Index
Symbols
-amd argument 413
-am argument 414
-DarchetypeCatalog parameter 365
-e argument 405
-pl argument 412, 415
-rf argument 412, 415
-X argument 405
<mirrors> section

<mirrorOf> tag 52
<url> 52
asterisk (*) value 52
external:* 52
internal 52

A
admin user, Archiva

form, creating 42
webapp view 42

Advanced Search Fields, drop-down box 57
Almost Plain Text. See APT
always option 119
AntRun plugin

Ant build, converting 210, 211
Ant versions 210
creating, steps 212
interacting, with Maven projects 208-210
Maven 1 build, converting 210, 211
tasks, running 207
using 207

Apache Archiva. See Archiva
AppFuse 357
AppFuse Spring archetype

generate mojo, executing 358, 359

application, assembling
about 94
assembly archive, generating 99-103
Assembly plugin 94
daemon sections 97
documentation, adding to distribution

archive 104, 105
new module, adding to parent POM 95
project, creating in distribution/pom.xml

94
runtime environment, generating with App

Assembler plugin 95-98
APT 82
archetype

about 349
AppFuse 357
AppFuse Spring 357
benefits 350
creating 240
custom archetype, creating 360
defining 349
examples 359
examples, AppFuse archetypes 360
examples, Camel archetypes 360
examples, Groovy archetypes 360
examples, MyFaces archetypes 360
examples, Spring-OSGi archetype 360
generate command, about 71
Maven Mojo (plugin) archetype 353
Maven simple J2EE archetype 354
maven site archetype 352
using 9, 240

archetype catalog
internal 365
local 365
managing 367, 368

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[426]

remote 365
using 365

archetype command 10
Archiva

about 39, 40, 255
admin user 42
archiva.xml 41
artifacts 44
artifacts, deleting 337
artifacts, searching for 55-59
Browse page 326
consumer 343
database 421
diagrammatic representation 40
groups 326
installing 40
JBoss Maven 2 repository, adding 50
jetty-logging.xml 40
jetty.xml 40
log files 41
maintenance-savvy consumer 343
multiple teams security, setting up 376, 377
new user, creating 60
proxy, setting up 46-51
reports 339
reports, types 339
RSS feeds 332
settings.xml, configuring 51, 52
standalone bundle 40
upgrading 423
user roles 323
web services 393
wrapper.conf 41

Archiva, log files
archiva-audit.log 41
archiva-security-audit.log 41
archiva.log 41
rolling Jetty log 41

archiva.xml file 41
Archiva 1.1

repository groups 327
artifact-level metadata 45
Artifact File 66
artifact level, RSS feeds

about 336
adding, in Thunderbird 337
Browse page 336

Centrepoint Distribution snapshot,
deploying 337

use 336
artifact naming conventions

centrepoint-model 68
styles 68

artifacts
about 44
searching, in Archiva 55-59

artifacts, deleting
about 338
Delete Artifact form, advantage 338
in repository 338
through webDAV 339
ways 337

B
bleeding edge 256
build, modularizing

advantages 230
API, separating from implementations 232
dependencies 232
group ID, selecting 231
grouping together 232
over-modularizing, problems 230
source structure, aligning 230

build, project
defining 267
project build definition 272
project group build definition 268-272
project group build definition, using 272
results 278, 279
results, dependency changes 279, 280

build agent 311
build breakage

knowing 253, 254
build environments

creating 281, 282
Build Helper plugin

about 203
arbitrary artifacts, attaching 205, 206
remove-project-artifact goal 206
reserve-network-port goal 206
source directory, adding 203, 204

Build Number plugin
adding 195
advantage 194

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[427]

fomatting options, using 195
goal 192
techniques, applying 194
using 192, 193

build pipelining 128, 238
build portability

about 240
artifacts, configuring 244
artifacts, managing 243-246
expectations, setting 241
hard cording 241, 242
profile, introducing 243
resource filtering 246, 247
shared resources 247-249
shared resources, with dependency

plugin 248
triggers, using 243

build queues, project
build queue section 267
checkout queue section 267
current build section 267
current checkout section 267
current prepare build section 267
prepare build queue section 267
viewing, via the view page 266, 267

