
www.allitebooks.com

http://www.allitebooks.org

BeagleBone By Example

Learn how to build physical computing systems using
BeagleBone Black and Python

Jayakarthigeyan Prabakar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

BeagleBone By Example

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1290816

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-505-9

www.packtpub.com

Image source:- BeagleBoard.org Foundation (http://beagleboard.org/)

www.allitebooks.com

www.packtpub.com
http://beagleboard.org/
http://www.allitebooks.org

Credits

Author
Jayakarthigeyan Prabakar

Reviewer
Christopher Rush

Acquisition Editor
Rahul Nair

Content Development Editor
Trusha Shriyan

Technical Editor
Nirant Carvalho

Copy Editor
Sneha Singh

Safis Editing

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jayakarthigeyan Prabakar is an electrical and electronics engineer with more
than three years of experience in real-time embedded systems development. He
loves building cloud-connected physical computing systems using Arduino,
MSP430, Raspberry Pi, BeagleBone Black, Intel Edison, ESP8266 and more.

Jayakarthigeyan started understanding how computing devices and operating
systems work when he started repairing his personal computer on his own in
middle school that is when he first got his hands on in electronics.

From his third year in the undergraduate degree program, he started building
prototypes for various start-ups around the world as a freelancer. Currently,
Jayakarthigeyan is a full-time technical lead of the R & D division in a Home
Automation startup and works as a consultant to many other companies
involved in Robotics, Industrial Automation and other IoT solutions as well;
he helps build prototypes to bring their ideas to reality.

I would like to dedicate this book to those two strong and wonderful
women in my life, my mother Saraswathi and my wife Shivaranjani
for believing in me and always encouraging me to do what I like
with my crazy ideas.

Thanks to my grandfather Alavandar who has influenced and
shaped me to what I am today. Special thanks to Rahul Nair for
giving me the opportunity to write this book. Thanks to Mamata
Walkar, Trusha Shriyan, Nirant Carvalho and all others at Packt
Publishing for their support to me in shaping this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Christopher Rush is from Preston, UK. He has a degree in computer science and
has spent the last 15 years working in the electronics industry. Christopher is a full-
time technical consultant and has an extensive knowledge of the maker industry.
Chris is a regular blogger on MAKER.IO (https://www.maker.io/) providing
tutorials and guides for popular development boards such as Arduino, Raspberry Pi,
BeagleBone, and many more. Chris is also the Author of 30 BeagleBone Black Projects
for the Evil Geniu, Programming the Particle Photon: Getting started with the Internet
of Things, and Programming the Intel Galileo: Getting started with Internet-Connected
Hardware.

www.allitebooks.com

https://www.maker.io/
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with BeagleBone	 1

Prerequisites	 2
BeagleBone Black – a single board computer	 3
Getting to know your
board – BeagleBone Black	 4
Hardware specification of BeagleBone Black	 4
Setting up your BeagleBone board	 7
Installing operating systems	 13
Booting your BeagleBone board from a SD card	 20
Logging into the board via SSH over Ethernet	 25
Working on Linux Shell	 33
Writing your own Python program on BeagleBone board	 37
Summary	 44

Chapter 2: Circuit Fundamentals and GPIO	 45
Prerequisites	 46
Usage of breadboards	 46
Switches and LEDs	 48

Momentary switch	 50
Toggle switch	 52

GPIOs	 54
Adding libraries to Python	 55
Using Python to access GPIOs	 58
Project – blinking an LED using Python script	 63
Summary	 65

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Introduction to Physical Computing Systems	 67
Prerequisites	 68
Introducing physical computing systems	 68
Basic elements of physical computing systems	 69

Application areas	 75
Project – toggle LED using a push button	 76
Summary	 84

Chapter 4: Real-time Physical Computing Systems
Using BeagleBone	 85

Prerequisites	 86
Materials needed	 86

Temperature sensor	 86
How do LM35 sensors work?	 87

Temperature sensing using a LM35 sensor	 88
Summary	 98

Chapter 5: Connecting Physical Computing Systems
to the Internet	 99

Prerequisites	 100
Materials needed	 100

Giving Internet access to your BeagleBone board	 100
Adding Wi-Fi to the BeagleBone board	 101
Intermediate level project: An e-mail alert fire alarm	 114
Advanced level project: Uploading sensor data to a web cloud	 123
Summary	 131

Chapter 6: Home Automation Using BeagleBone	 133
Prerequisites	 134

Materials needed 	 134
The structure of home automation systems	 134
Introduction to web servers	 135
Python-Flask on BeagleBone Black	 137
Transistors, relays, power switches	 148
Advanced project: An Internet controlled power
switch – controlling an AC bulb from the Internet	 154

Setting up port forwarding	 157
Summary	 165

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 7: Working with Images Using Computer Vision	 167
Prerequisites	 167

Materials needed	 168
Adding a USB camera to a BeagleBone board	 168
OpenCV – introduction and setting up on the BeagleBone board	 171

Installing OpenCV on Debian on a BeagleBone board	 171
Project: Image capture from a camera using Python and OpenCV	 177
Summary	 183

Chapter 8: Home Security Systems Using BeagleBone Black	 185
Prerequisites	 186
PIR sensors	 186

How PIR sensors work	 187
Motion detection using PIR sensors	 189
Sending e-mail with an attachment from BeagleBone Black	 192
Advanced project – Motion-based home security alert system	 194
Summary	 198

Chapter 9: Exploring Robotics	 199
Introduction to robotics	 200
Elements, structure and operation of robotic systems	 202
Application areas	 204

Industrial robotics	 205
Domestic robots	 206
Medical robotics	 207
Mobile robots	 208
Social and humanoid robots	 209

Differential-drive robots	 211
Summary	 214

Chapter 10: Building Your Own Robot	 215
Prerequisites	 215

Materials Needed	 215
DC motors	 216
L293D motor driver IC	 217
Live video streaming on the BeagleBone board	 220
Advanced project – a telecontrolled robot with live video streaming	 231
Summary	 241

Index	 243

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
If you are among those who are looking for a simple step-by-step guide to learn
basic electronics and start interfacing sensors and actuators with a low-cost Linux
development board, such as BeagleBone Black through examples to build internet
connected physical computing systems and robots. This book is for you to get started
if you have prior knowledge of basic python programming and little understanding
of how a computer works.

What this book covers
Chapter 1, Get Started with BeagleBone , tells us about the hardware specification of
the BeagleBone board, how to set up a BeagleBone board to boot up with a Linux
Operating System on microSD card and log in to the Linux command shell from
a remote computer, and how to program on Python software running on the
BeagleBone board.

Chapter 2, Circuit Fundaments and GPIO, talks about the working of basic electronic
circuits including switches, LEDs, and battery followed by GPIO pins on the
BeagleBone board and elaborates on how you can use these GPIO pins to
switch LED status using a python program.

Chapter 3, Introduction to Physical Computing Systems, helps you understand the basic
structure of physical computing systems with real world examples, build your own
physical computing system using a switch as an input and LED as the output device
connected to BeagleBone board which works based on the python program that
you write.

Chapter 4, Real-Time physical computing systems Using BeagleBone Board, talks about
analog sensors using LM35 temperature sensor as an example and works on a more
advanced physical computing project using BeagleBone board interfaced with
an LM35.

Preface

[vi]

Chapter 5, Connecting Physical Computing Systems to the Internet, teaches you how
to connect BeagleBone board to Wi-Fi networks, cloud storage and upload sensor
data from BeagleBone board to cloud in real-time, and view the trends on the cloud
software with time stamps. Build your first IoT.

Chapter 6, Home Automation Using BeagleBone, tells you about how to set up your own
web server on a BeagleBone board using a Python and Flask framework and how
to use the same to control home appliances using an AC relay board interfaced with
BeagleBone board from a PC or your mobile phone connected to the internet, similar
to any other IoT Home Automation system.

Chapter 7, Working with Images Using Computer Vision, teaches you how to interface
a USB camera with BeagleBone board and how to OpenCV to capture images and
work with them using Python.

Chapter 8, Home Security Systems Using BeagleBone Black, teaches us how to use SMTP
with python to send emails, learn about PIR sensors and motion detection, build
a smart intruder alert system by interfacing PIR sensor with BeagleBone board to
detect motion, and use OpenCV to capture images and email them.

Chapter 9, Exploring Robotics, helps you understand the basic structure of robotic
systems, their working and application in different areas using real life examples.
It also helps us learn about differential drive robots

Chapter 10, Building Your Own Robot, teaches us about DC Motors, Motor Driver IC
L293D and control of DC motors from Python on BeagleBone Black using this Motor
Driver IC, live streaming of video on local server from USB camera connected
to BeagleBone board, and building your own Tele Controlled Robot with live
video streaming.

What you need for this book
Basic Python programming knowledge and little understanding of how a computer
works in terms of the electronics inside it.

Who this book is for
This book is for those who are looking for a simple step by step guide to learn
basic electronics and start interfacing sensors and actuators, with a low-cost
Linux development board like BeagleBone Black through examples to build
IoT and Robot Systems

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
Let's power off our BeagleBone board using the command sudo poweroff, which
will shut down the operating system."

A block of code is set as follows:

Any command-line input or output is written as follows:

sudo python Blink.py

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Click
on Yes and continue."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/BeagleBone-By-Example. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/BeagleBone-By-Example
https://github.com/PacktPublishing/BeagleBone-By-Example
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started with
BeagleBone

If you are reading this book right now, it means that you have taken your first step
to get started with your BeagleBone board to build real-time physical computing
systems using your BeagleBone board and Python programming language. This
chapter will teach you how to set up your BeagleBone board for the first time and
write your first few Python codes on it.

By end of this book, you would have learned the basics of interfacing electronics to
BeagleBone boards and coding it using Python which will allow you to build almost
anything from a home automation system to a robot through examples given in
this book.

Firstly, in this chapter, you will learn how to set up your BeagleBone board for the
first time with a new operating system, followed by usage of some basic Linux Shell
commands that will help you out while we work on the Shell Terminal to write and
execute python codes and do much more like installing different libraries and software
on your BeagleBone board. Once you get familiar with usage of the Linux terminal,
you will write your first code on python that will run on your BeagleBone board. Once
you are comfortable with that, we will modify the code to make it do something more
in the next chapters. Most of the time, we will be using the freely available open-source
codes and libraries available on the Internet to write programs on top of it and using it
to make the program work for our requirement instead of entirely writing a code from
scratch to build our embedded systems using BeagleBone board. The contents of this
chapter are divided into the following sections:

•	 Prerequisites
•	 About the single board computer - BeagleBone board
•	 Know your BeagleBone board

Getting Started with BeagleBone

[2]

•	 Setting up your BeagleBone board
•	 Working on Linux Shell
•	 Coding on Python in BeagleBone board

Prerequisites
This topic will cover what parts you need to get started with BeagleBone Black.
You can buy them online or pick them up from any electronics store that is available
in your locality.

The following is the list of materials needed to get started:

•	 1x BeagleBone Black
•	 1x miniUSB type B to type A cable
•	 1x microSD Card (4 GB or More)
•	 1x microSD Card Reader
•	 1x 5V DC, 2A Power Supply
•	 1x Ethernet Cable

There are different variants of BeagleBone boards like BeagleBone,
BeagleBone Black, BeagleBone Green and some more old variants. This
book will mostly have the BeagleBone Black shown in the pictures. Note
that BeagleBone Black can replace any of the other BeagleBone boards
such as the BeagleBone or BeagleBone Green for most of the projects.
These boards have their own extra features so to say. For example,
the BeagleBone Black has more RAM, it has almost double the size of
RAM available in BeagleBone and an in-built eMMC to store operating
system instead of booting it up only through operating system installed
on microSD card in BeagleBone White. Keeping in mind that this book
should be able to guide people with most of the BeagleBone board
variants, the tutorials in this book will be based on operating system
booted from microSD card inserted on the BeagleBone board. We will
discuss about this in detail in the Setting up your BeagleBone board and
installing operating system's topics of this chapter.

Chapter 1

[3]

BeagleBone Black – a single board
computer
This topic will give you brief information about single board computers to make you
understand what they are and where BeagleBone boards fit inside this category.

Have you ever wondered how your smartphones, smart TVs, and set-top
boxes work?

All these devices run custom firmware developed for specific applications based
on the different Linux and Unix kernels. When you hear the word Linux and if you
are familiar with Linux, you will get in your mind that it's nothing but an operating
system, just like Windows or Mac OS X that runs on desktops and server computers.
But in the recent years the Linux kernel is being used in most of the embedded
systems including consumer electronics such as your smartphones, smart TVs, set-
top boxes, and much more. Most people know Android and iOS as an operating
system on their smart phones. But only a few know that, both these operating
systems are based on Linux and Unix kernels.

Did you ever question how they would develop such devices? There should be a
development board right? What are they?

This is where Linux Development boards like our BeagleBone boards are used.

By adding peripherals such as touch screens, GSM modules, microphones, and
speakers to these single board computers and writing the software that is the
operating system with graphical user interface to make them interact with the
physical world, we have so many smart devices now that people use every day.

Nowadays you have proximity sensors, accelerometers, gyroscopes, cameras, IR
blasters, and much more on your smartphones. These sensors and transmitters are
connected to the CPU on your phone through the Input Output ports on the CPU,
and there is a small piece of software that is running to communicate with these
electronics when the whole operating system is running in the smartphone to get
the readings from these sensors in real-time. Like the autorotation of screen on the
latest smartphones. There is a small piece of software that is reading the data from
accelerometer and gyroscope sensors on the phone and based on the orientation of
the phone it turns the graphical display.

So, all these Linux development boards are tools and base boards using which you
can build awesome real world smart devices or we can call them physical computing
systems as they interact with the physical world and respond with an output.

Getting Started with BeagleBone

[4]

Getting to know your
board – BeagleBone Black
BeagleBone Black can be described as low cost single board computer that can
be plugged into a computer monitor or TV via a HDMI cable for output and uses
standard keyboard and mouse for input. It's capable of doing everything you'd
expect a desktop computer to do, like playing videos, word processing, browsing the
Internet, and so on. You can even setup a web server on your BeagleBone Black just
like you would do if you want to set up a webserver on a Linux or Windows PC.

But, differing from your desktop computer, the BeagleBone boards has the ability
to interact with the physical world using the GPIO pins available on the board, and
has been used in various physical computing applications. Starting from Internet of
Things, Home Automation projects, to Robotics, or tweeting shark intrusion systems.
The BeagleBone boards are being used by hardware makers around the world to
build awesome physical computing systems which are turning into commercial
products also in the market. OpenROV, an underwater robot being one good
example of what someone can build using a BeagleBone Black that can turn into a
successful commercial product.

Hardware specification of BeagleBone
Black
A picture is worth a thousand words. The following picture describes about the
hardware specifications of the BeagleBone Black. But you will get some more details
about every part of the board as you read the content in the following picture.

Chapter 1

[5]

If you are familiar with the basic setup of a computer. You will know that it has a
CPU with RAM and Hard Disk. To the CPU you can connect your Keyboard, Mouse,
and Monitor which are powered up using a power system.

The same setup is here in BeagleBone Black also. There is a 1GHz Processor with
512MB of DDR3 RAM and 4GB on board eMMC storage, which replaces the Hard
Disk to store the operating system. Just in case you want more storage to boot up using
a different operating system, you can use an external microSD card that can have the
operating system that you can insert into the microSD card slot for extra storage.

As in every computer, the board consists of a power button to turn on and turn off
the board and a reset button to reset the board. In addition, there is a boot button
which is used to boot the board when the operating system is loaded on the microSD
card instead of the eMMC. We will be learning about usage of this button in detail in
the installing operating systems topic of this chapter.

Getting Started with BeagleBone

[6]

There is a type A USB Host port to which you can connect peripherals such as USB
Keyboard, USB Mouse, USB Camera, and much more, provided that the Linux
drivers are available for the peripherals you connect to the BeagleBone Black.

It is to be noted that the BeagleBone Black has only one USB Host Port,
so you need to get an USB Hub to get multiple USB ports for connecting
more number of USB devices at a time. I would recommend using a
wireless Keyboard and Mouse to eliminate an extra USB Hub when you
connect your BeagleBone Black to monitor using the HDMI port available.

The microHDMI port available on the BeagleBone Black gives the board the ability to
give output to HDMI monitors and HDMI TVs just like any computer will give.

You can power up the BeagleBone Black using the DC Barrel jack available on the
left hand side corner of the board using a 5V DC, 2A adapter. There is an option to
power the board using USB, although it is not recommended due to the current limit
on USB ports. We will see about this in detail in the upcoming chapters when we
connect USB Wi-Fi dongle and USB camera to the BeagleBone Black.

There are 4 LEDs on board to indicate the status of the board and help us for
identifications to boot up the BeagleBone Black from microSD card. The LEDs
are linked with the GPIO pins on the BeagleBone Black which can be used
whenever needed.

You can connect the BeagleBone Black to the LAN or Internet using the Ethernet
port available on the board using an Ethernet cable. You can even use a USB Wi-Fi
module to give Internet access to your BeagleBone Black. In Chapter 5, Connecting
Physical Computing Systems to the Internet, you will learn how to do this.

The expansion headers which are in general called the General Purpose Input
Output (GPIO) pins include 65 digital pins. These pins can be used as digital input or
output pins to which you can connect switches, LEDs and many more digital input
output components, 7 analog inputs to which you can connect analog sensors like
a potentiometer or an analog temperature sensor, 4 Serial Ports to which you can
connect Serial Bluetooth or Xbee Modules for wireless communication or anything
else, 2 SPI and 2 I2C Ports to connect different modules such as sensors or any other
modules using SPI or I2C communication. It also has 8 PWM output pins that can be
used for applications like fading and LED or in robotic applications for varying the
speed of a motor which we will be discussing later in the upcoming chapters.

We also have the serial debugging port to view the low-level firmware pre-boot
and post-shutdown/reboot messages via a serial monitor using an external serial
to USB converter while the system is loading up and running. After booting up the
operating system, this also acts as a fully interactive Linux console.

Chapter 1

[7]

Setting up your BeagleBone board
Your first step to get started with BeagleBone boards with your hands on will be
to set it up and test it as suggested by the BeagleBone Community with the Debian
distribution of Linux running on BeagleBone Black that comes preloaded on the
eMMC on board. This section will walk you through that process followed by
installing different operating system on your BeagleBone board and log in into it. And
then get into start working with files and executing Linux Shell commands via SSH.

1.	 Connect your BeagleBone Black using the USB cable to your Laptop or PC.
This is the simplest method to get your BeagleBone Black up and running.
Once you connect your BeagleBone Black, it will start to boot using the
operating system on the eMMC storage. To log in into the operating system
and start working on it, the BeagleBone Black has to connect to a network
and the drivers that are provided by the BeagleBoard manufacturers allow us
to create a local network between your BeagleBone Black and your computer
when you connect it via the USB cable. For this, you need to download and
install the device drivers provided by BeagleBone board makers on your PC
as explained in step 2.

Getting Started with BeagleBone

[8]

2.	 Download and install device drivers.
°° Goto http://beagleboard.org/getting-started
°° Click and download the driver package based on your operating

system. Mine is Windows (64-bit), so I am going to download that

Once the installation is complete, click on Finish. It is shown in the
following screenshot:

http://beagleboard.org/getting-started

Chapter 1

[9]

Once the installation is done, restart your PC. Make sure that the Wi-Fi on
your laptop is off and also there is no Ethernet connected to your Laptop.
Because now the BeagleBone Black device drivers will try to create a LAN
connection between you laptop and BeagleBone Black so that you can access
the webserver running by default on the BeagleBone Black to test it's all
good, up, and running. Once you reboot your PC, get to step 3.

Getting Started with BeagleBone

[10]

3.	 Connect to the Web Server Running on BeagleBone Black.
Open your favorite web browser and enter the IP address 192.168.7.2 on
the URL bar, which is the default static IP assigned to BeagleBone Black.
This should open up the webpage as shown in the following screenshot:

If you get a green check mark with the message your board is connected.
You can make sure that you got the previous steps correct and you have
successfully connected to your board.

If you don't get this message, try removing the USB
cable connected to the BeagleBone Black, reconnect it
and check again. If you still don't get it. Then check
whether you did the first two steps correctly.

4.	 Play with on board LEDs via the web server.

If you Scroll down on the web page to which we got connected, you will find
the section as shown in the following screenshot:

Chapter 1

[11]

This is a sample setup made by BeagleBone makers as the first time interaction
interface to make you understand what is possible using BeagleBone Black. In this
section of the webpage, you can run a small script. When you click on Run, the On
board status LEDs that are flashing depending on the status of the operating system
will stop its function and start working based on the script that you see on the page.
The code is running based on a JavaScript library built by BeagleBone makers called
the BoneScript. We will not look into this in detail as we will be concentrating more
on writing our own programs using python to work with GPIOs on the board. But to
make you understand, here is a simple explanation on what is there on the script and
what happens when you click on the run button on the webpage.

The pinMode function defines the on board LED pins as outputs and the
digitalWrite function sets the state of the output either as HIGH or LOW. And
the setTimeout function will restore the LEDs back to its normal function after the
set timeout, that is, the program will stop running after the time that was set in the
setTimeout function.

Getting Started with BeagleBone

[12]

Say I modify the code to what is shown in the following screenshot:

You can notice that, I have changed the states of two LEDs to LOW and
other two are HIGH and the timeout is set to 10,000 milliseconds.

So when you click on the Run button. The LEDs will switch to these states and stay
like that for 10 seconds and then restore back to its normal status indication routine,
that is, blinking.

You can play around with different combinations of HIGH and LOW states and
setTimeout values so that you can see and understand what is happening.

You can see the LED output state of BeagleBone Black in the following screenshot for
the program we executed earlier:

Chapter 1

[13]

You can see that the two LEDs in the middle are in LOW state. It stays like this for
10 seconds when you run the script and then it will restore back to its usual routine.
You can try with different timeout values and states of LEDs on the script given in
the webpage and try clicking on the Run button to see how it works.

Like this we will be writing our own python programs and setting up servers to use
the GPIOs available on the BeagleBone Black to make them work the way we desire
to build different applications in each project that is available in this book.

