
www.allitebooks.com

http://www.allitebooks.org


BeagleBone Home Automation

Live your sophisticated dream with home automation 
using BeagleBone

Juha Lumme

   BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


BeagleBone Home Automation

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1181213

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-573-0

www.packtpub.com

Cover Image by Juha Lumme (juha.lumme@gmail.com)

www.allitebooks.com

http://www.allitebooks.org


Credits

Author
Juha Lumme

Reviewers
Raymond Boswel

Dr. Philip Polstra

Acquisition Editors
Edward Gordon

Joanne Fitzpatrick

Commissioning Editor
Sharvari Tawde

Technical Editors
Ritika Singh

Rohit Kumar Singh

Copy Editors
Janbal Dharmaraj

Gladson Monteiro

Aditya Nair

Deepa Nambiar

Karuna Narayanan

Project Coordinator
Akash Poojary

Proofreader
Faye Coulman

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.allitebooks.com

http://www.allitebooks.org


About the Author

Juha Lumme is an engineer with over 10 years' experience in the telecommunications 
field in various roles. He has been developing platform software for mobile phones 
and also working on the telecommunication networks side. Embedded systems are his 
passion, and a hobby he is working on in free time as well.

He is passionate about Linux and open source software in general. The open 
hardware movement in the recent years is also close to his heart, and he hopes we 
can all soon hack and build our dreams in a world free of patent abuse.

When not working on his computer, he loves traveling and riding mountain roads 
on his motorbike around Kanto prefecture in Japan.

First and foremost I would like to thank Rika for her patience and 
understanding during those nights of writing and coding; this book 
would not have been possible without her support. I would also like 
to thank all the people who contributed to this book by reviewing, 
giving advice, and/or other help. In no particular order, my 
gratitude goes to Shaon Basu, Raymond Boswel, Dr. Philip Polstra, 
Akash Poojary, Ritika Singh, Rohit Kumar Singh, Sharvari Tawde, 
and all the people at Packt Publishing who have contributed to this, 
some of whom I might not have had direct dealing with.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Raymond Boswel hails from sunny South Africa. He has an Engineering degree in 
Electronics from the University of Pretoria and won the award for best project in the 
Microelectronics department. Currently, Raymond works for a telecommunications 
company in the Systems Engineering department, where he is exposed to both 
frontend and backend server technologies and is fast becoming a jack of all trades.

When Raymond is not slaving away at his day job, he enjoys being active outdoors. 
His particular interests include soccer, surfing, slacklining, and dancing.

I would like to thank my family and friends; without you, life would 
be very dull indeed!

Dr. Philip Polstra (known to his friends as Dr. Phil) is an internationally 
recognized hardware hacker. His work has been presented at numerous conferences 
around the globe including repeat performances at DEFCON, Black hat, 44CON, 
Maker Faire, and other top conferences. Dr. Polstra is a well-known expert on USB 
forensics and has published several articles on this topic.

Recently, Dr. Polstra has developed a penetration testing Linux distribution known 
as The Deck for the BeagleBone and BeagleBoard family of small computer boards. 
He has also developed a new way of doing penetration testing with multiple low-
power devices including an aerial hacking drone. This work is described in his book 
Hacking and Penetration Testing With Low Power Devices, which is slated for summer 
2014 release.

Dr. Polstra has recently developed degree programs in digital forensics and ethical 
hacking at the university where he serves as a professor and Hacker in Residence. 
In addition to teaching, he provides training and performs penetration tests on a 
consulting basis. When not working, he has been known to fly, build aircrafts, and 
tinker with electronics. His latest happenings can be found on his blog: http://
polstra.org. You can also follow him at @ppolstra on Twitter.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online  
digital book library. Here, you can access, read and search across Packt's entire 
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

www.allitebooks.com

http://www.allitebooks.org


Table of Contents
Preface 1
Chapter 1: The Initial Setup 7

The hardware required 7
The software required 8
Preparing the host machine 9

Windows 10
Mac OS X 10
Linux 10

Starting the target board for the first time 11
Logging in to the system 12
Operating Linux from the console 14

Basic filesystem operations 15
File permissions 16

Running a Hello World program on BeagleBone 18
Summary 20

Chapter 2: Input and Output 21
Hardware interfaces 21
General-Purpose Input/Output pins (GPIOs) 22

On-board LEDs 24
GPIO library for Python 28

Setting the proper time 29
External output 31
External hardware input 34
Pulse width modulator 37

Summary 40

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Chapter 3: Creating the Client and Server Applications 41
Sockets 42

An example socket application 43
Echo server 45
Echo client 48
Summary 53

Chapter 4: Extending Server Capabilities 55
Environmental sensors 55

Light sensor 56
Temperature sensor 60

Advanced server 62
Defining our Beagle protocol 62
The new server code 64
The new client code 67

Transistors 71
Summary 75

Chapter 5: Implementing Periodic Tasks 77
Implementing a save/load framework 77

Retrieving and changing permanent settings 81
The client side 81
The server side 83

Periodic tasks on the server 85
Movement-detection alarm system 88
Hardware extensions 93

BeagleBone HD camera cape 94
Changing the boot media 94
Controlling cameras with Python 97

Summary 100
Chapter 6: Creating an Android Client 101

Setting up our Android project 101
Creating an emulator 104

The socket client on Android 107
Defining the UI components 107
The support classes 114
The main UI 116
The network thread 123

The new server features 132
Working from outside your home network 139
Summary 141

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iii ]

Appendix: Security, Debugging, and I2C and SPI 143
Kernel traces and advanced debugging 143

Boot time kernel traces 144
JTAG debugging 145

The I2C and SPI buses 145
The I2C bus 145

Generating the start signal 146
The Slave address transfer 146
Transferring data 147
Generating the STOP signal 147

The SPI bus 147
Considering the security aspects 148

Making the client identify his intentions first 148
Implementing the encrypted password login 149

Version 2.1 modifications to the server code 150
Version 2.2 modifications to Android client code 153

Encrypting all of the communication 158
The GPIO mapping of the P8 and P9 headers 159

Index 161

www.allitebooks.com

http://www.allitebooks.org




Preface
This book is written by an embedded systems enthusiast for other like-minded souls. 
It is meant for makers, inventors, hackers, and generally for people who like to create 
new things by themselves. Together, we will start a journey into embedded systems, 
with the aim of setting up a home automation solution, using BeagleBone Black as 
our platform.

We will start with the very basics that you need to know in order to connect to 
BeagleBone from your home computer and work on it. After that, we will very 
quickly start connecting different electronic components and different types of 
sensors to start providing our BeagleBone platform with capabilities to interact  
with and sense the world around it.

The approach in this book will be very practical, and the chapters will contain 
electronic schematics, wiring diagrams, and the necessary operation code written in 
Python. All the examples will give you a deeper understanding of that specific area, 
and we will provide some additional pointers and ideas so you can feel comfortable 
experimenting with it by yourself with a clear sense of direction.

What this book covers
Chapter 1, The Initial Setup, introduces the basics of how to operate a Linux system  
over a terminal connection and demonstrates a Hello World program executed on 
the BeagleBone platform.

Chapter 2, Input and Output, introduces LEDs and push buttons to illustrate how 
general-purpose inputs and outputs work.

Chapter 3, Creating the Client and Server Applications, provides an introduction to 
Socket programming and creating client and server applications that can talk to  
each other.



Preface

[ 2 ]

Chapter 4, Extending Server Capabilities, provides an introduction to transistors, light 
and temperature sensors, and enabling the server to transmit environmental data to 
the client.

Chapter 5, Implementing Periodic Tasks, introduces the movement sensor. Autonomous 
operations are implemented and server interfaces are extended for remote 
reconfigurability.

Chapter 6, Creating an Android Client, sets up the Android development environment, 
and our client code is rewritten to an Android application that can connect to the 
server over the Internet.

Appendix, Security, Debugging, and I2C and SPI, includes Linux debugging and talks 
about the need for advanced security when connecting to the Internet.

What you need for this book
Most of the programming in this book is done using Python, and since the board 
already has Python installed, and several text-based editors are available, only a 
proper setup for connecting to the board will be necessary to start developing on  
the board. However, of course, you might want to use your favorite editor, one 
that you are comfortable with; this can be easily done with a few exceptional cases 
that we will talk about later. The Python version used here is the older production 
version (2.7), and we will use one external general-purpose I/O control library  
called Adafruit_BBIO.

In Chapter 6, Creating an Android Client, we will build an Android application, and  
for that purpose, we will use Android Development Tools. At the time of writing,  
it was in Version 22, so Version 22 or newer is recommended. The chosen Android 
API level is 14, but you can adjust it to suit your device.

Who this book is for
This book is for anyone wishing to learn how to start working with embedded 
systems, even young programmers without years of professional experience.  
Readers interested in home automation, or physically small standalone systems,  
will probably find many interesting aspects in it.

It's a good book for experienced programmers who would also like to wet their  
toes in the embedded systems field but might have been held back because of all  
the hardware-specific and cryptic abbreviations or just the general differences of  
the electronics environment.



Preface

[ 3 ]

Readers would benefit from previous knowledge of electronics and programming  
in Python and/or Java languages. All the code and topics are explained in detail,  
so extensive programming experience is not a prerequisite to start learning from 
this book.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "Now you should have a new rule file in  
/etc/udev/rules.d called 73-beaglebone.rules."

A block of code is set as follows:

#!/usr/bin/python

import Adafruit_BBIO.GPIO as GPIO
import time

GPIO.setup("P8_8", GPIO.OUT) #Set P8.8 as output pin

while True:
  GPIO.output("P8_8", GPIO.HIGH) #P8.8, aka GPIO 67 aka GPIO2_3
  time.sleep(0.5)
  GPIO.output("P8_8", GPIO.LOW)
  time.sleep(0.5)

Any command-line input or output is written as follows:

jlumme@simppa:~$ cd Downloads/

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "The  
analog pins are the VDD_ADC, GNDA_ADC, and A-INx pins."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Preface

[ 4 ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com/
http://www.PacktPub.com/support


Preface

[ 5 ]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com




The Initial Setup
So your new shiny BeagleBone (black?) is out of its packaging, and you have 
marveled enough at how it is engineered — now what? This is the question we will 
dive right into in this chapter. We will set up the necessary driver software on your 
host computer (be it Windows, Linux, or Mac), remotely connect to our board to look 
around a bit, and go over some basics on how to operate Beagle. The main topics in 
this chapter are:

• Introducing the BeagleBone hardware
• The operating system controlling the board
• Logging into Linux and performing basic file operations
• Creating a Hello World Python program

The hardware required
As a brain, our board has an ARM Cortex-A8 processor. BeagleBone runs at 720 
MHz on the original version (white-colored PCB), and on the newer version, it runs 
at 1 GHz. You might have heard about this processor before as it is used in some 
of today's smartphones as well. However, the numbers by themselves might not 
necessarily tell us much, but it suffices to say that it's powerful enough to run a  
full-blown operating system.



The Initial Setup

[ 8 ]

We have compiled a list of the main hardware differences between the White and 
Black models:

Most importantly, the black version has the HDMI output which means that one 
could easily connect it to a TV or monitor and send audio through the same cable. 
Both boards can also get additional audio features via add-on boards, which 
are called capes in the Beagle world. We will talk more about capes in Chapter 5, 
Implementing Periodic Tasks.

Both boards also contain a plethora of other hardware features. The most interesting 
of those are 4 Universal Asynchronous Receivers/Transmitters (UARTs), 8 Pulse 
Width Modulators (PWMs), 65 General-Purpose Input/Output (GPIO) pins, 2 SPI 
buses, 2 I2C buses, 1 Analog-to-Digital converter (ADC), and 4 timers. We will start 
using GPIO pins and PWMs in the next chapter. The Serial Peripheral Interface (SPI) 
and Inter-Integrated Circuit (I2C) buses have been adopted by the semiconductor 
industry to serve as communication buses when very high transmission speeds are 
not required. During the course of this book, we will not integrate any kind of external 
hardware using these buses per se; we will explain their operating principles in 
Appendix, Security, Debugging, and I2C and SPI. Generally, in this book, we will focus 
on the "Black" BeagleBone version. While the foundation is basically the same on these 
two boards, there are some significant differences as well. For example, we can see that 
the extension headers and their GPIO pins are different! You will have to double-check 
the header pins for the White model and adjust your code accordingly.

The software required
Your new development board comes with a pre-prepared operating system image 
from the BeagleBoard.org Foundation. The original White model comes with a 4 
GB microSD card that contains the bootable OS image, and the Black model has it 
preprogrammed into the internal eMMC memory.

If you will think about changing the OS yourself, it's good to keep 
in mind that eMMC is only 2 GB in size, so it might not be enough 
for all the OS configurations (especially since you should leave some 
meaningful empty space also for your own files).



Chapter 1

[ 9 ]

The BeagleBoard.org Foundation has selected a Linux distribution called Angstrom 
to be shipped with their BeagleBoard and BeagleBone development boards.

Since the Linux kernel supports ARM natively, you are not limited to a certain 
distribution or any distribution for that matter. In this book, we will stick to the 
current default selection as it is likely that the open source community and the 
BeagleBoard.org Foundation will keep supporting Angstrom as they have for the  
last 5 years or so. Thus, we can assume that these instructions would stay relevant 
for the longest time that way.

Don't worry if you are not yet familiar with Linux. You will learn the relevant 
configuration options and maintenance tasks while going through the chapters in this 
book; as you begin to work with the system in depth, you will soon become proficient 
enough to maintain the system yourself. It will also be a nice primer into headless 
systems and remote terminals that are accessed and operated via terminal connections.

Since we will be using our board over the terminal connection from our host,only 
the initial driver setup, connection initiation, and a couple of minor things will be 
different for different host operating systems along the way. We will mention them 
separately at those occasions.

After that, we will (almost) always work directly on the target to keep the same 
instructions for any type of host.

With embedded systems, often, the computer you use for development 
is different from the board you are working on, but both of them still 
contain similar software, configurations, and so on. In these situations, 
words such as "target" and "host" can be used to easily identify the 
subject we are talking about. Saying, for example, "Did you check the 
network configuration on the target?" is not as ambiguous as "Did 
you check the network configuration?". We will also stick to this form 
where relevant.

Preparing the host machine
So first, to set up our host, we need to install the drivers for our target.

First, with an Internet browser of your choice, navigate to http://beagleboard.
org/static/beaglebone/latest/Drivers/ and depending on your host machine 
type, go into the subdirectory to find the necessary drivers.

www.allitebooks.com

http://www.allitebooks.org


The Initial Setup

[ 10 ]

Windows
We will first have to find out if our system is 32 bit or 64 bit. Microsoft has prepared 
a helpful page at http://support.microsoft.com/kb/827218 where you can find 
instructions on how to find out your system type on any of the recent Windows 
platforms. If you are running a 64-bit system, download the BONE_D64.exe file 
or the BONE_DRV.exe file and install the driver. The BeagleBoard.org Foundation 
seems to have decided not to go through the process of digitally signing the driver, 
so Windows will probably ask/complain about this several times; proceed with the 
installation anyway as it won't cause any harm to your system.

Mac OS X
We need to install HoRNDIS-rel4.pkg for networking and FTDI_Ser.dmg for serial 
connections. Go ahead and download both of them, then double-click on each one to 
install them.

Linux
No particular driver is needed for Beagle in Linux, but there are some udev rules that 
are helpful for accessing the serial console. Download the script file in the web page 
and open a terminal emulator (from the application menu). Then, add executable 
permissions to the downloaded script and execute it as a super user:

jlumme@simppa:~$ cd Downloads/

jlumme@simppa:~/Downloads$ chmod u+x mkudevrule.sh

jlumme@simppa:~/Downloads$ sudo ./mkudevrule.sh

[sudo] password for jlumme:

jlumme@simppa:~/Downloads$

In the preceding console command, you can see that we have used a prefix sudo  
in our call to ./mkudevrule.sh. This is actually a special command that tells the 
system that the mkudevrule.sh script needs to be executed with root privileges.  
Root privileges mean administrative rights. These are required as the script is  
placing the files within a folder that needs those privileges.

Now you should have a new rule file in /etc/udev/rules.d called 73-beaglebone.
rules.



Chapter 1

[ 11 ]

Starting the target board for the first time
Now that the drivers are set up, you can use the microUSB cable that came with the 
board to plug in the board to the USB port on your host machine, and the board will 
start booting up.

Keep in mind that the USB 2.0 specification specifies a maximum 
current of 500 mA, which can be provided by a single port. This might 
not be enough if you connect many peripherals to the USB port using a 
USB hub. In those cases, you will need to use a 5-volt DC power supply 
to power the board.

On the board, there are five LEDs in total; they are all located on the side of 
the power and LAN connectors, as shown in this picture (many thanks to the 
BeagleBoard Foundation for allowing us to use this picture):

The default configuration for the user LEDs is:

• USR0: This LED is a heartbeat LED; by default, it will keep flashing while  
the system is powered on

• USR1: This LED blinks when the microSD card is being accessed
• USR2: This LED will blink during the CPU activity
• USR3: This LED will blink when eMMC memory is being accessed

When the system is starting up, it will not be accessible via USB before the USB 
drivers are initialized. To debug boot time issues, it is possible to see startup debug 
traces via a serial console connection on Header J1. This is an advanced topic that is 
described in Appendix, Security, Debugging, and I2C and SPI.



The Initial Setup

[ 12 ]

The boot process usually takes around 10 seconds, after which you will be able to 
connect to the board. There are several ways to connect to the target, and we will talk 
about two of those. If you are familiar with Linux, you probably already know how 
console logins work, but if you are not—no worries as we will cover some basics.

Logging in to the system
The login procedure is slightly different in Windows than it is in Mac OS X and 
Linux, but there's not a great difference between the two.

On Windows, you will need to install a program to create SSH connections. We 
recommend PuTTY. PuTTY is a free and open source terminal emulator/serial 
console that we can use to connect to our console login session on the board.

From the PuTTY Download Page at http://www.chiark.greenend.org.
uk/~sgtatham/putty/download.html, you can download the putty.exe file for 
Windows on Intel x86. It should be the first download link on the page. It's just 
an executable; you don't need to install anything. Once the download is complete, 
launch PuTTY, and in the Host Name (or IP address) field, enter 192.168.7.2:



Chapter 1

[ 13 ]

When the system asks for the login name, enter root and just press the Enter key 
for the password. You should now be connected to the board. Accept the RSA 
fingerprint query that BeagleBone uses to identify itself.

The RSA fingerprint that is received from BeagleBone is a public key 
that can be used to identify whether the remote host is actually the host 
that you imagine it to be. This topic is out of scope for this book, but it's 
good to know that in this way, one can identify a trusted host over the 
network. These SSH connections are also automatically encrypted.

In Linux and Mac OS X, open the console or terminal (you can find it in the 
application menu); you can just use regular SSH applications to connect to the 
remote host.

jlumme@simppa:~$ ssh root@192.168.7.2

The authenticity of host '192.168.7.2 (192.168.7.2)' can't be 
established.

RSA key fingerprint is a1:cb:9f:8b:f4:6f:79:52:47:87:83:db:d6:9a:70:6e.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.7.2' (RSA) to the list of known hosts.

root@192.168.7.2's password: [Just press enter here]

root@beaglebone:~#

Notice how we supplied the username root to the SSH application before the 
IP address. If you don't supply it, the system will try to login with your default 
username which is not available. Now we're inside our target, and we're ready to 
start giving commands to it.

Another way to log in to our system is to use a web browser. This is not as 
convenient, but it can be useful if you can't, for some reason, install the SSH software 
on the computer. Open the browser window and navigate to http://192.168.7.2. 
The web server on the target should show you a welcome page. Scroll down until 
you find the Gate ONE SSH Client section; this text is a link which starts an SSH 
session over the browser. It will be slower to use, but you can still use it to operate on 
the board in situations where you might not be able to install additional software, for 
example, at a friend's house.



The Initial Setup

[ 14 ]

The address (192.168.7.2) that we used to log in to our board is actually 
the default address for the board when it is connected to the host 
via a USB connection. If you are facing difficulties in connecting to 
the IP address, you might want to try "ejecting the USB drive" from 
your development PC. Older versions of the BeagleBone OS software 
required this, but the newer software versions do not.

If you want to connect to the board via the router and Ethernet 
connection, the address will be different. To check the Ethernet interface 
IP address, you can use the ifconfig eth0 (when first connected to 
the board via USB.

Operating Linux from the console
Let's take one step back now, and talk about terminals and consoles for a minute.

If you are not familiar with Linux, maybe you have never used the computer from 
the command line, but instead have always used the provided Graphical User 
Interface (GUI). GUIs are great and provide beautiful graphics, animations, and a 
superior usability experience overall. However, they also demand a lot of resources. 
And we're not only talking about memory or CPU performance, but peripherals such 
as keyboards, monitors, and mice. As you noticed, our board has none of these. Of 
course, you can connect those via the available USB and HDMI ports, but since our 
target is to build a standalone system, in this book, we will focus on the remote and 
console operations of our target.

Now, while performing the steps in the previous section, when we logged into the 
target, we actually started a terminal session. Here, we can control the board with the 
command line. Using the command line will take some time to get used to; but once 
you are comfortable with it, it's very fast and efficient to use. Commands can also 
be chained to be executed sequentially; this is called scripting. You will find a lot of 
scripts on the Internet that perform a certain task in a specified order. Did you notice 
that in the Preparing the host machine section for Linux, we set udev permissions 
with the mkudevrule.sh file? This was also a command-line script. While it's not 
necessary to become a command-line guru to write and execute programs on our 
board, we need to go over a few basic things about console operation.



Chapter 1

[ 15 ]

Linux, unlike Windows, does not have a central registry that keeps the 
information of the system. Everything in Linux is built on top of files, 
even the hardware under the /dev/ folder. Or more accurately, almost 
everything is accessible in Linux through the filesystem. Some of the 
files might not be the actual files that are permanently saved onto a 
disk, but you can still access (read) them in pretty much the same way. 
It's important to become at least somewhat familiar with operating on 
files in the console.

Basic filesystem operations
When you log into the system, you are placed in the home folder of the user you 
used to log in as, in our case, root.

In Linux, root is a user that corresponds to an administrator. He can 
perform all the tasks on the system and has the rights to add other 
users, perhaps with fewer privileges. For now, we will keep using root 
even though it is not a good practice in general. You might want to 
read up on "Linux and user rights" from the Internet.

You can always see the current folder with the command pwd (think of it as an 
acronym for the present working directory):

root@beaglebone:~# pwd

/home/root

root@beaglebone:~#

You can move between folders with the command cd (change directory).The cd 
command takes one input parameter that specifies the directory you want to change 
to. For example, to go one folder up in the hierarchy, you type cd ...You might 
have noticed that the current folder structure starts with /. This is the root point of 
the whole filesystem on our Linux OS. You can go and take a look at it:

root@beaglebone:~# cd /

root@beaglebone:/# ls

bin dev home lost+found mnt run sys usr

boot etc lib media proc sbin tmp var



The Initial Setup

[ 16 ]

To list the contents of the current folder, we use the command ls. Here, you can 
see that there are quite a few folders in the filesystem. For example, /home/folder 
contains the home folders of all the users of this system. Take another example where, 
in the folders /bin and /usr/bin, you can find programs and commands that can 
be executed on this system (programs like ls and pwd are also in the /bin folder). 
Remember how we said that everything is a file? Well, so are the basic commands!

Did you notice that when we navigated away from the root user's 
home folder to the current folder, the last character changed to show 
the current folder? This is because ~ is a shorthand to indicate the user's 
home folder. You can always go back to the user's home folder by just 
typing cd and pressing Enter.

File permissions
Let's go back to the home folder and look at what we can find there:

root@beaglebone:/# cd

root@beaglebone:~# ls -l

total 4

drwxr-xr-x 2 root root 4096 Jan  1 00:01 Desktop

root@beaglebone:~#

Notice how we first called the change directory command without any parameter? 
This means that the user wants to change to his or her home folder. In this case, it 
is /home/root/; other users might have different home folders. This time we also 
added a parameter -l to the command. A parameter gives additional instructions 
to the ls command, in this case, to use a long listing format. Now, in the long listing 
format, there is much more information visible about the files in this directory. The 
first column is especially important; it defines the access rights to this particular file. 
There are four basic file-access right properties:

• d: This property stands for directory; it means that the file is a directory
• r: This property stands for reading rights
• w: This property stands for writing rights
• x: This property stands for execution rights

Why are the properties listed several times then? This is because of the nature of how 
file-access restrictions work in Linux. File restrictions can be specified separately to 
three levels: user, group, and everyone. They are listed in that order.



Chapter 1

[ 17 ]

For someone who's new to Linux, this might sound a bit confusing; maybe a practical 
example can help you understand this. Let's create a new file. We can do this, for 
example, by launching a text editor that comes with the default installation. There 
are several editors available; for now, we will use an editor called nano. It is easy 
to understand and will probably feel familiar even to users who have not used 
command-line editors before.

So, to create a file in the current folder, just type nano testfile.txt and an editor 
should pop up on the screen:

Write any sentence in the window and press Ctrl + X to exit. The program will ask 
you if you wish to save the file; in that case, press Y and then Enter to confirm the 
filename, testfile.txt. Now, let's list the directory again:

root@beaglebone:~# ls -l

total 8

drwxr-xr-x 2 root root 4096 Jan  1 00:01 Desktop

-rw-r--r-- 1 root root   20 Jan  1 01:24 testfile.txt

We notice that the freshly created testfile.txt file now has the default file access 
rights set. You can see that it was created by user root and belongs to the group root 
(the root root part). Only the owner of this file can write to it (the first part rw-). Let's 
try modifying the file permissions and give everyone the rights to write to this file. For 
this, we can use a command called chmod (derived from "change mode"):

root@beaglebone:~# chmod a+w testfile.txt

root@beaglebone:~# ls -l

total 8

drwxr-xr-x 2 root root 4096 Jan  1 00:01 Desktop

-rw-rw-rw- 1 root root    4 Jan  1 02:01 testfile.txt



The Initial Setup

[ 18 ]

Now you can see that we gave everyone the (a) rights to write (+w) to that file, and 
the file permissions string (-rw-rw-rw-) has changed accordingly.

Logically, if you want to remove a permission, you have to use 
the minus sign (-) instead of the plus sign (+).

Why it's important to understand the file permissions is because, unlike some systems 
where only certain file types can be executed, in Linux, any file with an executable bit 
set is executable. Thus, our Python programs will also require an executable bit to be 
set. To give executable permissions to a file, we can use the +x flag.

Usually, you don't necessarily want to give everyone execution rights; 
for example, you can call chmod u+x, which means that you only grant 
the current user the execution rights. As you probably already guessed, 
for groups you can use chmod g+x.

You must be anxious to try and test some code; let's take a look at a basic Hello 
World example.

Running a Hello World program on 
BeagleBone
Angstrom Linux already has Python preinstalled, so we can start right away. Let's 
open our text editor (nano) again, and create a file called hello.py. In the editor, just 
type the following lines:

#!/usr/bin/python

print "Hello world!"

Downloading the example code

You can download the example code files for all Packt books you 
have from your account at http://www.packtpub.com. If 
you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed 
directly to you.



Chapter 1

[ 19 ]

Now, save the file, give it execution permissions, and try running it:

Congratulations, you have just created and executed your first program on the board!

Now, you might have noticed a couple of peculiar things. First, what is that #!/usr/
bin/python line present in our code ? This is actually a Unix-specific information 
known as shebang. Shebang is meant for the program loader; it informs the system 
where to find a suitable interpreter for this file. As mentioned before, any file with 
execution permission set can be executed. But if the file is not written in native code 
(for example, compiled C code), the system depends on shebang information to find 
a suitable command interpreter.

Another thing we did was prepend ./ to the executable file. This is because by 
default, Linux searches for executables only in the folders that it is told to look from. 
By default, the root user's home folder is not one of those folders. The dot(.) is a 
shorthand to indicate the current folder. This shorthand is basically the same as if 
you had typed /home/root/hello.py.

The directories that are searched for executables are contained in 
an environment variable called PATH. You can list environment 
variables with the command printenv. Here, you will also see 
the PATH variable.

www.allitebooks.com

http://www.allitebooks.org


The Initial Setup

[ 20 ]

Summary
This chapter gave us a very short introduction to Linux and our board. We talked a 
bit about the hardware, how to connect it to your host machine, how to login to the 
Linux system via SSH, and some very basic commands to perform operations on a 
Linux system.

You saw how files and folders are represented in the filesystem and how you  
could modify these permissions. We created our first program and successfully 
executed it in our target environment. From here on, we will start working on  
more complicated programs.