C
Centrepoint. See sample project
Checkstyle

enforcement check, fixing 165-167
operating 164
report, individual errors 164
report, summary 164
self configuration, writing 167

checkstyle command 152
Checksums 49
CI server

benefits 272
defining 253
importance 254

Clirr
about 176
configuring 177

Clover 118
Cobertura 118
Codehaus Mojo project 185

code testing. See unit testing
Commons Configuration 245
conf directory 98
consumer

about 343
maintenance-savvy consumer 343
types, database consumer 343
types, repository consumer 343

continuous integration. See CI server
Continuum

<scm> configuration 263
about 254, 255
accessing 375
build environments 281, 282
conf/continuum.xml 257
conf/jetty.xml 257
configuring 257-260
context URL, changing 259
data/ 258
database 421
distributed builds 311
downloading 257
features 254
installations 280, 281
installing 257
local repositories maintaining 317
Local Repositories role 376
logs/ 258
Manage Build Environments role 376
Manage Build Templates role 376
Manage Installations role 376
Manage Purging role 376
Manage Queues role 376
Manage Scheduling role 376
multiple teams security, setting up 372
notifiers, types 273
parallel builds 308
prerequisites, installing 256, 257
project, building 260
Project Developer, operations 373
projects, releasing 283, 294
resource-based roles, advantage 375
Resource Roles 373, 374
source repository, setting up 255, 256
web services 383

Continuum, prerequisites
Ant, installing 257

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[428]

Apache James 257
Maven 1, downloading 257
Maven 2, installing 257

Cron Expression 271
custom archetype

catalog 365
catalogs, managing 366
Centrepoint plugin 365, 366
creating 360
creating, from skeleton 361-363
creating, steps 361, 364, 366
files 360
input parameters, providing 365
link, adding 366
using 364

D
dashboard plugin

report 182
report, use 183

database
backup 422, 423
different database, using 421, 422

data migration
in Archiva 423, 424
in Continuum 422, 423

debug mode, using
-e option 405
-X option 405
stack trace, examining 405

debug output. See -X argument
default life cycle goals, reconfiguring

about 416
at plugin level 417
at plugin level, problems 417, 418
Enforcer plugin, adding 419

dependencies, analyzing
dependency:tree goal, using 406
problem, remedies 407
problems 406

Dependency Convergence Report
about 161
metrics 162

dependencyManagement block 74, 75

deploy-file goal
and deploy goal, differences 65
generatePom parameter 66

deploy goal
and deploy-file goal, differences 65

deployment repository
about 43
and local proxy repositories, separating 44

development environment, preparing
configuration levels, installation settings

218
configuration levels, project settings 218
configuration levels, user settings 218
configuration levels, viewing 218
Maven installation, alternatives 219
project's infrastructure, elements 220
repositories, configuring 221
user settings 219

distributed builds
comparing, with parallel builds 312
configuring 313
designing 312
Master-Slave set up 311
need for 311

distributed builds, configuring
build agent, installing 313, 314
build agent, project release 316
build agent, running 314
build agent group, adding 315
Enable Distributed Builds 313

documentation module, adding
generated POM, content 87
generated POM, customizing 87
pom.xml file 86
site, assembling for distribution 88-90
site, building automatically 88
site resources, adding 90
skin, adding 93
skin, creating 91
skin, using 92
src/site/apt/index.apt 86
src/site/site.xml 86
tools 86

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[429]

E
EJBs 355
ejbs/ directory 355
EMMA

about 118, 119, 147
blockRate 155
classRate 155
lineRate 155
methodRate 155

Enterprise Java Beans. See EJBs
example application

developer's site, constructing 144-147
developer's site, default property value

addition 146
developer's site, deploying 146
developer's site, protocols used 146
developer's site, site:run goal 145
developer's site, site:stage goal 145
reviewing 144