Installing operating systems
We can make the BeagleBone Black boot up and run using different operating
systems just like any computer can do. Mostly Linux is used on these boards which
is free and open source, but it is to be noted that specific distributions of Linux,
Android, and Windows CE have been made available for these boards as well
which you can try out.

The stable versions of these operating systems are made available at
http://beagleboard.org/latest-images.

www.allitebooks.com

http://beagleboard.org/latest-images
http://www.allitebooks.org

Getting Started with BeagleBone

[14]

By default, the BeagleBone Black comes preloaded with a Debian distribution of
Linux on the eMMC of the board. However, if you want, you can flash this eMMC
just like you do to your Hard Drive on your computer and install different operating
systems on it.

As mentioned in the note at the beginning of this chapter, considering all
the tutorials in this book should be useful to people who own BeagleBone
as well as the BeagleBone Black. We will choose the recommended Debian
package by www.BeagleBoard.org Foundation and we will boot the
board every time using the operating system on microSD card.

Perform the following steps to prepare the microSD card and boot BeagleBone
using that:

1.	 Goto: http://beagleboard.org/latest-images.
2.	 Download the latest Debian Image.

The following screenshot highlights the latest Debian Image available for
flashing on microSD card:

www.BeagleBoard.org
http://beagleboard.org/latest-images

Chapter 1

[15]

3.	 Extract the image file inside the RAR file that was downloaded:

You might have to install WinRAR or any .rar file extracting
software if it is not available in your computer already.

4.	 Install Win32 Disk Imager software.
To write the image file to a microSD card, we need this software. You can
go to Google or any other search engine and type win32 disk imager as
keyword and search to get the web link to download this software as shown
in the following screenshot:

Getting Started with BeagleBone

[16]

The web link, where you can find this software is http://sourceforge.
net/projects/win32diskimager/. But this keeps changing often that's why
I suggest you can search it via any search engine with the keyword.

5.	 Once you download the software and install it. You should be able to see
the window as shown in the following screenshot when you open the Win32
Disk Imager:

Now that you are all set with the software, using which you can flash the
operating system image that we downloaded. Let's move to the next step
where you can use Win32 Disk Imager software to flash the microSD card.

6.	 Flashing the microSD card.
Insert the microSD into a microSD card reader and plug it onto your
computer. It might take some time for the card reader to show up your
microSD card. Once it shows up, you should be able to select the USB drive
as shown in the following screenshot on the Win32 Disk Imager software.

http://sourceforge.net/projects/win32diskimager/
http://sourceforge.net/projects/win32diskimager/

Chapter 1

[17]

7.	 Now, click on the icon highlighted in the following screenshot to open the
file explorer and select the image file that we extracted in step 3:

Getting Started with BeagleBone

[18]

8.	 Go to the folder where you extracted the latest Debian image file and select it.

9.	 Now you can write the image file to microSD card by clicking on the Write
button on the Win32 Disk Imager. If you get a prompt as shown in the
following screenshot, click on Yes and continue:

Chapter 1

[19]

10.	 Once you click on Yes, the flashing process will start and the image file
will be written on to the microSD card. The following screenshot shows
the flashing process progressing:

Once the flashing is completed, you will get a message as shown in the
following screenshot:

11.	 Now you can click on OK, exit the Win32 Disk Imager software and safely
remove the microSD card from your computer.

Getting Started with BeagleBone

[20]

Now you have successfully prepared your microSD card with the latest Debian
operating system available for BeagleBone Black. This process is same for all other
operating systems that are available for BeagleBone boards. You can try out different
operating systems such as the Angstrom Linux, Android, or Windows CE others,
once you get familiar with your BeagleBone board by end of this book.

For Mac users, you can refer to either https://learn.adafruit.com/ssh-to-
beaglebone-black-over-usb/installing-drivers-mac or https://learn.
adafruit.com/beaglebone-black-installing-operating-systems/mac-os-x.

Booting your BeagleBone board from a
SD card
Since you have the operating system on your microSD card now, let us go ahead and
boot your BeagleBone board from that microSD card and see how to login and access
the filesystem via Linux Shell.

You will need your computer connected to your Router either via Ethernet or Wi-
Fi and an Ethernet cable which you should connect between your Router and the
BeagleBone board. The last but most important thing is an External Power Supply
using which you will power up your BeagleBone board because power supply via
a USB will be not be enough to run the BeagleBone board when it is booted from a
microSD card.

1.	 Insert the microSD card into BeagleBone board.
Now you should insert the microSD card that you have prepared into the
microSD card slot available on your BeagleBone board.

https://learn.adafruit.com/ssh-to-beaglebone-black-over-usb/installing-drivers-mac
https://learn.adafruit.com/ssh-to-beaglebone-black-over-usb/installing-drivers-mac
https://learn.adafruit.com/beaglebone-black-installing-operating-systems/mac-os-x
https://learn.adafruit.com/beaglebone-black-installing-operating-systems/mac-os-x

Chapter 1

[21]

2.	 Connect your BeagleBone to your LAN.
Now connect your BeagleBone board to your Internet router using an
Ethernet cable.

Getting Started with BeagleBone

[22]

You need to make sure that your BeagleBone board and your computer are
connected to the same router to follow the next steps.

3.	 Connect external power supply to your BeagleBone board.

4.	 Boot your BeagleBone board from microSD card.

Chapter 1

[23]

On BeagleBone Black and BeagleBone Green, you have a Boot Button which
you need to hold on while turning on your BeagleBone board so that it starts
booting from the microSD card instead of the default mode where it starts to
boot from the onboard eMMC storage which holds the operating system. In
case of BeagleBone White, you don't have this button, it starts to boot from
the microSD card itself as it doesn't have onboard eMMC storage.

Getting Started with BeagleBone

[24]

Depending on the board that you have, you can decide whether to boot the board
from microSD card or eMMC. Consider you have a BeagleBone Black just like the
one I have shown in the preceding picture. You hold down the User Boot button that
is highlighted on the image and turn on the power supply. Once you turn on the
board while holding the button down, the four on-board LEDs will light up and stay
HIGH as shown in the following picture for 1 or 2 seconds, then they will start to
blink randomly.

Once they start blinking, you can leave the button.

Now your BeagleBone board must have started Booting from the microSD card, so
our next step will be to log in to the system and start working on it. The next topic
will walk you through the steps on how to do this.

Chapter 1

[25]

Logging into the board via SSH over
Ethernet
If you are familiar with Linux operations, then you might have guessed what this
section is about. But for those people who are not daily Linux users or have never
heard the term SSH, Secure Shell (SSH) is a network protocol that allows network
services and remote login to be able to operate over an unsecured network in a
secure manner. In basic terms, it's a protocol through which you can log in to a
computer and assess its filesystem and also work on that system using specific
commands to create and work with files on the system.

In the steps ahead, you will work with some Linux commands that will make you
understand this method of logging into a system and working on it.

1.	 Setup SSH Software.
To get started, log in to your BeagleBone board now, from a Windows PC,
you need to install any SSH terminal software for Windows.

Getting Started with BeagleBone

[26]

My favorite is PuTTY, so I will be using that in the steps ahead. If you are
new to using SSH, I would suggest you also get PuTTY.
The software interface of PuTTY will be as shown in the following
screenshot:

You need to know the IP address or the Host Name of your BeagleBone Black
to log in to it via SSH. The default Host Name is beaglebone but in some
routers, depending on their security settings, this method of login doesn't
work with Host Name. So, I would suggest you try to login entering the
hostname first. If you are not able to login, follow step 2. If you successfully
connect and get the login prompt with Host Name, you can skip step 2 and
go to Step 3.

Chapter 1

[27]

But if you get an error as shown in the following screenshot, perform Step 2.

2.	 Find an IP address assigned to BeagleBone board.
Whenever you connect a device to your Router, say your computer, printer,
or mobile phone. The router assigns a unique IP to these devices. The same
way, the router must have assigned an IP to your BeagleBone board also. We
can get this detail on the router's configuration page of your router from any
browser of a computer that is connected to that router.

Getting Started with BeagleBone

[28]

In most cases, the router can be assessed by entering the IP 192.168.1.1 but
some router manufacturers have a different IP in very rare cases. If you are
not able to assess your router using this IP 192.168.1.1, refer your router
manual for getting access to this page.

The images that are shown in this section are to give you an
idea about how to log in to your router and get the IP address
details assigned to your BeagleBone board from your router.
The configuration pages and how the devices are shown on the
router will look different depending on the router that you own.

Enter the 192.168.1.1 address in you browser.

When it asks for User Name and Password, enter admin as User Name and
password as Password
These are the mostly used credentials by default in most of the routers. Just
in case you fail in this step, check your router's user manual.
Considering you logged into your router configuration page successfully,
you will see the screen with details as shown in the following screenshot:

Chapter 1

[29]

If you click on the highlighted part, Attached Devices, you will be able to
see the list of devices with their IP as shown in the following screenshot,
where you can find the details of the IP address that is assigned to your
BeagleBone board.

So now you can note down the IP that has been assigned to your BeagleBone
board. It can be seen that it's 192.168.1.14 in the preceding screenshot for
my beaglebone board. We will be using this IP address to connect to the
BeagleBone board via SSH in the next step.

Getting Started with BeagleBone

[30]

3.	 Connect via SSH using IP Address.

Once you click on Open you might get a security prompt as shown in the
following screenshot. Click on Yes and continue.

Chapter 1

[31]

Now you will get the login prompt on the terminal screen as shown in the
following screenshot:

If you got this far successfully, then it is time to log in to your BeagleBone
board and start working on it via Linux Shell.

Getting Started with BeagleBone

[32]

4.	 Log in to BeagleBone board.

When you get the login prompt as shown in the preceding screenshot, you
need to enter the default username which is debian and default password
which is temppwd. Now you should have logged into Linux Shell of your
BeagleBone board as user with username debian.

Now that you have successfully logged into your BeagleBone board's Linux Shell,
you can start working on it using Linux Shell commands like anyone does on any
computer that is running Linux.

The next section will walk you through some basic Linux Shell commands that will
come in handy for you to work with any Linux system.

Chapter 1

[33]

Working on Linux Shell
Simply put, the shell is a program that takes commands from the keyboard and gives
them to the operating system to perform. Since we will be working on BeagleBone
board as a development board to build electronics projects, plugging it to a Monitor,
Keyboard, and Mouse every time to work on it like a computer might be unwanted
most of the times and you might need more resources also which is unnecessary
all the time. So we will be using the shell command-line interface to work on the
BeagleBone boards. If you want to learn more about the Linux command-line
interfaces, I would suggest you visit to http://linuxcommand.org/.

Now let's go ahead and try some basic shell commands and do something on your
BeagleBone board.

You can see the kernel version using the command uname -r. Just type the
command and hit enter on your keyboard, the command will get executed and you
will see the output as shown here:

Next, let us check the date on your BeagleBone board:

Like this shell will execute your commands and you can work on your BeagleBone
boards via the shell.

Getting kernel version and date was just for a sample test. Now let's move ahead and
start working with the filesystem.

•	 ls: This stands for list command. This command will list out and display
the names of folders and files available in the current working directory on
which you are working.

www.allitebooks.com

http://linuxcommand.org/
http://www.allitebooks.org

Getting Started with BeagleBone

[34]

•	 pwd: This stands for print working directory command. This command prints
the current working directory in which you are present.

•	 mkdir: This stands for make directory command. This command will create
a directory in other words a folder, but you need to mention the name of the
directory you want to create in the command followed by it.

Say I want to create a folder with the name WorkSpace, I should enter the command
as follows:

When you execute this command, it will create a folder named WorkSpace inside the
current working directory you are in, to check whether the directory was created.
You can try the ls command again and see that the directory named WorkSpace has
been created.

To change the working directory and go inside the WorkSpace directory, you can use
the next command that we will be seeing.

•	 cd: This stands for change directory command. This command will help you
switch between directories depending on the path you provide along with
this command.

Now to switch and get inside the WorkSpace directory that you created, you can type
the command as follows:

cd WorkSpace

You can note that whenever you type a command, it executes in the current working
that you are in. So the execution of cd WorkSpace now will be equivalent to cd
/home/debian/WorkSpace as your current working directory is /home/debian.

Chapter 1

[35]

Now you can see that you have got inside the WorkSpace folder, which is empty
right now, so if you type the ls command now, it will just go to the next line on the
shell terminal, it will not output anything as the folder is empty.

Now if you execute the pwd command, you will see that your current working
directory has changed.

•	 cat: This stands for the cat command. This is one of the most basic
commands that is used to read, write, and append data to files in shell.

To create a text file and add some content to it, you just need to type the cat
command cat > filename.txt

Say I want to create a sample.txt file, I would type the command as shown next:

Once you type, the cursor will be waiting for the text you want to type inside the
text file you created. Now you can type whatever text you want to type and when
you are done press Ctrl + D. It will save the file and get back to the command-line
interface.

Say I typed This is a test and then pressed Ctrl + D. The shell will look as
shown next.

Now if you type ls command, you can see the text file inside the WorkSpace
directory.

Getting Started with BeagleBone

[36]

If you want to read the contents of the sample.txt file, again you can use the cat
command as follows:

Alternatively, you can even use the more command which we will be using mostly:

Now that we saw how we can create a file, let's see how to delete what we created.

•	 rm: This stands for remove command. This will let you delete any file by
typing the filename or filename along with path followed by the command.

Say now we want to delete the sample.txt file we created, the command can be
either rm sample.txt which will be equivalent to rm /home/debian/WorkSpace/
sample.txt as your current working directory is /home/debian/Workspace.

After you execute this command, if you try to list the contents of the directory, you
will notice that the file has been deleted and now the directory is empty.

Like this, you can make use of the shell commands work on your BeagleBone board
via SSH over Ethernet or Wi-Fi. We will be seeing how to connect your BeagleBone
board to Wi-Fi in Chapter 5, Connecting Physical Computing Systems to the Internet
where you can setup your BeagleBone board to connect to your router via Wi-Fi
instead of Ethernet to give wireless access to your BeagleBone board.

Now that you have got a clear idea and hands-on experience on using the Linux
Shell, let's go ahead and start working with python and write a sample program
on a text editor on Linux and test it in the next and last topic of this chapter.

Chapter 1

[37]

Writing your own Python program on
BeagleBone board
In this section, we will write our first few Python codes on your BeagleBone
board. That will take an input and make a decision based on the input and print
out an output depending on the code that we write. There are three sample codes
in this topic as examples, which will help you cover some fundamentals of any
programming language, including defining variables, using arithmetic operators,
taking input and printing output, loops and decision making algorithm.

Before we write and execute a python program, let us get into python's interactive
shell interface via the Linux shell and try some basic things like creating a variable
and performing math operations on those variables.

To open the python shell interface, you just have the type python on the Linux shell
like you did for any Linux shell command in the previous section of this chapter.

Once you type python and hit Enter, you should be able to see the terminal as shown
in the following screenshot:

Now you are into python's interactive shell interface where every line that you
type is the code that you are writing and executing simultaneously in every step. To
learn more about this, visit https://www.python.org/shell/ or to get started and
learn python programming language you can get our Python By Example book in
our publication.

Let's execute a series of syntax in python's interactive shell interface to see whether
it's working.

Let's create a variable A and assign value 20 to it:

https://www.python.org/shell/

Getting Started with BeagleBone

[38]

Now let's print A to check what value it is assigned:

You can see that it prints out the value that we stored on it.

Now let's create another variable named B and store value 30 to it:

Let's try adding these two variables and store the result in another variable named C.
Then print C where you can see the result of A+B, that is, 50.

That is the very basic calculation we performed on a programming interface.
We created two variables with different values and then performed an arithmetic
operation of adding two values on those variables and printed out the result.

Now, let's get a little more ahead and store string of characters in a variable and
print them.

Wasn't that simple. Like this you can play around with python's interactive shell
interface to learn coding. But any programmer would like to write a code and
execute the program to get the output on a single command right.

Let's see how that can be done now.

To get out of the Python's Interactive Shell and get back to the current working
directory on Linux Shell, just hold the Ctrl button and press D, that is, Ctrl + D
on the keyboard. You will be back on the Linux Shell interface as shown next:

Chapter 1

[39]

Now let's go ahead and write the program to perform the same action that we tried
executing on python's interactive shell. That is to store two values on different
variables and print out the result when both of them are added. Let's add some spice
to it by doing multiple arithmetic operations on the variables that we create and print
out the values of addition and subtraction.

You will need a text editor to write programs and save them. You can do it using
the cat command also. But in future when you use indentation and more editing on
the programs, the basic cat command usage will be difficult. So, let's start using the
available text editor on Linux named nano, which is one of my favorite text editors
in Linux. If you have a different choice and you are familiar with other text editors
on Linux, such as vi or anything else, you can go ahead and continue the next steps
using them to write programs.

To create a python file and start writing the code on it using nano, you need to use
the nano command followed by the filename with extension .py.

Let's create a file named ArithmeticOperations.py.

Getting Started with BeagleBone

[40]

Once you type this command, the text editor will open up.

Here you can type your code and save it using the keyboard command Ctrl + X.

Let's go ahead and write the code which is shown in the following screenshot and
let's save the file using Ctrl + X:

Then type Y when it prompts to save the modified file.

Then if you want to change the file with a different name, you can change it in the
next step before you save it. Since we created the file now only, we don't need to do
it. In case if you want to save the modified copy of the file in future with a different
name, you can change the filename in this step:

Chapter 1

[41]

For now we will just hit Enter that will take us back to the Linux Shell and the file
AritmeticOperations.py will be created inside the current working directory,
which you can see by typing the ls command. You can also see the contents of the file
by typing the more command that we learned in the previous section of this chapter.

Now let's execute the python script and see the output. To do this, you just have
to type the command python followed by the python program file that we created,
that is, the ArithmeticOperations.py.

Once you run the python code that you wrote, you will see the output as shown
earlier with the results as output.

Now that you have written and executed your first code on python and tested
it working on your BeagleBone board, let's write another python code, which is
shown in the following screenshot where the code will ask you to enter an input and
whatever text you type as input will be printed on the next line and the program will
run continuously.

Getting Started with BeagleBone

[42]

Let's save this python code as InputPrinter.py:

In this code, we will use a while loop so that the program runs continuously until
you break it using the Ctrl + D command where it will break the program with an
error and get back to Linux Shell.

Now let's try out our third and last program of this section and chapter, where
when we run the code, the program asks the user to type the user's name as input
and if they type a specific name that we compare, it prints and says Hello message
or if a different name was given as input, it prints Go Away; let's call this code
Say_Hello_To_Boss.py.

Chapter 1

[43]

Instead of my name Jayakarthigeyan, you can replace it with your name or any
string of characters on comparing which, the output decision varies.

When you execute the code, the output will look as shown in the
following screenshot:

Like we did in the previous program, you can hit Ctrl + D to stop the program and
get back to Linux Shell.

In this way, you can work with python programming language to create codes that
can run on the BeagleBone boards in the way you desire.

Since we have come to the end of this chapter, let's give a break to our
BeagleBone board.

Let's power off our BeagleBone board using the command sudo poweroff,
which will shut down the operating system.

Getting Started with BeagleBone

[44]

After you execute this command, if you get the error message shown in the following
screenshot, it means the BeagleBoard has powered off.

You can turn off the power supply that was connected to your BeagleBone
board now.

Summary
So here we are at the end of this chapter. In this chapter, you have learned how to
boot your BeagleBone board from a different operating system on microSD card
and then log in to it and start coding in Python to run a routine and make decisions.
Using this knowledge, we will see how to make an LED blink which is connected
to any GPIO pin on the GPIO headers of the BeagleBone board and how to read the
switch button status using python code in the next few chapters. But before that, we
will look at fundamentals of Basic Electronics in the next chapter.

On an extra note, you can take this chapter to another level by trying out a little more
by connecting your BeagleBone board to an HDMI monitor using a microHDMI
cable and connecting a USB Keyboard and Mouse to the USB Host of the BeagleBone
board and power the monitor and BeagleBone board using external power supply
and boot it from microSD Card and you should be able to see some GUI and you will
be able to use the BeagleBone board like a normal Linux computer. You will be able
access the files, manage them, and use Shell Terminal on the GUI also. If you own
BeagleBone Black or BeagleBone Green, you can try out to flash the onboard eMMC
using the latest Debian operating system and try out the same thing that we did
using the operating system booted from microSD card.

[45]

Circuit Fundamentals and
GPIO

In this chapter, we will be learning the basics of setting up an external electronic
circuit that you can interface with the BeagleBone board using the general-purpose
input/output (GPIO) pins available on it. The chapter will focus on making the
reader understand how to wire electronic circuits with an explanation of how
they work followed by using the GPIOs available on the BeagleBone board for
their operation.

For readers who are from an electronics background, most of what is covered in
the first three topics will be familiar but still I suggest you skim through the topics
to brush up the basics. Since the book is written in such a way that readers without
prior knowledge of electronics also get to understand and work on the projects,
these topics have to be included in the chapter.

The contents of the chapter are divided into the following topics:

•	 Prerequisites
•	 Fundamentals of electrical and electronic circuits
•	 Use of BreadBoards
•	 Switches and LEDs
•	 GPIOs
•	 Adding libraries to Python
•	 Using python to access GPIOs
•	 Simple project: Blinking an LED using a Python script

Circuit Fundamentals and GPIO

[46]

Prerequisites
This topic will cover what parts you need to get started with BeagleBone Black
online. You can buy these parts from your favorite online store or from any of your
local stores. individual electronic components such as resistors, transistors, LEDs,
and so on are connected with a power source element such as a battery or other
power supply source using conductive wires through which current flows through
these electronic components, it forms an electronic circuit:

We will see how to make our first simple electric circuit using an LED followed by
connecting a switch to it in the Switches and LEDs section of this chapter.

Usage of breadboards
In this section, you will learn about what breadboards are, why they are called
so, and how to use them. Once you are done with it, you should have a basic
understanding of how breadboards work and be able to start using it to build
basic circuits on a breadboard.