In the next chapter, we will connect an LED to our board and control it. Subsequently, 
chapter by chapter, we will start working through the different areas of our hardware, 
building up knowledge on how to control different peripheral devices and learning 
how to communicate with our Beagle remotely over a network. 



Input and Output
In the previous chapter we executed our very first Hello World program on our 
target, and in this chapter we will do the embedded equivalent of that. We'll start 
connecting additional hardware to our target, and see how we can interface it with 
our software.

We won't spend too much time on principles of electronics here, but we will go over 
the basics that you have to understand, so you can avoid damaging your precious 
Beagle. We will talk about the following topics:

• GPIO pins, and how they are used
• LEDs, and how to drive them
• Buttons, and how we can accept input from them
• Pulse width modulation, and how we can use it to trick our eyes to see an 

LED changing its brightness

Same as with the first chapter, let's take a moment to talk about some features of our 
Beagle that you need to be familiar with when working on examples in this chapter.

Hardware interfaces
With any kind of electronic components/designs, the manufacturer always provides 
some kind of specification documentation. Same goes with our Beagle.

BB foundation provides System Reference Manual (SRM from now on), and you 
can find it at http://beagleboard.org/hardware/design. Just check your board 
revision (it should be printed on your box), and download the correct one. All 
instructions in this book are based on the first production release for BeagleBone Black 
called Rev A5A. At the time of writing this book, the latest revision stands at A6.



Input and Output

[ 22 ]

You should keep in mind that BeagleBone Black and the original white model don't 
have the same General-Purpose Input/Output (GPIO) pin layout. In this book all 
the examples are presented on the black model, so please take care if you are using 
the white model, and follow the guidelines given in this book!

So back to the SRM; this documentation is very useful while planning and designing 
your own systems, and usually you end up looking through it often, so save it 
somewhere, since it will become very handy.

We have also listed the full GPIO multiplexing chart in the section The GPIO mapping 
of the P8 and P9 headers, in Appendix, Security, Debugging, and I2C and SPI, at the end of 
this book.

Multiplexing means that a single pin on the processor can serve multiple purposes 
depending on the current configuration. This is a common way to squeeze more 
peripherals to a development board, and end-user can then select the peripherals he 
wants to use. If you look at the GPIO multiplexing chart, you will notice that there 
are seven modes that a pin can be configured in (though not all the pins have seven 
different states).

For example, look at the chart for header P8 and pin 13, named EHRPWM2B. If 
the pin is configured to MODE0, it will be used for address line 9 for the General 
Purpose Memory Controller (GPMC) bus and if it is configured in MODE1, it will 
be used for data line 22 for LCD display, and so forth. The important part here is to 
realize that using certain pins in certain configurations will block other hardware, so 
care should be taken when connecting peripherals to the processor.

In the chart we provide in Appendix, Security, Debugging, and I2C and SPI, we have 
some of the pins marked in red for you. By default, these pins are reserved for some 
purpose already, so you won't be able to use them without reconfiguring some part 
of the hardware.

General-Purpose Input/Output pins 
(GPIOs)
GPIO pins, as the name suggests, are general-purpose pins that are connected to the 
processor and can be configured to our liking. Thinking broadly, it means that the 
pin is dynamically configurable to be either an output or an input pin. On top of that, 
it can serve different functionalities, depending on the configuration.

In the output mode, we (or a peripheral) can control whether voltage is on or off. 
Respectively, these are called high (also source) or low (sink) states. This is called 
driving a pin.



Chapter 2

[ 23 ]

In the input mode, the current state of the pin can be read. The read state will be 
either 1 or 0, depending on the voltage level on that pin. Certain pins also have 
capability to read input voltage, not just an on or off state.

It is very important to know that GPIO pins in our Beagle are driven with 3.3 volts 
(with few exceptions, they are marked in the following figure), and in the input 
mode you cannot apply more voltage to them without risking permanent damage to 
your board.

Have a look at your board, and turn it so that the BeagleBone text is properly 
aligned. You can see two long 46-pin headers on both sides of the board, and in the 
following figure, you can see their names on the right:

Throughout this book, we will be showing the schematics of the hardware connected 
to our target in a very similar fashion.



Input and Output

[ 24 ]

When you look at the previous figure, you might wonder what the 
numbers are after the GPIO text. GPIO pins are actually behind separate 
control chips, and each of these control chips controls 32 pins. Sometimes 
(for example, the Linux kernel) the GPIO pins are only referred to as a 
number, for example, 88. You can get the actual chip and pin number by 
the formula [bank * 32 + pin]. In this case it is 2*32 + 24 (so it would be 
P8.28 or GPIO2_24).

We already mentioned this once, but we repeat it once again here, always remember 
to re-check the voltage level when you hook up live wires to your Beagle. GPIO pins 
can only take 3.3 volts and analog pins even less; analog pins operate in 0-1.8 volt 
range. Analog pins are the VDD_ADC, GNDA_ADC, and A-INx pins.

It is a nasty surprise when you start smelling something burning, and a puff of 
smoke comes out from some components on your board. With the board full of tiny 
SMD components, it's usually time to order another board, as finding out exactly 
how many components have been damaged takes a lot of time and experience.

On-board LEDs
We have four users LEDs on our board, and we can control them if we wish.

Remember how in the first chapter we talked about everything being represented 
with files in the Linux kernel? Well, so is the external hardware as well!

Log in to your target board, and navigate to the following folders:

root@beaglebone:~# cd /sys/class/leds/
root@beaglebone:/sys/class/leds# ls
beaglebone:green:usr0  beaglebone:green:usr2

beaglebone:green:usr1  beaglebone:green:usr3

The /sys folder is a special folder that holds quite a bit of interesting information, 
and you might find it interesting to explore that further with the help of Google. But 
for now, let's concentrate on the /sys/class/leds folder. In this folder, the kernel 
has exposed to us all the four LEDs that are on the board. Let's go into the usr0 
(heartbeat LED) folder and look at its contents:

root@beaglebone:/sys/class/leds/beaglebone:green:usr0# ls -la
total 0
drwxr-xr-x 3 root root    0 Jan  1 00:00 .
drwxr-xr-x 6 root root    0 Jan  1 00:00 ..



Chapter 2

[ 25 ]

-rw-r--r-- 1 root root 4096 Jan  1 06:28 brightness
lrwxrwxrwx 1 root root    0 Jan  1 06:32 device -> ../../../gpio- 
  leds.7
-r--r--r-- 1 root root 4096 Jan  1 06:32 max_brightness
drwxr-xr-x 2 root root    0 Jan  1 06:32 power
lrwxrwxrwx 1 root root    0 Jan  1 06:32 subsystem ->  
  ../../../../../class/leds
-rw-r--r-- 1 root root 4096 Jan  1 06:32 trigger
-rw-r--r-- 1 root root 4096 Jan  1 00:00 uevent

Here we see several interesting files. The file called brightness controls the brightness 
of the LED. It takes values between 0-255. However, actually in this case a value 0 
means that the LED is off, and anything else means that the LED is on.

The trigger file contains some predefined triggers that can cause the LED to blink. 
You can list the content of the file to the console with the command cat; this takes 
the target file as a parameter and will list the contents of that file.

root@beaglebone:/sys/class/leds/beaglebone:green:usr0# cat trigger
none nand-disk mmc0 mmc1 timer oneshot [heartbeat] backlight gpio  
  cpu0 default-on transient

So currently the trigger has been set to heartbeat. You can stop this by writing 
none to the file. Since these are special files, it's easier to push data to these files, for 
example, with a command called echo. So, let's try stopping the LED heartbeat:

root@beaglebone:/sys/class/leds/beaglebone:green:usr0# echo none >  
  trigger
root@beaglebone:/sys/class/leds/beaglebone:green:usr0# cat trigger
[none] nand-disk mmc0 mmc1 timer oneshot heartbeat backlight gpio  
  cpu0 default-on transient

We can now observe that our LED's heartbeat has stopped. Now you can control the 
LED as you wish by writing either 0 or (for example) 1 in the brightness folder. Go 
ahead, try it.

The contents of this special folder are actually defined by the trigger. For 
example, if you defined a timed trigger (echo timer > trigger), 
you will notice that the contents of this folder will change to include the 
files called delay_on and delay_off with what you can define some 
delays—how long your LED will be on or off.



Input and Output

[ 26 ]

You can restore the heartbeat operation by just echoing the text heartbeat to the  
file trigger.

You must already be thinking how we can start working with these files through 
programming. Let's do just that!

Go to your home folder, and let's create a new program called led_fun.py. We can 
control the LEDs very much the same way as we did through command line, via files.

First, we need to open file handlers to the brightness and trigger files of each LED:

led0 = file("/sys/class/leds/beaglebone:green:usr0/trigger","w")
led0_ctrl =  
  file("/sys/class/leds/beaglebone:green:usr0/brightness","w")

We do that for each LED we wish to control, and then write the keyword none to  
the trigger:

led0.write(str("none\n"))

After this line, the trigger for each LED is stopped, and we can control our LEDs 
freely by ourselves.

To write a new value to the control file (brightness) in a similar way, we write:

led0_ctrl.write("0")
led0_ctrl.flush()

Because file access is buffered in Python, we have to always force a buffer flush after 
we have written to the file.

If you use an IDE (Integrated Development Environment) or some 
text editor on your host system for writing the code, you will need a 
mechanism to transfer the file to the board. In Linux and Mac OS X, 
you can use scp (secure copy); the command is very similar to the ssh 
command we used to log in to the system:

jlumme@simppa:~/ide_folder$
scp led_fun.py root@192.168.7.2:/home/root/
root@192.168.7.2's password: [press enter here]
led_fun.py 100% 325B 202.3KB/s 00:01
jlumme@simppa:~/ide_folder$

On Windows you will need to use some program such as WinSCP 
(http://winscp.net) or other file-copying program that copies over 
SSH.



Chapter 2

[ 27 ]

These are the basic functions you need to achieve the same functionality in Python 
that we did via the command line. Let's add a couple of wait functions and for 
loops to have some flashing going on.

Full listing of led_fun.py is shown in the following code:

#!/usr/bin/python

import time #For our time.wait() calls

'''
Simple function that takes an LED number, and writes
the desired string to the control file of that LED.
'''
def write_to_led(led, string):
  if led == 0:
    led0_ctrl.seek(0) #Go to beginning of the file
    led0_ctrl.write(string)
    led0_ctrl.flush() # Force buffer flush

  elif led == 1:
    led1_ctrl.seek(0)
    led1_ctrl.write(string)
    led1_ctrl.flush() # For the write

# File handles to the kernel data structures
led0 = file("/sys/class/leds/beaglebone:green:usr0/trigger","w")
led0_ctrl =  
  file("/sys/class/leds/beaglebone:green:usr0/brightness","w")

led1 = file("/sys/class/leds/beaglebone:green:usr1/trigger","w")
led1_ctrl =  
  file("/sys/class/leds/beaglebone:green:usr1/brightness","w")

# Let's turn off the default operations on the LEDs
led0.write(str("none\n"))
led1.write(str("none\n"))

led0.flush() # To force emptying of the file buffer
led1.flush()

while True:
  for i in range(0,2):



Input and Output

[ 28 ]

    write_to_led(i,"1")
    time.sleep(0.05)
  for u in range(0,2):
    write_to_led(u,"0")
    time.sleep(0.05)

Executing the code will make the LEDs usr0 and usr1 flash in order with some sleep 
time. You can stop the execution at any time by pressing the keys Ctrl + C (this is an 
escape sequence in Linux, any program should exit when you press this combination).

The program is very basic and also quite crude. There is no input verification and 
it doesn't restore the system state after you exit. But it gives you an idea about the 
files that actually represent the hardware in the Linux kernel. We're sure you already 
know how to restore the LED states if you want to, so we can move ahead with more 
hardware examples.

If you ever forget what was originally in those control files, you can 
just reboot your board since these are not permanent files but data 
structures that are created by the kernel during boot time.

GPIO library for Python
From now on, we will start working with GPIOs directly from the code (meaning, 
without mapping to the files the kernel provides via the /sys/class/gpio/ folder), 
and for that purpose, we can use a very handy library that has been developed by 
Adafruit, called Adafruit-BBIO.

Usually when you control any type of low-level hardware, you need to 
access it via memory-mapped hardware registers. This control is strictly 
specified in the specifications from the manufacturer and it usually takes 
quite a bit of studying and understanding how each peripheral works. 
The Adafruit-BBIO is a very helpful library that hides all this complexity 
from the end user, and all the functionality is accessible via simple 
function calls.

To download the library, you need Internet connectivity; so go ahead and connect a 
network cable to your board, and wait a moment for it to receive an IP address.

To check the IP configuration, type ipconfig in the console.



Chapter 2

[ 29 ]

Now we can use the Angstrom's package manager to download the necessary 
packages. First we need to update the time on our board, otherwise we will  
have SSL certificate problems.

Setting the proper time
To update the time, type the following code:

root@beaglebone:~# ntpdate -b -s -u pool.ntp.org
root@beaglebone:~# date
Wed Nov 13 19:39:47 JST 2013
root@beaglebone:~#

However it's better to make time autoupdate itself, otherwise you will lose the  
time during a reboot. To do this, you need to first install Network Time Protocol 
(NTP) service:

root@beaglebone:~# opkg update
root@beaglebone:~# opkg install ntp

After this, you should check the address of the server physically close to your region. 
Go to http://www.pool.ntp.org/ and from the right, choose the appropriate zone, 
and then a country you reside in. For example, for Japan, we get:

server 0.jp.pool.ntp.org
server 1.jp.pool.ntp.org
server 2.jp.pool.ntp.org
server 3.jp.pool.ntp.org

Insert this information to your NTP config file at /etc/ntp.conf. You should also 
comment out any other "server" or "fudge" lines currently existing in the configuration 
file. Next we will have to set up the correct time zone. In the folder /usr/share/
zoneinfo/, you can find all the regions and countries listed as a file; you should 
locate the file that is appropriate for your location. In the /etc folder, there is a file 
called localtime. This is a symbolic link pointing to the correct time zone:

root@beaglebone:~# ls -la /etc/localtime
lrwxrwxrwx 1 root root 30 Nov 24  2013 localtime -> 
  /usr/share/zoneinfo/Asia/Tokyo

Symbolic links, or symlinks as they are often called, are links to 
a file. These links can be operated in the same way as files, and 
operations performed at them will be performed against the file 
they point to (with some exceptions, such as deleting a symlink).



Input and Output

[ 30 ]

If the localtime file is not pointing to the correct file, delete the current link, and 
create a new one pointing to the appropriate location:

root@beaglebone:/etc# rm localtime
root@beaglebone:/etc# ln -s /usr/share/zoneinfo/Asia/Tokyo /etc/
localtime 
root@beaglebone:/etc# ls -la localtime  
lrwxrwxrwx 1 root root 30 Nov 24  2013 localtime -> 
  /usr/share/zoneinfo/Asia/Tokyo

Now that we have configured our ntp, start the services:

root@beaglebone:/etc# systemctl enable ntpdate.service
root@beaglebone:/etc# systemctl enable ntpd.service

And then you have to make two more changes in the ntpdate service:

root@beaglebone:~# nano /lib/systemd/system/ntpdate.service

Modify the ExecStart variable to look as following:

[Service]
Type=oneshot
ExecStart=/usr/bin/ntpd -q -g -x
ExecStart=/sbin/hwclock --systohc
RemainAfterExit=yes

After this, the time should be kept even after a reboot. Try it, you can reset the board 
by entering the command reboot in console.

After this, we should be able to install the required packages. First install is pip, 
which is a handy Python package manager:

root@beaglebone:~# opkg update && opkg install python-pip python- 
  setuptools python-smbus

This will take a minute or so, and once it finishes, you can install the Adafruit library:

root@beaglebone:~# pip install Adafruit_BBIO

Now we have the necessary library installed, and we can access it from the  
Python code.

If you are not familiar with package management in Linux, you could 
think of it as a kind of app store for your Linux distribution. It is a 
repository that holds precompiled programs that are compatible with 
the system libraries your Linux is running on. Instead of downloading 
programs from all over Internet (which you still can do!), you ask the 
package manager to install them for you. The great benefit of this is that 
your package manager will always update to the newest version of the 
software automatically when it becomes available. Your smartphone 
does exactly the same thing.



Chapter 2

[ 31 ]

External output
Before we start attaching our own LEDs to the GPIO pins and driving them, we 
should mention a few things about current and voltages.

LEDs are light emitting diodes, meaning that they pass current one way, and  
when they do, they light up. They also have a limit of current they can pass through 
before they break (they will light up very brightly for a moment and burn out). You 
can usually assume that a medium-size LED can withstand 20 mA of current before 
burning out, but if you have a specification at hand, you can easily verify this for 
your LED.

An LED has a forward voltage. This is the level after which the LED will start 
conducting and lights up. There will also be a voltage drop across the LED when 
it's conducting. Usually we can assume this to be around 1.7V, the forward voltage 
varies in LEDs and certain parameters such as the color of light it emits affect that.

Armed with these two bits of information, we can think about our circuit. According 
to specification, our board can withstand 4, 6, or 8 mA of current in the GPIO pins, 
depending on the pin. So, to be on the safe side, let's use 4 mA as our current target 
and calculate the suitable resistor value from the Ohms law R = V/I:

We get a value of 400, so we can pick a resistor of 470 Ohm. You can always choose a 
bigger resistor; this will just mean that the LED will shine with less brightness, and if 
it's too dim, start decreasing the resistance step-by-step.

There are several online resistor value calculators on the Internet, so 
you can always verify your calculations. For example: http://www.
ohmslawcalculator.com (easy to remember)

Now, let's design our circuit. In this example, as our source pin, we'll use GPIO 67, 
which is located in header P8 pin8.



Input and Output

[ 32 ]

Our schematic will be like the following figure:

Connect a wire from that pin to the resistor and from the resistor connect to our 
diode's anode pin (the longer one), and then connect the cathode to the ground.

Besides having a different length of legs, round LEDs also tend not 
to be perfectly circular when looking at them from top or below. 
The cathode side of the LED will have a flat, as if shaven off, side.

Our actual wiring should look as shown in the following figure:



Chapter 2

[ 33 ]

After this, we should write a program to control our GPIO. Open up your editor, and 
let's start writing GPIO control code. We will call this program ext_led_fun.py.

First, we need to import our newly installed GPIO library; we do that with the 
following code:

import Adafruit_BBIO.GPIO as GPIO

Then, we need to set up our GPIO as output. With the help of this library, it's 
extremely easy:

GPIO.setup("P8_8", GPIO.OUT)

To trigger our GPIO, you use:

GPIO.output("P8_8", GPIO.HIGH) #P8.8, aka GPIO 67 aka GPIO2_3

This sets the GPIO 67 pin to the HIGH state and lights up our LED. Now we can add a 
while loop again and a couple of calls to sleep to get a nice flashing red LED.

Full listing of ext_led_fun.py is as follows:

#!/usr/bin/python

import Adafruit_BBIO.GPIO as GPIO
import time

GPIO.setup("P8_8", GPIO.OUT) #Set P8.8 as output pin

while True:
  GPIO.output("P8_8", GPIO.HIGH) #P8.8, aka GPIO 67 aka GPIO2_3
  time.sleep(0.5)
  GPIO.output("P8_8", GPIO.LOW)
  time.sleep(0.5)

Now we have a nice blinking external LED, and on the basis of this, we could add 
several different color LEDs, for example, to indicate the current status of our program.



Input and Output

[ 34 ]

In our ext_led_fun schematic, can you guess why we have the resistor 
R2 in place? Go ahead and remove it. Can you notice anything different? 
This resistor is what is called a pull down resistor. This resistor is needed 
when we are not driving the circuit (LED). When nobody drives a GPIO 
pin, it will float (its voltage value will be somewhere between low and 
high). Now depending on the LED characteristics, it might actually be 
dimly lit, if there is no resistor pulling the circuit to ground. When we 
apply current to the circuit (drive GPIO high), the combined R1 and LED 
resistance is less than R2, and thus the current will flow through the LED 
as we expect it to.

External hardware input
So now that we have an idea on how to operate GPIO in a way that we control its 
output, let's get going with input.

In general, input for a standalone system usually means some kind of trigger to 
perform some actions. In all its simplicity, an input trigger is just a voltage level that 
can go from low to high or from high to low. In this example, we will add an external 
button to our system, and it will perform duties of a trigger for us, and we will 
perform some action based on that.

As you know with electronic circuits, they have to be complete to operate. In case of 
a button, we are bringing a new element to our design, where one branch will lead to 
an open circuit when the button is not pressed.

In this kind of situation, it's important to tie that input to either high or low state, so 
that GPIO can still properly read the state. If we don't do that, the pin is said to be 
floating, and it will give us erratic results, thus it's programming will be impossible.

In this example, we will use a pull-up resistor. This way when the button is pressed, 
the input will read low (1K resistance from R1 is infinitely higher than conducting S1 
to ground), and high when the button is not pressed. The schematic will look like the 
following figure:



Chapter 2

[ 35 ]

You can clearly see that when the button is not pressed, the pin is driven high (the 
actual amount of current is not relevant, only the voltage is). And when the button is 
pressed, a logical 0 will be read.

Our button in this case will be just a regular four-leg button. This specific button is 
wired in a way that all the four legs will conduct when the button is pressed.

You can usually take a look at belly of the button to get an idea how 
it's wired.

Now to the actual wiring. This time we will use P9 on the left side, mostly for 
aesthetic reasons since we need 3.3V output for this circuit and it is on P9. Please be 
careful not to mix the resistors, and you should be good to go.

The wiring will look as shown in the following figure:



Input and Output

[ 36 ]

Next we will write the program to operate this button. Let's call it first_button.py.

As before, we need to include our GPIO library in the beginning:

import Adafruit_BBIO.GPIO as GPIO

This time we will be setting our GPIO as input, so our GPIO.setup call is slightly 
different:

GPIO.setup("P9_24", GPIO.IN)

We will need a flag to help us to distinguish from the previous state (transition  
from high to low):

previous_state = 1 #High is the default

And then in the same way, we'll have a eternal while loop that just waits for the 
transition from high to low, and prints a message. The full listing of first_button.
py is shown in the following code:

#!/usr/bin/python

import Adafruit_BBIO.GPIO as GPIO
import time

GPIO.setup("P9_24", GPIO.IN)

previous_state = 1 #High is the default

while True:
  new_state = GPIO.input("P9_24")
  if new_state == 0 and previous_state == 1 :
    print('Button pressed!')
  previous_state = new_state

Run it, and see how it works. Now our button should react to the button press, by 
writing Button pressed! to the console window.

Did you notice anything particular? Try running it a bit more.

Sometimes we get the printout message twice, don't we? This is because of the 
physical characteristics of the button. Internally, it has a lead that touches another 
lead when you press the button. But because of the physics involved, the leads will 
sometimes bounce slightly off each other and just enough for our program to register 
a difference in states.



Chapter 2

[ 37 ]

To avoid this, we can add a small delay to the function after the state change is 
recognized, so that the while loop doesn't read the next state immediately. Add a 
tiny (0.1s) delay to the if statement, and that should fix it!

Now that we have a working output LED and an input button, there are already 
quite a few interesting programs we could make. Do you think you can make the 
button to drive the LED on and off? How about a simple access control with several 
buttons that you have to press in correct order for entry? It's quite amazing how 
much you can achieve with simple 3.3 voltage and a few input and output pins.

Pulse width modulator
As you know by now, we can drive our GPIOs to high or low state, and if we have 
an LED attached in our circuit, it will either light up or not. We can control the 
brightness by adjusting the resistance in the circuit, but this is a static way to do it, 
and once our circuit is complete, we can't change the resistor easily.

So, how can the LEDs on your wrist watch, mobile phone and remote control then 
fade in and out so perfectly? This is where pulse modulation comes in.

PWM allows us to drive a certain pin to on and off at desired frequency and duty 
cycle. This way we can pulse our LEDs much faster than our eyes can react, and 
while we only see a dimmer or a brighter LED, if one would look at it with a high 
speed camera, one would see that the LED still only turns on or off. Our eyes just 
perceive this differently.

There are three basic terms you need to understand about PWM:

• Frequency: This defines how many full on/off "cycles" are generated  
in a second

• Period: This defines how long one complete pulse cycle takes
• Duty cycle: This specifies the time the signal is high during one full period



Input and Output

[ 38 ]

Think about the following figure:

In the preceding figure, we have PWM generating first a 50 percent duty cycle  
and then dropping to 25 percent. The effective time the LED spends as on and off 
can be controlled with very high precision, and this way we can achieve smooth 
brightness fluctuations 

Let's try doing just that. First, we will design a schematic with two LEDs that are 
connected to two different PWMs. Nothing fancy here either really, we have a 
current limiting resistor after the LEDs and that's it.

This time we will be using input from both headers, as PWM1 and PWM2 are located 
on P9 and P8, respectively.



Chapter 2

[ 39 ]

Our third and last program in this chapter will be called racing_PWMs.py. As usual, 
we need to include the Adafruit library here as well, this time the PWM part of it:

import Adafruit_BBIO.PWM as PWM

When you initialize a PWM, you can initialize it with two to four parameters listed 
as follows:

• Channel (header pin)
• Duty (as in percent, 0-100)
• Frequency (periods in a second, default is 2000)
• And polarity (0 or 1. With this you can invert the duty cycle, default is 0)

So, we will initialize both our channels:

PWM.start("P9_14", 50, 100) #50% duty and 100hz cycle
PWM.start("P8_13", 50, 100)

At this point, the LEDs will light up, and now we can start changing our duty cycle 
in a loop to adjust the average voltage.

Full listing of racing_PWMs.py is as follows:

#!/usr/bin/python

import time
import Adafruit_BBIO.PWM as PWM

www.allitebooks.com

http://www.allitebooks.org


Input and Output

[ 40 ]

sleep_time=0.005 #The lower the value the faster the activity

PWM.start("P9_14", 50, 100) #50% duty and 100hz cycle
PWM.start("P8_13", 50, 100)

while True:

  for i in range(100,1, -1):
    PWM.set_duty_cycle("P9_14", i) # Dimming
    PWM.set_duty_cycle("P8_13", abs(i-100)+1) # Getting brighter
    time.sleep(sleep_time)

  for i in range(1, 100):
    PWM.set_duty_cycle("P9_14", i)
    PWM.set_duty_cycle("P8_13", abs(i-100)+1 )
    time.sleep(sleep_time)

When you run the program, you should see both LEDs racing (blinking) in  
opposite phases.

As you see, the Adafruit BBIO library is extremely useful and easy to use. And so far 
we have only used two functionalities it provides. Actually, the library also supports 
easy access to SPI and I2C communication and Analog to Digital Converter (ADC) 
as well. ADC use will be demonstrated in Chapter 4, Extending Server Capabilities, and 
in Appendix, Security, Debugging, and I2C and SPI, we will show the usage of the data 
bus communication modules.

Summary
In this chapter we went through foundations of input and output on a very basic 
level. We talked about the general purpose I/O pins, and how they can be used to 
control external components, such as LEDs or buttons. As you must have gathered 
already, with proper application of voltage and care, we can operate many of 
the basic electronic components. You should now feel comfortable with the basic 
building blocks that can help you build some external inputs and outputs to your 
Beagle programs.

As you have noticed, it's not really all that difficult, and we're sure you have already 
built more complicated applications with these elements that we introduced here. 
Did you get that access control program working? We added a buzzer to ours, and it 
was fun seeing people trying to guess the code, and keep getting the fail beep!

Next we will bring some remote elements to our programs and get our host 
computer talking with our Beagle over the network!



Creating the Client and 
Server Applications

So far, we have been working directly on the board with the use of SSH to log in to 
the system. However, this is not feasible in many scenarios, and we don't want to 
limit the interface to this type of console-based access.

In this chapter, we will leave lower-level electronics aside for a moment, and start 
talking a little bit about network programming. Since our target is basically a 
headless system (in this case, a system with no direct output device), we will need 
some way of interfacing with it.

Perhaps we also don't want to force ourselves too tightly into a single platform, 
but would like to have a means to communicate with different types of computing 
platforms. So, how does one go about creating a platform-independent remote access?

For this, we will use sockets, and we will implement ours on top of the TCP/IP  
stack so that we will be able to establish them over a network. We will cover the 
following topics:

• Discussing TCP/IP socket principles
• Creating a socket application to retrieve a web page
• Implementing server and client applications that can talk to one another via a 

TCP/IP socket



Creating the Client and Server Applications

[ 42 ]

Sockets
If you are not familiar with sockets, we will cover the most important concepts in 
this section, and you will get a good sense of how they work. If sockets are already 
familiar to you from another programming language and/or environment, you can 
skip right ahead to the Example socket application section.