Exec plugin
adding, to build life cycle 214, 215
goals, exec:exec 213
goals, exec:java 213, 214
purpose 213
running 215, 216

expected models, confirming
effective-pom goal 405
Help plugin 405

F
Find Artifact 59
FindBugs

about 174
configuring 176

fork mode
about 119
configuring 111

functional testing
about 124
ways 109

G
generatePom parameter 66
getItems() method 387
GMaven project 212
goals 17
groupId:artifactId syntax 412

H
hard coding

about 241, 242
best practices 241

I
installations 280, 281
installing

Archiva 40
Continuum 257
Maven 7, 8

integration testing
about 109
altering, coverage measurement 141
altering, profiles used 138-140
altering, TestNG parameters used 140
running, naming patterns used 125-127
separate module, using 134-137

integration testing, running
application, deploying to container 131, 132
naming patterns used 125-127
Selenium RC server, operating 130
Selenium tests, running 128, 129
test grouping simplification, TestNG used

133

J
Javadoc 147, 162
Java Service Wrapper. See JSW
JAXB 209
jetty

run command:about 132

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[430]

jetty-logging.xml file 40
jetty.xml file 40
Jetty plugin

about 33
adding 33

JNDI resources, Archiva-specific
archiva 40
archivaShutdown 40
users 40
usersShutdown 40
validation_mail 40

JRuby Maven Plugin 213
JSW 95

L
local proxy repository

and deployment repositories, separating 44
local repositories

cleaning up 318, 319
configuring 317
configuring, need for 318
directories, cleaning up 320

logs directory 98

M
maintenance-savvy consumer

configuring 344
database cleanup consumers 347
Maven metadata, correcting 347
missing checksums, creating 347
outdated snapshots, purging 345, 346
purpose 344
repository purge, configuring by retention

count 346
managed repository

about 43
adding 60

master 311
Maven

archetype 349
Artifact ID 11
best practices 217, 218, 225, 240, 249
build lifecycle 15
builds, reusing 18
central repository 9
clean lifecycle 18

converting, from an existing project 35
dashboard plugin 181
dependency mechanism 20-22
deploying, via web form 65
deploying from 59-64
deploy step 19
development process, enhancing 33
functionality 144
Group ID 11
help plugin 32
installing 7, 8
Jetty plugin 33
lifecycle phases 15
local repository 9
maven-metadata.xml files 45
mirrors configuring, URL 52
multiple module builds 34
naming convention 155
new project creation, Archetype used 9-15
objectives 17
overview 7
phase list 15
phases 15
plugin mechanism 22
plugins 185
project, building 15-18
project release 284
projects, integrating 180
quality checks, setting up 154
quality tools 161
release version 11
remote repository 9
reports 147
resources, adiing 27
settings, precaution 406
site lifecycle 18
snapshot version 11
Sonar project 183
test, types 108
tests, running 28-31
troubleshooting 403
unit of work 14
using 8
version 11

Maven, new features
default life cycle goals, reconfiguring 416
parallel artifact resolution 420

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[431]

reactor project, selecting 411
server password, encrypting 409

Maven, troubleshooting
debug mode, using 404
dependencies, analyzing 406
expected models, confirming 405
output, examining 403
problems, downloading 407

maven-archetype packaging 363
maven-metadata.xml files 45
maven.test.skip argument 115
Maven 2.0 409
Maven 2.0.9

toolchains 218
Maven 2.1.0

password encryption 61
password security, URL 62

Maven 2.2. See also Maven
Maven 2.2

default goals, overriding 128
default life cycle goals, reconfiguring 419
Enforcer plugin, adding 419

Maven 2.2.0. See Maven
Maven archetypes. See archetype
Maven configuration file

settings.xml 51
Maven installation

~/.m2/settings.xml file, using 219
alternatives 219
server password, encrypting 220
sharing 219