A breadboard is composed of electrical connections in rows and columns. Each
column is electrically connected to each point on the row, you can see the black
column line, that has connectivity. You can use wires to connect any column with
another. There are larger rows on the top and bottom which are usually used
for power supply positive and negative, in other words, VCC (power) and GND
(ground) signals. You can use these to easily connect any column to VCC or GND or
use it for any other purpose as per your wish as there is no restriction, it's just like
any other row:

Chapter 2

[47]

You can learn how to use a Breadboard by connecting the circuit given in the
previous section to test it by setting up the same circuit on breadboard as shown
in the following figure:

Circuit Fundamentals and GPIO

[48]

Switches and LEDs
Switches are one of the the elementary components in electronic circuits:

All they do is make or break a circuit, meaning it either opens a connection or
closes it between two terminals. The two states of a switch are as shown in the
following figure:

There are a lot of different types of switches. But there are two most commonly used
ones in our circuits that we will discuss in this section, which are the momentary
switch and the toggle switch. Before we discuss the different types of switches,
as mentioned during the introduction of this chapter, let's see what LEDs are and
how to create a basic circuit using them, as during the explanation of the switch
operations, it will be useful for better understanding.

To create your first simple circuit, take a battery, resistor, and LED with wires to
connect them as shown in the following figure. By doing this, you can understand
what an LED is. LED stands for light emitting diode, which is nothing but an
electronic component that emits light when suitable voltage is applied to its leads
in the proper configuration. An LED has two leads: the cathode and the anode,
as shown in the following figure:

Chapter 2

[49]

The anode terminal should be connected to the positive terminal of the power supply
/ battery and the cathode terminal should be connected to the negative terminal
of the power supply / battery to make the LED glow. Connecting in reverse won't
make the LED glow. If you would like to know more about why and how an LED
works, do your research online or read books to find out more.

Now, let's go ahead and make an electronic circuit where current flows through the
wires through a resistor and LED which are connected to a power source, in other
words, a battery, as shown in the following diagram:

Circuit Fundamentals and GPIO

[50]

So, as shown in the preceding diagram, the resistor can be on any side of the LED. The
resistor is a component that reduces the value of current flowing through the circuit.
It is used to increase the lifetime of the LED and is necessary for most LEDs. I would
suggest you learn more about how much value of resistor should be used and for
particular battery and LEDs that you use because this chapter and most of the sections
in it are intended to give you a basic getting started idea regarding electronic circuits.
As mentioned at the beginning of the chapter, electrical and electronics is a vast topic
and we can't put all the concepts involved in it in just one chapter.

If you successfully make the LED glow with a battery and LED with a resistor in
between, you will have made your first basic electronic circuit. But have an LED
glow all time is something that now one would want right. We will always need an
element to control another element. So here comes the switch, where if you connect a
switch in between this circuit, you can turn the LED on and off when you want it to
glow or not glow. So let's go ahead and look at the two most-used types of switches
in electronic circuits, which we will be using in the coming chapters to interface with
the BeagleBone board to give inputs from the outside world.

Momentary switch
If you look at the following figure, you can see that the momentary switch has
a push button actuator, a plunger in between the movable contact that touches
the stationary contacts of two terminals.

Chapter 2

[51]

The switch shown in the preceding figure is normally open as the stationary contacts
are not in contact with the movable contact during normal state as the plunger pulls
the movable contact upwards. Whenever you press the button on top, the movable
contact goes down and touches the two stationary terminals to make contact and
close the line. When you remove the pressure you applied to press the push button
switch, the plunger pulls back the movable contact and the circuit opens up. The
explanation is illustrated in the following figure with an LED connected to a battery.
Have a look at them to understand better and try it yourself using a push button
momentary switch, a battery, a resistor, and an LED:

Pushbutton Open Circuit - No Current Flow so LED is OFF

Pushbutton Closed Circuit - Current Flows so LED is ON

Please note that there are other types of push button momentary switches also
available on the market which are normally closed, where the switch opens the
circuit when the button is pressed and closes in normal state. Depending on which
switch you use, the operation will differ for the circuit shown in the preceding figure.
For normally closed, the LED will be always on and when you press the button,
it will go off. For normally open, the operation will be as shown in the preceding
figure, where the LED is off in normal state but goes on when you press the push
button switch.

The next type of switch we will discuss will be the Toggle switch.

Circuit Fundamentals and GPIO

[52]

Toggle switch
A toggle switch is similar to the traditional switches used in wall-mounted electrical
switch boards that help you open and close the connection to switch the circuit on
and off. Here is how it looks with the circuit symbol:

Now that you are familiar with how a switch operation works, you can easily
understand the concept of the toggle switch. Basically, it switches the state from
on to off as we switch the position of the switch. Unlike the momentary switch,
where we need to hold the switch button to switch the state, here, once you toggle
the position, it stays in the position you left it. So we can toggle the switch from the
Off to the On state, in other words, from the open to the closed state, as well as vice
versa, and leave it as such and it will stay in the same position, in other words, in the
state of either On or Off, as there is no spring mechanism to push the switch back to
its previous position. The following diagrams will help you understand better:

Chapter 2

[53]

Toggle Switch Open Circuit - No Current Flow so LED is OFF

Toggle Switch Closed Circuit - Current Flows so LED is ON

So, as shown in the preceding figure, if you have successfully set up the circuit and
made the LED glow by switching the switch, by now you must have understood the
concept of an electrical circuit and switching an electrical and electronic circuit using
a switch. But using our BeagleBone board instead of doing it manually, we will be
using the GPIOs to switch elements as well as read the switching inputs. We will
see this in detail with experiments in the next chapters. For now, in the next section,
you will learn what GPIOs basically are and what kind of GPIOs are available on the
BeagleBone board.

Circuit Fundamentals and GPIO

[54]

GPIOs
As we discussed in Chapter 1, Getting Started with BeagleBone, BeagleBone boards have
GPIO pin headers on either side of the board. In this section, we will be discussing
what these GPIOs are and how we can use them to interface external electronic
components to the board.

The following figure shows the GPIOs available and the pin mapping of each of
them. This pin mapping or, in general, the names assigned to these pins will be
helpful for us while accessing them from the software running on the operating
system. You will see this in detail at the end of the chapter, when we will be
accessing the GPIO from python:

Chapter 2

[55]

So, these GPIOs are ports which can act either as input or output from our definition
from software running on the operating system. There are several methods to define
these pins as input and output, as well as to change the state of these pins when
defined as outputs and read the state when defined as inputs. In this book, as we
will be using python as the primary programming language, we will be accessing
these pins from the python program. To get started, you will first need to add a few
libraries to python that will help you do it. How to install those libraries and validate
them is explained in the next topic.

Adding libraries to Python
To make it easy to work with GPIOs on BeagleBone boards using Python
programming language, we will be installing the Adafruit-BeagleBone-IO-Python
library. The following steps will walk you through how to do it:

1.	 Log in to your BeagleBone board.
As we did in the previous chapter, the first thing you need to do is boot the
BeagleBone board from the microSD card and log in to it via SSH:

2.	 Update the repositories.
Your next step will be to update the software dependency repositories in
Debian running on the BeagleBone board before we start installing the other
dependencies that are not installed and the libraries.

Circuit Fundamentals and GPIO

[56]

You can use the apt-get update command to do this:

3.	 Install the dependencies.
In this step, we will be installing certain software packages that are necessary
for the library to work with the BeagleBone board. The command that you
need to execute is as follows:
sudo apt-get install build-essential python-dev python-setuptools
python-pip python-smbus –y

The output that you will see is shown in the following screenshot:

Chapter 2

[57]

4.	 Install the BBIO library.
Now, once you have updated the repositories and installed the necessary
dependencies, we can go ahead and install the Adafruit_BBIO Python
Library that we will be using to access the GPIO pins on the BeagleBone
board using Python running on it.
To install the Adafruit_BBIO library, execute the following command:
sudo pip install Adafruit_BBIO

You will see the following output:

5.	 Test your installation.
Now, let us check whether the installation happened properly or not. To do
this, just execute the command given following:
sudo python -c "import Adafruit_BBIO.GPIO as GPIO; print GPIO"

Now, if you see the output shown in the following screenshot, it means
the installation was successful and we have successfully installed the
Adafruit_BBIO library:

We can validate this by importing the library into python and testing it,
as shown in step 6.

6.	 Validate the installation.

In this step, first you need to open Python's interactive shell to use the
instructions, as shown following:

Circuit Fundamentals and GPIO

[58]

If you see the module available and its path when you print GPIO, it confirms that
we have successfully installed and added the Adafruit_BBIO Library to Python.
Now let's go ahead and access the GPIO from python to change its state from
Python's interactive shell in the next section.

Using Python to access GPIOs
In this section, we will see how we can change the state of a GPIO on the BeagleBone
board from python's interactive shell interface with the help of functions available in
the Adafruit_BBIO Library.

You will have to connect an LED with one of the GPIO pins on the BeagleBone Black
to understand how these GPIOs work. The following steps will walk you through
the program that you can execute step by step on the Python's interactive shell
interface to understand how you can change the state of a GPIO from LOW to HIGH
and vice versa from python:

1.	 Connect an LED circuit to the BeagleBone board.
To get started, we will need our Breadboard, LED, resistor, and hookup wires
to connect the LED circuit with a GPIO available on the BeagleBone Black.
Once you have them, connect the circuit as shown in the following figure:

Chapter 2

[59]

You can see that the cathode of the LED is connected to the Gnd pin on the
BeagleBone Black through a 470-ohm resistor and the anode is connected to
the GPIO pin 60 on the P9 header. You can refer to the expansion headers of
BeagleBone Black for reference. Once you have connected the circuit with the
BeagleBone Black, we can go ahead and start working with Python to make
this LED turn on and off.

2.	 Open Python's interactive shell and import Adafruit's BBIO Library:

As shown in the preceding screenshot, in this step, you will open Python's
Interactive Shell and import the Adafruit_BBIO Module into it using the
command shown in the preceding screenshot.

3.	 Set up pin GPIO_60 as OUTPUT.
Our next step will be to set up or define GPIO_60 as an output pin as we will
be changing the state of the pin. You can note that these GPIO pins can be
made to act as inputs or outputs. We will be seeing how they will be used as
inputs in the next chapter. Right now we will be making this act as an output
pin to change the state of the pin to high and low or vice versa, so we will
define it as an output pin. To do this, the command is as follows:
GPIO.setup("P9_12", GPIO.OUT)

Circuit Fundamentals and GPIO

[60]

P9_12 is nothing but pin GPIO_60, which is the 12th pin on the P9 header.
See the following figure to understand the idea behind the notation:

4.	 Set Pin GPIO_60 as HIGH.
Once we have defined the pin as an output pin, we can go ahead and change
the state of the pin to HIGH or LOW. The function given following, when
executed, will perform that operation:
GPIO.output("P9_12", GPIO.HIGH)

Chapter 2

[61]

Now you will be able to see that the LED has turned on, as shown in the
following image:

What exactly happens when you execute the function is one of the transistors
inside the processor chip is turned on from the software and this makes
GPIO_60 to HIGH state and it switches on and supplies 3.3V output, which
makes the LED glow. You can now turn off the LED by setting the GPIO_60
pin to the LOW state, as shown in the next step, by modifying the GPIO.
output function to LOW.

5.	 Set Pin GPIO_60 as LOW:
GPIO.output("P9_12", GPIO.LOW)

Circuit Fundamentals and GPIO

[62]

Now you will be able to see that the LED has turned off, as shown in the
following image:

As in the previous step, now the software turns off the transistor inside the
microprocessor on the BeagleBone board to turn off the GPIO_60 so it turns
off and becomes LOW, and doesn't give out the 3.3V supply so the LED is
turned off.

6.	 Clean up the GPIO settings.

So, now you will have got an idea that the GPIO states can be changed from
the software running on the board. These GPIO pins stay in the previous
state until they are changed to another state. But in situations where you stop
the software in the middle of an operation, you might need the GPIO pins to
go back to their default state, which is LOW for most of them. To do this, the
Adafruit_BBIO library provides us with a function GPIO.cleanup(), which
we will be using to clear the previous states and definitions of the GPIOs set
from the software.

Chapter 2

[63]

It is recommended that you use this function at the end of every program
that you write, to avoid unnecessary, undesired output:

Project – blinking an LED using
Python script
In the previous section, we saw how we can access the GPIO pin from Python's
interactive shell and change its state. Let's now write a python code and save it
as a .py file and run it like we did at the end of the previous chapter. The python
program that is discussed in this section will make an LED blink at an interval of 1
second. The LED will be On for 1 second and Off for another 1 second; this will loop
continuously until you break the loop.

The following screenshot shows the program:

Circuit Fundamentals and GPIO

[64]

The code imports the time module and the Adafruit_BBIO module just as we did
in the interactive shell in the previous section of this chapter and then we set up
GPIO_60 as an output pin and then changed the state of the pin to HIGH and LOW
in the while loop that runs continuously. We use the time.sleep(1) function to
pause the code for 1 second in between the state changes. The code also has the
GPIO.clean() function that gets executed when a keyboard interrupt is given
when the code is running.

To run the command, execute the following command after you save the code as
a file called Blink.py:

sudo python Blink.py

You should see output as shown in the following screenshot and the LED connected
to the BeagleBone board blinks at an interval of 1 second and the console also prints
the text Blinking:

When you hit Ctrl + C to kill the program, it will clean up the GPIO to the default
state and exit the program:

So, now you can go ahead and try to use different GPIOs and turn on and turn off
the LED using decision-making statements and more from the Python program. If
you remember, in Chapter 1, Getting Started with BeagleBone, we used the BoneScript
library to make the LEDs which are on the board turn on and stay on for a timeout
interval. You can try writing some code of that sort also in python and try keeping
the LED on for some interval of time. And turn it off based on the input you will
be giving.

Chapter 2

[65]

Summary
Here we are at the end of this chapter, where we learnt the basic principle behind
a simple electronic circuit using LEDs and switches. We saw what GPIOs are and
how we can access them from python and wrote a simple code to make an LED blink
at a particular interval. Then we added external libraries to python on BeagleBone
boards. In the next chapter, we will be seeing how we can get an input from the
external world and build a system that reacts to that input.

[67]

Introduction to Physical
Computing Systems

This chapter will focus on giving you an introduction to what physical computing
systems are, what they are composed of, how they work and where they are used.
First, we will get started with a brief introduction to physical computing systems,
which will give you a basic idea about the basic composition of physical computing
systems with an example followed by its application areas, and at the end we will see
how we can build our own physical computing system using BeagleBone Black with
a push button and LED using Python programming to change the LED state based
on the push button press input.

The contents of the chapter are divided into the following topics:

•	 Prerequisites
•	 Introduction to physical computing systems
•	 Basic elements of physical computing systems
•	 Application areas
•	 Simple project: Push button input triggers event on Python code to toggle

LED on and off

Introduction to Physical Computing Systems

[68]

Prerequisites
This topic will cover what parts you need in this chapter. These can be purchased
from your favorite electrical hobby store or can simply be ordered online. We will
need the following materials:

•	 1 x BeagleBone Black
•	 1 x microSD Card with latest version of Debian flashed on it to boot the

BeagleBone board from the microSD Card
•	 1 x 5V DC, 2A power supply
•	 1 x Ethernet cable
•	 1 x Breadboard
•	 1 x push button switch
•	 1 x LED
•	 1 x 470-ohm resistor
•	 1 x 4.7 Kilo ohm resistor

Introducing physical computing systems
This section will give you a basic overview of physical computing systems. Physical
computing systems are electronic systems that use software and hardware together
to get input from the physical world using the hardware and respond to it by
providing an output based on the software running on the hardware. These systems
are also called embedded systems in different applications. In general terms, any
system that interacts with the analog world using hardware sensors and senses the
input obtained and responds accordingly based on the software programmed for it is
called a physical computing system.

Right from your music player, washing machine, automatic door opener, and mobile
phone, everything that takes input from the physical world using sensors and
buttons and responds to it by making a change in the physical world with its
output is a physical computing system.

Chapter 3

[69]

Take, for example, your washing machine. Based on the input you provide by
clicking on the buttons available on it, which is a physical input from the world to
the washing machine system, it washes your clothes and dries them, which is again
an output on the physical world; it is changing the physical things, the clothes, using
air and water. So it is basically creating a change in the physical, analog world with
its output, which is based on the software running on the hardware on the washing
machine system with the sensors and actuators available on it. We will look at this
in detail with block diagrams and more examples with explanations in the next
section of this chapter, which looks at the basic components comprising a physical
computing system and how they work.

Basic elements of physical
computing systems
In this section, you will learn what physical computing systems are composed of.
First, we will see the basic structure of input and output elements and how to act and
react, followed by the structure of it based on the electrical, electronic, and software
aspects, including the input and output of the system. At the end, we will try to get
a much clearer picture of the same concepts with examples.

The basic structure of a physical computing system comprises sensors, which can
be either analog or digital, that will take input from the physical world using input
sensors that are connected to the hardware of the physical computing system,
as shown in the following diagram:

Introduction to Physical Computing Systems

[70]

These inputs will be read by the software running on the electronic microprocessors
and controllers on the physical computing system. Based on that software, a decision
will be taken to provide the output and this output is converted from digital to
analog form or makes a change in the physical world depending on the type of the
actuators. So, basically, an action is being carried out based on the senses just like
a human reflex actions and how they react to different senses. So the microcontroller
or the computer chip that runs the software together acts as a brain and takes
decisions based on the senses using the sensors connected to the hardware.

Let's look at a basic real-time example as discussed earlier to get a clear
understanding of how the system works. A treadmill is a device people generally use
for walking or running while staying in the same place, to do workouts in the gym,
or some people even have them in their homes. These are powered by electric motors
and have a sensor to read the speed at which the motor is running and
a microcontroller unit / computer system with displays and buttons which runs
a special software which reads these inputs from the sensor to measure speed as well
as get input from the user to make the treadmill work at a particular speed. Shown
in the following figure is a basic treadmill and below that you can see a basic block
diagram as well:

So, basically, as you see in the preceding figure, the treadmill has a HiTech computer
console with buttons and a basic display for the user to select the speed at which
he wants to run. The computer is connected to the motor controller to operate the
motor at that particular speed by reading the speed sensor to measure the speed and
regulate it using the algorithms running on the computer and the output from the
computer controls to the motor controller maintain the speed of the motor. If you
have a look at the following figure, you will understand better, as the block diagram
shows the operation clearly:

Chapter 3

[71]

Looking at the treadmill example will have given you a clear idea about the basic
structure of physical computing systems and their operation. Let's go ahead and look
in detail at the electronics in the total hardware of the system, followed by how the
software works with this hardware to make decisions and give input.

Introduction to Physical Computing Systems

[72]

Before we discuss the hardware structure of physical computing systems, let's have
a quick look at basic computer structure, as shown in the following diagram, as
physical computing systems have evolved from computing systems basically; the
structure of physical computing systems includes basic computing systems with
added interfaces:

Shown above is the block diagram of a basic computer which contains the central
processing unit (CPU) which stores data in the memory unit and processes it in the
arithmetic and logic unit, and the control unit basically performs the data transfer
between all the other units to make them work together. To the CPU we the Input
and Output are interfaced. If you look at the following image of a basic computer,
you can see that the system unit is the CPU, the monitor and speakers are output
devices, and, similarly, the keyboard and mouse are input devices:

Chapter 3

[73]

Based on the software running on the CPU, the input from keyboard and mouse
carry out the process on the hardware and we can see the output in the monitor
as well as hear via the speaker. The computers are advanced physical computing
systems which have dedicated software, the operating systems running on them,
and various protocols for communication. Now that we have clarity on how the
computing system is structured, let's have a look at the structure of embedded
hardware systems such as BeagleBone Black. We will look into the basic structure
first, followed by a detailed hardware block diagram specific to BeagleBone Black:

Shown in the preceding diagram is the fundamental block diagram of any physical
computing embedded hardware system, in other words, embedded systems with
microcontrollers and microprocessers. Comparing the preceding block diagram and
the basic block diagram of the computer, you can see that the input and output ports
are elaborated and explained well in the preceding block diagram, where you can see
digital and analog input ports are interfaced with the CPU and, similarly, we have
the output ports with Analog and Digital outputs. We also have the communication
ports such as UART, I2C, SPI, and so on.

Introduction to Physical Computing Systems

[74]

In basic terms, Digital input ports are capable of reading a particular DC voltage or
a range of DC voltages between two set limits as HIGH and similarly as set limit
as LOW value, in other words, the 1 and 0 we use in computer language called
digital HIGH and digital LOW respectively. An example of a digital input can be
the press of a switch: when it's closed, it's HIGH, in other words, 1, and when it's
open, it's LOW, in other words, 0. Analog input ports are those which take in Analog
voltage between a range of values and convert them to digital output form to make
it understandable to the CPU by converting it to 0s and 1s or digital HIGHs and
LOWs. An example of an Analog input could be an analog temperature sensor which
senses temperature around it and provides a voltage in the range from minimum
value to maximum value corresponding to the temperature around the sensor.
Converters that convert Analog voltage values to digital values are called Analog
to Digital converters (ADCs). Similarly, there are Digital output ports that provide
HIGH and LOW values only and there are Analog output ports that convert digital
values to Analog Outputs. An example of Analog output could be the audio output
you get from phones and music players or video through an Analog signal. And
we also have the communication ports, which include different protocol-based
communication ports such as UART, I2C, SPI, and so on. The availability of input,
output, and communication ports varies from one device to another, depending on
what microcontrollers or microprocessors they use and the architecture of
the system.

Now, let's look in detail at what the hardware structure of BeagleBone Black looks
like, as shown in the following diagram:

Chapter 3

[75]

So, as you can see in the preceding block diagram, the CPU consists of a Sitara
AM3358BZCZ processor, with 2 GB of eMMC storage as Read Only Memory (ROM)
and 512 MB of Random Access Memory (RAM) with different external ports for
interfaces such as HDMI for video, USB client for USB communication, RJ45 ports
for Internet access, and so on. The structure is similar to a basic computer, just as we
know that the BeagleBone board is nothing but a single board computer with GPIOs.
The expansion header block contains the GPIOs, which can made to act as digital
input or digital output depending on how we desire it to work for us based on the
software running on the processor. The expansion headers also include analog inputs
to read analog values. I believe that this section might have given you a clear idea
about the basic structure of physical computing systems and how our BeagleBone
board is also structured in a similar way.