You can think of sockets as bidirectional communication pipes. Sockets are the 
main method of communication between two software modules, especially over 
a network. On an operating system level, there are other, more efficient methods 
of communication between processes (inter-process communication), but when 
communication needs to be established between different machines, perhaps even 
different platforms, sockets are pretty much the only option.

If the communication method is agreed between programs, there is no reason why 
different architectures can't talk to each other, even when the code base is different. 
This means that a C++ program that is running on a server machine can talk to a 
Python program on Beagle without any extra effort.

When you open up your web browser and connect, for example, to http://
beagleboard.org, actually a socket connection is opened to a server that is running 
on the beagleboard.org host. Once this socket is established, the data transfer 
between your web browser and the server can start, and the information about the 
HTML page on that host is transmitted to you. The same thing happens when you 
start a Skype session with your parents, or start Snap chatting with your friends.

Sockets can be divided into two parts, a client socket and a server socket. The main 
differences are as follows:

• A client is basically an endpoint of communication.
• A server exists to serve information to clients.
• The client initiates connections towards the server, and the server serves 

these connections.
• A server can host many clients simultaneously if support for this is 

programmed, but a client only talks to one server socket at the time. Of 
course, nothing stops you from starting multiple client connections to the 
same or different servers, but it's still a one-to-one communication from a 
client point of view.



Chapter 3

[ 43 ]

In this book, we will focus on stream sockets on top of the TCP (and 
IPv4) stack, but sockets can also be established over UDP. Those are 
called datagram sockets. There exists a third type of socket called raw 
socket that gives access to lower-level socket stream methods, and can 
be used, for example, to create a custom communication protocol.

Stream sockets, often called Internet sockets, are very user friendly and easy to 
understand once you just start thinking of them as read and write buffers. All the 
magic that makes the bytes move is taken care of for you in the background.

With these basics, let's take a look at implementing few sockets on our own.

An example socket application
Let's take the web browser use case, which we talked about, as an example, and create 
a very simple web page fetcher. The purpose of this program will be just to show 
how a socket data can be handled so that you can become familiar with working with 
stream data. So, go ahead and create a program called get_webpage.py.

First, we include the socket library in our program:

import socket   #For access to socket communication
import sys      #To terminate with error code

Then, to initialize our client socket, we create the stream INET socket:

client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

The first parameter of the socket() function call is the address and protocol family 
that we want to use, in this case, Internet Protocol. The second parameter is the type 
of socket that we are going to create.

If you are interested, you can take a look at the socket documentation 
at http://docs.python.org/2/library/socket.html for 
other types of sockets that Python Version 2 supports.

Next, we will need an IP address to connect to the web server. For this purpose, the 
socket library has a method called gethostbyname(). Resolve the IP address with it 
using the following code:

host = "www.beagleboard.org" #The address we will connect to
port = 80 #The default port for web-server 
print "Connecting to %s" % host 



Creating the Client and Server Applications

[ 44 ]

# Use socket library to retrieve ip address for www.beagleboard.org
try:
  target_ip = socket.gethostbyname( host ) 

After this, we are ready to connect to the server:

  client_socket.connect((target_ip , 80))

After the connection is created, we will send a message to the server requesting the 
default page with the HTTP GET method:

  # Send a simple HTTP-GET message 
  msg = "GET / HTTP/1.0\r\n\r\n" 

  client_socket.sendall(msg)
except Exception, err:
  print "Socket connection has failed:"
  print err
  sys.exit(2) 

After the message has been sent, we read the reply (or in this case, part of it) using 
the following code:

# Ask the socket to retrieve the first 1024 bytes
reply = client_socket.recv(1024) 
print reply 
client_socket.close() # Close the socket afterwards

Basically, these are the only lines of code that you need when reading a web page 
from the Internet. Before you execute this program, make sure that the Ethernet cable 
is connected to the board, and that you have connectivity to the Internet. As you can 
see, the socket library is extremely helpful in hiding a lot of complexity for us. When 
running the program, you can see an output similar to the following screenshot



Chapter 3

[ 45 ]

When you run this program, you will see the partial reply from the beagleboard.
org (because we only read the first 1024 bytes), but you could easily change the 
program to fetch the whole page, create a file from it, and your web browser could 
render the page correctly.

Next, let's start working on something permanent for us.

Echo server
Now that you have a basic understanding of how a socket can work, we will create 
our own custom server and another client so that we have full control over both 
parts of the transaction.

All the examples that we have created so far have been more or less demonstrative in 
nature. Let's start building something larger and more functional now, and also re-
use some code from Chapter 2, Input and Output, as well. We will need to modularize 
some of our previous code so that they can be easily re-used and extended.

Create a file called server_socket.py. This utility class won't do much by itself; its 
sole purpose will be to set up and manage the incoming socket connections. First, 
let's define a method called initialize_server. In it, we create and bind a socket in 
much the same way as we did in the client:

def initialize_server(host, port):

  print "Starting server on %s:%s" % (host,port)
  srv = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

  #Set the socket reuse to 1, so that socket terminates quicker
  srv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

  try:
    srv.bind((host, port))
  except socket.error , msg:
    print "Bind failed. Error: " + str(msg[0]) + "\nMessage: " +  
      msg[1]
    sys.exit(-1)

  srv.listen(1) #Currently only one client at the time
  return srv 



Creating the Client and Server Applications

[ 46 ]

After the initialize_server function is called, a socket is bound, and a handle 
to the created socket is returned to the calling function. It will be the caller's 
responsibility to handle the operation and termination of this socket.

We set an option SO_REUSEADDR for the socket to terminate the bind 
quickly once the application exists. This is not necessary, but it's a 
good-to-know feature when you are developing your application 
and possibly restart the server often. Otherwise, the bind will still 
stay in the OS until it times out. There are other socket options that 
you might want to look into as well. These are Linux specific; so, if 
you're running your server on a Windows machine, keep in mind 
that they will be different there. Flag definitions and explanations 
can be found at: http://man7.org/linux/man-pages/man7/
socket.7.html

We also need a method to start waiting for incoming client connections. It's very 
simple, as we only need to call socket.accept() function:

def wait_for_client(server_socket):

  (client, c_address) = server_socket.accept() #blocking wait for a 
   client
  print "Received a connection from [%s]" % c_address[0]
    
  return client

For now, we don't need other functionality in our server_socket class. Next, we 
will create our server logic. Create another class called echo_server.py. Because 
we will import our server_socket class, it needs to be in the same folder as the 
server_socket.py file.

In the echo_server class, we will create, handle, and terminate all communication 
with the clients. So, we first import our server_socket class:

#!/usr/bin/python

import server_socket
print "Starting echo server.."

Then, we initialize our socket:

srv = server_socket.initialize_server("", 7777)



Chapter 3

[ 47 ]

Notice how we set the server address to "". This is to indicate that we will be using 
our localhost, and accept connections from outside networks as well. If we would 
set localhost here directly, the server would actually only ever accept connections 
from other programs running on this particular host.

The port, 7777, was arbitrarily chosen. Actually, you can enter any port 
number except those that are already being used by the system to listen 
to other communication methods. Some ports have been clearly defined 
for certain protocols. For example, FTP connections are expected in 
port 21 and SSH in 22. HTTP protocol expects you to use port 80. You 
can find a list of these on Wikipedia: http://en.wikipedia.org/
wiki/List_of_TCP_and_UDP_port_numbers.

In general, choosing anything over 1023 is considered safe. If your OS 
complains that the socket is already taken, just choose another one.

After we have initialized our socket, we have to start considering client handling. 
This is something that we will come back to later as well, but for now, our echo_
server will just use an eternal while loop to always welcome new friends for a chat:

while True:
  print "Waiting for someone to chat with..."

  # This will be a blocking wait
  client = server_socket.wait_for_client(srv)

  client.send("This is an echo server. Let me know if you want to  
    quit with 'quit' or 'exit'")

When the wait_for_client function returns, we have a connected client, and we 
send him a welcome message letting him know the rules of the chat. Next, we will go 
into another loop, where we react to the input from client:

  exit_requested = 0

    #Now client has connected, and let's start our messaging loop
  while not exit_requested:
  data = client.recv(1024) # Always attempt reading 1024 bytes

  print "received [%s] from client" % data 
  #check the message
  if "quit" in data or "exit" in data:
    exit_requested = 1



Creating the Client and Server Applications

[ 48 ]

  else:
    print "replying..."
    msg = "You wrote [%s]" % data 
  client.sendall(msg)
  # Disconnect the client when we exit the while loop 
  client.send("thanks for coming!")
  client.close()

You can see that in our while loop, we always try to read messages from the client, 
and once we receive one, we check whether the user wants to end the connection 
with the server. If not, we send his message back, and start waiting on the next one.

Notice how the server is blocked by our recv() function call. The 
server always waits for a message from its client until it receives one. 
Often this is OK, but ,for example, if our server is supposed to serve 
multiple clients, we might want to use non-blocking style, and timeout 
idling clients. You can implement non-blocking reads by setting the 
setblocking(0) option to the server socket. You will need to catch 
the exceptions, socket.EWOULDBOCK and socket.EAGAIN when 
there is no new data available from the recv() function.

Now that our server is ready, we can start it as shown in the following screenshot:

Our server is now running on Beagle, waiting for some friends to chat with.

Echo client
In this section, we will create a Python client for our echo server, but actually, before 
we go ahead and do that, it might be interesting to see that our echo server can 
already talk to different types of client programs as well.

Our server just expects a socket to communicate with. It neither knows nor cares 
what kind of client connects to it. This means that actually we can use a regular telnet 
to have a chat with our server.



Chapter 3

[ 49 ]

On Windows, start your Putty client, select the raw mode, and make a connection 
to 192.168.7.2 and port 7777. On Linux and Mac OS X, just type a command, telnet 
192.168.7.2 7777 in the terminal, as shown in the following screenshot:

As you saw, our echo server was communicating with a telnet client without problems 
(well, a couple of formatting issues aside). This is indeed the power of sockets. With 
some care, it's not difficult to use them to create cross-platform communication.

Now, let's get back to Python and create our echo_client. At this point, we suggest 
that you create the application on your host machine. This is not mandatory, 
but it's more fun that way, and you will be able to see the network aspect of the 
communication better.

Most Linux and Mac OS X distributions come with Python pre-installed in them in 
much the same way as on your target board. However, on Windows, you will need to 
install a Python interpreter. We will not go over the Python installation in detail, but it 
is quite easy. Just download the correct Windows package from http://www.python.
org/getit/, and install it. We are using Python 2, not 3, in all our examples. There are 
some differences in some libraries; so, we suggest that you install version 2 as well.

With Windows Python installation, you will need to add the installation 
directory to the PATH variable. After that, you can run Python programs 
using command line, which is shown as follows:

C:\Python27\BBB>python test_python.py
Python is working!

C:\Python27\BBB>

Our echo client will also be a rather straightforward program. It will just connect to 
the server, read input from the user, and send that message to the server. Let's create 
our echo_client.py.



Creating the Client and Server Applications

[ 50 ]

First, create a new client socket, and connect to 192.168.7.2 using the code shown in 
the following code snippet:

#!/usr/bin/python

import socket, time

# Initialize the socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
client_socket.connect(("192.168.7.2" , 7777))

After the connection is established, we will read the initial welcome message and 
then start expecting input from the keyboard to be sent to the server:

print "Connection established!"

reply = client_socket.recv(1024)
print reply

keep_connection = 1 
while keep_connection:

  msg = raw_input('Enter your input:')
  if msg == "quit" or msg == "exit":
    keep_connection = 0

  client_socket.sendall(msg)
  time.sleep(0.5)
  reply = client_socket.recv(1024)
  print "Server replied: %s" % reply

print "Connection terminated" 

Now, you can start the client on your PC, and watch it connect to our Beagle. The 
client will terminate once you type exit or quit, but the server will just drop the 
connection and start waiting for another client.

As our echo server currently cannot handle multiple clients connecting to it, we don't 
really know whether the server is currently busy serving a client. But maybe there is 
some other way which could indicate if the server is busy. You guessed it, an LED!



Chapter 3

[ 51 ]

Our ext_led_fun.py program in Chapter 2, Input and Output, was a stand-alone 
program; we can use it as our baseline for creating a new utility class that can be 
used easily by other programs to control LEDs that are connected to GPIO pins. The 
circuit can remain largely the same as the one that we used in Chapter 2, Input and 
Output besides adding another LED to the circuit, as shown in the following figure:

The wiring diagram will look similar to the following figure:



Creating the Client and Server Applications

[ 52 ]

Create a new class called led_control.py. In this utility class, we will create the 
functions, control_led_green(value) and control_led_red(value) that will 
drive their respective LEDs. There is one thing to keep in mind though; we need a 
function to initialize the respective GPIOs since we can't drive them otherwise. So, 
we need an initialization function:

# A global flag, that we will use to force initialization
gpio_initialized = 0 

def initialize_gpio_leds():

  global gpio_initialized

  GPIO.setup("P8_8", GPIO.OUT)

  GPIO.setup("P8_10", GPIO.OUT)

  print "led_control/initialize_gpio_leds(): GPIO 67 initialized as  
    output"

  print "led_control/initialize_gpio_leds(): GPIO 68 initialized as  
    output"

  gpio_initialized = 1

Then, create functions to control both the green and red LEDs:

def control_led_green(value):
  global gpio_initialized

  if not gpio_initialized:
    raise Exception("GPIO uninitialized!")

  if value:
    GPIO.output("P8_10", GPIO.HIGH)
  else:
    GPIO.output("P8_10", GPIO.LOW)

def control_led_red(value):
  global gpio_initialized

  if not gpio_initialized:
    raise Exception("GPIO uninitialized!")



Chapter 3

[ 53 ]

  if value:
    GPIO.output("P8_8", GPIO.HIGH)
  else:
    GPIO.output("P8_8", GPIO.LOW)

Now, in our echo server, we can import led_control (remember that the led_
control.py file has to be in the same folder), and after calling the initialization 
function, trigger the red and green LEDs to indicate the server status.

Summary
In all their simplicity, stream sockets are not too difficult as you see. There are some 
other matters that demand attention if full cross-platform compatibility is desired, 
but for now, this should give you a good understanding of how you can create your 
own client-server communication.

We also created some utility classes here that we will be able to import and use in the 
future chapters as well.

As a challenge, you could also extend our LED control class to include the PWM 
control with user-defined pulse times (in seconds), and don't forget to include the 
proper LED triggering to our echo_server.py!

In the next chapter, we will introduce two different environmental sensors and 
show how to operate them with the use of analog-to-digital converters on Beagle. 
We will also start building our home automation server with capabilities to send 
miscellaneous data to our clients.





Extending Server Capabilities
Now that we have a simple networked client and server architecture working, it's time 
to start doing something a bit more serious with it. Currently, the server is not very 
useful in the end and cannot really do any complex tasks or handle any real input.

We shall start extending server capabilities to make it more useful for real-life 
tasks. We will show you how to build a foundation so that the server can easily be 
extended even further for any type of remote activity.

In this chapter, we will also introduce some new external and internal hardware and 
learn how to work with them. We will cover the following topics:

• Learning how to use temperature and light sensors
• Using the onboard ADC
• Creating a more robust client server model, one that can support data transfer
• Talking about transistors and how they allow us to be free of voltage and 

current limitations our target board sets

Environmental sensors
Up to this point, we have only been working with digital input to our board. In the 
button example covered in Chapter 2, Input and Output, the external hardware input 
only gave us the state of the button, a high or a low state. In this chapter, we will 
talk about analog input; we will measure the voltage on a pin and observe its change 
over time. For this purpose, our board has several pins that are connected to ADC. 
ADC converts analog voltage to a digital value, instead of just indicating a high or a 
low state.



Extending Server Capabilities

[ 56 ]

Environmental sensors, such as temperature or light sensors, change their output 
voltages depending on the surrounding conditions. This way, for example, a 
temperature of 25 degrees will result in a different output voltage than 15 degrees. 
For our home automation server, there are a couple of interesting sensors.

Light sensor
These sensors, also known as photocells/photo resistors or Light Dependent 
Resistors (LDR), are resistors whose value changes depending on the amount of 
light received by the sensor. The resistance of the resistor decreases as the light 
intensity increases.

They are generally not very accurate and cannot really be used to measure  
precise candela or lux values. But they are still accurate enough, for example, to 
determine whether it's day or night and the general brightness. In real life, for example, 
street lights might contain this type of circuit so that they are activated  
only during night time.

The resistance values will vary depending on the specification, and you should 
refer to the specification sheet of the resistor you have; however, in general, you can 
assume that we are talking about a range of couple hundreds to 1000 Ohm when the 
light is on, and in the magnitudes of 10 KOhm when the light is off.

Our ADC can only read the difference in voltage and not in current, so we will need 
to form a potential divider circuit between LDR and a pull-down resistor. When we 
add another resistor in series with LDR to the ground, the voltage drop across our 
pull-down resistor will be affected by the resistance in LDR.

It's also good to know that LDRs in general are not too fast, so they are not suitable 
for measurements where the reaction speed is critical. They might quickly react to 
light being turned on, but when the light is turned off, they tend to take some time to 
settle back. However, we are still talking about some tens or a hundred millisecond 
range, so this slowness is also relative.

If you need time-critical responsiveness (let's say, for example, reacting to a laser 
pointer), you should look into photo diodes. They can have response times that are 
measured in nanoseconds.

So, let's design our light measurement circuit for the sensor. If you don't have 
specifications of your LDR at hand, you can try a resistor of around 1 to 2 KOhm for 
the pull-down resistor. Because we will connect our LDR resistor to the 1.8 V ADC 
output in the header P9.32, we don't have to worry about overloading our analog 
input pin P9.40.



Chapter 4

[ 57 ]

Our circuit should now be pulled close to the ground when there is no light on the 
LDR, since 1 KOhm resistance will be smaller than the (assumed) 10 KOhm of the 
LDR. When light is detected by the LDR, the resistance should drop, and we should 
start seeing voltage increase in A-IN1 (P9.40).

The wiring of the circuit looks as shown in the following figure:



Extending Server Capabilities

[ 58 ]

Now that we have our wiring complete, we can start creating a program that will read 
these values. Let's first create a library class to read ADC values so that we can also 
access information easily from other programs. Create a class called adc_control.py. 
In it we will temporarily create two functions to initialize the ADC control and to read 
a raw value from a specified pin as shown in the following code snippet:

#!/usr/bin/python

import Adafruit_BBIO.ADC as ADC
import time

init_done=0
'''
Function init_adc

Initializes the ADC using the Adafruit_BBIO library
'''
def init_adc():
  global init_done

  print "Initializing ADC"
  ADC.setup()
  init_done = 1

'''
Function  read_raw_analog_input

Reads the raw value from requested analog input pin.
'''
def read_raw_analog_input(pin_no):
  global init_done

  if not init_done:
    init_adc()

  reading = ADC.read(pin_no)
  return reading

The idea is to extend this class later so that we can encapsulate different methods 
inside it (such as reading the temperature and so on). This is so that the caller won't 
have to worry about transformations and so on.

As you can see, again thanks to Adafruit library, using ADC is just as simple as 
working with GPIOs. Only initialization is needed, and then values from A-IN pins 
can be read.



Chapter 4

[ 59 ]

Let's take a look at how to read values from our light sensor. Create a class, for 
example, reading_light.py, and add the following code there:

#!/usr/bin/python

import led_control, adc_control
import time

print "Reading pin 9_40!"
while True:
  val = adc_control.read_raw_analog_input("P9_40")
  print "raw: %f | d: %d" (val, val*100)
  time.sleep(0.5)

The value (val) that is returned will be a floating point value somewhere between 0 
and 1. To get the voltage read, you can multiply this by 1.8 if needed. In our example, 
we will multiply this value by a hundred to get the constant value, which could be 
easily compared. Run the program, and see how the value changes as you cover the 
sensor. The output will be as follows:

root@beaglebone:~/ch4# ./reading_light.py
Reading pin 9_40!
Initializing ADC
raw: 0.713889 | d: 71
raw: 0.463889 | d: 46
raw: 0.465556 | d: 46
raw: 0.465000 | d: 46
raw: 0.192222 | d: 19 #sensor covered here
raw: 0.050556 | d: 5
raw: 0.048889 | d: 4
raw: 0.048333 | d: 4
raw: 0.045556 | d: 4
raw: 0.108889 | d: 10 # sensor uncovered here
raw: 0.464444 | d: 46
raw: 0.462778 | d: 46

Play around with the code a bit and test different sleep values so that you can see the 
responsiveness of your sensor, and see how different light levels affect the result in 
your environment.

With this knowledge, you could easily create, for example, a light control 
system that turns on the lights on the outside once it starts getting dark. 
Have a go and implement a prototype of that system with the help of our 
led_control library we created in the previous chapter!



Extending Server Capabilities

[ 60 ]

Now that we can measure light, let's look into measuring the current temperature.

Temperature sensor
These sensors are also not difficult to use, and actually from the programming point 
of view, the measurement method is exactly the same. We only need to read the 
voltage with one of our analog input pins, and then only some math is needed to get 
the temperature in Celsius (or Fahrenheit).

As our hardware component of choice, we will use a temperature sensor LM60 
(http://www.ti.com/product/lm60) from Texas Instruments (you might also 
still find it under the National Semiconductor brand). LM60 is actually a small IC 
(integrated circuit) with three legs, and you have to take care to wire it correctly.

From the data sheet, we can see that the sensor works on voltage between 2.7 V and 
10 V. So we can use our 3.3 V in P9.4 as a power source for it. The same sheet also tells 
us that the maximum output of this part is ~1200 mV, so we can safely use it with our 
analog input pins. Let's use A-IN3 in P9.38 as our analog input, and connect the LM60 
ground pin to P9.34. Our schematic will look as shown in the following figure:

The output from Vout depends on the surrounding temperature, and it can be 
calculated from the formula: Vout = (6.25 mV * C) + 424. So, if C is 25 degrees Celsius, 
the output would be roughly around 580 mV.

The offset of 424 mV is not arbitrary; it is there for our convenience so 
that we can also measure negative temperatures easily.



Chapter 4

[ 61 ]

Let's do our wiring as shown in the following figure:

Our example program will be very much similar to reading_light.py. Create a new 
class called reading_temp.py with the following changes for the temperature reading:

#!/usr/bin/python

import adc_control
import time

while True:
  val = adc_control.read_raw_analog_input("P9_38")
  mv = val*1.8*1000  
  celsius = (mv - 424) / 6.25 #for LM60
  print "%dmV ~%dC" %(mv, celsius)
  time.sleep(0.5)

Go ahead and run the program, and play around, for example, with a hair dryer or 
some ice cubes (but be careful about the ice melting on the circuit!).

After these two exercises, we have some interesting data readily available. But 
wouldn't it be nice if we had this data readable remotely? This is exactly what we 
will do next, when we start extending our server and client applications!



Extending Server Capabilities

[ 62 ]

Advanced server
In the last chapter, our chat server was fairly simple and couldn't really do anything 
genuinely useful, but it served as a nice primer into socket communications.

Now we will start getting more serious about socket communication and server 
functionality. We shall implement a client server framework that transmits real-
time information from the server and also creates a base for future extensions of 
supported functionalities.

The first thing when more advanced communications are expected between clients 
and servers, a protocol needs definition. There are different approaches to writing 
a communication protocol between programs. You can roughly divide them in 
two categories: human readable protocols and binary protocols. Human readable 
protocols are easy to understand and debug, but they are perhaps somewhat 
wasteful in resources as they use more space and have more data to transmit. In this 
book, we will stick to a human readable one. As a learning exercise, human readable 
protocol is also unbeatable.

When maximum efficiency is required from a protocol, it is desirable 
to minimize different overheads and, for example, use bit masking 
to convey data. You can take a look at how, for example, TCP/IP 
protocol is implemented at the protocol level to learn further.

Defining our Beagle protocol
So, when defining a protocol, the most important thing to consider is "What are we 
planning to achieve with this?"

In our case, we want to transfer data from the server to a client and perhaps give 
orders remotely. So, let's define the first version of our protocol to accommodate 
those features.

Our protocol shall look as follows:



Chapter 4

[ 63 ]

We will not implement any kind of error-checking or packet-termination sequences. 
The protocol will solely rely on the fact that our data packet will always have the 
initial four bytes that will let the receiver know about the optional trailing data. You 
will see that even now this is actually quite sufficient, since we can already rely on 
TCP/IP for error correction, and in our server, we do not need complicated state 
information inside the transfers.

Basically, we divide our protocol into two main types. They will be requests (MT_
REQUEST) and replies (MT_REPLY). Both of them will have a minimum payload of two 
bytes, but it can be more if necessary.

Create a file beagle_protocol.py. First we will add the following definition for our 
message types:

MT_REPLY_SHORT                = 10 #Payload limited to 2 bytes
MT_REQUEST                    = 13

For requests, we also need to define actions; for now, we have the following  
two actions:

ACTION_READ_TEMPERATURE       = 1
ACTION_READ_LIGHT_LEVEL       = 2

There are also a couple of special messages and variables defined in our protocol  
as follows:

MT_INFO_INITIAL_HELLO         = 15
MT_DISCONNECT                 = 0

# Fixed payload size for a single command/reply
PAYLOAD_FIXED_SINGLE_VALUE = 2 
PROTOCOL_VERSION = 1
SUPPORTED_ACTIONS =  
  (ACTION_READ_TEMPERATURE,ACTION_READ_LIGHT_LEVEL) #for client

You must be wondering why we chose values that are not sequential. This was on 
purpose, as in the next chapter, we will add more message types, and they will line 
up at that time.

Notice how we also defined our protocol version there; this can be 
useful if in future, for example, we add new features to our protocol 
and either the server or client gains new features. This way we can 
leave the door open for working with older client versions that now do 
understand how to take advantage of new features.



Extending Server Capabilities

[ 64 ]

The new server code
While the basic logic behind transmissions remains the same, data transfer is quite a 
bit more complicated compared to echo_server we created previously. So we will 
create a new application called beagle_server.py.

But first, you should extend your adc_control.py so that it will have methods to 
read the current temperature and light level. We will use these methods in our server 
to read the current data when requested. Don't forget to import this interface to the 
main server once you're done.

After you have finished creating the new methods in adc_control_extended.
py, let's create our server application called beagle_server.py, add the include 
statements, and define our main method as follows:

import server_socket 
import beagle_protocol as BP
import adc_control_extended as ACE

from struct import *

if __name__ == "__main__":
  print "Starting beagle server.."
  srv = server_socket.initialize_server("", 7777)

  # Eternal while loop that just waits for clients
  while True:
    print "Waiting for a user to connect."
    client = server_socket.wait_for_client(srv) # blocking!

    # Inform our protocol version in the hello message
    data_packet = create_data_packet(BP.MT_INFO_INITIAL_HELLO,"",  
      BP.PAYLOAD_FIXED_SINGLE_VALUE)
    client.sendall(data_packet)

    #Now we start waiting for commands from client
    keep_alive = 1
    while keep_alive:
      keep_alive = handle_client_request(client)

    # If we're here, it means we should let the client go
    client.close()

  srv.close()



Chapter 4

[ 65 ]

First, the server sets up the serving socket (imported from our server_socket.py 
class, which we created in the Echo server section in Chapter 3, Creating the Client and 
Server) and starts waiting for a client to connect. When it detects a connection, the 
server sends a "welcome message" to the client, informing of the current protocol 
level—we will take a look at creating a data packet shortly. After the server has sent 
the welcome message, it goes into a service loop where it will wait for commands 
and serve them in the handle_client_requests method. Let's take a look at that 
method (define it above our main method):

def handle_client_request(cs):
  try:
    msg = cs.recv(4) # Retrieve the header, blocking call
    header = unpack("!HH", msg) # decode the mandatory headers

Always, when handling a packet from the client, the server initially reads four  
bytes from the stream and decodes them. For decoding, the server uses the unpack 
method from the package struct. We inform the unpack method that we want to 
decode two shorts (HH) from msg in the big endian format (!) and place the result  
into a header tuple. As we know one short is of two bytes, we have our mandatory 
first four bytes decoded.

Endianness is a term used to define the way bits and bytes are stored in 
computer memory. For example, consider our MT_REQUEST header. It 
is two bytes, and these bytes are stored in memory. Big endian format 
means that the most significant byte is stored in the smallest (first) 
memory address. In little endian, this is the opposite.

Each platform has its "native way" of storing data, so when sending data 
over a socket, you need to consider that will the receiving end interpret the 
bytes in same order as you, and if not, one end will have to do conversion.