Maven Mojo (plugin) archetype
using 353

Maven release process
perform stage 288
prepare stage 284
release profile 290, 292
release profile, adjusting 293
release profile, customizing 292, 293

Maven reports
about 147
adding, to project 148, 149
best practices 178-180
configuration, checking 152
configuration elemnet, adding within

reportSets 150
configuring, in site lifecycle 151-154

plugin, configuration rules 151
plugin, configuring for reporting and build

150
Maven reports, best practices

failure thresholds, selecting 180
project quality goals, guidelines 180
report selection 178, 179
site deployment 179

Maven simple J2EE archetype
about 355
application/business layer 354
ejbs/ directory 355
generate mojo. executing 354, 355
persistence layer 354
root pom.xml 355, 357
web layer 354

maven site archetype
about 352, 353
executing 352

Maven tests
functional testing 109
integration testing 109
types 108, 109
unit testing 108
working with 110

Maven tests, working with
empty report 123
report, producing 115, 117
Surefire plugin, configuring 110
test coverage, measuring 122
test coverage, multimodule projects 123
test coverage, reviewing 117-123

Maven with Archiva, hooking up
artifacts, searching for 55-59
cache failure policy 49
Checksum policy 49
internal repository 47
network proxy 48
on remote error policy 49
project, building 52-55
proxy, setting up 46
proxy connectors, editing 49
proxy connectors, policies 49
proxy connectors page 47
releases policies 49
return error when policy 49
settings.xml, Maven configuration file 51

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[432]

snapshots policies 49
white list and black list patterns 49

metadata files
artifact-level metadata 45
version-level metadata 45

module testing. See integration testing
multi-module build, setting up

dependencies, adding 73
dependencies, adding within store-api

module 74
dependencies, managing 74
example application 76
modules, creating 70-72
modules, groupId element 72
modules, name element 72
modules, url element 72
modules, version element 72
parent POM, creating 69
parent POM, naming convention 70
reasons, development efficiency 69
reasons, enforced design constraints 69
reasons, readability 69
reasons, reusability 68
reasons, separate release cycles 69

multi-modules 265
mvn clean command 18

N
network proxy 48
never option 119
new user, creating 60
non-code modules

documentation versions 82
modules tree, creating 83, 85
preparing for 82

notifiers, Continuum
adding 274
configuring, in Maven 277
editing 274, 275
group mail notifier, creating 275
IRC notifier 273
Jabber notifier 273
mail notifier 273
MSN notifier 273
Wagon notifier 273

O
organization POM, creating

about 76
distributionManagement element,

adding 78, 79
elements 78
new parent POM 77
relativePath, using 78

output, examining
amount, reducing 404
avoid being misled 404
scanning, for prefixes 403
Surefire, configuring 404
System.err usage, avoiding 404
System.out usage, avoiding 404

P
parallel artifact resolution 420
parallel builds

configuring 309, 310
working 308

password encryption 61
perform stage, Maven release process

checkout-project-from-scm 288
executing 289, 290
run-perform-goals 288
verify-completed-prepare-phase 288

permissions
managing 324-327

plugin mechanism, Maven
addition, benefits 24
build plugin 22
compiler plugin, adding 23
enforcer plugin, adding 25, 26
functionality, adding 22-24
reporting plugin 23

plugins, Maven
AntRun plugin 207
Build Helper plugin 203
Build Number plugin 192
Exec plugin 213
Remote Resources plugin 186
Shade plugin 196

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[433]

Uberjar plugin 197
writing, in Ant 211, 212

PMD
about 168
results 169
rule sets, enhancing 170
rule sets, using 169, 170

POM
about 13
key information 13
POM reference 15
project, building 13
simplicity, maintaining 225
useful information, providing 221

pom.xml 51
<distributionManagement> tag 62
<snapshotRepository> tag 63
about 62

Pom File 66
POM simplicity, maintaining

additional information, adding 226
archetypes, creating 240
archetypes, using 240
build, modularizing 230
conventions, using 226, 227
conventions usage, areas 226
dependencies, trimming 233-236
dependency version, determining 236, 237
inheritance, using 228, 229
plugin, writing 239
profiles, adding 238
scripting, adding to project 239

prepare stage, Maven release process
check-dependency-snapshots 285
check-poms 284
create-backup-poms 285
effectivemaven-parent project, browsing