Application areas
A few of the application areas where physical computing systems are used include
almost all of modern-day technology gadgets and machines, from your mobile
phones, fire alarms, and baby monitors, to home automation and industrial
automation electronic systems, as well as the robotic systems used in homes
and industries.

For example, what fire alarms with sprinkler systems in malls do is, basically, sense
the temperature and smoke using sensors and whenever a event of fire is detected,
they start the sprinkler system to sprinkle water from the tanks via the pipes and
pumps using a control system that is continuously running the dedicated software
that was written to do this operation.

Similarly, home automation systems, baby monitors that are connected to the
Internet help you connect your home electronic devices to the Internet and dedicated
artificial intelligence software programs running on the servers operate your air
conditioning or lighting and heating, and so on, to make your life better. Similar
applications are also seen in industry, where robots are making a huge difference in
manufacturing industries and nowadays many robot bartender systems are in use.

So, I hope now you should be able to imagine a clear picture of the existence of
physical computing systems around us and how they work.

In the sections and chapters coming after this, we will look into the building
of different projects and use of these ports available on the expansion headers,
including the digital inputs and outputs and Analog inputs to sense the input given
from the physical world and build software by writing code on Python to make the
system respond and act by providing output depending on the sensed input based
on the software.

Introduction to Physical Computing Systems

[76]

Project – toggle LED using a push button
Now that we have a clear idea about what physical computing systems are and
how they work, let's go ahead and build our own physical computing system using
BeagleBone Black by connecting a push button switch to act as a input to the system
and an LED which will act as the output. How we write the software program will
decide what the LED does based on the input from the push button switch.

We already know how to connect an LED to the BeagleBone board and also how
to program in Python to turn on and turn off the LED just as we experimented in
the project of the last chapter. In this project, we will use the knowledge we gained
and what we are going to learn now before we go ahead and build the physical
computing system. Now that we know how to interface an LED, let's learn how to
interface a push button and read input value from the push button connected to the
BeagleBone board using Python.

First, connect the push button to BeagleBone Black, as shown in the following figure:

Chapter 3

[77]

Once you have connected the push button switch to BeagleBone Black as shown
in the preceding figure to the GPIO_115 / P9_27 pin on the GPIO header through
the switch and resistor to pull down the state to LOW when the push button is not
pressed, let's go ahead and read the input from the switch via the python
interactive shell.

Pull-down and pull-up resistors are used to keep the input state with either low or
high input supplied as input to the GPIO pin. You can do your own research on the
Web to learn more about pull-down and pull-up resistors.

Open the Python interactive shell:

Import the GPIO library using the following line of code:

import Adafruit_BBIO.GPIO as GPIO

Then let's define GPIO P9_27 of BeagleBone Black as the input pin to which we have
connected the switch using the following command:

GPIO.setup("P9_27", GPIO.IN)

Next, read the current status of the GPIO using the following command:

GPIO.input("P9_27")

Introduction to Physical Computing Systems

[78]

That should print out the current status of GPIO P9_27; in the output shown
in the preceding screenshot, it is 0. Now the setup is as shown in the following
image, where the button is not pressed; that is the reason the reading value of
P9_27 GPIO is 0:

When you press the push button and hold it and then read the input, you will get the
input value as 1, as shown in the following screenshot:

So, as shown in the preceding screenshot, when the button is pressed, the value that
will be read is 1, as shown in the preceding screenshot on the python console:

Chapter 3

[79]

Now that we know the basic functions using which we can read the input status of
the push button, let's go ahead and write the python program which will read the
push button status in real time and print it every half a second.

First, let's create the python file:

Then, let us type the program as shown in the following screenshot and save it:

Next we will run the Python code:

When you run the python code, the output will be as shown in the preceding
screenshot when you don't press the push button.

And when you press and hold it, the output will be as shown in the
following screenshot:

Introduction to Physical Computing Systems

[80]

When you leave the button again and leave it to come back to its previous position,
the output will be as shown in the following screenshot:

Now let's go ahead and modify the code in such a way that, instead of printing
the current status of the switch, the python program prints that the button was
pressed every time you press it and leave it. Save the python code with the name
ButtonPress.py:

When you run the code and press the button, you will get the output as shown in the
following screenshot:

Chapter 3

[81]

Every time you press the push button switch and leave it, you will get the text
Button pressed! printed on the shell.

Now that we have the basic logic figured out to print the button press event, we will
go ahead and modify this code to toggle the LED to on and off every time the button
is pressed.

Before we move on to programming BeagleBone Black to toggle the LED, let's
connect the LED to BeagleBone Black, as shown in the following circuit diagram
with the push button switch as well:

Introduction to Physical Computing Systems

[82]

Now, write the program to toggle the LED to the On and Off state alternatively for
every press of the button, as shown in the following screenshot, and save the file
with the name ButtonLEDToggle.py or a name of your choice:

Then, when you run the code and then press the button, you can see that the LED
goes On and Off alternatively every time you press the push button. The output will
be as shown in the following screenshot:

Chapter 3

[83]

When the LED is off as shown in the following image:

When you press the button and leave it, the LED will turn on, as shown in the
following image:

www.allitebooks.com

http://www.allitebooks.org

Introduction to Physical Computing Systems

[84]

Again, when you press the button, the LED will toggle back to the Off state:

This will happen alternatively every time when you press the push button, the LED
will toggle to HIGH and LOW state.

Summary
Here we are at the end of the chapter where we learnt the fundamental concept of
how a physical computing system works with the help of the basic structure of these
systems with BeagleBone Black as an example. We also discussed a few application
areas in the real world. Then, we saw how to interface a push button switch with a
BeagleBone board and write python code to read its status by accessing the GPIO
pin as an input from python. At the end, we worked on a very basic project to
understand how we can build our own physical computing system that senses and
reacts to the physical world using a push button and LED to toggle the LED from
On to Off every time you push the button.

In the next chapter, we will see how we can build a much more complex physical
computing system with an Analog temperature sensor, unlike a digital input reading
from the input from the push button we read. But before you go to the next chapter,
I would suggest you write different programs to make the LED do whatever you like
using the button press event; for example, you can count how many button presses
have to be made and, based on that, you can make the LED blink for that many times
and then get back to the mode where it will wait for the next number of clicks. Try
anything that comes in your mind and play with the hardware and coding.

[85]

Real-time Physical
Computing Systems Using

BeagleBone
In this chapter we will be focusing on building a real-time physical computing
system using BeagleBone board. We will be interfacing an LM35 temperature
sensor module with BeagleBone Black in this chapter in order to understand how
a sensor can be interfaced with BeagleBone board to make the system interact
with the physical world. We will be getting ambient temperature as analog input
readings from the physical world around the sensor, and coding the BeagleBone
board to make the LEDs connected to the BeagleBone board to light it up in different
colors, depending on the temperature levels measured by the sensor. So, by end of
this chapter, you will have built an interactive physical computing system using
BeagleBone board where it outputs LED indications based on the temperature
measured. The contents of the chapter are divided into the following topics:

•	 Prerequisites
•	 Temperature sensor – LM35
•	 Interfacing the temperature sensor to BeagleBone board
•	 Simple project: Bicolor LED indicator that changes its color depending on the

room temperature measured by temperature sensor

Real-time Physical Computing Systems Using BeagleBone

[86]

Prerequisites
This topic will cover what parts you need to get started with this chapter. These
can be purchased from your favorite electrical hobby store, or can simply be
ordered online.

Materials needed
•	 1x BeagleBone Black
•	 1x microSD card with the latest version of Debian flashed on it to boot the

BeagleBone board from the microSD card
•	 1x 5V DC, 2A power supply
•	 1x Ethernet cable
•	 1x LM35 temperature sensor
•	 1x two-legged bicolor LED
•	 1x 220 ohm resistor
•	 1x BreadBoard
•	 A few male-to-male jumper wires
•	 1x multi-meter (optional)

Temperature sensor
A temperature sensor is just an electronic chip that senses the ambient temperature
around it and gives out varying voltage across the output terminal of the sensor.
By using this, we can calculate the temperature that's being sensed. There are many
different types of sensors available in the market, but we will be using the one that is
the most easily available, and most commonly used by the hobbyist. This is the LM35
temperature sensor module, which is an analog output sensor, where the voltage
can be directly converted to temperature values, based on the formula given by the
manufacturer of the sensor, as mentioned in the datasheet of the sensor:

Chapter 4

[87]

How do LM35 sensors work?
The basic principle behind the LM35 temperature sensor is that it converts the
ambient temperature around the sensor to analog voltage proportionally.

In the following picture, you can see the pin terminals of the LM35 temperature
sensor where one terminal is the input, which gets supply input voltage, and the
others are the output and the ground.

Real-time Physical Computing Systems Using BeagleBone

[88]

So, once you connect the power supply input to the temperature sensor with the
ground, the analog voltage output that can be measured across the analog voltage
out terminal, with respect to the ground, is as shown in the graph above.

For example, say the voltage measured across the output terminal and ground is 1
Volt, the ambient temperature in degrees Celsius is 100, which we can infer using the
curve shown in the graph above.

And, from the datasheet of the LM35, we can infer that every 10mV is proportional to
1 degree Celsius. So we can use the formula given below to calculate the temperature
in degree Celsius, if we know the analog output voltage in mV.

Temp in °C = (Vout in mV)°/ 10

To validate the temperature sensing and to test whether the sensor is working
properly before moving on to the next topic of interfacing the sensor with
BeagleBone board, you can use a multi-meter to measure the voltage across the
output terminal while providing an external power supply to the LM35 temperature
with common ground pin. Depending on the voltage measured, you can calculate
the temperature using the previous formula. You can put hot or cold objects near to
the sensor or hold them over it to see the voltage difference.

Temperature sensing using a LM35
sensor
Now that we know how an LM35 temperature sensor works, let's go ahead
and look at the topic of measuring temperature with it by hooking it up to the
BeagleBone board.

First of all, take three berg wires and connect the LM35 temperature sensor to the
BeagleBone board, as per the circuit diagram shown in the following image:

Chapter 4

[89]

Then we will turn on the BeagleBone board, and then login into the Linux Shell to
start coding it. We will access the WorkSpace folder where we are saving all the
Python scripts that we've already created in the previous chapter. By now you
should be familiar with how to navigate to the WorkSpace directory.

To do this, type command cd WorkSpace:

Once you are in the WorkSpace directory, and before writing the script to read
temperature data, lets test it out via the Python console, which you should also be
familiar with by now.

Real-time Physical Computing Systems Using BeagleBone

[90]

Type the command to start the Python interactive programming shell, sudo python:

Once we are inside the Python interactive shell, let us import the Adafruit GPIO
library to read ADC inputs on the BeagleBone board, by typing import Adafruit_
BBIO.ADC as ADC:

Next we need to initialize the ADC, by typing the following command: ADC.setup()

To read the ADC reading on port P9_40, to which we have connected the output of
the temperature sensor, use the following command:

ADC.read("P9_40")

The ADC ports available on the BeagleBone board are 12 bits, which equals 2¹² =
4096 units maximum, and the maximum voltage that can be given to these analog
pins is 1.8 V. This means that the voltage input of these pins, varying from 0 to 1.8V,
is proportional to 0 to 4096 ADC units, but in Python the Adafruit library gives us
a reading between 0 to 1, which is proportional to 0 to 1.8V. The output of the ADC
reading of the port P9_40 using ADC read function is shown as follow:

Chapter 4

[91]

So you can see that the ADC reading on port P9_40 is 0.19445.

Now let's go ahead and save it on a variable to calculate how many volts it is. Let's
create a variable reading and store the measured ADC reading as shown in the
following screenshot:

Then, let's go ahead and convert the ADC reading into millivolts (mV). We know
that the ADC is capable of reading 0 to 1.8V which is proportional to 0 to 1 unit of
the ADC reading in Python, in other words 1.8 V = 1800 mV.

Millivolts measured = (ADC Reading) * 1800

Voltage Measured = (ADC Reading) * 1.8

That is to say, in our case, on the Python console you can create a variable named
millivolts which will hold the voltage measured across the sensor output pin,
with respect to the ground pin, as shown in the following screenshot:

As shown in the preceding screenshot, you will get the value of the voltage across
the sensor output voltage pin in millivolts. Now, we can go ahead and convert
the millivolts measured to temperature into degrees Celsius using the formula we
obtained using the information from the datasheet at the beginning of this topic.
This is shown in the following screenshot by creating a variable temp_c that holds
the temperature in degrees Celsius:

Real-time Physical Computing Systems Using BeagleBone

[92]

If we print the temp_c value we will get the output as shown in the
preceding output.

Now, let's go ahead and write a Python program that will print the temperature
sensor values every second.

Create the Python script file, sudo nano TestLM35.py:

Type in the code as shown in the following screenshot:

Once you have typed in the code, you can go ahead and save it using the
Ctrl + X command.

When you run the program you should see the output as shown in the
following screenshot:

Chapter 4

[93]

So, in the preceding screenshot you can see that the ambient temperature around
the sensor in degrees Celsius is printed every second. If you have come this far
successfully, then you have successfully interfaced the LM35 temperature sensor
with the BeagleBone board and Python. As a further step in this interfacing and
testing of the LM35 with BeagleBone board, let's see whether or not the LM35
interfaced with the BeagleBone board is detecting any rise in the temperature by
placing a lit matchstick near the sensor.

Place a lit matchstick near to the sensor as shown in the following picture:

You can see that the temperature readings rise up when you bring the lit matchstick
near to the temperature sensor, as shown in the following screenshot:

Real-time Physical Computing Systems Using BeagleBone

[94]

When you remove the matchstick from the sensor, it comes back down again as
shown in the following screenshot:

So, now that we know how to interface the LM35 temperature sensor with the
BeagleBone board and read the temperature sensor readings, in the next topic of this
chapter, which is our main project, let's build a real-time physical computing system
using Python programming, by adding a bicolor LED to the BeagleBone board.

Intermediate project: LED color change based on measured temperature:

1.	 Connect the circuit as shown in the following picture:

Chapter 4

[95]

2.	 Write down the Python script.
As we already know how to interface a temperature sensor with the
BeagleBone board and how to switch a GPIO on and off, to light an
LED using Python, now we are going to combine both these previous
experiments. Let's write a Python script to make the GPIO high or low
based on the temperature value measured by the temperature sensor. Write
down the code by changing the TestLM35.py file, as shown in the following
screenshot, and save it with the different name LM35nLED.py:

Real-time Physical Computing Systems Using BeagleBone

[96]

3.	 Now, when you run the code with the command, sudo python LM35nLED.
py you should see the following:

Your setup should be like the one shown in the following screenshot in a room with
an ambient temperature of less than 50 degrees Celsius:

The output for the Python program when you execute it will be as follows:

When you light a matchstick and hold it in front of the sensor, the output will be
as follows:

Chapter 4

[97]

And the LED will go to red as shown in the following picture:

When you remove the matchstick from the sensor, it will change back to green.

Now we have a system that takes input (ambient temperature around the sensor)
from the physical world, and based on that input changes something in the
environment such as the LED color, with the information of the temperature
getting printed out on the Linux shell. This brings us to the end of this chapter
where we have built a basic physical computing system using BeagleBone Black.

Real-time Physical Computing Systems Using BeagleBone

[98]

Summary
In this chapter we have learnt about temperature sensors and how they can be
interfaced with the BeagleBone board to obtain temperature measurements by
connecting the sensor to analog input reading pins on the BeagleBone board. Then
we wrote a code to make decisions based on the input obtained from the LM35
temperature sensor where the decision was to turn on a particular GPIO pin that
is connected to a bicolor LED in order to change the color of the LED based on the
ambient temperature around the sensor. So, in this way we have a real-time physical
computing system up and running on BeagleBone Black using Python to get started.
But this is just local computing where decisions are made based on the program
running on the local system and all the data is in the local system itself.

Now in the next chapter, we will go ahead and build a more advanced real-time
physical computing system, that is connected to the Internet, and on which the
sensor data is sent to cloud server from the BeagleBone board that is connected
to the Internet.

[99]

Connecting Physical
Computing Systems to the

Internet
In this chapter, we will be focusing on connecting the BeagleBone board to the
Internet to connect the physical computing systems that we build to the Internet.
First we will look into giving Internet access to the BeagleBone board via Ethernet,
then we will learn how to add Wi-Fi capability to the BeagleBone board so that the
system we build can be placed anywhere where we have Wi-Fi access, and so that
we are not restricted to setting up the system only where the Ethernet is available.
Once we are done with this, we will go ahead and build two projects; in the first one
we will send an e-mail alert whenever the temperature sensor reading goes above
a set level in the Python program running on the BeagleBone board. The next one
will be a basic beginner project on Internet of Things for you to get started where the
BeagleBone board will be uploading the temperature sensor data to a cloud server
on the Internet. So basically, we will be using the knowledge we learnt in previous
chapters, in this chapter, in order to take our previous projects to the next level.
We'll do this by connecting them to the Internet and by performing operations on
the cloud and on messaging services such as e-mail. The contents of the chapter are
divided into the following topics:

•	 Prerequisites
•	 Giving Internet access to your BeagleBone board
•	 Adding Wi-Fi to your BeagleBone board
•	 Intermediate level project: E-mail alert fire alarm – the Python program will

send an e-mail if the temperature sensor readings go above a set level

Connecting Physical Computing Systems to the Internet

[100]

•	 Advanced project: Sensor data to cloud – a Python program will upload the
temperature sensor data to an open source or freely available cloud service
using the HTTP web service

Prerequisites
This topic will cover what parts you need to get started with this chapter.
These can be purchased from your favorite electrical hobby store or can simply
be ordered online.

Materials needed
Following are the materials that we will need before moving ahead:

•	 1x BeagleBone Black
•	 1x microSD card with latest version of Debian flashed on it to boot the

BeagleBone board from the microSD card
•	 1x 5V DC, 2A power supply
•	 1x Ethernet cable
•	 1x LM35 temperature sensor
•	 1x compatible Wi-Fi dongle
•	 1x BreadBoard
•	 A few jumper wires

Giving Internet access to your
BeagleBone board
Giving Internet access to the BeagleBone board via the Ethernet is very simple. All
you need to do is connect one end of Ethernet cable to the BeagleBone board, and the
other end to a router with an Internet connection. The BeagleBone board will obtain
the IP address dynamically from the router using DHCP and get Internet access.
To check this you can just type in the following command:

ping www.google.com

You will get the response as shown in the following screenshot. This means you have
a working Internet connection.

Chapter 5

[101]

Actually, what the ping command does is, it tests the connection and latency
between two network connections. The ping command sends packets of data to the
other network computer, in our case the www.google.com server, or the IP address of
that server. You can see next to www.google.com in the output above, the global IP
address of the server is shown. The picture shows how the ping command measures
the time taken to get a response from that server computer, where the time is
in milliseconds.

So, it's as simple as that to give Internet access to the BeagleBone board, running
a working operating system such as Linux. This will automatically obtain the IP
address from the Internet router to which it is connected using DHCP. But in most
of the cases we will need a setup where the real-time embedded system is wireless
which gives more flexibility in placing the system at any place for its operation
instead of restricting the setup to be connected to Ethernet cable. The next topic
of this chapter will focus on how to setup Wi-Fi access to BeagleBone board.

Adding Wi-Fi to the BeagleBone board
To add Wi-Fi capability to the BeagleBone board, let's connect a Wi-Fi dongle in the
USB port available on the BeagleBone board, as shown in the following picture:

www.google.com
www.google.com

Connecting Physical Computing Systems to the Internet

[102]

Once you have connected the USB Wi-Fi dongle you can check whether it is
connected or not by typing the following command:

•	 lsusb: This is shown in the following screenshot where the USB Wi-Fi
dongle is highlighted, that is Atheros Communications, Inc. AR9271
802.11n:

Then type the following command:

•	 iwconfig: iwconfig will show you the details of the wireless LAN
connection status, as shown in the previous screenshot, where you can see
that wlan1, which is highlighted, shows the detail that is not associated with
any access point as of now.

Our next step is to connect the Wi-Fi dongle to the Wi-Fi access point. To do this we
will be using a program called wicd-curses, which is available in Debian by default.

To use the program we need to enter the following command:

•	 sudo wicd-curses

Once you execute the command you will get an interactive program window as
shown in the following screenshot:

Chapter 5

[103]

You can see in the preceding screenshot that the program states there are No
wireless networks found. This is because we need to set up the USB Wi-Fi device
first, and then search for the available Wi-Fi access points in the range. To do this,
follow the next steps as shown in the following screenshot:

Press the Tab button once to open the configuration menu, – you should get the
screen as shown in the following screenshot:

Connecting Physical Computing Systems to the Internet

[104]

Once you get this screen, then press page up button once – it should highlight
the wireless interface area, and then you need to type wlan1 in it as shown in the
following screenshot. If you remember, wlan1 is what we had in the details of
the wireless interface when we used the command iwconfig to get details of the
interface created because of the USB Wi-Fi dongle.

Then, press the F10 key to save the configuration. Once you have saved it, it will take
you back to the previous main screen as shown in the following screenshot:

Chapter 5

[105]

Now you need to press the R key once to refresh the program and search for
available Wi-Fi access points in the range that the Wi-Fi dongle can connect to.
Once you press the R key you will get a screen as shown in the following screenshot
saying that it's searching for available networks:

Connecting Physical Computing Systems to the Internet

[106]

Then, after scanning, it will show the screen as shown in the following screenshot,
listing out the available Wi-Fi access points in the range:

Chapter 5

[107]

Once you have the list of available Wi-Fi access points you can choose the one to
which you want the Wi-Fi dongle to connect by using the arrow keys up and down
to select the access point. As you can see in the following screenshot, the access
points get highlighted as you move the arrow keys. In this picture, TERO
is highlighted:

Connecting Physical Computing Systems to the Internet

[108]

Once you have selected the network you want to connect to, when its highlighted
as shown in the preceding picture, press the right arrow key on the keyboard and
you should see the screen as shown in following screenshot which is asking for a
password to connect:

Chapter 5

[109]

You need to set the options as shown in the following screenshot to get a
DHCP-based IP allocation from the router, or if you want to have a static IP
for your BeagleBone board, you can do that as well. Use the Tab key to switch
fields on the screen.