Fortunately for us, in Chapter 6, Creating an Android Client, when we create 
an Android client, Java uses same big endian format by default as Python, 
so this time we do not have to worry about this. You can find Python 
documentation about packing at http://docs.python.org/2/
library/struct.html.

Now we proceed to identify the incoming message with the following code:

    # Identify the message type
    if header[0] == BP.MT_REQUEST:

      remaining = int(header[1]) 
      msg = cs.recv(remaining)

      header = unpack("!H", msg) #We know this is 2 bytes in MT_
REQUEST
      request = int(header[0]) 



Extending Server Capabilities

[ 66 ]

Because we know that MT_REQUEST type is always six bytes, we don't necessarily 
have to check the remaining bytes from header[1], but we do it here for consistency. 
After that, we can identify the message type and act on it as follows:

      if request == BP.ACTION_READ_TEMPERATURE:
        curr_temp = get_temperature()

        data_packet =  
          create_data_packet(BP.ACTION_READ_TEMPERATURE,  
            curr_temp, BP.PAYLOAD_FIXED_SINGLE_VALUE)
        if not data_packet == None:
          cs.sendall(data_packet)

      elif request == BP.ACTION_READ_LIGHT_LEVEL:
        curr_light = get_lightlevel()

        data_packet =  
          create_data_packet(BP.ACTION_READ_LIGHT_LEVEL,  
            curr_light, BP.PAYLOAD_FIXED_SINGLE_VALUE)
        if not data_packet == None:
          cs.sendall(data_packet)

Our server identifies the action requested by the client. It then first prepares the 
data (by calling the appropriate functions in this class, which will use the methods 
that you created in your adc_control_extended.py file) and then creates a reply 
message using the create_data_packet() function. Once the data packet is created, 
it sends the data to the open client socket.

If the message was not of the MT_REQUEST type, we of course check for other actions 
and handle the case where stream has been abruptly broken.

    elif header[0] == BP.MT_DISCONNECT:
      print "User requested disconnection, closing connection"
      return 0

    # By default, we continue for as long as client wants
    return 1
  except:
    print "Rude disconnect from user"
    return 0



Chapter 4

[ 67 ]

Lastly, on the server side, we take a look at our create_data_packet() function 
(add it above the handle_client_request() function).

def create_data_packet(msg_type, data, data_length):

  packet = ''

  try:
      if msg_type == BP.MT_INFO_INITIAL_HELLO:
        packet = pack("!HHH", BP.MT_INFO_INITIAL_HELLO,  
          BP.PAYLOAD_FIXED_SINGLE_VALUE, BP.PROTOCOL_VERSION)
  

      elif msg_type == BP.ACTION_READ_LIGHT_LEVEL:
        packet = pack("!HHH", BP.MT_REPLY_SHORT,  
          BP.PAYLOAD_FIXED_SINGLE_VALUE, data)

      elif msg_type == BP.ACTION_READ_TEMPERATURE:
        packet = pack("!HHH", BP.MT_REPLY_SHORT,  
          BP.PAYLOAD_FIXED_SINGLE_VALUE, data)

      else:
      p  rint "unrecognized packet type, ignoring"
        return None
  except Exception, ex:
      print "Something went wrong with packing"
      print ex
  return packet

Here we encapsulate our data with the help of the pack function. It works much the 
same way as unpack in just the opposite way. We tell it how to pack data and the 
data to be packed. For now, we only support three types of messages, and each of 
them is exactly of six bytes (three short values) in length.

This is how the server will operate. Next we will look at a client that can take 
advantage of these new fancy services the server is providing.

The new client code
Let's start creating our client named beagle_client.py. The main function of our 
client starts with establishing a connection to the server and reading four bytes from 
the welcome message. After this, we check that we are communicating as expected 
(we understand our server) before moving forward. Once we have identified that 
we indeed received the initial hello message, we read the next two bytes to check the 
protocol version of the server using the following code snippet:

if __name__ == "__main__":

  if not len(sys.argv) == 2:
    print "please specify target address"



Extending Server Capabilities

[ 68 ]

    sys.exit(2)

  target_ip = sys.argv[1]
  print "Connecting to %s" % target_ip

  # Initialize the socket
  client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
  client_socket.connect((target_ip , 7777))

  print "Connection established!"

  # Read the initial welcome message, to initialize our protocol
  reply = client_socket.recv(4) # Retrieve the initial size
  msg = unpack("!HH", reply)

  if msg[0] == BP.MT_INFO_INITIAL_HELLO:
    remaining_size =  int(msg[1]) # This is actually fixed
    reply = client_socket.recv(remaining_size)
    msg = unpack("!H", reply)
    print "Server protocol version: %s" % msg
    if not BP.PROTOCOL_VERSION >= int(msg[0]):
      print "WARNING> The server protocol is newer than ours."
  else:
    print "We received message we can't understand, abort"
    sys.exit(2)

Notice that in this example, the client reads the target IP address from 
the argument list of the program. So when you start the program, you 
need to specify the IP address for the target board. In our case it is 
192.168.7.2 if the board is connected directly to the development 
machine. Otherwise, please check the eth0 address on the target board 
with the command ifconfig eth0. Of course, for this to work, we 
need to have received an IP address from our router.

After the initial checks and handshake is complete, we can enter our action loop. The 
loop will be somewhat similar to the chat client example. The client will expect an 
input from the user, verify that the input is valid (and print help text if it's not), and 
then call the send_message() function to send a message to the server as follows:

while True:
  command = raw_input(':')

  #Valid input 
  if not command == "" and int(command) in BP.SUPPORTED_ACTIONS:



Chapter 4

[ 69 ]

    print "Selected %s" % command
    send_message(int(command), client_socket)
    read_reply_from_server(client_socket)

  #Disconnect
  elif not command == "" and int(command) == BP.MT_DISCONNECT:
    print "Disconnect requested"
    send_message(int(command), client_socket)
    break

  #Unrecognized input
  else:
    print_options()
print "Connection closed"

As you can see, basically in a very similar fashion as the server, we have two functions 
that take care of communication with the server: one for sending a request and another 
to receive a reply. Let's first take a look at the send_message() message function.

In the following code snippet, we identify what type of message a client wants to 
send to the server, and then again, we pack our data and send it down the socket. The 
disconnect request is only of four bytes; other messages have a payload of two bytes.

def send_message(message_type, socket):

  packet = ''

  if message_type == BP.ACTION_READ_TEMPERATURE:
    print "Requesting for temperature"
    packet = pack("!HHH", BP.MT_REQUEST,  
      BP.PAYLOAD_FIXED_SINGLE_VALUE, BP.ACTION_READ_TEMPERATURE)
    socket.sendall(packet)

  elif message_type == BP.ACTION_READ_LIGHT_LEVEL:
    print "Requesting for light level"
    packet = pack("!HHH", BP.MT_REQUEST,  
      BP.PAYLOAD_FIXED_SINGLE_VALUE, BP.ACTION_READ_LIGHT_LEVEL)
    socket.sendall(packet)

  elif message_type == BP.MT_DISCONNECT:
    packet = pack("!HH", BP.MT_DISCONNECT, 0)
    socket.sendall(packet)



Extending Server Capabilities

[ 70 ]

Once the message has been sent, we start expecting a reply from the server. The 
function that reads reply will currently support only short replies (two-byte 
payload). We will extend it later to also support larger payloads.

def read_reply_from_server(socket):

  try:
    reply = socket.recv(4) # Retrieve the initial size
    msg = unpack("!HH", reply)
    if msg[0] == BP.MT_REPLY_SHORT:
      remaining_size =  int(msg[1]) # This is actually fixed

      reply = socket.recv(remaining_size)
      value = unpack("!H", reply)
      print "We received: %s" % value    
    else:
      print "Received unexpected reply -> ignore
  except Exception, err:
      print "Problem when reading from socket" 
      print err

We're left with the code of the help message for the client, which just basically prints 
our definitions from beagle_protocol.py. The code is as follows:

def print_options():
  print "Protocol supports:"
  print "%d - current temperature" % BP.ACTION_READ_TEMPERATURE
  print "%d - current light level" % BP.ACTION_READ_LIGHT_LEVEL
  print "%d - Disconnect" % BP.MT_DISCONNECT

Now you should be ready to run the client code and connect to the server. The 
output should be as shown in the following screenshot:



Chapter 4

[ 71 ]

Our client and server now happily work together. We're sure you already have  
many ideas how to extend that from here. For example, you could have a go at 
adding a functionality to turn the lights on and off remotely and read the current 
state of the lights.

Transistors
You might have already wondered what can we do if we would like to control 
devices that require higher voltages or current levels than those that are available 
from our headers.

For example, you might want to engage a 12 V motor that moves a rig holding your 
SLR camera for a time lapse movie, or you might want to use a high-power LED that 
requires much more current than the usual 4-6 mA available in our GPIO pins. And 
there are plenty of other use cases you might want to consider.

For this kind of application, transistors are ideal. Without going too deep into the 
theory on how they operate, you can think that transistors can be used as switches of 
a certain kind that you can operate with a low-power input signal (they are also used 
as amplifiers, but this is not really in the scope of this book).

Transistors mostly fall into two main types: field effect transistors (FETs) and 
bipolar junction transistors (BJTs). We will focus on BJTs and their main categories: 
NPN and PNP. Both of these are a type of BJTs. They both share the same basic 
structure of having three legs. The legs are as follows:

• The base is the lead that activates the transistor
• The collector is the positive lead
• The emitter is the negative lead

Both of them also operate in the same fashion. By applying voltage to the base pin, 
you can control the flow of electricity through the transistor.

The difference is that while you increase the current more and more to the base pin 
of the NPN transistor, it will start conducting more and more. PNP, on the other 
hand, works exactly in the opposite way; the more voltage you apply to the base pin, 
the less it conducts.

In real life, NPN transistors are much more popular, partly thanks to their electrical 
characteristics. We will also focus on NPN transistors in this section.



Extending Server Capabilities

[ 72 ]

The schematic picture for an NPN transistor looks as shown in the following figure:

Using NPN transistors, you can easily control higher current loads to external 
hardware as compared to, for example, the maximum 4 mA (6 mA on some pins) 
supplied by GPIO pins on our Beagle.

You have to be careful, however, that your transistor can conduct 
the current you are planning to pass through it. This value should be 
checked from the schematic of your transistor.

We mentioned earlier that by increasing the current and voltage to the base of an 
NPN transistor, it starts conducting more and more current across its emitter and 
collector. There is a ratio, called DC Current gain (hFE), that describes this current 
conductivity ratio. This ratio varies depending on the input current and voltage at 
the base of the transistor.

Now let's take a look at an example of how one could use an NPN transistor to 
conduct roughly 20 times higher current in a circuit than before. This will be a 
somewhat theoretical example, as it's not very practical to run such high currents 
using normal "household batteries". But it will demonstrate the use of NPN 
transistors in the context that we are already familiar with.

We will re-use our old code from led_control.py created in the Echo client section in 
Chapter 3, Creating the Client and Server, to add a new control target for our LED library.

This LED will be powerful enough to be used in a dark room, instead of being just an 
indicator light. We will be using a Luxeon Rebel high-power LED from Phillips that 
we will drive with ~100 mA of current from a pair of 9 V external batteries connected 
in series.

The LXM3-PW61 LED has the following characteristics:

• Typical forward voltage of 3 V at around 4000 K
• Maximum forward current of 700 mA

Now we will have to do some more calculations for currents and resistances that we 
will design for this circuit.



Chapter 4

[ 73 ]

Since we are using an 18 V battery and we want to drive our LED at 100 mA, we can 
calculate a suitable resistor for the LED from the following formula:

As we need to keep in mind the maximum current limits our GPIO can stand, we 
will choose a 1 K resistor for the GPIO line, which will be connected to the base of 
our transistor. Our load on the GPIO will thus be:

Typically the "on state" voltages of BJTs made from silicon are around 0.6 
to 0.7 Volts.

2.7 mA is nicely below the 4 mA our GPIO line can handle. We will be using a fairly 
common 2N2222 transistor, which has a gain (hFE) of 50, when the current is at least 
1 mA. We can get maximum current at these levels from the following equation:

The math looks good, so the whole schematic will thus look as it appears in the 
following figure:



Extending Server Capabilities

[ 74 ]

The setup of wiring for the schematic is as follows:

Now there is one more caveat you have to consider here before turning on the 
circuit. The R2 that is limiting the current to the LED has to be capable of handling 
high power. In this circuit it will be driven with the power of:

Once you're done adding the new code to control GPIO66 to led_control.py,  
you should be able to turn on the new extremely bright LED. It's really, really bright, 
isn't it?

The efficiency of the circuit can also be questioned, and whether the NPN approach 
is the best in this case. But it's a fairly simple circuit that should give you an 
understanding of how NPN transistors can be used to drive much higher voltages 
and currents that would not normally touch our target board.



Chapter 4

[ 75 ]

Summary
We browsed through many subjects in this chapter; we extended our Beagle in many 
directions all at once, so it's become much more capable after this chapter, hasn't 
it? You now have a good understanding of how one can efficiently use network 
programming to transfer arbitrary data between different machines, and how to 
create custom transfer protocols. For the first time, we also added some new exciting 
environmental sensors that can gather real-time data so that our Beagle can, for 
the first time, sense its environment. And all of this data is now reachable to you 
remotely over the TCP/IP protocol. Exciting! Isn't it?

Next, we will take the last limitations and chains off the server, so you will be 
completely free to implement any kind of data frameworks you like, and of course, 
we will again add some, yet even more exciting, hardware components to our 
repertory.





Implementing Periodic Tasks
Our server is now capable of serving our clients with some environmental data, 
but it has no memory, and there is no way to alter its behavior without rewriting 
code. We will extend our server capabilities further in this chapter, and it will finally 
become a fully standalone server that will live its own life without the need for 
manual operation. We will also enhance our server-client interface so that the server 
can be operated and runtime configuration can be changed remotely with our client.

Of course, as always, we will also introduce new exciting hardware. In short, we will 
cover the following topics:

• Adding a save/load framework for arbitrary data to our server
• Creating configurable periodic tasks to our server
• Adding interfaces to access data on the server to our client
• Implementing remote reconfigurability to our server
• New hardware: infrared motion sensor
• Talk about "cape" extensions and integrate one to our Beagle
• Adding support for the camera interface to our server

Implementing a save/load framework
Now that our target will be having a server constantly running on our board, we 
will need some kind of configuration file for it so that the server knows how it is 
supposed to operate. For this purpose, we will create a file called server.conf (or 
more exactly, we will define a variable that will hold the name of this file) that will 
always hold the current runtime configuration of our server.

First, we should define a structure for it. A very simple one can be a configuration 
like keyword=value. It's simple to read, and also parsing it with code is easy.



Implementing Periodic Tasks

[ 78 ]

Then, we should think about what type of configuration data we need in our server. 
This will, of course, depend on the features of the server. What kind of features do 
we currently have in our code? That's right, we have two functions, temperature and 
light sensor measurement. Let's make the delay between readings a configurable 
value. Create a file called server.conf and enter the following lines in it:

delay_between_temperature_measurements=30
delay_between_lightsensor_measurements=30

For now, that is enough.

When you start deploying your server, you might want to consider where 
you want to place this kind of configuration file, and of course the code 
itself as well.

One location we recommend is under /opt/your_app_name/. This is 
quite a common location to store these applications and the data that is 
Linux distribution independent.

First, let's update our protocol class beagle_protocol.py so that we have the 
necessary new messages ready:

ACTION_READ_CONFIG_SETTINGS           = 3
ACTION_CONFIG_CHANGE                  = 4

CONFIG_ITEM_TEMPERATURE_READ_DELAY =  
  "delay_between_temperature_measurements"
CONFIG_ITEM_LIGHTSENSOR_READ_DELAY =  
  "delay_between_lightsensor_measurements"

REPLY_CONFIGURATION_CHANGE_OK       = 41
REPLY_CONFIGURATION_CHANGE_FAILED   = 42

PROTOCOL_VERSION = 2
SUPPORTED_ACTIONS =  
  (ACTION_READ_TEMPERATURE,ACTION_READ_LIGHT_LEVEL,ACTION_READ_ 
    CONFIG_SETTINGS,ACTION_CONFIG_CHANGE)

We defined two new actions for our protocol, and we also defined two new reply 
messages from the server.

Let's also update our protocol version string and supported actions list. We will also 
add names for our configurable settings.



Chapter 5

[ 79 ]

Now that we have our configuration file ready and protocol updated, we  
should extend our server to take advantage of these new features. Open up our 
beagle_server.py class and add the following new variables to our server:

config_delay_temp_meas=0
config_delay_light_meas=0

supported_configuration_items = [
BP.CONFIG_ITEM_TEMPERATURE_READ_DELAY,
BP.CONFIG_ITEM_LIGHTSENSOR_READ_DELAY,]

filename_server_conf="server.conf"

And then, let's add a new method to load those values from our config file:

def reload_configuration():
  print "Reloading configuration"
  try:
    cf = open(filename_server_conf,"r").read().splitlines()
    for line in cf:
      if line.startswith("delay_between_temperature_measurements"):
          config_delay_temp_meas = int(line[line.index("=") + 1:])
        print "Configured: Temperature measurement every %d 
          minutes" % config_delay_temp_meas
      if line.startswith("delay_between_lightsensor_measurements"):
          config_delay_light_meas = int(line[line.index("=") + 1:])
        print "Configured: Light measurement every %d minutes" % 
          config_delay_light_meas

  except Exception, err:
    print "FATAL: Failed to read config file"
    print err
    sys.exit(2)

As you can see, no fancy code here. We use the function open to read the input  
file line by line, and after that we set our internal parameters. We should always  
call this function when the server is started (and also when a client updates any of 
these values).

www.allitebooks.com

http://www.allitebooks.org


Implementing Periodic Tasks

[ 80 ]

Next, let's implement a function that will allow us to update a parameter in this 
configuration file:

  def update_configuration(param_name, param_value):
  print "Configuration change requested [%s] to [%s]" %  
    (param_name, str(param_value))
  if param_name in supported_configuration_items: 
    curr_file = open(filename_server_conf, "r").read().splitlines()
    new_file  = open("conf.tmp","w")

    for line in curr_file:
      if line.startswith(param_name):
        print "we should modify [%s] to %s" % (line,  
          str(param_value))
        new_file.write(param_name + "=" + str(param_value) + "\n")
      else:
        new_file.write(line + "\n")
    new_file.close()
    os.rename("conf.tmp", filename_server_conf)
    return BP.REPLY_CONFIGURATION_CHANGE_OK

  else:
    print "Illegal configuration option specified"
    return BP.REPLY_CONFIGURATION_CHANGE_FAILED

As input, the function takes parameter to change and the new value. It will first check 
if the requested parameter is in the list of configurable parameters, and if it is, it will 
open the server configuration file (the name is defined in variable filename_server_
conf) for reading and look for the necessary line that needs changing. It writes the 
old config plus the modification to a temporary file, conf.temp. Lastly, that will be 
renamed as the new server configuration once the file has been fully processed.

Now that we have functions to reload and modify the runtime configuration, we 
need one more helper function. We need a method to easily read and process the 
configuration to a presentable (actually, transferable) format. Add one more function 
to our server:

def get_current_configuration():
  reply = ""
  try:
    cf = open(filename_server_conf,"r").read().splitlines()
    for line in cf:
      reply = reply + line + "|"



Chapter 5

[ 81 ]

    return reply
  except Exception, err:
    print "FATAL: Failed to read config file"
    return ""

Now that our backend code is ready, let's first jump over to the client side and write 
the code that will use these new functionalities.

Retrieving and changing permanent settings
As you must have already guessed, we will need to add some new message-handling 
sequences on both the client and the server. Since our client is always the transaction 
initiator, we start there.

The client side
As you remember, our client takes input from the user, and available input can be 
listed via the print_help() function. So we update that first:

def print_options():
  print "Protocol supports:"
  print "%d - current temperature" % BP.ACTION_READ_TEMPERATURE
  print "%d - current light level" % BP.ACTION_READ_LIGHT_LEVEL
  print "%d - Read current config from server" %  
    BP.ACTION_READ_CONFIG_SETTINGS
  print "%d - Change a config parameter on the server" %  
    BP.ACTION_CONFIG_CHANGE
  print "%d - Disconnect" % BP.MT_DISCONNECT

The first function to get called after user input is received and validated, is send_
message(). This function will need two new supported message types:

def send_message(message_type, socket):
  ...
  elif message_type == BP.MT_DISCONNECT:
    packet = pack("!HH", BP.MT_DISCONNECT, 0)
    socket.sendall(packet)
  elif message_type == BP.ACTION_READ_CONFIG_SETTINGS:
    packet = pack("!HHH", BP.MT_REQUEST,  
      BP.PAYLOAD_FIXED_SINGLE_VALUE, BP.ACTION_READ_CONFIG_SETTINGS)
    socket.sendall(packet)



Implementing Periodic Tasks

[ 82 ]

  elif message_type == BP.ACTION_CONFIG_CHANGE:
    pname = raw_input("Parameter name to change:")
    pval  = raw_input("New value:")

    message = pname + "|" + pval
    mlen = len(message)
    pack_string = "!HH%ds" % mlen
    packet = pack(pack_string, BP.MT_REQUEST_PL_CONFIG_CHANGE, mlen,  
      message)
    socket.sendall(packet)

The first new message type requests our server to send the current configuration 
settings to the client. The second one is used to request a configuration change. We 
will keep this functionality simple, and we require manual input of the parameter 
name and value.

The other part of the message transaction is always the function read_reply_from_
server(); previously, we only handled the MT_REPLY_SHORT type, but now we have 
two new reply types that we process. The first one will be MT_REPLY_CURRENT_CONFIG:

def read_reply_from_server(socket):
...
    elif msg[0] == BP.MT_REPLY_PL_CURRENT_CONFIG:
      print "Receiving a payload with configuration settings"
      remaining_size =  int(msg[1])

      reply = socket.recv(remaining_size)
      unpack_string = "!%ds" % remaining_size
      value = unpack(unpack_string, reply)

      #Check how many config entries to parse
      item_count = value[0].count("|")    
      idx = 0

      print "Currently configured:"
      for i in range(0,item_count):
        print "%s" % value[0][idx:value[0].index("|", idx +1)]
        idx = value[0].index("|", idx +1) +1

Once we have identified that the incoming message type is the current configuration 
listing, we read the reply to a string, and then we do some parsing on it to identify 
individual parts (the server separates each config item with a | character) and print 
them on the screen.



Chapter 5

[ 83 ]

The second new incoming message type on the client side is reading a reply to our 
configuration change request:

  elif msg[0] == BP.MT_REPLY_CONFIG_CHANGE_RESULT:
    print "Received config change result"
    # Length of this message type is always same
    remaining_size =  int(msg[1]) # This is actually fixed
    reply = socket.recv(remaining_size)
    value = unpack("!H", reply)

    if value[0] == BP.REPLY_CONFIGURATION_CHANGE_OK:
      print "Configuration successfully updated"
    else:
      print "Configuration change was rejected"

As seen before, this is the same type of message handling, and we just read the server 
reply and showed it to the user. These are all the required changes on the client side.

The server side
We have already added all the new activity functions to our server, but we still need 
to add the handling code for sending and receiving the new messages. The client we 
just updated can send two new message types, so let's look at handling functionality 
for them. In handle_client_request():

if header[0] == BP.MT_REQUEST:
... 
  elif request == BP.ACTION_READ_CONFIG_SETTINGS:
    print "User has requested current runtime settings"
    reply = get_current_configuration()
    length = len(reply)

    data_packet =  
      create_data_packet(BP.MT_REPLY_PL_CURRENT_CONFIG, reply,  
        length)
    if not data_packet == None:
      cs.sendall(data_packet)

The message requesting the current configuration is a regular request without 
payload (extra data besides the initial two protocol headers), and thus it is handled 
inside the BP.MT_REQUEST branch. We will talk about creating the appropriate reply 
for this message in a moment. When a user requests for a configuration change, it 
requires a bit more processing (the configurable item the users wants to change is 
specified in the payload). 



Implementing Periodic Tasks

[ 84 ]

This message is not handled inside BP.MT_REQUEST.

elif header[0] == BP.MT_REQUEST_PL_CONFIG_CHANGE:
  print "User requested configuration change"
  remaining_size =  int(header[1])
  reply = cs.recv(remaining_size)

  unpack_string = "!%ds" % remaining_size
  incoming_string = unpack(unpack_string, reply)

  #Parse the read data from client
  pname = incoming_string[0][:incoming_string[0].index("|")]
  pval = incoming_string[0][incoming_string[0].index("|") +1:]

  #Try to change the config:
  result = update_configuration(pname,pval)

  data_packet =  
    create_data_packet(BP.MT_REPLY_CONFIG_CHANGE_RESULT, result,  
      BP.PAYLOAD_FIXED_SINGLE_VALUE )
  if not data_packet == None:
    cs.sendall(data_packet)

As you can see, only payload processing requires a bit more code around it. The 
client has supplied the parameter it wishes to change and the new value separated 
by |. The server doesn't do any input verification here; it is done in the update_
configuration() function we described earlier. It immediately sends the result of 
that function call back to the client.

We added the handling code for two new incoming messages, and now we also need 
support for sending replies to them. Add the following functionality to the create_
data_packet() function:

def create_data_packet(msg_type,data, data_length)
...
  elif msg_type == BP.MT_REPLY_SHORT:
    packet = pack("!HHH", BP.MT_REPLY_SHORT, data_length, data)

  elif msg_type == BP.MT_REPLY_PL_CURRENT_CONFIG:
    pack_string = "!HH%ds" % data_length
    packet = pack(pack_string, BP.MT_REPLY_PL_CURRENT_CONFIG, 
      data_length, data)



Chapter 5

[ 85 ]

  elif msg_type == BP.MT_REPLY_CONFIG_CHANGE_RESULT:
    packet = pack("!HHH", BP.MT_REPLY_CONFIG_CHANGE_RESULT,  
      data_length, data)

We only have to take care of the proper packing of the payload message when 
sending the current configuration information to the client.

Now the functionality is complete in both the client and the server. The client can 
now read the current configuration on the server and change it if required. As you 
surely have noticed, this is currently just a basic functionality to read and change the 
configuration file contents over the network. Next, we will implement some actual 
functionality around these parameters.

Periodic tasks on the server
Currently, our server has the capability to read temperature and light levels 
on request, but this data is not collected periodically, nor saved anywhere. In 
this section, we will implement both functionalities with the help of our new 
configuration options.

First we will need some new imports in our server:

import sys, os, time
from time import gmtime,strftime #For formatted time
from multiprocessing import Process #For multiprocessing

Then we will need process handles to our child processes so that the parent process 
can terminate and restart them when necessary:

# Our process handles
periodic_temp_measurement = Process()
periodic_light_measurement = Process()

Currently, we have passed just a placeholder for the Process class; they will be 
properly initialized later. We also need to define two new variables holding the 
filenames for the files that will hold the measurement data:

filename_measurements_light=".server_data_lightlevel.txt" 
filename_measurements_temperature=".server_data_temperature.txt"



Implementing Periodic Tasks

[ 86 ]

Next, we will define the function that will collect a data sample and save it to 
a logfile with the timestamp of the acquired sample. First is the function for 
temperature collection:

def periodic_temperature_collector(frequency):

  print "Temperature collector initialization"
  print "At %s, frequency every %d minute(s)" % (strftime("%Y-%m-
    %d %H:%M:%S", gmtime()), frequency)
  
  outputfile = open (filename_measurements_temperature, "a")

  # Parent takes care of the life cycle of this process
  while True:
    #Read temperature and current time
    val = get_temperature()
    timenow = strftime("%Y-%m-%d %H:%M:%S", gmtime())

    outputfile.write(timenow + "|" + str(val) + "\n")
    outputfile.flush() #Force flush

    # Sleeping the defined amount
    time.sleep(frequency * 60)

The call to strftime() with the gmtime() function's parameter is used to a make 
a timestamp in a desired format. Also, note that we have opened our output file in 
append mode (the file will be opened as it is, and writing will continue from the end 
of the file) so as not to clear the previous entries. Also define a similar function, called 
periodic_lightlevel_collector(), for light-level measurement and make it save a 
similar logfile with a name from the variable filename_measurements_light.