288
end-release 286
executing 286, 287, 288
generate-release-poms 285
input-variables 285
map-development-versions 285
map-release-versions 285
remove-release-poms 285

rewrite-poms-for-development 285
rewrite-poms-for-release 285
run-preparation-goals 285
scm-check-modifications 285
scm-commit-development 286
scm-commit-release 285
scm-tag 285

primary-source/ directory 355
problems, downloading

about 408
alleviating tips 407
situations 408

project
building 52-55

project's infrastructure, elements
build management 220
distribution management 220
issue management 220
mailing lists 220
participants 221
repositories 221
source control 220

project, Continuum
adding 262, 263
build, defining 267
building 261, 264
building, steps 260
build queues 266
centrepoint application, adding 265
grouping 265
notifiers 272

Project Object Model. See POM
project release

about 283
Continuum used 294
in Maven 284
timely release 284

project release, Continuum used
Continuum releases, troubleshooting

302-307
finalizing 300
history, viewing 301, 302
other release types 302
release, preparing 294-300

projects, generating
archetype:create, using 350

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[434]

archetype:generate goal, using 351
archetypes used, within multi-module

projects 351
projects/ directory 355
proxy

setting up 46-49
proxy cache 38, 48
proxy connectors

cache failure policy 49
Checksum policy 49
configuration 47
editing 48
network proxy 48
on remote error policy 49
policies 49
releases policies 49
return error when policy 49
snapshots policies 49

proxy repository 43

Q
quality checks, setting up

coverage check configuration, best practices
160

minimum coverage requirement, setting
155-160

need for 154
quality tools

bug detector report 175
Checkstyle 163
configuration options 175
FindBugs 174
Javadoc 162, 163
other tools 178
PMD 168

Quickstart Archetype 350

R
Reactor plugin, reactor project

about 414, 416
drawbacks 415
local changes module, building 416

reactor project, selecting
about 411
failed build, resumimg 411
module subset, building 412, 413

Reactor plugin 414
Redback

about 370
built-in roles, Guest 370
built-in roles, Registered User 370
built-in roles, System Administrator 370
built-in roles, User Administrator 370
components, authentication 370
components, authorization 370
components, user management 370
configuration, adding 378, 379
configuring 371
default users, admin 370
default users, guest 370
descriptor files, using 370

released artifacts
and snapshotsr, separating 45

Remote Procedure Calls. See RPC
remote proxy 47
remote repository

about 43
adding 50

Remote Resource plugin
about 186
advantages 186
appendedResourcesDirectoryo ption 192
bundle, creating 187-189
license file, creating 186
processing, in project 189-192
properties configuration 192
supplementalDataModels option 192

report
repository health 341
repository statistics 340
types 339

reporting element
using, disadvantage 81

reporting tools. See quality tools
repositories

deployment and local proxy repositories,
separating 44

maven-metadata.xml files 45
setting up, points 44
snapshots and released artifacts, separating

45
repositories, configuring

assigning, ways 221

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[435]

best practices 222-225
repository groups

configuring 328, 329
configuring, in settings.xml 331
managed repositories, adding 330
scenario 327
use 327
using 329, 332

repository health, report
about 342
monitoring 342

repository level, RSS feeds
about 333
account, creating 334, 335
subscriptions 335

repository manager
about 37, 38
Archiva, installing 40

repository statistics, report
configuring 340, 341
using 340

reproducibility
about 249
Enforcer plugin, ensuring 250-252
ensuring 249
hindering, sources 249
prerequisite 249

retro-translation
using 244

role based access control. See Redback
roles

managing 324-327
roles, types

global repository manager 323
global repository observer 324
guest 324
registered user 324
repository manager 324
repository observer 324
system administrator 323
user administrator 323