Connecting Physical Computing Systems to the Internet

[110]

So, set the hostname and enter the passkey in the key field as shown in the preceding
screenshot, and save by pressing the F10 key. Once you have done that you will get
back to the main screen with a list of Wi-Fi access points available, as shown in the
following screenshot:

Chapter 5

[111]

Now you can press the C key connect to the network. Once you press it, your shell
connection will be lost, as the BeagleBone board will get disconnected from the
network via the Ethernet connection through which you have logged in. Now, the
BeagleBone board will connect to the network via Wi-Fi, so the IP address of the
BeagleBone board must have changed. To check this, we need to login to the router
configuration page of the same router as we used to connect to the Wi-Fi when we
connected the BeagleBone board. Think back to what we did in the first chapter to
find the IP address of the BeagleBone board connected via the Ethernet to the router.
Now we need to do the same with the Wi-Fi connection.

Open the router page as follows:

Connecting Physical Computing Systems to the Internet

[112]

Check the list of DHCP clients:

Chapter 5

[113]

So, you can see the IP address of the BeagleBone board connected to the network
via Wi-Fi and, if you remember, BeagleBone was the hostname we mentioned when
configuring the Wi-Fi with our passkey. Now let's login into the Linux shell using
this new IP address we have assigned:

Connecting Physical Computing Systems to the Internet

[114]

Once logged in using the same user ID and password, type the command iwconfig
again, and you can see that wlan1 is connected to the SSID that we configured and
connected, which you can see it in the following screenshot:

Now type in the ping command to check the Internet connectivity:

Once we have the Internet connection properly working on the BeagleBone board,
we can move on to the next topics: two projects with the system connected to
the Internet.

Intermediate level project: An e-mail alert
fire alarm
First of all, as in the previous chapter, take three berg wires and connect the LM35
temperature sensor to the BeagleBone board, as per the circuit diagram shown in the
following image:

Chapter 5

[115]

Then we will turn on the BeagleBone board and login to the Linux shell to start
coding it.

Open the Python console to learn and test how to send an e-mail using Python:

Our first step will be to import the smtplib into Python, which is the mail transfer
protocol library with the predefined function that we will be using in the program.

Connecting Physical Computing Systems to the Internet

[116]

Next create a variable to store the e-mail ID to which you need to send the e-mail:

Then create the variables where you need to store the e-mail ID and password of the
account from which you want to send the e-mail:

Create an SMTP object with a Gmail hostname and port number 587:

EHLO is just like HELO except that the server's response text provides computer-
readable information about the server's abilities. The response of this helps us to
confirm whether the SMTP server we created is at our service:

Next we need to create a secure connection. We already have a connection, which
we checked in the last step, but it is insecure. STARTTLS is a way to take an existing
insecure connection and upgrade it to a secure connection using SSL/TLS. You can
do this as shown in the following screenshot:

Once again use EHLO as shown in the picture below to check and create the running
SMTP instance:

Our next step is to create the header variable with information about the sender
e-mail address, the receiver e-mail address, and details about the subject of
the e-mail:

Chapter 5

[117]

We need to create another variable where we will add the header to the message we
are going to send in the e-mail.

When you print it out using the print msg command you can see how it appears in
the following screenshot:

Now we have the msg variable with information of the sender e-mail, receiver e-mail,
subject of the e-mail and message of the e-mail as shown in preceding screenshot.

Our next step is to login to the server using the sender e-mail and password. You can
do this as shown in the following screenshot:

If you get the response as shown in the preceding screenshot, then you have
successfully logged in.

Next send the e-mail using the sendmail function with the receiver e-mail ID,
sender e-mail ID and message as arguments:

Once you have sent it you can go ahead and close the SMTP server and log out from
it as shown following:

Connecting Physical Computing Systems to the Internet

[118]

By now you must have received the e-mail on the receiver e-mail ID where you can
see the subject Python Email Test just as we mentioned in Python, as shown in the
following screenshot:

If you open the e-mail you can see this message:

We can actually see the message content is in a similar format to what we printed
out on the Python console. Click on the Show original option on Gmail to see the
original text e-mail, as shown in the following screenshot:

Chapter 5

[119]

Once you click on Show original you will see the e-mail as shown in the
following screenshot:

You can see the highlighted part in the mail, which is exactly the same as the
message we composed and sent from the Python console, as shown following:

Connecting Physical Computing Systems to the Internet

[120]

You can exit the Python console now:

Now let's go ahead and write the Python program to send an e-mail whenever
the temperature goes too high. You can just edit the code from our project in the
previous chapter and save it with a new name as shown in the following screenshot:

Once you have saved it, you can run the code as shown in the following screenshot:

Chapter 5

[121]

You should get an e-mail now as shown in the following screenshot:

Hold a flame near to the sensor as shown in the following picture:

Connecting Physical Computing Systems to the Internet

[122]

The output of the running Python code will be as shown in the following screenshot:

And you will get an e-mail as shown in the following screenshot:

So, that ends our project. When you remove the flame, it will again send you an
e-mail saying that the temperature is normal. Here is how the code works: whenever
there is a change in the temperature level, that is if the temperature rises above a set
or below a set limit, it will send an e-mail saying that the temperature is high or the
temperature is low, respectively.

Unlike in this project, where a decision is made using the temperature measured
with a temperature sensor, and then an email is sent based on this decision, the
next project will directly upload the temperature sensor data to the cloud server.

Chapter 5

[123]

Advanced level project: Uploading
sensor data to a web cloud
The connections are similar to the previous project, the only difference in that will
be writing a new Python program to upload data to a freely available cloud server
using HTTP call methods.

With the same connections as the previous project, connect the temperature sensor to
the BeagleBone board.

Then the first thing we need to do is setup the cloud server to which we need to
upload data. We will be using a freely available cloud storage space website specially
setup for IoT applications. The website is www.thingspeak.com, We chose to use this
cloud solution out of the many available because ThingSpeak makes it very simple
to upload data from hardware to a cloud for IoT applications. They have a lot of
examples for different hardware development boards used for different applications.
Looking at these wide variety of examples and easy APIs will help you experiment a
lot more on your own using the BeagleBone board than what we do in this chapter.

www.thingspeak.com

Connecting Physical Computing Systems to the Internet

[124]

The first thing you need to do on this website is signup and create an account:

Once the account is created, and you can login into your account, you will see the
screen as shown in the following screenshot, and will need to click on New Channel:

Chapter 5

[125]

When you click on New Channel it will ask for details of the same. Fill them in as
shown in the following screenshot:

Once you have entered the details you can click on Save Channel:

Connecting Physical Computing Systems to the Internet

[126]

You can see the channel with the field as shown in the following screenshot:

Next we should look at the API provided by the ThingSpeak website to update data
to the cloud server.

You can see the details of the API of the HTTP call that you need to make to the
ThingSpeak server in the following screenshot:

Chapter 5

[127]

As highlighted in the preceding screenshot, we can use HTTP POST data to update
data to the cloud server. The next steps will show you how to update data to the
cloud server from Python using this HTTP POST call:

First, open the Python interactive console:

Then we need to import the requests module, which is a Python library that has
built in functions to make HTTP requests on webservers:

Connecting Physical Computing Systems to the Internet

[128]

Next we can directly try making the HTTP POST request to the server using the API
that was given as shown in the following screenshot:

The highlighted part is the parameter you pass to the server when you are make the
POST call to https://api.thingspeak.com/update.json URL.

You can see that we have mentioned field1=25 which will be updated on the
ThingSpeak server.

The response will be stored in variable r, and when you print r, if you get the
response as 200, then the data was updated successfully:

Once you have the response as 200, the data is updated on the webserver as you can
see in the following screenshot:

Chapter 5

[129]

Perform the HTTP post call with field1 data equal to 10:

Then you can see that field1 is updated with new data at that time instant:

Now we will go ahead and write the code to update the temperature data to the
cloud continuously. We can use our TestLM35.py code to make changes in it and
save it with a new name to update the temperature data every 61 seconds to the
https://thingspeak.com/ server:

https://thingspeak.com/

Connecting Physical Computing Systems to the Internet

[130]

When you run the program, the output will be as shown in the following screenshot:

You can use Ctrl + C to end the program and exit.

Then, if you see the data on the field1 Chart on the ThingSpeak website, you can see
that the data has been updated as shown in the pictures below. You can see the time
stamp and see that the interval between the two instances of data update is 1 minute,
and the temperature reading value also matches what we printed on the output on
the console:

So, we have successfully written a program that updates data and stores it in a cloud
server every one minute.

Chapter 5

[131]

Summary
In this chapter we learnt about giving Internet access to the BeagleBone board
through Wi-Fi, and sending an e-mail alert whenever temperature measured, using
a temperature sensor connected to BeagleBone board, goes high or low, depending
on the threshold value set in the program. We also saw how we can upload data to
the cloud web server using HTTP requests made to the server from the BeagleBone
board using Python. So, we have learnt how to set up basic level Internet of Things
projects in this chapter. You can go ahead and explore the options of using the
requests module in Python to use HTTP Put, Post, and Get requests on various
freely available open source cloud servers built for IoT which are just like https://
thingspeak.com/, which we used in this chapter. There are options where, instead
of uploading data using an HTTP post request, you can get data from a cloud server;
that is you can read data from the cloud server and print it on the Python program.
You can read data from the server instead of uploading data, just like we did in this
chapter. I would suggest you explore all such possibilities.

In our next chapter we will go ahead and set up our own web server and connect it
to the Internet. Once you learn that, in future if you can have one BeagleBone board
acting as a webserver, instead of the third-party server we used in this chapter,
another BeagleBone board may be uploading data to the server we setup using
another BeagleBone board.

https://thingspeak.com/
https://thingspeak.com/

[133]

Home Automation Using
BeagleBone

In this chapter, we will be learning how to build a home automation system using
BeagleBone Black. To get started, first we will be learning about Internet connected
home automation systems and how they work. Then, we will move on to setting up
Python Flask library that lets you run the HTTP server on your BeagleBone Black
using Python.

Once we are up and running with the server using a Flask library on Python, we will
use it to go ahead and create a program in which you can turn a GPIO on and turn
off using the input from the webpage created by the server. This GPIO pin will be
used to turn on and turn off an electrical relay to switch a lamp on and off.

The contents of the chapter are divided into the following:

•	 Prerequisites
•	 The structure of home automation systems
•	 An introduction to webservers
•	 An introduction to Flask for Python
•	 Setting up Flask for Python on a BeagleBone board
•	 Creating a webserver using Flask
•	 Transistors, relays, and power switches
•	 Advanced project: An Internet-controlled power switch – controlling an AC

bulb from the Internet

Home Automation Using BeagleBone

[134]

Prerequisites
This topic will cover what parts you need in this Chapter. You can buy them from
any electrical store or online.

Materials needed
•	 1x BeagleBone Black
•	 1x microSD card with latest version of Debian flashed on it to boot the

BeagleBone board from a microSD card
•	 1x 5V DC, 2A power supply
•	 1x Ethernet cable
•	 1x BreadBoard
•	 1x relay board

The structure of home automation
systems
This section will give you a basic idea about home automation systems that are
connected to the Internet. In the following picture you can see that the mobile
phone and the IoT devices are connected to Internet via the LAN Routers:

Chapter 6

[135]

We will also be doing something similar in this chapter using the BeagleBone board,
connected to Internet via our home router, to control an AC bulb using the relay
circuit which is interfaced with the BeagleBone board. To do this, we will have setup
a webserver on our BeagleBone board. We will see how to do this in the next topic of
this chapter.

Introduction to web servers
Web servers are computers that are connected to the Internet, or intranet, to serve
the requests that comes from the web browser of client computers or mobile devices.
To understand this better, look at the following picture:

So, as shown in the preceding picture, a webserver is basically the computer which
hosts the webpages and does the processing based on the requests sent from the web
browser on the client's device. The client's device can be either a PC, laptop, mobile
phone, tablet, or anything else which has a web browser, or a Linux shell that can
make HTTP requests.

Home Automation Using BeagleBone

[136]

Go ahead and look at the following picture to understand this better:

Now in this you can see that multiple clients are connected to multiple servers via
the Internet, that is the World Wide Web (WWW), TCP/IP Network.

What is TCP/IP? What exactly happens when you type a URL into your browser and
hit enter?

Look at the following picture to understand more:

Chapter 6

[137]

Similarly, in our system we have a webserver that goes through all the process as
show in the preceding picture. A slight difference is that our webpage will be able to
control the AC bulb. Now, that we know how webservers work, let's get ahead and
setup a webserver on our BeagleBone board using Flask Python.

Python-Flask on BeagleBone Black
Flask is a Python framework to set up web servers using Python. In this topic, we
will look at how we can set up a web server on BeagleBone Black using Python. The
first thing we need to do to get started is to install the Python-Flask package on your
BeagleBone Black from the Python package index. The steps below will walk you
through how you can set up Flask and test it, followed by writing a Python code
to interface it with your relay circuit. We will see this in the next topic followed
by the main project of controlling an AC bulb from the Internet in the last topic
of this chapter:

Step 1: Installing PIP as follows:

•	 sudo apt-get install python-pip:

You should see that it's been already installed, since we have the latest
version of Debian installed, and its already available in version. Some of the
other versions might not have this, and it will be installed if it's not available,
or upgraded if a newer version is available than the one that is installed in
the current operating system.

PIP installs and manages software packages that are written in Python.
Many software packages can be found in the Python Package Index (PyPI).

Home Automation Using BeagleBone

[138]

Step 2: Install Flask-Python library as follows:

•	 sudo pip install flask

Create a basic web application to test whether the package was installed successfully
as follows:

Step 1: Create a directory on your BeagleBone Black:

•	 mkdir HomeAutomation

Step 2: Change to the directory you created:

•	 cd HomeAutomation

Step 3: Create a Python file and write the code to setup a Hello World printing
webpage server as follows:

•	 nano WebApp.py

Now type down the code on the file you created as shown in the following and
save it:

Chapter 6

[139]

Step 4: Run the Python program as follows:

•	 sudo python WebApp.py

If you see the output as shown in the preceding picture, then you have done
the previous steps correctly, and we have a server up and running on our
BeagleBone board.

Home Automation Using BeagleBone

[140]

Now open the web server that we have running on the BeagleBone board by
opening a webpage on the browser of a PC or mobile phone connected to the same
LAN network to which the BeagleBone is connected. In order to do this type the
following: IPAddress_of_BeagleBone_Board:5000, so, in my case, it would be
192.168.1.20:5000 on the URL address bar on the browser where 5000 is the
default port number at which Python-Flask routes its connection. You can change
this to different port numbers. Read more on the web to better understand different
ports of web servers.

When you make the call to the server from the browser, you should see something
like this:

You will also be able to see the request call made by the browser to the server on
BeagleBone as shown in the following screenshot:

Chapter 6

[141]

Hit Ctrl + C to stop it:

Now that was a very basic thing we did using Python-Flask by echoing a text line.

Let's go ahead and do something using HTML layouts to make the web page
look better. To do this create a directory called templates inside the home
automation directory:

•	 mkdir templates

Switch to the new templates directory you created in order to create and save the
HTML file inside it:

•	 cd templates

So this directory will be the place where you will find the HTML and CSS files
through which you can route the web server to respond to requests from the
client devices browser.

Home Automation Using BeagleBone

[142]

Now let's go ahead and create an HTML page inside this directory as shown in the
following screenshot:

•	 nano index.html

Once you are done with typing the content in the HTML file, as shown in the
preceding picture, you can save the file by hitting Ctrl + X to save it. Once you
have saved it, go ahead and switch back to the home automation directory:

•	 cd ..

Chapter 6

[143]

Now we need to write a different program to route the web server to the HTML
file that we created. Instead of writing something from scratch, let us modify the
WebApp.py file that we created before and save it as WebAppFromTemplate.py, as
most of the lines of code are same. See in the following screenshot:

Once you have edited the file and saved it as WebAppFromTemplate.py, you can go
ahead and run the code as follows:

•	 sudo python WebAppFromTemplate.py

Home Automation Using BeagleBone

[144]

Again, let's go ahead and open the URL from the browser and check the output.
You should see something similar to the web page shown in the picture below:

Now you can see that the text Webpage from a template! is formatted using HTML,
and you can see it as an HTML based web page.

Like last time, you will see the HTTP call from the browser for debugging the shell:

For the project that we have in this chapter to control an AC bulb from Internet,
we should have buttons on the web page instead of just the text that we displayed
previously.

Chapter 6

[145]

In order to have buttons on the HTML page we need to write HTML code for the
webpage template and similarly we should write Python code to read the input
when the buttons are clicked on the webpage. We can use these inputs to change
the states of the GPIOs on the BeagleBone Black using Python code.

We will be looking into the details of how we can toggle the GPIO states from HTML
button click inputs in the project section of this chapter. Before that, as the last part
of this topic, let's create an HTML page with button inputs, read those inputs when
they are made, and print a text that this particular button was clicked. We will have
two buttons on the web page and these will be ON and OFF. Whenever any of these
are clicked on the web page, the Python code will print that the particular button
was clicked. Let's go ahead and do that.

First, switch back to the templates folder and create a file named main.html file with
the content as shown in the following screenshot:

Now you can see that it has two button elements with ID on and off.

Home Automation Using BeagleBone

[146]

Once you are done with creating this file, save it and go back to the home automation
directory, edit the file WebAppFromTemplate.py as shown in following screenshot,
and save it as ControlWebApp.py:

Once you have saved it, you can go ahead and run the program as follows:

•	 sudo python ControlWebApp.py

Now you can open the webpage and see how it looks. You should see something
similar to the following screenshot:

Chapter 6

[147]

When you click on the ON button, you should see something like the following
screenshot:

Home Automation Using BeagleBone

[148]

The output is as follows:

When you click on the OFF button, you should see something like the following
screenshot:

So now we have a program that can print which button was clicked. All we need is
to write a program to change the state of the GPIO available on BeagleBone Black to
HIGH and LOW whenever a button is pressed on the web page. We will be doing
this in the project topic of this chapter. Before doing that, in the topic of this chapter,
we will learn how a relay circuit works and how we can switch a relay circuit using
the very little voltage that we get from the GPIO pins of the BeagleBone Black. In this
way we will be able to use the relay to switch the AC Bulb on and off.

Transistors, relays, power switches
So basically, to switch an AC appliance or any circuit, you will need a switch, just
like you have in your houses, where you have a switch to turn on a bulb or a fan.
There is a basic circuit involved which looks very much like the following picture:

Chapter 6

[149]

So, as we can see in the preceding picture, if you toggle the switch it's going to open
and close the circuit. This in turn will make the bulb go off and on. But this is done
mechanically in normal mechanical switches.

Whenever we want the same action to be performed, we will be using the electrically
controlled switches, which are on an electrical relay. The image below shows an
electrically controlled relay in off and on states:

Home Automation Using BeagleBone

[150]

In the preceding diagram you can see that whenever the power is supplied to the
coil from the 3V power supply, the coil energizes and acts like a magnet pulling the
terminal down. This connects the other terminal and closes the circuit and current
flows through the circuit from the 6V battery to the DC lamp. You can see this in
action in Figure 2 in the preceding image. And when the coil is de-energized, as
shown in Figure 1, the terminal is left open, which cuts off the circuit and opens it up
so the lamp is in the off state, as no current flows through the circuit. Again, in the
preceding example, you can see that a mechanical switch is used to switch the low
voltage supply (3V) and the electrical relay is switching the high voltage supply.

Usually the easily available relays are off 5V DC operated where the voltage needed
to energize the coil is 5V and enough current supply. But the GPIOs available on
BeagleBone board are 3.3V at HIGH and 0V at LOW states respectively. We will be
using a new electronic element in between to switch the low voltage supply, and
this element is the transistor. I won't be going into details of types of transistor and
their operation. You can browse around to learn more about it in detail. But in basic
terms, it's an electronically controlled switch whenever base of the transistor is given
supply i.e. on conduction happens via collector emitter and when base of transistor is
low i.e. off, no conduction takes place.

Look at the following diagram to understand how our circuit is going to be with a
transistor interfaced with the relay when the relay is used to make a connection for
the AC Bulb:

Chapter 6

[151]

So whenever the base driver is ON, that is to say HIGH, it will switch on the relay
and whenever the base of the transistor is OFF, or LOW it will switch off the relay
and, in turn, switch off the AC bulb.

You can directory connect the base of the transistor to the GPIO of the BeagleBone
board which will turn the transistor on and off whenever the GPIO pin is HIGH and
LOW respectively.

Relays board are available that are ready-made with transistors and relays. You can
directly interface these with BeagleBone boards or with any other microcontroller
boards as you can see in the following picture:

Home Automation Using BeagleBone

[152]

Getting one of these will make your work simple, but if you want to make one by
yourself you can also do that researching it on the Internet. To make it easier for the
next steps, I got one of the ready-made modules and interfaced it to the GPIO of
the BeagleBone Black. The connections are pretty straightforward, as shown in the
previous figures. D1 of the relay module is connected to GPIO_60 i.e. P9_12 and Vcc
to 5V on BeagleBone Black, and the Gnd pin of the relay module is connected to the
Gnd Pin of the relay module. Connect the phase and neutral wire from the AC bulb
via the K1 NO and C terminals of the relay, as the D1 input corresponds to switching
the K1 relay in the module.

Chapter 6

[153]

You can see the schematic given above for more clear details about the circuit
connections.

Once you are done with the circuit connections, use the blink code that we used in
the second chapter to test whether the relay is switching on and off, or else go ahead
to the next topic to write down the code to control the circuit from the web page.

Home Automation Using BeagleBone

[154]

Advanced project: An Internet controlled
power switch – controlling an AC bulb
from the Internet
Now we have set up the circuit from the previous topic, we will code it on Python to
switch the GPIO to HIGH and LOW from the web page. You can proceed and write
the code as shown in the following screenshot:

Now save the file as GPIOControlWebApp.py.