Next, we will need some mechanism to configure the threads and start them.  
That's right, we already have a perfect place for them in our reload_
configuration() function! In case the child processes are already running, we  
need to terminate them first:

def reload_configuration():

  global periodic_temp_measurement
  global periodic_light_measurement

  print "Reloading configuration"

  #First terminate the previus threads
  if periodic_temp_measurement.is_alive():



Chapter 5

[ 87 ]

    periodic_temp_measurement.terminate()
  if periodic_light_measurement.is_alive():
    periodic_light_measurement.terminate()

Then, after the configuration has been read from the config file, we can start new 
instances of our processes:

  print "Restarting periodic tasks"
  # Initialize new Processes with fresh data
    periodic_temp_measurement = 
    Process(target=periodic_temperature_collector,  
      args=(config_delay_temp_meas,))
    
  periodic_light_measurement = 
    Process(target=periodic_lightlevel_collector, 
      args=(config_delay_light_meas,))        

  #Start our periodic tasks
  periodic_temp_measurement.start()
  periodic_light_measurement.start()

Here you can see how a new process is created. Basically, you make a call to  
Process and pass the starting function for the new process and give the possible 
input parameters for that function. The call to the Process.start() function starts 
the execution.

When the server is running, you can check the measurement logfiles 
in the same directory your server code is in. Since the first character 
of the logfiles is a dot (.), the logfiles are not visible in normal listing. 
You need to use the command ls -la to see them. To follow the 
writing to those files in real time, use tail -f filename.

Now we have our periodic tasks running, and they are automatically restarted with 
new values if a client changes the server configuration.

We have been talking a lot about software in this chapter so far, so we're sure you're 
ready to get your hands dirty with some hardware!



Implementing Periodic Tasks

[ 88 ]

Movement-detection alarm system
Throughout the previous chapters, we have learned a major part of the basic 
components that most electronic systems are created from, and through examples 
you have learned to master many of these. Now we feel it's time we took our lessons 
to practice, and create something cool and fun! This example will be like it's straight 
out of the casino robbery movie, Oceans Fourteen. Okay, okay, maybe we won't have 
lasers and smoke and stuff, but we will create an alarm system that will monitor its 
environment for any kind of movement, and raise an alarm when it realizes someone 
is trying to enter the room.

In this example, we will be using a movement-detection sensor that operates on 
infrared light, so it will "see" in the dark too. Specifically, we will use a passive 
infrared (PIR) sensor. It's a sensor that monitors its environment for changes in 
infrared light radiation patterns. You have most likely seen this type of sensor in  
real life; maybe, for example, your garage has one? They are usually used to turn  
on the lights in a dark room when movement is detected.

Our hardware part will be a quite common PIR sensor, which can be found in  
many places. You can order one, for example, from SparkFun, with part number 
SEN-08630. If you search through Amazon, or your local electronic parts retailer, 
we're sure you'll find one nearby.

So let's start designing our electrical diagram for this example. The PIR sensor we 
are using works with 5 volts, so you need to have an input of 5V; the 5V rail will not 
have any voltage if the board is powered using the USB, and as you remember we 
cannot read voltages that are that high in our GPIO input pins; so we will be using a 
transistor to keep the high voltages out of our GPIO lines. We also connect a series of 
LEDs to our diagram, which will represent different stages of alertness. This way, we 
will be able to configure the sensor sensitivity to our liking.

First, the schematic for our circuit is as follows:



Chapter 5

[ 89 ]

At first, the schematic might look a bit confusing, but actually there isn't anything too 
complicated in it. LEDs 1 to 6 are connected in the same fashion as in the example 
ext_led_fun in Chapter 2, Input and Output. The only input GPIO (P8.8) is fed from 
a 3.3V line through an NPN transistor, which is switched by the PIR sensor's signal 
pin. There is a 10K pull-down resistor (PD R) connected from the emitter pin of 
the transistor to the ground, so that our input GPIO is never floating, and the 10K 
resistor between the signal line and 5V works as a pull-up resistor. For us, 10K 
worked best, but you can give 4.7K a try if you have issues.



Implementing Periodic Tasks

[ 90 ]

The wiring diagram of the previous schematic is as follows:

You can notice here that the PIR sensor wiring is actually different from the 
schematic; this is how the wiring is in the SEN-08630 sensor. The colors of the wires 
vary, so when you look at the sensor from the top, you will find that the wire on the 
left-hand side is +5 and the right-hand side one is the alarm line.

Keep in mind that when the PIR sensor gets power, it will take some 
time to stabilize. Our sensor sometimes took as long as 10 seconds to 
start giving reliable results. Googling around revealed that we weren't 
the only ones experiencing this.

Now that we have our hardware wired up, let's take a look at some sample code that 
can operate this. Let's create a library class to control our movement sensor, called 
PIR_ctrl.py.



Chapter 5

[ 91 ]

First we will initialize our GPIOs:

#!/usr/bin/python
import Adafruit_BBIO.GPIO as GPIO
import time
from time import gmtime,strftime #For formatted time

ALARM_LEVEL = 6

def init_gpio():
#Initialize GPIOs
  GPIO.setup("P8_8", GPIO.IN)

  GPIO.setup("P8_10", GPIO.OUT)
  GPIO.setup("P8_12", GPIO.OUT)
  GPIO.setup("P8_14", GPIO.OUT)
  GPIO.setup("P8_16", GPIO.OUT)
  GPIO.setup("P8_18", GPIO.OUT)
  GPIO.setup("P8_26", GPIO.OUT)

Then let's create a simple function that will light up the proper number of LEDs 
depending on the alarm level:

def indicate_alert(alarm_level):
  if alarm_level == 0:
    GPIO.output("P8_10", GPIO.LOW)
    GPIO.output("P8_12", GPIO.LOW)
    GPIO.output("P8_14", GPIO.LOW)
    GPIO.output("P8_16", GPIO.LOW)
    GPIO.output("P8_18", GPIO.LOW)
    GPIO.output("P8_26", GPIO.LOW)

  if alarm_level >= 1:
    GPIO.output("P8_10", GPIO.HIGH)
  if alarm_level >= 2:
    GPIO.output("P8_12", GPIO.HIGH)
  if alarm_level >= 3:
    GPIO.output("P8_14", GPIO.HIGH)
  if alarm_level >= 4:
    GPIO.output("P8_16", GPIO.HIGH)
  if alarm_level >= 5:
    GPIO.output("P8_18", GPIO.HIGH)
  if alarm_level >= 6:
    GPIO.output("P8_26", GPIO.HIGH)
    



Implementing Periodic Tasks

[ 92 ]

And then create a function start_monitoring(). This function will be called by the 
main function to start the operation of this class. The function will look like this:

def start_monitoring():

  alarm_buffer = 0
  init_gpio()

  while True:
    new_state = GPIO.input("P8_8")
    if new_state == 0:
      alarm_buffer += 1

      indicate_alert(alarm_buffer)

      if alarm_buffer > ALARM_TRIGGER:
        alarm_buffer = 0

        alarm_status = "@%s ALARM" % time.strftime("%Y-%m-%d 
          %H:%M:%S")
        print alarm_status

        for i in range(0,5): #Flash red LED 
          GPIO.output("P8_26", GPIO.HIGH)
          time.sleep(0.3)
          GPIO.output("P8_26", GPIO.LOW)
          time.sleep(0.3)

    else:
      alarm_buffer = 0
      indicate_alert(alarm_buffer)

    time.sleep(0.1) #Sleep

As you can see, we first initialize the GPIOs, and then start monitoring the line P8_8 
to go low. When this happens, we increment the "alarm level". We chose to check the 
sensor every 100ms, and if the alarm is triggered for six consecutive measurements, 
the alarm will be set off.

Some of the PIR sensors have a minimum time they stay triggered, so you 
might need to adjust your sleep periods, and what the suitable trigger 
level for your sensor will be. Play around with different settings until you 
feel that the sensor will reliably notice someone entering the room.

Now give it a go, and lay a bet with your sister to sneak into your room and take 
something from your table without our Beagle noticing her.



Chapter 5

[ 93 ]

You have now created your very own alarm system with the board, so how about 
trying to extend our server with this new functionality? Maybe our server can record 
all the alarms that are triggered throughout the day, and create logfiles from those 
security breaches? And what about extending the functionality even further, wherein 
you can remotely check these alarm logs?

The security system we have created here currently only uses visual data, but 
actually you can also consider extending the system using magnetic switches (called 
reed switches) to monitor, for example, the safe!

For this functionality, some extensions will be needed for beagle_
protocol, such as a new periodic task to read the security state and 
create logs and, of course, extensions to our client and server code.

Hardware extensions
We have so far been creating all our examples ourselves on breadboards, but there 
are many readymade extensions available. These extensions are called capes in the 
Beagle world, and you can think of them like plug-and-play hardware modules. 
They are much more complicated and usually contain autonomous computing 
chips on them that handle the necessary data processing for that particular cape 
(for example, calculating GPS coordinates). They are meant to be sandwiched on 
top of the header pins. You can place several of them on top of each other as long 
as you configure the the SW1 jumper on each board correctly (you can find more 
information about this in the reference manual). Of course, you have to make sure 
two capes don't block each other.

You can find many different types of capes around, starting from simple 
breadboards that are placed on top of your Beagle to very sophisticated HD quality 
cameras or LCD capes.

As you probably guessed, some of these can get fairly expensive (for example, the 
LCD cape for our Beagle costs three times as much as our Beagle!), but these can be 
extremely useful when prototyping your own design and so on.

Please keep in mind that because the BeagleBone Black and White 
don't share the same header and GPIO configuration, you have to 
be sure that the cape you are ordering will work with your board.



Implementing Periodic Tasks

[ 94 ]

Naturally, each board needs some control software so that the Linux kernel can 
operate with the cape properly, and this is provided by each cape's manufacturer. 
Let's now take a look at one example cape.

BeagleBone HD camera cape
In this section we will introduce the HD camera cape from Radiumboards (don't 
confuse it with the older camera cape originally meant for the white board), which 
integrates the camera to our Beagle, and shows you how to use it. The cape we are 
talking about in this section can be found at http://www.radiumboards.com/
HD_Camera_Cape_for_BeagleBone_Black.php. We do realize that the camera cape 
costs as much as the Beagle itself, so this might not be a relevant section for every 
reader, but it does have advantages for someone integrating a camera to his design 
(such as extremely low power requirements and tiny size). In this section we will 
also enable general support for using a normal USB webcam for those readers who 
are not interested in ordering another piece of hardware just for hacking around. In 
the next section we will talk about the necessary preparation to use the camera cape.

There are some downsides to using the camera cape instead of a USB 
solution. As we mentioned before, the cape uses GPMC to talk with 
the main board processor, and thus it reserves quite a lot of pins to 
its use—28 in fact. This of course means that there are less GPIO pins 
available, and you need to consider this during the design phase. This 
cape actually reserves a lot of pins in the P8 header, and none of our 
examples from this chapter would work without pin reassignment.

Changing the boot media
The first thing to realize is that we cannot use eMMC to boot our Beagle, since the 
cape uses the General Purpose Memory Controller (GPMC) interface to transfer 
data to the main board. The CD-ROM provided with the camera contains a pre-
prepared Angstrom image that has already been applied with the necessary patches 
so that the camera will work.

The CD also contains the necessary patches, so you can integrate 
them to another distribution if you have chosen to run some other 
flavor or Linux on your board, or have already taken some other pre-
prepared software image that came with another cape. Compiling 
and integrating the driver patch is an advanced topic and is out of the 
scope of this book. But we're sure the BeagleBoard community can 
help you with this through its forums.



Chapter 5

[ 95 ]

So we will need at least a 4GB microSD card for the Angstrom image (its contents 
will be erased, so please take care of that first). The compressed BB-BONE-CAM-VVDN_
CR3.img.xz image is located on the CD in the folder /bin/image.

Windows users will also need a program that can create a bootable microSD card 
from the IMG file. For extracting the .xz files, you can use 7-Zip. If you don't 
already have it, you can download it from http://www.7-zip.org/. Once you have 
extracted the image file, download the image creator program from https://wiki.
ubuntu.com/Win32DiskImager. It looks as shown in the following screenshot:

Just choose the extracted file (Image File) as the source to be used and the correct 
drive as the target (Device), and you can write the image to the memory card.

In Linux, users can use the pre-installed console program called xz for extracting 
the IMG file, and on Mac OS you can do this with Unarchiver (you should be able to 
find it in the Mac App store for free). On both the systems you can use the program 
called DD (it can be used for byte-by-byte copying irrespective of the filesystem 
used) for writing to the memory card. But before using it, you will need to know the 
appropriate drive for the memory card. When you plug your microSD card into the 
card reader, your system should recognize the card, and you should be able to see 
the appropriate drive by using the command dmesg (it prints the log messages from 
the kernel in chronological order). If you run the command right after insertion, you 
will see something similar to the following screenshot (only the last few messages are 
shown here):



Implementing Periodic Tasks

[ 96 ]

In the previous screenshot, you see that on this particular PC the memory card is 
recognized as sdb (the drives are usually in the form /dev/sd*). If the system has 
automatically already mounted your memory card, you can call umount /dev/
sd*1 and all the other numbers that the system might have found. The system might 
otherwise refuse to write the image if the filesystem has already been mounted for use.

Word of warning! You have to be absolutely sure about the drive 
letter you will use as a target when you run the next command. It will 
overwrite the contents of that drive, so if you supply your normal hard 
disk drive as the target, you can lose a lot of data. But, since you know 
the size of your memory card, you can usually identify the drive easily. 
Here we used a 16GB card, and normal hard disks are hundreds of 
gigabytes, if not more.

Also, don't forget that if you do this several times, the drive letter might 
change (for example, if you connect your smartphone to the PC between 
operations, it might take one of those positions as well), so always check.

On Mac you can see the available list of disks with diskutil; you should find 
something similar to /dev/disk*. Then call diskutil unmountDisk /dev/disk*], 
and you should be ready to write the image.

When you know the proper drive letter, you can go ahead and create the image with 
the following command (replace the star with the appropriate letter):

xz –cs  BB-BONE-CAM-VVDN_CR3.img.xz > BB-BONE-CAM-VVDN_CR3.img
dd if=BB-BONE-CAM-VVDN_CR3.img of=/dev/sd* bs=1M

The xz command first extracts the image to another file, and then we use DD to write 
the file to /dev/sd* one MB at a time (block size). On Mac, you should use /dev/
disk* instead of /dev/sd*.

The copying of the almost 4GB-sized file will take a while, so while you're waiting, 
you can turn off your Beagle (enter the command halt in the console), disconnect 
all cables from it, and put the cape on top of the Beagle. Be sure to place it the proper 
way, otherwise you might damage your board! The round edges should match on 
both boards at the bottom side (see the figure on page 8 of RB_HD_Camera_Cape_for_
BeagleBone_Black_System_Reference_Manual_A0-01).

After the copying has finished, you can remove the microSD card from your 
computer, insert it into the Beagle, and connect the 5V plug for it to start booting 
up. Connecting the external power supply is necessary for the camera hardware to 
operate, so powering the board through the USB will not be sufficient.



Chapter 5

[ 97 ]

We noticed that at least the Angstrom image that came with the 
revision A1 of the cape did not enable SSH connectivity over USB. If 
this happens with your image as well, you will have to connect to the 
board via either serial cable (described in detail in Appendix, Security, 
Debugging, and I2C and SPI) or connect your board to the router, and 
use SSH over TCP/IP. You will need to check the IP address from the 
router management console with your web browser.

When the board is booting, you will see new messages that indicate that the camera 
board has been successfully loaded:

[    0.246779] bone-capemgr bone_capemgr.8: Baseboard: 
    'A335BNLT,0A5C,2713BBBK7397'
[    0.246818] bone-capemgr bone_capemgr.8: compatible-
    baseboard=ti,beaglebone-black
[    0.277118] bone-capemgr bone_capemgr.8: slot #0: No cape found
[    0.314225] bone-capemgr bone_capemgr.8: slot #1: No cape found
[    0.344484] bone-capemgr bone_capemgr.8: slot #2: 'BeagleBone 
    1.2MP CAMERA CAPE,00A0,RadiumBoards,BB-BONE-CAM-VVDN'
[    0.374772] bone-capemgr bone_capemgr.8: slot #3: No cape found

Next, let's talk about the setup that we will need to enable the operation of  
/dev/video0 in our Python programs so that we can start taking some pictures  
with our cameras.

Controlling cameras with Python
The first thing we need to verify is if our video hardware is recognized. Enter the 
following commands to the console (if you are using a USB webcam at this step, 
make sure it's connected):



Implementing Periodic Tasks

[ 98 ]

If you do not see video0 in the listing, it most likely means that we have kernel 
drivers missing in our image. To rectify this, install the missing driver from the 
package manager:

root@beaglebone:~# opkg install kernel-module-uvcvideo

After this, reboot the board and the /dev/video0 device should appear.

Next, we will need to add a few more development libraries to our system so that we 
will be able to compile a Python library called pygame; this can be used to access our 
camera hardware. This time we will install a whole bunch of files:

root@beaglebone:~# opkg install libsdl-image-1.2-0 libsdl-image-
    1.2-dev libsdl-mixer-1.2-0 libsdl-mixer-1.2-dev libsdl-ttf-
    2.0-0 libsdl-ttf-2.0-devlibavformat-dev libavcodec-dev v4l-
    utils libv4l libsdl-1.2-dev python-distutils python-compile

If, at the time of your reading, the exact versions can no longer be found in the 
package manager, you can search for the currently supported version with the 
following command:

root@beaglebone:~# opkg list libsdl-image*

At the time of writing this book, there was a missing header file that prevented the 
successful compilation of pygame. The following symbolic link was also necessary 
(on your system, this might no longer be needed; check first):

root@beaglebone:~# cd /usr/include/linux
ln -s ../libv4l1-videodev.h videodev.h
root@beaglebone:~#

Now we are ready to compile pygame. We will first need to retrieve the package from 
the Internet. Go to http://www.pygame.org/download.shtml and get a link to the 
latest source code (1.9.1 at the time of writing), and download, extract, and try to 
build it:

root@beaglebone:~# cd /tmp
root@beaglebone:/tmp # wget http://www.pygame.org/ftp/pygame-
  1.9.1release.zip
root@beaglebone:/tmp # unzip pygame-1.9.1release.zip
root@beaglebone:/tmp # cd pygame-1.9.1release
root@beaglebone:/tmp/pygame-1.9.1release # python setup.py build

The build will take several minutes, and once it has completed without any errors, 
you can install the library:

root@beaglebone:/tmp/pygame-1.9.1release # python setup.py install



Chapter 5

[ 99 ]

Now we should be ready to start using our camera hardware in Python. Let's create 
a new library class for the camera, called camera_ctrl.py. Let's define a couple of 
new imports first, and a handle for our camera:

#!/usr/bin/python

import pygame
import pygame.camera

camera = None

We will need a function to initialize the camera:

def init_camera():
  global camera

  try:
    pygame.init()
    pygame.camera.init()

    # Retrieve instance of camera
    camera = pygame.camera.Camera("/dev/video0",(1280,720))
  except Exception, err:
    camera = None
    print "Problem initializing camera"
    print err 

You can see that we first initialize the pygame library and then we initialize the 
camera. After that, we retrieve the camera object from the library and we set it up to 
take pictures in 720p resolution from /dev/video0. After initialization, we are ready 
to define a method to take a picture, and define a simple main method if we call this 
class directly:

def take_picture(filename):
  global camera

  if not camera == None:
    try: 
      camera.start()

      img = cam.get_image()
      img = cam.get_image()

      pygame.image.save(img, filaname)
      camera.stop() # Close the camera

      return 0
    except Exception, err:"
      print "Pygame threw exception:""
      print err"
      return 1"

  else:
    print "Unable to take picture, camera not initialized?"



Implementing Periodic Tasks

[ 100 ]

    return 1 #Failed taking the picture

if __name__ == "__main__":
  init_camera()
  take_picture("selftest.jpg")

In the take_picture function, we start the camera and take a picture. Actually, two 
pictures. This is on purpose, since we noticed that if we only take one picture, the 
automatic white balance algorithm on our camera did not have enough time to adjust 
to the environment, and the pictures turned out too dark. Go ahead, comment out one 
of those get_image() function calls, and check how your camera performs. Now if 
you execute this class, it will create a picture selftest.jpg in the same folder.

This is all that is needed to take a picture with the camera module on the cape 
(or from a camera connected to the USB port). Even though this was a very brief 
introduction to (the camera) capes, you can see that using one of these capes is not 
that difficult. The reference manual of the cape will give all the necessary instructions 
on how to use the cape, and all you have to do is plug it in correctly and set up the 
needed software support. If you have several capes, or you have decided to use some 
other Linux distribution on your Beagle, it will require some more advanced skills 
to set up a proper compiling environment. But if you have decided to take that road, 
don't worry, there are plenty of instructions around the Internet on how to do it.

Summary
In this chapter we did quite a bit of coding to extend our server and client programs, 
and they have become quite useful now, haven't they? Hopefully, we have shown 
you enough here to ensure you have a good understanding how to extend the 
software for your own needs. We now also have a working setup to access camera 
hardware on (or connected to) our board. Considering the previous movement 
sensor example, this must have given you plenty of ideas already.

The hardware example we went through in this chapter was actually the last 
complete hardware design that we will be going through in this book. We 
believe that since you have come this far already, you now have a good, general 
understanding how different types of components can be integrated to our target 
board. And even if you don't readily know how to add some components, we're sure 
you have a good basis to start studying and experimenting on your own.

In the next chapter, we will jump a bit to a different environment, and start creating 
an Android application that you can use on your smartphone. Yes, you guessed it—
our target will be to connect to our server from outside of our home network so that 
you will be able to operate features on your server from virtually anywhere in the 
world! Just think of the possibilities!



Creating an Android Client
So far, we have been using a Python program to talk to another Python program. 
But as we mentioned in Chapter 3, Creating the Client and Server Applications, socket 
streams are a very easy way to create platform-agnostic interfaces. In this chapter we 
will demonstrate a concrete example of the same. Our target is to build an Android 
application that will connect to our server and implement the most important 
interfaces that the command-line Python client has, and also add a couple of new ones.

We will not go too deeply into Android programming here, and some previous 
experience in Java and/or Android programming will be very helpful when moving 
forward, though not necessary.

Setting up our Android project
On your browser, navigate to http://developer.android.com/sdk/index.html; 
the website should present you with a download link to the appropriate Android 
Development Tools (ADT) bundle. The web page automatically provides a proper 
version for your working platform, and thus downloading and installing it is a fairly 
straightforward process.

If you already have an existing Eclipse installation on your machine, 
you can also save some disk space and download only the ADT 
part from the same page. The installation process is slightly more 
complicated in this case, but the instructions on the web page can help 
you with that.



Creating an Android Client

[ 102 ]

Open the ADT bundle (or the Eclipse environment) that you've just installed.  
Before we start a new project, you will most likely have to download an SDK that 
is suitable for your particular device. In our example, we will be using Android 
4.0 (code-named "Ice Cream Sandwich"). However, we will avoid using any recent 
APIs; so if you have an existing installation, it is not necessary to update the SDK. If 
you are just setting up the environment for the first time, these instructions can be 
useful. If you wish to execute the application on your own device, you need to check 
the Android version running on your phone; just navigate to the Settings page and 
confirm your Android version.

To download an SDK in Eclipse, from the menu bar (all the menu bar locations 
provided here are from the Linux SDK; these may wary slightly on other platforms), 
select Window | Android SDK Manager. The tool will automatically contact Google 
servers and display the options for different SDK downloads. By default, the newest 
SDK will be installed. In the screenshot that follows, you can see that we have 
additionally chosen Android 4.0 (API 14) SDK for installation:

Click on Install xx packages…, and in the next window choose Accept license and 
click on Install. Depending on your connection speed, this will take several minutes; 
so, go grab a cup of coffee, and let's talk about the emulator for a moment.



Chapter 6

[ 103 ]

For the purpose of development, an emulator is invaluable. The emulator that comes 
with the SDK allows us to basically run the exact same application on your computer 
screen without having to always deploy your application to a real device. This not 
only saves time, but also helps with debugging. Eventually, of course, we will want to 
use our own device. For this purpose, depending on the platform, you will need some 
additional preparation so that your ADT can talk to your device without any issues.

For Windows, you will need a suitable USB driver for your device. This will most 
likely be found on the manufacturer's website. You can also try searching for "USB 
driver Android phone model".

In Linux, it will be enough to give appropriate udev privileges to your USB  
device. You can check your manufacturer's USB ID from the following list:  
http://developer.android.com/tools/device.html#VendorIds. Once you  
have identified your ID, create a new rule file for Android as follows:

/etc/udev/rules.d$ sudo nano 99-android.rules

In the rule file, enter the following string:

SUBSYSTEM=="usb", ATTR{idVendor}=="04e8", MODE="0666", GROUP="plugdev"

Remember to change "04e8" with the manufacturer ID of your device.

In case your manufacturer ID was not listed in the Android developer 
page, you can use the command lsusb, and try to locate your device ID. 
It will be the "XXXX" part of the character ID, like this:

jlumme@simppa:~$ lsusb
Bus 003 Device 006: ID 13fe:4100 Kingston Technology 
    Company Inc. 
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 
    root hub
...
Bus 003 Device 007: ID 04e8:6866 Samsung Electronics 
Co., Ltd

On Mac OS X, there are no changes required for the SDK to be able to connect to 
your device.

Hopefully the SDK is already installed by now, so we can create a new project. 
Navigate to File | New | Android Application Project.



Creating an Android Client

[ 104 ]

You are presented with the New Android application window. Let's call our 
application BBClient. If you wish to run your application on your phone, it will be 
important at this point to choose the correct Android version as our Target SDK.

After you have named the application and chosen the appropriate SDK versions,  
you can use the default values (select Next) for the rest of the options, and click 
Finish in the last dialog. This will create a working project, and we are ready to  
start programming.

Before we start writing any additional code, let's verify whether we can run our 
project in the emulator.

Creating an emulator
We should first create a new emulator for ourselves. From the menu bar, navigate to 
Window | Android Virtual Device Manager; there should be no emulators defined 
yet. Click on the Manager button; it should open up a new window where we can 
create new emulator targets.



Chapter 6

[ 105 ]

Click on New to create a new emulator. For the name, you can enter, for example, 
Emulator4.0 and choose some device skin for it (Device). We chose Nexus 4, and 
then from Target we selected the SDK we downloaded. We enabled the Use host 
GPU checkbox, and we left the rest of the options in the default state. The selection 
should look like this:

Now that we have created an emulator, we can close the window. Next, we 
should create a new run configuration. From the menu bar, select Run | 
Run configurations. Right-click on the Android Application tab to create a new 
configuration, and name it, for example, 4.0 Emulator. Enter BBClient as our project 
to launch, and then go to the Target tab. Make sure that Always prompt to pick a 
device is selected; you should see our freshly created Emulator 4.0 there. We can 
now click on Run and another window should pop up asking where to launch our 
application. If you don't currently have your device connected, only the Launch a new 
Android virtual device option should be available, check it and click on OK. 



Creating an Android Client

[ 106 ]

The emulator should start now, post which the APK is installed and the  
program starts. 

If you are having problems starting the emulator, you might want to 
try disabling the Use host GPU option, as this is known to sometimes 
cause problems on some hardware configurations. You could also try 
a newer SDK (of course, it might make your application look different 
than it does on your actual device). Disabling GPU acceleration will 
make the refresh rate on the emulator much slower, but for this type of 
application, it's not so important.

You should see a window like the following screenshot:



Chapter 6

[ 107 ]

The socket client on Android
In a similar fashion as we did for our Python client application, we will create a 
socket client for our server in Android.

Defining the UI components
First, let's create the UI for our application. We will design a very basic-looking UI 
that will be functional, above all. Of course, once you have the complete application 
logic, nothing will stop you from rewriting the UI with fancier graphics. For the 
main layout, we will use RelativeLayout, as it is easy to understand. In the Package 
Explorer pane on the left, navigate to res | layout, and double-click on activity_
main.xml so that it opens in the editor pane. Our target will be to define a layout that 
looks similar to this:

We will only need the TextView, Button, and View components in our UI. You can 
see that ADT already created a layout for us, where a TextView component has been 
added. We can use this view as our Debug window, so let's leave it there for now, 
and add the other components in the top part of our UI:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/ 
    android"
  xmlns:tools="http://schemas.android.com/tools"
  android:layout_width="match_parent" 
  android:layout_height="match_parent"
  android:paddingBottom="@dimen/activity_vertical_margin"
  android:paddingLeft="@dimen/activity_horizontal_margin"
  android:paddingRight="@dimen/activity_horizontal_margin"
  android:paddingTop="@dimen/activity_vertical_margin"
  tools:context=".MainActivity" >
<RelativeLayout



Creating an Android Client

[ 108 ]

  android:id="@+id/top_section" 
  android:layout_alignParentLeft="true"
  android:layout_alignParentTop="true" 
  android:layout_width="fill_parent"
  android:layout_height="wrap_content" 
  android:orientation="horizontal" >
  <TextView
    android:id="@+id/connection_state" 
    android:layout_width="200dp"
    android:layout_height="wrap_content"   
    android:layout_centerVertical="true"
    android:text="@string/connection_state_str" />
  <Button
    android:id="@+id/connect_button"  
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    android:layout_toRightOf="@id/connection_state"
    android:text="@string/connect_button_str"
    android:onClick="uiEventHandler" />
</RelativeLayout>

After the main RelativeLayout definition, we have defined another 
RelativeLayout definition that only contains the top two elements. We will call this 
sub layout as "top_section".