RPC 311
RSS feeds

artifact level 336
repository level 333
types 332
use 332

S
sample project

about 67, 68
application, assembling 93
basic report, creating 80
data store (flat files) 153
documentation module, adding 85
maven-importer 68
model 68
multi-module build, setting up 68
non-code modules, preparing for 82
Organization POM, creating 76
store-api 68
store-file 68
webapp 68

Scanning Cron field 44
schedule

about 270
setting 272

Script Maven Plugin 213
security configuration

for Archiva multiple teams 376, 377
for Continuum multiple teams 372-376
LDAP, configuring in Archiva 379, 381
LDAP, configuring in Continuum 379, 381
other enterprise tools, interfacing with 382
Redback 370
Redback configuration, adding 378, 379

settings.xml, Maven configuration file
<mirrorOf> tag 52
<mirrors> section 52
<url> 52
asterisk (*) value 52
 external:* 52
internal 52

sever password, encrypting
enhancements 409
steps 410

Shade plugin
adding, to file 200
createDependencyReducedPom

configuration option , enabling 202
dependencies 199, 200
example 197, 198
purpose 196
relocations feature, using 201

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

[436]

Standalone Artifact, building 196, 198
use case 199
uses 197
version 1.2, transformers 198

simple-webapp project 45
site plugin

report names, validating 150
skip flag 418
snapshots

and released artifacts, separating 45
Sonar project 183
Surefire plugin, configuring

methods 110
specific tests, running from command line

114
test exclusion 113
test execution, always mode 111
test execution, controlling 111, 112
test execution, fork mode configuration 111
test execution, never mode 111
test execution, once mode 111
test inclusion 112
tests, skipping temporarily 115

T
tagged version 256
target directory 98
TestNG

differences 113
parameters, using 140
using 117
using, for test group simplification 133

U
unit testing 108, 124
user roles. See roles
user roles page

Archiva 60
Redback Xwork Integration Core 60

V
version-level metadata 45
virtual repositories 46

W
webapp 40
Web Application. See webapp
webapps directory 102
webapp view, Archiva

administration option, repositories page 43
navigation menu, administration section 43
navigation menu, find section 43
navigation menu, manage section 43
repositories page, internal repository 43
repositories page, snapshots repository 44

web services, Archiva
administration service, using 397, 401
plugin, building 393, 396
search service, using 397
using 397-400

web services, Continuum
about 383
plugin, building 383-386
using 386-392

wget application
using 407

wrapper.conf file 41

X
XML-RPC protocol

using 311
XML namespace declaration 73

Z
ZIP binary 40
ZIP file 89, 90

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Thank you for buying
Apache Maven 2
Effective Implementation

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Apache Maven 2 Effective Implementation, Packt will have
given some of the money received to the Apache Maven project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Apache Struts 2 Web Application
Development
ISBN: 978-1-847193-39-1 Paperback: 384 pages

A beginner's guide for Java developers

1.	 Design, develop, test, and deploy your web
applications using Struts 2 framework

2.	 No prior knowledge of JavaScript and CSS
is required

3.	 Apply the best of agile development techniques
and TDD techniques

4.	 Step-by-step instructions and careful
explanations with lots of code examples

Apache OFBiz Development:
The Beginner's Tutorial
ISBN: 978-1-847194-00-8 Paperback: 472 pages

Using Services, Entities, and Widgets to build custom
ERP and CRM systems

1.	 Understand how OFBiz is put together

2.	 Learn to create and customize business
applications with OFBiz

3.	 Gain valuable development and
performance hints

4.	 A fully illustrated tutorial with functional step-
by-step example

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

Apache JMeter
ISBN: 978-1-847192-95-0 Paperback: 140 pages

A practical beginner's guide to automated testing
and performance measurement for your websites