Chapter 6

[155]

Let's run the code to switch the lamp on and off, and go ahead and open the page
from the Android tablet. The tablet is connected to the same LAN Wi-Fi router as the
BeagleBone board. Click the on and off buttons and you will see the output in the
shell terminal as shown in the following screenshot:

Home Automation Using BeagleBone

[156]

And the bulb will turn on and off as shown in the following pictures:

Bulb is in the off state

Bulb is in the on state

Chapter 6

[157]

But right now, we are just doing this on our local network within our home router
LAN network to which the BeagleBone board is connected. What if we wanted to
control the bulb via a 3G connection available on our phone? In this case you need
to route your BeagleBone Black and connect to it via the Internet from your phone,
which is connected to the Internet via 3G. If you go back to web servers topic in
this chapter you can see that there are lots of routers, DNS gateways in between to
connect to a server from one end of the Internet from a client to the server. In our
case, our BeagleBone board device itself is acting as a server. We will be just be port
forwarding our router to redirect the requests that comes to the router's public IP
address to the particular port at which BeagleBone Black is hosting its server, that is
5000, in our case, the default port at which Python-Flask routes its requests. So, let's
go ahead and do the port forwarding to access the web server on the BeagleBone
board via the public IP assigned to our router by the Internet service provider.

Setting up port forwarding
Follow the steps to set up port forwarding:

1.	 As we did in Chapter 1, Getting Started with BeagleBone, login into your
router's configuration page:

Home Automation Using BeagleBone

[158]

2.	 Go to ADVANCED settings:

Chapter 6

[159]

3.	 Go to Advanced Setup:

Home Automation Using BeagleBone

[160]

4.	 Click on Port Forwarding:

Chapter 6

[161]

5.	 Click on Add Custom Service.You will see the page as shown in the
following screenshot:

Home Automation Using BeagleBone

[162]

Fill in the details and save the configuration by clicking on Apply:

Chapter 6

[163]

Once you are done with this. Go to Google and type in what is my ip? This will
check your public IP Address, and you should get the output as shown in the
following screenshot:

Home Automation Using BeagleBone

[164]

Once you have this, pull out your phone and connect to 3G, using this public IP
address followed by port number 5000 to access your BeagleBone board. This will
allow you to switch the AC bulb on and off from your phone. You will get a web
page as shown in the following screenshot:

Now you can give the web link 183.82.111.33:5000 to any person who is
connected to the Internet to access you BeagleBone board and control the bulb
from any place around the world. Thus, you have your home automation system
connected to the Internet. You can also call it as you have built your Internet
of Things project by end of this chapter. Try it out on your own to control two
appliances, change the style of the HTML webpage and add colors and control
graphics to the webpage to learn and have more fun.

Chapter 6

[165]

Summary
In this chapter, we learnt how web servers work to setup our own home automation
system where an AC bulb is controlled from any place around the world via the
Internet. In the process of building it we learnt how to set up a web server on a
BeagleBone board using a Python-Flask web framework. Then we also learnt how
to interface an AC circuit with a BeagleBone board using a relay circuit to control an
AC bulb via the web server running on the BeagleBone board. In this way, you have
built an advanced Internet of Things project in this chapter. In the next chapter, we
will be looking at how to interface a camera with the BeagleBone Black and work
with OpenCV for image processing on BeagleBone Black.

[167]

Working with Images Using
Computer Vision

In this chapter, we will be getting started on interfacing a USB camera with a
BeagleBone board and capturing images from the camera using OpenCV. We will
start by installing OpenCV first and then move ahead with capturing images using
OpenCV and Python.

We will look deeply into the topics given in this chapter:

•	 Prerequisites
•	 Adding a USB camera to BeagleBone Black
•	 An introduction to OpenCV
•	 Using Python and OpenCV together
•	 Image capture from a camera using Python and OpenCV

Prerequisites
This topic will cover what parts you will need in this chapter.
These can be bought online.

We will need the following materials to begin:

•	 1x BeagleBone Black
•	 1x microSD card with the latest version of Debian flashed on it to boot the

BeagleBone board from a microSD card
•	 1x 5V DC, 2A power supply
•	 1x Ethernet cable
•	 1x USB camera

Working with Images Using Computer Vision

[168]

Materials needed
•	 1x BeagleBone Black
•	 1x microSD card with latest version of Debian flashed on it to boot the

BeagleBone board from an microSD card
•	 1x 5V DC, 2A power supply
•	 1x Ethernet cable
•	 1x USB camera

Adding a USB camera to a BeagleBone
board
Adding a USB camera to a BeagleBone board is pretty straightforward. All you need
to do is get a USB camera that is compatible with Linux, so one which has drivers
for Linux. These days almost all USB web cameras come with this support. If you
have a very old USB web camera that you want to interface with a BeagleBone
board, you might have to add some additional steps to install the device drivers to
see your video camera element on the Linux devices list on the BeagleBone board.
For this topic explanation, I used a Logitech C270 HD webcam, as shown in the
following figure:

You can use the USB port available on the BeagleBone board to connect the USB
camera as shown in the following picture:

Chapter 7

[169]

Boot the BeagleBone board using Debian on the MicroSD Card that we flashed
earlier, and login into the BeagleBone board via SSH. Now type the command
Lsusb as shown in the following screenshot:

If you are able to see the webcam listed on the device list, it means the camera is
connected properly to the BeagleBone board, via USB.

Working with Images Using Computer Vision

[170]

Then, check whether the drivers are available for the camera in the Linux kernel
and if it has successfully interfaced, and created a video input element in the list of
devices in Debian. Let's change the directory to dev directory cd /dev, and then
ls. If you see the video0 listed on the list, then you can assume that everything
went well and the USB web camera was interfaced with the BeagleBone board
successfully. We now have a video0 element that we can use in OpenCV or in any
other software that we will be installing in BeagleBone board to get a video input
from the camera.

Now that we have a video component available in our BeagleBone board, we can go
ahead and install OpenCV to get started with capturing images from the USB web
camera and store them on the microSD card available on our BeagleBone board.

Chapter 7

[171]

OpenCV – introduction and setting up on
the BeagleBone board
In this topic you will learn about what OpenCV is and how we can use it to capture
images from a web camera that is connected to the BeagleBone board.

OpenCV stands for Open Source Computer Vision. It is mainly designed for real-
time computer visualization. So, this library will basically help us to use commonly
used programming languages like C, C++ and Python to capture images from the
camera connected to our computer – in our case, using the BeagleBone board. When
we go to the project section of this chapter to capture an image from the USB camera
using Python, you will understand how simple the OpenCV library makes it to code
in getting inputs from the camera, generate outputs as image files, and much more in
image processing.

Installing OpenCV on Debian on a
BeagleBone board
Follow the steps to install OpenCV on Debian on a BeagleBone board:

Step 1: Install compiler:

sudo apt-get -y install build-essential cmake pkg-config

These compilers are very important to build packages from source codes and then
install them. Installing them will be useful for us in future, particularly during the
robot project:

Step 2: Install the other required packages that are needed before compiling
compulsorily:

sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev
libavformat-dev libswscale-dev

Working with Images Using Computer Vision

[172]

In Linux, most of the software written will use other open source packages in them
to build their software, so these packages are the ones that OpenCV use in their
software to give us a beautiful and easy to code/use library.

When you install the packages, if it prompts you to use additional disk space, go
ahead and hit Y and then Enter to get started installing the required packages.

There are some more software packages you will have to install before compiling,
which are listed following:

•	 sudo apt-get -y install libjpeg62-dev

•	 sudo apt-get -y install libtiff4-dev libjasper-dev

•	 sudo apt-get -y install libgtk2.0-dev

•	 sudo apt-get -y install libavcodec-dev libavformat-dev
libswscale-dev libv4l-dev

•	 sudo apt-get -y install libdc1394-22-dev

•	 sudo apt-get -y install libxine-dev libgstreamer0.10-dev
libgstreamer-plugins-base0.10-dev

•	 sudo apt-get -y install python-dev python-numpy

•	 sudo apt-get -y install libqt4-dev

•	 sudo apt-get install unzip

Chapter 7

[173]

Step 3: Install a few other optional softwares that might come in handy in the future
while working with OpenCV. These are recommended by OpenCV:

•	 sudo apt-get install python-dev python-numpy libjpeg-dev
libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

These softwares are not compulsory to for OpenCV to work, but when you connect
a display to a BeagleBone board in the future and want to use graphics, these will
surely come in handy. It's better to install them now instead of getting frustrated
in the future with errors popping up when you write codes with display elements
and GUI.

By this stage, we have installed all the necessary packages needed to compile and
install OpenCV on BeagleBone Black. So, now let's go ahead and download the
source code files of OpenCV and then compile and install them. Let's create a new
directory and save all the files inside it while building the OpenCV library:

Step 4: Create an OpenCVdirectory with the following commands:

•	 mkdir OCV

•	 cd OCV

It will look like this:

Working with Images Using Computer Vision

[174]

Step 5: Clone the OpenCV source code into our working directory:

•	 wget https://sourceforge.net/projects/opencvlibrary/files/
opencv-unix/2.4.9/opencv-2.4.9.zip

The wget command will download the file from the URL that follows it and save it in
the present working directory. You can see the percentage of the download status as
it happens in the Linux shell, as shown in the following screenshot:

You need to wait until the download completes and check whether you received
the zip file by using the ls command. If you see the file, as shown in the following
screenshot, you can proceed to the next step:

Step 6: Building OpenCV from source files using cmake:

•	 unzip opencv-2.4.9.zip –d opencv

First we need to unzip the .zip file we downloaded to extract the contents of the file.

Then we compile the files inside it wait until unzipping process is completed:

Chapter 7

[175]

Then use the ls command to check whether an opencv folder is created and the
contents of the .zip have been extracted inside it:

•	 ls

You can see the opencv folder has been created, inside which the files have been
unzipped: cd opencv:

This is how the ls and cd opencv-2.4.9 will look like in the command:

Now we need to create a folder inside which we will compile and build the files for
installation from the source files available inside the opencv-2.4.9 folder. You need
to execute the commands mkdir build and cd build in order to do that:

•	 cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/
local -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_
V4L=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON
-D BUILD_EXAMPLES=ON -D WITH_QT=OFF -D WITH_OPENGL=ON

This is how it looks:

Working with Images Using Computer Vision

[176]

Now, wait until the configuration is finished:

Once it has finished, you should see something like the preceding screenshot.

Now we can go ahead and compile the files:

Step 7: Compile make and it will look like this:

Wait until the program is compiled and ready to install:

Once the files are compiled and built, we can install OpenCV libraries to our system
using the next step:

Step 8: Install sudo make install:

Wait until the program is installed.

Chapter 7

[177]

Once installed let's go ahead and test whether everything was installed properly
with the following command:

Step 9: Validate the installation

Since we will be using Python and OpenCV together, lets validate whether the
Python library of OpenCV was installed properly or not, using the following
command:

•	 sudo python

Inside the Python interactive shell enter the from cv2 import_version_ command
to import the library, and then to print the version execute the following command:

•	 _version_

You should see something like the following screenshot:

If it prints the version without any errors, everything is fine, you can see that its 2.4.9,
and that is the same version you downloaded as a zip file in step 5.

Now that we have the OpenCV library successfully installed we can go ahead to our
next topic where we will be using Python and OpenCV together to capture an image
from the USB video camera that we have plugged into our BeagleBone board.

Project: Image capture from a camera
using Python and OpenCV
In this chapter we will be writing a code to capture an image from a camera and
saving it in .jpg format using Python.

Let's first create a directory named ImageCapture inside which we can save the
Python file in which we write the code, and where we can also save the image file
that we capture:

•	 mkdir ImageCapture

•	 cd ImageCapture

Working with Images Using Computer Vision

[178]

It will look like the following screenshot:

•	 sudo nano TakePhoto.py

Refer to the following image:

Now we can go ahead and start writing the code to capture an image from the
camera and save it on the BeagleBone Black:

The simplest code possible to do this is given in the following screenshot:

Save it and run it to capture an image from the camera and save it.

The output you will see when you run the code sudo python TakePhoto.py is as
shown in the following screenshot:

Chapter 7

[179]

If you don't get any errors and the program ends printing the Saving Image
text, everything should have happened properly. To check this let's see whether
the Photo.jpg file has been created inside the folder or not. You can use the ls
command to do it and you should see the Photo.jpg file created as shown in the
following screenshot:

Since we are working on BeagleBone Black via SSH we don't have the option to view
the image directly on the GUI now – we will need a File Transfer Protocol (FTP)
client software to download the image that was captured. So, let's go ahead and
install one on our Windows PC now.

FileZilla is my favourite, so I will be using it in this tutorial, you can use
the ones you are familiar with or install FileZilla if you don't have it.

Once you have opened the FTP software, it will ask you for the IP address of the
device, username, password, and port number:

Working with Images Using Computer Vision

[180]

This is how the software looks. You can see on the top left corner a space for entering
the host's IP address, username, password, and port number. Below that you can see
the directory selection of where you want the files to be downloaded and uploaded
from, and at the bottom, you can see the log of data transfers.

Now lets go ahead and connect our PC to the BeagleBone Black via FTP to transfer
the image file we captured and see how it looks. The details you need to enter are
the IP address assigned to the BeagleBone board, using which you connect to it via
SSH, the same IP address and user name as debian and password temppwd which is
default, if you have changed your username and password, then use them here and
the port number is 22. Then click on the Quick connect button and you should see
the files on the BeagleBone Black, as shown in the following screenshot:

You can click on the + symbol next to the Debian folder shown in the picture and
navigate to the ImageCapture folder inside which the Photo.jpg file that we
captured and saved is present. You will see something like the following screenshot:

Chapter 7

[181]

Now you can go ahead and download the file. Once you click on Download, the file
will be downloaded to the FTP folder or the folder which you have selected on the
PC fpr where the files will be downloaded. You can see in the following screenshot
that the Photo.jpg file is now inside the FTP folder which was empty before on
your PC:

Working with Images Using Computer Vision

[182]

So, now that you have the photo that you captured, downloaded to your PC, you
can go ahead and open it to see it with the image viewer software you have set up
on your PC.

The image captured is as shown in the previous screenshot and the arrangement of
the camera while taking this picture was as shown in the following screenshot:

Chapter 7

[183]

In the preceding picture you can see that the camera has been placed pointing
towards the BeagleBone Black and at a distance, so the image that we captured was
showing the side view of the BeagleBone Black, showing the USB connected to it,
and the background.

So, in this way, you can use Python and OpenCV together to take pictures and save
them for use in many applications.

Summary
This chapter was just a start for you get to know what open OpenCV is, to set it up
on BeagleBone Black and to understand a little bit of what you can do with it using
Python by writing just a few lines of code. In this chapter, the image capture project
is just a simple thing we did – you can play around and do a lot more like capturing
videos and saving them, changing a color image to black and white, and other image
processing using OpenCV and Python. Now we know how to click a picture and
save it.

In the next chapter, we will build a home security application project using a sensor
to detect motion and click a picture whenever a motion is detected. In this way, we
will be building a real-time application using OpenCV, BeagleBone Black and Python
where the system will interact with the physical world.

[185]

Home Security Systems
Using BeagleBone Black

In this chapter, we will focus on building a real-time Internet-connected home
security surveillance system using the BeagleBone board. Similar to previous
chapters, we will use OpenCV and Python on BeagleBone with a camera connected
to it. But to take the project to an advanced level, we will add a PIR sensor to the
BeagleBone board and write code on it to interact with the physical world. We will
get started with motion detection using PIR sensors, followed by sending e-mails
from BeagleBone boards using Python. We will finish the chapter with a project, in
which we will build a motion-detection security camera that will send e-mail alerts
with images captured whenever motion is detected by the PIR sensor.

The contents of this chapter are divided into the following topics:

•	 Prerequisites
•	 PIR sensors
•	 Motion detection using PIR sensors
•	 Sending e-mails with attachments
•	 Advanced project – motion detection, image capture, and alert system

Home Security Systems Using BeagleBone Black

[186]

Prerequisites
Here are the requirements:

•	 A BeagleBone Black
•	 A microSD Card with the latest version of Debian flashed on it to boot the

BeagleBone board
•	 A 5V DC, 2A power supply
•	 An Ethernet cable
•	 A USB camera
•	 A PIR sensor

PIR sensors
A PIR (short for passive infrared) sensor is an electronic sensor that measures
infrared (IR) light radiating from objects present in its field of view. Mostly,
these sensors are used in PIR-based motion detectors.

Chapter 8

[187]

How PIR sensors work
If you look at the following diagram picture, a PIR sensor has two slots in it, and
each slot is prepared with the help of special materials that are IR sensitive. The
Fresnel lens helps the two slots in the sensor to widen the detecting area of the sensor
as well as its distance, that is, the sensitivity of the sensor. Both slots detect the same
amount of IR when there is no movement in front of the sensor or the detection area;
we call this the idle state of the sensor, during which the slots detect the ambient
amount of IR radiated from the room or outdoors. The sensor calibrates itself and
waits for the movement of a warm body.

When half of the PIR sensor intercepts any warm body, such as a human or animal,
it causes a positive differential change between the two halves of the PIR sensor.
Similarly, a negative differential change is generated when the warm body leaves
the sensing area, which is nothing but the reverse of the generation of a positive
differential change. So, basically, the output we obtain is in the form of rising and
falling pulses from the sensor output pin, using which we infer whether there was
any movement in front of the PIR.

Home Security Systems Using BeagleBone Black

[188]

You might be wondering why there is a difference between the preceding diagram
and the actual image of it, shown in the first image. Actually, the first image is to
make you understand how the PIR sensor works. It shows the sensor available
in market, which we will be using. In order to make the sensor work with a wide
detection area, its lens is in the shape of a hemisphere, if you take a look at the
following image, you can see that slots have been made at various angles on the lens
to have a wide area of detection and for mounting at various places, such as ceilings
and walls, to detect the motion of a moving body.

Most of these hobby-grade PIR sensors available in the market have a detection area
90 degrees wide, but some have one up to 110 degrees and 5 to 6 meters length.
You can chose and buy whichever one you prefer.

Chapter 8

[189]

Motion detection using PIR sensors
Now that we know how a PIR sensors works, let's go ahead and hook it up with our
BeagleBone board to detect motion.

First of all, take three berg wires and connect the PIR sensor to the BeagleBone board,
as per the following circuit diagram:

As shown in the preceding circuit diagram, connect the PIR sensor's Vcc to the 5V
pin on the BeagleBone board, the output pin of PIR to GPIO60 on the BeagleBone
board, and the ground pins on both with each other.

Then, we will turn on the BeagleBone board and log in to the Linux shell to start
coding it.

Home Security Systems Using BeagleBone Black

[190]

Create a new Python program using sudo nano TestPIR.py:

Type in the code shown in the following screenshot:

Once you have typed in the code, you can go ahead and save it using Ctrl + X.

Have a look at the comments in the code to get an idea of how it works. We are
setting up GPIO_60 as INPUT PIN, reading the RISING edge from the output coming
from the PIR sensor, and printing out text saying Movement Detected every time we
read a RISING edge from the sensor on GPIO pin 60.

When you run the command, you should see the following output:

You can place your hand or make any movement in front of the sensor, as shown in
the following picture:

Chapter 8

[191]

There is an option to set the sensitivity, that is, the range of the detection area, by
varying the potentiometer on the sensor. Have a look at the following figure to get
a better idea. You also have another potentiometer to vary the trigger time, which is
nothing but the time period until which the pulse will be high and get back to low
during the auto reset mode of the sensor. When it is set to no reset mode, the pulse
will stay HIGH forever until another movement is detected. Usually, the preferred
method is auto reset.

Home Security Systems Using BeagleBone Black

[192]

Now that we have tested the PIR sensors, let's move ahead to sending an e-mail with
an attachment using Python from BeagleBone Black.

Sending e-mail with an attachment from
BeagleBone Black
Like the OpenCV library to work with images and camera on BeagleBone Black with
Python, we have many other wonderful libraries that are developed and are built in
Python. One such library is the SMTP e-mail library, which we will be using in
this section.

To test this, we will use the image we captured in the project in the previous chapter,
available inside the ImageCapture folder.

We will change our working directory to the ImageCapture directory first, as shown
in the following screenshot, using cd ImageCapture:

Then, we will go ahead and create a Python file with code to send an e-mail with an
attachment in it. To do that, first create a new file named sendemail.py, using sudo
nano sendemail.py:

Now, type in the code shown in the following screenshot and save the file inside the
ImageCapture folder itself. The code has been written with comments on most of the
lines for you to get a clear idea of how it works.

Chapter 8

[193]

You'll see that the Photo.jpg file that we captured in our previous project is still
available inside the ImageCapture folder, and it's the same image that we will be
attaching in the e-mail that is going to be sent while executing this program:

When you execute the program, you should get an e-mail on the receiver's e-mail
address you mentioned in the sendemail.py code file, and the output the terminal
will look like this:

Home Security Systems Using BeagleBone Black

[194]

As it prints on the Linux shell that the e-mail was sent, you will have received the
e-mail on your e-mail account; check out these screenshots of the e-mail I got:

So, like this, you can attach any attachment to the e-mail and send it from
BeagleBone. As we now know how to detect motion using a PIR sensor connected
to the BeagleBone board as well as how to send an e-mail with a photo as an
attachment, let's go ahead and merge the previous chapter's camera image-capture
project with whatever we have learned so far in this chapter to build an
advanced project.

Advanced project – Motion-based home
security alert system
In this section, we will build a home surveillance security alert system, where we
will have a BeagleBone board to which a PIR sensor is connected. A USB camera is
connected to it, and the BeagleBone board is connected to the Internet. So basically,
the system will capture an image from the camera whenever some movement is
detected in front of the PIR sensor.

Chapter 8

[195]

Follow these steps:

1.	 Set up the PIR sensor with the BeagleBone board, just like we did in the
motion-detection topic of this chapter, connect the USB web camera to the
BeagleBone board and, log in into the system. The setup looks as shown in
the following picture:

2.	 Create a new directory for this project with sudo mkdir HomeSecurity:

Use cd HomeSecurity:

3.	 Create the Python script for the project using sudo nano EmailAlert.py:

Home Security Systems Using BeagleBone Black

[196]

Type the following code into the file. The code contains comments on most of the
lines to give you a clear explanation of how it works.

Once you have typed the code, go ahead and save it. When you run it, you should
see the output in the Linux shell, as shown in the following screenshot, whenever
there is movement in front of the PIR sensor:

Chapter 8

[197]

The following image shows how I waved my hand in front of the PIR sensor,
keeping my finger in front of it and taking it away:

And the screenshots of the e-mail I got are shown in the following series of images:

Home Security Systems Using BeagleBone Black

[198]

Like this, you can use Python, OpenCV, and the e-mail library of Python together to
click pictures and send an e-mail alert every time some movement is detected by the
PIR sensor.