Defining layouts inside one another is an easy way to 
compartmentalize the UI elements; you can then mix and 
match layouts in different parts of the screen.

To force some rendering consistency, we specify the first TextView (connection_
state) to be 200dp in width, and set the "fill_parent" keyword for the Button. 
Also note the property for our button "onClick". This parameter is important as it 
defines the handler for this button. In our case, clicking on this button will always 
call the function "uiEventHandler"—we will implement it later. After this, we will 
add the first separator as shown:

<View
  android:id="@+id/first_separator" 
  android:layout_width="fill_parent"
  android:layout_height="1dp" 
  android:layout_below="@id/top_section"
  android:background="@android:color/darker_gray"/>



Chapter 6

[ 109 ]

The View element serves as a separator by being a 1px line that extends the  
whole window.

You might have noticed that we defined quite a few "android:text" elements. 
These need to correspond to elements found in the file "strings.xml" under res | 
values. We set them up like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>
  <string name="app_name">BBClient</string>
  <string name="action_settings">Settings</string>
  <string name="connection_state_str">Not connected</string>
  <string name="connect_button_str">Connect</string>
</resources>

To see how the changes have affected our app, save the XML files and launch the 
application. Notice how without a single line of actual Java code, we already created 
roughly 30 percent of our application UI.

Let's continue defining the next section of the UI in the activity_main.xml file.

<RelativeLayout
  android:id="@+id/refresh_state_section" 
  android:layout_alignParentLeft="true"
  android:layout_below="@id/first_separator" 
  android:layout_width="fill_parent"
  android:layout_height="wrap_content" 
  android:orientation="horizontal" >
  <TextView
    android:id="@+id/current_state_label" 
    android:layout_width="200dp"
    android:layout_height="wrap_content" 
    android:layout_centerVertical="true"
    android:text="@string/current_state_label_str" />
  <Button
    android:id="@+id/refresh_button" 
    android:layout_width="fill_parent"
    android:layout_height="wrap_content" 
    android:layout_toRightOf="@id/current_state_label"
    android:text="@string/refresh_state_str" 
    android:enabled="false"
    android:onClick="uiEventHandler" />
</RelativeLayout>



Creating an Android Client

[ 110 ]

We call this section "refresh_state_section", and it only holds one TextView 
with a Button element to refresh the state. Here, notice the new element in our 
"refresh_button" section called enabled="false". As you have already guessed, 
this defines that our Button element will be disabled by default.

Next, we will define the section where the data from the temperature and light 
sensors is shown. Since this element has four components, we will use LinearLayout 
for it; with this layout type it will be easy to set them all with equal shares of the 
screen's real estate. Add the following section to the activity_main.xml file:

<LinearLayout
  android:id="@+id/actual_state_section"
  android:layout_alignParentLeft="true"
  android:layout_below="@id/refresh_state_section"
  android:layout_width="fill_parent" 
  android:layout_height="wrap_content"
  android:orientation="horizontal" >
  <TextView
    android:id="@+id/temperature_label" 
    android:layout_width="0dp"
    android:layout_weight="1" 
    android:layout_height="wrap_content"
    android:text="@string/temperature_label_str" />
  <TextView
    android:id="@+id/temperature_value" 
    android:layout_width="0dp"
    android:layout_weight="1" 
    android:layout_height="wrap_content"
    android:text="@string/temperature_value_str" />
  <TextView
    android:id="@+id/lightlevel_label" 
    android:layout_width="0dp"
    android:layout_weight="1" 
    android:layout_height="wrap_content"
    android:text="@string/lightlevel_label_str" />
  <TextView
    android:id="@+id/lightlevel_value" 
    android:layout_width="0dp"
    android:layout_weight="1" 
    android:layout_height="wrap_content"
    android:text="@string/lightlevel_value_str" />
</LinearLayout>



Chapter 6

[ 111 ]

With LinearLayout, we have set each layout_width component to 0dp, and set 
layout_weight to "1". This will make the layout manager choose an equal size for 
the components and spread them across the window with equal sizes.

Lastly, let's add the final alarm section, and the debug window.

<View
  android:id="@+id/second_separator" 
  android:layout_width="wrap_content"
  android:layout_height="1dp" android:layout_marginTop="4dp"
  android:layout_below="@id/actual_state_section"
  android:background="@android:color/darker_gray" />
<RelativeLayout
  android:id="@+id/alarm_section" 
  android:layout_alignParentLeft="true"
  android:layout_below="@id/second_separator"
  android:layout_width="fill_parent" 
  android:layout_height="wrap_content"
  android:orientation="horizontal" >
  <TextView
    android:id="@+id/alarm_label" 
    android:layout_width="wrap_content"
    android:layout_height="30dp" android:layout_marginLeft="4dp"
    android:text="@string/alarm_label_str" />
  <TextView
    android:id="@+id/alarm_state" 
    android:layout_width="wrap_content"
    android:layout_height="30dp" 
    android:layout_toRightOf="@id/alarm_label"
    android:text="@string/alarm_state_str" />
  <Button
    android:id="@+id/alarm_reset_button" 
    android:layout_width="wrap_content"
    android:layout_height="wrap_content" 
    android:layout_alignParentLeft="true"
    android:layout_below="@id/alarm_label" android:enabled="false"
    android:onClick="uiEventHandler"
    android:text="@string/alarm_reset_button_str"/>
</RelativeLayout>
<TextView
  android:id="@+id/debug_view" 
  android:layout_width="fill_parent"



Creating an Android Client

[ 112 ]

  android:layout_height="fill_parent"   
  android:layout_below="@id/alarm_section"
  android:scrollbars = "vertical" android:maxLines = "500"
  android:focusable="true" 
  android:focusableInTouchMode="true"
  android:background="@drawable/debug_view_border"
  android:text="@string/debug_window_str" />
</RelativeLayout>

There is nothing new here, except in the last component "debug_view". We have 
used a new XML property defining a background for the TextView component. The 
"@drawable/debug_view_border" component actually points to the files inside the 
folder at res | drawable (there is one for each resolution). This property defines the 
background for the view. Add a new XML file called "debug_view_border.xml" to 
all the different "drawable" folders with following definitions:

<?xml version="1.0" encoding="UTF-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">
  <solid android:color="#FFFFFF"/> <corners android:radius="3dp" />
  <padding android:left="10dp" android:top="10dp"
  android:right="10dp" android:bottom="10dp" />
  <stroke android:color="#4B1A57" android:width="2dp" />
</shape>

There are still some strings that we need to define for our UI, those that we have 
referenced in our activity_main.xml file. Open strings.xml by navigating to res 
| layout, and add the following strings there:

  <string name="current_state_label_str">Current state:</string>
  <string name="refresh_state_str">Refresh</string>
  <string name="temperature_label_str">Temperature:</string>
  <string name="temperature_value_str">--</string> 
  <string name="lightlevel_label_str">Light level:</string>
  <string name="lightlevel_value_str">--</string> 
  <string name="alarm_label_str">Alarm state:</string>
  <string name="alarm_state_str">--</string> 
  <string name="alarm_reset_button_str">Reset alarm</string>
  <string name="debug_window_str"></string>

Now our UI's main functionality is complete. When you launch this application, it 
should look like the following screenshot:



Chapter 6

[ 113 ]

There is one more XML definition that we will have to define for this application. 
Remember how in the end of the previous chapter, we added support for a camera 
to Beagle? Well, in this chapter, you will be sending images from Beagle to your 
smartphone; so we need to create a new window for this purpose. Add a new layout 
resource (in the Package Explorer pane, right-click on the res | layout folder, and 
navigate to New | Android XML) called downloaded_image_dialog.xml, and add 
the following lines of code in it:

<LinearLayout 
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:id="@+id/dialog_root" android:orientation="horizontal"
  android:layout_width="fill_parent"   
  android:layout_height="fill_parent"
  android:padding="10dp">
  <ImageView android:id="@+id/actual_image" 
    android:layout_width="fill_parent"
    android:layout_height="fill_parent" />
</LinearLayout>

Now that our UI definition is ready, we can start implementing the actual beef 
around our application's bones.



Creating an Android Client

[ 114 ]

Application permissions
Android can impose quite a fine-grained security control if desired, and these 
restrictions can be defined on a per-application basis. During development, each 
application has a file that defines which types of services it will request from the 
platform. The file that holds these permissions (and some other information) is  
called AndroidManifest.xml. It is in the base of your project directory structure.

Since our application uses socket connectivity, we need access to the Internet. For 
this purpose, you need to add the following two permissions to the manifest file  
(add the highlighted part):

... 
<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="14" />

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission 
    android:name="android.permission.ACCESS_NETWORK_STATE" />

<application
android:allowBackup="true"
...

The support classes
As you remember, the first thing that we need to define is a communication protocol 
so that our programs can understand each other. From the toolbar, navigate to New 
| Class to create a new class named BeagleProtocol.java. Make sure that you 
create it in the same package as MainActivity.java. This class will contain exactly 
the same constants as before.

public final static short MT_REPLY_SHORT                = 10; 
public final static short MT_REPLY_PL_CURRENT_CONFIG    = 11;
public final static short MT_REPLY_CONFIG_CHANGE_RESULT = 12;
public final static short MT_REQUEST                    = 13;
public final static short MT_REQUEST_PL_CONFIG_CHANGE   = 14;

public final static short MT_INFO_INITIAL_HELLO         = 15;
public final static short MT_INFORM_ALARM_STATE         = 16;
public final static short MT_CAMERA_IMAGE_DATA          = 17; 
public final static short MT_DISCONNECT                 = 0;

public final static short ACTION_READ_TEMPERATURE       = 1;
public final static short ACTION_READ_LIGHT_LEVEL       = 2;



Chapter 6

[ 115 ]

public final static short ACTION_READ_CONFIG_SETTINGS   = 3;
public final static short ACTION_CONFIG_CHANGE          = 4;
public final static short ACTION_READ_ALARM_STATE       = 5;
public final static short ACTION_RESET_ALARM            = 6;

public final static String CONFIG_ITEM_TEMPERATURE_READ_DELAY = 
    "delay_between_temperature_measurements";
public final static String CONFIG_ITEM_LIGHTSENSOR_READ_DELAY = 
    "delay_between_lightsensor_measurements";

public final static short REPLY_CONFIGURATION_CHANGE_OK     = 41;
public final static short REPLY_CONFIGURATION_CHANGE_FAILED = 42;
public final static short REPLY_ALARM_RESET_OK              = 43;

public final static short PAYLOAD_FIXED_SINGLE_VALUE = 2;
public final static short PROTOCOL_VERSION = 3;

//Android UI specific constants
public final static short SERVER_CONNECTED = 60;
public final static short PROTOCOL_READ    = 61;
public final static short RESET_ALARM      = 63;
public final static short RETRIEVE_IMAGE   = 64;
public final static short IMAGE_RETRIEVED  = 65;

Before we can start writing code that communicates with the server, we need to 
create one more helper class to communicate between the UI and network threads.

Android has a thread-safe UI framework, which is somewhat rare 
actually. This should (in theory) provide an always responsive UI; 
however, it does present some peculiar challenges and limitations. 
One of those is network communication. They must all be done in 
another thread, and they cannot touch any UI elements. There are a 
couple of mechanisms provided to still receive some type of feedback 
from a networking thread; for example, you can read about the Timer, 
AsyncTask, and Handler functionalities. In our program, we will be 
using a Handler functionality to pass messages "back to the UI".

Define yet another class called Parcel.java, and add the following lines to it:

public class Parcel {
  public String alarmState   = "";
  public String temperature  = "";
  public String lightlevel   = "";
  public short protocollevel = 0;
  public byte[] imagePointer;
}



Creating an Android Client

[ 116 ]

The purpose of this class will be only to hold messages and data from the network 
thread that we want to pass to the UI via the Handler class. You will see how we can 
use it soon.

The main UI
Now that we have the required helper classes and UI definitions in place, let's start 
working on the main classes by adding some variable definitions to MainActivity.
java.

private String SERVER_ADDR = "192.168.7.2"; //USB connected!
private int SERVER_PORT    = 7777;

// Variables that are used for UI
private int systemProtocolVer    = 0;
private String systemTemperature = "--";
private String systemLightLevel  = "--";
private String systemAlarmState  = "--";
private ImageView alarmImage     = null;

// Internal application state and helper variables
private String messageFromNetworkThread = "";
private boolean connectedToServer        = false;
private int lineHeight;

//Main context
Context mainContext;

// Handler that will receive messages from NetworkTask
final Handler uiHandler = new Handler();
// UI elements
private TextView debugWindow, connectionState, temperatureState,  
  lightState, alarmState;
private Button connectButton, refreshButton, resetAlarmButton;
//Network thread
private NetworkTask nt;

Note here that we have hardcoded our server address to 192.168.7.2. This means the 
emulator is going try to connect to the Beagle that is attached to the development PC via 
USB. For example, on your phone, of course this address is not available, so when you 
want to connect to the Beagle with your actual phone, you will have to insert network 
cable to the board, and check the IP address (using ifconfig eth0). For now, you will 
have to have your phone also connected to your local network (Wi-Fi), since we are 
not using public IP addresses here. We will talk about connecting over your cell phone 
operator's network to your public IP address at the end of this chapter. 



Chapter 6

[ 117 ]

Next, we will define a debug output function that will print information to the  
debug view:

private void debug(String message) {
  Log.v("jlumme", "main/" + message);
  debugWindow.append(message + "\n");

  // Check if we should scroll
 if (debugWindow.getHeight() < (debugWindow.getLineCount()  
     * lineHeight) ) { 
   debugWindow.scrollTo(0, 
     (debugWindow.getLineCount() * lineHeight ) – 
     debugWindow.getHeight() + lineHeight);
  }
} 

The debug function will print information to Android's LogCat (the logging 
mechanism in Android), and also to our debug window on the device. Notice that here 
we defined a keyword "jlumme", which we use to filter out the output in LogCat; you 
should define your keyword, and add a filter to LogCat. We also use features of the 
TextView component to decide when we need to scroll our output window.

Next we will take a look at the onCreate method, which is the first method to be 
called when any activity is created. As this method is the onCreate method of our 
MainActivity.java file, it is also the entry point to our program.

@Override
protected void onCreate(Bundle savedInstanceState) {
  super.onCreate(savedInstanceState);
  setContentView(R.layout.activity_main);
  mainContext = this; //Save our context

  debugWindow = (TextView) findViewById(R.id.debug_view);
  debugWindow.setMovementMethod(new ScrollingMovementMethod());
  lineHeight = debugWindow.getLineHeight();
  connectionState = (TextView) 
    findViewById(R.id.connection_state);
  temperatureState = (TextView)  
    findViewById(R.id.temperature_value);
  lightState = (TextView) findViewById(R.id.lightlevel_value); 
  alarmState = (TextView) findViewById(R.id.alarm_state);

  connectButton = (Button) findViewById(R.id.connect_button);
  refreshButton = (Button) findViewById(R.id.refresh_button);
  resetAlarmButton = (Button) findViewById(R.id.alarm_reset_button);



Creating an Android Client

[ 118 ]

  debug("Application loaded");
}

We can use the findViewById function to get handles to the UI elements that we have 
defined in the activity's XML files. We do this for future use and for convenience.

Next, let's add a function that will be responsible for showing the image sent by  
the server:

private void showDownloadedImage() {
  
  ImageView tempImageView = alarmImage;

  //Inflate a layout from our resource files
  AlertDialog.Builder imageDialog = new    
    AlertDialog.Builder(mainContext);
  LayoutInflater inflater = LayoutInflater.from(mainContext);
  View layout = inflater.inflate(R.layout.downloaded_image_dialog,
    (ViewGroup) findViewById(R.id.dialog_root));

Most importantly, in this function, we set tempImageView to point to the variable 
alarmImage. This image has already been downloaded by NetworkThread, and the 
image data passed to the UI thread via the handler (we will show the code soon). 
After this, the function creates a new AlertDialog, and inflates the layout we 
defined in downloaded_image_dialog.xml. Lastly, we create a new View from the 
layout, and show the loaded image as follows:

  ImageView image = (ImageView)  
    layout.findViewById(R.id.actual_image);    
  image.setImageDrawable(tempImageView.getDrawable());
  imageDialog.setView(layout);
  imageDialog.setPositiveButton("OK" , new  
    DialogInterface.OnClickListener(){

      //Cleanup will happen here
      public void onClick(DialogInterface dialog, int which) {
        dialog.dismiss();
        alarmImage = null;
      }
    });

  imageDialog.create();
  imageDialog.show();
} //showDownloadedImage()



Chapter 6

[ 119 ]

After passing the image data to ImageView, we define a simple click listener for 
DialogInterface that will dispose of the view (and also the downloaded image). 
Lastly, show the view with the image to the user.

At this point, we have only defined the main control logic of the UI. Let's now define 
the function uiEventHandler that we mentioned during the definition of our UI 
layout XML file.

public void uiEventHandler(View v) {

  if (v == connectButton && !connectedToServer ) {
    debug("Connecting to " + SERVER_ADDR + ":" + SERVER_PORT);      
    new Thread(new Runnable() {
      public void run() {
        nt = new NetworkTask(SERVER_ADDR, SERVER_PORT, handler);
        nt.run();
      }
    }).start();
  }
  else if (v == connectButton && connectedToServer) {
    debug("Disconnect button pressed");
    nt.alive = false;
    nt = null;

    connectedToServer = false;
    connectionState.setText("Not connected");
    connectButton.setText("Connect");

    refreshButton.setEnabled(false);
    resetAlarmButton.setEnabled(false);

  } else if (v == refreshButton ) {
    debug("refresh button pressed");
    nt.messageQueued = BeagleProtocol.REFRESH_DATA;
  } else if (v == resetAlarmButton ) {
    debug("Alarm reset requested");
    nt.messageQueued = BeagleProtocol.RESET_ALARM;
  }
}



Creating an Android Client

[ 120 ]

This function controls all of the application input from the user. It takes care of 
starting an instance of NetworkTask (in a separate thread), passing execution 
orders to it when appropriate, and also handles the connection and disconnection 
procedures. This is the function that you would touch if you add any new UI items, 
or change the execution flow of the application. Note also how we pass a "handler" 
pointer to the NetworkTask class. This handler will be defined next, and it is the way 
through which our network thread will be able to reach our UI thread.

Now we're left to define Handler and the support code that takes care of updating 
the UI. First, we will define the handler.

@SuppressLint("HandlerLeak")
final Handler handler = new Handler() {
  @Override
  public void handleMessage(Message msg) {
    Log.v("jlumme", "handler/message received");
    Parcel p;
    switch (msg.what) {
    case BeagleProtocol.PROTOCOL_READ:
      p = (Parcel) msg.obj;
      systemProtocolVer = p.protocollevel;
      messageFromNetworkThread = "Server protocol version: " +  
        Integer.toString(p.protocollevel);

      connectedToServer = true;
      break;

    case BeagleProtocol.REFRESH_DATA:
      Log.v("jlumme", "handler/Temperature read");
      p = (Parcel) msg.obj;
      systemAlarmState = p.alarmState;
      systemLightLevel = p.lightlevel;
      systemTemperature = p.temperature;
      messageFromNetworkThread = "Data refreshed";
      break;

    case BeagleProtocol.IMAGE_RETRIEVED:
      p = (Parcel) msg.obj;
      
      //Retrieve the image from the parcel      
      Bitmap bmp=BitmapFactory.decodeByteArray  
        (p.imagePointer,0,p.imagePointer.length);
      alarmImage = new ImageView(mainContext);



Chapter 6

[ 121 ]

      alarmImage.setImageBitmap(bmp); 
      Log.v("jlumme", "Image loaded");
      break;
   
    default:
      break;       
    }

    //Schedule UI update
    uiHandler.post(uiHandlerRunnable);
  }
};

This code is called by NetworkTask to inform the UI that there is now some new 
information it needs to react to. This function receives a pointer to a Message class 
from the system that can be used to identify the different types of events that 
happened via the Message.what integer. Did you notice how we are using our 
Parcel class here? The Message class also has a variable obj that acts as a pointer 
to an arbitrary object; here we use it for the Parcel class. This pointer is set in 
NetworkTask, and since we know which data is available at which update (by 
checking msg.what), we can safely access the available information.

This way we are free to send any type of data back, as long as we take care to properly 
access those objects. After we have updated our internal states and variables, we 
schedule an actual UI update to take place sometime later using uiHandlerRunnable.

It might be difficult to immediately see the relation between the UI thread 
and NetworkTask (after all, we started it in a new thread!), but just keep 
in mind that the UI thread doesn't want to depend on any other thread. It 
only has some "trusted friends" (such as uiHandlerRunnable) who can 
pass its information when convenient, but strangers are not welcome.

In the previous code, we used uiHandler to schedule a UI update, and now we will 
add the necessary Runnable that will perform it.

final Runnable uiHandlerRunnable = new Runnable() {     
  public void run() {
    Log.v("jlumme", "Updating the UI");
    if (messageFromNetworkThread != "") {
      debug(messageFromNetworkThread);
      messageFromNetworkThread = "";
    }



Creating an Android Client

[ 122 ]

    if(connectedToServer) {
      connectionState.setText("Connected");
      connectButton.setText("Disconnect");
      refreshButton.setEnabled(true);
      resetAlarmButton.setEnabled(true);
    }

    temperatureState.setText(systemTemperature);
    lightState.setText(systemLightLevel); 
    alarmState.setText(systemAlarmState);

The run() method here will be executed at some point after we have scheduled it 
via the handler, and the UI components are updated with new data. When the user 
requests a refresh of the current server state (temperature, and so on), the alarm state 
is retrieved from the server. Now, we will perform some additional processing for an 
alarm triggered on the server.

    //Check if image retrieval should be scheduled
    if( !systemAlarmState.toLowerCase().equals("all ok") &&  
      !systemAlarmState.equals("--") && alarmImage == null) {
      
      //Build a temporary dialog
      new AlertDialog.Builder(mainContext)
        .setTitle("Alert occured")
        .setMessage("Would you like to retrieve the image captured  
          during the alert?")
        .setPositiveButton("Yes", new      
        DialogInterface.OnClickListener() {
          public void onClick(DialogInterface dialog, int which) { 
            //Schedule image retrieval from the server
            nt.messageQueued = BeagleProtocol.RETRIEVE_IMAGE;
          }
        }).setNegativeButton("No", new  
          DialogInterface.OnClickListener() {
            public void onClick(DialogInterface dialog, int  
              which) {}
      }).show();
    }
 
    //If image has been loaded
    if (alarmImage != null ) {
      showDownloadedImage();
    }
  }//run() 
};//Internal Runnable
} //MainActivity.java



Chapter 6

[ 123 ]

If an alarm has been triggered, an AlertDialog is created to ask the user whether 
he would like to retrieve the image that was taken when the alarm was triggered. 
The handler code is also defined there to initiate an RETRIEVE_IMAGE handling in 
NetworkTask, if the user chooses to do so. Finally, there is a small piece of code that 
checks whether an image has been loaded, and we should show it to the user.

That was it for our MainActivity.java class.

The network thread
Now we still need to define NetworkTask; it handles the actual communication with 
the server. Let's get right to it; create a new class called NetworkTask.java:

public class NetworkTask implements Runnable {

  private boolean datastreamDebug = true;
  public boolean alive            = true;

  //Holds the image that is loaded from the server
  private byte[] alarmImage; 

  //Connection related variables
  private Socket socket;
  private DataInputStream  is;
  private DataOutputStream os;
  private String  serverAddress = "";
  private int serverPort        = 0;

  // Used to send messages for UI thread
  private Handler parent;

  // UI sets this variable to request network activity
  public int messageQueued = 0;

  // Simple output function to LogCat
  private void debug(String message) {
    Log.v("jlumme", "nt/" + message);
  }

  // Function to get a short from 2 consecutive bytes in stream
  public static short getSingleShort(byte[] arr, int off) {
  return (short) (arr[off]<<8 &0xFF00 | arr[off+1]&0xFF);
  }



Creating an Android Client

[ 124 ]

  // Constructor
  NetworkTask(String address, int port, Handler handler) {
    serverAddress   = address;
    serverPort      = port;
    parent          = handler;
    alive = true; //Set to false to end the thread 
  }

NetworkTask extends Runnable, so that it can live separately from our main thread, 
as network activity is not permitted in the main application thread in Android. The 
constructor takes the target node information for the socket connection. The helper 
function getSingleShort() is useful when working with stream data, as we need to 
combine two consecutive bytes to get a Short type. You will see it in use quite often 
when we parse data from the server.

Now let's add the functionality to connect to our server.

@Override
public void run() {
  try {
    debug("Connecting to " + serverAddress);
    socket = new Socket(serverAddress, serverPort);

    debug("Socket established, attempt reading data");  
    is = new DataInputStream(socket.getInputStream());
    os = new DataOutputStream(socket.getOutputStream());
    debug("Streams are ready");

    //Read the initial welcome message
    byte[] readArray = new byte[6];
    int howmany = is.read(readArray, 0, 6);
    
    if (howmany == -1) { 
      debug("Stream has closed. Something wrong with login ?");
      is.close();
      os.close();
      socket.close();
      return;
    }
    debug("Server protocol v:" + getSingleShort(readArray, 4));

    //Inform the UI about protocol version
    Parcel p = new Parcel();
    p.protocollevel = getSingleShort(readArray, 4);



Chapter 6

[ 125 ]

    Message msg = new Message();
    msg.what = BeagleProtocol.PROTOCOL_READ;
    msg.obj = p;

    parent.handleMessage(msg);

When the NetworkActivity thread is started, the run() method is called. Much in 
the same way as with our Python client, we create a socket connection, and read the 
initial welcome message before we start acting on any particular requests. In Java, 
we also need to initialize the input and output streams for our socket. Here you can 
also see the first use of our Parcel class as the content for the message handler. We 
initialize a Message class to hold the type of message (msg.what) and our object 
pointer to the Parcel class. This is the way we can pass data to MainActivity, 
without breaking the UI-threading rules.

Next, NetworkTask will start a wait loop, where it will wait for input from the UI to 
perform other actions within the stream.

    //Message handler loop
    while (alive) {
      if (messageQueued == 0) {
        try {
          Thread.sleep(1000);
        } catch (InterruptedException ie) {}    
      } else {

        debug("msg received, processing");

        //Our reply parcel to UI
        Parcel reply = new Parcel();

        //The output data package 
        byte[] dout = new byte[6];
        dout[0] = (byte) 
          ((BeagleProtocol.MT_REQUEST>> 8) & 0xff);
        dout[1] = (byte) (BeagleProtocol.MT_REQUEST& 0xff);
        dout[2] = (byte) 
          ((BeagleProtocol.PAYLOAD_FIXED_SINGLE_VALUE>> 8) & 0xff);
        dout[3] = (byte) 
          (BeagleProtocol.PAYLOAD_FIXED_SINGLE_VALUE& 0xff); 

        switch (messageQueued) {
        case BeagleProtocol.REFRESH_DATA:
          debug("Data refresh requested");



Creating an Android Client

[ 126 ]

          //Construct message to fetch temperature
          dout[4] = (byte)  
            ((BeagleProtocol.ACTION_READ_TEMPERATURE>> 8) & 0xff);
          dout[5] = (byte) 
            (BeagleProtocol.ACTION_READ_TEMPERATURE& 0xff);
       
          os.write(dout); // Send request

When the thread notices that a message has been scheduled to be sent (variable 
messageQueued is not zero), it wakes up, prepares a Parcel variable for holding 
the reply, and prepares a byte array of 6 bytes that will hold the outgoing message. 
Notice how we preset the values of the first two headers before we even checked the 
message type. This is because our client currently only sends MT_REQUEST messages, 
and we can reuse the same array. Next, the thread starts responding to the REFRESH_
DATA action from the UI.

The byte array dout is controlled byte by byte, and if you are not familiar 
with bit shifting, this array population might look quite confusing. As 
you remember, our protocol uses Short types to relay different kinds 
of information. On 32-bit machines, one Short is usually 2 bytes. So we 
need to fill out each byte by the proper Short "part".