1.	 Test your website and measure its performance

2.	 Master the JMeter environment and learn all
its features

3.	 Build test plan for measuring the performance

4.	 Step-by-step instructions and careful
explanations

Quickstart Apache Axis2
ISBN: 978-1-847192-86-8 Paperback: 180 pages

A practical guide to creating quality web services

1.	 Complete practical guide to Apache Axis 2

2.	 Using Apache Axis2 to create secure, reliable
web services quickly

3.	 Write Axis2 modules to enhance web services'
security, reliability, robustness and transaction
support

4.	 This book covers Apache Axis2 version 1.3e

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by David Martone on 16th September 2009

710 South Avenue West, , Westfield, , 07090

	Cover
	Table of Contents
	Preface
	Chapter 1: Maven in a Nutshell
	A whirlwind tour
	Installing Maven
	Creating a new project from an archetype
	Building the project
	Reusing builds
	Adding dependencies
	Adding functionality through plugins
	Adding resources
	Running tests
	Getting help
	Enhancing the development process
	Viewing detailed project information
	Multiple module builds
	What if I need to convert an existing project?

	Summary

	Chapter 2: Staying in Control with Archiva
	Importance of a repository manager
	Installing Archiva
	Separating your repositories
	Hooking up Maven with Archiva
	Set up a proxy
	Configure your settings.xml
	Build your project

	Searching for artifacts in Archiva
	Deploying from Maven
	Creating a new user
	Configuring and deploying from Maven

	Deploying via web form
	Summary

	Chapter 3: Building an Application Using Maven
	Introducing the sample project
	Setting up a multi-module build
	Creating the parent POM
	Creating the modules
	Dependency management
	Fleshing out the example application

	Creating an organization POM
	Configuring basic reports
	Preparing for non-code modules
	Creating a modules tree

	Adding a documentation module
	Building the site automatically
	Assembling the site for distribution
	Adding site resources
	Adding a skin

	Distributing the application
	Generating the runtime environment with the App Assembler plugin
	Generating the assembly archive
	Adding the documentation to the distribution archive

	Summary

	Chapter 4: Application Testing with Maven
	Types of testing in Maven
	Unit testing (or code testing)
	Integration testing (or module testing)
	Functional and other types of testing

	Working with tests
	Surefire plugin configuration
	Controlling the execution of tests
	Inclusion and exclusion of tests
	Running specific tests from the command line
	Skipping tests temporarily

	Producing a report for the test results
	Reviewing test coverage
	Coverage and multimodule projects

	Integration, functional, and other testing
	Running integration tests using naming patterns
	Operating the Selenium server
	Deploying the application to a container
	Simplifying test grouping with TestNG

	Using a separate integration test module
	Altering integration tests with profiles
	Using TestNG parameters
	Measuring coverage for integration tests

	Summary

	Chapter 5: Reporting and Checks
	Review: example application
	Constructing the developer's site
	Maven reports
	Adding reports to the project
	Configuring plugins for both reporting and the build
	Configuring reports in the site lifecycle

	Setting up quality checks
	Setting a minimum coverage requirement
	Best practices for configuring coverage checks

	Reporting and quality tools
	Dependencies
	Javadoc
	Checkstyle
	PMD
	FindBugs
	Clirr
	Other tools

	Report best practices
	Choosing reports
	Site deployment
	Introducing and selecting failure thresholds

	Tying it all together
	Dashboard plugin
	Sonar

	Summary

	Chapter 6: Useful Maven Plugins
	The Remote Resources plugin
	Creating a Remote Resource bundle
	Processing Remote Resources in a project

	The Build Number plugin
	The Shade plugin
	Building a standalone artifact
	Shading dependencies

	The Build Helper plugin
	Adding source directories
	Attaching arbitrary artifacts
	Other goals

	The AntRun plugin and scripting languages
	Running simple tasks
	Interacting with the Maven project
	Converting Ant or Maven 1 builds
	Maven plugins written in Ant
	Other scripting languages