Summary
In this chapter, we used our knowledge from the previous chapter about OpenCV
with what we learned in this chapter about PIR sensor interfacing using the
BeagleBone board and sending e-mail using Python from the BeagleBone board to
build a motion-detection camera surveillance security e-mail alert system. Instead
of stopping this project here, I recommend you to try out other methods of motion
detection and build the same system without a PIR sensor. There are lots of resources
online on motion detection using OpenCV in real time using Python. Try setting up
a system where without the PIR sensor, motion detection is performed using just the
camera and an e-mail alert is sent.

[199]

Exploring Robotics
As the title says, we will be exploring and learning basic concepts of robotics in this
chapter. We will begin with a basic introduction to robotics, with some definitions
and explanations about robotics systems and a little bit of history about robots.
Then, we will look into the robotics system structure, just like we did in Chapter 3,
Introduction to Physical Computing Systems, regarding physical computing systems.
We will take a look at the basic blocks of hardware and software involved in robotic
systems, which is similar to our physical computing systems. Then, we will look into
their operation, followed by differential drive robots at the end, because we will be
building a differential drive robot in the next chapter.

The contents of the chapter are divided into the following sections:

•	 An introduction to robotics
•	 The elements, structure, and operation of robotics systems
•	 Application areas
•	 Differential-drive robots

Exploring Robotics

[200]

Introduction to robotics
Many people remember only the famous actor Arnold Schwarzenegger and relate
the humanoid terminator robot from the Terminator movies when they hear the
word "robot". Even though it is true that the word robot relates to similar types of
robots, people forget that the exact meaning of robots is not just that. Actually, that
is just one type of robot: the humanoid type robots or—as people call them these
days—androids are robots that resemble humans. We are still at the beginning stages
of android robot development—there is a long way to go in that field of research if
we are to reach results similar to science fiction movie robots.

Sci-Fi humanoid robot versus the most advanced actual robot currently available

What is called a robot has many different definitions. The definitions depend on
which technology is being used in the robotic system and what application the
robotic system performs. Relating to the known definition of the physical computing
system, we can define a robotic system as any physical computing system that is
composed of electromechanical actuators that can either autonomously or semi-
autonomously perform actions guided by a computer program running on its
electronic hardware circuit.

A pick-and-place food robot and a hospital telepresence robot

Chapter 9

[201]

In a much basic way, we can say that robots are machines that are designed in such
a way that they are capable of carrying out one specific task or multiple tasks with
speed and accuracy. You can easily buy many different types of robotic systems
available in the market for different applications, starting from vacuum cleaner
robots that clean your floors to robots that serve coffee and tea to you in a coffee
shop and look exactly like a human being. We will discuss some of the widespread
and current application areas of robots later in this chapter.

Even though robots have existed for a long time, they always used to be inside
research labs and were costly for people to get until the industrial revolution. During
the industrial revolution, manufacturers and industries wanted many industrial
machines to speed up production and produce more items in less time without
defects. Industrial machines started emerging, which were built from the structure
of robotic systems such as robotic arms that were built using actuators and were
capable of lifting heavy weights in the industries. In the early stages, almost all
robotic systems were operated by humans using a remote control to ensure security
and flexibility. But as software started becoming cheaper and more reliable, robotic
systems with semiautonomous functions started to evolve, such as conveyer belts
with robotic actuators that picked items from the conveyer and packed them
automatically, and similarly, many other applications started to emerge in the
industries. Nowadays, there are companies that manufacture food and beverages
that are entirely prepared and packed by robots, with very little human intervention.

As a result of research and development to build smart and intelligent industrial
robotic systems, many sensors and actuator mechanisms were developed to replace
human intervention during production in industries, which led to the evolution of
a wide variety of sensors that are not being developed further to build humanoid
robots. Even though they showed such robots in movies more than a decade back,
we still have many years to go until we build robots that can replace human beings.

Before we look into the wide application areas of robotic systems, let's look
into the basic elements and structure of robotic systems in order to understand
their functioning.

Exploring Robotics

[202]

Elements, structure and operation of
robotic systems
In this section, you will learn what the robotic systems are composed of, followed
by their operation. Like we defined in the previous section, robotic systems are
very similar to physical computing systems, just that in some physical computing
systems, you might not have actuators that perform tasks that reduce human effort,
unlike robotic systems. So, the elements of the systems as well as their operation
are almost similar. In some cases, the term "physical computing systems" can be
synonymous with robotic systems as well.

Just like any physical computing system, any robotic system will also have input
sensors and output actuators connected to a CPU with input/output ports. The
actuators are driven based on the computer program running on the CPU, which
depends on the inputs from the sensors present in the robotic system.

To make it easy for you to understand as well as to give you a brief idea about the
robot we will be building in the next chapter, let's take a look at the block diagram
of a two-wheeled robot that will randomly move without hitting any surface:

Chapter 9

[203]

If you look at the block diagram, it consists of a sensor, that is, an Ultra Sonic Sensor
that detects the distance of any obstacle in front of it from its position, and the sensor
is connected to the input port of the CPU. Similarly, we have a Motor Controller
IC, or the motor driver IC, which will help us drive heavy-duty motors with high
voltages for them to run by taking digital inputs of low voltages that we get from
the microcontroller. So, this motor driver IC is connected to the output port of the
CPU. The motors are connected to the motor driver IC. Based on the inputs given
to the motor driver IC, the motor is driven in a particular direction. We will look
into this IC in detail in the next chapter. And, at last, the most important thing is
that everything be powered using an external power supply, which is usually a DC
source, but it can be AC sometimes, depending on the application. In our case, for
the project in the next chapter, it will be DC. If you see the following block diagram
of the physical computing system from Chapter 3, Introduction to Physical Computing
Systems, you can understand that it is somewhat similar:

So, when you compare the structure with the structure of the robotic system we use
for demonstrative purposes, it comprises a sensor that provides input to the CPU,
and there is a driver IC that works depending on the output from the CPU to drive
the motors. And in the CPU, we have software running that will randomly make the
robot move without hitting any obstacle.

Exploring Robotics

[204]

Depending on the software, the robot can operate in any way. For example, for a
random obstacle-avoidance and autonomous robot that moves randomly, it moves
the robot in the forward direction based on the outputs from the output pins of
the microcontroller, and at the same time, the software keeps reading the distance
measured by the ultrasonic sensor. Whenever an obstacle is detected at a set distance
from the sensor, it is programmed to consider it as an obstacle. So, the program stops
the motors from running by changing the output signal on the output pins of the
controllers and then turns the robot either left or right. This can be random, or we
can instruct it in our code to go only left or right every time an obstacle is detected.
So, the robot starts to turn in a particular direction until there is free space for it to
move and then stops again and starts moving straight. In this way, the program loop
will be running and the robot will be moving randomly without hitting anything.
This can sound dumb as it doesn't do any specific work nor performs any complex
task. But when you add some more sensors to the system, such as a compass to read
the angles at which it is starting to turn and some wheel encoders added to measure
the distance travelled by the robot, and then write a program in such a way that it
doesn't repeat travelling in the same area, it can become an awesome robot if you
mount a vacuum cleaner system to it. One such robot is a commercially available
vacuum cleaner robot.

So, any machine turns into a robot depending on how smart it works and solves
a real-time problem and performs the action. Let's look into such examples,
where robots with simple hardware but great software are being used in different
applications, in the next section. Then, in the end, we will come back and look at
differential-drive robots a little deeper to understand how actually these motors
turn in different directions based on the motor directions using just two wheels
with motors.

Application areas
When we discuss the application areas of robotics, we can see that the existence of
robots is widespread. The most commonly categorized robotic systems based on
application areas are as follows:

•	 Industrial robots
•	 Household or domestic robots
•	 Medical robots
•	 Mobile robots
•	 Social and humanoid robots

Chapter 9

[205]

Industrial robotics
As mentioned before, even though we have been building robots for a long time,
their widespread usage came about only through industrial robots in manufacturing
to increase productivity. These are machines that perform specific tasks in industries
at high speed.

In the preceding picture, you can see robotic arms manufacturing cars in a car
manufacturing industry. The programming of these arms is done in such a way that
all the robotic arms and conveyers that are moving the cars work in a synchronous
way and each of these robot arms perform a specific task, such as fitting a nut or
welding two metal sheets.

Exploring Robotics

[206]

Domestic robots
Robots that help humans with household chores are called domestic robots. The first
one of the following is a fictional domestic robot:

https://glennhsmith.files.wordpress.com/2013/04/rosie-
the-robot-h.jpg

http://static01.nyt.com/images/2014/12/25/
garden/20141225-TECH-slide-3TZF/20141225-TECH-slide-3TZF-
jumbo.jpg

https://s.yimg.com/ny/api/
res/1.2/HUZ5Rw7cnzK2z_k8zuI5ZA--/
YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9NTc0O2g9NDM2O2lsPXBsYW5l/
http://boygeniusreport.files.wordpress.com/2014/02/
roomba-robot-vacuum-cleaner.jpg

The bottom-left image of the preceding composite shows a robot that waters your
lawn every day at regular intervals of time, and the bottom-right image shows a
vacuum-cleaning robot that cleans your house floor. I guess now you can relate
it to the randomly working moving robot avoiding obstacles we discussed in the
previous section.

https://glennhsmith.files.wordpress.com/2013/04/rosie-the-robot-h.jpg
https://glennhsmith.files.wordpress.com/2013/04/rosie-the-robot-h.jpg
http://static01.nyt.com/images/2014/12/25/garden/20141225-TECH-slide-3TZF/20141225-TECH-slide-3TZF-jumbo.jpg
http://static01.nyt.com/images/2014/12/25/garden/20141225-TECH-slide-3TZF/20141225-TECH-slide-3TZF-jumbo.jpg
http://static01.nyt.com/images/2014/12/25/garden/20141225-TECH-slide-3TZF/20141225-TECH-slide-3TZF-jumbo.jpg
https://s.yimg.com/ny/api/res/1.2/HUZ5Rw7cnzK2z_k8zuI5ZA--/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9NTc0O2g9NDM2O2lsPXBsYW5l/http://boygeniusreport.files.wordpress.com/2014/02/roomba-robot-vacuum-cleaner.jpg
https://s.yimg.com/ny/api/res/1.2/HUZ5Rw7cnzK2z_k8zuI5ZA--/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9NTc0O2g9NDM2O2lsPXBsYW5l/http://boygeniusreport.files.wordpress.com/2014/02/roomba-robot-vacuum-cleaner.jpg
https://s.yimg.com/ny/api/res/1.2/HUZ5Rw7cnzK2z_k8zuI5ZA--/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9NTc0O2g9NDM2O2lsPXBsYW5l/http://boygeniusreport.files.wordpress.com/2014/02/roomba-robot-vacuum-cleaner.jpg
https://s.yimg.com/ny/api/res/1.2/HUZ5Rw7cnzK2z_k8zuI5ZA--/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9NTc0O2g9NDM2O2lsPXBsYW5l/http://boygeniusreport.files.wordpress.com/2014/02/roomba-robot-vacuum-cleaner.jpg
https://s.yimg.com/ny/api/res/1.2/HUZ5Rw7cnzK2z_k8zuI5ZA--/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9NTc0O2g9NDM2O2lsPXBsYW5l/http://boygeniusreport.files.wordpress.com/2014/02/roomba-robot-vacuum-cleaner.jpg

Chapter 9

[207]

Medical robotics
In recent times, surgical and rehabilitation robots are being used in the medical
industry. As the names suggest, surgical robots helps doctors in performing complex
surgeries, and rehabilitation robots help people get back use of their hands, arms, or
any part of their bodies that have been replaced or become nonfunctional.

http://www.tipoist.com/indexfoto/robotic-surgery.jpg

http://www.salford.ac.uk/__data/assets/
image/0003/370434/dexterous-robot-hand-robotics-cse.jpg

If you look at the diagram on the left, you can see how a surgery is being performed
using robotic arms: the surgeon operates the robotic arms looking at the console
with the cameras on the arms and performs the surgery from the console. Just like
I mentioned before, most robots are remotely operated. In many situations, with
these robots, surgeons perform surgeries while in a different location from where the
patients are.

If you look at the image on the right, it shows a man with an exoskeleton hand, and
he has no thumb. But with the exoskeleton, he has a complete hand that can help
him. These are nothing but robots that help with the rehabilitation of a human
body part.

http://www.tipoist.com/indexfoto/robotic-surgery.jpg
http://www.salford.ac.uk/__data/assets/image/0003/370434/dexterous-robot-hand-robotics-cse.jpg
http://www.salford.ac.uk/__data/assets/image/0003/370434/dexterous-robot-hand-robotics-cse.jpg

Exploring Robotics

[208]

Mobile robots
Robots that can navigate and perform tasks are called mobile robots. There are many
autonomous and semiautonomous robots that navigate and perform tasks, unlike fixed
robotic arms that are used in industries and fixed lawn-watering robots in homes.

https://static-ssl.businessinsider.com/image/55d233c4
2acae700448be4de-960-720/to-make-things-a-bit-easier-
for-its-workers-amazon-added-about-15000-kiva-robots-
to-10-us-fulfillment-centers-during-the-2014-holiday-
season-amazon-bought-kiva-systems-the-company-that-
manufactures-the-robots-for-775-million-in-2012.jpg

https://cnet4.cbsistatic.com/img/g2VlwBmVinTwCSSQd2
BgrErY2Ws=/570x0/2016/03/18/6cdc953e-563b-4424-bf33-
6014b300e428/dominos-dru-pizza-robot-lifestyle.jpg

Take a look at the preceding images. The image on the left shows warehouse-
management mobile robots that carry racks with items on them in a warehouse,
depending on requests from the control unit. These robots are mobile and work much
faster than humans going in search of a particular item and bringing it to the packing
station or any place in the warehouse. These mobile robots have changed warehouse
management drastically recently. Next, if you look at the image on the right side, it
shows one of the latest mobile robots, which carries pizzas to its customers' home
addresses and delivers them. These robots avoid obstacles and don't hit humans; they
plan their path and keep moving. Vacuum-cleaner robots also come under mobile
robots, but then again, they can be categorized as domestic robots, depending on their
applications. So, most of these application areas are interlinked.

https://static-ssl.businessinsider.com/image/55d233c42acae700448be4de-960-720/to-make-things-a-bit-easier-for-its-workers-amazon-added-about-15000-kiva-robots-to-10-us-fulfillment-centers-during-the-2014-holiday-season-amazon-bought-kiva-systems-the-compa
https://static-ssl.businessinsider.com/image/55d233c42acae700448be4de-960-720/to-make-things-a-bit-easier-for-its-workers-amazon-added-about-15000-kiva-robots-to-10-us-fulfillment-centers-during-the-2014-holiday-season-amazon-bought-kiva-systems-the-compa
https://static-ssl.businessinsider.com/image/55d233c42acae700448be4de-960-720/to-make-things-a-bit-easier-for-its-workers-amazon-added-about-15000-kiva-robots-to-10-us-fulfillment-centers-during-the-2014-holiday-season-amazon-bought-kiva-systems-the-compa
https://static-ssl.businessinsider.com/image/55d233c42acae700448be4de-960-720/to-make-things-a-bit-easier-for-its-workers-amazon-added-about-15000-kiva-robots-to-10-us-fulfillment-centers-during-the-2014-holiday-season-amazon-bought-kiva-systems-the-compa
https://static-ssl.businessinsider.com/image/55d233c42acae700448be4de-960-720/to-make-things-a-bit-easier-for-its-workers-amazon-added-about-15000-kiva-robots-to-10-us-fulfillment-centers-during-the-2014-holiday-season-amazon-bought-kiva-systems-the-compa
https://static-ssl.businessinsider.com/image/55d233c42acae700448be4de-960-720/to-make-things-a-bit-easier-for-its-workers-amazon-added-about-15000-kiva-robots-to-10-us-fulfillment-centers-during-the-2014-holiday-season-amazon-bought-kiva-systems-the-compa
https://cnet4.cbsistatic.com/img/g2VlwBmVinTwCSSQd2BgrErY2Ws=/570x0/2016/03/18/6cdc953e-563b-4424-bf33-6014b300e428/dominos-dru-pizza-robot-lifestyle.jpg
https://cnet4.cbsistatic.com/img/g2VlwBmVinTwCSSQd2BgrErY2Ws=/570x0/2016/03/18/6cdc953e-563b-4424-bf33-6014b300e428/dominos-dru-pizza-robot-lifestyle.jpg
https://cnet4.cbsistatic.com/img/g2VlwBmVinTwCSSQd2BgrErY2Ws=/570x0/2016/03/18/6cdc953e-563b-4424-bf33-6014b300e428/dominos-dru-pizza-robot-lifestyle.jpg

Chapter 9

[209]

Mobile robots include even robots used in military applications, space exploration,
under water robots, and so on.

https://s-media-cache-ak0.pinimg.com/236x/2d/ff/8d/2df
f8d05cf7f5ca90e6d4ab61148349d.jpg

http://i4.mirror.co.uk/incoming/article4822277.ece/
ALTERNATES/s615b/Curiosity-Rover.jpg

http://seahack.org/wp-content/uploads/2013/05/openrov_

large.jpg

If you look at the preceding images, you can see three different robots. The leftmost
one is a military robot equipped with a weapon that can be triggered from a remote
location. In the middle, we have the Mars rover, a robot that was sent to Mars to
explore the planet's surface. It has a communication link with a station on Earth
through satellites. And at last, to the far right, we have a robot that is used in
underwater exploration, called the OpenROV. Now, an interesting fact about this
robot is that it has been built with BeagleBone Black as the master controller in it.
This is a prime example of how a hobby project using BeagleBone Black can be
turned into a commercial product. We will also be building something similar in the
next chapter. But instead of going underwater, it will explore what is around on the
ground with a camera and show a live video feed to us.

From these examples, you can understand that even though they perform so many
applications, the basic structure of these robots remains the same, and it's the add-on
features that we give them using different sensors, actuators, communication links,
and the software programs we write that make all the difference and give so many
different names to the robots based on their applications.

Social and humanoid robots
Robots that resemble humans in look as well as interaction are called humanoid
robots. Social robots are a specific group of these robots that don't have limbs like
humanoids but have software running on them to interact socially like humans.

https://s-media-cache-ak0.pinimg.com/236x/2d/ff/8d/2dff8d05cf7f5ca90e6d4ab61148349d.jpg
https://s-media-cache-ak0.pinimg.com/236x/2d/ff/8d/2dff8d05cf7f5ca90e6d4ab61148349d.jpg
http://i4.mirror.co.uk/incoming/article4822277.ece/ALTERNATES/s615b/Curiosity-Rover.jpg
http://i4.mirror.co.uk/incoming/article4822277.ece/ALTERNATES/s615b/Curiosity-Rover.jpg
http://seahack.org/wp-content/uploads/2013/05/openrov_large.jpg
http://seahack.org/wp-content/uploads/2013/05/openrov_large.jpg

Exploring Robotics

[210]

The following pictures show two robots that might help you differentiate between a
humanoid and social robot:

http://letsmakerobots.com/files/imagecache/robot_
fullpage_header/field_primary_image/asimo.jpg

http://www.laptopreleasedate.com/wp-content/
uploads/2016/06/Robot-ASUS-Zenbo.jpg

If you look at the picture on the left-hand side, you can see a robot that looks like
a human being with hands, legs, ears, and a face on a display. The robot is a great
work of research and development in robotics, and it tries to resemble the human
body's structure, with fingers on the hands to grab something and hold it and feet
to walk from place to place. It also understands speech and responds to humans.

If you look at the image on the right, it shows one of the latest social robot that
interacts with people based on voice processing. But this doesn't look like a human.
Social robots are primarily built to work as personal assistants to humans. They're
also meant for entertainment; for instance, the robot can tell you stories, play a song
for you, and much more. I guess now you can understand why the "social" moniker
is being given to such robots.

The categories and application areas of robots are endless. One book is not enough
to explain all of it. You can do your own research to learn more. With that, we will
end this topic and move on to differential-drive robots, which are one form of mobile
robots, as this control mechanism is going to help us build our own mobile robot in
the next chapter.

http://letsmakerobots.com/files/imagecache/robot_fullpage_header/field_primary_image/asimo.jpg
http://letsmakerobots.com/files/imagecache/robot_fullpage_header/field_primary_image/asimo.jpg
http://www.laptopreleasedate.com/wp-content/uploads/2016/06/Robot-ASUS-Zenbo.jpg
http://www.laptopreleasedate.com/wp-content/uploads/2016/06/Robot-ASUS-Zenbo.jpg

Chapter 9

[211]

Differential-drive robots
Differential-drive is a control mechanism that is being used in most situations
requiring control of navigating robots, especially for indoor applications. For beginners
as well, this is considered the best control mechanism to get started with robots. Most
indoor navigating robots used in industries and homes use this very mechanism.

The concept of this mechanism is to use two separately driven motors coupled with
the wheels of the robot, separated by a distance and placed on a fixed common
horizontal axis. The base also includes one or multiple caster wheels or roller-ball
wheels attached to it to maintain equilibrium.

Here is how it looks:

In the diagram, you can see two different configurations of differential-drive robots.
The one on the left has two casters, while the other has just one. These two are one of
the most commonly used differential-drive system configurations used. Both of them
have different kinematics during navigation. If you want to look into it, you can
read more on the Internet. Right now, to get started, you can chose one of these
chassis—whichever you get in your market. The operation depends on controlling
two motors using a motor driver IC and the outputs from the MCU.

Exploring Robotics

[212]

When we look at the operation of these robots for navigation, it looks like
these diagrams:

•	 Moving forward:

When the right-hand motor rotates clockwise and the left-hand one runs
anticlockwise, the robot will move forward.

•	 Moving backwards:

Chapter 9

[213]

When the right-hand motor rotates anticlockwise and the left-hand one
motor runs clockwise, exactly opposite to the directions during forward
motion, the robot will move backwards.

•	 Turing left:

When the left-hand motor is stopped and the right-hand motor runs
clockwise, the robot turns left.