Consider our MT_REQUEST (value 20); on bit level, this is represented 
as 0000 0000 0001 0100. So here we have 16 bits, or 2 bytes. Now 
we have a memory block of 2 bytes to fill with this value of 20. Since 
our system is big-endian, we need to store the most significant bytes 
first, thus, we have to shift 0000 0000 0001 0100 right by 8 bits. 
Technically, we are filling the byte dout[0] with zeros because all our 
values in the protocol are under 255 (the maximum value is represented 
by 1 byte), but if you were to have a lot of message types, or use values 
bigger than 255, bit shifting is needed to get the correct data for a single 
byte. Phew, that was a mouthful!

After sending a message, we will do the same as with our client; we wait for a reply:

          // Reading reply           
          reply.temperature = readReplyFromServer  
            (BeagleProtocol.ACTION_READ_TEMPERATURE);

We handle a reply from a server in a function readReplyFromServer (defined 
shortly), and once we have read the temperature we fill the Parcel variable with 
data, and move onto reading the next variable.

          //We can use the previous data as is
          dout[4] = (byte) 
            ((BeagleProtocol.ACTION_READ_LIGHT_LEVEL>> 8) &0xff);



Chapter 6

[ 127 ]

          dout[5] = (byte)  
            (BeagleProtocol.ACTION_READ_LIGHT_LEVEL& 0xff);
          os.write(dout);

          reply.lightlevel = readReplyFromServer  
            (BeagleProtocol.ACTION_READ_LIGHT_LEVEL);

          //We can use the previous data as is
          dout[4] = (byte) 
            ((BeagleProtocol.ACTION_READ_ALARM_STATE>> 8) &0xff);
          dout[5] = (byte) 
            (BeagleProtocol.ACTION_READ_ALARM_STATE& 0xff);
          os.write(dout);

          reply.alarmState =readReplyFromServer  
            (BeagleProtocol.ACTION_READ_ALARM_STATE);

          //Send the reply to UI thread
          Message refresh = new Message();          
          refresh.what = BeagleProtocol.REFRESH_DATA;
          refresh.obj = reply;

          parent.handleMessage(refresh);         
          break;

Once we have filled our Parcel variable with all the necessary data, we set the 
appropriate Message type, and send the parcel along with it to the UI.

The handling of a RESET_ALARM message is very similar; only the bytes that define 
the action change.

        case BeagleProtocol.RESET_ALARM:
          debug("Alarm reset requested");
          dout[4] = (byte) 
            ((BeagleProtocol.ACTION_RESET_ALARM>> 8) & 0xff);
          dout[5] = (byte) (BeagleProtocol.ACTION_RESET_ALARM& 0xff);
          os.write(rstMsg);

          reply.alarmState = readReplyFromServer 
            (BeagleProtocol.ACTION_RESET_ALARM);
          break;



Creating an Android Client

[ 128 ]

Lastly, we handle the RETRIEVE_IMAGE case.

        case BeagleProtocol.RETRIEVE_IMAGE:
          debug("Retrieve camera image");
          //Read image from server:

          dout[4] = (byte) 
            ((BeagleProtocol.ACTION_RETRIEVE_IMAGE >> 8) & 0xff);
          dout[5] = (byte) 
            (BeagleProtocol.ACTION_RETRIEVE_IMAGE & 0xff);
       
          os.write(dout); // Send request
          readReplyFromServer( 
            BeagleProtocol.ACTION_RETRIEVE_IMAGE);
          
          reply.imagePointer = alarmImage;
          
          //Send the reply to UI thread
          Message camImg = new Message();
          camImg.what = BeagleProtocol.IMAGE_RETRIEVED;
          camImg.obj = reply;
          
          parent.handleMessage(camImg);   
          //Image reading done
          break;
        }
        dout = null;
        messageQueued = 0;
      } // messageQueued != 0
    } //while(alive)

After this, we need to close the streams.

     debug("Closing streams");
     is.close();
     os.close();
     socket.close();
     } catch (IOException e) {
       //Failed closing streams... not much we can do here.
     e.printStackTrace();
     }
   }//run()



Chapter 6

[ 129 ]

There is one more function that we need to talk about; this is the function that reads 
a reply from the server and processes the result:

private String readReplyFromServer(intmessageType) {
  String ret = "";
  int i = 0;
  byte[] incomingData; 
  try {
    switch (messageType) {
    case BeagleProtocol.ACTION_READ_TEMPERATURE:
    case BeagleProtocol.ACTION_READ_LIGHT_LEVEL:
      debug("reading alarm temp/light");

      incomingData = new byte[6];
      i = is.read(incomingData, 0, 6);

      if (datastreamDebug) {
        debug("Server replied with integer:" +  
          getSingleShort(incomingData, 4) + "  
          (we read " + i + " bytes)");
      }
      i = getSingleShort(incomingData, 4);
      ret = Integer.toString(i);

      incomingData = null; //release for garbage collection
      break;

This function is called to read a reply from the input stream. Since we know the 
message we have sent, this information is sent to the function as input, to make the 
processing simpler. We need to be more careful when we are reading the alarm state 
and receiving the captured camera image, since we don't know the exact size of the 
reply. Otherwise, we can read 6 bytes right away. The rest of the function is very 
similar in structure.

    case BeagleProtocol.ACTION_READ_ALARM_STATE:
      debug("reading alarm state");
      incomingData = new byte[4]; 
      int additionalBytesWaiting = 0;

      i = is.read(incomingData, 0, 4);
      if (datastreamDebug) {
        debug("Server informed about remaining bytes:" +              
        getSingleShort(incomingData, 
        2) + " (we read " + i + " bytes)"); 
      }



Creating an Android Client

[ 130 ]

      additionalBytesWaiting = getSingleShort(incomingData, 2);

      //Initialize buffer for reply
      incomingData = new byte[additionalBytesWaiting];
      i = is.read(incomingData, 0, additionalBytesWaiting);    
      if (datastreamDebug) {
        debug("Server sent us rest of datam, (we read " + i + "  
          bytes)");
      }
      ret = new String(incomingData);

      break;
    case BeagleProtocol.ACTION_RESET_ALARM:
      debug("reading alarm reset reply");
      incomingData = new byte[6];
      i = is.read(incomingData, 0, 6);

      if (datastreamDebug) {
        debug("Server replied with integer:" +  
          getSingleShort(incomingData, 4) + "  
          (we read " + i + " bytes)");
      }
      i = getSingleShort(incomingData, 4);

      if (i == BeagleProtocol.REPLY_ALARM_RESET_OK) {
        ret = "Alarm reset";
      } else {
        ret = "Reset failed";
      }
      break;

Now we are left with one more reply type to process, which is the ACTION_
RETRIEVE_IMAGE reply type; it's a bit different from the previous functions, as we 
could (theoretically) have payload data in the size of megabytes here. It starts in the 
usual way:

    case BeagleProtocol.ACTION_RETRIEVE_IMAGE:
      //Header in this message is 4+4 bytes:
      //2 bytes for msg type, 2 bytes for "zero size"
      //and 4 for actual size of the incoming image
      //Maximum image size for 2 bytes would have been only 65535B 
      incomingData = new byte[8]; 
      i = is.read(incomingData, 0, 8);



Chapter 6

[ 131 ]

      //To construct the incoming image size
      byte[] size = new byte[4];
      System.arraycopy(incomingData, 4, size, 0, 4);
      
      ByteBuffer bb = ByteBuffer.wrap(size);
      int remaining = bb.getInt();
      
      if (datastreamDebug) {
        debug("Server informed about remaining bytes:" + remaining +  
          " (we read " + i + " bytes)");
      }

You can see here that our header is actually twisting the rules of our protocol a bit. 
If we would use the regular 2 bytes for the image size, we would be limited to a 
65535-byte image, which we could of course do, but the quality would suffer and we 
would possibly have to drop the resolution as well. What the server did here instead, 
is send 0 bytes in the regular size field, and then append another 4-byte value that 
holds the actual image size. Since the message still has a distinctive header MT_
CAMERA_IMAGE_DATA, we can always prepare for this (though technically, the client 
already knows that the next reply should be image data). Now that the client knows 
the incoming image size, it can proceed with reading it.

      //Separate byte array that holds the alarm image
      alarmImage = new byte[remaining]; 
      
      //Holds the value how many bytes we have already read
      int read_index = 0;
   
      //Loop to read all the data
      while (read_index < remaining) {
        i = is.read(alarmImage, read_index, remaining - read_index);      
        //Reading the complete package, as long as it takes
        read_index += i;
      }
    
      if (datastreamDebug) {
        debug("Server sent us rest of datam, (we read " + read_index  
          + " bytes)");        
      }
    
      size = null;
      break;



Creating an Android Client

[ 132 ]

    }  
  } catch (IOException ioe) {
    debug("ERROR/Failed reading from the stream:");
    ioe.printStackTrace();
  }

  incomingData = null;
  return ret;
} //readReplyFromServer
} //NetworkTask

We are sending quite a bit of data here (well, as compared to our normal message 
sizes), and while it's okay to ask the socket to read, for example, 100 kilobytes from 
the stream, depending on its internal implementation, it most likely won't do that. 
The read function always returns the actual number of bytes read; so here we have 
to keep track of how much data the socket has already retrieved, and how much is 
still left, and keep looping and filling our alarmImage byte array with all the image 
data until the transfer completes.

This is all that is required from the application to read data from the server, and also 
send commands to it. We didn't build all the interfaces yet; from here, it should be 
fairly simple for you to extend the application and implement other interfaces that 
we haven't implemented yet. For example, as you can see, the Settings button we 
have doesn't currently do anything. Wouldn't it be nice if we could set the timers in 
a similar fashion as with the client application (perhaps this time without having to 
type them)?

Before you can test the application against your server, you also need to add the new 
protocol definitions to the server-side protocol, and add the functionality to handle 
these messages. Let's look at the required additions to send images over to the client.

The new server features
We assume that you will use a regular USB camera for Beagle, so we will base this 
example also on that premise. However, if you are using a Camera Cape here, you 
will need to change the GPIO mappings, as the Camera Cape uses a lot of the same 
pins as the header P8 (the one we have used). Both cameras use the default /dev/
video0 interface, so we do not need to modify camera_ctrl.py from Chapter 5, 
Implementing Periodic Tasks.



Chapter 6

[ 133 ]

First, we also need to add the following new headers to the beagle_protocol.py file:

MT_INFORM_ALARM_STATE   = 16
MT_CAMERA_IMAGE_DATA    = 17

ACTION_READ_ALARM_STATE = 5
ACTION_RESET_ALARM      = 6 
ACTION_RETRIEVE_IMAGE   = 7

REPLY_ALARM_RESET_OK    = 43

Also update your protocol version to Version 3. Let's create a new class called 
pir_control.py; we basically just encapsulate the code that we wrote for the test 
application in the previous chapter, and add some file writing logic and camera 
controls to take the picture when the alarm is triggered.

import Adafruit_BBIO.GPIO as GPIO
import time

import camera_ctrl as camera

# Configuration
ALARM_TRIGGER = 6
alert_datafile = "" #set when caller starts this thread

def update_alarm_data(new_state):
  global alert_datafile

  try:
    output = open (alert_datafile, "w")
    output.write(new_state + "\n")
    output.flush()
    output.close()
  except Exception, e:
    print "pir_control/Failed writing new alarm state"
    print e



Creating an Android Client

[ 134 ]

We define two configuration variables, and create a function that will save the  
alarm state to a file. Then we add the same old GPIO initialization code and  
LED-triggering functions.

def indicate_alert(alarm_level):

  if alarm_level == 0:
    GPIO.output("P8_10", GPIO.LOW)
    GPIO.output("P8_12", GPIO.LOW)
    GPIO.output("P8_14", GPIO.LOW)
    GPIO.output("P8_16", GPIO.LOW)
    GPIO.output("P8_18", GPIO.LOW)
    GPIO.output("P8_26", GPIO.LOW)

  if alarm_level >= 1:
    GPIO.output("P8_10", GPIO.HIGH)
  if alarm_level >= 2:
    GPIO.output("P8_12", GPIO.HIGH)
  if alarm_level >= 3:
    GPIO.output("P8_14", GPIO.HIGH)
  if alarm_level >= 4:
    GPIO.output("P8_16", GPIO.HIGH)
  if alarm_level >= 5:
    GPIO.output("P8_18", GPIO.HIGH)
  if alarm_level >= 6:
    GPIO.output("P8_26", GPIO.HIGH)

def init_gpio():
  GPIO.setup("P8_8", GPIO.IN)
  GPIO.setup("P8_10", GPIO.OUT)
  GPIO.setup("P8_12", GPIO.OUT)
  GPIO.setup("P8_14", GPIO.OUT)
  GPIO.setup("P8_16", GPIO.OUT)
  GPIO.setup("P8_18", GPIO.OUT)
  GPIO.setup("P8_26", GPIO.OUT)

Lastly, the code that will manage the PIR sensor and use camera_ctrl.py to take a 
picture when the alarm is triggered is as follows:

def start_monitoring(alarm_state_filename, alarm_image_filename):
  global alert_datafile
  alert_datafile = alarm_state_filename



Chapter 6

[ 135 ]

  alarm_status = "All ok"
  update_alarm_data(alarm_status)

  alarm_buffer = 0
  init_gpio()

  # Initialize the camera
  camera.init_camera()

  while True:
    new_state = GPIO.input("P8_8")
    if new_state == 0:
      alarm_buffer += 1
      indicate_alert(alarm_buffer)

      if alarm_buffer > ALARM_TRIGGER:
        alarm_buffer = 0

        alarm_status = "@%s ALARM" % time.strftime("%Y-%m-%d     
          %H:%M:%S")
        print alarm_status
        update_alarm_data(alarm_status)
        
        # Take a picture
        camera.take_picture(alarm_image_filename)

        for i in range(0,5):
          GPIO.output("P8_26", GPIO.HIGH)
          time.sleep(0.3)
          GPIO.output("P8_26", GPIO.LOW)
          time.sleep(0.3)

    else:
      alarm_buffer = 0
      indicate_alert(alarm_buffer)

  time.sleep(0.1)
if __name__ == "__main__":"
  init_gpio()
  start_monitoring("alarm_testfile.txt", "alarm.jpg")



Creating an Android Client

[ 136 ]

Now our support code is ready, and we can start working on the interfaces to control 
data transfer with the client. Open our beagle_server.py file and start by adding 
a couple of variables to the configuration section, and functions to handle the alarm 
operations, as shown in the following lines of code:

import pir_ctrl
...
alert_datafile = ".alert_data.txt"
alarm_image_name = "alarm.jpg"

def reset_alarm_state():
  alarm_status = "All ok"

  try:
    alarmfile = open(alert_datafile,"w")
    alarmfile.write(alarm_status + "\n")
    alarmfile.close() # Will also flush the data
  except Exception, err:
    print "Problem writing to alarm file"
    print err

  return BP.REPLY_ALARM_RESET_OK

def get_alarm_state():
  print "someone asking for alarm status" 
  alarm = "unknown"

  try:
    alarm = open (alert_datafile,"r").read()
    alarm = alarm.replace("\n","")  #Remove line breaks
    print "read: %s" % alarm
  except Exception, err:
    print "Problem reading alarm file"
    print err

  return alarm

Both of these functions are quite simple, they only read or clear the alarm file. The 
actual file population with the alarm data is the responsibility of the pir_ctrl.py 
class. Let's define the function that starts the monitoring.

def monitor_pir():
  global alarm_image_name
  global alert_datafile

  print "PIR sensor monitoring starting"
  pir_ctrl.start_monitoring(alert_datafile, alarm_image_name)



Chapter 6

[ 137 ]

This function also needs to be called in our main method. We start the following  
new process for it:

if __name__ == "__main__":
  print "Starting Beagle home automation server.."
  reload_configuration()
  #Start PIR monitoring
  alarm_monitor = Process(target=monitor_pir, args=())
  alarm_monitor.start()

We have our new operative functions ready; we are now left with modifying  
the handle_client_request and create_data_packet functions to serve the 
clients. First, we will add the following support code to handle the newly defined 
client requests:

        ...
        data_packet = create_data_packet  
          (BP.MT_REPLY_PL_CURRENT_CONFIG, reply, length)
        if not data_packet == None:
          cs.sendall(data_packet)

      elif request == BP.ACTION_READ_ALARM_STATE:
        reply = get_alarm_state()
        length = len(reply)

        data_packet = create_data_packet(BP.MT_INFORM_ALARM_STATE,  
          reply, length)
        if not data_packet == None:
          cs.sendall(data_packet)
        
      elif request == BP.ACTION_RESET_ALARM:
        reply = reset_alarm_state()

        data_packet = create_data_packet  
          (BP.MT_REPLY_SHORT,reply, BP.PAYLOAD_FIXED_SINGLE_VALUE) 
        if not data_packet == None:
          cs.sendall(data_packet)

      elif request == BP.ACTION_RETRIEVE_IMAGE:

        try:
          imagefile = open (alarm_image_name, 'rb').read()           
          length = os.stat(alarm_image_name).st_size #Get size



Creating an Android Client

[ 138 ]

          data_packet = create_data_packet  
            (BP.MT_CAMERA_IMAGE_DATA, imagefile, length)
          if not data_packet == None:
            cs.sendall(data_packet) # Send the header data first
            cs.sendall(imagefile)   # No packing for image bytes
        except Exception, err:
          print "Sending alarm image failed:" 
          print err

There is some new code in the ACTION_RETRIEVE_IMAGE section that is required 
when we send the image to the client. First of all, we use the File open function with 
the parameter 'rb' to read the image data as binary. Then we use os.stat().st_
size to get the exact size in bytes. With this data, we first prepare a header message 
(which needs to be packed as usual) and send just the byte size of the image data. 
Since this is already in native format, no packing is needed. Lastly, let's add the 
following support code to send two new messages to create_data_packet:

  elif msg_type == BP.MT_REPLY_CONFIG_CHANGE_RESULT:
    packet = pack("!HHH", BP.MT_REPLY_CONFIG_CHANGE_RESULT,  
      data_length, data)

  elif msg_type == BP.MT_INFORM_ALARM_STATE:
    pack_string = "!HH%ds" % data_length
    packet = pack(pack_string, BP.MT_INFORM_ALARM_STATE,  
      data_length, data)   

  elif msg_type == BP.MT_CAMERA_IMAGE_DATA:
    pack_string = "!HHL"
    packet = pack(pack_string, BP.MT_CAMERA_IMAGE_DATA, 0,
      data_length)  

The only new bit here is the pack_string field for MT_CAMERA_IMAGE, as we are using 
a long value to send a 4-byte value (to accommodate the possible size of the image).

These are all of the changes that this chapter requires. It was quite a bit of new code, 
wasn't it? Now our server will be able to monitor its designated area, and if any 
movement is detected in there, it will take a picture of the person/thing triggering 
the alarm, and send the image over to our Android application. With these additions, 
our server can currently only remember the latest alarm that has been triggered. 
How about adding support for the server to log all of the alarms that are triggered, 
instead of just remembering the last one? Also, how about providing support for the 
client to retrieve the whole list, or just the latest alarm? This can be a selection the 
user can choose from. There is a lot of stuff we could do with the camera as well. For 
example, we can now use a module named pygame.movie.



Chapter 6

[ 139 ]

There is one last thing we would like to talk about in this chapter, and that's how 
you can connect your shiny new application to your home server from outside your 
home, using your cell phone provider's network.

Working from outside your home network
There are two things that you have to consider if you want to use your application 
from outside your home network. First of all, the IP address will no longer be part of 
your home network, so you will not be able to connect to your server from another 
network as easily as with the internal LAN IP. If you are so lucky as to have a fixed 
IP and possibly even a domain address, you could still use a similar method as of 
now, but a majority of the users are using connections where the IP address will 
change from time to time.

Fortunately, there are services on the Internet that also allow the "static" addressing 
of dynamic IP addresses. Such services are called DDNS or Dynamic DNS. They 
work in this manner. The users first register for the service, and inform the service 
of their current IP address. After that, the service will map a (more or less) easily 
remembered DNS address to this IP address. After this, the users will be able to 
connect to their dynamic IP address through this "static" DNS record (of course, you 
need to have some type of mechanism to keep this information up-to-date. Many 
of these services have a program that can do this for you). As of this writing, the 
following web services provide this functionality for free:

• No-IP: The URL is http:// www.no-ip.com/
• DNSdynamic: The URL is http://www.dnsdynamic.org/
• Change IP: The URL is http://www.changeip.com/
• FreeDNS: The URL is http://freedns.afraid.org/

Another thing one needs to keep in mind is that your home network most likely has 
a router that is handling the connection to the Internet. In these cases, the users will 
most likely have only one external IP address that belongs to the router. The rest 
of the machines in your home network will have a different IP address that is not 
visible on the Internet. For these machines to connect to the Internet, there has to be a 
Network Address Translation (NAT) service running on the router.

To connect to a machine behind a NAT, you need the port forwarding service to be 
active on the router. This means that if someone is trying to access your external IP 
address with a specific port (such as 7777), the router will know that this connection 
is intended for Beagle and forward it to the appropriate LAN IP address.

www.allitebooks.com

http://www.allitebooks.org


Creating an Android Client

[ 140 ]

The port forwarding setup will, of course, vary depending on the router manufacturer, 
but the principle will always remain the same. First, you need to find out the internal 
IP address of your router. This is the Default Gateway address, and it is listed in your 
Internet connection settings.

On Windows, to open the command prompt press Start, and in the search field type 
"cmd" and press the Enter key. It should open a new command prompt window; 
here you need to type ipconfig /all. This will show you all the network settings, 
and you should be able to find the default gateway.

On Mac OS X, open the terminal, and type netstat -nr.

On Linux, also in the terminal, type route.

Then you will need to use your web browser, to connect to that address. Enter the 
password that you have set, and look for something like "Port forwarding" or "WAN 
forwarding/settings". You can usually recognize this service as the different services 
are listed along with their port numbers. Also the functionality to enter different 
IP addresses to forward to would be listed there, and so on. Googling for "port 
forwarding settings your router brand/model" should give you quite a good idea of 
what these settings will look like on your router.

Once you have found the settings, add the local IP address (for the eth0 address, 
check with ifconfig eth0 on the board) of Beagle, and set the port to 7777 (or to 
the port you have chosen, if you have chosen a different one) to be forwarded from 
outside to inside.

You can also test your port-forwarding configuration using several online tools. For 
example, the tool at http://www.yougetsignal.com/tools/open-ports/ is quite 
nice as it automatically retrieves your external IP address, and all you have to do is 
just enter the port for testing.

Also take note that if you don't connect Beagle to the router for several 
days (it depends on the manufacturer to set the IP lease time), the 
router might "recycle" the IP address back to its "free pool", and assign 
it to someone else next time. So you might want to consider assigning 
a static IP address to it.



Chapter 6

[ 141 ]

Summary
This chapter was quite Android-heavy, and if you just started working with Android, 
you might feel somewhat nauseous. I hope we didn't scare you off by practically 
dumping all that code on you. Even if you didn't have much experience before, 
we're sure that you're off to a great start now. It's exciting to play around with your 
embedded server from your phone. Hopefully, you have also had the time to extend 
the examples that we showed in each chapter, as we're sure you have many ideas on 
how to build something on your own. In Appendix, Security, Debugging, and I2C and SPI, 
among other things we will talk about some more complicated hardware integration 
examples that we will not touch in this book. We will introduce serial port debugging 
and data transfer basics using the SPI and I2C buses.

We would like to leave you with one more thought. Consider the security aspect 
seriously. If you are going to add an interface to control the electric appliances of 
your house, nobody else is responsible for this other than you. You need to be sure 
about your electronic circuits, and also consider the possibility of someone trying to 
crack their way into your server if they find out about it. Throughout this book we 
have used a very simple protocol; it can be deciphered in minutes if needed, and 
without any kind of safeguards. In Appendix, Security, Debugging, and I2C and SPI, we 
will show you how to implement secure encryption and login functionalities, and 
you might want to consider applying the same to all of your communication tools at 
some point.





Security, Debugging, and  
I2C and SPI

In this appendix, we would like to bring you more general information about 
interfacing your Beagle hardware with more complicated devices, such as GPS 
receivers, wireless modules, or perhaps your own microcontroller-driven design for 
some special purpose. When interfacing other self-operating devices, there are a few 
industry standards which we will talk about in detail. An introduction to advanced 
embedded-device-debugging techniques will also be presented, and we will talk 
about the security issues in the current protocol implementation and how to increase 
the security by using data encryption. After reading you will have:

• A general knowledge of the I2C and SPI buses
• An understanding of what is needed for the Linux kernel, or ARM processor 

debugging
• Implemented an encrypted data transfer between our client and server

In the last section of this appendix, you will also find the complete mapping of 
headers P8 and P9. This can serve as a handy reference to find out which pins are 
usable for you, and where to find the desired functionality.

Kernel traces and advanced debugging
We haven't touched upon this topic earlier in the book, but once you get more familiar 
with Beagle, at some point you might start wondering how to integrate some other 
hardware, change the kernel configuration, or even change something in the current 
hardware setup. In all these cases, you will need some more debugging capabilities.



Security, Debugging, and I2C and SPI

[ 144 ]

Boot time kernel traces
The least you will need to do to identify the possible problems with your new kernel 
configuration is to see what is happening during the boot process. For this purpose 
Beagle has serial connector pins in the header J1. This header is next to the P9 pin:

The pin1 pin is marked in the preceding screenshot, and it's the one that is closest  
to the power supply plug. To get serial input/output from this port, the required 
pins are:

Keep in mind that the voltage in these pins is 3.3 volts, and that your USB port 
operates at 5 volts, so you will need a level shifter between them to properly read/
transmit data. There are ready-made USB serial-level shifter cables from several 
companies available. The price should be roughly around 10 USD, and you should 
take one with "female jumper wires" on the other end. The settings for the terminal 
connection will need to be as follows:

Baud rate: 115200, Bits 8, No parity, Stop bits 1, Handshake none

Now you will be able to see all the kernel traces even during the initial boot time 
when connecting to the serial port on your host computer.



Appendix

[ 145 ]

JTAG debugging
Our board also has the capability for proper hardcore debugging through JTAG 
with, for example, OpenOCD. However, as the board ships without the necessary 
header, you will need to solder that in place yourself. This board uses the Texas 
Instruments cTI male JTAG header, so you will need to solder an ARM20cTI20 
JTAG adapter to the board in order to use the normal JTAG cable and debugger. The 
unpopulated header P2 is found on the backside of the board, next to P9. Most of 
the users will not need its deep-level debugging capabilities, so we won't talk about 
setting it up. With this small introduction we're sure that you can find the necessary 
information to go forward, if you do.

The I2C and SPI buses
These two buses are a fairly common way to interconnect the different devices inside 
embedded designs. They are not very complicated, and they do not need many wires 
to operate. Also, their big advantage is easy debugging, as there is only one relatively 
slow data line, which you can decode easily with just a pen and paper (OK, maybe 
you do need a bit of additional hardware, such as a logic analyzer), when trying to 
find the reasons why your bus is not working, or if the data is getting corrupted.

Their disadvantage is perhaps their speed, since they are not too fast. Depending on 
the protocol and its version, the speeds are at maximum in the Mbps range, usually 
less. But with low power peripherals, this is often more than enough.

Most of the time the devices using these communication buses have low-level drivers 
available, so you only need to make the physical connection, configure the bus 
settings, and implement the necessary data-handling logic.

The I2C bus
The Inter-Integrated Circuit (I2C) bus requires only two lines, SCL (serial clock) and 
SDA (serial data). It has addressing properties, so you can use it to communicate with 
multiple devices connected to the same bus. The SCL bus is the clock line, and it is 
used by the master to synchronize the transfers across the bus. The SDA bus is the data 
line, and this line is operated on by both the master and the slave.

Both of the lines are open-drain designs, so they both require one pull-up resistor, as 
only the controller can drive the line low.



Security, Debugging, and I2C and SPI

[ 146 ]

You can think of an open-drain circuit acting as a switch to the 
ground, driven with a FET. The circuit can only connect the line to 
the ground and because of this, we need a pull-up resistor that drives 
the line high otherwise. The open-collector design creates the same 
circuit, but the transistor implementing the switch is a BJT.

Only the master initiates the connections, and the slave waits for commands from a 
master device. Any device can, in theory, be the master; the point is that the master 
"sets the pace" of the clock line. The operation is performed in the following order:

1. Start signal generation
2. Slave address transfer
3. Data transfer
4. Stop signal generation

Transferring a single byte looks like this:

Generating the start signal
When there is no activity on the bus, both the SDA and SCL lines are high (the pull-up 
resistors) and the master can initiate a new transfer. The transfer is initiated by sending 
the "start sequence" to the bus. The start sequence (often referred as START or S-bit) is 
a high-to-low transition of the SDA line while the SCL line is high. This informs all the 
slave devices to start listening to the next incoming addressing information.