	The Exec plugin
	Adding the Exec plugin to the Build life cycle
	Running the Exec plugin standalone

	Summary

	Chapter 7: Maven Best Practices
	Preparing the development environment
	Maven installation and user settings
	Encrypting server passwords

	Project settings
	Configuring repositories

	Keeping it simple
	Using conventions
	Using inheritance
	Decomposing the build into modules
	Align the source structure
	Selecting group and artifact identifiers
	Build modules together
	Each module should be independently useful
	Watch the dependencies
	Separate API from implementation

	Trimming dependencies
	Dependency version management
	Profiles and pipelining
	Scripting, and writing plugins
	Creating and using archetypes

	Build portability
	Setting expectations
	Hard coding
	Portable profiles
	Portable artifacts
	Resource filtering
	Shared resources

	Build reproducibility
	Summary

	Chapter 8: Continuum: Ensuring the Health of your Source Code
	Knowing when your build breaks
	Setting up Continuum
	Setting up a source repository
	Installing prerequisites
	Installing and configuring Continuum

	Using Continuum
	At a glance
	The build queues
	The build definition
	Project group build definition
	Project build definition

	The notifiers
	Different types of notifiers
	Configuring notifiers in Maven

	The Build results
	Dependency changes

	Installations and build environments
	Installations
	Build environments

	Summary

	Chapter 9: Continuum in Depth
	Releasing projects
	Release early, release often
	Maven release process
	Release profile

	Releasing projects using Continuum
	Preparing a release
	Finalizing a release
	Viewing release history
	Other types of releases
	Troubleshooting releases in Continuum

	Build pipelining and multiple build definitions
	Parallel builds
	How it works
	Configuring parallel builds

	Distributed builds
	Master and slave
	Configuring distributed builds
	Doing project releases on a build agent

	Maintenance
	Configuring multiple local repositories
	Cleaning up local repositories
	Cleaning up directories

	Summary

	Chapter 10: Archiva in a Team
	Roles and permissions
	Introducing repository groups
	Configuring and using repository groups

	RSS feeds—discovering new artifacts in your repository
	Repository level feeds
	Artifact level feeds

	Deleting artifacts in your repository
	The Archiva reports
	Repository statistics
	Repository health

	The Archiva consumers
	What is a consumer?
	Archiva's maintenance-savvy consumers
	Purging outdated snapshots
	Correcting Maven metadata
	Creating missing checksums
	Database cleanup consumers

	Summary

	Chapter 11: Archetypes
	What are Maven archetypes?
	Benefits of Maven archetypes

	Generating projects
	From archetype:create to archetype:generate
	Using archetypes within multi-module projects

	Common archetypes
	Maven site archetype
	Maven Mojo (plugin) archetype
	Maven simple J2EE archetype
	The AppFuse Spring archetype
	Other examples

	Writing a new archetype
	Creating an archetype from a skeleton
	Using the custom archetype

	Managing catalogs
	Summary

	Chapter 12: Maven, Archiva, and Continuum in the Enterprise
	Configuring security
	A brief look at Redback
	Setting up security for multiple teams in Continuum
	Setting up security for multiple teams in Archiva
	Additional Redback configuration
	Using LDAP

	Interfacing with other tools in the enterprise
	Continuum web services
	Building the Continuum plugin
	Using Continuum's web services

	Archiva web services
	Building the Archiva plugin
	Using Archiva's web services

	Summary

	Appendix A: Troubleshooting Maven
	Examining Maven output
	Using debug mode
	Confirming the expected models
	Analyzing dependencies
	Download problems

	Appendix B: Recent Maven Features
	Server password encryption
	Reactor project selection
	Resuming a failed build
	Building a subset of modules
	The Reactor plugin
	Building modules with local changes

	Reconfiguring default life cycle goals
	Parallel artifact resolution

	Appendix C: Migrating Archiva and Continuum Data
	Using a different database
	Database backup and migrating between versions
	Migrating Continuum
	Migrating Archiva

	Index