•	 Turning right:

Exploring Robotics

[214]

When the left-hand motor runs anticlockwise and the right-hand motor is
stopped, the robot turns right.

•	 Spinning:

When both motors run in the anticlockwise direction, the robot spins
clockwise on its own axis when looked at from above. Similarly, when
the motor directions are reversed, it will spin anticlockwise.

•	 Stop:

I believe we don't need a picture to explain this action—if neither motor is
running, the robot stops.

Summary
With that, we are at the end of this chapter, where we had a basic introduction to
robotics, including some examples relating science fiction and reality, followed by
a brief explanation of how robotic systems are structured and how they work. We
also looked at some examples and discussed application areas. In the end, we also
saw how differential-drive robots work and how they can be operated. We will be
building our own live-video streaming differential-drive robot in the next chapter.

[215]

Building Your Own Robot
In this chapter we will see how to build our own robot using BeagleBone Black with
Motors and Motor Driver IC interfaced with it. First we will learn about DC motors,
followed by the L293D motor driver IC that will help us drive the DC motors. Then
we will see how we can stream live video on a web page from the camera connected
to the BeagleBone board. At the end we will build our own telecontrolled robot that
you can control from a web page with a live video feed streaming from the camera
connected to the BeagleBone Black.

The contents of this chapter are divided into:

•	 Prerequisites
•	 DC motors and the L293D motor driver IC
•	 Live video streaming on the BeagleBone board
•	 Advanced Project: A tele-controlled robot with live video streaming

Prerequisites
This topic will cover the parts you will need to get started with building the robot.
These materials can be purchased from your local electrical hobby store or by
ordering online from websites like Adafruit, Sparkfun, Seed Studio and so on.

Materials Needed
•	 1x BeagleBone Black
•	 1x microSD card with latest version of Debian flashed on it to boot the

BeagleBone board from a microSD card
•	 1x 5V DC, 2A power supply/mobile power bank with USB output of 5V 2A

or more

Building Your Own Robot

[216]

•	 1x USB WiFi dongle
•	 1x BreadBoard
•	 2x DC motors 50 to 100 RPM range operating at 12V
•	 1x L293D motor driver IC
•	 1x USB camera
•	 1x USB hub
•	 1x 12V or 9V battery
•	 1x USB cable
•	 1x DC barrel jack
•	 Connecting wires

DC motors
A DC motor is a motor that runs using a DC power supply.

As shown in the preceding picture, it has two terminal wires. We can call one of
these terminal wire positive and the other one negative. Usually, these wires are
marked red and black where red is positive and black is negative. Although these
wires are marked positive and negative, unlike the battery, where these polarities
can't be mixed, here in the DC motors they can be mixed.

Chapter 10

[217]

Say, for example, on a motor, if the positive wire is connected to the positive terminal
of the battery and the negative wire is connected to the negative terminal of the
battery, or the power source, the motor rotates in a clockwise direction. When you
reverse the connection, say from the positive terminal of the motor to the negative
terminal of the battery and the negative terminal of the motor to the positive terminal
of the battery, then the motor will rotate in an anti-clockwise direction, as shown in
the following picture:

While the polarity of the voltage source's connection to terminals of the motor
controls the DC motor's direction of rotation, the magnitude of the DC voltage
source determines the speed of it.

But changing the polarity and switching the circuit on and off every time manually
can be hectic job, and we need an electronic circuit that can help us do this without
having to physically switch the connections. This is where motor driver ICs will
come in useful to complete the task with digital inputs. One such motor driver IC is
the L293D which will be discussing next.

L293D motor driver IC
As we mentioned previously, the L293D can be defined as a, H-Bridge motor driver
circuit, which is made into a IC allowing us to drive a DC motor in either direction
using digital inputs.

Building Your Own Robot

[218]

The pin configuration of the L293D is as shown in the following picture:

As shown in the preceding picture, in the L293D there are four input pins and four
output pins. The two input pins, pin two and seven regulate the rotation of the
motor connected to output pins three and six. Similarly, the input pins on the right,
pin fifteen and ten regulate the rotation of the motor connected to output pins eleven
and fourteen. The enable pins one and two, on the left and the right side of the IC on
pin one and nine of the IC enables the operation of the output based on the input on
that side of the IC. The motors rotate based on the inputs provided across the input
pins as Logic 0 and Logic 1. Supply 5V to the Vcc pin of the IC for its operation, and
connect the ground pins to the ground and negative pins of the power supply. And
finally, you need to connect the positive of the DC power source/battery to the Vss
pin to provide a power supply to the motor, and connect the negative of the power
supply to the GND pin.

Chapter 10

[219]

Consider the circuit connection as shown in the following picture:

For the circuit shown previously, when input 1 is LOW and input 2 is HIGH, the
motor 1 will rotate in a clockwise direction, similarly when both inputs 1 and 2 are
LOW or HIGH the motor will not rotate. This can be explained using a logic table:

Input 1 Input2 Motor 1 Running Direction
HIGH LOW ANTI-CLOCKWISE
LOW HIGH CLOCKWISE
HIGH HIGH IDLE – NO ROTATION
LOW LOW IDLE – NO ROTATION

Building Your Own Robot

[220]

Similarly for input 3 and input 4 the output will be as shown in the following table:

Input 3 Input4 Motor 2 Running Direction
HIGH LOW ANTI-CLOCKWISE
LOW HIGH CLOCKWISE
HIGH HIGH IDLE – NO ROTATION
LOW LOW IDLE – NO ROTATION

You can test it by connecting it to the BeagleBone Black by writing a similar Python
code to our blink code or the home automation code that we tried in our previous
chapters. With this knowledge, you will have a clear idea of the concept of how the
L293D operates. You can look at the datasheet of the L293D IC to get more details
about the specifications and ratings of the IC. You can get this datasheet provided
by the IC manufacturer on the Internet.

We will use the same circuit interfaced with the BeagleBone board at the end of the
chapter to the build the robot in our final project. Now let's go ahead and see how
we can stream video live on the BeagleBone board using the USB camera connected
to it.

Live video streaming on the BeagleBone
board
To stream live video from Logitech HD webcam C270 USB camera, connected via
local server to the BeagleBone board you need to have a software package that can
do the job. But you also need to install some essential software before you download
and compile the live video streaming software. Let's get started with the installation
of the software packages by executing the following commands :

•	 sudo apt-get install imagemagick

Chapter 10

[221]

When you are prompted to continue the operation, type Y, as shown at the
end of the preceding screenshot, and hit Enter to continue and finish the
installation:

•	 sudo apt-get install libjpeg8-dev

Building Your Own Robot

[222]

•	 sudo apt-get install subversion

Now that we have installed all the prerequite softwares, let's download and compile
the video streaming software.

First create a separate directory in the home directory, and put the contents of the
streaming software inside it:

•	 mkdir mjpg

Now let us change our working directory to the directory we created:

•	 cd mjpg

Once you are in the mjpg directory, you can download the mjpg-streamer software
package using the command given following from the URL mentioned in the
command:

•	 svn co https://svn.code.sf.net/p/mjpg-streamer/code/mjpg-
streamer/ mjpg-streamer

Chapter 10

[223]

Once you have downloaded it there will be aa mjpg-streamer folder created, inside
which you will have the source code of the software. Let's go ahead and change the
directory to that first:

•	 cd mjpg-streamer

Now our next step will be compile the software using the make command:

•	 make

Building Your Own Robot

[224]

Once you have successfully compiled the software without errors you can go ahead
and run the software using the following command:

•	 /mjpg_streamer -i "./input_uvc.so -d /dev/video0 -n -y" -o "./
output_http.so -w ./www"

If the Apache server is installed on your Debian package then it might show an error
saying bind: Address already in use as shown in the following screenshot when you
execute the preceding command to run the video streaming software:

This is due to port 8080 being used by default by the Apache server. In this case,
to resolve the issue, we can change the port used by Apache to 8079, or any other
permited number as shown in the following screenshot, by changing the details in
the ports.conf file:

•	 sudo nano /etc/apache2/ports.conf

Once you open the file you can change the NameVirtualHost to 8079 and Listen to
8079 port as shown in the following screenshot and save it:

Chapter 10

[225]

Once you save it, you need to restart the Apache server to perform the changes.
To do that, execute the service restart command:

•	 sudo service apache2 restart

Once you restart and get the output as shown in the preceding screenshot, it means
the changes have been made. Now you can go ahead and run the streaming software
by executing the following command:

•	 sudo ./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -n -y"
-o "./output_http.so -w ./www"

Building Your Own Robot

[226]

If you see the output as shown in the previous screenshot, then the streaming
software is running properly. We can test it by visiting the local server at port
8080 as shown in the following screenshot. The IP address is the IP address of the
BeagleBone Black on your router, which is same as the one we used to login to the
BeagleBone board.

Once you open the web link, you will see the streaming software's home webpage as
shown on the next page:

Chapter 10

[227]

The software description page with the details about which streaming software we
are running on the BeagleBone board is shown in the previous screenshot. On the
home page itself you can see the image captured from the camera but it's a static
image which is not a live stream. To see the live stream, click on the Stream button
on the left and it will show you the live streamed web page where you can see the
live feed from the camera as shown in the following screenshot:

Building Your Own Robot

[228]

Click the button here, which is highlighted in red saying To see a simple example
click here. You will see just the video feed separately as a image element on an
HTML page as shown in the following screenshot:

Chapter 10

[229]

A setup of the BeagleBone board with the USB camera whilst the live feed is being
streamed is shown in the following screenshot:

So, you can see that the BeagleBone and the power bank which are in front of the
camera are visible on the live feed. If you just wave your hand in front of the camera
you can see it live on the web page.

Building Your Own Robot

[230]

Now that we have seen the live video feed on this, if you want to include it on any
HTML page you want to create, you can do so by adding the image source element
created by the streaming software. You get the information of that image source by
right clicking on the browser and hitting the inspect element which will show the
details as shown in the following screenshot. Almost all of the browsers we use like
Chrome, IE or Mozilla shows these details now, and you can learn more about this
by browsing the Internet.

The image element can be identified on the inspection block on the right side of
the browser window where the details is mentioned as shown in the preceding
screenshot:

We will be using this in our project at the end of this chapter to get a live feed on the
web page using a Flask framework and Python. Now that we know how to get a live
feed from the USB camera and integrate it on a webpage, let's go ahead to the next
topic in this chapter where we will be building a robot with live video streaming.

Chapter 10

[231]

Advanced project – a telecontrolled robot
with live video streaming
First connect the motor driver IC with motors, power supply as shown in the
following circuit:

Building Your Own Robot

[232]

The whole setup will look like the following picture:

So you can see from the preceding picture that the BeagleBone Black is connected to
a USB hub to which the WiFi dongle and USB camera are connected. Also the L293D
is connected to motors of the robot and an external 12V battery is used to drive the
motors. The input pins of L293D are connected to the BeagleBone Black to control
the L293D. The BeagleBone Black is powered using a mobile power bank using a
USB to DC barrel connector cable, which you can make on your own as shown in
the following picture:

Chapter 10

[233]

So why can't the BeagleBone board be powered using the inbuilt USB connection?.
This is because the USB only draws 500mAh in total from the input supply, which
isn't sufficient to power up the USB webcam and the Wi-Fi dongle.

Now, you can login into the BeagleBone Black and write the code to control the robot
from the web page.

In this project, we will not be writing the code from scratch – instead we will be
writing it by editing the code from our home automation project from Chapter
6, Home Automation Using BeagleBone. So let's go ahead to the home automation
directory in the Linux shell after logging into it:

•	 cd WorkSpace/HomeAutomation

If you list the contents in the directory using the ls command, you will see
the following:

Once you are in the home automation directory, let's first edit the HTML template:

•	 cd templates

Now we can go ahead and edit the main.html file that we created in our
home automation project and then save it as Robot.html file, as shown in
following screenshot:

Building Your Own Robot

[234]

Once you have opened the main.html file, using the nano text editor, edit the
content to make it look like the following screen shot:

You can see that we have added the image source element from our previous topic
into this HTML file and added four buttons. Once you have saved the file, you can
go ahead and make the changes in the Python file that we need to run in order to
create a server using Python.

First let us go back to the home automation directory:

Now let's open the GPIOControlWebApp.py file that we created in the home
automation project:

Chapter 10

[235]

Edit the file as shown in the following screenshot and save it as Robot.py:

Building Your Own Robot

[236]

Now you can run the Python code by using the following command:

•	 sudo python Robot.py

Just running this code is not enough. We also need to run the streaming software
to give our project the live video feed. So, login to the BeagleBone Black using
another PuTTY session, and run the streaming software as shown in the
following screenshot:

When the streaming software and the Python code are running simulatneously,
you can go ahead and check the server file by pointing your BeagleBone Black's IP
address at port 5000, from any browser, via a PC or mobile phone connected to the
same local network same as to which the the BeagleBone board is connected. You
will see the output shown in the picture on the next page, from where you can see
the live feed and control the robot:

Chapter 10

[237]

So, in the preceding screenshot you can see the robot's wheels. The setup is the same
as that shown in the picture at the beginning of this topic, where the camera was
pointing at the wheels of the robot. This will show you how the wheel movement
works when you click on each button on the web page. We will discuss this next
where you can see the wheel movement on the images themselves, as the wheel that
is running will look blurred.

Building Your Own Robot

[238]

When you click for the forward button. Both motors run as discussed out previous
chapter regarding the differential drive system. That is the motors will drive the
robot in forward direction, you can see the difference in the following screenshot
where the motors are running when compared with the previous image shown in
the previous page of this chapter where the wheels are idle and not running.

Chapter 10

[239]

You can also see the log of the movement in the Python output when you press the
button as shown in the following screenshot:

Similarly, for turning left, the right motor needs to be running and the left one
stopped, as shown in the following screenshot:

Building Your Own Robot

[240]

And when you press the RIGHT button then the LEFT motor is running, and the
RIGHT one is stopped, as shown in the following screenshot:

Chapter 10

[241]

Similarly when you click on stop, both motors will be stopped. If you mount all
these electronics on top of the robot as desired, you can make it drive around as a
telecontrolled robot with a live feed carrying the BeagleBone Black with the camera.
In this chapter I gave you all the resources you need to understand this idea. Now,
you can go ahead and mount the electronics on the robot base. To find out how
people make a simple prototyping shield with electronics soldered onto it on top
of the hardware development boards. Just type in Google, prototyping capes
for BeagleBone or hats for raspberry pi and shields for Arduino. Even
though these are made for different hardware development boards like BeagleBone
and Raspberry Pi, the same electronics can be mounted on a BeagleBone board with
slight modifications which will help you get rid of the messy wiring. Also, try using
the sub-process Python module to execute the shell command and start streaming
software at the beginning of the Python code to start running the server. By using
this sub-process you need not run two instances of PuTTY, you can finish your work
with just one.

Summary
With that we are at the end of this chapter, where we have learnt some basics about
DC motors and their operation, as well finding out what an L293D motor driver
IC is, and how we can use it to control a connected DC motor connected. Next,
we saw how to live stream video on the local server with BeagleBone Black using
mjpg-streamer package. Finally we worked on a project where we interfaced the
L293D motor driver IC with the BeagleBone Black, and a live streaming image
source, to HTML templates and controlled a robot using the input buttons on the
webpage that we created using the Python and Flask web server framework.

[243]

Index
A
Analog to Digital converters (ADCs) 74
application areas

about 204
domestic robots 206
industrial robotics 205
medical robotics 207
mobile robots 208, 209
social and humanoid robots 209, 210

B
BeagleBone 2
BeagleBone Black

about 3
e-mail, sending with attachment 192-194
hardware specification 4-6
prerequisites 2, 68
using 4

BeagleBone board
booting 14-19
booting, from microSD card 20-24
custom Python program, writing 37-44
live video streaming 220
logging, via SSH over Ethernet 25-32
setting up 7-13
usage 46, 47

BeagleBone Green 2
BoneScript 11

C
cat command 35
cd command 34
central processing unit (CPU) 72

custom Python program
writing, on BeagleBone board 37-44

D
DC motors 216, 217
Debian package

reference link 14
device drivers

download link 8
differential-drive robots 211-214
domestic robots

reference links 206

E
e-mail

sending, with attachment from
BeagleBone Black 192-194

e-mail alert fire alarm project 114- 122
Ethernet

BeagleBone board, logging via SSH 25-32

F
File Transfer Protocol (FTP) 179
Flask. See Python-Flask

G
general-purpose input/output (GPIO) pins

about 45, 54, 55
accessing, with Python 58-62

[244]

H
home automation system

building, with BeagleBone 133
materials required 134
power switches 148-153
prerequisites 134
relays 148-153
structure 134, 135
transistors 148-153

I
image capture, from camera

Python and OpenCV used 177-183
Internet controlled power switch

about 154
AC bulb, controlling from Internet 154-157
port forwarding, setting up 157-164

L
L293D motor driver IC 217-219
LED

about 48
blinking, with Python script 63, 64
toggling, with push button 76-84

libraries
adding, to Python 55-58

Linux command-line interfaces
reference 33

Linux shell
working 33-36

live video streaming
on BeagleBone board 220-230

LM35 sensor
used, for temperature sensing 88-97
working 87, 88

ls command 33

M
medical robotics

about 207
reference links 207

microSD card
BeagleBone board, booting 20-24
preparing 14-20

mkdir command 34
mobile robots

reference links 208, 209
motion-based home security alert system

creating 194-198
prerequisites 186

motion detection
passive infrared (PIR) sensors,

using 189-192
Motor Controller IC 203

O
OpenCV

about 171
installing, on Debian on BeagleBone

board 171-177
setting up, on BeagleBone board 171

operating systems
installing 13-20
references, for Mac users 20

P
passive infrared (PIR) sensors

about 186
used, for motion detection 189-192
working 187, 188

physical computing systems
about 68
basic elements 69-75
LED, toggling with push button 76-84
usage 75

physical computing systems,
connecting to internet

advanced level project 123
e-mail alert fire alarm project 114-122
Internet access, giving to

BeagleBone board 100, 101
prerequisites 100
sensor data, uploading to

web cloud 123-130
Wi-Fi capability, adding to BeagleBone

board 101-114
pwd command 34
Python

libraries, adding 55-58

[245]

used, for accessing general-purpose
input/output (GPIO) 58-62

Python-Flask
about 137
on BeagleBone Black 137-148

python interactive shell interface
reference 37

Python Package Index (PyPI) 137
Python script

used, for blinking LED 63, 64

R
Random Access Memory (RAM) 75
Read Only Memory (ROM) 75
real-time physical computing system

building 85
materials needed 86
prerequisites 86

rm command 36
robot, building with BeagleBone Black

materials needed 215
prerequisites 215

robotics 200, 201
robotic systems

elements 202-204
operation 202-204
structure 202, 203

S
Secure Shell (SSH)

about 25
BeagleBone board, logging

over Ethernet 25-32
sensor data

uploading, to web cloud 123-130
switches

about 48
creating 48-50
momentary switch 50, 51
toggle switch 52, 53

T
TCP/IP Network 136
telecontrolled robot, with live

video streaming
building 231-241

temperature sensor
about 86
LM35 sensor 87

U
Ultra Sonic Sensor 203
USB camera

adding, to BeagleBone board 168-170
USB camera, interfacing with BeagleBone

materials needed 168
prerequisites 167

W
web servers 135-137
Win32 Disk Imager

reference 16
World Wide Web (WWW) 136

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with BeagleBone

	Prerequisites
	BeagleBone Black – a single board computer
	Getting to know your
board – BeagleBone Black
	Hardware specification of BeagleBone Black
	Setting up your BeagleBone board
	Installing operating systems
	Booting your BeagleBone board from a SD card
	Logging into the board via SSH over Ethernet
	Working on Linux Shell
	Writing your own Python program on BeagleBone board
	Summary

	Chapter 2: Circuit Fundamentals and GPIO

	Prerequisites
	Usage of breadboards
	Switches and LEDs
	Momentary switch
	Toggle switch

	GPIOs
	Adding libraries to Python
	Using Python to access GPIOs
	Project – blinking an LED using
Python script
	Summary

	Chapter 3: Introduction to Physical Computing Systems

	Prerequisites
	Introducing physical computing systems
	Basic elements of physical
computing systems
	Application areas

	Project – toggle LED using a push button
	Summary

	Chapter 4: Real-time Physical Computing Systems Using BeagleBone

	Prerequisites
	Materials needed

	Temperature sensor
	How do LM35 sensors work?

	Temperature sensing using a LM35 sensor
	Summary

	Chapter 5: Connecting Physical Computing Systems to the Internet

	Prerequisites
	Materials needed

	Giving Internet access to your BeagleBone board
	Adding Wi-Fi to the BeagleBone board
	Intermediate level project: An e-mail alert fire alarm
	Advanced level project: Uploading sensor data to a web cloud
	Summary

	Chapter 6: Home Automation using BeagleBone

	Prerequisites
	Materials needed

	The structure of home automation systems
	Introduction to web servers
	Python-Flask on BeagleBone Black
	Transistors, relays, power switches
	Advanced project: An Internet controlled power switch – controlling an AC bulb from the Internet
	Setting up port forwarding

	Summary

	Chapter 7: Working with Images Using Computer Vision

	Prerequisites
	Materials needed

	Adding a USB camera to a BeagleBone board
	OpenCV – introduction and setting up on the BeagleBone board
	Installing OpenCV on Debian on a BeagleBone board

	Project: Image capture from a camera using Python and OpenCV
	Summary

	Chapter 8: Home Security Systems Using BeagleBone Black

	Prerequisites
	PIR sensors
	How PIR sensors work

	Motion detection using PIR sensors
	Sending e-mail with an attachment from BeagleBone Black
	Advanced project – Motion-based home security alert system
	Summary

	Chapter 9: Exploring Robotics

	Introduction to robotics
	Elements, structure and operation of robotic systems
	Application areas
	Industrial robotics
	Domestic robots
	Medical robotics
	Mobile robots
	Social and humanoid robots

	Differential-drive robots
	Summary

	Chapter 10: Building Your Own Robot

	Prerequisites
	Materials Needed

	DC motors
	L293D motor driver IC
	Live video streaming on the BeagleBone board
	Advanced project – a telecontrolled robot with live video streaming
	Summary

	Index