The Slave address transfer
The first byte after the START bit is the addressing information. This is a 7-bit 
address, followed by the R/W bit. The R/W bit informs the slave whether it is 
supposed to transmit or receive data. The corresponding slave needs to then respond 
with the ACK bit.



Appendix

[ 147 ]

Transferring data
When the transmission has been agreed upon, the byte-by-byte data transmission 
takes place. A transferred byte is always acknowledged by the receiver with a 9th 
ACK bit. If the receiver doesn't acknowledge the byte, the master can generate a 
STOP event to abort or another START event to retransmit. In case the master does 
not acknowledge a transmission from the slave, the slave releases the SDA line for 
the master to decide whether the transmission will be retried.

Generating the STOP signal
When the transmission is deemed over by the master, it generates a STOP bit. This is 
a low-to-high transition of SDA while the SCL line is high.

The SPI bus
The Serial Peripheral Interface (SPI) bus is a peripheral bus that, like I2C, can connect 
multiple devices to each other, and has a one-master-to-multiple-slaves configuration.

This bus is somewhat more advanced than I2C, as it allows full-duplex operation, 
so that data can be read and transmitted at the same time. It can also operate at 
a significantly faster speed than I2C, as even a speed of 10 Mbps can be reached 
between some devices. It does, however, demand for more lines to operate upon, as 
it needs four wires to function with at least one slave device. Each additional device 
will need an additional line from the master that serves as slave (chip) select line for 
that particular device. The master cannot drive the bus in a "broadcast" mode; the 
specification states that it can only activate one slave at a time. The specified logic 
signals are:

Sometimes those lines are named slightly differently, but the idea behind them 
is always the same. There is a line for the clock that defines the transfer speed, 
separate lines for the transmit and receive operations, and a slave select line to select 
the receiver of the transmission. Since the data is sent on separate lines, and the 
addressing takes place with the slave select line, decoding the SPI transmissions is 
actually easier than it is on I2C, even though you have more lines to watch for.



Security, Debugging, and I2C and SPI

[ 148 ]

In general, if you start integrating peripheral devices into your board, we cannot 
emphasize this enough: a simple USB logic analyzer is invaluable. For example, 
implementing the SPI transmission between your board and a microcontroller is 
surprisingly painstaking without the proper tools.

There are a lot of USB logic analyzers available on the Internet, and 
all of them are usually good enough to investigate any I2C or SPI 
issues that you might have during development (you can lower the 
bus speeds so that even cheaper logic analyzers will be able to decode 
the transmissions). When selecting a logic analyzer for home use 
you should select it mainly considering the software quality. We can 
recommend a product from Saleae, as the software they have created 
is simple to use and very powerful.

Considering the security aspects
Our Android application from Chapter 6, Creating an Android Client, can operate over 
public networks (public from the point of view of your home network). This means 
that basically anyone can connect to your socket, if the connection is currently not 
busy and the person knows your IP address and the socket port you decide to use. 
We have currently not implemented any type of security enforcement; we only drop 
the connection from the server side if we receive an unclear response to our Hello 
Message. However, since we do send the initial data packet in a clearly readable 
form, the person receiving the data can deduce that our server operates with a clear 
text protocol. If this is a malicious attempt, reverse engineering the protocol from this 
point onwards is not too difficult, if time and energy is put to the task.

Of course, all socket communications work on streams, and there are several types of 
security measures that you can take depending on the level of security you feel your 
connection requires.

You are basically only limited by your imagination and the type of security you can 
implement. Let me give you some ideas.

Making the client identify his intentions first
One of the simplest things that you could do is to reverse the initial connection 
procedure. Instead of sending a welcome message, the server would never respond 
to a new socket, but immediately wait for a valid input. You could easily implement 
a protocol-version-checking sequence, so that if this functionality is required, a client 
has to initiate it himself.



Appendix

[ 149 ]

In addition to this, a connection would be silently dropped, if input that is not valid 
is detected. Then a temporary counter would be incremented from this particular IP 
address, and if, for example, three consecutive incorrect sequence initiations follow, a 
ban would be set for this IP address for a specified length of time. Of course, all these 
failed connection attempts need to be logged and perhaps an e-mail should be sent to 
the administrator about it.

Implementing the encrypted password login
Much stronger security is provided by requiring all clients to authenticate themselves 
when they connect. But since sending a password without encryption over the 
network is not a healthy habit, we will also require encryption. Valid login and 
password combinations will be held on a file on the server, and this way only server 
administrator can manage logins. During the initial connection establishment, a valid 
encrypted login-password sequence must be sent to the server, else again the server 
initiates its cold shoulder disconnection sequence. There are several ways to encrypt 
and decrypt data in Python, and we will choose 128-bit AES encryption with preshared 
keys, as that encryption is secure, and available in Android by default as well.

To use encryption on our Beagle, we will need to download a library for this 
purpose from the Internet. So, make sure you are connected (and you have done the 
automatic date configuration part from Chapter 2, Input and Output) and type in the 
following code:

root@beaglebone:~# pip install pycrypto

This will install the necessary libraries to enable encryption on our Python code 
in Beagle. Next, we should create a file that will hold the password data. For 
now, we will not encrypt it, but after reading this chapter, we're sure you will 
have a good idea how to encrypt this data, if you wish to do so. Create a file 
called valid_passwords.txt, and in here, add each user to a separate line in the 
username:password format:

root@beaglebone:~/ch7# cat valid_passwords.txt
jlumme:mypassword
reader:anotherpassword

Now, we are ready to start modifying the actual code.



Security, Debugging, and I2C and SPI

[ 150 ]

Version 2.1 modifications to the server code
Let's start implementing the first two security features to beagle_server.py we have 
talked about so far. First, will need to import an AES cipher from the Crypto library:

from Crypto.Cipher import AES

And then we will need some constants and a lambda definition:

password_filename = "valid_passwords.txt"

# Encryption related definitions
BS = 16 #Our key size (16 bytes -> 128bit encryption)
SECRET_KEY="BeagleHomeAutoma" # Keep it 16 characters if you change

# The data needs to (un-)padded to the BS borders
pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS) 
unpad = lambda s : s[0:-ord(s[-1])]

You can see here that we first defined a filename that will hold a login-password 
combination (we will leave it as a clear text file for now). Then we define the variable 
BS; this defines our block size for the encryption. You could use 16, 24, or 32 here for 
128-, 192-, or 256-bit encryption respectively. We also defined our preshared secret 
encryption key SECRET_KEY that will be known to both the server and the client, and 
encryption and decryption will use this key. If you change it, keep in mind that you 
have to give it a proper block size, otherwise the crypto functions will fail to operate.

Then we defined two lambda functions, pad and unpad. Lambda functions are 
nameless functions that can be defined at any time and always return a value. Here 
we defined two functions that will automatically append or remove padding from an 
input if its size is not equal to the border defined by BS.

Now let's define a function that will read the password file and compare whether the 
supplied login is valid:

def compare_to_valid_logins(username, password):
  pw_list = open (password_filename, 'r').read().splitlines()

  for line in pw_list:
    uname = line[:line.index(":")]
    pword = line[line.index(":")+1:]

    # If username and password match, return 1
    if uname == username and pword == password:
      return 1



Appendix

[ 151 ]

  # If no successful login combination found
  return 0

We read the password file line by line, and compared it with the function arguments 
to see if a matching combination is found. The login-password is supposed to be sent 
separated by the ":" character. Now we will need to implement the actual message 
decryption function. It is somewhat similar to a normal handle_client_request() 
function, but of course with some extras for handling the decryption:

def verify_password(cs):
  try:
    msg = cs.recv(4) # Retrieve the header, this is a blocking call
    header = unpack("!HH", msg) # Decode the mandatory headers

    # Verify that sender sent the PASSWORD header
    if header[0] == BP.MT_PASSWORD:

      # Check how much date is left in the stream
      remaining_size =  int(header[1])
      print "Encrypted package is %d bytes" % remaining_size

      # Read the encrypted package
      encrypted_data = cs.recv(remaining_size)

So far everything is the same as when reading a message from a client. But then we 
need to decrypt the secret data:

      iv = encrypted_data[:16]

      # Initialize our deciphering key
      key = AES.new(SECRET_KEY, AES.MODE_CBC,IV=iv)

      # Rest of the packet is supposed to be login data
      decrypted  = key.decrypt(encrypted_data[16:])
      login_details = unpad(decrypted) # Rmove possible padding

You can see that the client has appended the Initialization Vector (IV) to the first 
16 bytes of the message. An IV is used to initialize the cipher, and it can be chosen 
randomly (again, as long as it is 16 bytes). After that we call the cipher to create us a 
key for decryption with the SECRET_KEY and IV information. Lastly we decrypt the 
data, and remove the possible padding using the unpad lambda function.



Security, Debugging, and I2C and SPI

[ 152 ]

After this we hold the login details in the login_details variable. We will verify 
them with the function that we defined before, as follows:

      # Verify that the format is correct
      if ":" in received_login:
        username = received_login[:received_login.index(":")]
        password = received_login[received_login.index(":")+1:]
        return compare_to_valid_logins(username, password)
      else:
        return 0

  # Any error in the procedure, we just disconnect the client
  except Exception, e:
    print "Something went wrong:"
    print e
    return 0 # Drop the connection

Since it's mandatory for our client to authenticate itself, we also have to be sure 
that the authentication data is available. During startup, we have to check for the 
existence of the password file. In the main function, right in the very beginning, add 
the following code:

 #Check that password file has been defined:
  try:
    with open(password_filename):
      pass
  except IOError:
   print "Password file [%s] not found, exiting" % password_filename
   sys.exit(1)

Lastly, we should add a call to the verify_password() method in our main 
function, right after the client connects to the server:

    client = server_socket.wait_for_client(srv) # blocking!

    result = verify_password(client)

    if not result == 1:
      print "Something wrong, drop the socket"
      client.close()
      continue

Now the server will always expect an encrypted login from a newly connecting 
client. If something doesn't occur the way the server expects it to, it will just drop the 
connection. Next, let's add support for integrating this with our Android client.



Appendix

[ 153 ]

Version 2.2 modifications to Android client code
We do not need too many modifications to MainActivity.java for now. All the 
encryption will be handled in the networking part of our code. On the UI side, we 
will only query the user for a username and password during the connection attempt 
and pass that information to our network thread. So, first we add a couple of new 
variables as follows:

private String username = "";
private String password = "";

To get the login details from the user, we will not modify the existing UI, but instead 
add a new login Alert popup that is shown when the user clicks on the Connect 
button. For this purpose, we need to create a new UI layout definition file called 
password_query.xml. We will create it by navigating to File | New | New Android 
XML file and add it under resources. To this file, add the following definition:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/ 
  android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical" >
  <TextView
    android:layout_height="wrap_content"
    android:layout_width="wrap_content"
    android:id="@+id/login_username_textview"
    android:text="@string/login_username"
    android:textStyle="bold" />
  <EditText
    android:layout_height="wrap_content"
    android:layout_width="match_parent"
    android:id="@+id/login_username_edittext"
    android:inputType="text" />
  <TextView
    android:layout_height="wrap_content"
    android:layout_width="wrap_content"
    android:id="@+id/login_password_textview"
    android:text="@string/login_password"
    android:textStyle="bold" />
  <EditText
    android:layout_height="wrap_content"
    android:layout_width="match_parent"
    android:id="@+id/login_password_edittext"
    android:inputType="textPassword" />
</LinearLayout>



Security, Debugging, and I2C and SPI

[ 154 ]

Now we can implement our loginDialog function as follows:

public AlertDialogloginDialog(Context c, String message) {
  //Inflate the login query window from resources
  LayoutInflater factory = LayoutInflater.from(c);            
  final View textEntryView = factory.inflate(R.layout.password_query, 
    null);
  //Set message and title, and button details
  AlertDialog.Builder alert = new AlertDialog.Builder(c); 
  alert.setTitle("Login"); 
  alert.setMessage(message); 
  alert.setView(textEntryView);

Here we retrieve the layout information from the resources, and start by creating a 
new alert dialog with the information supplied to the function. Next, we will add 
button handlers. First, we will add the "confirm" button as shown:

alert.setPositiveButton("Login", \
    new DialogInterface.OnClickListener() {
  public void onClick(DialogInterface dialog, int whichButton) {
    final EditText usernameInput = (EditText)
      textEntryView.findViewById(R.id.login_username_edittext);
    final EditText passwordInput = (EditText)
      textEntryView.findViewById(R.id.login_password_edittext);

    //Get the text user entered
    username = usernameInput.getText().toString();
    password = passwordInput.getText().toString();
        
    new Thread(new Runnable() {
      public void run() {
        nt = new NetworkTask(SERVER_ADDR, 
          SERVER_PORT, handler, username + ":" + password);
        nt.run();
      }
    }).start();  
  }
});

We add an onClickListener event for the login query window when the user 
clicks on the PositiveButton. It will fetch the data from the EditText fields and 
pass that information to NetworkTask (which we have moved here from the original 
uiEventHandler function). Next, we will add another onClickListener event for 
the NegativeButton as follows:



Appendix

[ 155 ]

  //If user chooses to cancel

  alert.setNegativeButton("Cancel", new 
  DialogInterface.OnClickListener() { 
    public void onClick(DialogInterface dialog, intwhichButton) {
      // Do nothing
    }
  });

Now all that is left is to return the created dialog:

  return alert.create();

Now we will modify the uiEventHandler function. We will remove the 
NetworkTask starting code from here, and instead add the following code to show 
the alert dialog that we just created:

public void uiEventHandler(View v) {
  //Connect button pressed, and we are not connected -> connect
  if (v == connectButton&& !connectedToServer ) {
    AlertDialog a = loginDialog(this, "Login details:");
    a.show();
  }
  //Connect button pressed, and we're connected -> disconnect
...

Our UI can now handle user login prompts, and we can start thinking about the 
network thread implementation. For this purpose, we will need to define the 
following new constants in the BeagleProtocol.java file:

public final static short MT_PASSWORD       = 18;
public final static short LOGIN_FAILED      = 66;
public final static short ENCRYPTION_FAILED = 67;

Next, we need to add the piece of code that encrypts our login details and sends 
them to the server for validation in NetworkTask.java. First, we need to add the 
following new variables:

private String loginUsernamePassword = "";
//Encryption related
private IvParameterSpecivspec;
private SecretKeySpeckeyspec;
private Cipher cipher;
private String SecretKey = "BeagleHomeAutoma"; //16 bytes -> 128bit 
    encryption



Security, Debugging, and I2C and SPI

[ 156 ]

We also need to modify our constructor as follows:

NetworkTask(String address, intport,Handler handler, String login) {
  serverAddress = address;
  serverPort = port;
  parent = handler;
  loginUsernamePassword = login;
  alive = true; //Set to false to end the thread during disconnection
}

Add a new function called sendEncryptedLoginDetails. This function will be 
responsible for encryption, and send the encrypted data to the server. Since our 
server does not reply to invalid logins, all we can do is proceed as follows, and 
evaluate the connection state later:

public intsendEncryptedLoginDetails() {
  //First initialize the random IV, and retrieve AES key spec
  SecureRandomrnd = new SecureRandom();
  byte [] ivbytes = rnd.generateSeed(16);
  ivspec = new IvParameterSpec(ivbytes);
  keyspec = new SecretKeySpec(SecretKey.getBytes(), "AES");

  byte[] encrypted = null;

Here we use the SecureRandom class to generate 16 random bytes for our IV. These 
bytes will be used as the "salt" for the encryption. Then we create the encryption key 
that is preshared between the client and server (String SecretKey). After this we 
initialize the cipher, and encrypt our message as follows:

//Define and initialize the cipher
  try {
    cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
    cipher.init(Cipher.ENCRYPT_MODE, keyspec, ivspec);

    //Perform the encryption
    encrypted = cipher.doFinal(loginUsernamePassword.getBytes());
  } catch (Exception enc) {
    debug("Encryption failed");
    enc.printStackTrace();
    return 1;
  }

We first initialize the cipher by defining it with the desired specifics of the 
encryption, and then encrypt the loginUserNamePassword String. In the actual 
code, we separate the different try-catch blocks to identify which part of the code 
failed, so that the errors can be properly acted upon. But here, we have combined it 
with one catch-all call to save space. 



Appendix

[ 157 ]

Now that we have the encrypted bytes ready we can create our data package and 
send it, as shown in the following lines of code:

int enc_len = encrypted.length;
int iv_len = ivbytes.length;
  byte[] pw = new byte[4 + iv_len + enc_len];

  //Construct the message
  pw[0] = (byte)((BeagleProtocol.MT_PASSWORD>> 8) & 0xff);
  pw[1] = (byte)(BeagleProtocol.MT_PASSWORD&0xff);
  pw[2] = (byte)((enc_len + iv_len>> 8) & 0xff);
  pw[3] = (byte)(enc_len + iv_len& 0xff);

  //Copy the IV to the outgoing packet
  System.arraycopy(ivbytes,0,pw,4 ,iv_len);
  //Copy the encrypted data to outgoing packet
  System.arraycopy(encrypted, 0, pw, 4 + iv_len, enc_len);

  //Send the data
  try {
    os.write(pw);
  } catch (IOExceptionioe) {
    debug("Sending password has failed");
    ioe.printStackTrace();
  }

  //Cleanup
  rnd = null;
  ivspec = null;
  pw = null;

  return 0; //Success
}

Now that our encrypted login function is complete, all that is left is to add a proper 
place to call it in the run() method. 

This call is placed after we have initialized our socket and data streams, as follows:

os = new DataOutputStream(socket.getOutputStream());

//Send the password information to the server:
int res = sendEncryptedLoginDetails();
if (res != 0) {
  debug("Encryption failed...");
  //In reality, we cannot really do much here.
  //Something wrong with selected encryption settings
}



Security, Debugging, and I2C and SPI

[ 158 ]

//Read the initial welcome message
byte[] readArray = new byte[6];
int howmany = is.read(readArray, 0, 6);
//If our login fails, server will just drop the socket
if (howmany == -1) {
  debug("Stream has closed. Something wrong with login ?");

  //Inform the UI about login failure
  Message msg = new Message();
  msg.what = BeagleProtocol.LOGIN_FAILED;
  msg.obj = null;

  //send the message
  parent.handleMessage(msg);

  is.close();
  os.close();
  socket.close();
  return;
}

After we initialize our streams, we call the sendEncryptedLoginDetails function to 
identify us with the server along with the details we provided in the previous login 
query. After that, all we can do is check if the server is still sending us information 
(try to read the protocol version). If the socket has been dropped (the read stream 
returns -1), it means that the server has prevented our login, and we have to handle 
it. We inform the UI via our Handler class, close the streams, and return from this 
function, thus ending the life of this thread.

With the previous code, you are now securely transmitting your login details over 
the network.

Encrypting all of the communication
In the previous section, you saw how you can encrypt one message. The next step 
in beefing up the security would be to encrypt all of the communication. With the 
tips you saw earlier, this wouldn't be such a big hurdle; you will just have to modify 
the normal message sequence a bit. You could change the places of the "message 
request" and "message size" headers, so that only the incoming message size would 
be unencrypted, and everything else would always be encrypted.

The next step would be to also implement secure key exchange, so that the 
encryption would always be done with different keys. This will be getting into the 
advanced areas of cryptography and TCP/IP security, so we will leave it for a topic 
in another book.



Appendix

[ 159 ]

The GPIO mapping of the P8 and P9 
headers
The following screenshot contains the complete GPIO mapping for the headers P8 
and P9. The pins that are not normally usable for some reason (that is, when mapped 
to eMMC or HDMI), are marked in red:



Security, Debugging, and I2C and SPI

[ 160 ]



Index
Symbols
7-Zip

URL  95

A
Adafruit-BBIO  28
Analog-to-Digital converter (ADC)  8, 40
Android client code

modifying  153-158
Android Development Tools (ADT)  101
Android project

emulator, creating  104-106
setting up  101-104

Angstrom  9
application

using, from outside home network  139, 140
application permissions  114

B
BeagleBone

hardware requisites  7, 8
Hello World program, running on  18, 19
software requisites  8

BeagleBone Black  21
BeagleBone HD camera cape

about  94
boot media, changing  94-97
cameras, controlling with Python  97-100

Beagle protocol
defining  62, 63

bipolar junction transistors ( BJTs)  71

bit shifting  126
boot media

changing  94-97
boot time kernel traces  144

C
cameras

controlling, with Python  97-100
capes

about  93
URL  94

Change IP
URL  139

client code  67-71
client side  81-83
client socket

about  42
and server socket, difference between  42

client view
identifying  148, 149

communication
encrypting  158

Connect button  153
create_data_packet() function  67, 84, 137

D
data transfer  147
DC Current gain (hFE)  72
debug function  117
DNSdynamic

URL  139
d property  16



[ 162 ]

E
echo client  48-53
echo server  45-48
EHRPWM2B  22
emulator

creating  104-106
encrypted password login

Android client code, modifying  153-158
implementing  149
server code, modifying  150-152

environmental sensors
about  55
light sensor  56-59
temperature sensor  60, 61

external hardware input  34, 36
external output  31, 33

F
field effect transistors (FETs)  71
FileOpen function  138
file permissions  16, 17
filesystem operation  15
findViewById function  118
FreeDNS

URL  139

G
General-Purpose Input/Output pins. See  

GPIO
General Purpose Memory Controller 

(GPMC)  22, 94
gethostbyname()  43
get_image() function  100
gmtime() function  86
GPIO

about  22-24
external hardware input  34, 36
external output  31, 33
on-board LEDs  24-28
Pulse width modulator  37-40

GPIO library
for Python  28

GPIO mapping
of P8 header  159
P9 header  159

Graphical User Interface (GUI)  14

H
handle_client_request() function  137, 151
handle_client_requests method  65
hardware extensions

about  93
BeagleBone HD camera cape  94

hardware interfaces  21, 22
hardware requisites, BeagleBone  7, 8
Hello World program

running, on BeagleBone  18, 19
host machine

Linux  10
Mac OS X  10
preparing  9
Windows  10

I
I2C bus

about  145
data transfer  147
Slave address transfer  146
start signal, generating  146
STOP signal, generating  147

IC (integrated circuit)  60
IDE (Integrated Development Environment)  

26
ifconfig eth0 command  14
Initialization Vector (IV)  151
initialize_server function  46
Inter-Integrated Circuit. See  I2C bus
Internet sockets  43

J
JTAG debugging  145

L
Light Dependent Resistors (LDR)  56
light sensor  56-59
Linux

about  10
file permissions  16, 17
filesystem operation  15



[ 163 ]

operating, from console  14
load framework

implementing  77-80
login_details variable  152
loginDialog function  154
ls command  16

M
Mac OS X  10
main method  137
Manager button  104
movement-detection alarm system  88-93

N
nano  17
Network Address Translation (NAT)  139
network thread  123-132
Network Time Protocol (NTP)  29
No-IP

URL  139

O
on-board LEDs  24-28
onCreate method  117

P
P8 header

GPIO mapping, using for  159
P9 header

GPIO mapping, using for  159
pack function  67
Parcel variable  127
passive infrared (PIR)  88
periodic tasks

on server  85, 87
permanent settings

changing  81
retrieving  81

print_help() function  81
Process.start() function  87
proper time

setting  29, 30
pull down resistor  34
pull-up resistor  34

Pulse width modulator  37-40
Pulse Width Modulators (PWMs)  8
PuTTY Download Page

URL  12
pygame

URL  98
Python

cameras, controlling with  97-100
GPIO library, using for  28

R
recv() function  48
reload_configuration() function  86
Rev A5A  21
r property  16
run() method  122, 125, 157

S
save framework

implementing  77-80
scripting  14
SecureRandom class  156
security aspects

considering  148
sendEncryptedLoginDetails function  158
send_message() function  68, 81
Serial Peripheral Interface. See  SPI bus
server code

about  64-67
modifying  150-152

server features  132-138
server side  83, 84
server socket

about  42
and client socket, difference between  42

Settings button  132
shebang  19
Slave address transfer  146
socket

about  42
client socket  42
server socket  42

socket.accept() function  46
socket application

example  43, 44



[ 164 ]

socket client
application permissions  114
network thread  123-132
on Android  107
support classes  114-116
UI  116-123
UI components, defining  107-113

socket documentation
URL  43

software requisites, BeagleBone  8, 9
SPI bus  147, 148
start signal

generating  146
STOP signal

generating  147
strftime() function  86
support classes  114-116
symbolic link  29
system

logging in  12-14

T
take_picture function  100
target board

starting  11
temperature sensor  60, 61
temperature sensor LM60

URL  60
transistors  71-74

U
UI  116-123
uiEventHandler function  155
Universal Asynchronous Receivers/ 

Transmitters (UARTs)  8
unpack method  65
update_configuration() function  84
USB ID

URL  103

V
verify_password() method  152

W
wait_for_client function  47
Windows  10
Windows package

URL  49
WinSCP

URL  26
w property  16

X
x property  16
xz command  96



Thank you for buying  
BeagleBone Home Automation

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Raspberry Pi Home Automation 
with Arduino
ISBN: 978-1-84969-586-2             Paperback: 176 pages

Automate your home with a set of exciting projects 
for the Raspberry Pil

1. Learn how to dynamically adjust your living 
environment with detailed step-by-step 
examples

2. Discover how you can utilize the combined 
power of the Raspberry Pi and Arduino for 
your own projects

3. Revolutionize the way you interact with your 
home on a daily basis

Netduino Home Automation 
Projects
ISBN: 978-1-84969-782-8            Paperback: 108 pages

Automate your house, save lives, and survive the 
apocalypse with NET on a Netduino!

1. Automate your house using a Netduino and a 
bunch of common components

2. Learn the fundamentals of Netduino to 
implement them in almost any project

3. Create cool projects ranging from self-watering 
plants to a homemade breathalyzer

Please check www.PacktPub.com for information on our titles



Rapid BeagleBoard Prototyping 
with MATLAB and Simulink
ISBN: 9781849696043            Paperback: 152 pages

Leverage the power of BeagleBoard to develop and 
deploy practical embedded projects

1. Develop and validate your own embedded 
audio/video applications rapidly with 
BeagleBoard

2. Create embedded Linux applications on a pure 
Windows PC 

3. Full of illustrations, diagrams, and tips for 
rapid BeagleBoard prototyping with clear, step-
by-step instructions and hands-on examples

Linux Utilities Cookbook
ISBN: 978-1-78216-300-8            Paperback: 224 pages

Over 70 recipes to help you accomplish a wide 
variety of tasks in Linux quickly and efficiently

1. Use the command line like a pro

2. Pick a suitable desktop environment

3. Learn to use files and directories efficiently

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Initial Setup
	The hardware required
	The software required
	Preparing the host machine
	Windows
	Mac OS X
	Linux

	Starting the target board for the first time
	Logging in to the system
	Operating Linux from the console
	Basic filesystem operations
	File permissions

	Running a Hello World program on BeagleBone
	Summary

	Chapter 2: Input and Output
	Hardware interfaces
	General-Purpose Input/Output pins (GPIOs)
	On-board LEDs
	GPIO library for Python
	Setting the proper time

	External output
	External hardware input
	Pulse width modulator

	Summary

	Chapter 3: Creating the Client and Server Applications
	Sockets
	Example socket application

	Echo server
	Echo client
	Summary

	Chapter 4: Extending Server Capabilities
	Environmental sensors
	Light sensor
	Temperature sensor

	Advanced server
	Defining our Beagle protocol
	The new server code
	The new client code

	Transistors
	Summary

	Chapter 5: Implementing Periodic Tasks
	Implementing a save/load framework
	Retrieving and changing permanent settings
	The client side
	The server side


	Periodic tasks on the server
	Movement-detection alarm system
	Hardware extensions
	BeagleBone HD camera cape
	Changing the boot media
	Controlling cameras with Python


	Summary

	Chapter 6: Creating an Android Client
	Setting up our Android project
	Creating an emulator

	The socket client on Android
	Defining the UI components
	Support classes
	The main UI
	Network thread

	New server features
	Working from outside your home network
	Summary

	Appendix: Security, Debugging, SPI 
and I2C
	Kernel traces and advanced debugging
	Boot time kernel traces
	JTAG debugging

	The I2C and SPI buses
	The I2C bus
	Generating the start signal
	The Slave address transfer
	Data transfer
	Generating the STOP signal

	The SPI bus

	Considering the security aspects
	Making the client identify his intentions first
	Implementing the encrypted password login
	2.1 modification to the server code
	2.2 modifications to Android client code

	Encrypting all of the communication

	The GPIO mapping of the P8 and P9 headers

	Index

